CN108866480B - 一种多层多元纳米复合自润滑硬质涂层及其制备方法和应用 - Google Patents

一种多层多元纳米复合自润滑硬质涂层及其制备方法和应用 Download PDF

Info

Publication number
CN108866480B
CN108866480B CN201810575624.4A CN201810575624A CN108866480B CN 108866480 B CN108866480 B CN 108866480B CN 201810575624 A CN201810575624 A CN 201810575624A CN 108866480 B CN108866480 B CN 108866480B
Authority
CN
China
Prior art keywords
target
layer
adjusting
lubricating
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810575624.4A
Other languages
English (en)
Other versions
CN108866480A (zh
Inventor
王启民
梅海娟
张腾飞
王瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201810575624.4A priority Critical patent/CN108866480B/zh
Publication of CN108866480A publication Critical patent/CN108866480A/zh
Application granted granted Critical
Publication of CN108866480B publication Critical patent/CN108866480B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于刀具涂层和表面防护涂层制备技术领域,公开了一种多层多元纳米复合自润滑硬质涂层及其制备方法和应用。本发明涂层包括沉积于硬质合金或高速钢刀具基体上,形成自下而上的Cr轰击植入层、CrN过渡层、AlTiN硬质核心层以及MoVCuN表面润滑层;所述MoVCuN表面润滑层是采用阳极层离子源辅助磁控溅射沉积制备的,该层各元素的原子百分比:Mo 34~44at.%,V 6~10at.%,Cu 0.3~0.5at.%,N 50~55at.%。本发明有机结合了电弧离子镀复合阳极层离子源辅助磁控溅射沉积技术的优点,制备出的涂层硬度高、摩擦系数低,可实现一定宽温域范围的自润滑效果。

Description

一种多层多元纳米复合自润滑硬质涂层及其制备方法和应用
技术领域
本发明属于刀具涂层和表面防护涂层制备技术领域,特别涉及一种多层多元纳米复合自润滑硬质涂层及其制备方法和应用。
背景技术
近年来受环保法规以及润滑油成本升高等因素的影响,切削刀具涂层正在逐步地向干式固体润滑材料方向发展。目前中低温下常用的固体润滑剂有石墨、MoS2和软金属Ag等,但这类单组分涂层在高温或潮湿环境下通常由于氧化而失去润滑性能。而自润滑涂层主要通过元素组分在高温下逐渐向涂层外表面扩散,并发生原位氧化反应生成氧化物润滑相来达到自润滑效果,如容易形成Magnéli相润滑氧化物的MoVCuN涂层。尽管高温下MoN和VN相的快速氧化有利于润滑氧化物的形成,但却降低了涂层的高温热稳定性能。而且MoN相的低摩擦学性能基本上仅限于500℃以下的温度范围,这是由于高温下MoO3氧化物相不稳定,容易在高温下挥发,从而导致高温耐磨性的急剧降低。因此,如何解决MoVCuN涂层在氧化过程中的快速氧化问题,实现一定宽温域范围内的自润滑效果,已成为急需解决的关键技术问题。
电弧离子镀和磁控溅射沉积是现阶段制备刀具涂层的主流PVD技术。其中,电弧离子镀技术具有金属离化率高、膜层致密和附着力强等优点,适合于工业化大面积工件镀膜的沉积制备,但其制备的涂层表面质量较差,多金属液滴且膜内应力大;而磁控溅射沉积技术制备的涂层表面较光滑,无明显大颗粒缺陷,但金属离化率低,导致膜基结合力差,涂层容易剥落。气体离子源辅助磁控溅射沉积技术的出现,在一定程度上提高了磁控溅射的离化率和轰击作用,从而实现了较致密涂层的制备。
发明内容
为了克服现有技术中的缺点与不足,本发明的首要目的在于提供一种多层多元纳米复合自润滑硬质涂层,提高自润滑硬质涂层的高温耐磨性,实现一定宽温域范围内的自润滑效果。
本发明的又一目的在于提供一种上述多层多元纳米复合自润滑硬质涂层的制备方法。
本发明的再一目的在于提供一种上述多层多元纳米复合自润滑硬质涂层的应用。
本发明目的通过以下技术方案实现:
一种多层多元纳米复合自润滑硬质涂层,该涂层由下到上包括衬底基体、Cr轰击植入层、CrN过渡层、AlTiN硬质核心层以及MoVCuN表面润滑层;其中AlTiN硬质核心层是采用电弧离子镀技术制备的,该层各元素的原子百分比含量:Al 29~30at.%,Ti 14~15at.%,N 55~56at.%;所述MoVCuN表面润滑层是采用阳极层离子源辅助磁控溅射沉积制备的,该层各元素的原子百分比:Mo 33.7~44.7at.%,V 5.7~10.4at.%,Cu 0.3~0.5at.%,N 49.3~55.4at.%。
所述CrN过渡层的厚度为100~300nm,AlTiN硬质核心层的厚度为1.0~2.0μm,MoVCuN表面润滑层的厚度为0.5~1.5μm。
所述衬底基体为硬质合金或高速钢刀具基体。
上述的一种多层多元纳米复合自润滑硬质涂层的制备方法,包括以下步骤:
(1)将经预处理后的衬底基体固定在镀膜腔室内的工件转架上,调节工件转架自转速度2~5rpm,使基体正对靶材表面,调节水平靶基距50~150cm,垂直靶基距0~44cm,打开加热器升温至100~300℃,预抽本底真空至3.0~5.0×10-3Pa;
(2)打开Ar气流量阀,调节气压1.0~2.0Pa,开启直流脉冲偏压电源,调节基体偏压至-800~-1000V,占空比40%~80%,频率40~80kHz,对腔体进行辉光溅射清洗10~30min;
(3)降低基体偏压至-600~-800V,调节Ar气压至0.5~1.0Pa,打开Cr电弧靶,调节靶电流60~120A,以Cr离子高能轰击基体1~5min形成Cr轰击植入层,产生伪冶金界面结合以提高结合力;
(4)降低基体偏压至-50~-250V,关闭Ar、打开N2气流量阀,调节气压至0.5~1.0Pa,沉积3~9min,得到厚度为100~300nm的CrN过渡层,以降低涂层的残余内应力,提高韧性;
(5)关闭Cr电弧靶,调节N2气压1.0~3.0Pa,基体偏压-50~-250V,打开AlTi电弧合金靶,调节靶电流至60~120A,沉积15~30min,得到厚度为1.0~2.0μm的AlTiN硬质核心层,保证涂层的高硬度、高强度和高抗氧化性,提高涂层的高温耐磨性与热稳定性;
(6)关闭AlTi电弧合金靶,打开Ar、N2气流量阀,调节Ar/N2流量比1:1~5:1,调节总气压至0.5~1.0Pa,基体偏压-50~-250V,调节阳极层离子源功率至0.5~3.0kW,同时打开单极脉冲磁控溅射拼接靶Mo-V-Cu,调节靶功率1.0~3.0kW,频率40~80kHz,沉积100~300min,调整靶基距,得到厚度为0.5~1.5μm的不同涂层成分的MoVCuN表面润滑层;
(7)沉积结束后,关闭离子源电源和靶电源以及偏压电源,关闭Ar和N2气流量阀,待腔室温度降至室温后即可开炉门取出样品,完成镀膜。
步骤(5)所述AlTi电弧合金靶的原子比Al:Ti为67:33;步骤(6)所述拼接靶Mo-V-Cu由纯Mo靶、纯V靶和纯Cu靶通过几何形状拼接而成的平面靶。
上述的一种多层多元纳米复合自润滑硬质涂层在刀具切削和表面防护涂层领域中的应用。
与现有技术相比,本发明具有以下优点及有益效果:
