CN114059017A - 一种防护涂层及其制备方法和一种制品及其制备方法以及在中温盐雾腐蚀环境中应用 - Google Patents

一种防护涂层及其制备方法和一种制品及其制备方法以及在中温盐雾腐蚀环境中应用 Download PDF

Info

Publication number
CN114059017A
CN114059017A CN202111176853.7A CN202111176853A CN114059017A CN 114059017 A CN114059017 A CN 114059017A CN 202111176853 A CN202111176853 A CN 202111176853A CN 114059017 A CN114059017 A CN 114059017A
Authority
CN
China
Prior art keywords
layer
coating
protective coating
salt spray
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111176853.7A
Other languages
English (en)
Inventor
汪爱英
王振玉
李忠昌
马冠水
柯培玲
袁江淮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute Of Industrial Technology
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute Of Industrial Technology
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute Of Industrial Technology, Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute Of Industrial Technology
Priority to CN202111176853.7A priority Critical patent/CN114059017A/zh
Publication of CN114059017A publication Critical patent/CN114059017A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light

Abstract

本申请包括一种防护涂层及其制备方法和一种制品及其制备方法以及在中温盐雾腐蚀环境中应用。所述防护涂层包括Ti‑C层和沉积在Ti‑C层上的Ti‑Al‑C层。所述制品包括基材和所述防护涂层。两层涂层兼具扩散阻挡和强结合功能。Ti‑C层呈密排六方结构,C原子固溶于α‑Ti晶体结构中,Ti‑Al‑C层主相为Ti2AlCMAX相。所述制品通过脉冲磁控溅射法沉积两层涂层工艺简单可控,可产业化生产,所制备的涂层具有优异的抗中温盐雾腐蚀性能,涂层的结合强度高,热稳定性好,能避免过早剥落失效,涂层寿命长,可解决中温情况下合金的盐雾腐蚀问题。

Description

一种防护涂层及其制备方法和一种制品及其制备方法以及在 中温盐雾腐蚀环境中应用
技术领域
本申请涉及一种制品,尤其涉及到一种防护涂层及其制备方法和一种制品及其制备方法以及在中温盐雾腐蚀环境中应用,属于表面处理技术领域。
背景技术
海洋环境是一个高盐度、高湿度的苛刻环境,在海洋大气中服役的飞机发动机压气机叶片,在运转时受到固态NaCl盐和水蒸气协同作用下的严重腐蚀,已成为影响“两机”性能、寿命和安全的主要问题之一。据统计,2000年美国空军每年用于腐蚀维修的费用已超过30亿美元,海军飞机为10亿美元;而以我国某型发动机不锈钢压气机叶片为例,使用10小时后即需要大修,1~4级叶片近乎因腐蚀而全部更换,且传动系统均存在着严重腐蚀,其中一台只工作5小时57分钟,不及规定寿命的6%。与此形成对比的是,相同型号发动机因为不在近海环境下工作,几乎完全不存在腐蚀。因此,中温盐雾腐蚀对高技术装备、重大基础设施和安全生产的威胁更大。
采用表面防护涂层防护技术,设计制备高性能抗中温盐雾腐蚀的防护涂层,可突破金属材料自身性能极限,赋予其优异的抗中温盐雾腐蚀性能,是实现高技术领域金属关键构件、重大基础设施和安全生产的保障。针对抗中温盐雾腐蚀防护涂层,国外先后发展出TiN基梯度结构涂层、Ti/TiN纳米调制多层涂层、TiAlN基三元或多元合金化涂层。然而,由于中温盐雾腐蚀环境的复杂性和苛刻性,传统碳/氮基PVD涂层材料,还无法满足长寿命、高可靠、宽温域自适应的性能需求,亟需发展新型高性能防护涂层材料。
MAX相是一类新型的三元层状类金属陶瓷材料,其中M为前过渡金属,典型如Cr、Ti和V等;A则为主族元素,常用如Al、Si等;X是C或N。MAX相属于P63/mmc空间群,其晶体结构是由近密堆积的M6X八面体层和A原子层交替排列组成。独特的层状结构使MAX相兼具金属和陶瓷的优异性能,如优良的导电性和导热性,良好的抗热震和损伤容限,较低的硬度和较好的机械加工性;较高的弹性模量和高温强度,以及出色的抗氧化和抗腐蚀性能等。这一系列优异的性能使MAX相材料成为严苛环境用金属表面防护的理想候选涂层材料之一,尤其是中温盐雾腐蚀环境的防护。
在中温盐雾腐蚀方面,由于Cr基涂层具有更高的电化学腐蚀速率和更低的化学腐蚀反应活化能,抗中温盐雾腐蚀性能弱于Ti基体系。对于Ti基MAX相而言,TiAl系MAX相涂层表现更优,其原因是中温下A位Al的高活泼和易扩散特性,反应生成的稳定Al2O3有效填充腐蚀层微观结构缺陷,实现缺陷自愈合,形成致密腐蚀层,赋予涂层优异的抗中温盐雾腐蚀性能。并且,在TiAl基MAX相涂层中,211系Ti2AlC MAX相c轴晶胞参数小,成相温度低,是发展高性能抗中温盐雾腐蚀涂层最理想的选择。
另一方面,Ti2AlC MAX相涂层与钛合金、不锈钢等基体界面问题是涂层在中温盐雾服役过程中涂层失效的一大关键因素,受到国内外广泛关注。对于Ti合金和不锈钢表面MAX相涂层而言,如Ti2AlC等,在高温下Al极易向基体扩散,造成基体的力学和抗疲劳性能下降。并且,从力学方面考虑,钛合金的硬度为3~5GPa,Ti2AlC涂层的硬度为15~20GPa,服役过程中由于力学性能不匹配容易在界面处萌生微裂纹,造成涂层过早失效。因此如何制备高质量Ti2AlC MAX相涂层,并进行界面调控,满足中温盐雾环境下长效防护的效果,具有广阔的科学和应用价值。
发明内容
本申请的主要目的在于提供一种抗中温盐雾腐蚀的防护涂层及其制备方法,从而克服了现有技术中的不足。
本申请的另一目的还在于提供所述抗中温盐雾腐蚀的防护涂层的应用。
为实现上述申请目的,本申请采用了如下技术方案:
根据本申请的一个方面,提供一种防护涂层:包括Ti-C层和Ti-Al-C层;
所述Ti-C层中,Ti为密排六方结构,C原子固溶于密排六方结构中;
所述Ti-Al-C层的相结构的主相为Ti2AlC MAX相。
所述防护涂层沉积在基材表面;所述防护涂层的总厚度为5.4~21μm;
所述Ti-C层沉积于基材整个表面或表面上的一部分;
所述Ti-Al-C层沉积在Ti-C层表面;
所述Ti-Al-C层和Ti-C层的厚度之比为2:1~6:1;
可选的,所述Ti-C层的厚度为1.8~3.0μm,所述Ti-Al-C层的厚度为3.6~18μm。
所述Ti-Al-C层与Ti-C层的厚度比3:1~6:1;
可选的,所述Ti-Al-C层和Ti-C层的厚度之比为4:1~6:1;
所述Ti-C层中Ti-C原子比为3:1~5:1;
可选的,所述Ti-C层中Ti、C原子比为2:1~6:1。
所述Ti2AlCMAX相的含量大于90wt%;
所述Ti-Al-C层中Ti、Al与C的原子比2:1:1。
根据本申请的另一个方面,提供一种制品,所述制品包括上所述的防护涂层。
根据本申请的另一个方面,提供一种上述的制品的制备方法,包括以下步骤:
通过磁控溅射法,依次沉积Ti-C层和Ti-Al-C层,之后进行退火处理,获得所述制品。
所述沉积Ti-C层的过程包括:以纯Ti靶为阴极靶材,工作气体I气氛下,得到表面沉积有Ti-C层的基材;
所述沉积Ti-Al-C层的过程包括:以Ti2Al1.5靶为阴极靶材,工作气体II气氛下,得到在表面依次有沉积Ti-C层、Ti-Al-C层的基材;
其中所述工作气体I和工作气体II均为碳氢气体和惰性气体的混合气体;
可选地,在进行磁控溅射前要对基材进行预处理;
所述预处理过程包括用离子化的氩离子轰击基材进行刻蚀处理;
所述刻蚀处理采用的工艺条件包括:腔室压力为0.2~0.6Pa,Ar流量为20sccm~60sccm,阳极离子源电流为0.1~0.3A,刻蚀时间为10~40min。
所述基材选自钛合金或不锈钢。
所述工作气体I的气压为0.3~0.6Pa;
所述工作气体I中碳氢气体的体积百分比为50%~80%;所述工作气体II的气压为0.4~0.8Pa;
所述工作气体II中碳氢气体的体积百分比为2%~10%;所述碳氢气体为CH4和/或C2H2
所述惰性气体选自氩气;
磁控溅射法的溅射源功率为0.8~1.5kW;脉宽为50~200μs;频率为500Hz~2000Hz;基体偏压为-80~-150V。
所述退火处理的工艺条件包括:所述退火温度为300~800℃;退火时间为10~500h;
可选的,所述退火温度为500~800℃;退火时间为10~100h;
退火气氛为真空气氛或保护性气氛;
真空气氛的真空度为1.0×10-3Pa~3.0×10-2Pa;
保护性气氛下的气压为1.0×105Pa;所述保护性气氛包括惰性气体气氛;
可选的,所述保护性气氛为氩气气氛。
具体包括以下步骤:
(1)将基体依次在除油剂、酒精和丙酮中清洗干燥后放入真空镀膜室;
(2)镀膜前通过阳极离子源向真空腔体中通入氩气,先利用离化的氩离子对将步骤(1)中所述基体进行刻蚀;
(3)采用高功率脉冲磁控溅射技术,以纯Ti靶为阴极靶材,以碳氢气体和惰性气体的混合气体为工作气体,在所述基体表面沉积形成Ti-C层,其中采用的高功率脉冲溅射源功率为0.8~1.5kW,脉宽为50~200μs,频率为500Hz~2000Hz,基体偏压为-80~-150V,工作气体气压为0.3~0.6Pa。
在一些优选实施例中,所述制备方法包括:采用高功率脉冲磁控溅射技术,以Ti2Al1.5靶为阴极靶材,以碳氢气体和惰性气体的混合气体为工作气体,在沉积有Ti-C层的基体表面继续沉积形成Ti-Al-C层,获得Ti-C/Ti-Al-C复合涂层;其中采用的高功率脉冲溅射源功率为0.8~1.5kW,脉宽为50~200μs,频率为500Hz~2000Hz,基体偏压为-80~-150V,工作气体气压为0.4~0.8Pa。
(4)将沉积好的Ti-C/Ti-Al-C双层膜涂层置于退火炉中进行中低温退火,得到Ti(C)/Ti2AlC涂层。
根据本申请的另一个方面,提供一种上述的制品或上述的制备方法制备的制品在中温盐雾腐蚀环境中的应用:
所述中温盐雾腐蚀环境的温度为300~700℃;
所述盐雾包括NaSO4盐和/或NaCl盐。
与现有技术相比,本申请至少具有如下有益效果:
1)本申请通过两层涂层结构设计实现了一种抗中温盐雾腐蚀的防护涂层设计,较现有涂层抗盐雾腐蚀性能显著增加,所述抗中温盐雾腐蚀α-Ti(C)/Ti2AlC双层膜涂层具有两层结构,其中α-Ti(C)层与Ti2AlC层具有更为接近的热膨胀系数和力学性能,即可赋予涂层高的结合强度,以避免涂层在服役过程中过早剥落失效,也可充当扩散阻挡层以避免在热处理制备过程和中温盐雾腐蚀过程中Ti2AlC涂层中高活度Al向基体扩散,提高涂层热稳定性,表面功能层Ti2AlC涂层主要发挥抗中温盐雾腐蚀的功能特性。综上,双层涂层功能协同,使涂层整体具有长寿命且可靠的中温盐雾防护性能;
2)本申请采用高功率脉冲磁控溅射技术,通过控制使用Ti和Ti2Al1.5靶和通入碳氢气体的流量,结合后续热处理获得,制备工艺简单,操作过程简单易控,易于大面积均匀化沉积,更利于产业化生产应用,所制备的涂层具有优异的抗中温盐雾腐蚀性能,可解决中温情况下合金(钛合金、不锈钢等)的盐雾腐蚀问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1中Ti-C/Ti-Al-C双层膜防护涂层的截面形貌图;
图2a是密排六方结构的TiCx的XRD标准卡片;
图2b是本申请实施例1中Ti-C/Ti-Al-C双层膜防护涂层的XRD图;
图3是本申请实施例1中Ti-C/Ti-Al-C双层膜防护涂层经600℃盐雾腐蚀75h后的截面形貌图;
图4是本申请对比例1中Ti2AlC涂层的截面形貌图;
图5是本申请对比例1中Ti2AlC涂层腐蚀后的表面形貌图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
本申请的实施例中分析方法如下:
利用X射线衍射仪(XRD)进行相结构和相含量分析;
利用扫描电镜(SEM)进行涂层腐蚀前后形貌,成分和涂层厚度分析;
利用中温盐雾评价系统结合分析天平分析涂层腐蚀后的增重。
下面结合若干优选实施例及附图对本申请的技术方案做进一步详细说明,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。需要指出的是,以下所述实施例旨在便于对本申请的理解,而对其不起任何限定作用。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。下列实施例中未注明具体条件的试验方法,通常按照常规条件。
实施例1
把清洗烘干后的1Cr11Ni2W2MoV不锈钢基体放入真空腔体中,首先向真空腔体中通入氩气40sccm,设置线性阳极离子源的电流为0.2A,腔室压力为0.4Pa,利用电离的氩离子对基体进行刻蚀30min;然后采用高功率脉冲磁控溅射技术沉积Ti-C层,靶材为Ti靶,基体负偏压为-150V,高功率脉冲磁控溅射功率为1.2kW,脉宽为100μs,频率为500Hz,气压为0.5Pa,CH4的体积分数为60%,沉积厚度为2.0μm;接着采用高功率脉冲磁控溅射技术沉积Ti-Al-C涂层,靶材为Ti2Al1.2复合靶,靶功率为1.2kW,脉宽为100μs,频率为500Hz,气压为0.6Pa,CH4的体积分数为5%,基体负偏压为-150V,涂层厚度约为10μm。真空条件下对所沉积的Ti-C/Ti-Al-C双层涂层进行热处理,真空度为2.0×10-3Pa,退火温度为650℃,退火时间为10h。
实施例2
把清洗烘干后的1Cr11Ni2W2MoV不锈钢基体放入真空腔体中,首先向真空腔体中通入氩气20sccm,设置线性阳极离子源的电流为0.2A,腔室压力为0.6Pa,利用电离的氩离子对基体进行刻蚀30min;然后采用高功率脉冲磁控溅射技术沉积Ti-C层,靶材为Ti靶,基体负偏压为-150V,高功率脉冲磁控溅射功率为1.5kW,脉宽为50μs,频率为2000Hz,气压为0.6Pa,CH4的体积分数为80%,沉积厚度为1.8μm;接着采用高功率脉冲磁控溅射技术沉积Ti-Al-C涂层,靶材为Ti2Al1.2复合靶,靶功率为1.5kW,脉宽为50μs,频率为2000Hz,气压为0.6Pa,CH4的体积分数为10%,基体负偏压为-150V,涂层厚度约为3.6μm。真空条件下对所沉积的Ti-C/Ti-Al-C双层涂层进行热处理,真空度为2.0×10-3Pa,退火温度为800℃,退火时间为500h。
本实施例制备的Ti-C/Ti-Al-C双层膜涂层具有致密的两层结构,与实施例1所获涂层的结构不同之处在于:本实施例中的Ti-C层与Ti-Al-C层的厚度之比为1:2。经600℃盐雾腐蚀100h后,多层涂层的腐蚀增重为0.94mg/cm2,表明涂层具有较好的抗盐雾腐蚀防护性能。
实施例3
把清洗烘干后的1Cr11Ni2W2MoV不锈钢基体放入真空腔体中,首先向真空腔体中通入氩气40sccm,设置线性阳极离子源的电流为0.2A,腔室压力为0.4Pa,利用电离的氩离子对基体进行刻蚀30min;然后采用高功率脉冲磁控溅射技术沉积Ti-C层,靶材为Ti靶,基体负偏压为-150V,高功率脉冲磁控溅射功率为1.2kW,脉宽为100μs,频率为500Hz,气压为0.5Pa,CH4的体积分数为60%,沉积厚度为3.0μm;接着采用高功率脉冲磁控溅射技术沉积Ti-Al-C涂层,靶材为Ti2Al1.2复合靶,靶功率为1.2kW,脉宽为100μs,频率为500Hz,气压为0.6Pa,CH4的体积分数为5%,基体负偏压为-150V,涂层厚度约为18μm。真空条件下对所沉积的Ti-C/Ti-Al-C双层涂层进行热处理,真空度为2.0×10-3Pa,退火温度为650℃,退火时间为10h。
本实施例制备的的Ti-C/Ti-Al-C双层膜涂层具有致密的两层结构,与实施例1所获涂层的结构不同之处在于:本实施例中的Ti-C层与Ti-Al-C层的厚度比1:6。经600℃中温盐雾腐蚀100h后,涂层的腐蚀增重为0.77mg/cm2,表明涂层具有较好的抗中温盐雾腐蚀防护性能。
实施例4
本实施例与实施例1的区别仅在于:本实施例中的Ti-C层厚度为1.8μm。经600℃中温盐雾腐蚀100h后,多层涂层的腐蚀增重为0.83mg/cm2,表明涂层具有较好的抗中温盐雾腐蚀防护性能。
实施例5
本实施例与实施例1的区别仅在于:本实施例中的Ti-Al-C层的厚度为18μm。经600℃中温盐雾腐蚀100h后,多层涂层的腐蚀增重为1.21mg/cm2,表明涂层具有较好的抗中温盐雾腐蚀防护性能。
测试例1
实施例1制备的Ti-C/Ti-Al-C双层膜涂层截面形貌如图1所示,Ti-C层厚度为2.0μm,Ti-Al-C层涂层厚度约为10μm,两者厚度比约为1:5。六方密排结构的Ti-C层的XRD标准卡片如图2a所示,图2b为实施例1中Ti-C/Ti-Al-C双层膜防护涂层的XRD图。可以看出实施例1中Ti-C主要呈密排六方结构,Ti-Al-C层的Ti:Al:C原子比接近2:1:1,Ti-Al-C层中除Ti2AlC MAX相外,还含有少量的Ti3AlC、TiAlx和TiC杂质相,经计算,Ti2AlC MA相为93wt.%。经600℃中温盐雾腐蚀100h后,双层涂层的腐蚀增重为0.59mg/cm2,而在相同条件下不锈钢基体的腐蚀增重为4.5mg/cm2,不足基体增重的1/7,显著提升了不锈钢基体的抗中温盐雾腐蚀性能。对经腐蚀后的涂层进行截面形貌分析,如图3所示,Ti-Al-C涂层保持完整,氧化腐蚀层厚度为2.8微米,结构均匀致密。
实施例2~5所制备的Ti-C/Ti-Al-C双层膜涂层截面形貌与实施例1类似。Ti-C层的厚度在1.8~3.0μm以内,Ti-Al-C层的厚度在3.6~18μm以内;防护涂层的总厚度在5.4~21μm以内。Ti-Al-C层与Ti-C层的厚度比在2:1~6:1以内。
实施例2~5所制备的Ti-C/Ti-Al-C双层膜涂层的XRD相结构与实施例1类似,Ti2AlC MA相在90wt.%以上。
实施例2~5所制备的Ti-C/Ti-Al-C双层膜涂层经600℃中温盐雾腐蚀100h后,效果与实施例1类似,均显著提升了不锈钢基体的抗中温盐雾腐蚀性能。
对实施例2~5所制备的Ti-C/Ti-Al-C双层膜涂层经腐蚀后的涂层进行截面形貌分析,结果与实施例1类似,Ti-Al-C涂层保持完整,氧化腐蚀层厚度很小,结构均匀致密。
对比例1
把清洗烘干后的1Cr11Ni2W2MoV不锈钢基体放入真空腔体中,首先向真空腔体中通入氩气40sccm,设置线性阳极离子源的电流为0.2A,腔室压力为0.4Pa,利用电离的氩离子对基体进行刻蚀30min;然后采用高功率脉冲磁控溅射技术直接沉积Ti-Al-C层,靶材为Ti2Al1.2复合靶,靶功率为1.2kW,脉宽为100μs,频率为500Hz,气压为0.6Pa,CH4的体积分数为5%,基体负偏压为-150V,涂层厚度约为9.5μm。真空条件下对所沉积的Ti-Al-C双层涂层进行热处理,真空度为2.0×10-3Pa,退火温度为650℃,退火时间为10h。
由图4所示,本对比例制备的Ti-Al-C涂层为单层结构,涂层厚度约为9.5μm。经600℃水蒸气腐蚀75h后,涂层的腐蚀增重为4.6mg/cm2,明显高于实施例1中的氧化增重。对腐蚀后的涂层进行表面形貌分析发现,涂层在腐蚀过程中出现微裂纹(如图5所示),成为腐蚀离子快速内扩散通道,致涂层最终失效,其原因可能为缺乏Ti-C界面层,使涂层与基体不匹配所致。
对比例2
本对比例与实施例1的区别在于:本对比例为单层Ti-C层涂层,即缺少表面功能层Ti-Al-C层,经600℃水蒸气腐蚀75h后,腐蚀增重为9.5mg/cm2,显著高于实施例1的腐蚀增重。结果表明,缺少表面功能层后腐蚀速率显著增大,防护效果大大降低。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (10)

1.一种防护涂层,其特征在于:包括Ti-C层和Ti-Al-C层;
所述Ti-C层中,Ti为密排六方结构,C原子固溶于密排六方结构中;
所述Ti-Al-C层的相结构的主相为Ti2AlC MAX相。
2.根据权利要求1所述的防护涂层,其特征在于:
所述防护涂层沉积在基材表面;所述防护涂层的总厚度为5.4~21μm;
所述Ti-C层沉积于基材整个表面或表面上的一部分;
所述Ti-Al-C层沉积在Ti-C层表面;
所述Ti-Al-C层和Ti-C层的厚度之比为2:1~6:1;
优选的,所述Ti-C层的厚度为1.8~3.0μm,所述Ti-Al-C层的厚度为3.6~18μm。
3.根据权利要求1所述的防护涂层,其特征在于:
所述Ti-Al-C层与Ti-C层的厚度比3:1~6:1;
优选的,所述Ti-Al-C层和Ti-C层的厚度之比为4:1~6:1;
所述Ti-C层中Ti-C原子比为3:1~5:1;
优选的,所述Ti-C层中Ti、C原子比为2:1~6:1。
4.根据权利要求1所述的防护涂层,其特征在于:
所述Ti2AlCMAX相的含量大于90wt%;
所述Ti-Al-C层中Ti、Al与C的原子比2:1:1。
5.一种制品,其特征在于,所述制品包括权利要求1~4中任意一项所述的防护涂层。
6.一种权利要求5所述的制品的制备方法,其特征在于,包括以下步骤:
通过磁控溅射法,依次沉积Ti-C层和Ti-Al-C层,之后进行退火处理,获得所述制品。
7.根据权利要求5所述的制备方法,其特征在于,所述沉积Ti-C层的过程包括:以纯Ti靶为阴极靶材,工作气体I气氛下,得到表面沉积有Ti-C层的基材;
所述沉积Ti-Al-C层的过程包括:以Ti2Al1.5靶为阴极靶材,工作气体II气氛下,得到在表面依次有沉积Ti-C层、Ti-Al-C层的基材;
其中所述工作气体I和工作气体II均为碳氢气体和惰性气体的混合气体;
优选地,在进行磁控溅射前要对基材进行预处理;
所述预处理过程包括用离子化的氩离子轰击基材进行刻蚀处理;
所述基材选自钛合金或不锈钢。
8.根据权利要求7所述的制备方法,其特征在于,所述工作气体I的气压为0.3~0.6Pa;
所述工作气体I中碳氢气体的体积百分比为50%~80%;所述工作气体II的气压为0.4~0.8Pa;
所述工作气体II中碳氢气体的体积百分比为2%~10%;所述碳氢气体为CH4和/或C2H2
所述惰性气体选自氩气;
磁控溅射法的溅射源功率为0.8~1.5kW;脉宽为50~200μs;频率为500Hz~2000Hz;基体偏压为-80~-150V。
9.根据权利要求5所述的制备方法,其特征在于,所述退火处理的工艺条件包括:所述退火温度为300~800℃;退火时间为10~500h;
优选的,所述退火温度为500~800℃;退火时间为10~100h;
退火气氛为真空气氛或保护性气氛;
真空气氛的真空度为1.0×10-3Pa~3.0×10-2Pa;
保护性气氛下的气压为1.0×105Pa;所述保护性气氛包括惰性气体气氛;
优选的,所述保护性气氛为氩气气氛。
10.权利要求5所述的制品或权利要求6~9中任一项所述的制备方法制备的制品在中温盐雾腐蚀环境中的应用,其特征在于:
所述中温盐雾腐蚀环境的温度为300~700℃;
所述盐雾包括NaSO4盐和/或NaCl盐。
CN202111176853.7A 2021-10-09 2021-10-09 一种防护涂层及其制备方法和一种制品及其制备方法以及在中温盐雾腐蚀环境中应用 Pending CN114059017A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111176853.7A CN114059017A (zh) 2021-10-09 2021-10-09 一种防护涂层及其制备方法和一种制品及其制备方法以及在中温盐雾腐蚀环境中应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111176853.7A CN114059017A (zh) 2021-10-09 2021-10-09 一种防护涂层及其制备方法和一种制品及其制备方法以及在中温盐雾腐蚀环境中应用

Publications (1)

Publication Number Publication Date
CN114059017A true CN114059017A (zh) 2022-02-18

Family

ID=80234414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111176853.7A Pending CN114059017A (zh) 2021-10-09 2021-10-09 一种防护涂层及其制备方法和一种制品及其制备方法以及在中温盐雾腐蚀环境中应用

Country Status (1)

Country Link
CN (1) CN114059017A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717516A (zh) * 2022-03-01 2022-07-08 中国科学院宁波材料技术与工程研究所 一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235062A (zh) * 2021-07-12 2021-08-10 中国科学院宁波材料技术与工程研究所 一种max相多层复合涂层及其制备方法与应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235062A (zh) * 2021-07-12 2021-08-10 中国科学院宁波材料技术与工程研究所 一种max相多层复合涂层及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
朴政国等主编: "《光伏发电原理、技术及其应用》", 31 January 2020, 机械工业出版社, pages: 47 *
王振玉等: "Ti2AlC MAX相涂层的中温盐雾腐蚀机制", 《第十一届全国腐蚀与防护大会,工程科技Ⅰ辑》, pages 241 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717516A (zh) * 2022-03-01 2022-07-08 中国科学院宁波材料技术与工程研究所 一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法

Similar Documents

Publication Publication Date Title
CN112064024B (zh) 阻扩散高熵合金涂层材料、耐高温涂层材料及其制备方法和应用
CN108728793B (zh) 一种强韧耐蚀CrAlN/Cr2AlC多层膜涂层及其制备方法
CN106702330A (zh) 一种碳钢或不锈钢表面基于镀铝层的微弧氧化陶瓷涂层及其制备方法
CN109913771B (zh) 一种VAlTiCrSi高熵合金薄膜及其在海水环境下的应用
CN111485209A (zh) 高熵合金/wc硬质层纳米多层薄膜、其制备方法及应用
CN114059017A (zh) 一种防护涂层及其制备方法和一种制品及其制备方法以及在中温盐雾腐蚀环境中应用
CN110791730B (zh) 一种核燃料用锆合金包壳表面复合涂层的制备方法
CN112663001B (zh) 一种钛合金叶片防护涂层及其制备方法
CN110158035A (zh) 耐高温海洋环境腐蚀的金属-金属氮化物多层涂层及制备
CN111748782B (zh) Max相涂层及其制备方法
CN108950489B (zh) 一种Pt和Y改性的梯度Al涂层及其制备工艺
Dini Properties of coatings: Comparisons of electroplated, physical vapor deposited, chemical vapor deposited, and plasma sprayed coatings
JPH0693469A (ja) チタンをベースとする基板に耐摩耗性コーティングを堆積する方法
CN112695282B (zh) 一种抗中高温水蒸气腐蚀的防护涂层及其制备方法与应用
CN111020497A (zh) 一种周期性多层结构AlTiN/AlCrO涂层及其制备方法
CN114086117B (zh) 一种抗固体颗粒冲蚀的防护涂层及其制备方法
CN115896726A (zh) 一种MAX-Ag相复合涂层及其制备方法和应用
CN105463372B (zh) 一种多层复合超厚自润滑硬质涂层的制备方法
CN114717516A (zh) 一种强结合高耐蚀TiAl/Ti2AlC涂层的制备方法
CN114318467A (zh) 一种适用于海洋环境下钛合金耐磨损、抗菌复合涂层及其制备方法
CN113881917B (zh) 一种港口起重机防腐涂层及制备方法
CN115961259B (zh) 一种强韧耐蚀max相多层复合涂层及其制备方法与应用
CN109136849B (zh) 一种Pt改性的梯度Al涂层及其制备方法
CN114134371B (zh) 一种TiAl合金用双层抗氧化涂层及其制备方法
CN114807846B (zh) 一种抗固体颗粒冲蚀的梯度多层防护涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination