CN109207939B - 一种γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层及其制备方法 - Google Patents

一种γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层及其制备方法 Download PDF

Info

Publication number
CN109207939B
CN109207939B CN201811218430.5A CN201811218430A CN109207939B CN 109207939 B CN109207939 B CN 109207939B CN 201811218430 A CN201811218430 A CN 201811218430A CN 109207939 B CN109207939 B CN 109207939B
Authority
CN
China
Prior art keywords
nicralsi
ceo
gamma
coating
tial alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811218430.5A
Other languages
English (en)
Other versions
CN109207939A (zh
Inventor
魏东博
张平则
赵瑞博
李淑琴
姚正军
马振宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201811218430.5A priority Critical patent/CN109207939B/zh
Publication of CN109207939A publication Critical patent/CN109207939A/zh
Application granted granted Critical
Publication of CN109207939B publication Critical patent/CN109207939B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种γ‑TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层及其制备方法,该涂层包括自下而上依次设在基体上的NiCrAlSi沉积层、等离子渗氧陶瓷膜、CeO2掺杂YSZ隔热层。其制备方法为:对γ‑TiAl合金基体表面进行预处理;利用等离子刻蚀技术在基体表面形成峰形阵列微结构;利用多弧等离子镀技术在基体上进行NiCrAlSi沉积层;采用等离子渗氧的方法在表面形成一层致密的等离子渗氧陶瓷薄膜;采用多弧等离子镀技术在上述所得涂层上及进行CeO2掺杂YSZ沉积。本发明提高了γ‑TiAl合金与NiCrAlSi/CeO2掺杂YSZ涂层的结合强度。

Description

一种γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层及其制备 方法
技术领域
本发明属于材料科学技术领域,特别涉及一种具有复合结构的γ-TiAl合金表面抗高温氧化及耐热腐蚀的NiCrAlSi/CeO2掺杂YSZ涂层及其制备工艺。
背景技术
γ-TiAl合金金属间化合物合金具有密度低(3.9g/cm3)、弹性模量大(180GPa)、高温强度高以及抗蠕变性能好等特点。其使用温度可达750~900℃,接近Ni基高温合金的最高使用温度,可作为Ni基高温合金的替代材料,由于其比强度远高于高温合金,因此在燃气涡轮发动机领域有巨大的应用前景。为了更好的适应高温恶劣的环境,各种涂层系统应运而生,其中,由低导率的陶瓷制成的TBC(热障涂层)系统已被成功应用在了飞机推进。尽管如此,TBC所提供的优异的抗高温性能和低的结合强度的性能不匹配问题导致了涂层寿命的大大降低。据国外媒体FlighGlobal报道,2017年由于空客 A320neo飞机上的Leap-1A发动机的高压涡轮中复合涂层的脱落,造成涂层中的空隙对通过涡轮的气流产生了扰动,导致Leap-1A发动机投入使用后就面临潜在整体耐久性的问题。因此,为了防止发动机耐用性问题影响的扩大,必须要解决TBC涂层的结合强度低的问题。
当前TBC系统由特定的性质和功能可分为四层,这些层是i)基材;ii)粘结层; ii)TGO层;iv)陶瓷层。
粘结层是直接沉积在金属基体上的抗氧化金属层。它通常厚度为75~100μm,由NiCr和其他元素构成,粘结层的主要目的是保护金属基体免受氧化和腐蚀,特别是多孔陶瓷面层的氧气和腐蚀性元素。TGO层是当温度超过700℃时,粘结层不可避免地会生成第三层—热生长氧化物(TGO),其厚度约为1~10μm。粘结层与陶瓷层之间,始终会存在氧元素从陶瓷层的空隙中直接进入到粘结层,导致粘结层产生氧化生长应力,从而使涂层开裂。如2015年7月出版的《金属热处理》第40卷第7期中“等离子喷涂梯度热障涂层的抗热震性能”一文研究采用等离子喷涂制备了沿厚度方向平滑过渡的梯度热障涂层,这种涂层大幅提高了涂层的结合强度,但明显不足之处是在高温下梯度涂层内的合金组员会发生剧烈氧化导致粘结层与陶瓷层发生整体膨胀剥落。2016年4月出版的《中国机械工程》第27卷第7期中“等离子喷涂ZrO2-8%Y2O3热障涂层的组织与性能研究”一文采用超音速火焰喷涂粘结层和大气等离子喷涂陶瓷层制备了双层结构的陶瓷,但由于陶瓷颗粒在瞬间冷却固化没有来得及填充孔隙,造成陶瓷层出现较多的孔洞和微裂纹。这些孔洞和微裂纹在高温下会增大陶瓷层的透氧率,从而增大了TGO层的而生长速度。尽管TGO的形成不可避免,但是可以通过等离子渗氧的方法在粘结层表面生成一层致密的等离子渗氧陶瓷薄膜,以减少氧元素的进入,从而使TGO层缓慢而均匀的生长,不至于由于生长应力过大导致涂层与界面开裂。陶瓷层一般使用Y2O3稳定的ZrO2 (YSZ),YSZ在拥有理想的低热导性,但在温度为1200℃下,YSZ会发生从t'-四方晶系转变为四方晶系转变为立方晶系晶体的相变,这种相变导致顶部涂层内形成裂纹。通过稀土氧化物掺杂可以有效地稳定YSZ。综以上几个方面,粘结层基本上决定了TBC涂层的剥落。耐用性的关键是保持粘结层和基体、粘结层和TGO之间的牢固结合,为了实现这一目的,有必要(i)创建高强度的初始粘结和(ii)减少促进粘结层/TGO界面处开裂的应力和累积应变能。
发明内容
针对NiCrAlSi/CeO2掺杂YSZ涂层的粘结层结合力差的问题,本发明的目的是提供一种γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层的制备方法,以提高 NiCrAlSi/CeO2掺杂YSZ涂层的结合强度。
为实现上述目的,本发明采用的技术方案为:
一种γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层,包括自下而上依次设在γ-TiAl 合金基体表面的NiCrAlSi沉积层、等离子渗氧陶瓷膜、CeO2掺杂YSZ隔热层;所述γ-TiAl 合金基体表面具有峰形阵列微结构。
所述涂层的整体厚度为14μm;CeO2掺杂YSZ隔热层的厚度为8~9μm;NiCrAlSi 粘结层的厚度为3~5μm。
一种γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层的制备方法,包括如下步骤:
步骤a,对γ-TiAl合金基体表面进行预处理;
步骤b,利用等离子刻蚀技术在经步骤a处理后的γ-TiAl合金基体表面形成峰形阵列微结构;
步骤c,利用多弧等离子镀技术在经步骤b处理后的γ-TiAl合金基体表面形成NiCrAlSi沉积层;
步骤d,采用等离子渗氧的方法在步骤c得到的NiCrAlSi沉积层表面形成一层致密的等离子渗氧陶瓷膜;
步骤e,采用多弧等离子镀技术在步骤d得到的等离子渗氧陶瓷膜上进行CeO2掺杂YSZ沉积,形成CeO2掺杂YSZ隔热层。
所述步骤a中,γ-TiAl合金基体材料为铸造γ-TiAl基金属间体化合物合金;将基体依次用代号为0#、01#、03#、05#、07#砂纸打磨后,用粒径为2.5μm的金刚石研磨膏抛光;然后经丙酮超声清洗后,烘干。
所述步骤b中,采用等离子刻蚀系统,选用氢气和氩气刻蚀气体,刻蚀工艺参数为:功率2000W,氢气流量50mL/min,氩气流量10mL/min,压力8KPa,时间1h。
所述步骤c的具体步骤为:
步骤c1,腔室、基体及靶材的清洗:将多弧离子镀镀膜设备的腔室通过机械泵抽真空,通入氩气清洗,以排除腔室中可能与金属元素发生反应的气体分子;打开分子泵对分子泵进行抽真空,通入氩气,开启离子源,利用氩气产生的辉光轰击基体,以清除基体表面的杂质原子;增大至氩气流量5~10sccm,启动偏压电源,利用NiCrAlSi靶材表面生的弧光清洗,以清除靶面的杂质原子,露出新鲜表面;
步骤c2,以氩气为工作载气,启用NiCrAlSi靶材在基体表面制备NiCrAlSi沉积层,制备过程结束后随炉冷至室温;其中,制备NiCrAlSi沉积层的工艺参数及变量为:电流强度90~100A,气体压强0.3~0.55Pa,偏压150~200V,温度200~250℃。
所述步骤c2的NiCrAlSi靶材中,Cr占50~70wt%,Ni占10%~20wt%,Al占 5%~15wt%,其余为Si。
所述步骤d的具体为:
步骤d1,将经c步处理的到的γ-TiAl合金装入双辉等离子表面合金化装置中,以钛合金为工件极,抽真空至极限真空度,送入氩气,氧气,启动辉光,调试工艺参数为:
工件电压:850V;
气压:40~45Pa;
氩氧体积比:1:1
保温时间:1h;
步骤d2,停止辉光,断电,完成等离子渗氧陶瓷膜的制备。
所述步骤e中,以氩气为工作载气,氧气为反应气体,启用Zr-8Y掺杂CeO2靶材,在步骤d得到的等离子渗氧陶瓷膜表面沉积一层CeO2掺杂YSZ隔热层,制备过程结束后随炉冷至室温;工艺参数及变量设置为电流强度90~100A,气体压强0.3~0.55Pa,氧气流量15~20sccm,偏压150~200V,温度200~250℃。
所述Zr-8Y掺杂CeO2靶材中,Y2O3稳定的ZrO2的摩尔百分比为6%~8%,CeO2的摩尔百分比为18%~25%。
本发明通过等离子刻蚀技术在基体层进行表面刻蚀的方法增大基体与粘结层的结合强度;通过等离子渗氧的方法降低TGO层的生长应力。上下同时强化,充分利用TBC 优异的抗高温性,提高涂层的寿命。等离子刻蚀是干法刻蚀中最常见的一种形式,其原理是暴露在电子区域的气体形成等离子体,由此产生的电离气体和释放高能电子组成的气体,从而形成了等离子或离子,电离气体原子通过电场加速时,会释放足够的力量与表面驱逐力紧紧粘合材料或蚀刻表面。进行干式蚀刻工艺的设备包括反应室、电源、真空部分。工件送入被真空泵抽空的反应室。气体被导入并与等离子体进行交换。等离子体在工件表面发生反应,反应的挥发性副产物被真空泵抽走。
多弧离子镀是近年来发展的重要的一种涂层制备技术,该技术的优点是从阴极可以直接产生等离子体,入射的粒子能量高,蒸镀速率快。多弧离子镀的蒸发源的阴极材料即是镀膜材料,磁场线圈起约束等离子体的作用,引弧电极在阴极靶启动时引燃电弧。在10~10-1Pa真空条件下,接通电源并使引弧电极与阴极快速完成接触、脱离,将电弧引燃,低电压、大电流的电源维持电弧放电的持续进行。多弧离子镀设备工作时通过阴极金属靶与阳极壳体之间持续的电弧放电,将靶材加热蒸发并高度电离,在真空腔室内形成等离子体,阴极靶材的负偏压电场作用下,金属离子或离子团沉积在工件表面形成涂层。
有益效果:本发明首次将等离子刻蚀技术与多弧离子镀技术结合起来应用在提高γ-TiAl合金与NiCrAlSi/CeO2掺杂YSZ涂层的结合强度。具体如下:
(1)利用等离子刻蚀技术在γ-TiAl合金表面形成峰形阵列的微结构,一方面,增大了NiCrAlSi粘结层/γ-TiAl基体的接触面积,形成微机械互锁,提高了NiCrAlSi粘结层/γ-TiAl基体的结合强度。另一方面,峰形阵列微结构的的凹面和凸面在绑定机制的作用下可有效地防止裂纹在界面处扩展,使涂层更加牢固。
(2)采用等离子渗氧的方法在所得NiCrAlSi沉积层表面制备一层致密的 Al2O3+Cr2O3+SiO2氧化薄膜,减缓了高温下氧元素从顶层直接进入粘结层,降低了顶隙效应。通过刮擦方法测试涂层的结合强度,实验结果显示,带有峰形微结构的涂层结合强度是无刻蚀处理涂层结合强度的2倍。用此种方法获得的涂层在从涂层的结构和失效机理上有效地阻止了涂层剥落,提高了γ-TiAl合金与NiCrAlSi/CeO2掺杂YSZ涂层的结合强度。
附图说明
图1为本发明的涂层的结构示意图。
具体实施方式
下面结合实施例对本发明做进一步详细说明。但对于本领域技术人员来说,完全可以在具体实施方式所列数值的基础上进行合理概括和推导。
实施例1
(1)NiCrAlSi靶材安装前,用1#砂纸打磨除掉氧化层,经无水乙醇中超声清洗后烘干;
(2)基体材料为铸造γ-TiAl基金属间体化合物合金,利用电火花线切割技术,将基体制成尺寸为15mm×15mm×4mm的试样,然后依次用代号为0#、01#、03#、05#、07#砂纸打磨后,用2.5μm金刚石研磨膏抛光。经丙酮溶液超声清洗后,烘干备用;
(3)采用等离子刻蚀系统,选用氢气和氩气刻蚀气体,刻蚀工艺参数如下:功率2000W,氢气流量50mL/min,氩气流量10mL/min,压力8KPa,时间1h;
(4)选用纯度99.99%的氩气为制备NiCrAlSi沉积层的工作载气,其溅射能力较强,化学稳定性高,不与金属元素发生反应;
(5)开启机械泵、预抽阀、氩气阀及氮气阀进行真空粗抽。待镀膜腔室真空度抽至10Pa 以下,通入氩气,氩气流量设为5sccm(气体流量单位:标准毫升/分钟)进行5min的洗气工作,目的是保障工作环境无污染;
(6)氩气清洗结束,关闭预抽阀,打开前级阀、分子泵、主阀进行真空精抽,待分子泵频率达到400Hz时,开启工作腔室加热装置,目标温度设定为镀膜工作温度,加热过程中由于气体分子遇热膨胀腔室气压会出现短暂回升,属正常现象。直至气压抽至 0.11Pa以下,开启电离规、压控阀、限流阀,精确显示当前气压;
(7)当镀膜腔室气压抽至10-3Pa以下时通入氩气,流量为3~4sccm,使腔室气压升至 0.08~0.1Pa,即可关闭电离规,开启离子源,使电离的氩离子对靶材表面和试样表面进行轰击清洗5min,保证表面清洁无污染;
(8)离子源清洗结束后,氩气流量缓慢调节至60sccm时,关闭限流阀,调节压控阀使腔室气压升至0.3Pa,启动偏压电源进行偏压清洗10min即可开始镀膜工作;
(9)确定多弧离子镀NiCrAlSi粘结层的工艺参数,并设置多弧离子镀时间,全部工艺参数如下:电流强度90A,气体压强0.3Pa,偏压150V,温度200℃;时间90min;
(10)将钛合金和NiCrAlSi靶材装入双辉等离子表面合金化装置中,以钛合金为工件极,以NiCrAlSi靶材为源极;
(11)抽真空至极限真空度,送入氩气,启动辉光,调试工艺参数为:
靶材电压:600V;
工件电压:400V;
氩气气压:52Pa;
靶材与工件间距:10mm;
保温时间:4h;
(12)停止辉光,断电,破真空至大气压下;
(13)打开装置,取出NiCrAlSi合金靶材;
(14)关闭装置,抽真空至极限真空度,送入氩气,氧气,启动辉光,调试工艺参数为:
工件电压:850V;
气压:40Pa;
氩氧体积比:1:1;
保温时间:1h;
(15)停止辉光,断电,完成等离子渗氧陶瓷膜的制备。
(16)以氩气为工作载气,氧气为反应气体,启用Zr-8Y掺杂的CeO2靶材,在已制备的等离子渗氧陶瓷膜表面沉积一层YSZ隔热层,全部工艺参数如下:电流强度90A,气体压强0.55Pa,氧气流量15sccm,偏压200V,温度250℃;时间90min;
(17)制备过程结束后随炉冷至室温,断电,完成NiCrAlSi/CeO2掺杂YSZ涂层的制备。
实施例2
(1)NiCrAlSi靶材安装前,用1#砂纸打磨除掉氧化层,经无水乙醇中超声清洗后烘干;
(2)基体材料为铸造γ-TiAl基金属间体化合物合金,利用电火花线切割技术,将基体制成尺寸为15mm×15mm×4mm的试样,然后依次用代号为0#、01#、03#、05#、07#砂纸打磨后,用2.5μm金刚石研磨膏抛光,经丙酮溶液超声清洗后,烘干备用;
(3)采用等离子刻蚀系统,选用氢气和氩气刻蚀气体,刻蚀工艺参数如下:功率2000W,氢气流量50mL/min,氩气流量10mL/min,压力8KPa,时间1h;
(4)选用纯度99.99%的氩气为制备NiCrAlSi沉积层的工作载气,其溅射能力较强,化学稳定性高,不与金属元素发生反应;
(5)开启机械泵、预抽阀、氩气阀及氮气阀进行真空粗抽,待镀膜腔室真空度抽至10Pa 以下,通入氩气,氩气流量设为10sccm进行5min的洗气工作,目的是保障工作环境无污染;
(6)氩气清洗结束,关闭预抽阀,打开前级阀、分子泵、主阀进行真空精抽,待分子泵频率达到400Hz时,开启工作腔室加热装置,目标温度设定为镀膜工作温度,加热过程中由于气体分子遇热膨胀腔室气压会出现短暂回升,属正常现象。直至气压抽至 0.11Pa以下,开启电离规、压控阀、限流阀,精确显示当前气压;
(7)当镀膜腔室气压抽至10-3Pa以下时通入氩气,流量为3~4sccm,使腔室气压升至 0.08~0.1Pa,即可关闭电离规,开启离子源,使电离的氩离子对靶材表面和试样表面进行轰击清洗5min,保证表面清洁无污染;
(8)离子源清洗结束后,氩气流量缓慢调节至60sccm时,关闭限流阀,调节压控阀使腔室气压升至0.3Pa,启动偏压电源进行偏压清洗10min即可开始镀膜工作;
(9)确定多弧离子镀NiCrAlSi粘结层的工艺参数,并设置多弧离子镀时间,全部工艺参数如下:电流强度95A,气体压强0.55Pa,偏压180V,温度220℃;时间90min;
(10)将钛合金和NiCrAlSi靶材装入双辉等离子表面合金化装置中,以钛合金为工件极,以NiCrAlSi靶材为源极;
(11)抽真空至极限真空度,送入氩气,启动辉光,调试工艺参数为:
靶材电压:600V;
工件电压:400V;
氩气气压:52Pa;
靶材与工件间距:10mm;
保温时间:4h;
(12)停止辉光,断电,破真空至大气压下;
(13)打开装置,取出NiCrAlSi合金靶材;
(14)关闭装置,抽真空至极限真空度,送入氩气,氧气,启动辉光,调试工艺参数为:
工件电压:850V;
气压:45Pa;
氩氧体积比:1:1;
保温时间:1h;
(15)停止辉光,断电,完成等离子渗氧陶瓷膜的制备。
(16)以氩气为工作载气,氧气为反应气体,启用Zr-8Y掺杂的CeO2靶材,在已制备的等离子渗氧陶瓷膜表面沉积一层YSZ隔热层,全部工艺参数如下:电流强度100A,气体压强0.4Pa,氧气流量18sccm,偏压150V,温度220℃;时间90min;
(17)制备过程结束后随炉冷至室温,断电,完成NiCrAlSi/CeO2掺杂YSZ涂层的制备。
实施例3
(1)NiCrAlSi靶材安装前,用1#砂纸打磨除掉氧化层,经无水乙醇中超声清洗后烘干;
(2)基体材料为铸造γ-TiAl基金属间体化合物合金,利用电火花线切割技术,将基体制成尺寸为15mm×15mm×4mm的试样,然后依次用代号为0#、01#、03#、05#、07#砂纸打磨后,用2.5μm金刚石研磨膏抛光,经丙酮溶液超声清洗后,烘干备用;
(3)采用等离子刻蚀系统,选用氢气和氩气刻蚀气体,刻蚀工艺参数如下:功率2000W,氢气流量50mL/min,氩气流量10mL/min,压力8KPa,时间1h;
(4)选用纯度99.99%的氩气为制备NiCrAlSi沉积层的工作载气,其溅射能力较强,化学稳定性高,不与金属元素发生反应;
(5)开启机械泵、预抽阀、氩气阀及氮气阀进行真空粗抽,待镀膜腔室真空度抽至10Pa 以下,通入氩气,氩气流量设为6sccm进行5min的洗气工作,目的是保障工作环境无污染;
(6)氩气清洗结束,关闭预抽阀,打开前级阀、分子泵、主阀进行真空精抽,待分子泵频率达到400Hz时,开启工作腔室加热装置,目标温度设定为镀膜工作温度,加热过程中由于气体分子遇热膨胀腔室气压会出现短暂回升,属正常现象。直至气压抽至 0.11Pa以下,开启电离规、压控阀、限流阀,精确显示当前气压;
(7)当镀膜腔室气压抽至10-3Pa以下时通入氩气,流量为3~4sccm,使腔室气压升至 0.08~0.1Pa,即可关闭电离规,开启离子源,使电离的氩离子对靶材表面和试样表面进行轰击清洗5min,保证表面清洁无污染;
(8)离子源清洗结束后,氩气流量缓慢调节至60sccm时,关闭限流阀,调节压控阀使腔室气压升至0.3Pa,启动偏压电源进行偏压清洗10min即可开始镀膜工作;
(9)确定多弧离子镀NiCrAlSi粘结层的工艺参数,并设置多弧离子镀时间,全部工艺参数如下:电流强度100A,气体压强0.45Pa,偏压200V,温度250℃;时间90min;
(10)将钛合金和NiCrAlSi靶材装入双辉等离子表面合金化装置中,以钛合金为工件极,以NiCrAlSi靶材为源极;
(11)抽真空至极限真空度,送入氩气,启动辉光,调试工艺参数为:
靶材电压:600V;
工件电压:400V;
氩气气压:52Pa;
靶材与工件间距:10mm;
保温时间:4h;
(12)停止辉光,断电,破真空至大气压下;
(13)打开装置,取出NiCrAlSi合金靶材;
(14)关闭装置,抽真空至极限真空度,送入氩气,氧气,启动辉光,调试工艺参数为:
工件电压:850V;
气压:40Pa;
氩氧体积比:1:1;
保温时间:1h;
(15)停止辉光,断电,完成等离子渗氧陶瓷膜的制备。
(16)以氩气为工作载气,氧气为反应气体,启用Zr-8Y掺杂的CeO2靶材,在已制备的等离子渗氧陶瓷膜表面沉积一层YSZ隔热层,全部工艺参数如下:电流强度95A,气体压强0.3Pa,氧气流量20sccm,偏压180V,温度200℃;时间90min;
(17)制备过程结束后随炉冷至室温,断电,完成NiCrAlSi/CeO2掺杂YSZ涂层的制备。
本发明的具有复合结构的涂层表面均匀致密,孔洞少,无明显的微裂纹缺陷。基体与涂层之间在峰形微结构机械互锁的效应下结合紧密,不易脱落。等离子渗氧层减缓了高温下氧离子从顶层涂层微孔中向内扩散,避免了由于热氧化生长导致的体积膨胀效应。该复合结构的涂层在1000℃恒温下10h涂层系统保持稳定,无明显的体积膨胀。 NiCrAlSi/CeO2掺杂YSZ涂层经过热900℃十次循环,涂层之间无分离现象。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层的制备方法,其特征在于:包括如下步骤:
步骤a,对γ-TiAl合金基体表面进行预处理;
步骤b,利用等离子刻蚀技术在经步骤a处理后的γ-TiAl合金基体表面形成峰形阵列微结构;
步骤c,利用多弧等离子镀技术在经步骤b处理后的γ-TiAl合金基体表面形成NiCrAlSi沉积层;
步骤d,采用等离子渗氧的方法在步骤c得到的NiCrAlSi沉积层表面形成一层致密的等离子渗氧陶瓷膜;
步骤e,采用多弧等离子镀技术在步骤d得到的等离子渗氧陶瓷膜上进行CeO2掺杂YSZ沉积,形成CeO2掺杂YSZ隔热层。
2.根据权利要求1所述的γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层的制备方法,其特征在于:所述步骤a中,γ-TiAl合金基体材料为铸造γ-TiAl基金属间体化合物合金;将基体依次用代号为0#、01#、03#、05#、07#砂纸打磨后,用粒径为2.5μm的金刚石研磨膏抛光;然后经丙酮超声清洗后,烘干。
3.根据权利要求1所述的γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层的制备方法,其特征在于:所述步骤b中,采用等离子刻蚀系统,选用氢气和氩气刻蚀气体,刻蚀工艺参数为:功率2000W,氢气流量50mL/min,氩气流量10mL/min,压力8k Pa,时间1h。
4.根据权利要求1所述的γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层的制备方法,其特征在于:所述步骤c的具体步骤为:
步骤c1,腔室、基体及靶材的清洗:将多弧离子镀镀膜设备的腔室通过机械泵抽真空,通入氩气清洗,以排除腔室中可能与金属元素发生反应的气体分子;打开分子泵对腔室进行抽真空,通入氩气,开启离子源,利用氩气产生的辉光轰击基体,以清除基体表面的杂质原子;增大至氩气流量5~10sccm,启动偏压电源,利用NiCrAlSi靶材表面生的弧光清洗,以清除靶面的杂质原子,露出新鲜表面;
步骤c2,以氩气为工作载气,启用NiCrAlSi靶材在基体表面制备NiCrAlSi沉积层,制备过程结束后随炉冷至室温;其中,制备NiCrAlSi沉积层的工艺参数及变量为:电流强度90~100A,气体压强0.3~0.55Pa,偏压150~200V,温度200~250℃。
5.根据权利要求4所述的γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层的制备方法,其特征在于:所述步骤c2的NiCrAlSi靶材中,Cr占50~70wt%,Ni占10%~20 wt %,Al占5%~15 wt %,其余为Si。
6.根据权利要求1所述的γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层的制备方法,其特征在于:所述步骤d的具体为:
步骤d1,将经c步处理的到的γ-TiAl合金装入双辉等离子表面合金化装置中,以钛合金为工件极,抽真空至极限真空度,送入氩气,氧气,启动辉光,调试工艺参数为:
工件电压:850 V;
气压:40~45 Pa;
氩氧体积比:1:1;
保温时间:1h;
步骤d2,停止辉光,断电,完成等离子渗氧陶瓷膜的制备。
7.根据权利要求1所述的γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层的制备方法,其特征在于:所述步骤e中,以氩气为工作载气,氧气为反应气体,启用Zr-8Y掺杂CeO2靶材,在步骤d得到的等离子渗氧陶瓷膜表面沉积一层CeO2掺杂YSZ隔热层,制备过程结束后随炉冷至室温;工艺参数及变量设置为电流强度90~100A, 气体压强0.3~0 .55Pa,氧气流量15~20sccm,偏压150~200V,温度200~250℃。
8.根据权利要求7所述的γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层的制备方法,其特征在于:所述Zr-8Y掺杂CeO2靶材中,Y2O3稳定的ZrO2的摩尔百分比为6%~8%,CeO2的摩尔百分比为18%~25%。
CN201811218430.5A 2018-10-19 2018-10-19 一种γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层及其制备方法 Active CN109207939B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811218430.5A CN109207939B (zh) 2018-10-19 2018-10-19 一种γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811218430.5A CN109207939B (zh) 2018-10-19 2018-10-19 一种γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN109207939A CN109207939A (zh) 2019-01-15
CN109207939B true CN109207939B (zh) 2019-10-11

Family

ID=64981237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811218430.5A Active CN109207939B (zh) 2018-10-19 2018-10-19 一种γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN109207939B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111734737B (zh) * 2020-05-22 2022-08-09 扬州市舜意机械有限公司 一种具有多功能涂层的关节轴承及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732833A (zh) * 2012-06-28 2012-10-17 南京航空航天大学 一种γ-TiAl合金表面抗高温氧化和耐磨损涂层及其制备方法
CN105463382A (zh) * 2015-11-20 2016-04-06 沈阳黎明航空发动机(集团)有限责任公司 一种提高TiAl合金氧化抗力的涂层及其制备方法
CN105839061A (zh) * 2016-03-28 2016-08-10 南京航空航天大学 γ-TiAl合金表面的NiCoCrAlY/ZrO2复合涂层及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732833A (zh) * 2012-06-28 2012-10-17 南京航空航天大学 一种γ-TiAl合金表面抗高温氧化和耐磨损涂层及其制备方法
CN105463382A (zh) * 2015-11-20 2016-04-06 沈阳黎明航空发动机(集团)有限责任公司 一种提高TiAl合金氧化抗力的涂层及其制备方法
CN105839061A (zh) * 2016-03-28 2016-08-10 南京航空航天大学 γ-TiAl合金表面的NiCoCrAlY/ZrO2复合涂层及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PawełSokołowski et al..hermophysical properties of YSZ and YCeSZ suspension plasma sprayed coatings having different microstructures.《Surface & Coatings Technology》.2017,第318卷28-38页. *

Also Published As

Publication number Publication date
CN109207939A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
CN111005002B (zh) 一种压气机叶片耐冲蚀防腐蚀自洁涂层的制备方法
CN108118190B (zh) 一种抗环境沉积物腐蚀热障涂层及其制备方法
CN103590008B (zh) 一种在TiAl合金和MCrAlY涂层间制备Al2O3扩散障的方法
CN102317494B (zh) 制备覆盖超耐热合金金属基层的热障层的方法及采用该方法而获得的热机械部件
CN1986891A (zh) 高强度镍-铂-铝-铪粘结层
CN103409722A (zh) 一种在航空发动机压气机叶片表面制备抗侵蚀涂层的方法
CN113249683B (zh) 高导电耐蚀长寿命max相固溶复合涂层、其制法与应用
US20080160208A1 (en) System and method for restoring or regenerating an article
CN103403225A (zh) 生产用于保护金属部件的多层系统热障的方法和装配有这种保护系统的部件
CN101310972B (zh) 一种共沉积梯度MCrAlY涂层的制备工艺
CN101724301B (zh) 一种MCrAlY+AlSiY复合涂层及制备工艺
CN103552311B (zh) 一种用于单晶高温合金的防护涂层及其制备方法
CN109207939B (zh) 一种γ-TiAl合金表面的NiCrAlSi/CeO2掺杂YSZ涂层及其制备方法
CN108977806B (zh) Gamma-TiAl金属间化合物表面金属/陶瓷复合涂层的制备方法
US20080160213A1 (en) Method for restoring or regenerating an article
CN104441821B (zh) 一种高温合金复合纳米晶涂层及其制备方法
CN109207917B (zh) 一种NiCrAlSi/CeO2掺杂YSZ热障涂层及其制备方法
CN111146486B (zh) 一种具有双层涂层的固体氧化物燃料电池金属连接体及其制备方法
CN102776512B (zh) 一种梯度热障涂层的制备方法
US20100254820A1 (en) Article with restored or regenerated structure
CN105463382A (zh) 一种提高TiAl合金氧化抗力的涂层及其制备方法
CN115411285A (zh) 一种含有防腐薄膜的燃料电池双极板及其制备方法
FR3053076A1 (fr) Piece de turbomachine revetue d'une barriere thermique et d'un revetement de protection contre les cmas et procede pour l'obtenir
CN101876061B (zh) 一种形成强结合热障涂层的方法
EP1950320B1 (en) Method for restoring or regenerating an article and restored regenerated article

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant