CN106222610A - 一种纳米复合硬质涂层及其制备方法 - Google Patents
一种纳米复合硬质涂层及其制备方法 Download PDFInfo
- Publication number
- CN106222610A CN106222610A CN201610586029.1A CN201610586029A CN106222610A CN 106222610 A CN106222610 A CN 106222610A CN 201610586029 A CN201610586029 A CN 201610586029A CN 106222610 A CN106222610 A CN 106222610A
- Authority
- CN
- China
- Prior art keywords
- layer
- coating
- magnetron sputtering
- nanometer composite
- hard coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种纳米复合硬质涂层及其制备方法,是采用电弧离子镀和磁控溅射技术复合制备,通过周期性调节工艺参数,使电弧离子镀层即高应力层和磁控溅射层即低应力层分别交替循环沉积,从而有效地调整硬质涂层内的残余应力,获得纳米复合硬质涂层。本发明结合电弧离子镀技术离化率、入射粒子能量高和磁控溅射技术膜层均匀、表面平整等优点,同时考虑到材料热膨胀系数的差异,在金属基体表面镀一层过渡层,再复合制备多层纳米复合硬质涂层,通过调节涂层内的残余应力分布,在保持涂层高硬度及耐磨性能的前提下,可以进一步提高其膜基结合力。
Description
技术领域
本发明涉及表面处理技术领域,特别涉及一种纳米复合硬质涂层及其制备方法。
背景技术
电弧离子镀(AIP)和磁控溅射技术(MS)被广泛应用于制备涂层刀具。电弧离子镀技术具有离子能量高、离化率高、膜层致密和附着力强等优点,但电弧离子镀制备的薄膜容易含有显微喷溅颗粒,影响表面的粗糙度,破坏膜的连续性;而磁控溅射沉积技术制备的薄膜表面平整、致密,无明显的孔洞和电弧沉积时的大颗粒。此外,涂层残余应力的大小及其分布情况会直接影响膜基结合强度与涂层的使用寿命,甚至在残余应力过大时还将直接导致涂层的防护作用失效。电弧离子镀制备的涂层内一般都存在平均值高达数兆帕(MPa)甚至十几GPa的残余压应力,且应力沿层深分布极其不均匀;而磁控溅射镀膜制备的涂层内应力较小或一般为拉应力。因此,采用电弧离子镀(AIP)与磁控溅射(MS)复合制备多层纳米复合硬质涂层,不仅可以有效改善电弧离子镀技术制备的薄膜表面质量,还能提高膜层的硬度、韧性及结合力等综合力学性能,是目前提高硬质薄膜性能的重要发展方向之一。
发明内容
本发明的目的在于克服现有技术中存在的缺点,提供一种硬度高、耐磨性能好、膜基结合力强的纳米复合硬质涂层。
本发明的另一目的在于提供一种上述纳米复合硬质涂层的制备方法,是采用电弧离子镀(AIP)和磁控溅射(MS)技术复合制备。
本发明的目的通过下述技术方案实现:
一种纳米复合硬质涂层的制备方法,是采用电弧离子镀和磁控溅射技术复合制备,包括下述步骤:
(1)金属基体前处理工艺:金属基体先后经过酒精、金属洗涤剂、去离子水超声波清洗5~10min,然后用干燥洁净压缩空气吹干装入真空室内,预抽本底真空至3.0~5.0×10-3Pa;
(2)镀膜前预热至100~300℃,通入40~80sccm Ar气,升压至0.3~0.5Pa,基体加占空比30%~40%和600~800V的脉冲偏压,然后开启电弧靶,调节靶电流50~70A,进行弧光清洗5~10min,清洗基体和靶材表面的杂质和氧化物;
(3)保持其他参数不变,降低基体偏压至50~200V,沉积温度100~300℃,沉积2~4min,过渡层厚度为90~180nm;
(4)调节Ar和N2气流量阀,同时通入0~5sccm Ar和40~80sccm N2,工作气压升至0.5~1.0Pa,沉积温度100~300℃,沉积10~14min,电弧离子镀(AIP)层厚度为450~630nm;
(5)关闭电弧靶,调节Ar和N2气流量阀,同时通入20~30sccm Ar和1~5sccm N2,调节工作气压至0.3~0.5Pa,开启磁控靶,调节靶源功率100~300W,沉积温度100~300℃,沉积24~60min,磁控溅射(MS)层厚度大约180~450nm;
(6)通过周期性调节工艺参数,使电弧离子镀(AIP)层即高应力层和磁控溅射(MS)层即低应力层分别交替循环沉积,从而有效地调整硬质涂层内的残余应力,获得纳米复合硬质涂层。
一种纳米复合硬质涂层,是采用上述方法制备得到,高应力层(AIP)和低应力层(MS)交替循环沉积,且每一层厚度为100~500nm,总厚度为1~3μm。
本发明与现有技术相比具有如下优点和效果:
(1)本发明结合电弧离子镀(AIP)技术离化率、入射粒子能量高和磁控溅射(MS)技术膜层均匀、表面平整等优点,同时考虑到材料热膨胀系数的差异,在金属基体表面镀一层过渡层,再复合制备多层纳米复合硬质涂层,通过调节涂层内的残余应力分布,在保持涂层高硬度及耐磨性能的前提下,可以进一步提高其膜基结合力。
(2)本发明的制备工艺简单,操作方便。
附图说明
图1为本多层纳米复合硬质涂层的结构示意图。
其中,0—过渡层(增加结合力),
1—AIP层(高应力层),
2—MS层(低应力层)。
具体实施方式
下面结合实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
实施例1
本实施例采用电弧与磁控复合制备多层纳米复合硬质涂层,同时考虑到材料热膨胀系数的差异(不锈钢:18.6×10-6,Ti涂层:10.8×10-6,TiN涂层:9.4×10-6),在316L不锈钢表面镀一层过渡层Ti(增加涂层的结合力),再交替循环沉积TiN多层纳米复合硬质涂层,如图1所示,过渡层Ti厚度约90nm,交替层TiN每一层厚度约450nm,总厚度约2.34μm。
(1)基体前处理工艺:不锈钢样品先后经过酒精、金属洗涤剂、去离子水超声波清洗5min,然后用干燥洁净压缩空气吹干装入真空室内,预抽本底真空至5.0×10-3Pa;
(2)镀膜前预热至100℃,通入80sccm Ar气,升压至0.5Pa,基体加占空比40%和800V的脉冲偏压,开启电弧纯Ti靶(99.99%),调节靶电流60A,进行弧光清洗5min,清洗基体和靶材表面的杂质和氧化物;
(3)保持其他参数不变,降低基体偏压至150V,沉积温度100℃,沉积2min,Ti过渡层厚度大约90nm;
(4)调节Ar和N2气流量阀,同时通入5sccm Ar和75sccm N2,工作气压升至1.0Pa,沉积温度100℃,沉积10min,TiN(AIP)层厚度约450nm;
(5)关闭电弧靶,调节Ar和N2气流量阀,同时通入30sccm Ar和0.4sccm N2,调节工作气压至0.4Pa,开启磁控纯Ti靶(99.99%),调节靶源功率180W,沉积温度100℃,沉积60min,TiN(MS)层厚度约450nm;
(6)通过周期性调节工艺参数,使涂层的高应力层和低应力层分别交替循环沉积3次和2次,即获得TiN多层纳米复合涂层的制备。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (2)
1.一种纳米复合硬质涂层的制备方法,其特征在于:是采用电弧离子镀和磁控溅射技术复合制备,包括下述步骤:
(1)金属基体前处理工艺:金属基体先后经过酒精、金属洗涤剂、去离子水超声波清洗5~10min,然后用干燥洁净压缩空气吹干装入真空室内,预抽本底真空至3.0~5.0×10-3Pa;
(2)镀膜前预热至100~300℃,通入40~80sccm Ar气,升压至0.3~0.5Pa,基体加占空比30%~40%和600~800V的脉冲偏压,然后开启电弧靶,调节靶电流50~70A,进行弧光清洗5~10min,清洗基体和靶材表面的杂质和氧化物;
(3)保持其他参数不变,降低基体偏压至50~200V,沉积温度100~300℃,沉积2~4min,过渡层厚度为90~180nm;
(4)调节Ar和N2气流量阀,同时通入0~5sccm Ar和40~80sccm N2,工作气压升至0.5~1.0Pa,沉积温度100~300℃,沉积10~14min,电弧离子镀层厚度为450~630nm;
(5)关闭电弧靶,调节Ar和N2气流量阀,同时通入20~30sccm Ar和1~5sccm N2,调节工作气压至0.3~0.5Pa,开启磁控靶,调节靶源功率100~300W,沉积温度100~300℃,沉积24~60min,磁控溅射层厚度大约180~450nm;
(6)通过周期性调节工艺参数,使电弧离子镀层即高应力层和磁控溅射层即低应力层分别交替循环沉积,从而有效地调整硬质涂层内的残余应力,获得纳米复合硬质涂层。
2.一种纳米复合硬质涂层,其特征在于:是采用权利要求1所述的纳米复合硬质涂层的制备方法制备得到,高应力层和低应力层交替循环沉积,且每一层厚度为100~500nm,总厚度为1~3μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610586029.1A CN106222610B (zh) | 2016-07-22 | 2016-07-22 | 一种纳米复合硬质涂层及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610586029.1A CN106222610B (zh) | 2016-07-22 | 2016-07-22 | 一种纳米复合硬质涂层及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106222610A true CN106222610A (zh) | 2016-12-14 |
CN106222610B CN106222610B (zh) | 2019-01-22 |
Family
ID=57532323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610586029.1A Active CN106222610B (zh) | 2016-07-22 | 2016-07-22 | 一种纳米复合硬质涂层及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106222610B (zh) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107022761A (zh) * | 2017-04-28 | 2017-08-08 | 星弧涂层新材料科技(苏州)股份有限公司 | 基于类金刚石薄膜的复合厚膜及其镀膜方法 |
CN107435133A (zh) * | 2017-07-27 | 2017-12-05 | 深圳职业技术学院 | 一种调节薄膜应力的方法和由此制备得到的薄膜 |
CN107675136A (zh) * | 2017-08-31 | 2018-02-09 | 苏州涂冠镀膜科技有限公司 | 一种工件表面pvd镀膜的方法 |
CN107740053A (zh) * | 2017-10-30 | 2018-02-27 | 广东工业大学 | 一种AlCrSiN/VSiN纳米多层涂层及其制备方法 |
CN108018524A (zh) * | 2017-12-04 | 2018-05-11 | 西安石油大学 | 一种低应力wb2多层硬质涂层的制备方法 |
CN108486534A (zh) * | 2018-05-03 | 2018-09-04 | 晋中经纬化纤精密制造有限公司 | 一种钽、不锈钢喷丝头纳米复合涂层结构及其制备工艺 |
WO2019037653A1 (zh) * | 2017-08-24 | 2019-02-28 | 北京北方华创微电子装备有限公司 | 一种制膜方法 |
CN110373638A (zh) * | 2019-07-12 | 2019-10-25 | 厦门金鹭特种合金有限公司 | 一种涂层硬质合金切削刀片及其制作方法 |
CN111304612A (zh) * | 2020-03-30 | 2020-06-19 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | 具有高硬度和高抗氧化性能的CrAlN/AlN纳米多层涂层及其制备方法 |
CN112553580A (zh) * | 2020-10-16 | 2021-03-26 | 广东工业大学 | 一种二硼化物复合涂层及其制备方法和应用 |
CN112708857A (zh) * | 2020-12-16 | 2021-04-27 | 中国航发北京航空材料研究院 | 具有应变容限和耐磨性的涂层结构及其制备方法 |
CN113278929A (zh) * | 2021-05-28 | 2021-08-20 | 安徽纯源镀膜科技有限公司 | 一种多层导电纳米涂层及其生产工艺 |
CN115522169A (zh) * | 2022-09-30 | 2022-12-27 | 广东工业大学 | 氧化物硬质涂层的复合沉积方法及涂层刀具 |
CN115961259A (zh) * | 2022-12-09 | 2023-04-14 | 中国科学院宁波材料技术与工程研究所 | 一种强韧耐蚀max相多层复合涂层及其制备方法与应用 |
CN118308699A (zh) * | 2024-04-09 | 2024-07-09 | 华南理工大学 | 一种超低应力金属薄膜的制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2233931Y (zh) * | 1995-11-22 | 1996-08-28 | 王福贞 | 旋转磁控柱状多弧源-平面磁控溅射源离子镀膜机 |
JPH10273775A (ja) * | 1997-03-31 | 1998-10-13 | Nippon Paakaaraijingu Hiroshima Kojo:Kk | 耐摩耗性表面処理AlないしAl系金属とその製造法 |
CN101602272A (zh) * | 2009-06-15 | 2009-12-16 | 中国兵器工业第五二研究所 | TiAlN-TiBN多层厚膜及其制备方法 |
CN102517546A (zh) * | 2011-12-30 | 2012-06-27 | 山推工程机械股份有限公司 | 一种耐磨刀具的加工方法 |
CN103920185A (zh) * | 2014-04-25 | 2014-07-16 | 湛江师范学院 | 一种Mo金属掺杂复合类金刚石涂层钛合金人工骨关节及其制备方法 |
CN104711515A (zh) * | 2015-04-01 | 2015-06-17 | 航天精工股份有限公司 | 一种Cr-CrN纳米复合金属陶瓷涂层及其制备方法和设备 |
-
2016
- 2016-07-22 CN CN201610586029.1A patent/CN106222610B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2233931Y (zh) * | 1995-11-22 | 1996-08-28 | 王福贞 | 旋转磁控柱状多弧源-平面磁控溅射源离子镀膜机 |
JPH10273775A (ja) * | 1997-03-31 | 1998-10-13 | Nippon Paakaaraijingu Hiroshima Kojo:Kk | 耐摩耗性表面処理AlないしAl系金属とその製造法 |
CN101602272A (zh) * | 2009-06-15 | 2009-12-16 | 中国兵器工业第五二研究所 | TiAlN-TiBN多层厚膜及其制备方法 |
CN102517546A (zh) * | 2011-12-30 | 2012-06-27 | 山推工程机械股份有限公司 | 一种耐磨刀具的加工方法 |
CN103920185A (zh) * | 2014-04-25 | 2014-07-16 | 湛江师范学院 | 一种Mo金属掺杂复合类金刚石涂层钛合金人工骨关节及其制备方法 |
CN104711515A (zh) * | 2015-04-01 | 2015-06-17 | 航天精工股份有限公司 | 一种Cr-CrN纳米复合金属陶瓷涂层及其制备方法和设备 |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107022761A (zh) * | 2017-04-28 | 2017-08-08 | 星弧涂层新材料科技(苏州)股份有限公司 | 基于类金刚石薄膜的复合厚膜及其镀膜方法 |
CN107435133A (zh) * | 2017-07-27 | 2017-12-05 | 深圳职业技术学院 | 一种调节薄膜应力的方法和由此制备得到的薄膜 |
WO2019037653A1 (zh) * | 2017-08-24 | 2019-02-28 | 北京北方华创微电子装备有限公司 | 一种制膜方法 |
CN107675136A (zh) * | 2017-08-31 | 2018-02-09 | 苏州涂冠镀膜科技有限公司 | 一种工件表面pvd镀膜的方法 |
CN107740053A (zh) * | 2017-10-30 | 2018-02-27 | 广东工业大学 | 一种AlCrSiN/VSiN纳米多层涂层及其制备方法 |
CN108018524A (zh) * | 2017-12-04 | 2018-05-11 | 西安石油大学 | 一种低应力wb2多层硬质涂层的制备方法 |
CN108018524B (zh) * | 2017-12-04 | 2019-07-23 | 西安石油大学 | 一种低应力wb2多层硬质涂层的制备方法 |
CN108486534A (zh) * | 2018-05-03 | 2018-09-04 | 晋中经纬化纤精密制造有限公司 | 一种钽、不锈钢喷丝头纳米复合涂层结构及其制备工艺 |
CN110373638A (zh) * | 2019-07-12 | 2019-10-25 | 厦门金鹭特种合金有限公司 | 一种涂层硬质合金切削刀片及其制作方法 |
CN111304612A (zh) * | 2020-03-30 | 2020-06-19 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | 具有高硬度和高抗氧化性能的CrAlN/AlN纳米多层涂层及其制备方法 |
CN112553580A (zh) * | 2020-10-16 | 2021-03-26 | 广东工业大学 | 一种二硼化物复合涂层及其制备方法和应用 |
CN112708857A (zh) * | 2020-12-16 | 2021-04-27 | 中国航发北京航空材料研究院 | 具有应变容限和耐磨性的涂层结构及其制备方法 |
CN113278929A (zh) * | 2021-05-28 | 2021-08-20 | 安徽纯源镀膜科技有限公司 | 一种多层导电纳米涂层及其生产工艺 |
CN115522169A (zh) * | 2022-09-30 | 2022-12-27 | 广东工业大学 | 氧化物硬质涂层的复合沉积方法及涂层刀具 |
WO2024065970A1 (zh) * | 2022-09-30 | 2024-04-04 | 广东工业大学 | 氧化物硬质涂层的复合沉积方法及涂层刀具 |
CN115961259A (zh) * | 2022-12-09 | 2023-04-14 | 中国科学院宁波材料技术与工程研究所 | 一种强韧耐蚀max相多层复合涂层及其制备方法与应用 |
CN115961259B (zh) * | 2022-12-09 | 2024-05-03 | 中国科学院宁波材料技术与工程研究所 | 一种强韧耐蚀max相多层复合涂层及其制备方法与应用 |
CN118308699A (zh) * | 2024-04-09 | 2024-07-09 | 华南理工大学 | 一种超低应力金属薄膜的制备方法 |
CN118308699B (zh) * | 2024-04-09 | 2024-09-06 | 华南理工大学 | 一种超低应力金属薄膜的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106222610B (zh) | 2019-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106222610B (zh) | 一种纳米复合硬质涂层及其制备方法 | |
CN107022761A (zh) | 基于类金刚石薄膜的复合厚膜及其镀膜方法 | |
CN104630708A (zh) | 一种类金刚石厚膜及其制备方法及一种工件 | |
CN101712215B (zh) | 一种TiCN系列纳米梯度复合多层涂层的制备方法 | |
CN107022745A (zh) | 基于类金刚石薄膜的增厚型复合薄膜及其镀膜方法 | |
CN103273687A (zh) | TiSiN+ZrSiN复合纳米涂层刀具及其制备方法 | |
CN107338409B (zh) | 可调控磁场电弧离子镀制备氮基硬质涂层的工艺方法 | |
CN103522627A (zh) | 一种阀门密封件表面的复合涂层及其制备方法 | |
CN103374697A (zh) | 类金刚石膜层的表面处理方法及制品 | |
CN105990081A (zh) | 等离子体处理装置及其制作方法 | |
CN109609905A (zh) | 一种高硬度抗冲蚀耐磨复合涂层、制备方法及应用 | |
CN101294284A (zh) | 一种耐冲蚀抗疲劳等离子表面复合强化方法 | |
CN108251800A (zh) | 一种Cu-Al梯度薄膜材料及其制备方法 | |
CN108866481B (zh) | 一种纳米复合Al-Ti-V-Cu-N涂层及其制备方法和应用 | |
CN112941463B (zh) | 一种纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用 | |
CN108930021B (zh) | 一种纳米多层AlTiN/AlTiVCuN涂层及其制备方法和应用 | |
CN112359319B (zh) | 一种双周期耐磨抗菌和高韧性复合薄膜的制备方法 | |
CN108823544A (zh) | 基于氮化钛复合膜及其制备方法 | |
CN102588175A (zh) | 一种新型喷油泵控制阀套及其表面处理方法 | |
CN108359953A (zh) | 一种Cu-Ni梯度薄膜材料及其制备方法 | |
CN203697597U (zh) | 一种阀门密封件表面的复合涂层 | |
CN108018524A (zh) | 一种低应力wb2多层硬质涂层的制备方法 | |
CN107675136A (zh) | 一种工件表面pvd镀膜的方法 | |
CN102277556A (zh) | 一种纳米复合超硬薄膜的制备方法 | |
CN102345094A (zh) | 涂层、具有该涂层的被覆件及该被覆件的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |