WO2023201766A1 - 一种增材制造金属零件表面防腐防污复合处理方法 - Google Patents

一种增材制造金属零件表面防腐防污复合处理方法 Download PDF

Info

Publication number
WO2023201766A1
WO2023201766A1 PCT/CN2022/089233 CN2022089233W WO2023201766A1 WO 2023201766 A1 WO2023201766 A1 WO 2023201766A1 CN 2022089233 W CN2022089233 W CN 2022089233W WO 2023201766 A1 WO2023201766 A1 WO 2023201766A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
layer
treatment method
additively manufactured
composite
Prior art date
Application number
PCT/CN2022/089233
Other languages
English (en)
French (fr)
Inventor
陈坚
张习羽
黄志全
刘铭悦
扎米特安
布哈吉亚·约瑟夫
卡萨·格伦
博尼奇·卢安娜
维拉凯尔西·安
皮祖托玛蒂娜·玛丽
Original Assignee
东南大学
马耳他大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学, 马耳他大学 filed Critical 东南大学
Publication of WO2023201766A1 publication Critical patent/WO2023201766A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a surface treatment method for metal parts, and in particular, to a composite surface anti-corrosion and anti-fouling treatment method for additively manufactured metal parts.
  • Additive manufacturing (also known as 3D printing) is a special processing technology that has developed rapidly in recent years. It has the ability to quickly and accurately manufacture parts with complex shapes and difficult-to-form materials. It has been included in national development plans as a key advanced manufacturing technology by various countries around the world, and has been included in national development plans. Considered as a new way to manufacture marine transportation equipment. In the field of marine transportation equipment manufacturing, the research and application of additive manufacturing have shown great application prospects. However, the marine environment is complex and changeable, involving many environmental factors such as temperature, humidity, and microbial pollutants. Parts are required to have both excellent mechanics and Excellent corrosion resistance; on the other hand, additively manufactured parts have many surface defects, uneven microstructure, and high residual internal stress, resulting in peculiar corrosion behavior and mechanisms. Therefore, there is an urgent need to conduct in-depth research on the marine corrosion characteristics and mechanisms of additively manufactured metal parts and develop matching advanced surface protection technologies to meet the higher requirements of modern marine equipment for anti-corrosion, anti-biopollution and long life.
  • the current protection technologies used in marine corrosion surface protection technology mainly include sacrificial anodes, heavy anti-corrosion coatings, thermal spraying and hot dip plating, etc., to improve the wear resistance, corrosion resistance and oxidation resistance of the surface of parts.
  • sacrificial anodes have low efficiency and heavy weight; heavy anti-corrosion coating systems often contain toxic substances such as heavy metals; hot-dip plating has environmental problems of waste liquid discharge; thermal spray coatings are less dense, and the bonding strength of the above coatings is often relatively low. Low, it is easy to cause spalling and accelerate local corrosion, making it difficult to meet the higher requirements of modern marine equipment.
  • there are currently few studies on surface protection technology for additively manufactured metal parts especially the research and application of physical vapor deposition technology in this field.
  • CN 112521783A discloses an antifouling and anticorrosive marine coating.
  • the invention is a mixture made of chemical substances such as polymerized o-p-methylaniline and a fixed mass ratio, which can effectively protect the hull from seawater erosion and effectively prevent marine debris.
  • CN 113774373 A discloses a method for synchronous ultrasonic shot peening to assist in preparing a defect-free corrosion-resistant coating.
  • the invention simultaneously turns on the high-speed laser cladding system and the ultrasonic shot peening auxiliary system to obtain a defect-free corrosion-resistant coating.
  • the grains of the layer are significantly refined and the hardness increases.
  • the purpose of the present invention is to obtain a composite surface anti-corrosion and anti-fouling treatment method for additively manufactured metal parts by combining shot peening of a matrix and deposition of an excellent anti-corrosion and anti-fouling coating.
  • the present invention s surface anti-corrosion and anti-fouling composite treatment method for additively manufactured metal parts includes the following steps:
  • a nanocomposite multi-layer nitride coating (H) is deposited on the surface of the ion intermixed layer (C) by magnetron sputtering. Its internal structure includes a simple metal bonding layer (D) and a nitrogen transition layer. (E), nanomultilayer containing main alloy elements (F) and nanocomposite top layer containing active metal (G).
  • the metal part base is made of stainless steel, titanium alloy, cobalt-chromium alloy or nickel-based alloy.
  • the shot peening material for the shot peening treatment is steel or ceramic (such as zirconium oxide, silica, alumina) shot, the shot blasting particle size is 0.2 ⁇ 0.85 mm; the shot peening pressure is 5 ⁇ 10bar, shot peening time is 10 ⁇ 30s, and the distance between the nozzle and the surface of the metal part base is 80 ⁇ 100mm.
  • the shot peened substrate surface (A) has no oxidation layer and defect damage layer, has low porosity and surface roughness, induces residual compressive stress, promotes fatigue crack closure, and obtains A hardened layer (B) that facilitates bonding with the coating.
  • the pretreatment uses high-bias sputtering to bombard the surface of the sample after shot peening with high-energy particles, forming an ion interaction of 50 to 300 nm with the defect hardened layer (B) formed after shot peening on the surface.
  • the mixed layer (C) can effectively clean the dirt on the surface and can roughen the surface of the substrate (A) to produce microscopic unevenness and improve the bonding force of the film base.
  • the sputtering targets of the magnetron sputtering method are four high-purity metal targets, among which are titanium metal targets or chromium metal targets or alloy targets containing the main elements of the coating, and the remaining alloy elements are It can be, but is not limited to, titanium, chromium, aluminum, molybdenum, tungsten, copper, silver and alloy targets thereof; during the deposition process, the substrate bias voltage is 30-150V, and the metal target power is 100W-5000W.
  • the thickness of layer (F) is 400-3000nm, and the alloy element target current and conditional speed are increased through continuous gradient;
  • the top layer (G) containing active metal elements, such as titanium aluminum copper nitrogen, chromium aluminum silver nitrogen, has a thickness of 100-1500nm, and the thickness is 100-1500nm. Increase the copper or silver target current and gradually increase the copper or silver content.
  • the present invention reduces surface roughness and surface defects by shot peening the high mechanical performance 316 stainless steel substrate (A) prepared by laser selective melting method, and improves the surface quality of parts deposited by magnetron sputtering, while introducing defects.
  • the hardened layer (B) enhances the formation of the ion intermixing zone (C) during the deposition process, slows down the surface mechanical property change gradient and stress concentration, and improves the comprehensive mechanical properties of the surface of additively manufactured parts.
  • the nanocomposite multilayer nitride coating (H) is then deposited by magnetron sputtering.
  • Its internal structure includes a simple metal bonding layer (D), a nitrogen transition layer (E), and a nanomultilayer containing main alloy elements ( F) and the nanocomposite top layer (G) containing active metals form a good combination and optimize the performance, alleviate the discontinuity of stress, increase the load-bearing capacity and plastic resistance, and build a membrane-based system with good comprehensive mechanical properties.
  • the main alloy elements in the coating improve strength and corrosion resistance, and the active metal elements enhance antibacterial and antifouling properties, achieving long-term anticorrosion and antifouling of additively manufactured metal parts.
  • the present invention has the following significant advantages:
  • the additively manufactured metal part substrate (A) is shot peened to reduce surface roughness and surface defects, improving the surface quality of parts deposited by magnetron sputtering.
  • the defect hardened layer (B) is introduced to enhance ion interaction during the deposition process.
  • the formation of mixed zone (C) slows down the gradient of surface mechanical property changes and stress concentration, and improves the comprehensive mechanical properties of the surface of additively manufactured parts.
  • the ion intermixing layer (C) is then sequentially combined with the elemental metal bonding layer (D), the nitrogen element transition layer (E), the nano-multilayer containing the main alloy elements (F) and the nano-composite top layer containing active metals (G ) forms a good combination and performance optimization.
  • the gradient transition layer can alleviate the discontinuity of stress and increase the load-bearing capacity and plastic resistance.
  • the main alloy elements in the nanocomposite multi-layer nitride coating (H) improve the strength and corrosion resistance, and the active metal elements enhance the antibacterial and antifouling properties.
  • This composite treatment method is simple and easy to implement, has high controllability, is sterile, has low cost, has no requirements for base materials, and has strong membrane base bonding force.
  • the present invention constructs a film-based system with good comprehensive mechanical properties through a composite treatment method of shot peening and magnetron sputtering deposited coating on the surface of additively manufactured metal parts, and the main alloy elements in the coating increase the strength. It enhances antibacterial and antifouling properties with corrosion resistance and active metal elements to achieve long-term anticorrosion and antifouling. It has broad application prospects in the field of marine transportation metal parts manufacturing and surface protection.
  • Figure 1 is a schematic structural diagram of the present invention.
  • a composite surface anti-corrosion and anti-fouling treatment method for additively manufactured metal parts including the following steps:
  • step (1) Perform shot peening on the 316L stainless steel substrate (A) in step (1).
  • the shot peening material is S230 steel shot, the shot blasting particle size is 0.6mm, the shot peening pressure is 6 bar, and the shot peening time is 21s, the nozzle length is 80mm and the diameter is 7mm, and the distance between the nozzle and the surface of the substrate (A) is 100mm.
  • the nozzle sprays glass pellets onto the surface of the substrate (A) to form a fan-shaped area that generates compressive stress on it and forms a residual compressive stress layer, thereby improving its fatigue resistance and also obtaining defects that are conducive to combining with the nanocomposite multi-layer TiAlCuN coating (H) Hardened layer (B).
  • step (2) Deposit a nanocomposite multi-layer TiAlCuN coating (H) on the surface of the 316 stainless steel substrate (A) in step (2) by magnetron sputtering.
  • two high-purity titanium targets, one high-purity aluminum target, and one high-purity copper target were placed on the four magnetrons in the cavity, and the substrate (A) was ultrasonically cleaned in alcohol for 10 minutes.
  • the substrate (A) is assembled on the fixture, high-purity argon gas is introduced to 40 sccm, and the deposition gas pressure is adjusted to 0.23 Pa.
  • the substrate bias is 90V
  • the Ti target power is 2300W ⁇ 2400W
  • the Al target power is 2300W ⁇ 2400W
  • the Cu target power is 200W ⁇ 220W
  • the OEM is 35%, that is, the nitrogen flow rate It is 24 ⁇ 28sccm.
  • the surface roughness of the 316 stainless steel substrate (I) obtained by the above-mentioned anti-corrosion and anti-fouling composite treatment method on the surface of additively manufactured metal parts was tested.
  • the average roughness Ra was 1.2 ⁇ m.
  • the electrochemical performance test of the 316 stainless steel substrate (I) obtained by the above-mentioned anti-corrosion and anti-fouling treatment method on the surface of additively manufactured metal parts for ocean transportation was carried out in a 3.5wt.% NaCl solution.
  • the corrosion potential was 0.2V and the corrosion current was 6 ⁇ 10 -9 A/cm 2 .
  • the antifouling performance of the 316 stainless steel substrate (I) obtained by the above-mentioned surface anti-corrosion and anti-fouling treatment method of additively manufactured metal parts for ocean transportation was characterized. After a 90-day shallow sea hanging test, the surface smoothness was 98%.
  • the surface roughness of the 316 stainless steel substrate (A+B) prepared by the laser selective melting method after shot peening was tested.
  • the average roughness Ra was 2.04 ⁇ m.
  • the electrochemical properties of the 316L stainless steel substrate (A+B) prepared by the laser selective melting method after shot peening were tested in a 3.5wt.% NaCl solution.
  • the corrosion potential was -0.05V and the corrosion current was 9 ⁇ 10 - 9 A/cm 2 .
  • the antifouling performance of the 316L stainless steel substrate (A+B) prepared by the laser selective melting method after shot peening was characterized. After a 90-day shallow sea hanging test, the surface smoothness was 82%.
  • the surface roughness of the 316L stainless steel substrate (A) prepared by the above-mentioned laser selective melting method was tested, and the average roughness Ra was 10 ⁇ m.
  • the electrochemical properties of the 316L stainless steel substrate (A) prepared by the above-mentioned laser selective melting method were tested in a 3.5wt.% NaCl solution.
  • the corrosion potential was -0.22V and the corrosion current was 6 ⁇ 10 -7 A/cm 2 .
  • the antifouling performance of the 316L stainless steel substrate (A) prepared by the above-mentioned laser selective melting method was characterized. After a 90-day shallow sea hanging test, the surface smoothness was 75%.
  • the basic steps are the same as those in Example 1, except that the substrate of the additively manufactured metal part is TC4 titanium alloy, and zirconium oxide ceramic balls are used for shot peening.
  • the surface roughness of the TC4 titanium alloy matrix (I) obtained by the above-mentioned anti-corrosion and anti-fouling composite treatment method on the surface of additively manufactured metal parts was tested, and the average roughness Ra was 1.3 ⁇ m.
  • the electrochemical performance test of the TC4 titanium alloy matrix (I) obtained by the above-mentioned anti-corrosion and anti-fouling composite treatment method on the surface of additively manufactured metal parts was carried out in a 3.5wt.% NaCl solution.
  • the corrosion potential was 0.12V and the corrosion current was 9.1 ⁇ 10 -9 A/cm 2 .
  • the antifouling performance of the TC4 titanium alloy matrix (I) obtained by the above-mentioned anti-corrosion and anti-fouling composite treatment method on the surface of additively manufactured metal parts was characterized. After a 90-day shallow sea hanging test, the surface smoothness was 96%.
  • step (4) is CrAlAgN.
  • step (1) Perform shot peening on the 316L stainless steel substrate (A) in step (1).
  • the shot peening material is S230 steel shot, the shot blasting particle size is 0.6mm, the shot peening pressure is 6 bar, and the shot peening time is 21s, the nozzle length is 80mm and the diameter is 7mm, and the distance between the nozzle and the surface of the substrate (A) is 100mm.
  • the nozzle sprays glass pellets onto the surface of the substrate (A) to form a fan-shaped area that generates compressive stress on it and forms a residual compressive stress layer, thereby improving its fatigue resistance and also obtaining defects that are conducive to combining with the nanocomposite multi-layer CrAlAgN coating (H) Hardened layer (B).
  • step (2) Deposit a nanocomposite multi-layer CrAlAgN coating (H) on the surface of the 316 stainless steel substrate (A) in step (2) by magnetron sputtering.
  • two high-purity chromium targets, one high-purity aluminum target, and one high-purity silver target were placed on the four magnetrons in the cavity, and the substrate (A) was ultrasonically cleaned in alcohol for 10 minutes.
  • the substrate (A) is assembled on the fixture, high-purity argon gas is introduced to 40 sccm, and the deposition gas pressure is adjusted to 0.23 Pa.
  • the substrate bias is 90V
  • the Cr target power is 2300W ⁇ 2400W
  • the Al target power is 2300W ⁇ 2400W
  • the Ag target power is 200W ⁇ 220W
  • the OEM is 35%, that is, the nitrogen flow rate It is 24 ⁇ 28sccm.
  • the surface roughness of the 316L stainless steel substrate (I) obtained by the above-mentioned anti-corrosion and anti-fouling composite treatment method on the surface of additively manufactured metal parts was tested.
  • the average roughness Ra was 1.5 ⁇ m.
  • the electrochemical performance test of the 316L stainless steel substrate (I) obtained by the above-mentioned anti-corrosion and anti-fouling composite treatment method on the surface of additively manufactured metal parts was conducted in a 3.5wt.% NaCl solution.
  • the corrosion potential was 0.18V and the corrosion current was 7 ⁇ 10 - 9 A/cm 2 .
  • the antifouling performance of the 316L stainless steel substrate (I) obtained by the above-mentioned anti-corrosion and anti-fouling composite treatment method on the surface of additively manufactured metal parts was characterized. After a 90-day shallow sea hanging board experiment, the surface smoothness was 97%.
  • the composite treatment by combining shot peening strengthening the substrate and depositing excellent anti-corrosion and anti-fouling nanocomposite multi-layer TiAlCuN coating (H) can promote the anti-corrosion and anti-fouling properties of additively manufactured metal parts for ocean transportation.
  • the 316L stainless steel substrate (A) prepared by laser selective melting method was shot peened (B).
  • the surface roughness was reduced from 10 ⁇ m to 2.04 ⁇ m, and the smoothness was increased by 79.6%; the self-corrosion current was reduced from 6 ⁇ 10 -7 A/cm 2 is reduced to 9 ⁇ 10 -9 A/cm 2 , the anti-corrosion performance is improved by 98.5%; the anti-fouling rate is increased from 75% to 82%, and the anti-fouling performance is improved by 9%.
  • a nanocomposite multi-layer TiAlCuN coating (H) was deposited on the surface of the 316L stainless steel substrate (A) prepared by the laser selective melting method after shot peening.
  • the surface was obtained The roughness was reduced from 10 ⁇ m to 1.2 ⁇ m, and the smoothness was increased by 88%; the self-corrosion current was reduced from 6 ⁇ 10 -7 A/cm 2 to 6 ⁇ 10 -9 A/cm 2 , and the anti-corrosion performance was improved by 99%; the anti-fouling rate was reduced by 78% increased to 98%, and the antifouling performance increased by 25.6%.
  • the TC4 titanium alloy matrix for additive manufacturing metal parts also has low surface roughness and corrosion resistance, and the anti-fouling rate reaches 96%.
  • the design of the nanocomposite multi-layer CrAlAgN coating (H) also has excellent anti-corrosion and anti-fouling properties, with an anti-fouling rate of 97%.
  • the high mechanical performance 316 stainless steel substrate (A) prepared by laser selective melting is shot peened to reduce surface roughness and surface defects, improve the surface quality of parts deposited by magnetron sputtering, and introduce defects at the same time.
  • the hardened layer (B) enhances the formation of the ion intermixing zone (C) during the deposition process, slows down the surface mechanical property change gradient and stress concentration, and improves the comprehensive mechanical properties of the surface of additively manufactured parts.
  • the nanocomposite multilayer nitride coating (H) is then deposited by magnetron sputtering.
  • Its internal structure includes a simple metal bonding layer (D), a nitrogen transition layer (E), and a nanomultilayer containing main alloy elements ( F) and the nanocomposite top layer (G) containing active metals form a good combination and performance optimization, alleviate the discontinuity of stress, increase the load-bearing capacity and plastic resistance, and construct a film-based system with good comprehensive mechanical properties.
  • the coating The main alloy elements in the layer improve the strength and corrosion resistance, and the active metal elements enhance the antibacterial and antifouling properties, achieving long-term anticorrosion and antifouling of additively manufactured metal parts.
  • the method of the present invention can combine shot peening and magnetron sputtering technology to prepare nano-multi-layer anti-corrosion and anti-fouling coatings and high bonding strength interface design structures to obtain a composite surface anti-corrosion and anti-fouling treatment method for additively manufactured metal parts.
  • the process parameters and optimizing the interface design the physical and chemical properties of the substrate surface are changed to achieve long-term anti-corrosion and anti-fouling of additively manufactured metal parts, improve the manufacturing capacity of marine transportation equipment, and have important applications in the field of marine transportation metal parts manufacturing and surface protection. prospect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

一种增材制造金属零件表面防腐防污复合处理方法,包括:1、利用激光选区熔化法制备金属零件基体;2、对金属零件基体表面喷丸处理获得缺陷硬化层;3、通过磁控溅射高能轰击预处理获得离子互混层;4、最后通过磁控溅射法沉积纳米复合多层氮化物涂层,其内部结构包括单质金属粘接层、氮元素过渡层、含主合金元素的纳米多层和含活性金属的纳米复合顶层。通过对增材制造金属零件表面进行喷丸强化处理和磁控溅射法沉积涂层的复合处理方法,构建具有良好综合力学性能的膜基体系,涂层中主合金元素提高强度与耐腐蚀性、活性金属元素增强抗菌防污性,实现长久防腐防污,在海洋运输金属零件制造及表面防护领域具有广阔的应用前景。

Description

一种增材制造金属零件表面防腐防污复合处理方法 技术领域
本发明涉及一种金属零件表面处理方法,尤其涉及一种增材制造金属零件表面防腐防污复合处理方法。
背景技术
增材制造(也称3D打印)是近年来快速发展的特种加工技术,具有快速、精密制造复杂形状和难成形材料零件的能力,被世界各国作为关键先进制造技术列入国家发展计划,并被视为制造海洋运输装备的新途径。在海洋运输装备制造领域,增材制造的研究与应用已经呈现了巨大的应用前景,但是海洋环境复杂多变,涉及温度、湿度、微生物污染物等诸多环境影响因子,要求零件兼具优良力学与优秀的耐腐蚀能力;另一方面,增材制造零件表面缺陷较多、显微组织不均匀、且残余内应力较高,导致其腐蚀行为与机制存在特殊性。因此,亟需深入研究增材制造金属零件的海洋腐蚀特征与机理,开发匹配的先进表面防护技术,以满足现代海洋装备对于防腐、防生物污染和长寿命的更高要求。
目前,国内外研究团队已开发多种诸如热等静压和喷丸等后处理技术,用于优化金属零件内部组织、减少缺陷和调控内应力分布,提升零件的力学性能。当前在海洋腐蚀表面防护技术方面采用的防护技术主要有牺牲阳极、重防腐涂料、热喷涂以及热浸镀等,提高零件表面具备耐磨、耐蚀和抗氧化等性能。然而牺牲阳极效率低、自重大;重防腐涂料体系常含有重金属等有毒物质;热浸镀存在废液排放的环保问题;热喷涂涂层的致密性较低,且上述涂层的结合强度往往较低,易导致剥落从而加速局部腐蚀,难以满足现代海洋装备的更高要求。然而目前针对增材制造金属零件的表面防护技术研究较少,尤其物理气相沉积技术在该领域的研究与应用鲜有报道。
目前针对金属零件的表面防护主要方法是表面改性和表面涂覆。例如CN 112521783A公开了一种防污防腐海洋涂料,该发明是由聚合邻对甲基苯胺等化学物质和定质量比制成的混合物,可有效保护船体不受海水侵蚀影响,并且有效阻止海洋赘生生物附着。CN 113774373 A公开了一种同步超声喷丸辅助制备无缺陷耐磨蚀涂层的方法,该发明是同时开启高速激光熔覆系统和超声喷丸辅助系统获得无缺陷的耐磨蚀涂层,涂层的晶粒明显细化且硬度提高。但目前对面向海洋运输的增材制造金属零件的表 面防护方法鲜有报道,喷丸强化处理和磁控溅射技术制备纳米多层防腐防污涂层的复合处理方法及高结合强度的界面设计构造的复合处理方法更是未曾公开。
发明内容
发明目的:本发明的目的在于通过结合喷丸强化基体和沉积优异防腐防污涂层获得一种增材制造金属零件表面防腐防污复合处理方法。
技术方案:本发明的增材制造金属零件表面防腐防污复合处理方法,包括如下步骤:
(1)利用激光选区熔化法制备金属零件基体(A);
(2)对金属零件基体(A)表面进行喷丸处理,降低表面粗糙度,获得缺陷硬化层(B);
(3)再通过磁控溅射高能轰击预处理获得离子互混层(C);
(4)最后在离子互混层(C)表面通过磁控溅射法沉积出纳米复合多层氮化物涂层(H),其内部结构包括单质金属粘接层(D)、氮元素过渡层(E)、含主合金元素的纳米多层(F)和含活性金属的纳米复合顶层(G)。
优选地,步骤(1)中,所述金属零件基体选用不锈钢、钛合金、钴铬合金或镍基合金。
优选地,步骤(2)中,所述喷丸处理的喷丸材料选用钢或者陶瓷(如氧化锆、二氧化硅、氧化铝)丸,抛丸粒径为0.2~0.85mm;喷丸压力为5~10bar,喷丸时间为10~30s,喷嘴距金属零件基体表面距离为80~100mm。
优选地,步骤(2)中,所述经喷丸处理的基体表面(A)无氧化层与缺陷破坏层,具有低孔隙率和表面粗糙度,诱导残余压应力,促使疲劳裂纹闭合,且获得利于与涂层结合的硬化层(B)。
优选地,步骤(3)中,预处理使用高偏压溅射出高能粒子轰击喷丸处理后的试样表面,与表面喷丸处理后形成的缺陷硬化层(B)形成50~300nm的离子互混层(C),有效清洁表面的污物并能粗化基体(A)表面产生有微观的凹凸不平,提高膜基结合力。
优选的,步骤(4)中,所述磁控溅射法的溅射靶材为四个高纯金属靶,其中含有涂层主要元素的钛金属靶或者铬金属靶或合金靶,其余合金元素可为但不限于钛、铬、铝、钼、钨、铜、银以及其合金靶等;沉积过程中衬底偏压为30~150V,金属靶功率为100W~5000W。
优选地,步骤(4)中,所述纯金属打底层(D)如钛、铬,厚度为100~500nm,作为粘结层将离子互混层与涂层之间形成牢固的物理键合;所述氮过渡层(E)如氮化钛、氮化铬,厚度为400~3000nm,通过连续梯度降低OEM或增加氮气流量;所述含主合金元素如钛铝氮、铬铝氮,纳米多层(F)厚度为400~3000nm,通过连续梯度增加合金元素靶电流与条件转速;所述含活性金属元素顶层(G)如钛铝铜氮、铬铝银氮,厚度为100~1500nm,通过增加铜或银靶电流,梯度提高铜或者银含量。
发明原理:本发明通过对利用激光选区熔化法制备的高力学性能316不锈钢基体(A)进行喷丸处理降低表面粗糙度和表面缺陷,改善磁控溅射沉积的零件表面质量,同时引入的缺陷硬化层(B),增强沉积过程时离子互混区(C)的形成,减缓表面力学性能变化梯度和应力集中,提高增材制造零件表面的综合力学性能。再通过磁控溅射法沉积纳米复合多层氮化物涂层(H),其内部结构包括单质金属粘接层(D)、氮元素过渡层(E)、含主合金元素的纳米多层(F)和含活性金属的纳米复合顶层(G),形成良好的结合和性能的优化,缓解应力的不连续程度,增加承载能力和塑形抗力,构建具有良好综合力学性能的膜基体系,另外涂层中主合金元素提高强度与耐腐蚀性、活性金属元素增强抗菌防污性,实现增材制造金属零件的长久防腐防污。
有益效果:与现有技术相比,本发明具有如下显著优点:
1、通过控制激光选区熔化过程中的激光功率和扫描速度可获得高力学性能金属零件基体(A)。
2、增材制造金属零件基体(A)经喷丸处理降低表面粗糙度和表面缺陷,改善磁控溅射沉积的零件表面质量,同时引入的缺陷硬化层(B),增强沉积过程时离子互混区(C)的形成,减缓表面力学性能变化梯度和应力集中,提高增材制造零件表面的综合力学性能。
3、离子互混层(C)再依次与单质金属粘接层(D)、氮元素过渡层(E)、含主合金元素的纳米多层(F)和含活性金属的纳米复合顶层(G)形成良好的结合和性能的优化,梯度过渡层可缓解应力的不连续程度,增加承载能力和塑形抗力。
4、纳米复合多层氮化物涂层(H)中主合金元素提高强度与耐腐蚀性、活性金属元素增强抗菌防污性。
5、该复合处理方法简单易行,可控性高,无菌染,成本低,对基体材料无要求,且膜基结合力强。
6、本发明通过对增材制造金属零件表面进行喷丸强化处理和磁控溅射法沉积涂层的复合处理方法,构建具有良好综合力学性能的膜基体系,涂层中主合金元素提高强度与耐腐蚀性、活性金属元素增强抗菌防污性,实现长久防腐防污,在海洋运输金属零件制造及表面防护领域具有广阔的应用前景。
附图说明
图1为本发明的结构示意图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
实施例1
一种增材制造金属零件表面防腐防污复合处理方法,包括如下步骤:
(1)将316L不锈钢粉末装入粉末缸中,通入高纯氩气作为保护气体,设定激光功率为120W~200W,扫描速度为800mm/s~950mm/s,利用激光选区熔化法制备高力学性能316L不锈钢基体(A),抗拉强度为500MPa。
(2)对所述步骤(1)中316L不锈钢基体(A)进行喷丸处理,所述喷丸材料为S230钢丸,抛丸粒径为0.6mm,喷丸压力为6bar,喷丸时间为21s,喷嘴长度为80mm且直径为7mm,喷嘴距基体(A)表面距离为100mm。喷嘴向基体(A)表面喷射玻璃弹丸形成扇形区域对其产生压应力,形成残余压应力层,进而提高其抗疲劳强度,也可获得利于与纳米复合多层TiAlCuN涂层(H)结合的缺陷硬化层(B)。
(3)对所述步骤(2)中316不锈钢基体(A)表面通过磁控溅射法沉积纳米复合多层TiAlCuN涂层(H)。首先将两个高纯钛靶材、一个高纯铝靶材、一个高纯铜靶材分别放置在腔体内的四个磁电管上,并将基体(A)在酒精中超声清洗10分钟。其次将基体(A)装配到夹具上,通入高纯氩气为40sccm,调节沉积气压为0.23Pa。溅射过程中使用氩气和氮气混合气,衬底偏压为90V,Ti靶功率为2300W~2400W,Al靶功率为2300W~2400W,Cu靶功率为200W~220W,OEM为35%即氮气流量为24~28sccm。沉积结束后关闭电源,进行降温处理,自然冷却至室温,保持压腔体力与空气压强一致。
对上述由增材制造金属零件表面防腐防污复合处理方法得到的316不锈钢基体(I)进行表面粗糙度测试,平均粗糙度Ra为1.2μm。
对上述由面向海洋运输的增材制造金属零件表面防腐防污处理方法得到的316不锈钢基体(I)在3.5wt.%NaCl溶液中进行电化学性能测试,腐蚀电位为0.2V,腐蚀电流 为6×10 -9A/cm 2
对上述由面向海洋运输的增材制造金属零件表面防腐防污处理方法得到的316不锈钢基体(I)进行防污性能表征,在90天浅海挂板实验后表面光洁度为98%。
实施例2
基本步骤与实施例1相同,所不同的是:仅进行步骤(1)(2)。
对上述经喷丸处理后的激光选区熔化法制备的316不锈钢基体(A+B)进行表面粗糙度测试,平均粗糙度Ra为2.04μm。
对上述经喷丸处理后的激光选区熔化法制备的316L不锈钢基体(A+B)在3.5wt.%NaCl溶液中进行电化学性能测试,腐蚀电位为-0.05V,腐蚀电流为9×10 -9A/cm 2
对上述经喷丸处理后的激光选区熔化法制备的316L不锈钢基体(A+B)进行防污性能表征,在90天浅海挂板实验后表面光洁度为82%。
实施例3
基本步骤与实施例1相同,所不同的是:仅进行步骤(1)。
对上述激光选区熔化法制备的316L不锈钢基体(A)进行表面粗糙度测试,平均粗糙度Ra为10μm。
对上述激光选区熔化法制备的316L不锈钢基体(A)在3.5wt.%NaCl溶液中进行电化学性能测试,腐蚀电位为-0.22V,腐蚀电流为6×10 -7A/cm 2
对上述激光选区熔化法制备的316L不锈钢基体(A)进行防污性能表征,在90天浅海挂板实验后表面光洁度为75%。
实施例4
基本步骤与实施例1相同,所不同的是:增材制造金属零件基体为TC4钛合金,且喷丸处理使用氧化锆陶瓷球。
对上述由增材制造金属零件表面防腐防污复合处理方法得到的TC4钛合金基体(I)进行表面粗糙度测试,平均粗糙度Ra为1.3μm。
对上述由增材制造金属零件表面防腐防污复合处理方法得到的TC4钛合金基体(I)在3.5wt.%NaCl溶液中进行电化学性能测试,腐蚀电位为0.12V,腐蚀电流为9.1×10 -9A/cm 2
对上述由增材制造金属零件表面防腐防污复合处理方法得到的TC4钛合金基体(I)进行防污性能表征,在90天浅海挂板实验后表面光洁度为96%。
实施例5
基本步骤与实施例1相同,所不同的是:步骤(4)中纳米复合多层氮化物涂层为CrAlAgN。
(1)将316L不锈钢粉末装入粉末缸中,通入高纯氩气作为保护气体,设定激光功率为120W~200W,扫描速度为800mm/s~950mm/s,利用激光选区熔化法制备高力学性能316L不锈钢基体(A),抗拉强度为500MPa。
(2)对所述步骤(1)中316L不锈钢基体(A)进行喷丸处理,所述喷丸材料为S230钢丸,抛丸粒径为0.6mm,喷丸压力为6bar,喷丸时间为21s,喷嘴长度为80mm且直径为7mm,喷嘴距基体(A)表面距离为100mm。喷嘴向基体(A)表面喷射玻璃弹丸形成扇形区域对其产生压应力,形成残余压应力层,进而提高其抗疲劳强度,也可获得利于与纳米复合多层CrAlAgN涂层(H)结合的缺陷硬化层(B)。
(3)对所述步骤(2)中316不锈钢基体(A)表面通过磁控溅射法沉积纳米复合多层CrAlAgN涂层(H)。首先将两个高纯铬靶材、一个高纯铝靶材、一个高纯银靶材分别放置在腔体内的四个磁电管上,并将基体(A)在酒精中超声清洗10分钟。其次将基体(A)装配到夹具上,通入高纯氩气为40sccm,调节沉积气压为0.23Pa。溅射过程中使用氩气和氮气混合气,衬底偏压为90V,Cr靶功率为2300W~2400W,Al靶功率为2300W~2400W,Ag靶功率为200W~220W,OEM为35%即氮气流量为24~28sccm。沉积结束后关闭电源,进行降温处理,自然冷却至室温,保持压腔体力与空气压强一致。
对上述由增材制造金属零件表面防腐防污复合处理方法得到的316L不锈钢基体(I)进行表面粗糙度测试,平均粗糙度Ra为1.5μm。
对上述由增材制造金属零件表面防腐防污复合处理方法得到的316L不锈钢基体(I)在3.5wt.%NaCl溶液中进行电化学性能测试,腐蚀电位为0.18V,腐蚀电流为7×10 -9A/cm 2
对上述由增材制造金属零件表面防腐防污复合处理方法得到的316L不锈钢基体(I)进行防污性能表征,在90天浅海挂板实验后表面光洁度为97%。
从以上实施例可以看出,通过结合喷丸强化基体和沉积优异防腐防污纳米复合多层TiAlCuN涂层(H)复合处理对面向海洋运输的增材制造金属零件防腐防污性能有促进作用。对激光选区熔化法制备的316L不锈钢基体(A)进行喷丸处理(B),得到表面粗糙度由10μm降低至2.04μm,光滑度提升79.6%;自腐蚀电流由6×10 -7A/cm 2降低至 9×10 -9A/cm 2,防腐性能提升98.5%;防污率由75%升高至82%,防污性能提升9%。对上述经喷丸处理后的激光选区熔化法制备的316L不锈钢基体(A)表面沉积纳米复合多层TiAlCuN涂层(H),即通过增材制造金属零件表面防腐防污复合处理方法,得到表面粗糙度由10μm降低至1.2μm,光滑度提升88%;自腐蚀电流由6×10 -7A/cm 2降低到6×10 -9A/cm 2,防腐性能提升99%;防污率由78%升高至98%,防污性能提升25.6%。另外,对于增材制造金属零件TC4钛合金基体,也具有较低的表面粗糙度和耐腐蚀性能,防污率达到96%。另外,对于纳米复合多层CrAlAgN涂层(H)设计也具有优异的防腐防污性能,防污率达到97%。
在海洋运输装备制造领域,增材制造的研究与应用已经呈现了巨大的应用前景,但是海洋环境复杂多变,涉及温度、湿度、微生物污染物等诸多环境影响因子,要求零件兼具优良力学与优秀的耐腐蚀能力;且增材制造零件表面缺陷较多、显微组织不均匀、残余内应力较高,导致其腐蚀行为与机制存在特殊性。
如图1所示,对利用激光选区熔化法制备的高力学性能316不锈钢基体(A)进行喷丸处理降低表面粗糙度和表面缺陷,改善磁控溅射沉积的零件表面质量,同时引入的缺陷硬化层(B),增强沉积过程时离子互混区(C)的形成,减缓表面力学性能变化梯度和应力集中,提高增材制造零件表面的综合力学性能。再通过磁控溅射法沉积纳米复合多层氮化物涂层(H),其内部结构包括单质金属粘接层(D)、氮元素过渡层(E)、含主合金元素的纳米多层(F)和含活性金属的纳米复合顶层(G)形成良好的结合和性能的优化,缓解应力的不连续程度,增加承载能力和塑形抗力,构建具有良好综合力学性能的膜基体系,另外涂层中主合金元素提高强度与耐腐蚀性、活性金属元素增强抗菌防污性,实现增材制造金属零件的长久防腐防污。
因此,本发明方法能够结合喷丸强化处理和磁控溅射技术制备纳米多层防腐防污涂层及高结合强度的界面设计构造获得一种增材制造金属零件表面防腐防污复合处理方法,并通过改变工艺参数及优化界面设计进而改变基体表面的物理化学性质,实现增材制造金属零件长久防腐防污,提升海洋运输装备制造能力,在海洋运输金属零件制造及表面防护领域具有重大的应用前景。

Claims (10)

  1. 一种增材制造金属零件表面防腐防污复合处理方法,其特征在于,包括如下步骤:
    (1)利用激光选区熔化法制备金属零件基体(A);
    (2)对金属零件基体表面进行喷丸处理,降低表面粗糙度,获得缺陷硬化层(B);
    (3)再通过磁控溅射高能轰击预处理获得离子互混层(C);
    (4)最后在离子互混层(C)表面通过磁控溅射法沉积纳米复合多层氮化物涂层(H),其内部结构包括单质金属粘接层(D)、氮元素过渡层(E)、含主合金元素的纳米多层(F)和含活性金属的纳米复合顶层(G)。
  2. 根据权利要求1所述的增材制造金属零件表面防腐防污复合处理方法,其特征在于,步骤(1)中,所述金属零件基体选用不锈钢、钛合金、钴铬合金或镍基合金。
  3. 根据权利要求1所述的增材制造金属零件表面防腐防污复合处理方法,其特征在于,步骤(2)中,所述喷丸处理的喷丸材料选用钢或陶瓷(如氧化锆、二氧化硅、氧化铝)丸,抛丸粒径为0.2~0.85mm;喷丸压力为5~10bar,喷丸时间为10~30s,喷嘴距金属零件基体表面距离为80~100mm。
  4. 根据权利要求1所述的增材制造金属零件表面防腐防污复合处理方法,其特征在于,步骤(3)中,所述离子互混层厚度为50~300nm。
  5. 根据权利要求1所述的增材制造金属零件表面防腐防污复合处理方法,其特征在于,步骤(4)中,所述磁控溅射法的溅射靶材为四个高纯金属靶,其中含有涂层主要元素的钛金属靶或者铬金属靶或合金靶,其余合金元素可为但不限于钛、铬、铝、钼、钨、铜、银以及其合金靶等;沉积过程中衬底偏压为30~150V,金属靶功率为100W~5000W。
  6. 根据权利要求1或5所述的增材制造金属零件表面防腐防污复合处理方法,其特征在于,所述磁控溅射法的溅射氛围为氩气与氮气的混合气,沉积气压为0.1~0.8Pa;沉积时氮气成分采用光谱仪或者流量控制,氮气流量为4~50sccm;涂层厚度为1-8μm。
  7. 根据权利要求1所述的增材制造金属零件表面防腐防污复合处理方法,其特征在于,所述单质金属粘接层如钛、铬,厚度为100~500nm,作为粘结层将离子互混层与涂层之间形成牢固的物理键合。
  8. 根据权利要求1所述的增材制造金属零件表面防腐防污复合处理方法,其特征在于,所述氮过渡层如氮化钛、氮化铬,厚度为400~3000nm,通过连续梯度降低OEM 或增加氮气流量。
  9. 根据权利要求1所述的增材制造金属零件表面防腐防污复合处理方法,其特征在于,所述含主合金元素的纳米多层如钛铝氮、铬铝氮,厚度为400~3000nm,通过连续梯度增加合金元素靶电流与条件转速。
  10. 根据权利要求1所述的增材制造金属零件表面防腐防污复合处理方法,其特征在于,所述含活性金属的纳米复合顶层如钛铝铜氮、铬铝银氮,厚度为100~1500nm,通过增加铜或银靶电流,梯度提高铜或者银含量。
PCT/CN2022/089233 2022-04-18 2022-04-26 一种增材制造金属零件表面防腐防污复合处理方法 WO2023201766A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210402564.2A CN114632949B (zh) 2022-04-18 2022-04-18 一种增材制造金属零件表面防腐防污复合处理方法
CN202210402564.2 2022-04-18

Publications (1)

Publication Number Publication Date
WO2023201766A1 true WO2023201766A1 (zh) 2023-10-26

Family

ID=81952036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089233 WO2023201766A1 (zh) 2022-04-18 2022-04-26 一种增材制造金属零件表面防腐防污复合处理方法

Country Status (2)

Country Link
CN (1) CN114632949B (zh)
WO (1) WO2023201766A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115319096A (zh) * 2022-08-15 2022-11-11 中国科学院宁波材料技术与工程研究所 一种粉末冶金材料表面耐磨防护的复合处理方法及其用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2013132038A (ru) * 2013-07-10 2015-01-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ получения многослойного градиентного покрытия методом магнетронного напыления
US20170030204A1 (en) * 2010-05-28 2017-02-02 Vladimir Gorokhovsky Erosion And Corrosion Resistant Protective Coatings For Turbomachinery
CN110106468A (zh) * 2019-06-27 2019-08-09 江西理工大学 基于硬质合金基体表面纳米化的涂层制备方法
CN111005002A (zh) * 2020-01-08 2020-04-14 中国航空制造技术研究院 一种压气机叶片耐冲蚀防腐蚀自洁涂层的制备方法
CN112941463A (zh) * 2020-12-31 2021-06-11 广东振华科技股份有限公司 一种钛合金表面纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用
CN114107900A (zh) * 2021-12-08 2022-03-01 中国科学院兰州化学物理研究所 一种耐腐蚀BCSiAlCrNx高熵氮化物薄膜及其制备方法
CN114318467A (zh) * 2022-01-17 2022-04-12 西安工业大学 一种适用于海洋环境下钛合金耐磨损、抗菌复合涂层及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635124B1 (en) * 2002-08-29 2003-10-21 General Electric Company Method of depositing a thermal barrier coating
CA2867451C (en) * 2013-10-28 2021-06-29 Vapor Technologies, Inc. Low pressure arc plasma immersion coating vapor deposition and ion treatment
JP2020041186A (ja) * 2018-09-10 2020-03-19 大同特殊鋼株式会社 ガス浸炭用肌焼鋼及びガス浸炭部品
CN109487213A (zh) * 2018-11-20 2019-03-19 山东科技大学 一种基于不锈钢的耐蚀防污薄膜及其制备方法
CN113025953B (zh) * 2021-03-02 2023-06-23 中国科学院宁波材料技术与工程研究所 一种高熵合金氮化物复合涂层及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170030204A1 (en) * 2010-05-28 2017-02-02 Vladimir Gorokhovsky Erosion And Corrosion Resistant Protective Coatings For Turbomachinery
RU2013132038A (ru) * 2013-07-10 2015-01-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ получения многослойного градиентного покрытия методом магнетронного напыления
CN110106468A (zh) * 2019-06-27 2019-08-09 江西理工大学 基于硬质合金基体表面纳米化的涂层制备方法
CN111005002A (zh) * 2020-01-08 2020-04-14 中国航空制造技术研究院 一种压气机叶片耐冲蚀防腐蚀自洁涂层的制备方法
CN112941463A (zh) * 2020-12-31 2021-06-11 广东振华科技股份有限公司 一种钛合金表面纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用
CN114107900A (zh) * 2021-12-08 2022-03-01 中国科学院兰州化学物理研究所 一种耐腐蚀BCSiAlCrNx高熵氮化物薄膜及其制备方法
CN114318467A (zh) * 2022-01-17 2022-04-12 西安工业大学 一种适用于海洋环境下钛合金耐磨损、抗菌复合涂层及其制备方法

Also Published As

Publication number Publication date
CN114632949B (zh) 2022-12-16
CN114632949A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
Huang et al. Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings: A review
Yuan et al. Recent developments in research of double glow plasma surface alloying technology: a brief review
CN101430004B (zh) 一种pvd铬基陶瓷复合涂层活塞环及其制备方法
CN108359927B (zh) 一种NiCr/Al2O3复合涂层的制备方法
CN104711515A (zh) 一种Cr-CrN纳米复合金属陶瓷涂层及其制备方法和设备
CN102925842A (zh) 结晶器铜板表面超音速大气等离子喷涂陶瓷涂层的方法
CN109913792B (zh) 一种利用热-力复合效应提高热喷涂涂层抗高温氧化性能的方法
WO2023201766A1 (zh) 一种增材制造金属零件表面防腐防污复合处理方法
CN107058943A (zh) TiCN/CrCN纳米多层膜及其制备方法
CN106011721B (zh) 一种采用热喷涂法制备多层涂层的方法
CN113088956B (zh) 一种基于冷喷涂的耐腐蚀复合涂层及其制备方法和应用
WO2023123858A1 (zh) Q235钢表面耐磨疏水涂层及其制备方法
Li et al. Effect of spray powder particle size on the bionic hydrophobic structures and corrosion performance of Fe-based amorphous metallic coatings
CN102041468A (zh) 一种铁基非晶涂层的制备方法
Rukanskis Control of metal surface mechanical and tribological characteristics using cost effective electro-spark deposition
CN102560338A (zh) 一种金属陶瓷涂层及其制备方法
CN103256142A (zh) 一种节油型Cr-O-N纳米晶复合陶瓷涂层柴油发动机活塞环及制备方法
Zhang et al. The evaluation of microstructure characteristic and corrosion performance of laser-re-melted Fe-based amorphous coating deposited via plasma spraying
CN102865220B (zh) 氮化碳基纳米复合涂层发动机燃油泵柱塞及其制备方法
CN112941463B (zh) 一种纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用
Sun et al. Characteristic comparison of stacked WC-based coatings prepared by high-velocity oxygen-fuel spray and electric contact strengthening
CN206828625U (zh) TiCN/CrCN纳米多层膜
CN1958834A (zh) 烟道受热面合金喷涂方法
CN113881917B (zh) 一种港口起重机防腐涂层及制备方法
CN115161585B (zh) 一种耐磨耐腐蚀WC-10Co4Cr闪钨涂层的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938002

Country of ref document: EP

Kind code of ref document: A1