CN114717516B - 一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法 - Google Patents

一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法 Download PDF

Info

Publication number
CN114717516B
CN114717516B CN202210193020.XA CN202210193020A CN114717516B CN 114717516 B CN114717516 B CN 114717516B CN 202210193020 A CN202210193020 A CN 202210193020A CN 114717516 B CN114717516 B CN 114717516B
Authority
CN
China
Prior art keywords
tial
coating
alc
layer
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210193020.XA
Other languages
English (en)
Other versions
CN114717516A (zh
Inventor
汪爱英
周定伟
王振玉
周广学
李忠昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN202210193020.XA priority Critical patent/CN114717516B/zh
Publication of CN114717516A publication Critical patent/CN114717516A/zh
Application granted granted Critical
Publication of CN114717516B publication Critical patent/CN114717516B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种TiAl/Ti2AlC强结合耐腐蚀涂层。首先,利用高功率脉冲磁控溅射系统,通过溅射纯度为99.95%的TiAl靶(Ti:Al=1:1),在基体表面沉积晶体结构为密排六方结构的TiAl层;然后,同时利用高功率脉冲磁控溅射源和直流磁控溅射源共溅射TiAl靶和石墨靶,在TiAl层表面沉积Ti‑Al‑C层,得到TiAl/Ti‑Al‑C双层涂层;最后,进行热处理,使Ti‑Al‑C层转化为Ti2AlC MAX相涂层(相纯度>83wt.%)。该方法制备过程简单,易于控制,制备的复合涂层具有良好的致密性,具有高的耐海水腐蚀特性。

Description

一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法
技术领域
本发明属于表面工程技术领域,具体涉及一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法。
背景技术
目前,随着科技技术的不断发展,材料器件应用的领域也越来越广泛,服役环境也越来越严苛,对耐腐蚀涂层的要求也越来越高,如海洋环境下的耐腐蚀涂层。
针对不断变化的应用环境,耐腐蚀涂层也经历了从单元到多元的发展过程,涂层结构也从单层逐步发展为复合多层。现有研究表明,众多涂层体系中过渡金属氮/碳化物是常用的涂层体系。
专利号CN113046703A的中国专利公开了一种高硬度纳米复合涂层及其制备方法与应用,包括依次形成于基体表面的过渡层和TiAlCN层,所述TiAlCN层的物相结构包括硬质纳米金属相及非晶相,所述非晶相均匀分布于所述硬质纳米金属相中,所述硬质纳米金属相包括Ti(C,N)相、TiN相、TiC相、AlN相中的任意一种或两种以上的组合,所述非晶相包括非晶碳相。但是这类涂层在海洋等严苛环境下的服役时耐蚀性能显得略有不足,难以满足复杂工况下的性能需求。
与传统过渡金属氮/碳化物不同,MAX 相是一种兼具金属和陶瓷特性的具有热力学稳定、具有密排六方结构的层状材料,其中,M 代表前过渡金属,A代表IIIA或IVA主族元素,X代表C或N,层与层之间依靠M原子和A原子之间弱的金属键结合,使其具有良好的导电导热性、自愈合性、抗氧化性能等。Ti2AlC是MAX相中常见的化合物,目前多以电弧、喷涂等技术得到,但喷涂、电弧离子镀等技术制备得到的涂层表面粗糙,且涂层中存在较多杂相,这些缺陷不仅为腐蚀离子提供了快速扩散通道,而且易产生电偶腐蚀,这都会降低涂层在实际应用过程中的氧化/腐蚀寿命。
专利号CN107620033B的中国专利公布一种高纯强致密MAX相涂层的制备方法,包括采用电弧离子镀与磁控溅射技术相结合,其中电弧提供M位元素,磁控提供A位Al元素,通入氮气或碳氢反应气体沉积,之后采用热处理,实现高纯强致密MAX相涂层的制备。该方法制备的MAX相涂层纯度高、致密性好、无微观缺陷。利用该方法制备的MAX相纯度较低,无法满足在海洋恶劣环境下耐腐蚀的要求。
因此,发展以MAX相为主的耐蚀涂层制备工艺,制备表面光滑、结构致密、相纯度较高的Ti2AlC涂层显得尤为重要。
发明内容
本发明公开了一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法,该制备方法能够制备高纯度的Ti2AlC MAX相涂层,以及具有较高耐腐蚀相,较强结合力的TiAl/Ti2AlC涂层。
一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法,包括:
(1)选用TiAl合金作为靶材,氩气作为反应气体,采用高功率脉冲磁控溅射的方法在基体表面沉积TiAl涂层;
(2)然后打开C靶材,采用高功率脉冲磁控溅射和直流磁控技术共溅射方法在TiAl涂层表面沉积Ti-Al-C层;其中,TiAl合金靶材是采用高功率脉冲磁控溅射方法,C靶采用直流磁控技术溅射
(3)通过退火工艺使Ti-Al-C层发生固相反应转变为Ti2AlC MAX相防护涂层。
在退火热处理过程中,通过TiAl层向Ti-Al-C层提供Al原子,补充热处理过程中Ti-Al-C层中的Al原子向外扩散而造成的损失,进而使得Ti-Al-C层获得足够Al原子形成Ti2AlC MAX相防护涂层,并且TiAl层阻碍了基体的杂质元素向Ti-Al-C层的扩散从而获得了较高纯度的Ti2AlC MAX相,达到获得较高耐腐蚀性的涂层的目的。
所述TiAl层的结构为密排六方结构,与Ti2AlC MAX相的拓扑结构类似,从而使得制备的得到的涂层具有较高的结合力。
所述基体包括TC4或不锈钢。
步骤(1)中,所述TiAl合金靶材的功率为80-120 W,基体偏压为-150-0 V。进一步的,所述TiAl合金靶材的功率为110-120 W,基体偏压为-100--50 V。
TiAl合金靶材功率过低,Al原子受到氩离子的撞击,Al原子提供过少进而影响MAX相的转变,TiAl合金靶材功率过高,使得Al原子间的碰撞增大进而造成了Al原子的缺失,进而影响MAX相的转变。
步骤(2)中,基体偏压为 -150-0 V,所述碳靶功率为20-50 W。
所述碳靶功率过低,则容易在MAX相中存在较多的TiAl杂质相,所述碳靶功率过高,则容易在MAX相表面形成大颗粒,使得表面不光滑,影响MAX相的结晶,且还会生成TiC相杂质,所述TiC相、TiAl相杂质能够与MAX相形成电势差,从而影响涂层的耐腐蚀性。
所述退火工艺为:退火温度为600-900℃,时间为1-5 h。
所述TiAl涂层为密排六方结构,厚度为0.5-1 μm,元素原子比为Ti:Al=1-6:4,所述Ti-Al-C层厚度为3-7 μm,元素原子比大致在6:5:2-4:3:3比例区间。
进一步的,所述TiAl层厚度为 0.5-0.7 μm,所述Ti-Al-C层厚度3-6 μm。
在所述退火温度和时间下,当TiAl的厚度过薄则Al原子过快的扩散至外部,Ti-Al-C层无法获得足够的Al原子,当TiAl的厚度过厚,TiAl层的Al原子无法获得足够的能够扩散至Ti-Al-C层,同样Ti-Al-C层无法获得足够的Al原子。
在沉积TiAl层和Ti-Al-C层过程中,腔体的气压为0.4-2 Pa。进一步的,在沉积TiAl层和Ti-Al-C层过程中,腔体的气压为0.5-1.5 Pa。
本发明采用所述的强结合高耐蚀TiAl/Ti2AlC涂层的制备方法制备强结合高耐蚀TiAl/Ti2AlC涂层,所述TiAl/Ti2AlC涂层中的Ti2AlC MAX相的纯度>83 wt.%。
与现有技术相比,本发明的有益效果为:
1)为了解决涂层表面质量问题,本发明通过高功率脉冲磁控技术和直流磁控技术共溅射制备了一种TiAl/Ti2AlC强结合耐腐蚀涂层,高功率脉冲磁控技术给予靶材原子较大的能量,使其离开靶材表面,在偏压的牵引下,沉积在基体表面,可形成光滑的无明显大颗粒的涂层,从而形成具有良好致密性的涂层,进而提高涂层的耐腐蚀和氧化性能。
2)所述涂层具有TiAl/Ti2AlC双层结构,TiAl层晶体结构为密排六方结构,这与Ti2AlC具有相同的晶体结构,使得TiAl层和Ti2AlC之间有着更好的晶格匹配度,同时,还具有相似的热膨胀系数和力学性能,使得涂层具有较高的膜基结合力,以保证涂层在实际环境中服役时不会过早的剥落失效。
3) TiAl层可作为屏障层,防止基体的中的易扩散元素向基体扩散 ,提高涂层热稳定性;同时,TiAl层其中的Al元素在退火时向表层的Ti-Al-C层扩散,防止表层的Ti-Al-C层中的Al元素在退火时的扩散损失,保证Ti2AlC MAX相涂层的相纯度高达83 wt.%以上。
综上,TiAl/Ti2AlC双层功能协同,使其具备较强的膜基结合力的同时也具有较好的耐腐蚀特性。
附图说明
图1为实施例1制备的TiAl层的XRD图谱;
图2为实施例1制备的Ti-Al-C系MAX相涂层扫描电镜图;
图3为实施例1制备的Ti-Al-C系MAX相涂层的XRD图谱;
图4为实施例2制备的Ti-Al-C系MAX相涂层的XRD图谱;
图5为实施例4制备的Ti-Al-C系MAX相涂层的XRD图谱;
图6为对比例1以Ti2AlC MAX相作为主要相的涂层的扫描电镜图;
图7为对比例1以Ti2AlC MAX相作为主要相的涂层的XRD图谱;
图8为实施例1、对比例1和对比例5(基体)的腐蚀性能测试对比图;
图9为实施例1制备的Ti-Al-C系MAX相涂层的结合力图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
本申请的实施例中分析方法如下:
利用X射线衍射仪(XRD)进行相结构和相含量分析;
利用扫描电镜(SEM)进行涂层腐蚀前后形貌,成分分析。
利用划痕仪进行涂层膜基结合力测试;
下面结合附图和实施例,对本发明的具体实施方式作进一步详细的描述,以下实施例仅用于说明本发明,但不用来限制本发明的范围。
实施例1:在本实施例中,基体作为服役于海水环境器件的TC4件,基体表面的Ti-Al-C系MAX相涂层制备方法如下:
将基体依次用丙酮和酒精清洗,去除表面的油脂和可溶性杂质,放入腔体中,待腔体内的压强达到10-3 Pa时开始给基体加热至400 ℃保温5 min,关闭加热。待真空度达到2.0×10-3 Pa以下,向腔通入50 sccm的氩气,设置基体偏压为-400 V,利用电离的氩离子清洗样品30 min。
将温度加热到300 ℃,并保持,采用高功率脉冲磁控溅射沉积TiAl过渡层,其中阴极靶提供Ti和Al源,溅射靶功率调节为115 W。氩气流量设置为20 sccm,腔体压强设置为0.60 Pa,基体偏压为-100 V,沉积时间为30 min,沉积得到的TiAl过渡层为 0.5 μm。
分别采用高功率脉冲磁控溅射电源和直流电源在过渡层表面沉积Ti-Al-C层,TiAl靶功率保持不变,碳靶功率调节为37 W,氩气流量为20 sccm。控制气压为0.6 Pa,基体偏压为-100V,沉积温度为300 ℃,沉积时间为6 h,得到TiAl/Ti-Al-C。
将镀膜样品放在管式炉中,真空度达到2.0×10-3 Pa以下,对样品进行退火处理,升温速度为10 ℃/min,退火温度为700 ℃,保温2 h。
图1实施例1制备的TiAl层的XRD图谱
图2为制得的Ti-Al-C系统的涂层的扫描电镜图,可以看出退火后得到的光滑致密的MAX相涂层以及化学成分能谱图,说明涂层成功被制备到基体表面。
图3为制得的Ti-Al-C系统的MAX相涂层的XRD图谱,说明涂层的相为Ti2AlC,涂层的相纯度达到96 wt.%。
