CN111534806A - 一种硬质涂层及其制备方法与应用 - Google Patents

一种硬质涂层及其制备方法与应用 Download PDF

Info

Publication number
CN111534806A
CN111534806A CN202010613410.9A CN202010613410A CN111534806A CN 111534806 A CN111534806 A CN 111534806A CN 202010613410 A CN202010613410 A CN 202010613410A CN 111534806 A CN111534806 A CN 111534806A
Authority
CN
China
Prior art keywords
coating
metal
magnetron sputtering
hard coating
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010613410.9A
Other languages
English (en)
Inventor
吴忠振
刘亮亮
崔岁寒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University Shenzhen Graduate School
Original Assignee
Peking University Shenzhen Graduate School
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University Shenzhen Graduate School filed Critical Peking University Shenzhen Graduate School
Priority to CN202010613410.9A priority Critical patent/CN111534806A/zh
Publication of CN111534806A publication Critical patent/CN111534806A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/067Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0682Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开一种硬质涂层及其制备方法与应用。所述硬质涂层的制备技术为持续高功率磁控溅射技术;其中,平均功率密度>80W/cm2。本发明所述的镀膜技术为新型磁控溅射技术,具有高功率、高离化、高速沉积的特点。制备的涂层力学性能和沉积速率可以达到电弧离子镀水平,但离子束流中不含金属液滴,可有效降低涂层表面粗糙度,提高涂层致密度,进而大幅度提高其抗腐蚀和耐高温氧化性能。所述新型磁控溅射技术可以在基底表面制备多种二元或多元金属氮化物、氧化物、碳化物、硅化物以及硼化物等硬质涂层,具有广阔的应用价值。

