CN110643951B - 一种抗高温氧化的铝铬硅氮与氧化铝多层复合涂层及其制备方法 - Google Patents

一种抗高温氧化的铝铬硅氮与氧化铝多层复合涂层及其制备方法 Download PDF

Info

Publication number
CN110643951B
CN110643951B CN201910973806.1A CN201910973806A CN110643951B CN 110643951 B CN110643951 B CN 110643951B CN 201910973806 A CN201910973806 A CN 201910973806A CN 110643951 B CN110643951 B CN 110643951B
Authority
CN
China
Prior art keywords
substrate
layer
coating
arc
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910973806.1A
Other languages
English (en)
Other versions
CN110643951A (zh
Inventor
鲜广
赵海波
鲜丽君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201910973806.1A priority Critical patent/CN110643951B/zh
Publication of CN110643951A publication Critical patent/CN110643951A/zh
Application granted granted Critical
Publication of CN110643951B publication Critical patent/CN110643951B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公布的抗高温氧化的铝铬硅氮与氧化铝多层复合涂层是由CrAlTiZrY高熵合金粘结层、α‑Cr2O3氧化物模板层、α‑Al2O3氧化物核心层、AlCrSiN氮化物表层四个子层构成的整体,这四个子层的顺序是由内至外,涂层总厚度为1~3μm。其制备方法为:对基底进行加热和离子刻蚀后,先利用电弧蒸发镀工艺在基底上沉积CrAlTiZrY层;然后,使用阴极电弧离子镀工艺,再继续依次沉积α‑Cr2O3层、α‑Al2O3层和AlCrSiN层。由于各子涂层的抗氧化协同作用,铝铬硅氮与氧化铝多层复合涂层的抗高温氧化性能被进一步提高,并且涂层的耐磨性能好,制备工艺简单,易于实施,适合工业化生产与应用。

Description

一种抗高温氧化的铝铬硅氮与氧化铝多层复合涂层及其制备 方法
技术领域
本发明属于切削刀具表面涂层技术领域,具体涉及一种抗高温氧化的铝铬硅氮与氧化铝多层复合涂层及其制备方法。
背景技术
随着切削加工技术的发展进步和切削加工要求的提高,切削刀具包括其表面上的涂层材料面临挑战。以干切屑、高速切削为代表的新切削技术的特点是,切削区域温度升高,刀具切削部位承受的温度相应提高,因此涂层刀具除了表面磨损失效之外,涂层也时常发生氧化失效。氮化物硬质涂层是切削刀具表面上广泛使用的涂层材料,氮化物涂层在高温条件下易与空气中的氧气作用,氮化物转变成氧化物,晶格膨胀,很容易剥落。因此,氮化物硬质涂层在干切屑、高速切削条件下的应用面临难题。氧化物涂层的优势是涂层本身是氧化物,不存在涂层氧化的问题或者涂层自身就是抗氧化的,这类涂层更适宜于刀具在高温条件下工作。α-Al2O3由于结构致密、化学稳定性好、热稳定性好以及具有较高的硬度和韧性,是高温条件下切削加工的理想刀具表面涂层材料。
物理气相沉积法是制备刀具涂层材料的重要方法,该法沉积温度低,适用于多种基底材料的表面涂层处理。但是,由于物理气相沉积法的沉积温度低,导致该方法沉积α-Al2O3的能量不足,物理气相沉积法制备的Al2O3涂层通常为非晶态或其它晶形结构,难以获得理想的使用效果。另外,Al2O3涂层硬度较氮化物涂层低,单一的Al2O3涂层抗磨损性能不足,具有复杂结构的涂层体系是今后涂层的重要发展方向。
发明内容
本发明的目的是克服现有技术存在的问题,提供一种抗高温氧化的铝铬硅氮与氧化铝多层复合涂层。
本发明的另一目的是提供一种上述抗高温氧化的铝铬硅氮与氧化铝多层复合涂层的制备方法。
本发明提供的抗高温氧化的铝铬硅氮与氧化铝多层复合涂层,其特征在于,涂层是由高熵合金粘结层、氧化物模板层、氧化物核心层、氮化物表层四个子层构成的整体,这四个子层的顺序是由内至外,涂层总厚度为1~3μm。
其中,上述涂层中,所述高熵合金粘结层为CraAlbTicZrdYe,a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,厚度为50~200nm。
其中,上述涂层中,所述氧化物模板层为α-Cr2O3,厚度为150~300nm;所述氧化物核心层为α-Al2O3,厚度为500~2000nm;所述氮化物表层为AlCrSiN,厚度为300~500nm。
本发明提供的上述抗高温氧化的铝铬硅氮与氧化铝多层复合涂层的制备方法,包括以下步骤:
A、将清洁的基底材料装入涂层设备真空室中,抽真空并加热;
B、对基底表面进行离子刻蚀;
C、利用电弧蒸镀工艺制备高熵合金粘结层;
D、利用阴极电弧镀膜工艺制备氧化物模板层;
E、利用阴极电弧镀膜工艺制备氧化物核心层;
F、利用阴极电弧镀膜工艺制备氮化物表层。
其中,上述方法步骤A中,所述抽真空并加热是先将背底真空抽至0.03Pa及以下时,打开炉壁的辅助加热装置对基底进行加热,同时打开机架转动电源使基底在真空室内进行自转和公转运动,至基底温度达到380℃。
其中,上述方法步骤B中,所述离子刻蚀是向真空室中通入氩气,调节氩气流量保证压强为0.1~0.25Pa,然后对基底施加-100~-200V的直流偏压和-200~-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀30~90min。
其中,上述方法步骤C中,所述电弧蒸镀工艺制备高熵合金粘结的工作压强为0.1~0.2Pa,蒸镀坩埚上通过的电弧电流为180~220A,蒸镀坩埚内放置的材料为CraAlbTicZrdYe高熵合金, a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,蒸镀时间为5~10min。
其中,上述方法步骤D中,所述阴极电弧镀膜工艺制备氧化物模板层的工作气体为Ar+O2,工作压强为1.5~3.5Pa,工作靶材为Cr电弧靶,靶电流为50~100A,基底施加的偏压为-30~-80V,沉积时间10~20min。
其中,上述方法步骤E中,所述阴极电弧镀膜工艺制备氧化物核心层的工作气体为Ar+O2,工作压强为1.0~3.0Pa,工作靶材为Al电弧靶,靶电流为80~120A,基底施加的偏压为-30~-80V,沉积时间40~150min。
其中,上述方法步骤F中,所述阴极电弧镀膜工艺制备氮化物表层的工作气体为N2,工作压强为1.5~3.5Pa,工作靶材为AlCrSi合金电弧靶,靶电流为80~120A,基底施加的偏压为-30~-80V,沉积时间20~35min。
本发明与现有技术相比,具有如下优点:
1)本发明提供的抗高温氧化的铝铬硅氮与氧化铝多层复合涂层由功能与成分均不同的四个子层构成,首先,高熵合金粘结层相比于传统的Cr、Ti纯金属粘结层及TiAl合金粘结层而言,具有更高的强韧性,能在刀具基底材料与表面涂层材料之间起到很好的粘结作用,使涂层与基底结合稳固;其次,使用的α-Cr2O3氧化物模板层有利于Al2O3按照α-Cr2O3的晶体结构结构外延生长,解决了物理气相沉积法由于温度低制备α-Al2O3困难的问题;再次,α-Al2O3氧化物核心层与AlCrSiN氮化物表层相结合,避免了单纯氧化物涂层硬度低、耐磨性不足的问题和单纯氮化物涂层抗高温氧化性能低的问题。
2)本发明提供的抗高温氧化的铝铬硅氮与氧化铝多层复合涂层的制备方法是一种以阴极电弧沉积为主、蒸发镀工艺制备粘结层为辅的组合式离子镀工艺。镀膜前通过加热使基底材料中吸附的杂质释放,同时采用离化的Ar+对基底表面进行轰击刻蚀,增强了涂层与基底的结合;采用电弧蒸镀工艺蒸发高熵合金材料,在基底上沉积高熵合金粘结层,进一步地增强涂层与基底的结合能力,电弧蒸发镀制备粘结层的优势是,沉积速率快,蒸发原料的尺寸、形状几乎不受限制,称重后装入蒸发坩埚内即可,而采用阴极电弧离子镀沉积粘结层,则需要将蒸发原料制成具有一定形状和尺寸的靶材;阴极电弧离子镀过程中的粒子离化率高且离子能量高,相比磁控溅射更容易获得α-Al2O3。在沉积涂层过程中,通过切换不同的电弧靶工作,很容易多层复合涂层的制备,操作工艺简单且易于掌握和控制。
具体实施方式
下面通过具体实施例对本发明作进一步的说明,但本发明保护的内容不局限于以下实施例。
实施例1
将清洁的金属陶瓷基底装入等离子体增强复合式离子镀膜系统的真空室中,待背底真空抽至0.02Pa时,打开炉壁的辅助加热装置对基底进行加热,同时打开转动电源使基底不停地转动,加热至基底温度达到380℃;然后向真空室中通入氩气,调节氩气流量保证压强为0.1Pa,然后对基底施加-200V的直流偏压和-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀60min;依次关闭基底偏压、调节氩气流量,保证工作压强为0.15Pa,开启蒸发镀主弧电源进行蒸发镀膜,坩埚上的主弧电流为180A,蒸发原料为Cr0.2Al0.2Ti0.2Zr0.2Y0.2块,蒸发沉积10min;关闭主弧电源,开启Cr电弧靶,靶电流设为70A,向真空室内通入氧气,调节氩气和氧气流量使工作压强为2.5Pa,对基底施加偏压-50V,沉积12min;开启Al电弧靶,靶电流设为80A,然后关闭Cr电弧靶电源,工作压强和基底偏压保持不变继续沉积120min;开启AlCrSi合金电弧靶,靶电流设为100A,然后关闭Al电弧靶电源,通入氮气、关闭氧气和氩气,调节气体流量,控制工作压强为2.0Pa,基底偏压继续保持不变,沉积30min结束。制备的抗高温氧化的铝铬硅氮与氧化铝多层复合涂层由CrAlTiZrY高熵合金粘结层、α-Cr2O3氧化物模板层、α-Al2O3氧化物核心层和AlCrSiN氮化物表层共四个子层组成,各个子层之间以及涂层与基底结合良好,在高温条件下具有良好的抗氧化性能。
实施例2
将清洁的硬质合金基底装入等离子体增强复合式离子镀膜系统的真空室中,待背底真空抽至0.03Pa时,打开炉壁的辅助加热装置对基底进行加热,同时打开转动电源使基底不停地转动,加热至基底温度达到380℃;然后向真空室中通入氩气,调节氩气流量保证压强为0.25Pa,然后对基底施加-200V的直流偏压和-350V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀30min;依次关闭基底偏压、调节氩气流量,保证工作压强为0.2Pa,开启蒸发镀主弧电源进行蒸发镀膜,坩埚上的主弧电流为210A,蒸发原料为Cr0.2Al0.2Ti0.2Zr0.2Y0.2块,蒸发沉积6min;关闭主弧电源,开启Cr电弧靶,靶电流设为80A,向真空室内通入氧气,调节氩气和氧气流量使工作压强为3.0Pa,对基底施加偏压-80V,沉积15min;开启Al电弧靶,靶电流设为90A,然后关闭Cr电弧靶电源,调节气体流量,控制压强为2.5Pa,基底偏压保持不变继续沉积150min;开启AlCrSi合金电弧靶,靶电流设为120A,然后关闭Al电弧靶电源,通入氮气、关闭氧气和氩气,调节气体流量,控制工作压强为2.6Pa,基底偏压继续保持不变,沉积20min结束。制备的抗高温氧化的铝铬硅氮与氧化铝多层复合涂层由CrAlTiZrY高熵合金粘结层、α-Cr2O3氧化物模板层、α-Al2O3氧化物核心层和AlCrSiN氮化物表层共四个子层组成,各个子层之间以及涂层与基底结合良好,在高温条件下具有良好的抗氧化性能。
实施例3
将清洁的金属陶瓷基底装入等离子体增强复合式离子镀膜系统的真空室中,待背底真空抽至0.03Pa时,打开炉壁的辅助加热装置对基底进行加热,同时打开转动电源使基底不停地转动,加热至基底温度达到380℃;然后向真空室中通入氩气,调节氩气流量保证压强为0.15Pa,然后对基底施加-200V的直流偏压和-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀90min;依次关闭基底偏压、调节氩气流量,保证工作压强为0.1Pa,开启蒸发镀主弧电源进行蒸发镀膜,坩埚上的主弧电流为220A,蒸发原料为Cr0.2Al0.2Ti0.2Zr0.2Y0.2块,蒸发沉积5min;关闭主弧电源,开启Cr电弧靶,靶电流设为100A,向真空室内通入氧气,调节氩气和氧气流量使工作压强为3.5Pa,对基底施加偏压-30V,沉积10min;开启Al电弧靶,靶电流设为120A,然后关闭Cr电弧靶电源,调节气体流量,控制压强为3.0Pa,基底偏压调节为-40V,镀膜70min;开启AlCrSi合金电弧靶,靶电流设为100A,然后关闭Al电弧靶电源,通入氮气、关闭氧气和氩气,调节气体流量,控制工作压强为2.8Pa,基底偏压调节为-50V,沉积30min结束。制备的抗高温氧化的铝铬硅氮与氧化铝多层复合涂层由CrAlTiZrY高熵合金粘结层、α-Cr2O3氧化物模板层、α-Al2O3氧化物核心层和AlCrSiN氮化物表层共四个子层组成,各个子层之间以及涂层与基底结合良好,在高温条件下具有良好的抗氧化性能。
实施例4
将清洁的硬质合金基底装入等离子体增强复合式离子镀膜系统的真空室中,待背底真空抽至0.03Pa时,打开炉壁的辅助加热装置对基底进行加热,同时打开转动电源使基底不停地转动,加热至基底温度达到380℃;然后向真空室中通入氩气,调节氩气流量保证压强为0.18Pa,然后对基底施加-200V的直流偏压和-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀45min;依次关闭基底偏压、调节氩气流量,保证工作压强为0.18Pa,开启蒸发镀主弧电源进行蒸发镀膜,坩埚上的主弧电流为200A,蒸发原料为Cr0.4Al0.15Ti0.15Zr0.15Y0.15块,蒸发沉积10min;关闭主弧电源,开启Cr电弧靶,靶电流设为70A,向真空室内通入氧气,调节氩气和氧气流量使工作压强为1.5Pa,对基底施加偏压-80V,沉积15min;开启Al电弧靶,靶电流设为120A,然后关闭Cr电弧靶电源,调节气体流量,控制压强为3.0Pa,基底偏压保持不变继续镀膜40min;开启AlCrSi合金电弧靶,靶电流设为80A,然后关闭Al电弧靶电源,通入氮气、关闭氧气和氩气,调节气体流量,控制工作压强为1.5Pa,基底偏压继续保持不变,沉积20min结束。制备的抗高温氧化的铝铬硅氮与氧化铝多层复合涂层由CrAlTiZrY高熵合金粘结层、α-Cr2O3氧化物模板层、α-Al2O3氧化物核心层和AlCrSiN氮化物表层共四个子层组成,各个子层之间以及涂层与基底结合良好,在高温条件下具有良好的抗氧化性能。

Claims (2)

1.一种抗高温氧化的铝铬硅氮与氧化铝多层复合涂层,其特征在于,涂层是由高熵合金粘结层、氧化物模板层、氧化物核心层、氮化物表层四个子层构成的整体,这四个子层的顺序是由内至外,涂层总厚度为1~3μm;所述高熵合金粘结层为CraAlbTicZrdYe,a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,厚度为50~200nm;所述氧化物模板层为α-Cr2O3,厚度为150~300nm;所述氧化物核心层为α-Al2O3,厚度为500~2000nm;所述氮化物表层为AlCrSiN,厚度为300~500nm。
2.一种权利要求1所述的抗高温氧化的铝铬硅氮与氧化铝多层复合涂层的制备方法,其特征在于,包括以下步骤:
A、将清洁的基底材料装入涂层设备真空室中,抽真空并加热,先将背底真空抽至0.03Pa及以下时,打开炉壁的辅助加热装置对基底进行加热,同时打开机架转动电源使基底在真空室内进行自转和公转运动,至基底温度达到380℃;
B、对基底表面进行离子刻蚀,向真空室中通入氩气,调节氩气流量保证压强为0.1~0.25Pa,然后对基底施加-100~-200V的直流偏压和-200~-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀30~90min;
C、利用电弧蒸镀工艺制备高熵合金粘结层,工作压强为0.1~0.2Pa,蒸镀坩埚上通过的电弧电流为180~220A,蒸镀坩埚内放置的材料为CraAlbTicZrdYe高熵合金, a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,蒸镀时间为5~10min;
D、利用阴极电弧镀膜工艺制备氧化物模板层,工作气体为Ar+O2,工作压强为1.5~3.5Pa,工作靶材为Cr电弧靶,靶电流为50~100A,基底施加的偏压为-30~-80V,沉积时间10~20min;
E、利用阴极电弧镀膜工艺制备氧化物核心层,工作气体为Ar+O2,工作压强为1.0~3.0Pa,工作靶材为Al电弧靶,靶电流为80~120A,基底施加的偏压为-30~-80V,沉积时间40~150min;
F、利用阴极电弧镀膜工艺制备氮化物表层,工作气体为N2,工作压强为1.5~3.5Pa,工作靶材为AlCrSi合金电弧靶,靶电流为80~120A,基底施加的偏压为-30~-80V,沉积时间20~35min。
CN201910973806.1A 2019-10-14 2019-10-14 一种抗高温氧化的铝铬硅氮与氧化铝多层复合涂层及其制备方法 Expired - Fee Related CN110643951B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910973806.1A CN110643951B (zh) 2019-10-14 2019-10-14 一种抗高温氧化的铝铬硅氮与氧化铝多层复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910973806.1A CN110643951B (zh) 2019-10-14 2019-10-14 一种抗高温氧化的铝铬硅氮与氧化铝多层复合涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN110643951A CN110643951A (zh) 2020-01-03
CN110643951B true CN110643951B (zh) 2021-04-30

Family

ID=69012733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910973806.1A Expired - Fee Related CN110643951B (zh) 2019-10-14 2019-10-14 一种抗高温氧化的铝铬硅氮与氧化铝多层复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN110643951B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293147B (zh) * 2021-11-16 2022-10-11 南京航空航天大学 一种镍基高温合金材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1974205A (zh) * 2005-12-02 2007-06-06 三菱麻铁里亚尔株式会社 表面包覆切削刀片及其制造方法
CN101691654A (zh) * 2007-09-26 2010-04-07 山特维克知识产权股份有限公司 制造涂层切削工具的方法
CN103789724A (zh) * 2014-01-24 2014-05-14 四川大学 一种AlTiCrN/YN纳米多层硬质涂层及其制备方法
CN105132908A (zh) * 2015-10-16 2015-12-09 广东电网有限责任公司电力科学研究院 燃气轮机叶片热障涂层粘结层及其制备方法
CN109082641A (zh) * 2018-08-28 2018-12-25 华南理工大学 一种三层膜结构涂层及其制备方法
CN109628896A (zh) * 2019-01-17 2019-04-16 四川大学 一种梯度结构TiAlSiYN多元纳米涂层及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1974205A (zh) * 2005-12-02 2007-06-06 三菱麻铁里亚尔株式会社 表面包覆切削刀片及其制造方法
CN101691654A (zh) * 2007-09-26 2010-04-07 山特维克知识产权股份有限公司 制造涂层切削工具的方法
CN103789724A (zh) * 2014-01-24 2014-05-14 四川大学 一种AlTiCrN/YN纳米多层硬质涂层及其制备方法
CN105132908A (zh) * 2015-10-16 2015-12-09 广东电网有限责任公司电力科学研究院 燃气轮机叶片热障涂层粘结层及其制备方法
CN109082641A (zh) * 2018-08-28 2018-12-25 华南理工大学 一种三层膜结构涂层及其制备方法
CN109628896A (zh) * 2019-01-17 2019-04-16 四川大学 一种梯度结构TiAlSiYN多元纳米涂层及其制备方法

Also Published As

Publication number Publication date
CN110643951A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
CN108642449B (zh) 超硬强韧高熵合金氮化物纳米复合涂层硬质合金刀片及其制备方法
CN111349901B (zh) 一种切削刀具用耐高温氧化铝厚膜涂层的制备方法
CN107022761A (zh) 基于类金刚石薄膜的复合厚膜及其镀膜方法
CN109628896B (zh) 一种梯度结构TiAlSiYN多元纳米涂层及其制备方法
CN106835014A (zh) 一种多元复合硬质涂层制备方法
CN111321381B (zh) 一种硬质合金刀片的AlCrNbSiTiBN基纳米复合涂层及其制备方法
CN114717516B (zh) 一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法
CN107338409B (zh) 可调控磁场电弧离子镀制备氮基硬质涂层的工艺方法
CN113174570B (zh) 一种高韧性TiAlNiN涂层及其制备方法和应用
CN110643953B (zh) 一种适合铣削加工用的氧化铝/钛铝氮复合涂层及其制备方法
CN110643936B (zh) 一种适合铣削加工用的多层复合涂层及其制备方法
CN110643951B (zh) 一种抗高温氧化的铝铬硅氮与氧化铝多层复合涂层及其制备方法
CN112080723A (zh) 金制品表面纳米多层复合抗划花膜及其制备方法
CN110670019B (zh) 一种抗月牙洼磨损的铝钛锆氮与氧化铝多层复合涂层及其制备方法
CN106756841A (zh) 一种刀具复合涂层的制备方法
CN110656313B (zh) 一种与硬质合金结合牢固的氮化锆铝/氧化铝复合涂层及其制备方法
CN110616405B (zh) 一种耐磨损阻扩散的氧化铝/氮化铝钛铬复合涂层及其制备方法
WO2021072623A1 (zh) 一种钛合金和高温合金加工用的涂层刀具及其制备方法
WO2024065970A1 (zh) 氧化物硬质涂层的复合沉积方法及涂层刀具
CN110643952B (zh) 一种抗氧化的氧化铝/氮化钛硅复合涂层及其制备方法
CN110791733B (zh) 一种耐磨阻扩散的铝铬钛氮与氧化铝多层复合涂层及其制备方法
CN204840841U (zh) 一种蓝色陶瓷高尔夫推杆
CN110643935B (zh) 一种抗月牙洼磨损的氮化铝钛/氧化铝复合涂层及其制备方法
CN209024637U (zh) 一种氮化钛复合膜
CN115058697B (zh) 稳态刚玉结构钛铝铬铌氧化物涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210430

CF01 Termination of patent right due to non-payment of annual fee