WO2024065970A1 - 氧化物硬质涂层的复合沉积方法及涂层刀具 - Google Patents

氧化物硬质涂层的复合沉积方法及涂层刀具 Download PDF

Info

Publication number
WO2024065970A1
WO2024065970A1 PCT/CN2022/131124 CN2022131124W WO2024065970A1 WO 2024065970 A1 WO2024065970 A1 WO 2024065970A1 CN 2022131124 W CN2022131124 W CN 2022131124W WO 2024065970 A1 WO2024065970 A1 WO 2024065970A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
target
hard coating
magnetron sputtering
coating
Prior art date
Application number
PCT/CN2022/131124
Other languages
English (en)
French (fr)
Inventor
许雨翔
耿东森
王启民
彭滨
范江滔
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2024065970A1 publication Critical patent/WO2024065970A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0063Reactive sputtering characterised by means for introducing or removing gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0089Reactive sputtering in metallic mode
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Definitions

  • the invention relates to the technical field of metal cutting tools, and in particular to a composite deposition method of an oxide hard coating and a coating tool.
  • Oxide coatings such as aluminum oxide, aluminum chromium oxide, etc.
  • Oxide coatings deposited by cathodic arc evaporation have high hardness, good wear resistance and thermal stability, and have received extensive attention in recent years.
  • the "droplet" defects produced by cathodic arc evaporation will increase the surface roughness of the coating and form micropores inside the coating, affecting the temperature resistance and wear resistance of the coating.
  • HiPIMS High-power pulsed magnetron sputtering
  • HiPIMS can obtain a high peak power density of kW/ cm2 through short pulses with a low duty cycle ( ⁇ 10%) to increase the plasma density and ionization of the sputtered material, which is conducive to the preparation of dense oxide coatings.
  • HiPIMS can suppress the hysteresis behavior of reactive sputtering and increase the deposition rate.
  • the reverse attraction of the cathode to the target ions causes the deposition rate of HiPIMS to be still low when depositing oxide coatings. Therefore, it is necessary to develop a deposition technology for high-performance oxide hard coatings suitable for industrial applications.
  • the present invention provides a composite deposition method of an oxide hard coating and a coated tool, and the technical solution adopted is as follows.
  • the coated tool provided by the present invention comprises a tool substrate and an oxide hard coating, wherein the oxide hard coating is deposited on the tool substrate, and the oxide hard coating comprises multiple layers of alternately deposited cathode arc evaporated oxide layers and magnetron sputtered oxide layers, wherein the cathode arc evaporated oxide layers have Cr and O elements, and the magnetron sputtered oxide layers have Al and O elements.
  • the thickness of the alternating unit obtained in each alternating deposition cycle is 5 to 50 nm, and the thickness ratio of the cathode arc evaporated oxide layer to the magnetron sputtered oxide layer in the alternating unit is 1:3 to 3:1.
  • the oxide hard coating has an oxygen content of 55 to 65 at.%, a Cr content of 10 to 25 at.%, and an Al content of 10 to 30 at.%.
  • the composite deposition method provided by the present invention adopts cathode arc evaporation technology combined with magnetron sputtering technology to alternately deposit cathode arc evaporation oxide layer and magnetron sputtering oxide layer on the tool substrate to obtain an oxide hard coating.
  • the composite deposition method includes
  • the tool substrate is loaded into the reaction chamber, the reaction chamber is evacuated, heated, and ion-cleaned for the tool substrate;
  • the reaction chamber is evacuated, oxygen and inert gas are introduced, and the arc target and sputtering target are turned on.
  • the oxygen inlet position is closer to the arc target and farther from the sputtering target.
  • the inlet position of the inert gas is farther from the arc target and closer to the sputtering target.
  • the target current density of the arc target is 0.5 to 2.0 A/cm 2
  • the average power density of the sputtering target is 5 to 25 W/cm 2
  • the bias voltage is -50 to -250 V
  • the gas pressure is 0.4 to 3.0 Pa
  • the rotation rate of the support for loading the tool substrate is 0.5 to 5 r/min
  • the deposition time is 30 to 360 min.
  • the cathode arc evaporation/magnetron sputtering composite deposition method is used to prepare the oxide hard coating, which takes into account the fast deposition rate and high ionization rate of the cathode arc evaporation technology and the small droplet characteristics of the magnetron sputtering technology, and can significantly improve the surface quality of the oxide hard coating, and improve the hardness and density of the coating; a coherent interface can be generated between the cathode arc evaporation oxide layer and the magnetron sputtering oxide layer, and the template effect of the cathode arc evaporation oxide layer can promote the crystallization of the magnetron sputtering oxide layer, and improve the mechanical properties of the coating tool.
  • the present invention can be widely used in the field of metal cutting tool technology.
  • FIG1 is a poisoning hysteresis curve of a high power pulsed magnetron sputtering (HiPIMS) Al target drawn using the gas inlet path used in Comparative Example 1 and Example 1 during cathode arc evaporation/high power pulsed magnetron sputtering composite deposition of Cr-O/Al-O coatings.
  • HiPIMS high power pulsed magnetron sputtering
  • Figure 2 is a scanning electron microscope image of the Cr-O/Al-O coating (a) deposited by cathode arc evaporation/high-power pulsed magnetron sputtering in Example 1, the (Cr,Al) 2 O 3 coating (b) deposited by cathode arc evaporation in Comparative Example 2, and the Al 2 O 3 coating (c) prepared by high-power pulsed magnetron sputtering in Comparative Example 3.
  • FIG. 4 shows the microscopic nano-multilayer structure and component distribution of the oxide hard coating of Example 1 obtained by cathode arc evaporation/high-power pulsed magnetron sputtering composite deposition in the present invention.
  • FIG. 5 is a schematic diagram of the structure of an oxide hard coating obtained by cathode arc evaporation/magnetron sputtering composite deposition in the present invention.
  • FIGS. 1 to 5 examples of which are shown in the accompanying drawings, wherein the same or similar reference numerals throughout represent the same or similar elements or elements having the same or similar functions.
  • the embodiments described below with reference to the accompanying drawings are exemplary and are only used to explain the present invention, and are not to be construed as limiting the present invention.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components.
  • the present invention relates to a coated tool, which comprises a tool substrate and an oxide hard coating, wherein the oxide hard coating is deposited on the tool substrate, and the oxide hard coating comprises multiple layers of alternately deposited cathode arc evaporated oxide layers and magnetron sputtered oxide layers, wherein the cathode arc evaporated oxide layers contain Cr and O elements, and the magnetron sputtered oxide layers contain Al and O elements.
  • the tool base material is one of high speed steel, cemented carbide, metal ceramic, ceramic and cubic boron nitride.
  • the coated tool designed by the present invention is widely used in the mechanical processing of carbon steel, cast iron, stainless steel and titanium alloy materials, and the mechanical processing includes turning, milling, drilling, boring and grinding.
  • the thickness of the alternating unit obtained by each alternating deposition cycle is 5 to 50 nm.
  • the thickness ratio (modulation ratio) of the cathode arc evaporated oxide layer and the magnetron sputtered oxide layer is 1:3 to 3:1, and the thickness of the cathode arc evaporated oxide layer and the magnetron sputtered oxide layer can be the same or different.
  • the modulation structure modulation period and modulation ratio
  • the template effect of the cathode arc evaporated oxide layer can promote the crystallization of the magnetron sputtered oxide layer, improve the mechanical properties of the coated tool and extend the service life of the coated tool.
  • the oxygen content is 55 to 65 at.%, and the Al content is 10 to 30 at.%, ensuring that the oxide hard coating has a near-ideal stoichiometric ratio and that there is no large amount of metal phase inside. If there is a large amount of metal phase in the coating, the hardness of the coating will decrease.
  • the oxide hard coating comprises Cr, Al, and O, wherein Al: 15 to 30 at.%, Cr: 10 to 25 at.%, and O: 55 to 65 at.%.
  • the composition of the cathode arc evaporated oxide layer is Cr-O
  • the composition of the magnetron sputtered oxide layer is Al-O.
  • the invention relates to a composite deposition method for an oxide hard coating.
  • the composite deposition method adopts cathode arc evaporation technology combined with magnetron sputtering technology to alternately deposit cathode arc evaporation oxide layers and magnetron sputtering oxide layers on a tool substrate.
  • cathode arc evaporation has a fast deposition rate and a high ionization rate, and the obtained coating has high hardness and a dense structure.
  • the coating surface obtained by magnetron sputtering is smooth.
  • the oxide hard coating obtained by cathode arc evaporation combined with magnetron sputtering composite deposition has fewer droplets and a fast deposition rate.
  • the composite deposition method includes the following process: loading the tool substrate into the reaction chamber; evacuating the reaction chamber, heating, and ion cleaning the tool substrate; evacuating the reaction chamber, introducing oxygen and inert gas, and turning on the arc target and sputtering target.
  • the tool substrate in the bracket rotates periodically in front of the arc target and sputtering target to obtain an oxide hard coating with a nano multilayer structure.
  • the reaction chamber is heated to 100 to 400° C., and the ion source is turned on to perform ion cleaning on the surface of the tool substrate.
  • the oxide hard coating prepared by alternating deposition of cathode arc evaporation and magnetron sputtering exhibits a nano-multilayer structure.
  • the modulation period and modulation ratio and utilizing the template effect of the cathode arc evaporated oxide layer to promote the structure of the magnetron sputtered oxide layer By adjusting the modulation period and modulation ratio and utilizing the template effect of the cathode arc evaporated oxide layer to promote the structure of the magnetron sputtered oxide layer, the shortcomings of magnetron sputtering oxide coatings such as difficulty in crystallization and low hardness can be improved, so that the oxide coating has good surface quality and mechanical properties.
  • the parameters of the alternatingly deposited nano-multilayer structure are mainly related to the rotation rate of the bracket loading the tool substrate, the target current density of the arc target and the average power density of the sputtering target.
  • the composition and structure of the oxide hard coating can be flexibly controlled by adjusting the target material composition and deposition parameters. It has strong operability and good controllability, reduces the complexity of the coating equipment and process, and is suitable for industrial production.
  • the target current density of the arc target is 0.5 to 2.0 A/cm 2
  • the bias voltage is -50 to -250 V
  • the gas pressure is 0.4 to 3.0 Pa
  • the average power density of the sputtering target is 5 to 25 W/cm 2
  • the rotation rate of the support for loading the tool substrate is 0.5 to 5 r/min
  • the deposition time is 30 to 360 min.
  • the magnetron sputtering technology adopts direct current magnetron sputtering.
  • the magnetron sputtering technology can also adopt pulsed magnetron sputtering or high-power pulsed magnetron sputtering.
  • the gas inlet path in the reaction chamber should be reasonably designed.
  • the oxygen inlet position is closer to the arc target and farther from the sputtering target, so that the oxygen inlet position is away from the sputtering target and closer to the arc target.
  • the oxygen inlet position is set in front of the arc target, or the oxygen inlet position is set close to the arc target.
  • the oxygen inlet position is designed to be close to the arc target, so that the arc target consumes oxygen first, so that the sputtering target can work at a higher oxygen flow rate, which is conducive to ensuring the ideal chemical composition of the coating.
  • the inert gas inlet position is farther from the arc target and closer to the sputtering target. Specifically, the inert gas inlet position is set in front of the sputtering target, or the inert gas inlet position is set close to the sputtering target, thereby delaying the poisoning of the sputtering target and increasing the sputtering rate of the sputtering target.
  • the inert gas is mainly used to generate inert gas ions to bombard the sputtering target, so that the target ions escape from the target surface.
  • the inert gas is one of helium, neon, argon, krypton and xenon.
  • the tool substrate is made of cemented carbide. After ultrasonic cleaning and drying, the tool substrate is loaded into the reaction chamber of the coating furnace, heated and vacuumed to the set conditions, and ion cleaning is performed on the tool substrate.
  • the oxygen inlet position is set near the sputtering target, and the inert gas inlet position is set in front of the arc target.
  • Oxygen and argon gases were introduced, and the Cr target as an arc target and the Al target as a sputtering target were turned on.
  • the target current density of the arc target was adjusted to 1.0A/ cm2 , the bias voltage was -100V, the gas pressure was 0.4Pa, and the rotation speed of the support was 2r/min.
  • the magnetron sputtering technology used high-power pulsed magnetron sputtering (HiPIMS), the average power density of the sputtering target was 5W/ cm2 , the duty cycle was 2.5%, and the frequency was 500Hz.
  • the deposition time was 120min.
  • a coated tool having a cathode arc evaporation/high power pulsed magnetron sputtering composite deposited oxide coating is obtained.
  • the composition of the cathode arc evaporation oxide layer is Cr-O
  • the composition of the high power pulsed magnetron sputtering oxide layer is Al-O.
  • the tool substrate is made of cemented carbide. After ultrasonic cleaning and drying, the tool substrate is loaded into the reaction chamber of the coating furnace, heated and vacuumed to the set conditions, and ion cleaning is performed on the tool substrate.
  • the oxygen inlet position is set near the arc target, and the inert gas inlet position is set in front of the sputtering target.
  • Oxygen and argon were introduced, the CrAl target as the arc target was turned on, the target current density of the arc target was adjusted to 1.0 A/cm 2 , the bias voltage to -100 V, the gas pressure to 0.4 Pa, the rotation speed of the support to 2 r/min, and the deposition time to 120 min.
  • a coated tool having a cathode arc evaporation deposited oxide hard coating is obtained, and the composition of the oxide hard coating is Cr–Al–O.
  • the tool substrate is made of cemented carbide. After ultrasonic cleaning and drying, the tool substrate is loaded into the reaction chamber of the coating furnace, heated and vacuumed to the set conditions, and ion cleaning is performed on the tool substrate.
  • the oxygen inlet position is set near the arc target, and the inert gas inlet position is set in front of the sputtering target.
  • Oxygen and argon gases were introduced, and the Al target serving as a sputtering target was turned on.
  • the magnetron sputtering technology uses high power pulsed magnetron sputtering (HiPIMS), and the average power density of the sputtering target is adjusted to 5 W/cm 2 , the duty cycle is 2.5%, the frequency is 500 Hz, the bias voltage is set to –100 V, the gas pressure is 0.4 Pa, the rotation speed of the bracket is 2 r/min, and the deposition time is 120 min.
  • HiPIMS high power pulsed magnetron sputtering
  • a coated tool with an oxide hard coating deposited by high power impulse magnetron sputtering (HiPIMS) is obtained, and the composition of the oxide hard coating is Al 2 O 3 .
  • the tool substrate is made of cemented carbide. After ultrasonic cleaning and drying, the tool substrate is loaded into the reaction chamber of the coating furnace, heated and vacuumed to the set conditions, and ion cleaning is performed on the tool substrate.
  • the oxygen inlet position is set near the arc target, and the inert gas inlet position is set in front of the sputtering target.
  • Oxygen and argon were introduced, the Cr target as the arc target and the Al target as the sputtering target were turned on, and the magnetron sputtering technology adopted was high power pulsed magnetron sputtering (HiPIMS).
  • the target current density of the arc target was adjusted to 1.0A/cm 2 , the bias voltage was –100V, the gas pressure was 0.4Pa, and the rotation speed of the holder was 2r/min.
  • the average power density of the sputtering target was 5W/cm 2 , the duty cycle was 2.5%, and the frequency was 500Hz.
  • the deposition time was 120min, and the thickness of the obtained oxide hard coating was 2.4 ⁇ m.
  • a coated tool with a cathode arc evaporation/high-power pulsed magnetron sputtering composite deposited oxide hard coating is obtained, and the thickness of the alternating unit obtained in each alternating deposition cycle (modulation period) is 10nm, wherein the thickness ratio of the cathode arc evaporation oxide layer to the magnetron sputtering oxide layer in each alternating unit is 2:1.
  • the composition of the cathode arc evaporation oxide layer is Cr-O
  • the composition of the magnetron sputtering oxide layer is Al-O
  • the content of each element in the oxide hard coating is as follows: Al: 15at.%, Cr: 30at.%, O: 55at.%.
  • Table 1 is a comparison of the composition and hardness of the Cr-O/Al-O coatings prepared by cathode arc evaporation/high-power pulsed magnetron sputtering composite deposition technology using different gas inlet methods in Example 1 and Comparative Example 1.
  • Table 2 compares the composition and hardness of the Cr-O/Al-O coating deposited by cathode arc evaporation/high power pulsed magnetron sputtering in Example 1, the (Cr,Al)2O3 coating deposited by cathode arc evaporation in Comparative Example 2, and the Al2O3 coating prepared by high power pulsed magnetron sputtering in Comparative Example 3.
  • Example 2 It can be seen from Table 2 that the O content in the Cr-O/Al-O coating prepared by cathode arc evaporation/high-power pulsed magnetron sputtering composite deposition technology in Example 1 is similar to that of the (Cr, Al) 2 O 3 coating prepared by conventional cathode arc evaporation in Comparative Example 2 and the Al 2 O 3 coating prepared by high-power pulsed magnetron sputtering in Comparative Example 3, and both are close to the ideal stoichiometric ratio.
  • the hardness of the composite deposited Cr-O/Al-O in Example 1 is similar to that of the (Cr, Al) 2 O 3 coating deposited by cathode arc evaporation in Comparative Example 2 , indicating that the cathode arc evaporation/high-power pulsed magnetron sputtering composite deposition technology can be used to prepare an oxide hard coating with performance close to that of cathode arc evaporation, and its deposition efficiency is higher than that of conventional cathode arc evaporation.
  • the Al 2 O 3 coating prepared by HiPIMS in Comparative Example 3 is mainly composed of amorphous phases due to its loose structure and the presence of a large number of holes inside, so the coating hardness is low.
  • Figure 1 shows the hysteresis curve of the Al target during high power pulsed magnetron sputtering (HiPIMS) using the gas inlet paths used in Comparative Example 1 and Example 1 for composite deposition of Cr-O/Al-O coatings.
  • the poisoning curve drawn using the gas inlet path of Comparative Example 1 shows that when the oxygen flow rate exceeds 20 sccm, the Al target voltage begins to drop, the target material working state changes from metal mode to poisoning mode, and the Al target material begins to arc; when the oxygen flow rate exceeds 26 sccm, the Al target voltage drops to about 590V, indicating that the target material has been completely poisoned at this time.
  • the target material needs to consume a higher oxygen flow rate of 27 sccm to enter the transition mode from the metal mode, and the Al target can still work stably at this time.
  • FIG2 is a scanning electron microscope image of the Cr–O/Al–O coating (a) deposited by cathode arc evaporation/high-power pulsed magnetron sputtering in Example 1, the (Cr,Al) 2 O 3 coating (b) deposited by cathode arc evaporation in Comparative Example 2, and the Al 2 O 3 coating (c) prepared by high-power pulsed magnetron sputtering in Comparative Example 3.
  • Figure 3 shows the GIXRD spectra of the Cr-O/Al-O coating deposited by cathode arc evaporation/high-power pulsed magnetron sputtering in Example 1, the (Cr,Al) 2 O 3 coating deposited by cathode arc evaporation in Comparative Example 2, and the Al 2 O 3 coating prepared by high-power pulsed magnetron sputtering in Comparative Example 3.
  • Figure 4 shows the microscopic nano multilayer structure and composition distribution of the oxide hard coating of Example 1 obtained by cathode arc evaporation/high-power pulsed magnetron sputtering composite deposition in the present invention.
  • the bright field image of Figure 4a shows that the coating exhibits a multi-layer alternating layered structure, and the overall columnar crystal growth morphology.
  • the lattice fringes in a single grain continuously penetrate multiple Cr-O and Al-O sublayers, indicating that epitaxial growth has occurred between the Cr-O layer deposited by cathode arc evaporation and the Al-O layer of HiPIMS.
  • Figure 4c is a high-magnification STEM image of the coating and the composition surface distribution of EDS, which further proves the existence of a multilayer structure inside the coating.
  • the measured modulation period of the coating is about 9nm, and the thickness of the Cr-O and Al-O layers are about 6nm and 3nm, respectively.
  • the tool substrate is made of cemented carbide. After ultrasonic cleaning and drying, the tool substrate is loaded into the reaction chamber of the coating furnace, heated and vacuumed to the set conditions, and ion cleaning is performed on the tool substrate.
  • the oxygen inlet position is set near the arc target, and the inert gas inlet position is set in front of the sputtering target.
  • Oxygen and argon are introduced, the Cr target as the arc target and the Al target as the sputtering target are turned on, and the magnetron sputtering technology adopts pulsed magnetron sputtering.
  • the target current density of the arc target was adjusted to 1.5A/ cm2 , the bias voltage was -100V, the gas pressure was 2.0Pa, and the rotation speed of the holder was 3r/min.
  • the average power density of the sputtering target was 15W/ cm2 , the duty cycle was 50%, and the frequency was 80kHz.
  • the deposition time was 120min, and the thickness of the obtained oxide hard coating was 3.6 ⁇ m.
  • a coated tool with a cathode arc evaporation/pulse magnetron sputtering composite deposited oxide hard coating is obtained, and the thickness of each alternating unit is 15nm, wherein the thickness ratio of the cathode arc evaporation oxide layer to the magnetron sputtering oxide layer is 1:1.
  • the composition of the cathode arc evaporation oxide layer is Cr-O
  • the composition of the magnetron sputtering oxide layer is Al-O
  • the content of each element in the oxide hard coating is as follows: Al: 20at.%, Cr: 23at.%, O: 57at.%.
  • the tool substrate is made of cemented carbide. After ultrasonic cleaning and drying, the tool substrate is loaded into the reaction chamber of the coating furnace, heated and vacuumed to the set conditions, and ion cleaning is performed on the tool substrate.
  • the oxygen inlet position is set near the arc target, and the inert gas inlet position is set in front of the sputtering target.
  • Oxygen and argon are introduced, the Cr target as the arc target and the Al target as the sputtering target are turned on, and the magnetron sputtering technology adopts DC magnetron sputtering.
  • the target current density of the arc target was adjusted to 0.5 A/cm 2 , the bias voltage was -150 V, the gas pressure was 3.0 Pa, and the rotation speed of the holder was 0.5 r/min.
  • the average power density of the sputtering target was 25 W/cm 2 .
  • the deposition time was 60 min, and the thickness of the obtained oxide hard coating was 3 ⁇ m.
  • a coated tool with a cathode arc evaporation/magnetron sputtering composite deposited oxide hard coating is obtained, and the thickness of each alternating unit (modulation period) is 50nm, wherein the thickness ratio of the cathode arc evaporation oxide layer to the magnetron sputtering oxide layer is 1:3.
  • the composition of the cathode arc evaporation oxide layer is Cr-O
  • the composition of the magnetron sputtering oxide layer is Al-O
  • the content of each element in the oxide hard coating is as follows: Al: 30at.%, Cr: 10at.%, O: 60at.%.
  • the tool substrate is made of cemented carbide. After ultrasonic cleaning and drying, the tool substrate is loaded into the reaction chamber of the coating furnace, heated and vacuumed to the set conditions, and ion cleaning is performed on the tool substrate.
  • the oxygen inlet position is set near the arc target, and the inert gas inlet position is set in front of the sputtering target.
  • Oxygen and argon are introduced, the Cr target as the arc target and the Al target as the sputtering target are turned on, and the magnetron sputtering technology adopts DC magnetron sputtering.
  • the target current density of the arc target was adjusted to 2A/cm 2 , the bias voltage was -50V, the gas pressure was 1.0Pa, and the rotation speed of the holder was 5r/min.
  • the average power density of the sputtering target was 7W/cm 2 .
  • the deposition time was 200min, and the thickness of the obtained oxide hard coating was 6 ⁇ m.
  • a coated tool with a cathode arc evaporation/magnetron sputtering composite deposited oxide hard coating is obtained, and the thickness of each alternating unit is 5nm, wherein the thickness ratio of the cathode arc evaporation oxide layer to the magnetron sputtering oxide layer is 3:1.
  • the composition of the cathode arc evaporation oxide layer is Cr-O
  • the composition of the magnetron sputtering oxide layer is Al-O
  • the content of each element in the oxide hard coating is as follows: Al: 15at.%, Cr: 25at.%, O: 65at.%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

一种氧化物硬质涂层的复合沉积方法及涂层刀具,涂层刀具包括刀具基体和氧化物硬质涂层,氧化物硬质涂层包含多层交替沉积的阴极弧蒸发氧化物层和磁控溅射氧化物层,阴极弧蒸发氧化物层具有Cr和O,磁控溅射氧化物层具有Al和O。采用阴极弧蒸发/磁控溅射复合沉积方式制备氧化物硬质涂层,兼顾阴极弧蒸发技术的沉积速率快、离化率高和磁控溅射技术液滴少的特点,显著改善氧化物硬质涂层的表面质量,提高涂层的硬度和致密度;阴极弧蒸发氧化物层和磁控溅射氧化物层之间产生共格界面,阴极弧蒸发氧化物层的模板作用促进磁控溅射氧化物层结晶,改善涂层刀具的力学性能。

Description

氧化物硬质涂层的复合沉积方法及涂层刀具 技术领域
本发明涉及金属切削刀具技术领域,特别涉及一种氧化物硬质涂层的复合沉积方法及涂层刀具。
背景技术
阴极弧蒸发沉积的氧化物涂层(如氧化铝、氧化铬铝等)具有较高的硬度、良好的耐磨性和热稳定性,近年来得到了广泛关注。然而,阴极弧蒸发所产生的“液滴”缺陷会导致涂层表面粗糙度增加,且在涂层内部形成微孔隙,影响涂层的耐温性和耐磨性。
利用磁控溅射技术制备氧化物涂层时,虽然能够抑制“液滴”缺陷的形成,但存在沉积速率低、结晶程度低且生成大量的亚稳结构等问题,难以满足工业需求。高功率脉冲磁控溅射(HiPIMS)通过低占空比(<10%)的短脉冲能够获得kW/cm 2级别的高峰值功率密度增加溅射材料的等离子体密度和电离度,有利于制备致密的氧化物涂层,同时HiPIMS可以抑制反应溅射的迟滞行为,提高沉积速率。然而,阴极对靶材离子的反向吸引导致HiPIMS沉积氧化物涂层时沉积速率仍然较低。因此,需要发展适合工业化应用的高性能氧化物硬质涂层的沉积技术。
发明内容
为解决上述技术问题中的至少之一,本发明提供一种氧化物硬质涂层的复合沉积方法及涂层刀具,所采用的技术方案如下。
本发明所提供的涂层刀具包括刀具基体和氧化物硬质涂层,所述氧化物硬质涂层沉积在所述刀具基体上,所述氧化物硬质涂层包含多层交替沉积的阴极弧蒸发氧化物层和磁控溅射氧化物层,所述阴极弧蒸发氧化物层具有Cr和O元素,所述磁控溅射氧化物层具有Al和O元素。
本发明的某些实施例中,每个交替沉积周期所获得的交替单元的厚度为5至50nm,所述交替单元中所述阴极弧蒸发氧化物层和所述磁控溅射氧化物层的厚度比为1:3至3:1。
本发明的某些实施例中,所述氧化物硬质涂层中,氧含量为55至65at.%,Cr含量为10至25at.%,Al含量为10至30at.%。
本发明所提供的复合沉积方法采用阴极弧蒸发技术结合磁控溅射技术在刀具基体上交替 沉积阴极弧蒸发氧化物层和磁控溅射氧化物层,获得氧化物硬质涂层,所述复合沉积方法包括
将刀具基体装载至反应腔中,反应腔抽真空,加热,对刀具基体进行离子清洗;
反应腔抽真空,通入氧气和惰性气体,开启电弧靶和溅射靶。
本发明的某些实施例中,反应腔中,氧气的进气位置距离电弧靶较近、距离溅射靶较远。
本发明的某些实施例中,反应腔中,惰性气体的进气位置距离电弧靶较远、距离溅射靶较近。
本发明的某些实施例中,沉积氧化物硬质涂层过程中,电弧靶的靶电流密度为0.5至2.0A/cm 2、溅射靶的平均功率密度为5至25W/cm 2、偏压为-50至-250V、气压为0.4至3.0Pa,装载刀具基体的支架旋转速率为0.5至5r/min,沉积时间为30至360min。
本发明的实施例至少具有以下有益效果:采用阴极弧蒸发/磁控溅射复合沉积方式制备氧化物硬质涂层,兼顾了阴极弧蒸发技术的沉积速率快、离化率高以及磁控溅射技术液滴少的特点,可显著改善氧化物硬质涂层的表面质量,提高涂层的硬度和致密度;阴极弧蒸发氧化物层和磁控溅射氧化物层之间能够产生共格界面,此时阴极弧蒸发氧化物层的模板作用可促进磁控溅射氧化物层结晶,改善涂层刀具的力学性能。本发明可广泛应用于金属切削刀具技术领域。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解。
图1为阴极弧蒸发/高功率脉冲磁控溅射复合沉积Cr–O/Al–O涂层时采用对比例1和实施例1中所使用的进气路径绘制的高功率脉冲磁控溅射(HiPIMS)Al靶的毒化迟滞曲线。
图2为实施例1中阴极弧蒸发/高功率脉冲磁控溅射复合沉积的Cr–O/Al–O涂层(a)与对比例2中阴极弧蒸发沉积的(Cr,Al) 2O 3涂层(b)以及对比例3中高功率脉冲磁控溅射制备的Al 2O 3涂层(c)的扫描电镜图。
图3为实施例1中阴极弧蒸发/高功率脉冲磁控溅射复合沉积的Cr–O/Al–O涂层与对比例2中阴极弧蒸发沉积的(Cr,Al) 2O 3涂层以及对比例3中高功率脉冲磁控溅射(HiPIMS)制备的Al 2O 3涂层的掠入射X射线衍射图谱。
图4为本发明中阴极弧蒸发/高功率脉冲磁控溅射复合沉积所获得的实施例1氧化物硬质涂层的微观纳米多层结构及成分分布。
图5为本发明中阴极弧蒸发/磁控溅射复合沉积所获得的氧化物硬质涂层的结构示意图。
具体实施方式
下面结合图1至图5详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,若出现术语“中心”、“中部”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
本发明涉及一种涂层刀具,涂层刀具包括刀具基体和氧化物硬质涂层,氧化物硬质涂层沉积在刀具基体上,氧化物硬质涂层包含多层交替沉积的阴极弧蒸发氧化物层和磁控溅射氧化物层。其中,阴极弧蒸发氧化物层具有Cr和O元素,磁控溅射氧化物层具有Al和O元素。
刀具基体材料采用高速钢、硬质合金、金属陶瓷、陶瓷和立方氮化硼中的一种。
本发明所设计的涂层刀具在碳钢、铸铁、不锈钢和钛合金材料的机械加工中应用广泛,机械加工包含车削、铣削、钻削、镗削和磨削。
作为一种实施方式,每个交替沉积周期所获得的交替单元的厚度(调制周期)为5至50nm。交替单元中,阴极弧蒸发氧化物层和磁控溅射氧化物层的厚度比(调制比)为1:3至3:1,阴极弧蒸发氧化物层和磁控溅射氧化物层的厚度可以相同,也可以不同。通过控制调制周期和调制比,从而在阴极弧蒸发氧化物层和磁控溅射氧化物层之间产生共格界面。若调制周期的厚度太大或者调制比比例不合适,则难以产生共格界面,无法促进磁控溅射氧化物层结晶,无法保证涂层硬度。
可以理解的是,通过调控阴极弧蒸发氧化物层和磁控溅射氧化物层的调制结构(调制周 期和调制比),可使二者之间产生共格界面,此时阴极弧蒸发氧化物层的模板作用可促进磁控溅射氧化物层结晶,改善涂层刀具的力学性能和延长涂层刀具的使用寿命。
作为一种实施方式,氧化物硬质涂层中,氧含量为55至65at.%,Al含量为10至30at.%,确保氧化物硬质涂层具有接近理想的化学计量比,确保内部不会存在大量的金属相。若涂层中的金属相较多,会导致涂层硬度下降。
一些示例中,氧化物硬质涂层具有Cr、Al、O,其中,Al:15至30at.%,Cr:10至25at.%,O:55至65at.%。具体地,阴极弧蒸发氧化物层的成分为Cr-O,磁控溅射氧化物层的成分为Al-O。
本发明涉及一种氧化物硬质涂层的复合沉积方法,复合沉积方法采用阴极弧蒸发技术结合磁控溅射技术在刀具基体上交替沉积阴极弧蒸发氧化物层和磁控溅射氧化物层。
可以理解的是,阴极弧蒸发沉积速率快、离化率高,所获得的涂层硬度高且结构致密,磁控溅射所获得的涂层表面光滑,阴极弧蒸发结合磁控溅射复合沉积所获得的氧化物硬质涂层液滴少、沉积速率快。
复合沉积方法包括如下流程:将刀具基体装载至反应腔中;反应腔抽真空,加热,对刀具基体进行离子清洗;反应腔抽真空,通入氧气和惰性气体,开启电弧靶和溅射靶。支架中的刀具基体在电弧靶和溅射靶前周期性地旋转,获得具有纳米多层结构的氧化物硬质涂层。
具体地,反应腔加热至100至400℃,开启离子源对刀具基体表面进行离子清洗。
通过阴极弧蒸发和磁控溅射交替沉积,所制备的氧化物硬质涂层展现出纳米多层结构,通过调控调制周期与调制比,利用阴极弧蒸发氧化物层的模板作用促进磁控溅射氧化物层的结构,可改善磁控溅射制备氧化物涂层结晶困难、硬度低等缺点,以使氧化物涂层具有良好的表面质量和力学性能。
交替沉积纳米多层结构的参数主要与装载刀具基体的支架旋转速率、电弧靶的靶电流密度以及溅射靶的平均功率密度相关,通过调整靶材成分以及沉积参数可灵活调控氧化物硬质涂层的成分和结构,可操作性强、可控性好,降低了镀膜设备及工艺的复杂程度,适于工业化生产。
具体地,沉积氧化物硬质涂层的过程中:电弧靶的靶电流密度为0.5至2.0A/cm 2、偏压为-50至-250V、气压为0.4至3.0Pa,溅射靶的平均功率密度为5至25W/cm 2,装载刀具基体的支架旋转速率为0.5至5r/min,沉积时间为30至360min。
作为一种实施方式,磁控溅射技术采用直流磁控溅射。当然,作为替换方案,磁控溅射技术还可采用脉冲磁控溅射或高功率脉冲磁控溅射。
为获得理想的化学计量比的氧化物硬质涂层以及防止溅射靶中毒,应合理设计反应腔中的进气路径,具体地,氧气的进气位置距离电弧靶较近、距离溅射靶较远,以使氧气的进气位置远离溅射靶、更加靠近电弧靶。一些示例中,氧气的进气位置设置在电弧靶前,或者氧气的进气位置靠近电弧靶设置。
可以理解的是,一方面,电弧靶和溅射靶在工作过程中,溅射靶的表面容易产生氧化铝层,由于溅射离子能量较低,无法及时去除表面氧化物,导致溅射靶毒化,当氧化物积累到一定厚度时,靶材溅射率严重下降,容易出现打弧现象,导致靶材无法正常工作;而电弧靶蒸发时表面的电弧斑点具有较高的能量,可及时去除靶材表面形成的氧化层,不容易在靶表面形成氧化物,在合适的沉积条件下可以连续长时间稳定工作。因此设计氧气的进气位置靠近电弧靶,让电弧靶优先消耗氧气,使溅射靶能够在较高的氧气流量下工作,有利于保证涂层理想的化学成分。
进一步地,反应腔中,惰性气体的进气位置距离电弧靶较远、距离溅射靶较近。具体地,惰性气体的进气位置设置在溅射靶前,或者惰性气体的进气位置靠近溅射靶设置,从而延缓溅射靶毒化,提高溅射靶的溅射速率。
可以理解的是,惰性气体主要用于产生惰性气体离子轰击溅射靶,使靶材离子从靶面逸出。具体地,惰性气体采用氦气、氖气、氩气、氪气和氙气中的一种。
下面以具体的实施例详细描述本发明的内容,应注意的是,下述描述仅是示例性说明,而不是对本发明的具体限制。
对比例1
刀具基体选用硬质合金,超声清洗、烘干后,刀具基体装载至涂层炉的反应腔中,加热和抽真空至设定条件,对刀具基体进行离子清洗。
氧气的进气位置设置在溅射靶附近,惰性气体的进气位置设置在电弧靶前。
通入氧气和氩气,打开作为电弧靶的Cr靶和作为溅射靶的Al靶。
调整电弧靶的靶电流密度为1.0A/cm 2、偏压为–100V、气压为0.4Pa,支架的旋转速度为2r/min。磁控溅射技术采用高功率脉冲磁控溅射(HiPIMS),溅射靶的平均功率密度为5W/cm 2、占空比为2.5%、频率为500Hz。沉积时间为120min。
经过上述步骤获得具有阴极弧蒸发/高功率脉冲磁控溅射复合沉积氧化物涂层的涂层刀具,所获得的氧化物硬质涂层中,阴极弧蒸发氧化物层的成分为Cr-O,高功率脉冲磁控溅射氧化物层的成分为Al-O。
对比例2
刀具基体选用硬质合金,超声清洗、烘干后,刀具基体装载至涂层炉的反应腔中,加热和抽真空至设定条件,对刀具基体进行离子清洗。
氧气的进气位置设置在电弧靶附近,惰性气体的进气位置设置在溅射靶前。
通入氧气和氩气,打开作为电弧靶的CrAl靶,调整电弧靶的靶电流密度为1.0A/cm 2、偏压为–100V、气压为0.4Pa,支架的旋转速度为2r/min,沉积时间为120min。
经过上述步骤获得具有阴极弧蒸发沉积氧化物硬质涂层的涂层刀具,氧化物硬质涂层的成分为Cr–Al–O。
对比例3
刀具基体选用硬质合金,超声清洗、烘干后,刀具基体装载至涂层炉的反应腔中,加热和抽真空至设定条件,对刀具基体进行离子清洗。
氧气的进气位置设置在电弧靶附近,惰性气体的进气位置设置在溅射靶前。
通入氧气和氩气,打开作为溅射靶的Al靶。
磁控溅射技术采用高功率脉冲磁控溅射(HiPIMS),调整溅射靶的平均功率密度为5W/cm 2、占空比为2.5%、频率为500Hz,设定偏压为–100V、气压为0.4Pa,支架的旋转速度为2r/min,沉积时间为120min。
经过上述步骤获得高功率脉冲磁控溅射(HiPIMS)沉积氧化物硬质涂层的涂层刀具,氧化物硬质涂层的成分为Al 2O 3
实施例1
刀具基体选用硬质合金,超声清洗、烘干后,刀具基体装载至涂层炉的反应腔中,加热和抽真空至设定条件,对刀具基体进行离子清洗。
氧气的进气位置设置在电弧靶附近,惰性气体的进气位置设置在溅射靶前。
通入氧气和氩气,打开作为电弧靶的Cr靶和作为溅射靶的Al靶,磁控溅射技术采用高功率脉冲磁控溅射(HiPIMS)。
调整电弧靶的靶电流密度为1.0A/cm 2、偏压为–100V、气压为0.4Pa,支架的旋转速度为2r/min。溅射靶的平均功率密度为5W/cm 2、占空比为2.5%、频率为500Hz。沉积时间为120min,所获得的氧化物硬质涂层的厚度为2.4μm。
经过上述步骤获得具有阴极弧蒸发/高功率脉冲磁控溅射复合沉积氧化物硬质涂层的涂层刀具,每个交替沉积周期所获得的交替单元的厚度(调制周期)为10nm,其中,每个交替单元中阴极弧蒸发氧化物层与磁控溅射氧化物层的厚度比为2:1。阴极弧蒸发氧化物层的成分为Cr–O,磁控溅射氧化物层的成分为Al–O,且氧化物硬质涂层中各元素含量如下:Al: 15at.%,Cr:30at.%,O:55at.%。
表1为实施例1与对比例1中使用不同进气方式利用阴极弧蒸发/高功率脉冲磁控溅射复合沉积技术制备的Cr–O/Al–O涂层的成分及硬度对比。
表1
Figure PCTCN2022131124-appb-000001
从表1中可以看出实施例1利用合理的进气方式所制备的Cr–O/Al–O涂层中O含量为55at.%,接近理想化学计量比的60at.%,展现出24.7GPa的硬度;而对比例1中未采用不同进气方式所制备的Cr–O/Al–O涂层中O含量仅为26at.%,涂层中金属含量较高,硬度仅为12.8GPa。该结果表明合理的进气路径是复合沉积氧化物硬质涂层的基础。
表2为实施例1中阴极弧蒸发/高功率脉冲磁控溅射复合沉积的Cr–O/Al–O涂层与对比例2中阴极弧蒸发沉积的(Cr,Al)2O3涂层以及对比例3中高功率脉冲磁控溅射制备的Al 2O 3涂层成分及硬度对比。
表2
Figure PCTCN2022131124-appb-000002
从表2中可以看出实施例1中利用阴极弧蒸发/高功率脉冲磁控溅射复合沉积技术制备的Cr–O/Al–O涂层中O含量与对比例2中传统阴极弧蒸发制备的(Cr,Al) 2O 3涂层以及对比例3中高功率脉冲磁控溅射制备的Al 2O 3涂层相近,均接近理想化学计量比。实施例1中复合沉积的Cr–O/Al–O与对比例2中阴极弧蒸发沉积的(Cr,Al) 2O 3涂层硬度相似,说明利用阴极弧蒸发/高功率脉冲磁控溅射复合沉积技术可制备出性能接近阴极弧蒸发的氧化物硬质涂层,且其沉积效率高于传统的阴极弧蒸发。其中对比例3中HiPIMS制备的Al 2O 3涂层由于结构疏松内部存在大量孔洞,主要由非晶相构成,因此涂层硬度低。
图1为复合沉积Cr–O/Al–O涂层时采用对比例1和实施例1中所使用的进气路径绘制的高功率脉冲磁控溅射(HiPIMS)时Al靶的迟滞曲线。采用对比例1的进气路径绘制的毒化曲 线显示,当氧气流量超过20sccm时Al靶电压开始下降,靶材工作状态从金属模式向毒化模式转变,Al靶材开始出现打弧现象;氧气流量超过26sccm时,Al靶电压降低至约590V,说明此时靶材已被完全毒化。采用实施例1的进气路径时,靶材从金属模式进入到过渡模式需要消耗更高的氧气流量27sccm,此时Al靶仍能稳定工作。
图2为实施例1中阴极弧蒸发/高功率脉冲磁控溅射复合沉积的Cr–O/Al–O涂层(a)与对比例2中阴极弧蒸发沉积的(Cr,Al) 2O 3涂层(b)以及对比例3中高功率脉冲磁控溅射制备的Al 2O 3涂层(c)的扫描电镜图。从图中可以看出实施例1中复合沉积的Cr–O/Al–O涂层与对比例2中阴极弧蒸发沉积的(Cr,Al) 2O 3涂层结构致密,而对比例3中HiPIMS制备的Al 2O 3涂层结构疏松,表面存在大量裂纹。实施例1中复合沉积的Cr–O/Al–O涂层表面液滴缺陷明显低于对比例2中阴极弧蒸发沉积的(Cr,Al) 2O 3涂层。上述结果说明复合沉积技术制备氧化物硬质涂层时既能保持涂层的致密度又能减少表面液滴缺陷。
图3为实施例1中阴极弧蒸发/高功率脉冲磁控溅射复合沉积的Cr–O/Al–O涂层与对比例2中阴极弧蒸发沉积的(Cr,Al) 2O 3涂层以及对比例3中高功率脉冲磁控溅射制备的Al 2O 3涂层的GIXRD图谱。图中可观察到实施例1中复合沉积的Cr–O/Al–O涂层与对比例2、3中阴极弧蒸发沉积的(Cr,Al) 2O 3涂层均表现出单相的面心立方结构,而对比例3中HiPIMS制备的Al 2O 3涂层中并未检测到明显的衍射峰,涂层为非晶态。该结果说明,复合沉积技术能够有效改善磁控溅射技术制备氧化物硬质涂层时结晶差的问题。
图4为本发明中阴极弧蒸发/高功率脉冲磁控溅射复合沉积所获得的实施例1氧化物硬质涂层的微观纳米多层结构及成分分布。图4a的明场像图像显示涂层表现出多层交替的层状结构,整体呈现柱状晶生长形貌。图4b的高分辨TEM图像中单个晶粒内晶格条纹持续贯穿多个Cr–O和Al–O子层,说明阴极弧蒸发沉积的Cr–O层和HiPIMS的Al–O层之间发生了外延生长。图4c为涂层的高倍STEM图像和EDS的成分面分布进一步证明了涂层内部多层结构的存在,测量所得涂层的调制周期约为9nm,Cr–O和Al–O层的厚度分别约为6nm和3nm。
实施例2
刀具基体选用硬质合金,超声清洗、烘干后,刀具基体装载至涂层炉的反应腔中,加热和抽真空至设定条件,对刀具基体进行离子清洗。
氧气的进气位置设置在电弧靶附近,惰性气体的进气位置设置在溅射靶前。
通入氧气和氩气,打开作为电弧靶的Cr靶和作为溅射靶的Al靶,磁控溅射技术采用脉冲磁控溅射。
调整电弧靶的靶电流密度为1.5A/cm 2、偏压为–100V、气压为2.0Pa,支架的旋转速度为3r/min。溅射靶的平均功率密度为15W/cm 2、占空比为50%、频率为80kHz。沉积时间为120min,所获得的氧化物硬质涂层的厚度为3.6μm。
经过上述步骤获得具有阴极弧蒸发/脉冲磁控溅射复合沉积氧化物硬质涂层的涂层刀具,每个交替单元的厚度为15nm,其中,阴极弧蒸发氧化物层与磁控溅射氧化物层的厚度比为1:1。阴极弧蒸发氧化物层的成分为Cr–O,磁控溅射氧化物层的成分为Al–O,且氧化物硬质涂层中各元素含量如下:Al:20at.%,Cr:23at.%,O:57at.%。
实施例3
刀具基体选用硬质合金,超声清洗、烘干后,刀具基体装载至涂层炉的反应腔中,加热和抽真空至设定条件,对刀具基体进行离子清洗。
氧气的进气位置设置在电弧靶附近,惰性气体的进气位置设置在溅射靶前。
通入氧气和氩气,打开作为电弧靶的Cr靶和作为溅射靶的Al靶,磁控溅射技术采用直流磁控溅射。
调整电弧靶的靶电流密度为0.5A/cm 2、偏压为–150V、气压为3.0Pa,支架的旋转速度为0.5r/min。溅射靶的平均功率密度为25W/cm 2。沉积时间为60min,所获得的氧化物硬质涂层的厚度为3μm。
经过上述步骤获得具有阴极弧蒸发/磁控溅射复合沉积氧化物硬质涂层的涂层刀具,每个交替单元的厚度(调制周期)为50nm,其中,阴极弧蒸发氧化物层与磁控溅射氧化物层的厚度比为1:3。阴极弧蒸发氧化物层的成分为Cr–O,磁控溅射氧化物层的成分为Al–O,且氧化物硬质涂层中各元素含量如下:Al:30at.%,Cr:10at.%,O:60at.%。
实施例4
刀具基体选用硬质合金,超声清洗、烘干后,刀具基体装载至涂层炉的反应腔中,加热和抽真空至设定条件,对刀具基体进行离子清洗。
氧气的进气位置设置在电弧靶附近,惰性气体的进气位置设置在溅射靶前。
通入氧气和氩气,打开作为电弧靶的Cr靶和作为溅射靶的Al靶,磁控溅射技术采用直流磁控溅射。
调整电弧靶的靶电流密度为2A/cm 2、偏压为–50V、气压为1.0Pa,支架的旋转速度为5r/min。溅射靶的平均功率密度为7W/cm 2。沉积时间为200min,所获得的氧化物硬质涂层的厚度为6μm。
经过上述步骤获得具有阴极弧蒸发/磁控溅射复合沉积氧化物硬质涂层的涂层刀具,每个 交替单元的厚度为5nm,其中,阴极弧蒸发氧化物层与磁控溅射氧化物层的厚度比为3:1。阴极弧蒸发氧化物层的成分为Cr–O,磁控溅射氧化物层的成分为Al–O,且氧化物硬质涂层中各元素含量如下:Al:15at.%,Cr:25at.%,O:65at.%。
在本说明书的描述中,若出现参考术语“一个实施例”、“一些实例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上结合附图对本发明的实施方式作了详细说明,但是本发明不限于上述实施方式,在所述技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。
本发明的描述中,专利名称若出现“、”,表示“和”的关系,而不是“或”的关系。例如专利名称为“一种A、B”,说明本发明所要求保护的内容为:主题名称为A的技术方案和主题名称为B的技术方案。

Claims (7)

  1. 一种涂层刀具,其特征在于,包括刀具基体和氧化物硬质涂层,所述氧化物硬质涂层沉积在所述刀具基体上,所述氧化物硬质涂层包含多层交替沉积的阴极弧蒸发氧化物层和磁控溅射氧化物层,所述阴极弧蒸发氧化物层具有Cr和O元素,所述磁控溅射氧化物层具有Al和O元素。
  2. 根据权利要求1所述的涂层刀具,其特征在于,每个交替沉积周期所获得的交替单元的厚度为5至50nm,所述交替单元中所述阴极弧蒸发氧化物层和所述磁控溅射氧化物层的厚度比为1:3至3:1。
  3. 根据权利要求1或2所述的涂层刀具,其特征在于,所述氧化物硬质涂层中,氧含量为55至65at.%,Cr含量为10至25at.%,Al含量为10至30at.%。
  4. 一种氧化物硬质涂层的复合沉积方法,其特征在于,所述复合沉积方法采用阴极弧蒸发技术结合磁控溅射技术在刀具基体上交替沉积阴极弧蒸发氧化物层和磁控溅射氧化物层,获得如权利要求1至3任一项所述的氧化物硬质涂层,所述复合沉积方法包括:
    将刀具基体装载至反应腔中,反应腔抽真空,加热,对刀具基体进行离子清洗;
    反应腔抽真空,通入氧气和惰性气体,开启电弧靶和溅射靶。
  5. 根据权利要求4所述的氧化物硬质涂层的复合沉积方法,其特征在于,反应腔中,氧气的进气位置距离电弧靶较近、距离溅射靶较远。
  6. 根据权利要求4或5所述的氧化物硬质涂层的复合沉积方法,其特征在于,反应腔中,惰性气体的进气位置距离电弧靶较远、距离溅射靶较近。
  7. 根据权利要求4所述的氧化物硬质涂层的复合沉积方法,其特征在于:沉积氧化物硬质涂层过程中,电弧靶的靶电流密度为0.5至2.0A/cm 2、溅射靶的平均功率密度为5至25W/cm 2、偏压为-50至-250V、气压为0.4至3.0Pa,装载刀具基体的支架旋转速率为0.5至5r/min,沉积时间为30至360min。
PCT/CN2022/131124 2022-09-30 2022-11-10 氧化物硬质涂层的复合沉积方法及涂层刀具 WO2024065970A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211217767.0A CN115522169A (zh) 2022-09-30 2022-09-30 氧化物硬质涂层的复合沉积方法及涂层刀具
CN202211217767.0 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024065970A1 true WO2024065970A1 (zh) 2024-04-04

Family

ID=84701299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131124 WO2024065970A1 (zh) 2022-09-30 2022-11-10 氧化物硬质涂层的复合沉积方法及涂层刀具

Country Status (2)

Country Link
CN (1) CN115522169A (zh)
WO (1) WO2024065970A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116162903A (zh) * 2023-03-20 2023-05-26 广东工业大学 一种复合沉积MCrAlY抗氧化涂层及其制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130209834A1 (en) * 2010-05-04 2013-08-15 Walter Ag PVD Hybrid Method for Depositing Mixed Crystal Layers
CN103695858A (zh) * 2013-12-26 2014-04-02 广东工业大学 一种用于刀具涂层沉积的多功能全自动离子镀膜机及其使用方法
US20140193637A1 (en) * 2011-09-07 2014-07-10 Walter Ag Tool with chromium-containing functional layer
CN106222610A (zh) * 2016-07-22 2016-12-14 广东工业大学 一种纳米复合硬质涂层及其制备方法
CN111534806A (zh) * 2020-06-30 2020-08-14 北京大学深圳研究生院 一种硬质涂层及其制备方法与应用
CN113981385A (zh) * 2021-10-13 2022-01-28 广东工业大学 一种快速阴极电弧蒸发沉积硬质涂层的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008026358A1 (de) * 2008-05-31 2009-12-03 Walter Ag Werkzeug mit Metalloxidbeschichtung
DE102010039035A1 (de) * 2010-08-06 2012-02-09 Walter Ag Schneidwerkzeug mit mehrlagiger Beschichtung
CN105734501A (zh) * 2016-05-06 2016-07-06 魏永强 多级磁场电弧离子镀和孪生靶中频磁控溅射复合沉积方法
CN107523790B (zh) * 2017-07-05 2019-08-27 广东工业大学 一种AlCrSiCuN纳米多层涂层及其制备方法
CN108330452A (zh) * 2018-01-12 2018-07-27 中国科学院宁波材料技术与工程研究所 Max相涂层的制备方法
CN108468028B (zh) * 2018-04-28 2020-02-21 广东工业大学 一种周期性多层结构AlTiYN/AlCrSiN硬质涂层及其制备方法和应用
CN112239855B (zh) * 2020-10-30 2023-02-14 贵州大学 一种无基体偏压下获得的刚玉和立方结构三氧化二铝铬混合相涂层及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130209834A1 (en) * 2010-05-04 2013-08-15 Walter Ag PVD Hybrid Method for Depositing Mixed Crystal Layers
US20140193637A1 (en) * 2011-09-07 2014-07-10 Walter Ag Tool with chromium-containing functional layer
CN103695858A (zh) * 2013-12-26 2014-04-02 广东工业大学 一种用于刀具涂层沉积的多功能全自动离子镀膜机及其使用方法
CN106222610A (zh) * 2016-07-22 2016-12-14 广东工业大学 一种纳米复合硬质涂层及其制备方法
CN111534806A (zh) * 2020-06-30 2020-08-14 北京大学深圳研究生院 一种硬质涂层及其制备方法与应用
CN113981385A (zh) * 2021-10-13 2022-01-28 广东工业大学 一种快速阴极电弧蒸发沉积硬质涂层的方法

Also Published As

Publication number Publication date
CN115522169A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
CN108642449B (zh) 超硬强韧高熵合金氮化物纳米复合涂层硬质合金刀片及其制备方法
JP4427271B2 (ja) アルミナ保護膜およびその製造方法
CN108677144B (zh) 一种制备铝氮共掺类金刚石复合薄膜的方法
SE0600585L (sv) Förfarande för framställning av med a-aluminiumoxidskikt försett element och ytbehandling
CN111321381B (zh) 一种硬质合金刀片的AlCrNbSiTiBN基纳米复合涂层及其制备方法
JP2010174310A (ja) ダイヤモンドライクカーボン膜の製造方法
WO2024065970A1 (zh) 氧化物硬质涂层的复合沉积方法及涂层刀具
CN114717516B (zh) 一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法
CN106756841A (zh) 一种刀具复合涂层的制备方法
CN110158035A (zh) 耐高温海洋环境腐蚀的金属-金属氮化物多层涂层及制备
CN110643936B (zh) 一种适合铣削加工用的多层复合涂层及其制备方法
CN108823544A (zh) 基于氮化钛复合膜及其制备方法
CN110643953B (zh) 一种适合铣削加工用的氧化铝/钛铝氮复合涂层及其制备方法
JP3971336B2 (ja) α型結晶構造主体のアルミナ皮膜の製造方法およびα型結晶構造主体のアルミナ皮膜で被覆された部材の製造方法
CN114672777B (zh) 一种抗氧化Cr/CrAl纳米多层涂层及其制备方法
CN116219381A (zh) 一种max相涂层的低温制备方法及其应用
CN110656313B (zh) 一种与硬质合金结合牢固的氮化锆铝/氧化铝复合涂层及其制备方法
CN110616405B (zh) 一种耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层及其制备方法
JP3971337B2 (ja) α型結晶構造主体のアルミナ皮膜の製造方法、α型結晶構造主体のアルミナ皮膜で被覆された部材およびその製造方法
CN110670019B (zh) 一种抗月牙洼磨损的铝钛锆氮与氧化铝多层复合涂层及其制备方法
CN110643951B (zh) 一种抗高温氧化的铝铬硅氮与氧化铝多层复合涂层及其制备方法
CN112941463A (zh) 一种钛合金表面纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用
WO2004015162A1 (ja) α型結晶構造主体のアルミナ皮膜の製造方法
JP2004091920A (ja) α型結晶構造主体のアルミナ皮膜の製造方法
CN110643952B (zh) 一种抗氧化的氧化铝/氮化钛硅复合涂层及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960568

Country of ref document: EP

Kind code of ref document: A1