CN112941463A - 一种钛合金表面纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用 - Google Patents

一种钛合金表面纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用 Download PDF

Info

Publication number
CN112941463A
CN112941463A CN202110126304.2A CN202110126304A CN112941463A CN 112941463 A CN112941463 A CN 112941463A CN 202110126304 A CN202110126304 A CN 202110126304A CN 112941463 A CN112941463 A CN 112941463A
Authority
CN
China
Prior art keywords
substrate
cron
tion
gas
nano multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110126304.2A
Other languages
English (en)
Other versions
CN112941463B (zh
Inventor
张腾飞
王启民
潘振强
谭君国
李柏荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Zhenhua Technology Co ltd
Guangdong University of Technology
Original Assignee
Guangdong Zhenhua Technology Co ltd
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Zhenhua Technology Co ltd, Guangdong University of Technology filed Critical Guangdong Zhenhua Technology Co ltd
Publication of CN112941463A publication Critical patent/CN112941463A/zh
Application granted granted Critical
Publication of CN112941463B publication Critical patent/CN112941463B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Abstract

本发明属于涂层材料技术领域,公开了一种钛合金表面纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用。所述防护涂层由下到上包括基体、Cr打底层、CrN过渡层和CrON/TiON纳米多层;CrON/TiON纳米多层是由CrON层与TiON层交替沉积而成。本发明防护涂层应用于钛合金表面,综合了纳米多层和含氧涂层的优点,具有优异耐腐蚀性,能为钛合金应用于更加苛刻的腐蚀环境提供可靠防护,可有效地提高严苛腐蚀环境下钛合金零部件的服役时长。本发明所采用的制备方法和技术操作方便,工艺简单,过程可控,沉积速度快,成本低,适用于大规模的工业生产。

Description

一种钛合金表面纳米多层氧氮化物耐蚀防护涂层及其制备方 法和应用
技术领域
本发明属于涂层材料技术领域,特别涉及一种钛合金表面纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用。
背景技术
表面状态和质量与失效有着非常紧密的关系,大量的研究表明,零件表面质量是导致失效的关键因素。随着我国海洋工程、空间站、航空航天飞行器及核电等工程的实施,关键零部件在腐蚀介质、高速高压等苛刻环境下的可靠防护和长期服役成为了上述工程装备的发展瓶颈之一。在诸多自然环境中,海洋是极为苛刻的腐蚀环境,普通的材料氧化膜对于海洋环境的保护作用较弱,据不完全统计,海洋腐蚀损失约占材料总腐蚀损失的1/3,因此海洋腐蚀导致的损失远高于其他环境腐蚀。采用涂层表面防护技术对装备进行防护是目前广泛应用且行之有效的防腐技术之一。
钛合金因具有成形性、可焊性、和生物相容性好的优点而被广泛应用于航空航天、海洋工程装备、军事、医疗等领域。但是,钛合金摩擦时易发生粘附,在非中性介质中氧化膜易被还原或络合而导致耐腐蚀性不稳定等,这些问题在一定程度上制约了钛合金在许多方面的应用。为了提高钛合金耐腐蚀性、耐磨性、抗磨损性,对钛合金进行表面处理可以有效地扩大钛合金的应用范围。目前对钛合金的表面处理包括热喷涂、激光表面合金化、离子镀膜、PVD法制膜、化学镀、电镀、非平衡磁控溅射镀膜等。例如,张琪等人在钛合金表面制备了TiO2、ZrO2/TiO2涂层,虽然在一定程度上提高了耐腐蚀性能,氧化物薄膜微孔多、结构疏松,这些微孔的形成成为了微弧氧化的放电通道,限制了对耐蚀性能的提高。
各种涂层材料对钛合金表面增强都存在一定的限度,因此有研究人员考虑通过改变涂层结构来提高性能。多层膜比单层膜具有更优越的性能,多层结构的涂层,特别是纳米多层结构不仅具有超硬特性,而且还能够改善韧性、提高抗磨抗腐蚀性和抗开裂性,它是耐磨和防护领域中综合性能优异的理想材料结构。对于PVD涂层来说,当涂层以柱状晶方式生长时,柱状晶间隙也不可避免成为涂层耐腐蚀的薄弱部位,当涂层材料暴露在水溶液中时,甚至会发生局部的电偶腐蚀,使得腐蚀过程被加速。而纳米多层结构可以使多层之间重新形核,柱状晶生长被打断,且层间缺陷容易被填补,从而形成致密涂层结构,能够抑制或减缓腐蚀速度,达到提高材料耐腐蚀能力的目的。
CrN涂层耐磨耐蚀性好、密度低、高温抗氧化能力好,在刀具、磨具、模具等的表面强化应用广泛,在CrN中掺入少量氧,能够进一步提高耐磨耐蚀及高温抗氧化性。TiN具有抗粘结温度高、抗扩散磨损能力好、抗腐蚀能力好的特点,在装饰、加工等领域有着广泛的应用。
但是CrN和TiN单层膜会出现柱状晶结构的晶界界面不连续、针孔、大颗粒等缺陷,对耐腐蚀性能的提高有不利影响。近年来,研究者将CrN和TiN各自与其他材料的复合组成的多层膜体系如TiN/ZrN,TiN/AlN,CrN/TaN,TiAlN/CrN,多层涂层体系已被证明其性能相比单层膜体系有所提高。但是,关于CrON/TiON的报道却很少见,另外焦点多集中于微观结构、表面形貌、机械性能,而较少应用于钛合金表面的耐腐蚀性能还有待于研究。胡霖等人在钛合金表面使用电弧离子镀技术沉积了TiN/CrN纳米多层薄膜,镀膜后样品的显微硬度显著提高,摩擦系数有所下降,但其只可满足抗沙粒和尘埃磨损的要求,且未研究其耐腐蚀性。马志康等人研究了弧光离子镀TiN和CrN薄膜,在NaOH溶液中两种薄膜耐腐性有所提高,但发现二者在NaCl溶液中的耐蚀性并没有显著提高,相对腐蚀速率仍旧较高。
发明内容
为了克服现有技术中钛合金在航空航天、船舶船体等应用中存在的缺点和不足,本发明的首要目的在于提供一种钛合金表面纳米多层氧氮化物耐蚀防护涂层的制备方法;该制备方法具有制备产品性能稳定,操作方便,工艺简单,制备周期短,成本低,绿色环保,便于大规模工业化生产等优点。
本发明的另一个目的在于提供一种上述制备方法制备得到的钛合金表面纳米多层氧氮化物耐蚀防护涂层;该涂层具有低应力、耐腐蚀、膜基结合良好等优异的综合特性。
本发明的再一目的在于提供一种上述钛合金表面纳米多层氧氮化物耐蚀防护涂层的应用。采用TiON和CrON的组合,由TiON层和CrON层交替沉积在基体上形成的具有高耐腐蚀性能的层状结构,扩大多层涂层的在钛合金防护及工业中的应用。
本发明的目的通过下述技术方案实现:
一种钛合金表面纳米多层氧氮化物耐蚀防护涂层,所述防护涂层由下到上包括基体、Cr打底层、CrN过渡层和CrON/TiON纳米多层;CrON/TiON纳米多层是由CrON层与TiON层交替沉积而成,CrON/TiON纳米多层的总厚度为3~7μm,调制周期为1~200nm。
所述CrON/TiON纳米多层中O原子的百分含量为30-60at.%,N原子的百分含量为10~30at.%,Cr原子的百分含量为15~30at.%,Ti原子的百分含量为15~30at.%。
所述基体为单晶硅、单晶氧化铝、硬质合金或者钛合金。
上述的一种钛合金表面纳米多层氧氮化物耐蚀防护涂层的制备方法,按照以下操作步骤:
①清洗基体:对基体表面进行抛光后,浸入丙酮以10~20kHz的频率超声清洗10~20min,取出吹干,擦拭表面污渍,然后浸入无水乙醇以20~40kHz的频率超声清洗10~20min,取出吹干并擦去表面污渍;
②抽真空:将清洗后的基体送入真空腔室内并固定在旋转支架上,开泵体抽腔室气体,将本底真空抽至4.8×10-3Pa以下,同时将基体加热至370~420℃,加热功率9kW~12kW;
③等离子体脉冲刻蚀清洗:当腔室真空度为4.8×10-3Pa以下后,通入气体流量为100~200sccm的Ar气、50~150sccm的Kr气,给基体施加-600V~-800V的偏压,同时调节气体流量,使腔室气压保持在0.1~0.4Pa,炉温保持在370~420℃,持续时间25~40min,其中偏压占空比设置为30%~50%,加热功率7~10kW;
④等离子体直流刻蚀清洗:通入气体流量为250~350sccm的Ar气、50~150sccm的Kr气;开启离子源电源,电流为15~25A,给基体施加-200V~-300V的偏压,调节气体流量,使腔室气压保持在0.5~0.8Pa,炉温保持在370℃~420℃,直流刻蚀持续时间25~40min,加热功率9~12kW;
⑤Cr打底层的沉积:开启电弧Cr靶电源,电流为70~90A,通入500sccm的Ar气,调节气体流量,使腔室气压维持在0.5~0.9Pa,炉温保持在370℃~420℃,给基体施加-100~-150V的偏压,加热功率6~9kW,沉积Cr打底层25~40min;
⑥CrN过渡层的沉积:电弧Cr靶电源保持开启,电流为70~90A,通入450~550sccm的N2气,逐渐减少Ar气流量直至为0sccm,调节N2气流量,使腔室气压保持在1~1.4Pa,维持炉温370℃~420℃,施加基体偏压-90~-120V,加热功率6~9kW,沉积CrN过渡层25~40min;
⑦沉积CrON/TiON纳米多层:开启基体支撑转架,Cr靶电源保持开启,并打开Ti靶电源,两靶电源均为70~90A,氮气流量调整为450~650sccm,通入15~75sccm的O2,此过程保持腔室气压为1.1~1.5Pa,维持炉温370℃~420℃,沉积时间为2~4h,给基体施加-90~-120V的偏压,加热功率6~9kW,在CrN过渡层上交替沉积CrON层与TiON层,形成CrON/TiON纳米多层;
⑧沉积结束,关闭各靶电源、偏压电源、加热管电源,关闭气体通气阀,待腔室内温度降至室温后取出基体,得到钛合金表面纳米多层氧氮化物耐蚀防护涂层。
所述Cr靶和Ti靶均是平面靶,两靶的纯度分别为:Cr靶99.95%,Ti靶99.995%。
所述步骤⑦中支撑转架的参数为:转架自转1~4rpm/min,公转1~3rpm/min,其余步骤中支撑转架的参数为:转架自转1~4rpm/min,无公转。
上述的一种钛合金表面纳米多层氧氮化物耐蚀防护涂层在船舶壳体、轴承、密封件、液压件、齿轮、模具、泵、化工机械、污染或废物处理设备零部件、饰品、机密仪器仪表的表面防护中的应用。
本发明的原理:本发明中起主要作用的多层涂层是通过基体转架的旋转作用来实现的,当基体转至Ti靶时,靶面电离产生的钛阳离子与氧气离子和氮气离子结合成键,沉积在基体表面形成TiON薄膜;当基体转至Cr靶时,靶面电离产生的铬阳离子与氧气离子和氮气离子结合成键,沉积在基体表面形成CrON薄膜。使用Cr以及CrN过渡层能够使材料热膨胀系数等从基体-涂层缓慢过渡,从而使膜基内应力和膜基结合力得到改善;交替的多层CrON/TiON工作层可以打断有利于元素扩散的柱状晶生长,从而防止腐蚀元素侵入,提高涂层的耐腐蚀性能,并且纳米多层的结构设计能提高薄膜的韧性、硬度、降低内应力。
本发明相对于现有技术具有如下的优点及效果:
(1)本发明利用电弧离子镀膜技术制备CrON/TiON多层膜,在TiN/CrN多层体系基础上进一步掺入一定的氧,研究其相结构、表面形貌,同时研究该涂层的耐腐蚀性能;所得防护涂层应用于钛合金表面,综合了纳米多层和含氧涂层的优点,综合单层TiON涂层、CrON涂层各自的性能优势,具有优异耐腐蚀性,能为钛合金应用于更加苛刻的腐蚀环境提供可靠防护,可有效地提高严苛腐蚀环境下钛合金零部件的服役时长。
(2)本发明所采用的制备方法和技术操作方便,工艺简单,过程可控,沉积速度快,成本低,适用于大规模的工业生产。
(3)本发明采用电弧离子镀技术,通过对基体支架的旋转控制,形成TiON涂层与CrON涂层周期性交替纳米多层结构,该多层结构设计以及氧的掺入能显著改善涂层的耐腐蚀性能,拓展了钛合金的应用环境,如船舶壳体、轴承、密封件、液压件、齿轮、模具、泵、化工机械、污染或废物处理设备零部件、饰品、机密仪器仪表等的表面防护。
附图说明
图1为整体生长的CrN或TiN(a)与本发明实施例1提供的CrON/TiON纳米多层结构涂层(b)的腐蚀示意图。
图2为本发明实施例1提供的CrON/TiON纳米多层结构涂层的SEM形貌图,其中,(a)、(c)、(e)分别为CrN、CrN/TiN、CrON/TiON放大5k倍下的表面形貌图;(b)、(d)、(f)分别为CrN、CrN/TiN、CrON/TiON截面形貌图。
图3为本发明实施例1提供的CrON/TiON纳米多层结构涂层与对比例1、对比例2提供的CrN、CrN/TiN及基体在室温下3.5%NaCl溶液中的腐蚀极化曲线图。
具体实施方式
下面结合说明书附图和具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
一种CrON/TiON纳米多层涂层,包含Cr打底层、CrN过渡层及CrON/TiON纳米多层(交替沉积的CrON与TiON层),其中沉积CrON/TiON纳米多层时氧气通入流量为30sccm,最终所得CrON/TiON纳米多层的O原子含量为46.67at.%,N原子含量为14.79at.%,Ti原子含量为19.06at.%,Cr原子含量为19.48at.%,涂层厚度为5.8μm,调制周期为48.3nm。其制备方法包括以下步骤:
对基体表面进行抛光后,浸入丙酮以15kHz的频率超声清洗15min,取出吹干,擦拭表面污渍,后浸入无水乙醇以30kHz的频率超声清洗15min,取出吹干并擦去表面污渍;将清洗后的基体送入真空腔室内并固定在旋转支架上;开泵体抽腔室气体,将本底真空抽至4.8×10-3Pa以下,同时将基体加热至400℃,加热功率10kW。当腔室真空度为4.8×10-3Pa以下后,通入气体流量为150sccm的Ar气、100sccm的Kr气,给基体施加-600V的偏压,同时调节气体流量,使腔室气压保持在0.3Pa,炉温保持在400℃,持续时间30min;其中偏压占空比为30%,频率100kHz,加热功率10kW。通入气体流量为300sccm的Ar气、100sccm的Kr气;开启离子源电源,电流为20A;给基体施加-200V的偏压,调节气体流量,使腔室气压保持在0.5Pa,炉温保持在400℃,直流刻蚀持续时间30min,加热功率10kW。开启电弧Cr靶电源,电流为80A,通入500sccm的Ar气,适当调节气体流量,使腔室气压维持在0.5Pa,炉温保持在390℃;给基体施加-100V的偏压,加热功率8kW,沉积Cr打底层30min。电弧Cr靶电源保持开启,电流为80A,通入500sccm的N2气,逐渐减少Ar气流量直至为0sccm;调节N2气流量,使腔室气压保持在1.2Pa,维持炉温370℃;施加基体偏压-90V,加热功率8kW,沉积CrN过渡层30min。开启基体支撑转架,转速设置为1rpm/min,Cr靶电源保持开启,并打开Ti靶电源,两靶电源均为80A,氮气流量调整为550sccm,通入30sccm的O2气,此过程保持腔室气压为1.1Pa,维持炉温380℃,沉积时间为2h;给基体施加-90的偏压,加热功率8kW,在CrN过渡层上交替沉积CrON层与TiON层,形成CrON/TiON纳米多层。沉积结束后,关闭各靶电源、偏压电源、加热管电源,关闭气体通气阀,待腔室内温度降至室温后取出基体,在基体表面即已形成以CrON/TiON多层为主的纳米多层涂层。
对比例1
为验证CrON/TiON纳米多层涂层性能的优越性,特做一组不含氧的CrN单层涂层作为对照试验,具体步骤如下:
对基体表面进行抛光后,浸入丙酮以15kHz的频率超声清洗15min,取出吹干,擦拭表面污渍,后浸入无水乙醇以30kHz的频率超声清洗15min,取出吹干并擦去表面污渍;将清洗后的基体送入真空腔室内并固定在旋转支架上;开泵体抽腔室气体,将本底真空抽至4.8×10-3Pa以下,同时将基体加热至400℃,加热功率10kW。当腔室真空度为4.8×10-3Pa以下后,通入气体流量为150sccm的Ar气、100sccm的Kr气,给基体施加-600V的偏压,同时调节气体流量,使腔室气压保持在0.3Pa,炉温保持在400℃,持续时间30min;其中偏压占空比为30%,频率100kHz,加热功率10kW。通入气体流量为300sccm的Ar气、100sccm的Kr气;开启离子源电源,电流为20A;给基体施加-200V的偏压,调节气体流量,使腔室气压保持在0.5Pa,炉温保持在400℃,直流刻蚀持续时间30min,加热功率10kW。开启电弧Cr靶电源,电流为80A,通入500sccm的Ar气,适当调节气体流量,使腔室气压维持在0.5Pa,炉温保持在390℃;给基体施加-100V的偏压,加热功率8kW;该过程持续时间30min。开启基体支撑转架,转速设置为1rpm/min,Cr靶电源保持开启,并打开另一个Cr靶,靶电流均设置为80A,通入550sccm的氮气,此过程保持腔室气压为1.1Pa,维持炉温380℃,沉积时间为2h;给基体施加-90的偏压,加热功率8kW。关闭各靶电源、偏压电源、加热管电源,关闭气体通气阀,待腔室内温度降至室温后取出基体,在基体表面即已形成以CrN为主的涂层。
对比例2
为验证CrON/TiON纳米多层涂层性能的优越性,特做一组不含氧的CrN/TiN多层涂层作为对照试验,所得CrN/TiN多层涂层厚度为5.5μm,调制周期为46.6nm。具体步骤如下:
对基体表面进行抛光后,浸入丙酮以15kHz的频率超声清洗15min,取出吹干,擦拭表面污渍,后浸入无水乙醇以30kHz的频率超声清洗15min,取出吹干并擦去表面污渍;将清洗后的基体送入真空腔室内并固定在旋转支架上;开泵体抽腔室气体,将本底真空抽至4.8×10-3Pa以下,同时将基体加热至400℃,加热功率10kW。当腔室真空度为4.8×10-3Pa以下后,通入气体流量为150sccm的Ar气、100sccm的Kr气,给基体施加-600V的偏压,同时调节气体流量,使腔室气压保持在0.3Pa,炉温保持在400℃,持续时间30min;其中偏压占空比为30%,频率100kHz,加热功率10kW。通入气体流量为300sccm的Ar气、100sccm的Kr气;开启离子源电源,电流为20A;给基体施加-200V的偏压,调节气体流量,使腔室气压保持在0.5Pa,炉温保持在400℃,直流刻蚀持续时间30min,加热功率10kW。开启电弧Cr靶电源,电流为80A,通入500sccm的Ar气,适当调节气体流量,使腔室气压维持在0.5Pa,炉温保持在390℃;给基体施加-100V的偏压,加热功率8kW;该过程持续时间30min。电弧Cr靶电源保持开启,电流为80A,通入500sccm的N2气,逐渐减少Ar气流量直至为0sccm;调节N2气流量,使腔室气压保持在1.2Pa,维持炉温370℃;施加基体偏压-90V,加热功率8kW。沉积时间为30min。开启基体支撑转架,转速设置为1rpm/min,Cr靶电源保持开启,并打开Ti靶电源,两靶电源均为80A,氮气流量调整为550sccm,此过程保持腔室气压为1.1Pa,维持炉温380℃,沉积时间为2h;给基体施加-90的偏压,加热功率8kW。关闭各靶电源、偏压电源、加热管电源,关闭气体通气阀,待腔室内温度降至室温后取出基体,在基体表面即已形成以CrN/TiN多层为主的纳米多层涂层。
图1为整体生长的CrN或TiN(a)与本发明实施例1提供的CrON/TiON纳米多层结构涂层(b)的腐蚀示意图。通过氧氮化物纳米多层的结构设计,腐蚀溶液中的Na+、Cl-和电子的侵蚀作用被显著抑制,能在苛刻条件下有效保护涂层和基体,有效增加基体服役时长。
图2为本发明实施例1提供的CrON/TiON纳米多层结构涂层的SEM形貌图,其中,(a)、(c)、(e)分别为CrN、CrN/TiN、CrON/TiON放大5k倍下的表面形貌图;(b)、(d)、(f)分别为CrN、CrN/TiN、CrON/TiON截面形貌图。从图中可以看出,各涂层表面较为平整,有少量大颗粒,晶粒较细;涂层结构致密,涂层与基体紧密结合。
图3为本发明实施例1提供的CrON/TiON纳米多层结构涂层与对比例1、对比例2提供的CrN、CrN/TiN及基体在室温下3.5%NaCl溶液中的腐蚀极化曲线图。从图3中可以看出:基体自腐蚀电位最低,CrN与CrN/TiN自腐蚀电位相当,而所镀CrON/TiON纳米多层结构涂层的自腐蚀电位明显得到提高,使其在腐蚀溶液中的得失电子的趋势变得更加困难,掺入氧(对比CrN/TiN和CrON/TiON)明显有利于自腐蚀电位的提高。CrON/TiON纳米多层涂层自腐蚀电流密度有明显降低,显示出涂层对基体的耐腐蚀保护性,对比各个实例样品极化曲线可以看出实施例所得涂层的自腐蚀电流密度最低。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种钛合金表面纳米多层氧氮化物耐蚀防护涂层,其特征在于:所述防护涂层由下到上包括基体、Cr打底层、CrN过渡层和CrON/TiON纳米多层;CrON/TiON纳米多层是由CrON层与TiON层交替沉积而成,CrON/TiON纳米多层的总厚度为3~7μm,调制周期为1~200nm。
2.根据权利要求1所述的一种钛合金表面纳米多层氧氮化物耐蚀防护涂层,其特征在于:所述CrON/TiON纳米多层中O原子的百分含量为30-60at.%,N原子的百分含量为10~30at.%,Cr原子的百分含量为15~30at.%,Ti原子的百分含量为15~30at.%。
3.根据权利要求1所述的一种钛合金表面纳米多层氧氮化物耐蚀防护涂层,其特征在于:所述基体为单晶硅、单晶氧化铝、硬质合金或者钛合金。
4.根据权利要求1所述的一种钛合金表面纳米多层氧氮化物耐蚀防护涂层的制备方法,其特征在于按照以下操作步骤:
①清洗基体:对基体表面进行抛光后,浸入丙酮以10~20kHz的频率超声清洗10~20min,取出吹干,擦拭表面污渍,然后浸入无水乙醇以20~40kHz的频率超声清洗10~20min,取出吹干并擦去表面污渍;
②抽真空:将清洗后的基体送入真空腔室内并固定在旋转支架上,开泵体抽腔室气体,将本底真空抽至4.8×10-3Pa以下,同时将基体加热至370~420℃,加热功率9kW~12kW;
③等离子体脉冲刻蚀清洗:当腔室真空度为4.8×10-3Pa以下后,通入气体流量为100~200sccm的Ar气、50~150sccm的Kr气,给基体施加-600V~-800V的偏压,同时调节气体流量,使腔室气压保持在0.1~0.4Pa,炉温保持在370~420℃,持续时间25~40min,其中偏压占空比设置为30%~50%,加热功率7~10kW;
④等离子体直流刻蚀清洗:通入气体流量为250~350sccm的Ar气、50~150sccm的Kr气;开启离子源电源,电流为15~25A,给基体施加-200V~-300V的偏压,调节气体流量,使腔室气压保持在0.5~0.8Pa,炉温保持在370℃~420℃,直流刻蚀持续时间25~40min,加热功率9~12kW;
⑤Cr打底层的沉积:开启电弧Cr靶电源,电流为70~90A,通入500sccm的Ar气,调节气体流量,使腔室气压维持在0.5~0.9Pa,炉温保持在370℃~420℃,给基体施加-100~-150V的偏压,加热功率6~9kW,沉积Cr打底层25~40min;
⑥CrN过渡层的沉积:电弧Cr靶电源保持开启,电流为70~90A,通入450~550sccm的N2气,逐渐减少Ar气流量直至为0sccm,调节N2气流量,使腔室气压保持在1~1.4Pa,维持炉温370℃~420℃,施加基体偏压-90~-120V,加热功率6~9kW,沉积CrN过渡层25~40min;
⑦沉积CrON/TiON纳米多层:开启基体支撑转架,Cr靶电源保持开启,并打开Ti靶电源,两靶电源均为70~90A,氮气流量调整为450~650sccm,通入15~75sccm的O2,此过程保持腔室气压为1.1~1.5Pa,维持炉温370℃~420℃,沉积时间为2~4h,给基体施加-90~-120V的偏压,加热功率6~9kW,在CrN过渡层上交替沉积CrON层与TiON层,形成CrON/TiON纳米多层;
⑧沉积结束,关闭各靶电源、偏压电源、加热管电源,关闭气体通气阀,待腔室内温度降至室温后取出基体,得到钛合金表面纳米多层氧氮化物耐蚀防护涂层。
5.根据权利要求4所述的制备方法,其特征在于:所述Cr靶和Ti靶均是平面靶,两靶的纯度分别为:Cr靶99.95%,Ti靶99.995%。
6.根据权利要求4所述的制备方法,其特征在于:所述步骤⑦中支撑转架的参数为:转架自转1~4rpm/min,公转1~3rpm/min,其余步骤中支撑转架的参数为:转架自转1~4rpm/min,无公转。
7.根据权利要求1所述的一种钛合金表面纳米多层氧氮化物耐蚀防护涂层在船舶壳体、轴承、密封件、液压件、齿轮、模具、泵、化工机械、污染或废物处理设备零部件、饰品、机密仪器仪表的表面防护中的应用。
CN202110126304.2A 2020-12-31 2021-01-29 一种纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用 Active CN112941463B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011639852 2020-12-31
CN2020116398527 2020-12-31

Publications (2)

Publication Number Publication Date
CN112941463A true CN112941463A (zh) 2021-06-11
CN112941463B CN112941463B (zh) 2024-01-23

Family

ID=76239731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110126304.2A Active CN112941463B (zh) 2020-12-31 2021-01-29 一种纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112941463B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023201766A1 (zh) * 2022-04-18 2023-10-26 东南大学 一种增材制造金属零件表面防腐防污复合处理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0536607A2 (en) * 1991-09-30 1993-04-14 Ppg Industries, Inc. Heat processable metallic appearing coatings
JPH0632635A (ja) * 1992-07-16 1994-02-08 Central Glass Co Ltd 電波低反射特性を有する熱線遮蔽ガラス
US20120164434A1 (en) * 2009-06-02 2012-06-28 Senthil Kumar Ramadas Multilayer barrier film
CN103317792A (zh) * 2013-06-08 2013-09-25 武汉理工大学 非真空中高温太阳能选择性吸收周期涂层及其制备方法
JP2014214336A (ja) * 2013-04-24 2014-11-17 国立大学法人電気通信大学 クロム含有金属材料及びクロム含有金属材料の製造方法
US20170173757A1 (en) * 2013-11-26 2017-06-22 Oerlikon Surface Solutions Ag, Pfäffikon Hard material layer for reducing heat input into a coated substrate
CN110117774A (zh) * 2019-06-17 2019-08-13 广东工业大学 一种tc4钛合金表面涂层及其制备方法和tc4钛合金产品
CN110453174A (zh) * 2019-06-12 2019-11-15 广东工业大学 一种用于钛合金基体表面的防护涂层及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0536607A2 (en) * 1991-09-30 1993-04-14 Ppg Industries, Inc. Heat processable metallic appearing coatings
JPH0632635A (ja) * 1992-07-16 1994-02-08 Central Glass Co Ltd 電波低反射特性を有する熱線遮蔽ガラス
US20120164434A1 (en) * 2009-06-02 2012-06-28 Senthil Kumar Ramadas Multilayer barrier film
JP2014214336A (ja) * 2013-04-24 2014-11-17 国立大学法人電気通信大学 クロム含有金属材料及びクロム含有金属材料の製造方法
CN103317792A (zh) * 2013-06-08 2013-09-25 武汉理工大学 非真空中高温太阳能选择性吸收周期涂层及其制备方法
US20170173757A1 (en) * 2013-11-26 2017-06-22 Oerlikon Surface Solutions Ag, Pfäffikon Hard material layer for reducing heat input into a coated substrate
CN110453174A (zh) * 2019-06-12 2019-11-15 广东工业大学 一种用于钛合金基体表面的防护涂层及其制备方法
CN110117774A (zh) * 2019-06-17 2019-08-13 广东工业大学 一种tc4钛合金表面涂层及其制备方法和tc4钛合金产品

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NUNES, C;: "Graded selective coatings based on chromium and titanium oxynitride", THIN SOLID FILMS, vol. 442, no. 1, pages 173 - 178, XP004458318, DOI: 10.1016/S0040-6090(03)00967-2 *
RAWAL, SK: "Optical and hydrophobic properties of co-sputtered chromium and titanium oxynitride films", APPLIED SURFACE SCIENCE, vol. 257, no. 21, pages 8755 - 8761, XP028099186, DOI: 10.1016/j.apsusc.2011.03.012 *
万维威: "磁控溅射法制备Cr-CrO太阳能选择吸收涂层研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
黄雪丽: "钛合金表面TiN/CrN纳米多层薄膜的制备及耐磨、耐腐蚀性能", 材料导报, vol. 35, no. 4, pages 4139 - 4143 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023201766A1 (zh) * 2022-04-18 2023-10-26 东南大学 一种增材制造金属零件表面防腐防污复合处理方法

Also Published As

Publication number Publication date
CN112941463B (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
CN106893986B (zh) 一种高硬度AlCrN纳米复合涂层及其制备工艺
US5055318A (en) Dual ion beam ballistic alloying process
CN102011090B (zh) 一种基体表面的TiAlN/TiAlCN多层膜涂层及其制备方法
CN101518935B (zh) Pvd纳米复合陶瓷涂层螺杆及其制造方法
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN111621752A (zh) AlCrSiN/AlCrN/AlCrON/AlCrN多层纳米复合涂层的制备工艺
CN107022745A (zh) 基于类金刚石薄膜的增厚型复合薄膜及其镀膜方法
CN103212729B (zh) 一种具有CrAlTiN超晶格涂层的数控刀具及其制备方法
CN104325738B (zh) 一种冷轧圆盘飞剪的硬质涂层及其制备方法
CN105908126A (zh) 一种高Al含量的AlTiN复合涂层及制备方法
CN110777336A (zh) 一种基于能量调控原理制备超厚硬质薄膜的方法
CN111647851A (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN106929799A (zh) 耐高温防护涂层及其制备方法与应用
CN112941463B (zh) 一种纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用
CN103938157B (zh) 一种ZrNbAlN超晶格涂层及制备方法
CN110117774A (zh) 一种tc4钛合金表面涂层及其制备方法和tc4钛合金产品
CN111304612B (zh) 具有高硬度和高抗氧化性能的CrAlN/AlN纳米多层涂层及其制备方法
CN108823544A (zh) 基于氮化钛复合膜及其制备方法
CN209024637U (zh) 一种氮化钛复合膜
CN110684954B (zh) 金属制品及其制备方法和手机后壳
CN112226768B (zh) 一种微弧氧化CrAlN涂层的复合制备方法
CN102277556A (zh) 一种纳米复合超硬薄膜的制备方法
CN112553580B (zh) 一种二硼化物复合涂层及其制备方法和应用
CN102345094A (zh) 涂层、具有该涂层的被覆件及该被覆件的制备方法
CN111334752B (zh) 一种制备CrCN薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant