CN110777336A - 一种基于能量调控原理制备超厚硬质薄膜的方法 - Google Patents

一种基于能量调控原理制备超厚硬质薄膜的方法 Download PDF

Info

Publication number
CN110777336A
CN110777336A CN201910890496.7A CN201910890496A CN110777336A CN 110777336 A CN110777336 A CN 110777336A CN 201910890496 A CN201910890496 A CN 201910890496A CN 110777336 A CN110777336 A CN 110777336A
Authority
CN
China
Prior art keywords
substrate
ultra
layer
vacuum chamber
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910890496.7A
Other languages
English (en)
Inventor
邱龙时
赵婧
潘晓龙
张于胜
田丰
黎栋栋
刘璐
王志杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Rare Metal Materials Research Institute Co Ltd
Original Assignee
Xian Rare Metal Materials Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Rare Metal Materials Research Institute Co Ltd filed Critical Xian Rare Metal Materials Research Institute Co Ltd
Priority to CN201910890496.7A priority Critical patent/CN110777336A/zh
Publication of CN110777336A publication Critical patent/CN110777336A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer

Abstract

本发明公开了一种基于能量调控原理制备超厚硬质薄膜的方法,该方法包括:一、将基片清洗后吹干得洁净基片;二、将弧靶和洁净基片装入多弧离子镀设备中,对真空室抽真空后加热;三、对洁净基片进行溅射清洗和活化得活化基片;四、在活化基片上镀制金属打底层;五、在镀制的金属打底层的表面沉积过渡层;六、通过能量调节工艺在过渡层上制备能量调节层,冷却后经退火在基片表面得到超厚硬质薄膜。本发明基于能量调控原理,制备由金属打底层、过渡层和能量调节层组成的超厚硬质薄膜,通过调节能量调节层生长过程中的能量输入,减少了内应力,避免了薄膜开裂和剥落,优化了膜层组织结构,得到厚度大于20μm的超厚硬质薄膜。

Description

一种基于能量调控原理制备超厚硬质薄膜的方法
技术领域
本发明属于金属表面薄膜防护技术领域,具体涉及一种基于能量调控原理制备超厚硬质薄膜的方法。
背景技术
硬质薄膜因具有优异的力学性能和良好的物化性能,广泛用于刀具、模具,以及机械零部件的表面强化,是发挥材料潜能有效途径之一。硬质薄膜在金属零部件表面的应用,不仅能大幅度提升材料的服役性能,同时可节约大量的生产成本。通常情况下,气相沉积硬质薄膜的厚度仅有数个微米,厚度的不足严重制约了其在深海、航空、核能等极端环境下的应用。近年来,随着新兴科技领域的高速发展,镀膜部件的工作环境愈发严苛,对薄膜综合性能要求不断提升,以至于传统数微米厚薄膜愈来愈难以满足实际工程应用所需。在超厚气相沉积硬质薄膜制备研究上,初期研究者们试图通过延长沉积时间以制备厚度超过数十微米的超厚硬质薄膜,但发现随着沉积时间延长,薄膜内部能量升高,致内应力逐渐累积,应力值可高达数GPa甚至数十GPa,过高的内应力使薄膜极易发生碎裂和自发剥落,最终难以制备得到超厚硬质薄膜。后来,不少研究者采用金属插入层的办法制备多层硬质薄膜,通过柔性金属层和层间界面以缓释薄膜的内应力,虽取得了一定的效果,但层与层间的匹配性问题以及层间界面结合问题也凸显出来,常难以获得满意的膜层结构和力学性能。
对于单层硬质薄膜,国际上目前已开始研制超大功率和多重辅助等特殊镀膜装置和技术,用以制备厚度20μm以上的硬质薄膜,尽管已获得一些成效,但仍未形成完整的技术体系,设备采购也将耗费大量资金。超厚硬质薄膜制备难以制备其本质原因在于薄膜内部存在过高能量,从文献调研结果来看,目前对于磁控溅射、多弧离子镀等传统气相沉积方法,制备超厚硬质薄膜仍无有效解决途径,对于采用能量调控思想制备超厚硬质薄膜,目前国内外资料也鲜有报道。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种基于能量调控原理制备超厚硬质薄膜的方法。该方法基于能量调控原理,在基片上制备由金属打底层、过渡层和能量调节层组成的超厚硬质薄膜,通过调节能量调节层生长过程中的能量输入,调控能量累积方式和速率,减少了内应力,避免了高能量状态下的高应力带来的薄膜开裂和剥落问题,优化了薄膜的膜层组织结构,从而得到厚度大于20μm的超厚硬质薄膜。
为解决上述技术问题,本发明采用的技术方案是:一种基于能量调控原理制备超厚硬质薄膜的方法,其特征在于,该方法包括以下步骤:
步骤一、将基片依次放入分析纯丙酮和分析纯乙醇中进行超声清洗,然后采用热风机吹干,得到洁净基片;
步骤二、将弧靶固定在多弧离子镀设备的靶座上,将步骤一中得到的洁净基片装入多弧离子镀设备的真空室并固定在转架台的样品架上,然后关闭炉门,依次打开机械泵和分子泵对真空室进行抽真空至真空度为1.0×10-3Pa~5.0×10-3Pa时,打开加热装置开关,对真空室加热至200℃~350℃;
步骤三、继续对步骤二中加热至200℃~350℃的真空室抽真空至真空度低于1.0×10-3~5.0×10-3Pa,然后向真空室内通入氩气并维持真空度为3.0Pa,并打开偏压电源向基片施加负偏压至800V并调节占空比为80%,对基片进行溅射清洗和活化20min,再关闭负偏压电源并调节占空比为0,得到活化基片;所述氩气的质量纯度不小于99.99%;
步骤四、对步骤三中装有活化基片的真空室进行抽真空至真空度为1.0×10-3Pa~5.0×10-3Pa,然后通入氩气并维持真空度为1.0Pa,打开偏压电源并调节负偏压至200V,占空比为50%,然后打开弧靶电源,通过弧靶溅射的金属粒子在活化基片上镀制金属打底层;所述弧靶的质量纯度不小于99.99%;
步骤五、继续维持真空室内的负偏压为200V,然后在10min~30min内通入氮气至流量为40sccm并同时逐步降低氩气的流量为8sccm,维持真空室的真空度为1.0Pa,打开弧靶电源,通过弧靶溅射的金属粒子与氮气反应并在步骤四中镀制的金属打底层的表面沉积过渡层;
步骤六、继续维持真空室的真空度为1.0Pa并调节占空比至80%,通过能量调节工艺在步骤五中沉积的过渡层的表面制备能量调节层,得到表面具有薄膜的基片,然后依次关闭气体阀门、弧靶电源、负偏压电源及加热装置,待真空室内的气体抽尽后关闭分子泵和机械泵,将表面具有薄膜的基片冷却至室温后取出进行退火处理,在基片表面得到超厚硬质薄膜;所述超厚硬质薄膜的厚度大于20μm。
本发明采用目前工业化生产应用最为普遍的多弧离子镀设备,在基片上制备由金属打底层、过渡层和能量调节层组成的超厚硬质薄膜,通过金属打底层确保超厚硬质薄膜与基体间具有良好的结合性能,通过过渡层在基体与超厚硬质薄膜之间形成良好的成分过渡,避免因成分突变产生较大的失配应力导致薄膜剥落,同时为能量调节层提供力学性能支撑,采用能量调节工艺制备能量调节层,通过调节能量调节层生长过程中的能量输入,调控能量累积方式和速率,减少了内应力,避免了高能量状态下的高应力带来的薄膜开裂和剥落问题,优化了薄膜的膜层组织结构,提高了薄膜的力学性能,从而得到质量优异且厚度大于20μm的超厚硬质薄膜。
上述的一种基于能量调控原理制备超厚硬质薄膜的方法,其特征在于,步骤一中所述基片为钢基片或Si基片。采用上述目前工业生产和科学研究的常用基片,使本发明方法具有良好的适用性。
上述的一种基于能量调控原理制备超厚硬质薄膜的方法,其特征在于,步骤四中所述金属打底层的厚度为200nm~400nm。该厚度的金属打底层既可确保超厚硬质薄膜与基体间具有良好的结合性能,又可避免金属层过厚造成超厚硬质薄膜硬度值降低,同时缩短了超厚硬质薄膜沉积周期。
上述的一种基于能量调控原理制备超厚硬质薄膜的方法,其特征在于,步骤五中所述过渡层的厚度为300nm~600nm。该厚度的过渡层形成了良好的成分过渡,很好地避免了基体至超厚硬质薄膜成分突变产生较大的失配应力,导致超厚硬质薄膜的剥落,此外,该过渡层可为后续能量调节层提供良好的力学性能支撑。
上述的一种基于能量调控原理制备超厚硬质薄膜的方法,其特征在于,步骤六中所述能量调节工艺为调节负偏压和/或工作气压,所述调节的方式为交替调节或渐进调节。负偏压大小与能量值高低成正比,工作气压大小与能量值高低成反比,工作气压即真空室的真空度,两者的大小直接决定了薄膜生长时输入能量的高低。通过单独调节负偏压、工作气压,或是协同调节负偏压和工作气压使能量高-低交替变化,或是渐进升高、渐进降低来改变能量调节层生长过程中输入能量的累积方式和累积速率,从而更好地缓释超厚硬质薄膜内部能量,避免能量过高导致超厚硬质薄膜的开裂和剥落,同时优化膜层质量,有利于得到厚度更大的硬质薄膜。
上述的方法,其特征在于,所述渐进调节为渐进升高。优选采用渐进升高能量调节层生长时的能量输入,逐步改变能量调节层生长时的累积方式和速率,得到结构均匀且表层细密的能量调节层,进一步缓释了超厚硬质薄膜内部能量,提高了超厚硬质薄膜的力学性能。
上述的一种基于能量调控原理制备超厚硬质薄膜的方法,其特征在于,步骤六中所述能量调节层的成分为TiN、TiAlN或CrTiAlN。采用上述目前工业领域应用最为广泛的材质,进一步提高了本发明的实用性。
上述的一种基于能量调控原理制备超厚硬质薄膜的方法,其特征在于,步骤六中所述退火处理的温度为300℃~400℃,时间为1h~3h。该退火条件可避免发生基片软化,同时缓释应力,减少薄膜内部能量存储,使超厚硬质薄膜处于稳定的低能量状态。
本发明与现有技术相比具有以下优点:
1、本发明基于能量调控原理,在基片上制备由金属打底层、过渡层和能量调节层组成的超厚硬质薄膜,通过调节能量调节层生长过程中的能量输入,调控能量累积方式和速率,减少了内应力,避免了高能量状态下的高应力带来的薄膜开裂和剥落问题,优化了薄膜的膜层组织结构,提高了薄膜的力学性能,从而得到质量优异且厚度大于20μm的超厚硬质薄膜。
2、本发明的方法在目前工业化生产应用最为普遍的多弧离子镀设备中即可实现,无需进行设备改造,具有较高的经济价值,适宜推广应用。
3、本发明操作过程简单,能量调节工艺的调节方式多样,调节参量明确,同时实现对薄膜组织结构和内应力的调控和优化,获得组织和性能均优异的超厚硬质薄膜。
4、本发明制备的超厚薄膜组织结构细小、致密,不存在明显孔洞和缺陷,膜层质量佳。
5、本发明适用于多种气相沉积硬质薄膜体系,具有良好的普适性。
下面通过附图和实施例对本发明的技术方案作进一步的详细描述。
附图说明
图1是本发明实施例1在高速钢表面得到的超厚TiN薄膜的截面电镜图。
图2是本发明对比例1在高速钢表面得到的TiN薄膜的截面电镜分析图。
图3是本发明对比例2在高速钢表面得到的TiN薄膜的截面电镜分析图。
图4是本发明实施例2在Si基片表面得到的超厚TiN薄膜的截面电镜图。
图5是本发明实施例3在高速钢表面得到的超厚TiN薄膜的截面电镜图。
图6是本发明实施例4在高速钢表面得到的超厚TiAlN薄膜的截面电镜图。
图7是本发明实施例5在高速钢表面得到的超厚TiAlN薄膜的截面电镜图。
图8是本发明实施例6在高速钢表面得到的超厚CrTiAlN薄膜的截面电镜图。
具体实施方式
实施例1
本实施例的方法包括以下步骤:
步骤一、将高速钢基片依次放入分析纯丙酮和分析纯乙醇中进行超声清洗20min,然后采用热风机吹干,得到洁净高速钢基片;
步骤二、将Ti弧靶固定在多弧离子镀设备的靶座上,将步骤一中得到的洁净高速钢基片装入多弧离子镀设备的真空室并固定在转架台的样品架上,然后关闭真空室炉门,依次打开机械泵和分子泵对真空室进行抽真空至真空度为5.0×10-3Pa时,打开加热装置开关,对真空室加热至300℃;
步骤三、继续对步骤二中加热至300℃的真空室抽真空至真空度低于5.0×10-3Pa,然后向真空室内通入氩气并维持真空度为3.0Pa,并打开偏压电源向洁净高速钢基片施加负偏压至800V并调节占空比为80%,对洁净高速钢基片进行溅射清洗和活化20min,再关闭负偏压电源并调节占空比为0,得到活化高速钢基片;所述氩气的质量纯度为99.99%;
步骤四、对步骤三中装有活化高速钢基片的真空室进行抽真空至真空度为5.0×10-3Pa,然后通入氩气并维持真空度为1.0Pa,打开偏压电源并调节负偏压至200V,占空比为50%,然后打开弧靶电源,通过Ti弧靶溅射出的Ti粒子在活化高速钢基片上镀制Ti打底层;所述Ti弧靶的质量纯度为99.99%,镀制Ti打底层的时间为5min,Ti打底层的厚度为200nm;
步骤五、继续维持真空室内的负偏压为200V,然后在20min内通入氮气至流量为40sccm并同时逐步降低氩气的流量为8sccm,维持真空室的真空度为1.0Pa,打开弧靶电源,通过Ti弧靶溅射的Ti粒子与氮气反应并在步骤四中镀制的Ti打底层的表面沉积Ti-N过渡层;所述述Ti-N过渡层的厚度为500nm;
步骤六、继续维持真空室的真空度为1.0Pa并调节占空比至80%,采用Ti弧靶,通过能量调节工艺在步骤五中沉积的过渡层的表面制备能量调节层,得到表面具有薄膜的高速钢基片,然后依次关闭气体阀门、弧靶电源、负偏压电源及加热装置,待真空室内的气体抽尽后关闭分子泵和机械泵,将表面具有薄膜的高速钢基片冷却至室温后取出,在温度为350℃的条件下进行退火处理1h,在高速钢基片表面得到超厚TiN薄膜;所述能量调节工艺通过负偏压高低交替调节的方式改变能量调节层生长过程中的能量输入,其具体过程为:首先将负偏压降低至50V,减少能量输入以降低薄膜内应力,镀制TiN薄膜,镀制时间1.5h,然后再将负偏压升高至100V,增加薄膜生长时的能量输入以优化膜层结构,使其细小致密化,镀制时间1.5h,上述交替调节过程重复三次。
图1是本发明实施例1在高速钢表面得到的超厚TiN薄膜的截面电镜图,从图1可以看出,本实施例制备的超厚TiN薄膜的厚度为22.5μm,且膜层组织结构致密。
对比例1
本实施例的方法包括以下步骤:
步骤一、将高速钢基片依次放入分析纯丙酮和分析纯乙醇中分别进行超声清洗20min,然后采用热风机吹干,得到洁净高速钢基片;
步骤二、将Ti弧靶固定在多弧离子镀设备的靶座上,将步骤一中得到的洁净高速钢基片装入多弧离子镀设备的真空室并固定在转架台的样品架上,然后关闭真空室炉门,依次打开机械泵和分子泵对真空室进行抽真空至真空度为5.0×10-3Pa时,打开加热装置开关,对真空室加热至300℃;
步骤三、继续对步骤二中加热至300℃的真空室抽真空至真空度低于5.0×10-3Pa,然后向真空室内通入氩气并维持真空度为3.0Pa,并打开偏压电源向洁净高速钢基片施加负偏压至800V并调节占空比为80%,对洁净高速钢基片进行溅射清洗和活化20min,再关闭负偏压电源并调节占空比为0,得到活化高速钢基片;所述氩气的质量纯度为99.99%;
步骤四、对步骤三中装有活化高速钢基片的真空室进行抽真空至真空度为5.0×10-3Pa,然后通入氩气并维持真空度为1.0Pa,打开偏压电源并调节负偏压至200V,占空比为50%,然后打开弧靶电源,通过Ti弧靶溅射出的Ti粒子在活化高速钢基片上镀制Ti打底层;所述Ti弧靶的质量纯度为99.99%,镀制Ti打底层的时间为5min,Ti打底层的厚度为200nm;
步骤五、继续维持真空室内的负偏压为200V,然后在20min内通入氮气至流量为40sccm并同时逐步降低氩气的流量为8sccm,维持真空室的真空度为1.0Pa,打开弧靶电源,通过Ti弧靶溅射的Ti粒子与氮气反应并在步骤四中镀制的Ti打底层的表面沉积Ti-N过渡层;所述述Ti-N过渡层的厚度为500nm;
步骤六、继续维持真空室的真空度为1.0Pa并调节占空比至80%,将负偏压降低至100V后保持不变,在步骤五中沉积的过渡层的表面镀制TiN薄膜层,得到表面具有薄膜的高速钢基片,然后依次关闭气体阀门、弧靶电源、负偏压电源及加热装置,待真空室内的气体抽尽后关闭分子泵和机械泵,将表面具有薄膜的高速钢基片冷却至室温后取出,在高速钢基片表面得到超厚TiN薄膜;所述镀制TiN薄膜层的4h时,TiN薄膜层出现自发性剥落。
图2是本对比例在高速钢表面得到的TiN薄膜的截面电镜分析图,从图2可以看出,本对比例制备的TiN薄膜的部分区域已经剥落,残存的TiN薄膜的厚度为15μm。
对比例2
本对比例与对比例1的不同之处在于:步骤六中将负偏压升高至200V后保持不变;所述镀制TiN薄膜层的1.5h时,TiN薄膜层出现自发性剥落。
图3是本对比例在高速钢表面得到的TiN薄膜的截面电镜分析图,从图2可以看出,本对比例制备的TiN薄膜的部分区域已经剥落,残存的TiN薄膜的厚度为6μm。
将实施例1、对比例1和对比例2进行比较可知,实施例1制备的超厚TiN薄膜的厚度较大,且膜层质量较好,对比例1和对比例2制备的TiN薄膜层的镀制过程中已经发生自发性剥落,且膜层表面粗糙,说明本发明采用能量调控方式可得到超厚硬质薄膜,且膜层质量佳。
实施例2
本实施例与实施例1的不同之处在于:采用的基片为Si基片。
图4是本实施例在Si基片表面得到的超厚TiN薄膜的截面电镜图,从图4可以看出,本实施例制备的超厚TiN薄膜的厚度为22.5μm,且膜层组织结构致密。
实施例3
步骤一、将高速钢基片依次放入分析纯丙酮和分析纯乙醇中进行超声清洗20min,然后采用热风机吹干,得到洁净高速钢基片;
步骤二、将Ti弧靶固定在多弧离子镀设备的靶座上,将步骤一中得到的洁净高速钢基片装入多弧离子镀设备的真空室并固定在转架台的样品架上,然后关闭真空室炉门,依次打开机械泵和分子泵对真空室进行抽真空至真空度为3.0×10-3Pa时,打开加热装置开关,对真空室加热至350℃;
步骤三、继续对步骤二中加热至350℃的真空室抽真空至真空度低于3.0×10-3Pa,然后向真空室内通入氩气并维持真空度为3.0Pa,并打开偏压电源向洁净高速钢基片施加负偏压至800V并调节占空比为80%,对洁净高速钢基片进行溅射清洗和活化20min,再关闭负偏压电源并调节占空比为0,得到活化高速钢基片;所述氩气的质量纯度为99.999%;
步骤四、对步骤三中装有活化高速钢基片的真空室进行抽真空至真空度为3.0×10-3Pa,然后通入氩气并维持真空度为1.0Pa,打开偏压电源并调节负偏压至200V,占空比为50%,然后打开弧靶电源,通过Ti弧靶溅射出的Ti粒子在活化高速钢基片上镀制Ti打底层;所述Ti弧靶的质量纯度为99.999%,镀制Ti打底层的时间为10min,Ti打底层的厚度为400nm;
步骤五、继续维持真空室内的负偏压为200V,然后在10min内通入氮气至流量为40sccm并同时逐步降低氩气的流量为8sccm,维持真空室的真空度为1.0Pa,打开弧靶电源,通过Ti弧靶溅射的Ti粒子与氮气反应并在步骤四中镀制的Ti打底层的表面沉积Ti-N过渡层;所述述Ti-N过渡层的厚度为300nm;
步骤六、继续维持真空室的真空度为1.0Pa并调节占空比至80%,采用Ti弧靶,通过能量调节工艺在步骤五中沉积的过渡层的表面制备能量调节层,得到表面具有薄膜的高速钢基片,然后依次关闭气体阀门、弧靶电源、负偏压电源及加热装置,待真空室内的气体抽尽后关闭分子泵和机械泵,将表面具有薄膜的高速钢基片冷却至室温后取出,在温度为400℃的条件下进行退火处理2h,在高速钢基片表面得到超厚TiN薄膜;所述能量调节工艺通过渐进升高负偏压的方式改变薄膜生长过程中的能量输入,其具体过程为:首先将负偏压降低至50V,减少能量输入以降低薄膜内应力,镀制TiN薄膜,镀制时间2h,然后再将负偏压升高至100V,增加薄膜生长时的能量输入以优化膜层结构,使其细小致密化,镀制时间2h,将负偏压再升高至150V,镀制TiN薄膜2h;最后将负偏压再升高至200V,镀制TiN薄膜2h。
图5是本实施例在高速钢表面得到的超厚TiN薄膜的截面电镜图,从图5可以看出,本实施例制备的超厚TiN薄膜的厚度为22.5μm,且膜层组织结构致密。
实施例4
本实施例的方法包括以下步骤:
步骤一、将高速钢基片依次放入分析纯丙酮和分析纯乙醇中进行超声清洗20min,然后采用热风机吹干,得到洁净高速钢基片;
步骤二、将TiAl弧靶固定在多弧离子镀设备的靶座上,将步骤一中得到的洁净高速钢基片装入多弧离子镀设备的真空室并固定在转架台的样品架上,然后关闭真空室炉门,依次打开机械泵和分子泵对真空室进行抽真空至真空度为1.0×10-3Pa时,打开加热装置开关,对真空室加热至250℃;
步骤三、继续对步骤二中加热至250℃的真空室抽真空至真空度低于1.0×10-3Pa,然后向真空室内通入氩气并维持真空度为3.0Pa,并打开偏压电源向洁净高速钢基片施加负偏压至800V并调节占空比为80%,对洁净高速钢基片进行溅射清洗和活化20min,再关闭负偏压电源并调节占空比为0,得到活化高速钢基片;所述氩气的质量纯度为99.99%;
步骤四、对步骤三中装有活化高速钢基片的真空室进行抽真空至真空度为1.0×10-3Pa,然后通入氩气并维持真空度为1.0Pa,打开偏压电源并调节负偏压至200V,占空比为50%,然后打开弧靶电源,通过TiAl弧靶溅射出的TiAl粒子在活化高速钢基片上镀制TiAl打底层;所述TiAl弧靶的质量纯度为99.99%,镀制TiAl打底层的时间为5min,TiAl打底层的厚度为300nm;
步骤五、继续维持真空室内的负偏压为200V,然后在20min内通入氮气至流量为40sccm并同时逐步降低氩气的流量为8sccm,维持真空室的真空度为1.0Pa,打开弧靶电源,通过TiAl弧靶溅射的TiAl粒子与氮气反应并在步骤四中镀制的TiAl打底层的表面沉积TiAl-N过渡层;所述述TiAl-N过渡层的厚度为400nm;
步骤六、继续维持真空室的真空度为1.0Pa并调节占空比至80%,采用TiAl弧靶,通过能量调节工艺在步骤五中沉积的过渡层的表面制备能量调节层,得到表面具有薄膜的高速钢基片,然后依次关闭气体阀门、弧靶电源、负偏压电源及加热装置,待真空室内的气体抽尽后关闭分子泵和机械泵,将表面具有薄膜的高速钢基片冷却至室温后取出,在温度为300℃的条件下进行退火处理2h,在高速钢基片表面得到超厚TiAlN薄膜;所述能量调节工艺通过工作气压渐进调节的方式改变薄膜生长过程中的能量输入,其具体过程为:首先将工作气压升高至6.0Pa镀制TiAlN薄膜,减少能量输入以降低薄膜内应力,镀制时间2.5h,再将工作气压降低至3.0Pa,镀制TiAlN薄膜1h,最后将工作气压降低至1.0Pa,镀制TiAlN薄膜1h,上述交替调节过程重复四次。
图6是本实施例在高速钢表面得到的超厚TiAlN薄膜的截面电镜图,从图6可以看出,本实施例制备的超厚TiAlN薄膜的厚度为25.6μm,且膜层组织结构致密。
实施例5
本实施例的方法包括以下步骤:
步骤一、将高速钢基片依次放入分析纯丙酮和分析纯乙醇中进行超声清洗20min,然后采用热风机吹干,得到洁净高速钢基片;
步骤二、将TiAl弧靶固定在多弧离子镀设备的靶座上,将步骤一中得到的洁净高速钢基片装入多弧离子镀设备的真空室并固定在转架台的样品架上,然后关闭真空室炉门,依次打开机械泵和分子泵对真空室进行抽真空至真空度为5.0×10-3Pa时,打开加热装置开关,对真空室加热至300℃;
步骤三、继续对步骤二中加热至300℃的真空室抽真空至真空度低于5.0×10-3Pa,然后向真空室内通入氩气并维持真空度为3.0Pa,并打开偏压电源向洁净高速钢基片施加负偏压至800V并调节占空比为80%,对洁净高速钢基片进行溅射清洗和活化20min,再关闭负偏压电源并调节占空比为0,得到活化高速钢基片;所述氩气的质量纯度为99.99%;
步骤四、对步骤三中装有活化高速钢基片的真空室进行抽真空至真空度为5.0×10-3Pa,然后通入氩气并维持真空度为1.0Pa,打开偏压电源并调节负偏压至200V,占空比为50%,然后打开弧靶电源,通过TiAl弧靶溅射出的TiAl粒子在活化高速钢基片上镀制TiAl打底层;所述TiAl弧靶的质量纯度为99.99%,镀制TiAl打底层的时间为5min,TiAl打底层的厚度为300nm;
步骤五、继续维持真空室内的负偏压为200V,然后在10min内通入氮气至流量为40sccm并同时逐步降低氩气的流量为8sccm,维持真空室的真空度为1.0Pa,打开弧靶电源,通过TiAl弧靶溅射的TiAl粒子与氮气反应并在步骤四中镀制的TiAl打底层的表面沉积TiAl-N过渡层;所述述TiAl-N过渡层的厚度为300nm;
步骤六、继续维持真空室的真空度为1.0Pa并调节占空比至80%,采用TiAl弧靶,通过能量调节工艺在步骤五中沉积的过渡层的表面制备能量调节层,得到表面具有薄膜的高速钢基片,然后依次关闭气体阀门、弧靶电源、负偏压电源及加热装置,待真空室内的气体抽尽后关闭分子泵和机械泵,将表面具有薄膜的高速钢基片冷却至室温后取出,在温度为350℃的条件下进行退火处理1.5h,在高速钢基片表面得到超厚TiAlN薄膜;所述能量调节工艺通过工作气压渐进调节的方式改变薄膜生长过程中的能量输入,其具体过程为:首先将工作气压升高至3.0Pa镀制TiAlN薄膜,减少能量输入以降低薄膜内应力,镀制时间1h,再将工作气压降低至1.0Pa,镀制TiAlN薄膜1h,上述交替调节过程重复四次。
图7是本实施例在高速钢表面得到的超厚TiAlN薄膜的截面电镜图,从图7可以看出,本实施例制备的超厚TiAlN薄膜的厚度为25.2μm,且膜层组织结构致密。
实施例6
本实施例的方法包括以下步骤:
步骤一、将高速钢基片依次放入分析纯丙酮和分析纯乙醇中进行超声清洗20min,然后采用热风机吹干,得到洁净高速钢基片;
步骤二、将TiAl弧靶和Cr弧靶固定在多弧离子镀设备的靶座上,将步骤一中得到的洁净高速钢基片装入多弧离子镀设备的真空室并固定在转架台的样品架上,然后关闭真空室炉门,依次打开机械泵和分子泵对真空室进行抽真空至真空度为5.0×10-3Pa时,打开加热装置开关,对真空室加热至200℃;
步骤三、继续对步骤二中加热至200℃的真空室抽真空至真空度低于5.0×10-3Pa,然后向真空室内通入氩气并维持真空度为3.0Pa,并打开偏压电源向洁净高速钢基片施加负偏压至800V并调节占空比为80%,对洁净高速钢基片进行溅射清洗和活化20min,再关闭负偏压电源并调节占空比为0,得到活化高速钢基片;所述氩气的质量纯度为99.99%;
步骤四、对步骤三中装有活化高速钢基片的真空室进行抽真空至真空度为5.0×10-3Pa,然后通入氩气并维持真空度为1.0Pa,打开偏压电源并调节负偏压至200V,占空比为50%,然后打开弧靶电源,通过Cr弧靶溅射出的Cr粒子在活化高速钢基片上镀制Cr打底层;所述Cr弧靶的质量纯度为99.99%,镀制Cr打底层的时间为5min,Cr打底层的厚度为300nm;
步骤五、继续维持真空室内的负偏压为200V,然后在30min内通入氮气至流量为40sccm并同时逐步降低氩气的流量为8sccm,维持真空室的真空度为1.0Pa,打开弧靶电源,通过Cr弧靶溅射的Cr粒子与氮气反应并在步骤四中镀制的Cr打底层的表面沉积Cr-N过渡层;所述述Cr-N过渡层的厚度为600nm;
步骤六、继续维持真空室的真空度为1.0Pa并调节占空比至80%,采用TiAl弧靶和Cr弧靶,通过能量调节工艺在步骤五中沉积的Cr-N过渡层的表面制备能量调节层,得到表面具有薄膜的高速钢基片,然后依次关闭气体阀门、弧靶电源、负偏压电源及加热装置,待真空室内的气体抽尽后关闭分子泵和机械泵,将表面具有薄膜的高速钢基片冷却至室温后取出,在温度为300℃的条件下进行退火处理3h,在高速钢基片表面得到超厚CrTiAlN薄膜;所述能量调节工艺通过负偏压和工作气压渐进调节的方式改变薄膜生长过程中的能量输入,其具体过程为:首先将负偏压降低至200V,工作气压升高至6.0Pa,镀制CrTiAlN薄膜2.5h,再将负偏压降低至100V,工作气压降低至3.0Pa,镀制CrTiAlN薄膜2.5h,最后将负偏压降低至50V,工作气压降低至1.0Pa,镀制CrTiAlN薄膜2.5h。
图8是本实施例在高速钢表面得到的超厚CrTiAlN薄膜的截面电镜图,从图8可以看出,本实施例制备的超厚CrTiAlN薄膜的厚度为34..5μm,且膜层组织结构致密。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

Claims (8)

1.一种基于能量调控原理制备超厚硬质薄膜的方法,其特征在于,该方法包括以下步骤:
步骤一、将基片依次放入分析纯丙酮和分析纯乙醇中进行超声清洗,然后采用热风机吹干,得到洁净基片;
步骤二、将弧靶固定在多弧离子镀设备的靶座上,将步骤一中得到的洁净基片装入多弧离子镀设备的真空室并固定在转架台的样品架上,然后关闭炉门,依次打开机械泵和分子泵对真空室进行抽真空至真空度为1.0×10-3Pa~5.0×10-3Pa时,打开加热装置开关,对真空室加热至200℃~350℃;
步骤三、继续对步骤二中加热至200℃~350℃的真空室抽真空至真空度低于1.0×10-3~5.0×10-3Pa,然后向真空室内通入氩气并维持真空度为3.0Pa,并打开偏压电源向基片施加负偏压至800V并调节占空比为80%,对基片进行溅射清洗和活化20min,再关闭负偏压电源并调节占空比为0,得到活化基片;所述氩气的质量纯度不小于99.99%;
步骤四、对步骤三中装有活化基片的真空室进行抽真空至真空度为1.0×10-3Pa~5.0×10-3Pa,然后通入氩气并维持真空度为1.0Pa,打开偏压电源并调节负偏压至200V,占空比为50%,然后打开弧靶电源,通过弧靶溅射的金属粒子在活化基片上镀制金属打底层;所述弧靶的质量纯度不小于99.99%;
步骤五、继续维持真空室内的负偏压为200V,然后在10min~30min内通入氮气至流量为40sccm并同时逐步降低氩气的流量为8sccm,维持真空室的真空度为1.0Pa,打开弧靶电源,通过弧靶溅射的金属粒子与氮气反应并在步骤四中镀制的金属打底层的表面沉积过渡层;
步骤六、继续维持真空室的真空度为1.0Pa并调节占空比至80%,通过能量调节工艺在步骤五中沉积的过渡层的表面制备能量调节层,得到表面具有薄膜的基片,然后依次关闭气体阀门、弧靶电源、负偏压电源及加热装置,待真空室内的气体抽尽后关闭分子泵和机械泵,将表面具有薄膜的基片冷却至室温后取出进行退火处理,在基片表面得到超厚硬质薄膜;所述超厚硬质薄膜的厚度大于20μm。
2.根据权利要求1所述的一种基于能量调控原理制备超厚硬质薄膜的方法,其特征在于,步骤一中所述基片为钢基片或Si基片。
3.根据权利要求1所述的一种基于能量调控原理制备超厚硬质薄膜的方法,其特征在于,步骤四中所述金属打底层的厚度为200nm~400nm。
4.根据权利要求1所述的一种基于能量调控原理制备超厚硬质薄膜的方法,其特征在于,步骤五中所述过渡层的厚度为300nm~600nm。
5.根据权利要求1所述的一种基于能量调控原理制备超厚硬质薄膜的方法,其特征在于,步骤六中所述能量调节工艺为调节负偏压和/或工作气压,所述调节的方式为交替调节或渐进调节。
6.根据权利要求5所述的方法,其特征在于,所述渐进调节为渐进升高。
7.根据权利要求1所述的一种基于能量调控原理制备超厚硬质薄膜的方法,其特征在于,步骤六中所述能量调节层的成分为TiN、TiAlN或CrTiAlN。
8.根据权利要求1所述的一种基于能量调控原理制备超厚硬质薄膜的方法,其特征在于,步骤六中所述退火处理的温度为300℃~400℃,时间为1h~3h。
CN201910890496.7A 2019-09-20 2019-09-20 一种基于能量调控原理制备超厚硬质薄膜的方法 Pending CN110777336A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910890496.7A CN110777336A (zh) 2019-09-20 2019-09-20 一种基于能量调控原理制备超厚硬质薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910890496.7A CN110777336A (zh) 2019-09-20 2019-09-20 一种基于能量调控原理制备超厚硬质薄膜的方法

Publications (1)

Publication Number Publication Date
CN110777336A true CN110777336A (zh) 2020-02-11

Family

ID=69383611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910890496.7A Pending CN110777336A (zh) 2019-09-20 2019-09-20 一种基于能量调控原理制备超厚硬质薄膜的方法

Country Status (1)

Country Link
CN (1) CN110777336A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111534803A (zh) * 2020-06-16 2020-08-14 西安稀有金属材料研究院有限公司 一种Mo-V-C-N复合涂层的制备方法
CN111636082A (zh) * 2020-06-16 2020-09-08 西安稀有金属材料研究院有限公司 一种电化学制备核燃料包壳元件事故容错Cr涂层的方法
CN113416926A (zh) * 2021-05-17 2021-09-21 湖南泰嘉新材料科技股份有限公司 一种纳米多层结构过渡金属氮化物涂层及其制备方法和应用
CN115142028A (zh) * 2022-08-25 2022-10-04 西安稀有金属材料研究院有限公司 一种耐磨耐腐蚀Fe-Cr-Al复合涂层的制备方法
CN115142029A (zh) * 2022-08-25 2022-10-04 西安稀有金属材料研究院有限公司 一种耐蚀Cr基多层结构复合涂层的制备方法
CN115233153A (zh) * 2022-08-12 2022-10-25 西安秦钛智造科技有限公司 海洋环境用钛合金表面涂层及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102634753A (zh) * 2011-02-12 2012-08-15 深圳职业技术学院 硬质涂层及其制备方法
CN102825855A (zh) * 2012-07-20 2012-12-19 中国科学院宁波材料技术与工程研究所 一种基体表面的超厚CrSiBN复合涂层及其制备方法
CN106191790A (zh) * 2016-07-05 2016-12-07 深圳职业技术学院 耐磨涂层的制备方法
CN108411260A (zh) * 2018-04-02 2018-08-17 深圳职业技术学院 一种Ti-Si-Ag-N纳米复合抗菌涂层及其制备方法
CN110144555A (zh) * 2019-06-24 2019-08-20 北京航天控制仪器研究所 一种铍材表面氮化钛膜层及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102634753A (zh) * 2011-02-12 2012-08-15 深圳职业技术学院 硬质涂层及其制备方法
CN102825855A (zh) * 2012-07-20 2012-12-19 中国科学院宁波材料技术与工程研究所 一种基体表面的超厚CrSiBN复合涂层及其制备方法
CN106191790A (zh) * 2016-07-05 2016-12-07 深圳职业技术学院 耐磨涂层的制备方法
CN108411260A (zh) * 2018-04-02 2018-08-17 深圳职业技术学院 一种Ti-Si-Ag-N纳米复合抗菌涂层及其制备方法
CN110144555A (zh) * 2019-06-24 2019-08-20 北京航天控制仪器研究所 一种铍材表面氮化钛膜层及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
QIU L.S. ET AL.: "Internal stress on adhesion of hard coatings synthesized by multi-arc ion plating", 《SURFACE & COATINGS TECHNOLOGY》 *
ZHAO SHENG-SHENG ET AL.: "Effect of deposition processes on residual stress profiles along the thickness in (Ti,Al)N films", 《SURFACE & COATINGS TECHNOLOGY》 *
赵升升等: "大厚度TiAlN涂层力学性能的研究", 《材料研究学报》 *
邱龙时等: "TiN薄膜的残余应力调控及力学性能研究", 《机械工程学报》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111534803A (zh) * 2020-06-16 2020-08-14 西安稀有金属材料研究院有限公司 一种Mo-V-C-N复合涂层的制备方法
CN111636082A (zh) * 2020-06-16 2020-09-08 西安稀有金属材料研究院有限公司 一种电化学制备核燃料包壳元件事故容错Cr涂层的方法
CN111534803B (zh) * 2020-06-16 2022-06-03 西安稀有金属材料研究院有限公司 一种Mo-V-C-N复合涂层的制备方法
CN113416926A (zh) * 2021-05-17 2021-09-21 湖南泰嘉新材料科技股份有限公司 一种纳米多层结构过渡金属氮化物涂层及其制备方法和应用
CN115233153A (zh) * 2022-08-12 2022-10-25 西安秦钛智造科技有限公司 海洋环境用钛合金表面涂层及其制备方法
CN115142028A (zh) * 2022-08-25 2022-10-04 西安稀有金属材料研究院有限公司 一种耐磨耐腐蚀Fe-Cr-Al复合涂层的制备方法
CN115142029A (zh) * 2022-08-25 2022-10-04 西安稀有金属材料研究院有限公司 一种耐蚀Cr基多层结构复合涂层的制备方法
CN115142028B (zh) * 2022-08-25 2023-06-30 西安稀有金属材料研究院有限公司 一种耐磨耐腐蚀Fe-Cr-Al复合涂层的制备方法
CN115142029B (zh) * 2022-08-25 2023-07-28 西安稀有金属材料研究院有限公司 一种耐蚀Cr基多层结构复合涂层的制备方法

Similar Documents

Publication Publication Date Title
CN110777336A (zh) 一种基于能量调控原理制备超厚硬质薄膜的方法
CN107130213B (zh) 多元合金复合薄膜制备设备和制备方法
CN106244986B (zh) 功能梯度的类金刚石碳薄膜及其制备方法和制品
CN102392246B (zh) 一种金属表面处理工艺
CN106756849A (zh) 一种具有过渡金属硼化物涂层的pcb用微钻及其制备方法
CN104278234A (zh) 一种室温到800℃宽温域自润滑涂层的制备技术
CN114481071B (zh) 一种镀膜装置及dlc镀膜工艺
CN114351110B (zh) 一种强化处理的类金刚石薄膜及其制备方法
CN112853281B (zh) 碳基多层薄膜及其制备方法和应用
CN106756841A (zh) 一种刀具复合涂层的制备方法
CN109735799A (zh) 一种切削刀具表面多层梯度高温耐磨涂层及其制备方法
CN106676470B (zh) 一种AlTiON热作模具钢复合梯度涂层及其制备方法
CN111304612B (zh) 具有高硬度和高抗氧化性能的CrAlN/AlN纳米多层涂层及其制备方法
CN106835036A (zh) 一种调制高功率脉冲磁控溅射制备AlCrN涂层的方法
CN114000118B (zh) 一种钛合金表面硬度梯度分布层厚可调的氮化层制备方法
CN112941463B (zh) 一种纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用
CN109666887A (zh) 一种TiAlN硬质涂层及其制备方法和应用
CN110656313B (zh) 一种与硬质合金结合牢固的氮化锆铝/氧化铝复合涂层及其制备方法
CN112226768B (zh) 一种微弧氧化CrAlN涂层的复合制备方法
CN112553580B (zh) 一种二硼化物复合涂层及其制备方法和应用
CN114686832A (zh) 一种制备减摩耐磨TiAlN/TiAlCN多层复合薄膜的方法
CN113774347A (zh) 一种超硬且韧纳米复合涂层、制备方法及使用设备
CN110484881B (zh) 一种致密二硼化钛涂层及其制备方法和应用
CN112941461A (zh) 一种复合超硬强韧涂层材料以及制备方法
CN110872697A (zh) Cr离子轰击改善多弧离子镀涂层性能的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200211