Description

一种硬质涂层及其制备方法与应用
技术领域
本发明涉及真空涂层技术领域,尤其涉及一种硬质涂层及其制备方法与应用。
背景技术
精密模具、刀具具有广阔的应用市场,其表面一般附有硬质涂层以提高其使用寿命,但因其应用领域对尺寸精度要求高,故对其涂层表面粗糙度要求较高。此外,随着切削技术的发展,刀、模具的应用环境也发生着明显变化,其对耐腐蚀、耐高温的要求也逐渐提高,故硬质涂层也需要进一步提高致密度和涂层厚度,阻断腐蚀和氧化通道,并提高生产效率。
常规的硬质涂层制备技术是物理气相沉积(PVD)技术,根据辉光放电和弧光放电原理,分为磁控溅射技术和电弧离子镀,尤其是后者由于产生等离子体离化率高,配合偏压提高沉积离子能量,制备的硬质涂层力学性能远高于磁控溅射,故已被广泛应用,开发了TiN(C)、TiC、CrN(C)、TiAlN(C)、CrAlN(C)、TiSiN(C)、TiAlSiN、CrAlSiN、TiAlSiYN等数十种硬质涂层。然而,电弧放电区的高温会使来不及气化的金属液滴产生喷溅,沉积到涂层表面形成微米尺寸的“金属颗粒”,导致涂层表面粗糙度的增加,无法适应精密工件尺寸需求,同时涂层致密度明显下降,孔洞等宏观缺陷增加,影响力学性能和耐高温、腐蚀性能。1999年,高功率脉冲磁控溅射技术的提出使磁控溅射技术也实现了高比例离化,配合偏压后涂层力学性能得以明显提高,并达到甚至超越电弧离子镀涂层水平,但由于其不存在金属液滴喷溅,涂层表面粗糙度和致密度大大提高。但是由于其工作范围仍接近电弧放电区间,较高的峰值功率仍可能使放电出现“打弧”现象,且高于靶面高电位对金属离子的回吸现象,涂层沉积效率极低,不能满足生产需求。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种硬质涂层及其制备方法与应用,旨在解决现有采用高功率脉冲磁控溅射技术,其涂层沉积效率极低的问题。
本发明的技术方案如下:
一种硬质涂层的制备方法,其中,采用持续高功率磁控溅射技术制备得到涂层;其中,平均功率密度>80W/cm2
可选地,所述的制备方法在真空镀膜系统中完成,具体包括:
步骤A、对基底进行等离子体清洗;
步骤B、在惰性气氛下,采用持续高功率磁控溅射技术对金属靶材进行辉光放电,在所述基底上沉积得到金属过渡层;
步骤C、向系统中通入反应性气体,在所述金属过渡层上沉积金属化合物涂层。
可选地,所述步骤A包括:
将系统抽至低于10-3Pa的压力,然后通入惰性气体,使系统获得0.1-2Pa的工作压力,通过等离子体放电产生等离子体对基底进行清洗刻蚀10-60min。
可选地,所述步骤B包括:
系统工作气压为0.1-2Pa,开启高功率磁控溅射电源对金属靶材进行辉光放电,并调整偏压对沉积离子进行加速,所述偏压为0.3-10kV,根据金属过渡层厚度调整沉积时间直至沉积完毕。
可选地,所述步骤C包括:
向系统中通入反应性气体,并降低偏压对金属化合物进行沉积,所述偏压为0.05-1kV,根据金属化合物涂层厚度调整沉积时间直至沉积完毕。
可选地,所述涂层材料为金属氮化物、金属氧化物、金属碳化物、金属硅化物、金属硼化物中的一种。
可选地,所述金属靶材选自Cr、Ti、Al、B、Y、Ta、Ni、V、Mo、Cu、Zn、Mg、Zr、C、Si中的任一金属材料或中的任两种以上金属材料组成的金属合金。
可选地,所述反应性气体选自氮气、氧气、乙炔、甲烷、硅烷、硼烷中的一种。
一种硬质涂层,其中,采用本发明所述的硬质涂层的制备方法制备得到。
一种本发明所述的硬质涂层在精密模具、刀具中的应用。
有益效果:本发明提供了一种硬质涂层的制备方法,所述硬质涂层制备方法为持续高功率磁控溅射技术,其具有沉积离子离化率高、沉积效率高的特点,其制备的硬质涂层力学性能达到甚至超过电弧离子镀制备硬质涂层,但表面粗糙度和涂层致密度远好于电弧离子镀技术,从而使得硬质涂层可以满足对尺寸精度要求更高的精密刀、模具领域,同时较高的涂层致密度还可以在腐蚀、高温环境中阻断腐蚀或氧化通道,提高这种特殊环境下的使用寿命。
附图说明
图1是实施例1中制备的TiAlN涂层的截面SEM图。
图2是实施例1中制备的TiAlN涂层的正面SEM图。
图3是实施例1中制备的TiAlN涂层的表面粗糙度。
图4是实施例1中制备的TiAlN涂层的硬度。
具体实施方式
本发明提供一种硬质涂层及其制备方法与应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种硬质涂层的制备方法,其中,采用持续高功率磁控溅射技术制备得到涂层;其中,平均功率密度>80W/cm2
本发明实施例提出一种新型的磁控溅射技术制备涂层,该新型磁控溅射技术为持续高功率磁控溅射技术,是一种高强度辉光放电技术。综合了磁控溅射表面光滑、无颗粒缺陷和电弧离子镀金属离化率高、膜基结合力强、力学性能好的优点,可在控制涂层微结构的同时获得优异的膜基结合力,在降低涂层内应力及提高涂层致密性、均匀性等方面具有显著的技术优势,能够满足沉积涂层在众多苛刻且复杂服役条件下长期稳定工作的性能要求。
本发明实施例采用新型的磁控溅射技术制备涂层,其具有沉积速率快、高离化、高功率的特点、且获得的涂层具有低表面粗糙度、高致密度的特点。与现有普遍采用的高功率脉冲磁控溅射技术不同,本发明实施例持续高功率磁控溅射技术的平均功率密度远高于高功率脉冲磁控溅射技术,其工作平均功率密度>80W/cm2,占空比不低于30%,远高于高功率脉冲磁控溅射的占空比(5%以下),其放电靶材可以选自Cr、Ti、Al、B、Y、Ta、Ni、V、Mo、Cu、Zn、Mg、Zr、C、Si等中的任一金属材料或中的任两种以上金属材料组成的金属合金,其放电时金属材料离化率与沉积速率根据材料不同而不同,一般分别>50%和>50nm/min。
在一种实施方式中,所述磁控溅射技术可以使用直流放电、脉冲放电、射频放电、中频放电等工作模式,可以是单极放电、双极放电。进一步地,在使用脉冲放电时,占空比不低于30%,远高于高功率脉冲脉冲磁控溅射的5%。
在一种实施方式中,所述的硬质涂层的制备方法,在真空镀膜系统中完成,具体包括:
步骤A、对基底进行等离子体清洗;
步骤B、在惰性气氛下,采用持续高功率磁控溅射技术对金属靶材进行辉光放电,在所述基底上沉积得到金属过渡层;
步骤C、向系统中通入反应性气体,在所述金属过渡层上沉积金属化合物涂层。
在一种实施方式中,所述步骤A包括:
将系统抽至低于10-3Pa的压力,然后通入惰性气体,使系统获得0.1-2Pa的工作压力,通过等离子体放电产生等离子体对基底进行清洗刻蚀10-60min。
在一种实施方式中,所述步骤B包括:
系统工作气压为0.1-2Pa,开启高功率磁控溅射电源对金属靶材进行辉光放电,并调整偏压对沉积离子进行加速,所述偏压可以是直流偏压、脉冲偏压、射频偏压等模式,其幅值为0.3-10kV(如1kV),根据金属过渡层厚度调整沉积时间直至金属过渡层沉积完毕,沉积所述金属过渡层可以使最终获得的涂层具有较高的结合力。在一种实施方式中,所述沉积的时间为2-10min。
在一种实施方式中,所述步骤C包括:
向系统中通入反应性气体,并降低偏压对金属化合物进行沉积,所述偏压可以是直流偏压、脉冲偏压、射频偏压等模式,其幅值为0.05-1kV,根据金属化合物涂层厚度调整沉积时间直至金属化合物涂层沉积完毕。在一种实施方式中,为了降低内应力,提高金属化合物涂层与基底的结合力,偏压降低到100V。
在一种实施方式中,所述反应性气体选自氮气、氧气、乙炔、甲烷、硅烷、硼烷等中的一种。对应的,最终溅射得到的所述涂层材料为由金属靶材或金属合金靶材和反应性气体中活性元素组合而成的二元或多元金属氮化物、二元或多元金属氧化物、二元或多元金属碳化物、二元或多元金属硅化物、二元或多元金属硼化物等中的一种。
本发明实施例提供一种硬质涂层,其中,采用本发明实施例所述的硬质涂层的制备方法制备得到。
本发明实施例提供一种如上所述的硬质涂层在精密模具、刀具中的应用。
本发明实施例所述涂层表面粗糙度<100nm,具有致密度高、孔洞等宏观缺陷少的特点,可应用于精密模具、刀具等高尺寸精度领域,并能进一步提高涂层使用寿命。
下面通过具体的实施例对本发明作详细说明。
实施例:TiAlN涂层制备
先在真空室内装上纯度高于99.9%的TiAl靶材,将真空室抽至低于10-4Pa的压力,然后通入惰性气体,使真空室获得0.1-2Pa的工作压力,通过等离子体放电产生等离子体对基体工件进行清洗刻蚀30min。随后采用持续高功率磁控溅射在平均功率密度140W/cm2情况下对TiAl靶材进行高强度辉光放电,并调整偏压对沉积离子进行加速,偏压为直流偏压,其幅值为1kV,调整沉积时间为3min。然后降低直流偏压至100V制备TiAlN层。随后通入氮气和惰性气体体积比例为1:5的混合气体进行反应溅射,整个涂层沉积时间为20min,即可完成厚度均一、高硬度的TiAlN硬质涂层的制备。
对实施例制备的TiAlN涂层进行表征测试,如图1截面SEM结果所示,获得的TiAlN涂层厚度约为9μm,具有明显的细化的致密结构,可计算出沉积速率高达450nm/min,这可归于电离速率和离子轰击效应的增加。图2中正面SEM形貌可以看出涂层表面呈现出更致密和波纹状的形貌,这主要是由持续高功率磁控溅射技术产生的高离子能量离子轰击和大电离速率引起的沉积造成的。由于晶体结构的致密化,涂层表面的高度差和表面粗糙度(Ra)分别为1.2μm和22.4nm,如图3中的3D共聚焦显微照片所示。对该涂层进行硬度测试,结果展示该技术制备的TiAlN涂层硬度可高达33.2GPa,可与目前常用的AIP方法相媲美,如图4所示。
综上所述,本发明提供了一种适用于精密模具的持续高功率磁控溅射技术。该技术溅射产生的离子沉积速率明显优于传统磁控溅射技术该技术,制备的硬质涂层具有优异的性能,表现出高硬度,低表面粗糙度,低残余应力,同时具有杰出的耐磨和耐腐蚀性能。对实现制备高质量高标准精密模具具有广阔的应用价值。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

1.一种硬质涂层的制备方法,其特征在于,采用持续高功率磁控溅射技术制备得到涂层;其中,平均功率密度>80W/cm2
2.根据权利要求1所述的硬质涂层的制备方法,其特征在于,所述的制备方法在真空镀膜系统中完成,具体包括:
步骤A、对基底进行等离子体清洗;
步骤B、在惰性气氛下,采用持续高功率磁控溅射技术对金属靶材进行辉光放电,在所述基底上沉积得到金属过渡层;
步骤C、向系统中通入反应性气体,在所述金属过渡层上沉积金属化合物涂层。
3.根据权利要求2所述的硬质涂层的制备方法,其特征在于,所述步骤A包括:
将系统抽至低于10-3Pa的压力,然后通入惰性气体,使系统获得0.1-2Pa的工作压力,通过等离子体放电产生等离子体对基底进行清洗刻蚀10-60min。
4.根据权利要求2所述的硬质涂层的制备方法,其特征在于,所述步骤B包括:
系统工作气压为0.1-2Pa,开启高功率磁控溅射电源对金属靶材进行辉光放电,并调整偏压对沉积离子进行加速,所述偏压为0.3-10kV,根据金属过渡层厚度调整沉积时间直至沉积完毕。
5.根据权利要求2所述的硬质涂层的制备方法,其特征在于,所述步骤C包括:
向系统中通入反应性气体,并降低偏压对金属化合物进行沉积,所述偏压为0.05-1kV,根据金属化合物涂层厚度调整沉积时间直至沉积完毕。
6.根据权利要求1所述的硬质涂层的制备方法,其特征在于,所述涂层材料为金属氮化物、金属氧化物、金属碳化物、金属硅化物、金属硼化物中的一种。
7.根据权利要求2所述的硬质涂层的制备方法,其特征在于,所述金属靶材选自Cr、Ti、Al、B、Y、Ta、Ni、V、Mo、Cu、Zn、Mg、Zr、C、Si中的任一金属材料或中的任两种以上金属材料组成的金属合金。
8.根据权利要求2所述的硬质涂层的制备方法,其特征在于,所述反应性气体选自氮气、氧气、乙炔、甲烷、硅烷、硼烷中的一种。
9.一种硬质涂层,其特征在于,采用权利要求1-8任一项所述的硬质涂层的制备方法制备得到。
10.一种权利要求9所述的硬质涂层在精密模具、刀具中的应用。
CN202010613410.9A 2020-06-30 2020-06-30 一种硬质涂层及其制备方法与应用 Pending CN111534806A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010613410.9A CN111534806A (zh) 2020-06-30 2020-06-30 一种硬质涂层及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010613410.9A CN111534806A (zh) 2020-06-30 2020-06-30 一种硬质涂层及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN111534806A true CN111534806A (zh) 2020-08-14