将样品封装制样,放入到配置好的海水溶液中,图8的动电位腐蚀极化图显示相较于对比例1和2,本发明制备得到的涂层样品的腐蚀电流密度为2×10-11 A/cm2,相较于对比例1的2×10-9 A/cm2和对比例1的8×10-8 A/cm2的腐蚀电流密度,本发明的耐蚀性明显高于前两者。
图9为实施例1制备的Ti-Al-C系MAX相涂层的结合力图,数据显示在81.3 N的位置涂层剥落,该涂层膜基结合力强。
实施例2:与实施例1不同的是,本对比例中偏压采用了-80 V,经700 ℃退火处理后,样品的相纯度达到了83 wt%,仅有少量的TiAl存在,对其进行电化学测试得到其腐蚀电流密度为2×10-10 A/cm2,结合力达到70 N,其中,图4实施例2制备的MAX相涂层的XRD图谱。
实施例3:与实施例1不同的是,本对比例中的TiAl靶材的功率采用了115 W,经700℃退火处理后,涂层含有的Ti2AlC MAX相的含量达到88 wt%,还有微量的TiAl的结晶峰存在,腐蚀电流密度为4×10-10 A/cm2,结合力为73 N。
实施例4:与实施例1不同的是,本对比例中的TiAl靶材的功率采用了117 W,经700℃退火处理后,涂层含有的Ti2AlC MAX相的含量达到96 wt%,腐蚀电流密度为1×10-11 A/cm2,结合力为79 N。其中图5实施例4制备的MAX相涂层的XRD图谱。
对比例1:本实施例是上述实施例1的一个对比实施例。
(1)将基体依次用丙酮和酒精清洗,去除表面的油脂和可溶性杂质,放入腔体中。待真空度达到3.0×10-5 Pa以下,将样品转到离子束电源前,向腔通入33 sccm的氩气,设置离子束电源为1100 V,电流为0.2 A,打开挡板和离子束电源,设置偏压为-200 V,打开偏压电源,设置样品台自转,利用电离的氩离子清洗样品30 min。
(2) 停止样品台自转,并将样品台转到腔体门前,关掉离子束电源和挡板,关掉偏压电源,将Ar流量调整为200 sccm,打开电弧靶(Ti靶) Arc1和Arc3,不开挡板,设置电流为70 A,清洗5 min,调节腔体气压为15 mTorr,在直流电源功率为2000 W的条件下清洗Al靶5min。
(3) 镀过渡层。设置样品台转到Arc1和Arc3前并保持自转,镀上Ti过渡层,打开Arc1,设置偏压为80 V,电流为70 A,在15 mTorr压力条件下,镀膜10 min。镀TiC过渡层,不关闭Arc1,设置Ar流量为50 sccm,设置CH4为50 sccm,在15 mTorr气压下,镀膜10 min。
(4) 镀Ti-Al-C。设置Ar流量为200Sccm,CH4为20 sccm,偏压为-200 V,设置Arc3电流为60 A,设置Al靶对应的直流电源的功率为3200 W,打开Arc3和直流电源开关,关闭气压控制阀门,镀膜150 min。
(5) 将样品冷却至室温后取出,放入管式炉中,待真空度达到2.0×10-3 Pa以下,在加热速度为10 ℃/min,700 ℃温度条件下退火2 h
(6) 图6是对比例1的工艺制的涂层的扫描电镜图,表面存在明显的大颗粒缺陷。
(7) 图7为对比例1制得的Ti-Al-C系统的MAX相涂层的XRD图谱,说明涂层的主要相为Ti2AlC,还存在Ti3AlC2和TiC以及TiAl杂相,说明涂层相纯度较低,仅为55 wt%。
(8) 将样品封装制样放入到配置好的海水溶液中,作为腐蚀样品,图六的动电位极化图显示其腐蚀电流密度为2×10-9 A/cm2,相较于基体的8×10-8 A/cm2,说明其耐蚀性略优于基体,但明显没有实施例1的耐蚀性好。
(9) 对涂层进行划痕测试得到,涂层的膜基结合力为60 N。
对比例2:本实施例为上述实施例1的一个对比实施例。
本实施例与实施例1的区别仅在于:本实施例中没有TiAl层。经700 ℃退火后,得到的涂层的表面呈现鱼鳞状且相纯度仅为41 wt%,腐蚀电流密度为9×10-8 A/cm2,结合力为12 N。
对比例3:本实施例为上述实施例1的一个对比实施例。
本实施例与实施例1的区别仅在于:本实施例中腔体压强为0.4 Pa。经700 ℃退火后,得到的涂层边缘处略有剥落且相纯度仅为30 wt%,腐蚀电流密度为4×10-8 A/cm2,结合力为23 N。
对比例4:本实施例为上述实施例1的一个对比实施例。
本实施例与实施例1的区别仅在于:本实施例碳靶功率为100 W。经700 ℃退火后,得到的涂层Ti2AlC相纯度仅为35 wt%,腐蚀电流密度为6×10-8 A/cm2,结合力为52 N。
对比例5:本实施例为上述实施例1的一个对比实施例。
本实施例为钛合金基体样品,将镜面抛光好的钛合金基体样品分别用丙酮和乙醇依次清洗,以去除表面的杂质,然后制样放在海水溶液中作为腐蚀样品,图六的动电位极化图显示实施例1的腐蚀电流密度(2×10-11 A/cm2)明显低于对比例1(2×10-9 A/cm2)和对比例2(8×10-8 A/cm2)的腐蚀电流密度,说明本发明的耐蚀性优于对比例1和对比例5,且具有强的膜基结合力。

Claims (5)

1.一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法,其特征在于,包括:
(1)选用TiAl合金作为靶材,氩气作为反应气体,采用高功率脉冲磁控溅射的方法在基体表面沉积TiAl涂层;
(2)然后打开C靶材,采用高功率脉冲磁控溅射和直流磁控技术共溅射方法在TiAl涂层表面沉积Ti-Al-C层;TiAl合金靶材是采用高功率脉冲磁控溅射方法,C靶采用直流磁控技术溅射;
(3)通过退火工艺使Ti-Al-C层发生固相反应转变为Ti2AlC MAX相防护涂层得到强结合高耐蚀TiAl/Ti2AlC涂层;
步骤(2)中,基体偏压为 -150-0 V,所述C靶功率为20-50 W;
所述TiAl涂层的厚度为0.5-1 μm;
所述退火工艺为:退火温度为600-900℃,时间为1-5 h;
步骤(1)中,所述TiAl合金靶材的功率为80-120 W,基体偏压为-150-0 V。
2.根据权利要求1所述的强结合高耐蚀TiAl/Ti2AlC涂层的制备方法,其特征在于,所述基体包括TC4或不锈钢。
3.根据权利要求1所述的强结合高耐蚀TiAl/Ti2AlC涂层的制备方法,其特征在于,步骤(1)中,所述TiAl合金靶材的功率为110-120 W,基体偏压为-100--50 V。
4.根据权利要求1所述的强结合高耐蚀TiAl/Ti2AlC涂层的制备方法,其特征在于,所述TiAl涂层为密排六方结构,元素原子比为Ti:Al=1-6:4,所述Ti-Al-C层厚度为3-7 μm,元素原子比为6:5:2-4:3:3。
5.根据权利要求1-4任一项所述的强结合高耐蚀TiAl/Ti2AlC涂层的制备方法制备的强结合高耐蚀TiAl/Ti2AlC涂层,其特征在于,所述TiAl/Ti2AlC涂层中的Ti2AlC MAX相的含量>83 wt.%。
CN202210193020.XA 2022-03-01 2022-03-01 一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法 Active CN114717516B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210193020.XA CN114717516B (zh) 2022-03-01 2022-03-01 一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210193020.XA CN114717516B (zh) 2022-03-01 2022-03-01 一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法

Publications (2)

Publication Number Publication Date
CN114717516A CN114717516A (zh) 2022-07-08
CN114717516B true CN114717516B (zh) 2024-05-31

Family

ID=82235297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210193020.XA Active CN114717516B (zh) 2022-03-01 2022-03-01 一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法

Country Status (1)

Country Link
CN (1) CN114717516B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115386828B (zh) * 2022-09-06 2024-05-07 中国科学院宁波材料技术与工程研究所 一种max相固溶体涂层、制备方法及其应用
CN116219381A (zh) * 2022-12-13 2023-06-06 中国科学院宁波材料技术与工程研究所 一种max相涂层的低温制备方法及其应用
CN118064834A (zh) * 2024-04-22 2024-05-24 中国科学院宁波材料技术与工程研究所 一种抗高温水蒸气腐蚀的固溶max相涂层及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108118304A (zh) * 2017-12-22 2018-06-05 富耐克超硬材料股份有限公司 纳米复合涂层及其制备工艺
CN108165944A (zh) * 2018-01-24 2018-06-15 大连理工大学 一种超厚Ti2AlC涂层的制备方法
CN113235062A (zh) * 2021-07-12 2021-08-10 中国科学院宁波材料技术与工程研究所 一种max相多层复合涂层及其制备方法与应用
CN114059017A (zh) * 2021-10-09 2022-02-18 宁波工业技术研究院 一种防护涂层及其制备方法和一种制品及其制备方法以及在中温盐雾腐蚀环境中应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108118304A (zh) * 2017-12-22 2018-06-05 富耐克超硬材料股份有限公司 纳米复合涂层及其制备工艺
CN108165944A (zh) * 2018-01-24 2018-06-15 大连理工大学 一种超厚Ti2AlC涂层的制备方法
CN113235062A (zh) * 2021-07-12 2021-08-10 中国科学院宁波材料技术与工程研究所 一种max相多层复合涂层及其制备方法与应用
CN114059017A (zh) * 2021-10-09 2022-02-18 宁波工业技术研究院 一种防护涂层及其制备方法和一种制品及其制备方法以及在中温盐雾腐蚀环境中应用

Also Published As

Publication number Publication date
CN114717516A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
CN114717516B (zh) 一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法
CN107620033B (zh) 一种高纯强致密max相涂层的制备方法
WO2022062102A1 (zh) 阻扩散高熵合金涂层材料、耐高温涂层材料及其制备方法和应用
CN111349901B (zh) 一种切削刀具用耐高温氧化铝厚膜涂层的制备方法
CN112831751B (zh) 一种高温自转变非晶/纳米晶高熵氧化物薄膜、制备方法及应用
CN111321381B (zh) 一种硬质合金刀片的AlCrNbSiTiBN基纳米复合涂层及其制备方法
CN108330452A (zh) Max相涂层的制备方法
CN111455333B (zh) 一种富Al刚玉结构Al-Cr-O薄膜及其制备方法
CN111206217A (zh) 一种核电用Zr-Si-O非晶防护涂层的制备方法
CN111647851A (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN110158035A (zh) 耐高温海洋环境腐蚀的金属-金属氮化物多层涂层及制备
CN106756841A (zh) 一种刀具复合涂层的制备方法
CN111549301B (zh) 一种高熵合金组合物、高熵合金薄膜及高熵合金靶材和薄膜的制备方法
CN117344274A (zh) 一种AlTiN复合涂层的制备方法和涂层刀具
WO2024065970A1 (zh) 氧化物硬质涂层的复合沉积方法及涂层刀具
CN114672777B (zh) 一种抗氧化Cr/CrAl纳米多层涂层及其制备方法
CN112553580B (zh) 一种二硼化物复合涂层及其制备方法和应用
CN113174571B (zh) 一种超微晶二硼化钛复合涂层及其制备方法和应用
CN114672778A (zh) 一种纳米晶NbMoTaWTi难熔高熵合金涂层及其制备方法
CN114807849A (zh) 一种纳米复合高熵氮化物涂层及其复合沉积方法
CN106637116B (zh) 一种二次电子发射薄膜的简易制备方法
CN110656313B (zh) 一种与硬质合金结合牢固的氮化锆铝/氧化铝复合涂层及其制备方法
CN113774347A (zh) 一种超硬且韧纳米复合涂层、制备方法及使用设备
CN112226768A (zh) 一种微弧氧化CrAlN涂层的复合制备方法
CN112941463A (zh) 一种钛合金表面纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant