WO2023123858A1 - Q235钢表面耐磨疏水涂层及其制备方法 - Google Patents

Q235钢表面耐磨疏水涂层及其制备方法 Download PDF

Info

Publication number
WO2023123858A1
WO2023123858A1 PCT/CN2022/096101 CN2022096101W WO2023123858A1 WO 2023123858 A1 WO2023123858 A1 WO 2023123858A1 CN 2022096101 W CN2022096101 W CN 2022096101W WO 2023123858 A1 WO2023123858 A1 WO 2023123858A1
Authority
WO
WIPO (PCT)
Prior art keywords
wear
preparation
coating
resistant
powder
Prior art date
Application number
PCT/CN2022/096101
Other languages
English (en)
French (fr)
Inventor
魏坤霞
田宇鹏
魏伟
杜庆柏
安旭龙
汪丹丹
Original Assignee
常州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州大学 filed Critical 常州大学
Publication of WO2023123858A1 publication Critical patent/WO2023123858A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • hydrophobic performance of a solid surface is determined by two factors, one is the size of its surface roughness, and the other is the surface energy of the solid surface.
  • the hydrophobic performance of a solid surface is determined by two factors, one is the size of its surface roughness, and the other is the surface energy of the solid surface.
  • there are two ways to prepare a hydrophobic surface one is to reduce the original surface energy of the solid, and the other is to increase the roughness of the surface. These two methods are to increase the micro-texture on the low surface energy solid to improve the roughness and Microtextures are constructed on high surface energy solids and then modified with low surface energy substances.
  • the hydrophobic coatings prepared by traditional techniques have disadvantages such as low hardness and poor surface wear resistance.
  • the present invention proposes a wear-resistant and hydrophobic WC/Ni60-Al 2 O 3 composite coating and its preparation method to improve the wear-resistant and hydrophobic performance of Q235 steel and prolong its service life in oil and gas, ships, etc. service life.
  • Metal substrate surface pretreatment put the substrate material in a solvent for ultrasonic decontamination cleaning and drying, and then use a sandblasting machine for sandblasting and derusting treatment;
  • Atmospheric plasma spraying technology is used to prepare wear-resistant coating with micro-nano structure on the surface of the substrate with Ni60 self-fluxing alloy powder, WC and Al 2 O 3 ceramic powder as raw materials;
  • Atmospheric plasma spraying parameters current 450-550A, voltage 65-75V, Ar 2 flow rate 35-45L/min, H 2 flow rate 6L/min, spraying distance 80-130mm, powder feeding volume 20-30g /min.
  • the wet ball milling method adopts a planetary ball mill, and the experimental parameters are: rotating speed 300r/min, time 4h.
  • the low surface energy substance solution is an ethanol solution of all (heptadeca) fluorodecyltrimethoxysilane, and the mass concentration of the solution is 2% to 5%.
  • the invention adopts atmospheric plasma spraying technology to build wear-resistant rough surface of micro-nano structure.
  • WC is the main material for making cemented carbide, which is a hexagonal asymmetric central structure. W atoms in the unit cell form an octahedral structure, and are filled with C atoms. Covalent bonds are formed between them, and this structure endows WC cemented carbide with excellent physical properties such as good wear resistance and high hardness.
  • Ni60 is NiCrBSi powder with high hardness.
  • the coating has the characteristics of high hardness, corrosion resistance and wear resistance.
  • the thermal expansion coefficient of Ni60 is close to that of the metal substrate, which is more conducive to improving the bonding force between the coating and the substrate.
  • Al 2 O 3 ceramic material has high hardness, good chemical stability, and abundant resources.
  • the Al 2 O 3 coating has a low wear resistance coefficient and is the first choice for wear-resistant coating materials.
  • the spraying current is large and the argon gas flow rate is also large, the temperature of the plasma flame is higher and the flow rate is faster, and the powder can be fully melted and dispersed in the flame, so when the powder is deposited on the substrate
  • the distribution is more uniform and continuous, and at the same time, more molten WC/Ni60 powder is dispersed into fine particles by the gas and adheres to the surface of Al 2 O 3 particles to form more micro-nano binary papilla structures.
  • the micro-nano structure can effectively improve the hydrophobicity of the coating.
  • Atmospheric plasma spraying technology has high deposition efficiency, easy control and low cost, and is a widely used surface engineering technology. Adding Al 2 O 3 ceramic powder to the WC/Ni60 composite coating is conducive to the formation of more micro-nano binary papilla structures, which can effectively improve the hydrophobicity of the coating.
  • Figure 1 is a scanning electron photo of the surface of the wear-resistant coating with micro-nano structure prepared by atmospheric plasma spraying in Example 6.
  • Fig. 3 is the characterization result of wear resistance of the wear-resistant hydrophobic WC/Ni60-Al 2 O 3 coating in Example 6.
  • a preparation method of wear-resistant hydrophobic WC/Ni60-Al 2 O 3 composite coating comprising the following steps:
  • Atmospheric plasma spraying equipment is used to spray on the surface of the sandblasted substrate.
  • the main gas is argon
  • the auxiliary gas is hydrogen.
  • the main process parameters are: current 500A, voltage 70V, spraying distance 100mm, main gas flow rate 40L/min, powder feeding amount 30g/min. Let cool at room temperature.
  • the microhardness is 821HV 0.1
  • the bonding strength is 52MPa
  • the surface static contact angle is 142.4°
  • the friction and wear rate is 9.97 ⁇ 10 -5 mm 3 /(N ⁇ m).
  • Atmospheric plasma spraying equipment is used to spray on the surface of the sandblasted substrate.
  • the main gas is argon
  • the auxiliary gas is hydrogen.
  • the main process parameters are: current 550A, voltage 65V, spraying distance 100mm, main gas flow rate 40L/min, powder feeding amount 30g/min, after spraying, the sample is in the Let cool at room temperature.
  • Atmospheric plasma spraying equipment is used to spray on the surface of the sandblasted substrate.
  • the main gas is argon
  • the auxiliary gas is hydrogen.
  • the main process parameters are: current 450A, voltage 75V, spraying distance 100mm, main gas flow rate 40L/min, and powder feeding volume 30g/min. Let cool at room temperature.
  • the microhardness is 833HV 0.1
  • the bonding strength is 51MPa
  • the surface static contact angle is 137.8°
  • the friction and wear rate is 11.32 ⁇ 10 -5 mm 3 /(N ⁇ m).
  • the microhardness is 894HV 0.1
  • the bonding strength is 57MPa
  • the surface static contact angle is 128.5°
  • the friction and wear rate is 7.63 ⁇ 10 -5 mm 3 /(N ⁇ m).
  • the microhardness is 894HV 0.1
  • the bonding strength is 57MPa
  • the surface static contact angle is 142.6°
  • the friction and wear rate is 7.63 ⁇ 10 -5 mm 3 /(N ⁇ m).
  • a preparation method of wear-resistant hydrophobic WC/Ni60-Al 2 O 3 composite coating comprising the following steps:
  • the microhardness is 894HV 0.1
  • the bonding strength is 57MPa
  • the surface static contact angle is 134.5°
  • the friction and wear rate is 7.63 ⁇ 10 -5 mm 3 /(N ⁇ m).
  • a preparation method of wear-resistant hydrophobic WC/Ni60-Al 2 O 3 composite coating comprising the following steps:
  • Atmospheric plasma spraying equipment is used to spray on the surface of the sandblasted substrate.
  • the main gas is argon
  • the auxiliary gas is hydrogen.
  • the main process parameters are: current 550A, voltage 65V, spraying distance 100mm, main gas flow rate 40L/min, powder feeding amount 30g/min, after spraying, the sample is in the Let cool at room temperature.
  • the microhardness is 862HV 0.1
  • the bonding strength is 57MPa
  • the surface static contact angle is 147.4°
  • the friction and wear rate is 8.08 ⁇ 10 -5 mm 3 /(N ⁇ m).
  • a preparation method of wear-resistant hydrophobic WC/Ni60 composite coating comprising the following steps:
  • Atmospheric plasma spraying equipment is used to spray on the surface of the sandblasted substrate.
  • the main gas is argon
  • the auxiliary gas is hydrogen.
  • the main process parameters are: current 550A, voltage 65V, spraying distance 100mm, main gas flow rate 40L/min, powder feeding amount 30g/min, after spraying, the sample is in the Let cool at room temperature.
  • the microhardness is 883HV 0.1
  • the bonding strength is 58MPa
  • the surface static contact angle is 140.2°
  • the friction and wear rate is 8.34 ⁇ 10 -5 mm 3 /(N ⁇ m).
  • a preparation method of wear-resistant hydrophobic WC/Ni60-Al 2 O 3 composite coating comprising the following steps:
  • the microhardness is 894HV 0.1
  • the bonding strength is 57MPa
  • the surface static contact angle is 128.5°
  • the friction and wear rate is 7.63 ⁇ 10 -5 mm 3 /(N ⁇ m).

Abstract

属于涂层技术领域,提供一种Q235钢表面耐磨疏水涂层及其制备方法,对Q235钢基体进行除锈、脱脂、喷砂预处理;通过大气等离子喷涂技术先在基体上制备成分为WC/Ni60-Al 2O 3的复合涂层,然后浸入含低表面能物质的溶液中修饰一段时间后,放入烘箱干燥,即可得到耐磨疏水WC/Ni60-Al 2O 3复合涂层。通过大气等离子喷涂所制备的涂层具有优异的耐磨性,较好的防水性能,涂层与基体结合力高,操作方便,实用性较强。

Description

Q235钢表面耐磨疏水涂层及其制备方法 技术领域
本发明属于涂层技术领域,具体涉及一种Q235钢表面耐磨疏水涂层及其制备方法。
背景技术
Q235钢具有良好的塑性、韧性和切削加工性能,且生产成本低廉,易于实现规模化生产,在石油化工和海洋船舶领域得到了广泛的应用。通过对“荷叶效应”的研究,人们可以制作出疏水表面,并且由此衍生出其在防水、耐腐蚀、船舶减阻等方面的应用。在Q235钢表面制备耐磨疏水涂层不仅可以提高工件耐磨性同时能提高防水、耐腐蚀性能,大大提高了Q235钢在石油化工、船舶等行业的使用寿命。
目前,人工制备疏水涂层的方法越来越多,根据疏水的理论依据,固体表面的疏水性能是由两个因素决定的,一个是其表面粗糙度的大小,另一个是固体表面的表面能,因此就有两种途径来制备疏水表面,一是降低固体原来的表面能,二是增加表面的粗糙度,这两种方法就是在低表面能固体上增加微织构来提高粗糙度和在高的表面能固体上构造微织构再用低表面能的物质去修饰。但是,传统技术制备的疏水涂层存在硬度低、表面耐磨性差等缺点。
发明内容
本发明针对背景技术中的问题提出了一种耐磨疏水WC/Ni60-Al 2O 3复合涂层及其制备方法,来提高Q235钢的耐磨疏水性能,延长其在油气、船舶等方面的使用寿命。
本发明技术方案如下:
耐磨疏水WC/Ni60-Al 2O 3复合涂层在Q235钢基体表面的制备方法,具体包括如下步骤:
(1)金属基体表面预处理:将基体材料置于溶剂中进行超声波除污清洗并干燥,然后使用喷砂机进行喷砂除锈处理;
所述溶剂为酒精或丙酮。
(2)微纳米结构耐磨涂层的制备:采用大气等离子喷涂技术,以Ni60自熔性合金粉末、WC和Al 2O 3陶瓷粉末为原料在基体表面制备微纳米结构耐磨涂层;
大气等离子喷涂的参数:电流为450~550A,电压为65~75V,Ar 2流量为35~45L/min,H 2流量为6L/min,喷涂距离为80~130mm,送粉量为20~30g/min。
三种粉末按照质量百分比的组成:WC为55%~70%,Ni60为20%~30%,Al 2O 3为5%~15%。
Ni60合金粉末粒径为20~75μm,WC陶瓷粉末粒径为10~30μm,Al 2O 3陶瓷粉末粒径为10~30μm。
混合粉末配置完成后进行湿法球磨进行混合,球料质量比为1.5:1,溶质为乙醇溶液。
湿法球磨法采用行星式球磨机,实验参数为:转速300r/min,时间4h。
涂层的厚度为100~150μm。
(3)涂层表面低表面能材料修饰:将微纳米结构耐磨涂层浸入低表面能物质溶液中,在60℃温度下浸泡2h,酒精冲洗,烘干,得到耐磨疏水WC/Ni60-Al 2O 3涂层。
低表面能物质溶液为全(十七)氟癸基三甲氧基硅烷的乙醇溶液,溶液的 质量浓度为2%~5%。
本发明采用大气等离子喷涂技术构建微纳米结构耐磨粗糙表面,WC是制造硬质合金的主要材料,是六方非对称中心结构,晶胞中W原子组成八面体结构,并与所填充的C原子之间形成共价键,这种结构赋予WC硬质合金耐磨性好、硬度高等优异的物理性能。Ni60是高硬度的NiCrBSi粉末,涂层具有硬度高、耐蚀、耐磨等特点,Ni60热膨胀系数与金属基体接近,更有利于提高涂层与基体之间的结合力。Al 2O 3陶瓷材料硬度高、化学稳定性好、且资源丰富,制成Al 2O 3涂层耐磨系数低,是耐磨涂层材料的首选。
在喷涂过程中,由于Al 2O 3颗粒的密度较小,所以其比重也较小,经过焰流加速到达基体时的能量较小,在涂层表面沉积时不能获得足够的撞击能量,从而未能产生较大的变形量,故其表面的Al 2O 3颗粒容易形成圆形或椭球形结构。当喷涂电流较大,且氩气流量也较大,使得等离子焰流的温度更高,流速更快,粉末在焰流中能够较充分的熔融并且能分散开来,所以粉末在基体上沉积时分布更均匀更连续,同时也使得更多熔融的WC/Ni60粉末被气体分散成细小颗粒而粘附于Al 2O 3颗粒表面而形成了更多的微纳米级二元小乳突结构这种微纳米结构能够有效提高涂层的疏水性能。
本发明有益效果:
大气等离子喷涂技术沉积效率高,易于控制且成本较低,是一种广泛应用的表面工程技术。WC/Ni60复合涂层中加入Al 2O 3陶瓷粉末,有利于形成更多的微纳米级二元小乳突结构,这种微纳米结构能够有效提高涂层的疏水性能。
附图说明:
图1为实施例6中大气等离子喷涂制备的微纳米结构耐磨涂层表面扫描电子照片。
图2为实施例6中耐磨疏水WC/Ni60-Al 2O 3涂层经过低表面能材料修饰的接触角测试结果,静态接触角为154.5°。
图3为实施例6中耐磨疏水WC/Ni60-Al 2O 3涂层的耐磨性能表征结果。
具体实施方式
下面结合实施例对本发明做进一步描述,但不限于。
实施例1
一种耐磨疏水WC/Ni60-Al 2O 3复合涂层的制备方法,包括以下步骤:
1)量取200g粉末,其中,WC、Ni60、Al 2O 3三种粉末质量分数分别为66.5%、28.5%、5.0%,放入球磨罐中,复合粉末和二氧化锆陶瓷球的质量比为1:1.5,湿磨介质为无水乙醇,行星球磨机转速为300r/min,球磨时间4h。
2)将湿磨混合后的复合浆液和陶瓷磨球分离,浆液在50℃下干燥12h之后作为喷涂用复合粉末。
3)用酒精或丙酮对Q235钢基体进行超声清洗20min,然后通过喷砂机用46#白刚玉砂对基体表面进行喷砂粗化处理,喷砂压力0.7MPa,喷砂角度为45°。
4)采用大气等离子喷涂设备在经过喷砂处理的基体表面喷涂。喷涂过程中主气为氩气,辅气为氢气,主要工艺参数为:电流500A,电压70V,喷涂距离100mm,主气流量40L/min,送粉量为30g/min,喷涂结束后试样在室温下冷却。
5)使用全(十七)氟癸基三甲氧基硅烷作为修饰剂,在99.5ml的酒精溶液(分析纯AR)中滴入0.5ml的修饰剂,使用磁力搅拌器搅拌20min,配制成修饰液。将涂层放入修饰液中,60℃水浴浸泡2h,用超声波清洗后烘干。
该条件下所测得的性能结果:显微硬度为821HV 0.1,结合强度为52MPa,表面静态接触角为142.4°,摩擦磨损率为9.97×10 -5mm 3/(N·m)。
实施例2
一种耐磨疏水WC/Ni60-Al 2O 3复合涂层的制备方法,包括以下步骤:
1)量取200g粉末,其中WC、Ni60、Al 2O 3三种粉末质量分数分别为66.5%、28.5%、5.0%,放入球磨罐中,复合粉末和二氧化锆陶瓷球的质量比为1:1.5,湿磨介质为无水乙醇,行星球磨机转速为300r/min,球磨时间4h。
2)将湿磨混合后的复合浆液和陶瓷磨球分离,浆液在50℃下干燥12h之后作为喷涂用复合粉末。
3)用酒精或丙酮对Q235钢基体进行超声清洗20min,然后通过喷砂机用46#白刚玉砂对基体表面进行喷砂粗化处理,喷砂压力0.7MPa,喷砂角度为45°。
4)采用大气等离子喷涂设备在经过喷砂处理的基体表面喷涂。喷涂过程中主气为氩气,辅气为氢气,主要工艺参数为:电流550A,电压65V,喷涂距离100mm,主气流量40L/min,送粉量为30g/min,喷涂结束后试样在室温下冷却。
5)使用全(十七)氟癸基三甲氧基硅烷作为修饰剂,在99.5ml的酒精溶液(分析纯AR)中滴入0.5ml的修饰剂,使用磁力搅拌器搅拌20min,配制成修饰液。将涂层放入修饰液中,60℃水浴浸泡2h,用超声波清洗后烘干。
该条件下所测得的性能结果:显微硬度为880HV 0.1,结合强度为56MPa,表面静态接触角为148.3°,摩擦磨损率为8.65×10 -5mm 3/(N·m)。
实施例3
一种耐磨疏水WC/Ni60-Al 2O 3复合涂层的制备方法,包括以下步骤:
1)量取量取200g粉末,其中WC、Ni60、Al 2O 3三种粉末质量分数分别为66.5%、28.5%、5.0%,放入球磨罐中,复合粉末和二氧化锆陶瓷球的质量比为1:1.5,湿磨介质为无水乙醇,行星球磨机转速为300r/min,球磨时间4h。
2)将湿磨混合后的复合浆液和陶瓷磨球分离,浆液在50℃下干燥12h之后作为喷涂用复合粉末。
3)用酒精或丙酮对Q235钢基体进行超声清洗20min,然后通过喷砂机用46#白刚玉砂对基体表面进行喷砂粗化处理,喷砂压力0.7MPa,喷砂角度为45°。
4)采用大气等离子喷涂设备在经过喷砂处理的基体表面喷涂。喷涂过程中主气为氩气,辅气为氢气,主要工艺参数为:电流450A,电压75V,喷涂距离100mm,主气流量40L/min,送粉量为30g/min,喷涂结束后试样在室温下冷却。
5)使用全(十七)氟癸基三甲氧基硅烷作为修饰剂,在99.5ml的酒精溶液(分析纯AR)中滴入0.5ml的修饰剂,使用磁力搅拌器搅拌20min,配制成修饰液。将涂层放入修饰液中,60℃水浴浸泡2h,用超声波清洗后烘干。
该条件下所测得的性能结果:显微硬度为833HV 0.1,结合强度为51MPa,表面静态接触角为137.8°,摩擦磨损率为11.32×10 -5mm 3/(N·m)。
实施例4
一种耐磨疏水WC/Ni60-Al 2O 3复合涂层的制备方法,包括以下步骤:
1)量取量取200g粉末,其中WC、Ni60、Al 2O 3三种粉末质量分数分别为63.0%、27.0%、10.0%,放入球磨罐中,复合粉末和二氧化锆陶瓷球的质量比为1:1.5,湿磨介质为无水乙醇,行星球磨机转速为300r/min,球磨时间4h。
2)将湿磨混合后的复合浆液和陶瓷磨球分离,浆液在50℃下干燥12h之后作为喷涂用复合粉末。
3)用酒精或丙酮对Q235钢基体进行超声清洗20min,然后通过喷砂机用46#白刚玉砂对基体表面进行喷砂粗化处理,喷砂压力0.7MPa,喷砂角度为45°。
4)采用大气等离子喷涂设备在经过喷砂处理的基体表面喷涂。喷涂过程中主气为氩气,辅气为氢气,主要工艺参数为:电流550A,电压65V,喷涂距离100mm,主气流量40L/min,送粉量为30g/min,喷涂结束后试样在室温下冷却。
5)使用全(十七)氟癸基三甲氧基硅烷作为修饰剂,在99.5ml的酒精溶液(分 析纯AR)中滴入0.5ml的修饰剂,使用磁力搅拌器搅拌20min,配制成修饰液。将涂层放入修饰液中,60℃水浴浸泡0.5h,用超声波清洗后烘干。
该条件下所测得的性能结果:显微硬度为894HV 0.1,结合强度为57MPa,表面静态接触角为128.5°,摩擦磨损率为7.63×10 -5mm 3/(N·m)。
实施例5
一种耐磨疏水WC/Ni60-Al 2O 3复合涂层的制备方法,包括以下步骤:
1)量取量取200g粉末,其中WC、Ni60、Al 2O 3三种粉末质量分数分别为63.0%、27.0%、10.0%,放入球磨罐中,复合粉末和二氧化锆陶瓷球的质量比为1:1.5,湿磨介质为无水乙醇,行星球磨机转速为300r/min,球磨时间4h。
2)将湿磨混合后的复合浆液和陶瓷磨球分离,浆液在50℃下干燥12h之后作为喷涂用复合粉末。
3)用酒精或丙酮对Q235钢基体进行超声清洗20min,然后通过喷砂机用46#白刚玉砂对基体表面进行喷砂粗化处理,喷砂压力0.7MPa,喷砂角度为45°。
4)采用大气等离子喷涂设备在经过喷砂处理的基体表面喷涂。喷涂过程中主气为氩气,辅气为氢气,主要工艺参数为:电流550A,电压65V,喷涂距离100mm,主气流量40L/min,送粉量为30g/min,喷涂结束后试样在室温下冷却。
5)使用全(十七)氟癸基三甲氧基硅烷作为修饰剂,在99.5ml的酒精溶液(分析纯AR)中滴入0.5ml的修饰剂,使用磁力搅拌器搅拌20min,配制成修饰液。将涂层放入修饰液中,60℃水浴浸泡1h,用超声波清洗后烘干。
该条件下所测得的性能结果:显微硬度为894HV 0.1,结合强度为57MPa,表面静态接触角为142.6°,摩擦磨损率为7.63×10 -5mm 3/(N·m)。
实施例6
一种耐磨疏水WC/Ni60-Al 2O 3复合涂层的制备方法,包括以下步骤:
1)量取量取200g粉末,其中WC、Ni60、Al 2O 3三种粉末质量分数分别为63.0%、27.0%、10.0%,放入球磨罐中,复合粉末和二氧化锆陶瓷球的质量比为1:1.5,湿磨介质为无水乙醇,行星球磨机转速为300r/min,球磨时间4h。
2)将湿磨混合后的复合浆液和陶瓷磨球分离,浆液在50℃下干燥12h之后作为喷涂用复合粉末。
3)用酒精或丙酮对Q235钢基体进行超声清洗20min,然后通过喷砂机用46#白刚玉砂对基体表面进行喷砂粗化处理,喷砂压力0.7MPa,喷砂角度为45°。
4)采用大气等离子喷涂设备在经过喷砂处理的基体表面喷涂。喷涂过程中主气为氩气,辅气为氢气,主要工艺参数为:电流550A,电压65V,喷涂距离100mm,主气流量40L/min,送粉量为30g/min,喷涂结束后试样在室温下冷却。
5)使用全(十七)氟癸基三甲氧基硅烷作为修饰剂,在99.5ml的酒精溶液(分析纯AR)中滴入0.5ml的修饰剂,使用磁力搅拌器搅拌20min,配制成修饰液。将涂层放入修饰液中,60℃水浴浸泡2h,用超声波清洗后烘干。
该条件下所测得的性能结果:显微硬度为894HV 0.1,结合强度为57MPa,表面静态接触角为154.5°,摩擦磨损率为7.63×10 -5mm 3/(N·m)。
实施例7
一种耐磨疏水WC/Ni60-Al 2O 3复合涂层的制备方法,包括以下步骤:
1)量取量取200g粉末,其中WC、Ni60、Al 2O 3三种粉末质量分数分别为63.0%、27.0%、10.0%,放入球磨罐中,复合粉末和二氧化锆陶瓷球的质量比为1:1.5,湿磨介质为无水乙醇,行星球磨机转速为300r/min,球磨时间4h。
2)将湿磨混合后的复合浆液和陶瓷磨球分离,浆液在50℃下干燥12h之后作为喷涂用复合粉末。
3)用酒精或丙酮对Q235钢基体进行超声清洗20min,然后通过喷砂机用46# 白刚玉砂对基体表面进行喷砂粗化处理,喷砂压力0.7MPa,喷砂角度为45°。
4)采用大气等离子喷涂设备在经过喷砂处理的基体表面喷涂。喷涂过程中主气为氩气,辅气为氢气,主要工艺参数为:电流550A,电压65V,喷涂距离100mm,主气流量40L/min,送粉量为30g/min,喷涂结束后试样在室温下冷却。
5)使用全(十七)氟癸基三甲氧基硅烷作为修饰剂,在99.65ml的酒精溶液(分析纯AR)中滴入0.35ml的修饰剂,使用磁力搅拌器搅拌20min,配制成修饰液。将涂层放入修饰液中,60℃水浴浸泡2h,用超声波清洗后烘干。
该条件下所测得的性能结果:显微硬度为894HV 0.1,结合强度为57MPa,表面静态接触角为146.1°,摩擦磨损率为7.63×10 -5mm 3/(N·m)。
实施例8
一种耐磨疏水WC/Ni60-Al 2O 3复合涂层的制备方法,包括以下步骤:
1)量取量取200g粉末,其中WC、Ni60、Al 2O 3三种粉末质量分数分别为63.0%、27.0%、10.0%,放入球磨罐中,复合粉末和二氧化锆陶瓷球的质量比为1:1.5,湿磨介质为无水乙醇,行星球磨机转速为300r/min,球磨时间4h。
2)将湿磨混合后的复合浆液和陶瓷磨球分离,浆液在50℃下干燥12h之后作为喷涂用复合粉末。
3)用酒精或丙酮对Q235钢基体进行超声清洗20min,然后通过喷砂机用46#白刚玉砂对基体表面进行喷砂粗化处理,喷砂压力0.7MPa,喷砂角度为45°。
4)采用大气等离子喷涂设备在经过喷砂处理的基体表面喷涂。喷涂过程中主气为氩气,辅气为氢气,主要工艺参数为:电流550A,电压65V,喷涂距离100mm,主气流量40L/min,送粉量为30g/min,喷涂结束后试样在室温下冷却。
5)使用全(十七)氟癸基三甲氧基硅烷作为修饰剂,在99.8ml的酒精溶液(分析纯AR)中滴入0.2ml的修饰剂,使用磁力搅拌器搅拌20min,配制成修饰液。 将涂层放入修饰液中,60℃水浴浸泡2h,用超声波清洗后烘干。
该条件下所测得的性能结果:显微硬度为894HV 0.1,结合强度为57MPa,表面静态接触角为134.5°,摩擦磨损率为7.63×10 -5mm 3/(N·m)。
实施例9
一种耐磨疏水WC/Ni60-Al 2O 3复合涂层的制备方法,包括以下步骤:
1)量取200g粉末,其中WC、Ni60、Al 2O 3三种粉末质量分数分别为59.5%、25.5%、15.0%,放入球磨罐中,复合粉末和二氧化锆陶瓷球的质量比为1:1.5,湿磨介质为无水乙醇,行星球磨机转速为300r/min,球磨时间4h。
2)将湿磨混合后的复合浆液和陶瓷磨球分离,浆液在50℃下干燥12h之后作为喷涂用复合粉末。
3)用酒精或丙酮对Q235钢基体进行超声清洗20min,然后通过喷砂机用46#白刚玉砂对基体表面进行喷砂粗化处理,喷砂压力0.7MPa,喷砂角度为45°。
4)采用大气等离子喷涂设备在经过喷砂处理的基体表面喷涂。喷涂过程中主气为氩气,辅气为氢气,主要工艺参数为:电流550A,电压65V,喷涂距离100mm,主气流量40L/min,送粉量为30g/min,喷涂结束后试样在室温下冷却。
5)使用全(十七)氟癸基三甲氧基硅烷作为修饰剂,在99.5ml的酒精溶液(分析纯AR)中滴入0.5ml的修饰剂,使用磁力搅拌器搅拌20min,配制成修饰液。将涂层放入修饰液中,60℃水浴浸泡2h,用超声波清洗后烘干。
该条件下所测得的性能结果:显微硬度为862HV 0.1,结合强度为57MPa,表面静态接触角为147.4°,摩擦磨损率为8.08×10 -5mm 3/(N·m)。
对比实施例1
一种耐磨疏水WC/Ni60复合涂层的制备方法,包括以下步骤:
1)量取200g粉末,其中WC、Ni60两种粉末质量分数分别为70.0%、30.0%, 放入球磨罐中,复合粉末和二氧化锆陶瓷球的质量比为1:1.5,湿磨介质为无水乙醇,行星球磨机转速为300r/min,球磨时间4h。
2)将湿磨混合后的复合浆液和陶瓷磨球分离,浆液在50℃下干燥12h之后作为喷涂用复合粉末。
3)用酒精或丙酮对Q235钢基体进行超声清洗20min,然后通过喷砂机用46#白刚玉砂对基体表面进行喷砂粗化处理,喷砂压力0.7MPa,喷砂角度为45°。
4)采用大气等离子喷涂设备在经过喷砂处理的基体表面喷涂。喷涂过程中主气为氩气,辅气为氢气,主要工艺参数为:电流550A,电压65V,喷涂距离100mm,主气流量40L/min,送粉量为30g/min,喷涂结束后试样在室温下冷却。
5)使用全(十七)氟癸基三甲氧基硅烷作为修饰剂,在99.5ml的酒精溶液(分析纯AR)中滴入0.5ml的修饰剂,使用磁力搅拌器搅拌20min,配制成修饰液。将涂层放入修饰液中,60℃水浴浸泡2h,用超声波清洗后烘干。
该条件下所测得的性能结果:显微硬度为883HV 0.1,结合强度为58MPa,表面静态接触角为140.2°,摩擦磨损率为8.34×10 -5mm 3/(N·m)。
对比实施例2
一种耐磨疏水WC/Ni60-Al 2O 3复合涂层的制备方法,包括以下步骤:
1)量取200g粉末,其中WC、Ni60、Al 2O 3三种粉末质量分数分别为63.0%、27.0%、10.0%,放入球磨罐中,复合粉末和二氧化锆陶瓷球的质量比为1:1.5,湿磨介质为无水乙醇,行星球磨机转速为300r/min,球磨时间4h。
2)将湿磨混合后的复合浆液和陶瓷磨球分离,浆液在50℃下干燥12h之后作为喷涂用复合粉末。
3)用酒精或丙酮对Q235钢基体进行超声清洗20min,然后通过喷砂机用46#白刚玉砂对基体表面进行喷砂粗化处理,喷砂压力0.7MPa,喷砂角度为45°。
4)采用大气等离子喷涂设备在经过喷砂处理的基体表面喷涂。喷涂过程中主气为氩气,辅气为氢气,主要工艺参数为:电流550A,电压65V,喷涂距离100mm,主气流量40L/min,送粉量为30g/min,喷涂结束后试样在室温下冷却。
该条件下所测得的性能结果:显微硬度为894HV 0.1,结合强度为57MPa,表面静态接触角为75.0°,摩擦磨损率为7.63×10 -5mm 3/(N·m)。
对比实施例3
一种耐磨疏水WC/Ni60-Al 2O 3复合涂层的制备方法,包括以下步骤:
1)量取200g粉末,其中WC、Ni60、Al 2O 3三种粉末质量分数分别为63.0%、27.0%、10%,放入球磨罐中,复合粉末和二氧化锆陶瓷球的质量比为1:1.5,湿磨介质为无水乙醇,行星球磨机转速为300r/min,球磨时间4h。
2)将湿磨混合后的复合浆液和陶瓷磨球分离,浆液在50℃下干燥12h之后作为喷涂用复合粉末。
3)用酒精或丙酮对Q235钢基体进行超声清洗20min,然后通过喷砂机用46#白刚玉砂对基体表面进行喷砂粗化处理,喷砂压力0.7MPa,喷砂角度为45°。
4)采用大气等离子喷涂设备在经过喷砂处理的基体表面喷涂。喷涂过程中主气为氩气,辅气为氢气,主要工艺参数为:电流550A,电压65V,喷涂距离100mm,主气流量40L/min,送粉量为30g/min,喷涂结束后试样在室温下冷却。
5)使用SiO 2丙酮溶液作为修饰剂,在100ml的丙酮溶液(分析纯AR)中加入1g疏水性气相SiO 2颗粒,使用磁力搅拌器搅拌20min,配制成修饰液。将涂层放入修饰液中,60℃水浴浸泡2h,用超声波清洗后烘干。
该条件下所测得的性能结果:显微硬度为894HV 0.1,结合强度为57MPa,表面静态接触角为128.5°,摩擦磨损率为7.63×10 -5mm 3/(N·m)。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式, 在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (9)

  1. 一种Q235钢表面耐磨疏水涂层的制备方法,其特征在于,所述制备方法步骤如下:
    (1)金属基体表面预处理:将基体材料置于溶剂中进行超声波除污清洗并干燥,然后使用喷砂机进行喷砂除锈处理;
    (2)微纳米结构耐磨涂层的制备:采用大气等离子喷涂技术,以Ni60、WC和Al 2O 3混合粉末为原料在基体表面制备微纳米结构耐磨涂层;
    (3)涂层表面低表面能修饰:将微纳米结构耐磨涂层浸入低表面能物质溶液中,在60℃温度下浸泡2h,酒精冲洗,烘干,得到耐磨疏水WC/Ni60-Al 2O 3涂层。
  2. 根据权利要求1所述的耐磨疏水涂层的制备方法,其特征在于,步骤(1)所述溶剂为酒精或丙酮。
  3. 根据权利要求1所述的耐磨疏水涂层的制备方法,其特征在于,步骤(2)中,大气等离子喷涂的参数为:电流450~550A,电压65~75V,Ar 2流量35~45L/min,H 2流量6L/min,喷涂距离80~130mm,送粉量20~30g/min。
  4. 根据权利要求1所述的耐磨疏水涂层的制备方法,其特征在于,步骤(2)所述混合粉末按照质量百分比的组成为:WC 55%~70%,Ni60 20%~30%,Al 2O 35%~15%;涂层的厚度为100~150μm。
  5. 根据权利要求4所述的耐磨疏水涂层的制备方法,其特征在于,Ni60合金粉末粒径为20~75μm,WC陶瓷粉末粒径为10~30μm,Al 2O 3陶瓷粉末粒径为10~30μm。
  6. 根据权利要求1所述的耐磨疏水涂层的制备方法,其特征在于,步骤(1)所述混合粉末需进行湿法球磨进行混合,球料质量比为1.5:1,溶质为乙醇溶液。
  7. 根据权利要求6所述的耐磨疏水涂层的制备方法,其特征在于,湿法球磨法采用行星式球磨机,实验参数为:转速300r/min,时间4h。
  8. 根据权利要求1所述的耐磨疏水涂层的制备方法,其特征在于,步骤(3)所述低表面能物质溶液为全(十七)氟癸基三甲氧基硅烷的乙醇溶液,溶液的质量浓度为2%~5%。
  9. 根据权利要求1所述方法制备的耐磨疏水涂层。
PCT/CN2022/096101 2021-12-29 2022-05-31 Q235钢表面耐磨疏水涂层及其制备方法 WO2023123858A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111640632.0 2021-12-29
CN202111640632.0A CN114262862A (zh) 2021-12-29 2021-12-29 Q235钢表面耐磨疏水涂层及其制备方法

Publications (1)

Publication Number Publication Date
WO2023123858A1 true WO2023123858A1 (zh) 2023-07-06

Family

ID=80831394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096101 WO2023123858A1 (zh) 2021-12-29 2022-05-31 Q235钢表面耐磨疏水涂层及其制备方法

Country Status (2)

Country Link
CN (1) CN114262862A (zh)
WO (1) WO2023123858A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117265452A (zh) * 2023-11-22 2023-12-22 北京理工大学 一种水冷铜坩埚热屏蔽复合涂层及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262862A (zh) * 2021-12-29 2022-04-01 常州大学 Q235钢表面耐磨疏水涂层及其制备方法
CN115976453A (zh) * 2023-01-03 2023-04-18 山东理工大学 一种抗垢耐蚀涂层及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060053967A1 (en) * 2003-12-25 2006-03-16 Hiroaki Mizuno Thermal spray powder
US20090004379A1 (en) * 2007-06-29 2009-01-01 General Electric Company Method of preparing wetting-resistant surfaces and articles incorporating the same
CN104388885A (zh) * 2014-10-30 2015-03-04 安徽鼎恒再制造产业技术研究院有限公司 一种高硬度Ni60A-WC纳米涂层及其制备方法
CN106399894A (zh) * 2016-11-18 2017-02-15 无锡明盛纺织机械有限公司 一种WC‑NiCrBSi梯度复合耐磨涂层的制备方法
CN107299308A (zh) * 2017-06-22 2017-10-27 西南交通大学 一种利用超音速火焰喷涂制备超疏水表面的方法
CN108468013A (zh) * 2018-06-25 2018-08-31 东莞市华鑫激光科技有限公司 一种耐磨疏水涂层的制备方法
CN114262862A (zh) * 2021-12-29 2022-04-01 常州大学 Q235钢表面耐磨疏水涂层及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060053967A1 (en) * 2003-12-25 2006-03-16 Hiroaki Mizuno Thermal spray powder
US20090004379A1 (en) * 2007-06-29 2009-01-01 General Electric Company Method of preparing wetting-resistant surfaces and articles incorporating the same
CN104388885A (zh) * 2014-10-30 2015-03-04 安徽鼎恒再制造产业技术研究院有限公司 一种高硬度Ni60A-WC纳米涂层及其制备方法
CN106399894A (zh) * 2016-11-18 2017-02-15 无锡明盛纺织机械有限公司 一种WC‑NiCrBSi梯度复合耐磨涂层的制备方法
CN107299308A (zh) * 2017-06-22 2017-10-27 西南交通大学 一种利用超音速火焰喷涂制备超疏水表面的方法
CN108468013A (zh) * 2018-06-25 2018-08-31 东莞市华鑫激光科技有限公司 一种耐磨疏水涂层的制备方法
CN114262862A (zh) * 2021-12-29 2022-04-01 常州大学 Q235钢表面耐磨疏水涂层及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117265452A (zh) * 2023-11-22 2023-12-22 北京理工大学 一种水冷铜坩埚热屏蔽复合涂层及其制备方法
CN117265452B (zh) * 2023-11-22 2024-02-06 北京理工大学 一种水冷铜坩埚热屏蔽复合涂层及其制备方法

Also Published As

Publication number Publication date
CN114262862A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2023123858A1 (zh) Q235钢表面耐磨疏水涂层及其制备方法
CN102094165B (zh) 高耐磨机械密封动环及其制备方法
CN105316619B (zh) 一种利用热喷涂技术制备耐磨超疏水陶瓷涂层的方法及其产品
Qiao et al. Relationships between spray parameters, microstructures and ultrasonic cavitation erosion behavior of HVOF sprayed Fe-based amorphous/nanocrystalline coatings
CN105624670B (zh) 铝合金构件表面耐磨减摩复合涂层及其制备方法
CN108468013A (zh) 一种耐磨疏水涂层的制备方法
CN107354421B (zh) 一种石墨烯-铜-非晶复合涂层的制备方法
CN105256307A (zh) 镁合金表面耐腐蚀铝基或锌铝基金属涂层的冷喷涂制备方法
CN107937856B (zh) 一种耐磨疏水涂层的制备方法
CN108130533A (zh) 一种具有高抗磨耐蚀硬密封球阀及制备方法
CN102605402A (zh) 铝合金制品表面耐磨增韧型复合陶瓷层的制备方法
Kuznetsov et al. Formation of wear-and corrosion-resistant ceramic coatings by combined technologies of spraying and micro-arc oxidation
CN106893961A (zh) 一种强化水轮机叶片表面的超音速火焰喷涂方法
CN105483432A (zh) 一种钛合金耐磨层及其制备方法
Gautam et al. Microstructure and wear behavior of single layer (CrN) and multilayered (SiN/CrN) coatings on particulate filled aluminum alloy composites
CN103628032B (zh) 一种在导电基体材料上制备纳米氮化钛层的方法
CN109182946B (zh) 一种用于水利液压启闭机活塞杆的耐磨耐蚀耐中高温涂层的组合物、涂层及其制备方法
CN113005388A (zh) 超疏水耐蚀防污铝基非晶涂层及其制备方法
CN110318050A (zh) 一种铝基/阳极氧化膜复合涂层及其制备方法和应用
CN107245688B (zh) 防腐耐磨TiCN复合涂层及其喷涂方法及防腐耐磨抽油机光杆
WO2023201766A1 (zh) 一种增材制造金属零件表面防腐防污复合处理方法
Manjunatha et al. The effect of sealing on the wear behaviour of plasma sprayed Mo coating
CN108330427A (zh) 一种高性能陶瓷涂层及其制备方法
CN1985027B (zh) 涂层
Girisha et al. Experimental investigation on erosive wear behaviour of plasma spray coated stainless steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913149

Country of ref document: EP

Kind code of ref document: A1