Family

ID=71979733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010613410.9A Pending CN111534806A (zh) 2020-06-30 2020-06-30 一种硬质涂层及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN111534806A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086115A (zh) * 2021-10-27 2022-02-25 北京大学深圳研究生院 一种超硬TiC涂层及其制备方法
CN114921754A (zh) * 2022-05-30 2022-08-19 东北大学 切削刀具用高导热耐磨高熵涂层及其制备方法
CN115124374A (zh) * 2022-06-15 2022-09-30 深圳元点真空装备有限公司 一种sbc陶瓷表面覆厚金属层技术及其陶瓷封装基板
CN115261790A (zh) * 2022-08-15 2022-11-01 成都师范学院 一种高光热性能的纳米结构氮化钛涂层及制备方法
WO2024065970A1 (zh) * 2022-09-30 2024-04-04 广东工业大学 氧化物硬质涂层的复合沉积方法及涂层刀具

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040020760A1 (en) * 2000-06-19 2004-02-05 Vladimir Kouznetsov Pulsed highly ionized magnetron sputtering
US20090111216A1 (en) * 2007-10-26 2009-04-30 Oc Oerlikon Balzers Ag Application of hipims to through silicon via metallization in three-dimensional wafer packaging
CN102254778A (zh) * 2010-02-09 2011-11-23 大连理工大学 一种实现高脉冲功率磁控放电方法
CN109811326A (zh) * 2019-01-17 2019-05-28 上海大学 利用hipims方法结合镀膜智能监控加气系统制备化合物薄膜材料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040020760A1 (en) * 2000-06-19 2004-02-05 Vladimir Kouznetsov Pulsed highly ionized magnetron sputtering
US20090111216A1 (en) * 2007-10-26 2009-04-30 Oc Oerlikon Balzers Ag Application of hipims to through silicon via metallization in three-dimensional wafer packaging
CN102254778A (zh) * 2010-02-09 2011-11-23 大连理工大学 一种实现高脉冲功率磁控放电方法
CN109811326A (zh) * 2019-01-17 2019-05-28 上海大学 利用hipims方法结合镀膜智能监控加气系统制备化合物薄膜材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIANGLIANG LIU, ET AL.: ""Comparative study of TiAlN coatings deposited by different high-ionization physical vapor deposition techniques"", 《CERAMICS INTERNATIONAL》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086115A (zh) * 2021-10-27 2022-02-25 北京大学深圳研究生院 一种超硬TiC涂层及其制备方法
CN114921754A (zh) * 2022-05-30 2022-08-19 东北大学 切削刀具用高导热耐磨高熵涂层及其制备方法
CN115124374A (zh) * 2022-06-15 2022-09-30 深圳元点真空装备有限公司 一种sbc陶瓷表面覆厚金属层技术及其陶瓷封装基板
CN115261790A (zh) * 2022-08-15 2022-11-01 成都师范学院 一种高光热性能的纳米结构氮化钛涂层及制备方法
WO2024065970A1 (zh) * 2022-09-30 2024-04-04 广东工业大学 氧化物硬质涂层的复合沉积方法及涂层刀具

Similar Documents

Publication Publication Date Title
CN111534806A (zh) 一种硬质涂层及其制备方法与应用
CN109338300B (zh) 一种高熵合金氮化物涂层的高硬度材料及其制备方法
CN111270203B (zh) 一种用于压铸模具的AlCrNbSiTiCN高熵合金纳米复合涂层及其制备方法
CN102534493B (zh) 一种纳米复合结构的V-Al-N硬质涂层及其制备方法
CN107058948B (zh) 一种软硬复合涂层刀具及其制备方法
CN111748789A (zh) 一种石墨阴极弧增强辉光放电沉积纯dlc的装置及其方法
CN111321381B (zh) 一种硬质合金刀片的AlCrNbSiTiBN基纳米复合涂层及其制备方法
CN111560582A (zh) 一种在合金刀具上制作超硬高熵合金氮化物涂层的方法
CN102534514A (zh) 一种多弧离子镀镀膜的方法
CN114632909A (zh) 一种压铸模具表面离子注入制备碳氧氮涂层的方法
CN112689688B (zh) 一种钛合金和高温合金加工用的涂层刀具及其制备方法
CN111005026B (zh) 一种碳纤维基复合材料及其制备方法
CN115627445B (zh) 一种铝压铸模具抗黏附高熵硼化物复合涂层及其制备方法
CN106835036A (zh) 一种调制高功率脉冲磁控溅射制备AlCrN涂层的方法
CN113151797B (zh) 一种基于硬质合金表面镀ta-C膜的离子清洗工艺
CN112095080B (zh) 压铸铝切边模具用超硬纳米复合涂层及其制备方法
CN113774347A (zh) 一种超硬且韧纳米复合涂层、制备方法及使用设备
CN111014616B (zh) HfZrWMoVNbN/CrSiN高熵合金纳米复合涂层压铸铝模具及其制备方法
CN114632910A (zh) 一种压铸铝模具表面的纳米复合多元碳氧化物涂层的制备方法
CN112962059A (zh) 一种CrAlTiSiCN纳米复合涂层及其制备方法
CN114481067B (zh) 一种超纯、超厚、致密铝膜的制备方法
CN112176298A (zh) 一种高耐磨化合物涂层及其制备方法
JP2006117997A (ja) 金属粉末の高速プレス成形加工で潤滑性非晶質炭素系被膜がすぐれた耐摩耗性を発揮する表面被覆超硬合金製金型
CN112626468B (zh) 搅拌摩擦焊头用超硬自润滑纳米复合涂层及制备方法
CN112111717A (zh) 轴瓦复合涂层加工方法及基于pvd技术的轴瓦复合涂层

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200814