(1)本发明有机结合了电弧离子镀复合阳极层离子源辅助磁控溅射沉积技术的优点,可制备出性能良好的多层多元纳米复合自润滑硬质涂层;
(2)本发明制备的多层多元纳米复合自润滑硬质涂层,具有硬度高、摩擦系数低,大大提高了自润滑硬质涂层的高温耐磨性,可实现一定宽温域范围内的自润滑效果。
附图说明
图1为本发明多层多元纳米复合自润滑硬质涂层的结构示意图,其中1为刀具基体,2为Cr轰击植入层,3为CrN过渡层,4为AlTiN硬质核心层,5为MoVCuN表面润滑层;
图2为实施例中拼接靶与样品位置在水平与垂直方向上的靶基距示意图,其中样品1、2、3分别对应制备不同涂层成分的MoVCuN表面润滑层。
图3为实施例中多层多元纳米复合自润滑硬质涂层的截面形貌SEM图:(a)1号涂层,(b)2号涂层,(c)3涂层。
图4为实施例中多层多元纳米复合自润滑硬质涂层在常温下的摩擦曲线图。
具体实施方式
下面通过实施例对本发明作进一步详细说明,这些实施例仅用来说明本发明,但本发明的保护范围不限于此。
以下实施例所得AlTiN/MoVCuN多层多元纳米复合自润滑硬质涂层的结构示意图如图1所示。
实施例1:
(1)将经预处理后的衬底基体固定在镀膜腔室内的工件转架上,调节工件转架自转速度3rpm,使基体正对靶材表面,调节垂直靶基距至4cm,水平靶基距120cm,打开加热器升温至200℃,预抽本底真空至5.0×10-3Pa;
(2)打开Ar气流量阀,调节气压至1.8Pa,开启直流脉冲偏压电源,调节基体偏压至-1000V,占空比40%,频率80kHz,对腔体进行辉光溅射清洗30min;
(3)降低基体偏压至-800V,调节Ar气压至0.5Pa,打开Cr电弧靶,调节靶电流至100A,以Cr离子高能轰击基体2min,产生伪冶金界面结合,提高膜基结合力;
(4)降低基体偏压至-150V,关闭Ar、打开N2气流量阀,调节气压至0.5Pa,沉积5min得到厚度为200nm的CrN过渡层,以降低涂层的残余内应力,提高韧性;
(5)关闭Cr电弧靶,调节N2气压至3.0Pa,基体偏压-150V,打开AlTi电弧合金靶(原子比Al:Ti为67:33),调节靶电流至80A,沉积20min,得到厚度为1.3μm的AlTiN硬质核心层,保证涂层的高硬度、高强度和高抗氧化性,提高涂层的高温耐磨性与热稳定性;
(6)关闭AlTi电弧合金靶,打开Ar、N2气流量阀,调节Ar/N2流量比3.5:1,调节总气压至0.5Pa,基体偏压-150V,调节阳极层离子源功率至0.6kW,同时打开单极脉冲磁控溅射拼接靶Mo-V-Cu,调节靶功率至1.5kW,频率40kHz,沉积250min,得到厚度为0.65μm的MoVCuN表面润滑层;
(7)沉积结束后,关闭离子源电源和靶电源以及偏压电源,关闭Ar和N2气流量阀,待腔室温度降至室温后即可开炉门取出样品,完成镀膜。
本实施例中,制备的MoVCuN表面润滑层中各元素的原子百分比含量为:Mo33.7at.%,V 10.4at.%,Cu 0.5at.%,N 55.4at.%。
图2为实施例中拼接靶Mo-V-Cu与样品位置在水平与垂直方向上的靶基距示意图,其中样品1对应实施例1中制备的MoVCuN表面润滑层;图3的(a)为该工艺参数制备的AlTiN/MoVCuN多层多元纳米复合自润滑硬质涂层的截面形貌图,可以看出比较典型的多层结构;图4中1号涂层在常温下与摩擦副SiC球的平均摩擦系数为0.61。
实施例2:
(1)将经预处理后的衬底基体固定在镀膜腔室内的工件转架上,调节工件转架自转速度3rpm,使基体正对靶材表面,调节垂直靶基距至10cm,水平靶基距120cm,打开加热器升温至200℃,预抽本底真空至5.0×10-3Pa;
(2)打开Ar气流量阀,调节气压至1.8Pa,开启直流脉冲偏压电源,调节基体偏压至-1000V,占空比40%,频率80kHz,对腔体进行辉光溅射清洗30min;
(3)降低基体偏压至-800V,调节Ar气压至0.5Pa,打开Cr电弧靶,调节靶电流至100A,以Cr离子高能轰击基体2min,产生伪冶金界面结合,提高膜基结合力;
(4)降低基体偏压至-150V,关闭Ar、打开N2气流量阀,调节气压至0.5Pa,沉积5min得到厚度为200nm的CrN过渡层,以降低涂层的残余内应力,提高韧性;
(5)关闭Cr电弧靶,调节N2气压至3.0Pa,基体偏压-150V,打开AlTi电弧合金靶(原子比Al:Ti为67:33),调节靶电流至80A,沉积20min,得到厚度为1.3μm的AlTiN硬质核心层,保证涂层的高硬度、高强度和高抗氧化性,提高涂层的高温耐磨性与热稳定性;
(6)关闭AlTi电弧合金靶,打开Ar、N2气流量阀,调节Ar/N2流量比3.5:1,调节总气压至0.5Pa,基体偏压-150V,调节阳极层离子源功率至0.6kW,同时打开单极脉冲磁控溅射拼接靶Mo-V-Cu,调节靶功率至1.5kW,频率40kHz,沉积250min,得到厚度为0.69μm的MoVCuN表面润滑层;
(7)沉积结束后,关闭离子源电源和靶电源以及偏压电源,关闭Ar和N2气流量阀,待腔室温度降至室温后即可开炉门取出样品,完成镀膜。
本实施例中,制备的MoVCuN表面润滑层中各元素的原子百分比含量为:Mo40.6at.%,V 8.1at.%,Cu 0.4at.%,N 50.9at.%。
图2为实施例中拼接靶Mo-V-Cu与样品位置在水平与垂直方向上的靶基距示意图,其中样品2对应实施例2中制备的MoVCuN表面润滑层;图3的(b)为该工艺参数制备的AlTiN/MoVCuN多层多元纳米复合自润滑硬质涂层的截面形貌图,由于Mo的溅射率高于V元素,使得其表面层MoVCuN的厚度相比实例1有所增加;图4中可以看出2号涂层在常温下摩擦系数相比1号涂层有明显的降低,起到更好的减磨作用。
实施例3:
(1)将经预处理后的衬底基体固定在镀膜腔室内的工件转架上,调节工件转架自转速度3rpm,使基体正对靶材表面,调节垂直靶基距至16cm,水平靶基距120cm,打开加热器升温至200℃,预抽本底真空至5.0×10-3Pa;
(2)打开Ar气流量阀,调节气压至1.8Pa,开启直流脉冲偏压电源,调节基体偏压至-1000V,占空比40%,频率80kHz,对腔体进行辉光溅射清洗30min;
(3)降低基体偏压至-800V,调节Ar气压至0.5Pa,打开Cr电弧靶,调节靶电流至100A,以Cr离子高能轰击基体2min,产生伪冶金界面结合,提高膜基结合力;
(4)降低基体偏压至-150V,关闭Ar、打开N2气流量阀,调节气压至0.5Pa,沉积5min得到厚度为200nm的CrN过渡层,以降低涂层的残余内应力,提高韧性;
(5)关闭Cr电弧靶,调节N2气压至3.0Pa,基体偏压-150V,打开AlTi电弧合金靶(原子比Al:Ti为67:33),调节靶电流至80A,沉积20min,得到厚度为1.3μm的AlTiN硬质核心层,保证涂层的高硬度、高强度和高抗氧化性,提高涂层的高温耐磨性与热稳定性;
(6)关闭AlTi电弧合金靶,打开Ar、N2气流量阀,调节Ar/N2流量比3.5:1,调节总气压至0.5Pa,基体偏压-150V,调节阳极层离子源功率至0.6kW,同时打开单极脉冲磁控溅射拼接靶Mo-V-Cu,调节靶功率至1.5kW,频率40kHz,沉积250min,得到厚度为0.78μm的MoVCuN表面润滑层;
(7)沉积结束后,关闭离子源电源和靶电源以及偏压电源,关闭Ar和N2气流量阀,待腔室温度降至室温后即可开炉门取出样品,完成镀膜。
本实施例中,制备的MoVCuN表面润滑层中各元素的原子百分比含量为:Mo44.7at.%,V 5.7at.%,Cu 0.3at.%,N 49.3at.%。
图2为实施例中拼接靶Mo-V-Cu与样品位置在水平与垂直方向上的靶基距示意图,其中样品3对应实施例3中制备的MoVCuN表面润滑层;图3的(c)为该工艺参数制备的AlTiN/MoVCuN多层多元纳米复合自润滑硬质涂层的截面形貌图,其截面形貌更加平滑,表面润滑层的厚度也有所增加。图4中3号涂层在常温下也表现出较低的摩擦系数,起到良好的自润滑作用。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种多层多元纳米复合自润滑硬质涂层,其特征在于:该涂层由下到上包括衬底基体、Cr轰击植入层、CrN过渡层、AlTiN硬质核心层以及MoVCuN表面润滑层;其中AlTiN硬质核心层是采用电弧离子镀技术制备的,该层各元素的原子百分比含量:Al 29~30at.%,Ti14~15at.%,N 55~56at.%;所述MoVCuN表面润滑层是采用阳极层离子源辅助磁控溅射沉积制备的,该层各元素原子百分比:Mo 33.7~44.7at.%,V 5.7~10.4at.%,Cu 0.3~0.5at.%,N 49.3~55.4at.%。
2.根据权利要求1所述的一种多层多元纳米复合自润滑硬质涂层,其特征在于:所述CrN过渡层的厚度为100~300nm,AlTiN硬质核心层的厚度为1.0~2.0μm ,MoVCuN表面润滑层的厚度为0.5~1.5μm 。
3.根据权利要求1所述的一种多层多元纳米复合自润滑硬质涂层,其特征在于:所述衬底基体为硬质合金或高速钢刀具基体。
4.根据权利要求1所述的一种多层多元纳米复合自润滑硬质涂层的制备方法,其特征在于包括以下步骤:
(1)将经预处理后的衬底基体固定在镀膜腔室内的工件转架上,调节工件转架自转速度2~5rpm,使基体正对靶材表面,调节水平靶基距50~150cm,垂直靶基距0~44cm,打开加热器升温至100~300℃,预抽本底真空至3.0~5.0×10-3Pa;
(2)打开Ar气流量阀,调节气压1.0~2.0Pa,开启直流脉冲偏压电源,调节基体偏压至-800~-1000V,占空比40%~80%,频率40~80kHz,对腔体进行辉光溅射清洗10~30min;
(3)降低基体偏压至-600~-800V,调节Ar气压至0.5~1.0Pa,打开Cr电弧靶,调节靶电流60~120A,以Cr离子高能轰击基体1~5min形成Cr轰击植入层,产生伪冶金界面结合以提高结合力;
(4)降低基体偏压至-50~-250V,关闭Ar、打开N2气流量阀,调节气压至0.5~1.0Pa,沉积3~9min,得到厚度为100~300nm的CrN过渡层,以降低涂层的残余内应力,提高韧性;
(5)关闭Cr电弧靶,调节N2气压1.0~3.0Pa,基体偏压-50~-250V,打开AlTi电弧合金靶,调节靶电流至60~120A,沉积15~30min,得到厚度为1.0~2.0μm 的AlTiN硬质核心层,提高涂层的高温耐磨性与热稳定性;
(6)关闭AlTi电弧合金靶,打开Ar、N2气流量阀,调节Ar/N2流量比1:1~5:1,调节总气压至0.5~1.0Pa,基体偏压-50~-250V,调节阳极层离子源功率至0.5~3.0kW,同时打开单极脉冲磁控溅射拼接靶Mo-V-Cu,调节靶功率1.0~3.0kW,频率40~80kHz,沉积100~300min,调整靶基距,得到厚度为0.5~1.5μm 的不同涂层成分的MoVCuN表面润滑层;
(7)沉积结束后,关闭离子源电源和靶电源以及偏压电源,关闭Ar和N2气流量阀,待腔室温度降至室温后即可开炉门取出样品,完成镀膜。
5.根据权利要求4所述的制备方法,其特征在于:步骤(5)所述AlTi电弧合金靶的原子比Al:Ti为67:33;所述拼接靶Mo-V-Cu由纯Mo靶、纯V靶和纯Cu靶通过几何形状拼接而成的平面靶。
6.根据权利要求1所述的一种多层多元纳米复合自润滑硬质涂层在刀具切削和表面防护涂层领域中的应用。
CN201810575624.4A 2018-06-06 2018-06-06 一种多层多元纳米复合自润滑硬质涂层及其制备方法和应用 Active CN108866480B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810575624.4A CN108866480B (zh) 2018-06-06 2018-06-06 一种多层多元纳米复合自润滑硬质涂层及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810575624.4A CN108866480B (zh) 2018-06-06 2018-06-06 一种多层多元纳米复合自润滑硬质涂层及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108866480A CN108866480A (zh) 2018-11-23
CN108866480B true CN108866480B (zh) 2020-04-17

Family

ID=64338691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810575624.4A Active CN108866480B (zh) 2018-06-06 2018-06-06 一种多层多元纳米复合自润滑硬质涂层及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108866480B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109722637B (zh) * 2018-12-24 2021-09-07 中国科学院宁波材料技术与工程研究所 润滑涂层及其制备方法
CN111304619A (zh) * 2020-04-20 2020-06-19 江苏金晟元特种阀门股份有限公司 宽温域自润滑MoN-VN多层涂层的制备方法及应用
CN112663009A (zh) * 2020-12-11 2021-04-16 江苏特丽亮镀膜科技有限公司 一种磁控溅射镀膜的装置及其工作方法
CN112746248B (zh) * 2020-12-15 2022-05-10 东南大学 一种宽温域自润滑涂层刀具及其制备方法
CN113628982A (zh) * 2021-08-06 2021-11-09 纳狮新材料有限公司 封装模具及其制备方法
CN116288152B (zh) * 2023-03-22 2024-03-26 纳狮新材料有限公司 一种包含抗菌不粘涂层的产品及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210310A (zh) * 2007-12-21 2008-07-02 广州有色金属研究院 微型钻头表面改性用多元多层硬质薄膜材料及其制备方法
CN102080207A (zh) * 2010-12-25 2011-06-01 深圳市广大纳米工程技术有限公司 一种DLC/TiAlN/CrN/Cr多层超硬膜涂层及其制备方法
KR20110131686A (ko) * 2010-05-31 2011-12-07 창원대학교 산학협력단 아크 이온 플레이팅법을 이용한 TiAlN 필름의 제조방법
CN103707568A (zh) * 2012-10-04 2014-04-09 现代自动车株式会社 用于发动机排气系统部件的涂层材料及其制造方法
CN104928638A (zh) * 2015-05-21 2015-09-23 广东工业大学 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN107604329A (zh) * 2017-08-11 2018-01-19 广东工业大学 一种耐磨自润滑Mo‑Cu‑V‑N复合涂层及其制备方法和应用
JP2018051705A (ja) * 2016-09-29 2018-04-05 三菱マテリアル株式会社 表面被覆切削工具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210310A (zh) * 2007-12-21 2008-07-02 广州有色金属研究院 微型钻头表面改性用多元多层硬质薄膜材料及其制备方法
KR20110131686A (ko) * 2010-05-31 2011-12-07 창원대학교 산학협력단 아크 이온 플레이팅법을 이용한 TiAlN 필름의 제조방법
CN102080207A (zh) * 2010-12-25 2011-06-01 深圳市广大纳米工程技术有限公司 一种DLC/TiAlN/CrN/Cr多层超硬膜涂层及其制备方法
CN103707568A (zh) * 2012-10-04 2014-04-09 现代自动车株式会社 用于发动机排气系统部件的涂层材料及其制造方法
CN104928638A (zh) * 2015-05-21 2015-09-23 广东工业大学 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
JP2018051705A (ja) * 2016-09-29 2018-04-05 三菱マテリアル株式会社 表面被覆切削工具
CN107604329A (zh) * 2017-08-11 2018-01-19 广东工业大学 一种耐磨自润滑Mo‑Cu‑V‑N复合涂层及其制备方法和应用

Also Published As

Publication number Publication date
CN108866480A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
CN108866480B (zh) 一种多层多元纳米复合自润滑硬质涂层及其制备方法和应用
CN108690956B (zh) 电弧离子镀-磁控溅射复合沉积高温耐磨减摩AlTiN纳米多层涂层及其制备方法和应用
CN101698362B (zh) 一种自润滑硬质纳米复合多层涂层及其制备方法
CN103273687B (zh) TiSiN+ZrSiN复合纳米涂层刀具及其制备方法
CN107523790B (zh) 一种AlCrSiCuN纳米多层涂层及其制备方法
CN105839049B (zh) 一种钛铝合金表面抗高温氧化、耐磨损AlCrN涂层及其制备方法
CN107557736B (zh) 一种AlCrSiVN纳米复合涂层及其制备方法
CN103160781B (zh) 模具钢表面多层梯度纳米复合类金刚石薄膜的制备方法
WO2019072084A1 (zh) 一种耐高温硬质复合涂层及其制备方法和涂层刀具
CN103143761B (zh) 一种AlTiN-MoN纳米多层复合涂层铣刀及其制备方法
CN108517487B (zh) 一种高硬度和高耐磨的TiAlN/W2N多层涂层及其制备方法
CN106244986A (zh) 功能梯度的类金刚石碳薄膜及其制备方法和制品
CN108930021B (zh) 一种纳米多层AlTiN/AlTiVCuN涂层及其制备方法和应用
CN107604329A (zh) 一种耐磨自润滑Mo‑Cu‑V‑N复合涂层及其制备方法和应用
CN108866481B (zh) 一种纳米复合Al-Ti-V-Cu-N涂层及其制备方法和应用
CN107740053B (zh) 一种AlCrSiN/VSiN纳米多层涂层及其制备方法
CN106119783A (zh) 功能梯度的类金刚石碳薄膜及其制备方法和制品
CN114318226A (zh) 一种钛合金切削用AlCrN/WN多层结构硬质涂层及其制备方法和应用
CN109735799A (zh) 一种切削刀具表面多层梯度高温耐磨涂层及其制备方法
CN108930022B (zh) 一种纳米多层AlTiN/MoVCuN涂层及其制备方法和应用
CN108220875B (zh) 一种自组装Ti-Al氮化物多层涂层刀具及其制备方法
CN107190229A (zh) 一种自组装纳米氧氮化物耐高温涂层及其制备方法
CN104846340B (zh) Mo‑S‑N‑Cr自润滑梯度涂层刀具及其制备工艺
CN106756821A (zh) 一种Ti‑Ag‑N纳米复合涂层及其制备方法
CN110565051B (zh) 具有颜色层的金刚石涂层刀具及其制备方法、加工设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant