WO2019071943A1 - 独立自支撑石墨烯膜及其制备方法 - Google Patents

独立自支撑石墨烯膜及其制备方法 Download PDF

Info

Publication number
WO2019071943A1
WO2019071943A1 PCT/CN2018/086085 CN2018086085W WO2019071943A1 WO 2019071943 A1 WO2019071943 A1 WO 2019071943A1 CN 2018086085 W CN2018086085 W CN 2018086085W WO 2019071943 A1 WO2019071943 A1 WO 2019071943A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
graphene
transfer agent
solid transfer
graphene oxide
Prior art date
Application number
PCT/CN2018/086085
Other languages
English (en)
French (fr)
Inventor
高超
彭蠡
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710955058.5A external-priority patent/CN107651673B/zh
Priority claimed from CN201710953513.8A external-priority patent/CN107857252B/zh
Priority claimed from CN201710953503.4A external-priority patent/CN107857251B/zh
Application filed by 浙江大学 filed Critical 浙江大学
Priority to EP18866208.4A priority Critical patent/EP3620435B1/en
Priority to JP2020510549A priority patent/JP2020531387A/ja
Priority to KR1020207006088A priority patent/KR102316218B1/ko
Priority to US16/476,117 priority patent/US11834336B2/en
Priority to RU2020115707A priority patent/RU2753510C1/ru
Publication of WO2019071943A1 publication Critical patent/WO2019071943A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/30Purity

Definitions

  • the invention relates to a high performance nano material and a preparation method thereof, in particular to an independent self-supporting graphene film and a preparation method thereof.
  • Graphene has excellent electrical properties (electron mobility at room temperature up to 2 ⁇ 10 5 cM 2 /Vs), outstanding thermal conductivity (5000W / (MK), extraordinary specific surface area (2630M 2 /g), and its Young's Modulus (1100GPa) and breaking strength (125GPa). Graphene has excellent electrical and thermal conductivity superior to metal, while graphene has the advantages of high temperature and corrosion resistance, and its good mechanical properties and low density make it more suitable. The potential to replace metals in the field of electrothermal materials.
  • the macroscopic assembly of graphene oxide or graphene nanosheet graphene film is the main application form of nano-scale graphene.
  • the commonly used preparation methods are suction filtration method, scraping method, spin coating method, spray coating method and dip coating method. Through further high-temperature treatment, it can repair the defects of graphene, and can effectively improve the conductivity and thermal conductivity of graphene film. It can be widely used in portable electronic devices such as smart phones, smart portable hardware, tablet computers, and notebook computers. .
  • the thickness of the graphene film sintered at a high temperature is generally above 1 um, and a lot of gas is enclosed therein.
  • the closed pores remain in the form of wrinkles, resulting in poor orientation of the graphene film, density. It becomes smaller, and the interlayer stacking degree of the layer is poor, which seriously affects the further improvement of the performance of the graphene film.
  • a nano-scale graphene film generally refers to a polycrystalline graphene film prepared by a chemical vapor deposition method, which is fixed on a substrate by wet or dry transfer, and cannot be independently obtained in air. support.
  • This graphene film itself is a polycrystalline structure, and its properties are greatly affected by the grain boundaries.
  • Scheme 1 A method for preparing an independent self-supporting graphene film, comprising the following steps:
  • the graphene oxide is formulated into an aqueous solution of graphene oxide having a concentration of 0.5-10 ug/mL, and the membrane is formed by suction filtration using a mixed cellulose ester (MCE).
  • MCE mixed cellulose ester
  • the melted solid transfer agent is uniformly coated on the surface of the reduced graphene oxide film by vapor deposition, casting, or the like, and slowly cooled at room temperature.
  • the solid transfer agent is selected from the group consisting of paraffin, aluminum chloride, iodine, naphthalene, arsenic trioxide, phosphorus pentachloride, acrylamide, ferric chloride, sulfur, red phosphorus, ammonium chloride, Ammonium bicarbonate, potassium iodide, norbornene, caffeine, melamine, water, rosin, tert-butanol, sulfur trioxide, etc., which can be sublimed or volatilized under certain conditions.
  • the good solvent of the MCE film is selected from one or more of acetone, n-butanol, ethanol, and isopropyl alcohol.
  • Scheme 2 A method for preparing a nano-scale thickness independent self-supporting pleated graphene film, comprising the following steps:
  • the graphene oxide is formulated into a 0.33% ug/mL graphene oxide organic solution, and the graphene oxide sheet is precipitated with a poor solvent, and finally formed into a film by suction filtration using anodized aluminum oxide (AAO) as a substrate.
  • AAO anodized aluminum oxide
  • the solid transfer agent is uniformly coated on the surface of the graphene film by vapor deposition, casting, or the like, and heated at a temperature lower than 5 degrees below the melting point of the solid transfer agent to solidify the solid transfer agent.
  • the graphene film supported by the solid transfer agent obtained above is volatilized from the solid transfer agent at a temperature at which the solid transfer agent is volatilized to obtain an independently self-supporting reduced graphene oxide film.
  • the independently self-supporting reduced graphene oxide film is subjected to high temperature annealing in a high temperature furnace at an annealing temperature of 2400-3000 ° C, a holding time of 1-12 h, and a heating rate of not more than 20 ° C / min.
  • the organic solution is acetone, tetrahydrofuran, DMF, methanol, ethanol, ethylene glycol, NMP, DMSO;
  • the poor solvent is ethyl acetate, toluene, o-xylene, acetonitrile, ethyl acetate, diethyl ether. , n-hexane, etc.
  • the AAO film not separated from the graphene film is etched by using 1-10% phosphoric acid, and the etching time is 1-10 min.
  • the solid transfer agent is selected from the group consisting of paraffin, camphor, aluminum chloride, iodine, naphthalene, arsenic trioxide, phosphorus pentachloride, acrylamide, ferric chloride, sulfur, red phosphorus, chlorination.
  • the sublimation temperature of the solid transfer agent is controlled to be below 320 degrees; the sublimation pressure and the environmental oxygen content are determined according to physical properties.
  • a nano-scale thickness independent self-supporting pleated graphene film having a thickness of 16-130 nm and a transparency of less than 50%; consisting of random pleated graphene sheets, AB stacking ratio of 50-70%; graphene There are few chip defects with an I D /I G ⁇ 0.01.
  • the graphene oxide is formulated into an aqueous solution of graphene oxide having a concentration of 0.5-10 ug/mL, and is formed by adiabatic alumina (AAO) as a substrate, and has a thickness of 200-600 nm.
  • AAO adiabatic alumina
  • the solid transfer agent is uniformly coated on the surface of the graphene film and heated at a temperature lower than 5 degrees below the melting point of the solid transfer agent to solidify the solid transfer agent.
  • the independently self-supporting reduced graphene oxide film is subjected to high temperature annealing in a high temperature furnace at an annealing temperature of 2400-3000 ° C, a holding time of 1-12 h, and a heating rate of not higher than 20 ° C / min.
  • the AAO film not separated from the graphene film is etched by using 1-10% phosphoric acid, and the etching time is 1-10 min.
  • the solid transfer agent is selected from the group consisting of paraffin, camphor, aluminum chloride, iodine, naphthalene, arsenic trioxide, phosphorus pentachloride, acrylamide, ferric chloride, sulfur, red phosphorus, chlorination.
  • the sublimation temperature of the solid transfer agent is controlled to be below 320 degrees; the sublimation pressure and the environmental oxygen content are determined according to physical properties.
  • a nano-scale thickness independent self-supporting foamed graphene film having a thickness of 70-200 nm and having a continuous layer of bubbles inside; the wall surface of the bubble is composed of graphene sheets having a sheet spacing of 0.34 nm, Moreover, the graphene sheet has few defects, and its I D /I G ⁇ 0.01; the AB stacking ratio is more than 80%, and there is no wrinkle on the sheet.
  • the solid transfer agent generally used in the prior art is a polymer because it has the characteristics of easy handling and easy bonding, and can be removed by solution etching or high temperature sintering.
  • the solution when the solution is etched, the surface tension will tear the graphene film, and when it is taken out of the solution, it must have a substrate support.
  • the presence of the solution makes the graphene film not self-supporting and can only be applied to the surface of the base.
  • High-temperature sintering causes the graphene film to shrink, does not maintain the morphology of the graphene itself, and also causes the graphene to conform to the substrate.
  • the present invention enables the nano-scale graphene film to be self-supporting in the air by using an easy sublimation solid transfer agent.
  • the solid transfer agent is removed according to the principle of sublimation, and there is no problem of surface tension, so the graphene film does not adhere to the substrate.
  • the obtained graphene film has a controlled thickness, can reach 10 atomic layers, and maintains the high orientation of the graphene, and the better the transparency, which undoubtedly expands the potential application of the graphene film.
  • the present invention utilizes a poor solvent and a special high-temperature annealing process to prepare a nano-scale independent self-supporting pleated graphene film, and obtains a nano-scale thickness independent self-supporting hair by using a film thickness and a special high-temperature annealing process.
  • the graphene film and the excellent properties of the graphene film lay the foundation. The smaller the thickness, the better the transparency, which undoubtedly extends the potential application of graphene films.
  • the construction of a single layer of bubbles provides a research unit for the controlled application of graphene functionality.
  • Example 1 is a schematic structural view of an independently self-supporting graphene film prepared in Example 1;
  • Example 2 is a schematic structural view of an independently self-supporting graphene film prepared in Example 2;
  • Figure 3 is a nanographene film (10 nm) with a solid transfer agent removed.
  • Figure 4 is a 3000 degree annealed nanometer thickness independent self-supporting pleated graphene film.
  • Figure 5 is a nanographene film (200 nm) with a solid transfer agent removed.
  • Fig. 6 is a surface morphology of a nano-scale thickness independent self-supporting foamed graphene film which is annealed at 3000 degrees.
  • the graphene oxide is formulated into a 0.5 ug/mL aqueous solution of graphene oxide, and the film is formed by mixing cellulose ester (MCE) with a thickness of 30 to 50 nm.
  • MCE cellulose ester
  • the graphene oxide is formulated into a 10 ug/mL aqueous solution of graphene oxide, and the film is formed by mixing cellulose ester (MCE) as a substrate, and the thickness is about 200 nm.
  • MCE cellulose ester
  • the graphene oxide was formulated into an aqueous solution of graphene oxide having a concentration of 8 ug/mL, and a film was formed by suction filtration using a mixed cellulose ester (MCE), and the thickness of the film was 100 nm.
  • MCE mixed cellulose ester
  • the graphene oxide was formulated into a graphene oxide DMF solution having a concentration of 0.5 ug/mL, and the graphene oxide sheet was slowly precipitated with ethyl acetate, and the film was formed by suction filtration using anodized aluminum oxide (AAO) as a substrate.
  • AAO anodized aluminum oxide
  • the above-mentioned reduced graphene oxide film was uniformly coated on the surface of the graphene film by a method of sublimation evaporation at 100 ° C, and heated at a temperature lower than 5 ° C of the melting point of the solid transfer agent for a certain period of time.
  • the graphene film coated with the solid transfer agent was allowed to stand at room temperature, and the graphene film was automatically separated from the AAO film.
  • the independently supported reduced graphene oxide film was subjected to high temperature annealing in a high temperature furnace at an annealing temperature of 3000 ° C, a holding time of 1 h, and a heating rate of 20 ° C / min.
  • the obtained graphene film can be independently self-supporting in air, its thickness is 130 nm, transparency is 47%; composed of random pleated graphene sheets, AB stacking rate is 50%; graphene sheet defects are rare, and its I D / I G ⁇ 0.01.
  • Graphene oxide was formulated into a 10 ug/mL graphene oxide DMSO solution, and a graphene oxide sheet was slowly precipitated with ethyl acetate, and a film was formed by suction filtration using anodized aluminum oxide (AAO) as a substrate.
  • AAO anodized aluminum oxide
  • the graphene film supported by the solid transfer agent obtained above is slowly volatilized off the solid transfer agent at 120 ° C to obtain an independently self-supporting reduced graphene oxide film; if the reduction in step 2 is uneven, or hydrogen iodide vapor Direct contact with the AAO film, the graphene will not be automatically separated from the AAO film during the transfer of the solid transfer agent. At this time, the AAO film is etched away with 5% phosphoric acid, and the etching time is 2 min.
  • the independently supported reduced graphene oxide film was subjected to high temperature annealing in a high temperature furnace at an annealing temperature of 2400 ° C, a holding time of 12 h, and a heating rate of 20 ° C / min.
  • the obtained graphene film can be independently self-supporting in air, and has a thickness of 16 nm and a transparency of 48%; composed of random pleated graphene sheets, AB stacking rate of 70%; graphene sheet defects are extremely small, and I D / I G ⁇ 0.01.
  • the graphene oxide was formulated into a graphene oxide acetone solution having a concentration of 2 ug/mL, and the graphene oxide sheet was slowly precipitated with n-hexane, and the film was formed by suction filtration using anodized aluminum oxide (AAO) as a substrate.
  • AAO anodized aluminum oxide
  • the solid transfer agent aluminum chloride is uniformly coated on the surface of the graphene film by coating the above-mentioned reduced graphene oxide film with a solution, and is heated at a temperature lower than the melting point of the solid transfer agent by 5 degrees or less for a certain period of time.
  • the graphene film coated with the solid transfer agent was allowed to stand at room temperature, and the graphene film was automatically separated from the AAO film.
  • the graphene film supported by the solid transfer agent obtained above is slowly volatilized from the solid transfer agent at 180 ° C to obtain an independently self-supporting reduced graphene oxide film; if the reduction in step 2 is uneven, or hydrogen iodide vapor Direct contact with the AAO film, the graphene will not be automatically separated from the AAO film during the transfer of the solid transfer agent. At this time, the AAO film needs to be etched with 1-10% phosphoric acid, and the etching time is 1-10 min.
  • the independently supported reduced graphene oxide film was subjected to high temperature annealing in a high temperature furnace at an annealing temperature of 2600 ° C, a holding time of 2 h, and a heating rate of 10 ° C / min.
  • the obtained graphene film can be independently self-supporting in air, and has a thickness of 39 nm and a transparency of 36%; it is composed of random pleated graphene sheets, and the AB stacking ratio is 66%; the graphene sheet has few defects, and its I D / I G ⁇ 0.01.
  • the graphene oxide was formulated into a 10 ug/mL graphene oxide tetrahydrofuran solution, and the graphene oxide sheet was slowly precipitated with toluene, and the film was formed by suction filtration using anodized aluminum oxide (AAO) as a substrate.
  • AAO anodized aluminum oxide
  • the graphene film supported by the solid transfer agent obtained above is slowly volatilized by a low pressure sublimation method to obtain a self-supporting reduced graphene oxide film; if the reduction in step 2 is uneven, or hydrogen iodide
  • the vapor is directly in contact with the AAO film.
  • the graphene is not automatically separated from the AAO film.
  • the AAO film needs to be etched with 1-10% phosphoric acid, and the etching time is 1-10 min.
  • the independently supported reduced graphene oxide film was subjected to high temperature annealing in a high temperature furnace at an annealing temperature of 2500 ° C, a holding time of 12 h, and a heating rate of 10 ° C / min.
  • the obtained graphene film can be independently self-supporting in air, and has a thickness of 109 nm and a transparency of 41%; it is composed of random pleated graphene sheets, and the AB stacking ratio is 59%; the graphene sheet has few defects, and its I D / I G ⁇ 0.01.
  • Graphene oxide was prepared into a 0.5 ug/mL aqueous graphene oxide solution, and anodized aluminum oxide (AAO) was used as a substrate to form a film, and the thickness was 600 nm.
  • AAO anodized aluminum oxide
  • the above-mentioned reduced graphene oxide film was uniformly coated on the surface of the graphene film by a method of sublimation evaporation at 100 ° C, and heated at a temperature lower than 5 ° C of the melting point of the solid transfer agent for a certain period of time.
  • the graphene film coated with the solid transfer agent was allowed to stand at room temperature, and the graphene film was automatically separated from the AAO film.
  • the independently supported reduced graphene oxide film was subjected to high temperature annealing in a high temperature furnace at an annealing temperature of 3000 ° C, a holding time of 1 h, and a heating rate of 20 ° C / min.
  • the obtained graphene film can be independently self-supporting in air with a transparency of 46%; the thickness is 70 nm, and there is only one continuous layer of bubbles inside; the wall surface of the bubble is composed of graphene sheets having a sheet spacing of 0.34 nm, and graphene
  • the sheet defects are extremely small, and its I D /I G ⁇ 0.01; the AB stacking ratio is more than 80%, and there is no wrinkle on the sheet.
  • Graphene oxide was formulated into a 10 ug/mL aqueous graphene oxide solution, and anodized aluminum oxide (AAO) was used as a substrate to form a film with a thickness of 200 nm.
  • AAO anodized aluminum oxide
  • the graphene film supported by the solid transfer agent obtained above is slowly volatilized off the solid transfer agent at 120 ° C to obtain an independently self-supporting reduced graphene oxide film; if the reduction in step 2 is uneven, or hydrogen iodide vapor Direct contact with the AAO film, the graphene will not be automatically separated from the AAO film during the transfer of the solid transfer agent. At this time, the AAO film is etched away with 5% phosphoric acid, and the etching time is 2 min.
  • the independently supported reduced graphene oxide film was subjected to high temperature annealing in a high temperature furnace at an annealing temperature of 2400 ° C, a holding time of 12 h, and a heating rate of 15 ° C / min.
  • the obtained graphene film can be independently self-supporting in air with a transparency of 31%; the thickness is 138 nm, and there is only one continuous layer of bubbles inside; the wall surface of the bubble is composed of graphene sheets having a sheet spacing of 0.34 nm, and graphene
  • the sheet defects are extremely small, and its I D /I G ⁇ 0.01; the AB stacking ratio is more than 80%, and there is no wrinkle on the sheet.
  • Graphene oxide was prepared into a 2 ug/mL graphene oxide aqueous solution, and anodized aluminum oxide (AAO) was used as a substrate to form a film, and the thickness was 280 nm.
  • AAO anodized aluminum oxide
  • step 2 (4) slowly evaporating the solid transfer agent at a temperature at which the solid transfer agent supported by the solid transfer agent is slowly volatilized at 180 ° C to obtain an independently self-supporting reduced graphene oxide film; if the reduction in step 2 is uneven, Or the hydrogen iodide vapor is directly in contact with the AAO film.
  • the graphene is not automatically separated from the AAO film.
  • the AAO film is etched with 1-10% phosphoric acid, and the etching time is 1-10min.
  • the independently supported reduced graphene oxide film was subjected to high temperature annealing in a high temperature furnace at an annealing temperature of 2600 ° C, a holding time of 2 h, and a heating rate of 10 ° C / min.
  • the obtained graphene film can be independently self-supporting in air with a transparency of 15%; the thickness is 198 nm, and there is only one continuous bubble inside; the wall surface of the bubble is composed of graphene sheets with a sheet spacing of 0.34 nm, and graphene.
  • the sheet defects are extremely small, and its I D /I G ⁇ 0.01; the AB stacking ratio is more than 80%, and there is no wrinkle on the sheet.
  • Graphene oxide was formulated into a 10 ug/mL aqueous graphene oxide solution, and anodized aluminum (AAO) was used as a substrate to form a film, and the thickness was 400 nm.
  • AAO anodized aluminum
  • the graphene film supported by the solid transfer agent obtained above is slowly volatilized by a low pressure sublimation to obtain a self-supporting reduced graphene oxide film; if the reduction in step 2 is uneven, or the hydrogen iodide vapor is directly When exposed to the AAO film, the graphene is not automatically separated from the AAO film during the transfer of the solid transfer agent. At this time, the AAO film needs to be etched with 1-10% phosphoric acid, and the etching time is 1-10 min.
  • the independently supported reduced graphene oxide film was subjected to high temperature annealing in a high temperature furnace at an annealing temperature of 2500 ° C, a holding time of 8 h, and a heating rate of 20 ° C / min.
  • the obtained graphene film can be independently self-supporting in air with a transparency of 22%; the thickness is 90 nm, and there is only one continuous bubble inside; the wall surface of the bubble is composed of graphene sheets with a sheet spacing of 0.34 nm, and graphene.
  • the sheet defects are extremely small, and its I D /I G ⁇ 0.01; the AB stacking ratio is more than 80%, and there is no wrinkle on the sheet.
  • the thickness of the graphene film in step 1 and the high temperature annealing temperature and heating rate are the key to construct a single layer bubble. A large number of bubbles will be obtained in violation of these conditions, which will not constitute graphene. Functional research unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

一种独立自支撑石墨烯膜的制备方法,该石墨烯膜由氧化石墨烯经过滤抽成膜、固相转移、化学还原等步骤得到。该石墨烯膜由单层氧化/还原氧化石墨烯通过物理交联组成。石墨烯膜厚度为10-2000个原子层。氧化石墨烯膜厚度很小,并且内部存在大量的缺陷,因而具有很好的透明度以及极好的柔性。基于上述转移成膜方法,利用不良溶剂和特殊的高温退火工艺,制备了纳米级厚度独立自支撑褶皱石墨烯膜,利用成膜厚度和特殊的高温退火工艺,获得了纳米级厚度独立自支撑发泡石墨烯膜。

Description

独立自支撑石墨烯膜及其制备方法 技术领域
本发明涉及高性能纳米材料及其制备方法,尤其涉及独立自支撑石墨烯膜及其制备方法。
背景技术
2010年,英国曼彻斯特大学的两位教授Andre GeiM和Konstantin Novoselov因为首次成功分离出稳定的石墨烯获得诺贝尔物理学奖,掀起了全世界对石墨烯研究的热潮。石墨烯有优异的电学性能(室温下电子迁移率可达2×10 5cM 2/Vs),突出的导热性能(5000W/(MK),超常的比表面积(2630M 2/g),其杨氏模量(1100GPa)和断裂强度(125GPa)。石墨烯优异的导电导热性能完全超过金属,同时石墨烯具有耐高温耐腐蚀的优点,而其良好的机械性能和较低的密度更让其具备了在电热材料领域取代金属的潜力。
宏观组装氧化石墨烯或者石墨烯纳米片的石墨烯膜是纳米级石墨烯的主要应用形式,常用的制备方法是抽滤法、刮膜法、旋涂法、喷涂法和浸涂法等。通过进一步的高温处理,能够修补石墨烯的缺陷,能够有效的提高石墨烯膜的导电性和热导性,可以广泛应用于智能手机、智能随身硬件、平板电脑、笔记本电脑等随身电子设备中去。
但是目前,高温烧结过的石墨烯膜厚度一般在1um以上,里面封闭了很多的气体,在高压压制的过程中,封闭的气孔以褶皱的形式保留下来,导致石墨烯膜取向度变差,密度变小,并且层间AB堆叠度差,严重影响了石墨烯膜性能的进一步提高。
再有,目前还没有工作报道基于氧化石墨烯的纳米级石墨烯膜的制备。通常情况下,纳米级石墨烯膜一般指的是化学气相沉积方法制备的多晶石墨烯膜,其应用湿法或者干法转移后被固定在某个基底上,不能实现在空气中独立的自支撑。这种石墨烯膜本身是多晶结构,其性能受晶界影响很大。
发明内容
本发明的目的是克服现有技术的不足,提供独立自支撑石墨烯膜的制备方法。
本发明包括以下技术方案:
方案一:一种独立自支撑石墨烯膜的制备方法,包含如下步骤:
(1)将氧化石墨烯配制成浓度为0.5-10ug/mL氧化石墨烯水溶液,以混和纤维素酯(MCE)为基底抽滤成膜。
(2)将贴附于MCE膜的氧化石墨烯膜置于密闭容器中,60-100度HI高温熏蒸1-10h。
(3)用蒸镀、流延等方法将融化的固体转移剂均匀涂敷在还原氧化石墨烯膜表面,并于室温下缓慢冷却。
(4)将涂敷有固体转移剂的石墨烯膜放置于MCE膜的良溶剂中,刻蚀掉MCE膜。
(5)将上述得到的固体转移剂支撑的石墨烯膜在固体转移剂挥发的温度下缓慢挥发掉固体转移剂,得到独立自支撑的石墨烯膜。
进一步地,所述的固体转移剂,选自如下物质,例如石蜡、氯化铝、碘、萘、三氧化二砷、五氯化磷、丙烯酰胺、三氯化铁、硫、红磷、氯化铵、碳酸氢铵、碘化钾、降冰片烯、咖啡因、三聚氰胺、水、松香、叔丁醇、三氧化硫等可在某种条件下升华或者挥发的小分子固态物质。
进一步地,所述MCE膜的良溶剂选自丙酮、正丁醇、乙醇、异丙醇中的一种或多种。
方案二:一种纳米级厚度独立自支撑褶皱石墨烯膜的制备方法,包含如下步骤:
(1)将氧化石墨烯配制成浓度为0.5-10ug/mL氧化石墨烯有机溶液,并用不良溶剂沉淀氧化石墨烯片,最后用以阳极氧化铝(AAO)为基底抽滤成膜。
(2)将贴附于AAO膜的氧化石墨烯膜置于密闭容器中,60-100度高温熏蒸HI蒸汽1-10h。
(3)用蒸镀、流延等方法将固体转移剂均匀涂敷在石墨烯膜表面,并于低于固体转移剂熔点5度以下的温度进行加热,使得固体转移剂固化。
(4)将涂敷有固体转移剂的石墨烯膜置于室温下,石墨烯膜自动与AAO膜分离。
(5)将上述得到的固体转移剂支撑的石墨烯膜在固体转移剂挥发的温度下挥发掉固体转移剂,得到独立自支撑的还原氧化石墨烯膜。
(6)将独立自支撑的还原氧化石墨烯膜置于高温炉中高温退火,退火温度为2400-3000℃,维持时间为1-12h,升温速率不大于20℃/min。
进一步地,所述步骤1中,有机溶液为丙酮,四氢呋喃,DMF,甲醇,乙醇,乙二醇,NMP,DMSO;不良溶剂为乙酸乙酯,甲苯,邻二甲苯,乙腈,乙酸乙酯,乙醚,正己烷等。
进一步地,所述步骤4中,采用1-10%的磷酸刻蚀掉未与石墨烯膜分离的AAO膜,刻蚀时间为1-10min。
进一步地,所述的固体转移剂,选自如下物质,例如石蜡、樟脑、氯化铝、碘、萘、三氧化二砷、五氯化磷、丙烯酰胺、三氯化铁、硫、红磷、氯化铵、碳酸氢铵、碘化钾、降冰片烯、咖啡因、三聚氰胺、水、松香、叔丁醇、三氧化硫等可在某种条件下升华或者挥发的小分子固态物质。
进一步地,所述的固体转移剂的升华温度要控制在320度以下;升华压力以及环境含氧量根据物性而定。
一种纳米级厚度独立自支撑褶皱石墨烯膜,所述石墨烯膜的厚度为16-130nm,透明度小于50%;由无规褶皱的石墨烯片组成,AB堆叠率50~70%;石墨烯片缺陷极少,其I D/I G<0.01。
方案三:一种纳米级厚度独立自支撑发泡石墨烯膜及其制备方法,包含如下步骤:
(1)将氧化石墨烯配制成浓度为0.5-10ug/mL氧化石墨烯水溶液,以阳极氧化铝(AAO)为基底抽滤成膜,厚度为200-600nm。
(2)将贴附于AAO膜的氧化石墨烯膜置于密闭容器中,60-100度高温熏蒸HI蒸汽1-10h。
(3)将固体转移剂均匀涂敷在石墨烯膜表面,并于低于固体转移剂熔点5度以下温度进行加热,使得固体转移剂固化。
(4)将涂敷有固体转移剂的石墨烯膜置于室温下,石墨烯膜自动与AAO膜分离。
(5)将上述得到的固体转移剂支撑的石墨烯膜在固体转移剂挥发的温度下缓慢挥发掉固体转移剂,得到独立自支撑的还原氧化石墨烯膜。
(6)将独立自支撑的还原氧化石墨烯膜置于高温炉中高温退火,退火温度为2400-3000℃,维持时间为1-12h,升温速率不高于20℃/min。
进一步地,所述步骤4中,采用1-10%的磷酸刻蚀掉未与石墨烯膜分离的AAO膜,刻蚀时间为1-10min。
进一步地,所述的固体转移剂,选自如下物质,例如石蜡、樟脑、氯化铝、碘、萘、三氧化二砷、五氯化磷、丙烯酰胺、三氯化铁、硫、红磷、氯化铵、碳酸氢铵、碘化钾、降冰片烯、咖啡因、三聚氰胺、水、松香、叔丁醇、三氧化硫等可在某种条件下升华或者挥发的小分子固态物质。
进一步地,所述的固体转移剂的升华温度要控制在320度以下;升华压力以及环境含氧量根据物性而定。
一种纳米级厚度独立自支撑发泡石墨烯膜,所述石墨烯膜的厚度为70-200nm,内部具有一层连续的气泡;气泡的壁面由片层间距为0.34nm的石墨 烯片构成,且石墨烯片缺陷极少,其I D/I G<0.01;AB堆叠率大于80%,片层上无褶皱。
本发明的有益效果在于:目前常用技术中一般的固体转移剂为高分子,因为其具有易操作,易贴合的特性,而且通过溶液刻蚀或者高温烧结即可去除。但是溶液刻蚀时表面张力会撕裂石墨烯膜,从溶液中取出时还必须有基底支撑。溶液的存在使得石墨烯膜不能独自自支撑存在,只能贴合在基地表面。高温烧结会使得石墨烯膜收缩,不能维持石墨烯本身的形貌,而且也会使得石墨烯与基底贴合。
本发明通过使用易升华固态转移剂,使得纳米级石墨烯膜可以在空气中独自自支撑。在此过程中,根据升华的原理去除固态转移剂,不存在表面张力的问题,因此石墨烯膜不会与基底相互黏连。所得到的石墨烯膜厚度可控,可以达到10原子层,且保持石墨烯高度取向,透明性越好,这无疑扩展了石墨烯膜的潜在应用。
基于上述转移方法,本发明利用不良溶剂和特殊的高温退火工艺,制备了纳米级厚度独立自支撑褶皱石墨烯膜,利用成膜厚度和特殊的高温退火工艺,获得了纳米级厚度独立自支撑发泡石墨烯膜,石墨烯膜的优异性能打下了基础。且厚度越小,透明性越好,这无疑扩展了石墨烯膜的潜在应用。单层气泡的构建为石墨烯的功能的可控应用提供了研究单元。
附图说明
图1为实施例1制备的独立自支撑的石墨烯膜的结构示意图;
图2为实施例2制备的独立自支撑的石墨烯膜的结构示意图;
图3为去除固态转移剂的纳米石墨烯膜(10nm)。
图4为3000度退火处理的纳米级厚度独立自支撑褶皱石墨烯膜。
图5为去除固态转移剂的纳米石墨烯膜(200nm)。
图6为3000度退火处理的纳米级厚度独立自支撑发泡石墨烯膜表面形貌。
具体实施方式
实施例1:
(1)将氧化石墨烯配制成浓度为0.5ug/mL氧化石墨烯水溶液,以混和纤维素酯(MCE)为基底抽滤成膜,厚度为30~50nm。
(2)将贴附于MCE膜的氧化石墨烯膜置于密闭容器中,60度HI高温熏蒸1h。
(3)用蒸镀、流延等方法将融化的石蜡均匀涂敷在还原氧化石墨烯膜表面,并于室温下缓慢冷却。
(4)将涂敷有固体转移剂的石墨烯膜用乙醇缓慢洗涤,溶解MCE膜。
(5)将上述得到的固体转移剂支撑的石墨烯膜在120度下缓慢挥发掉固体转移剂,得到独立自支撑的石墨烯膜,该石墨烯膜的厚度为10原子层左右,透明度为95%;片层上无明显褶皱,如图1所示。
实施例2:
(1)将氧化石墨烯配制成浓度为10ug/mL氧化石墨烯水溶液,以混和纤维素酯(MCE)为基底抽滤成膜,厚度为200nm左右。
(2)将贴附于MCE膜的氧化石墨烯膜置于密闭容器中,100度HI高温熏蒸10h。
(3)用蒸镀、流延等方法将融化的松香均匀涂敷在还原氧化石墨烯膜表面,并于室温下缓慢冷却。
(4)将涂敷有固体转移剂的石墨烯膜放置于丙酮中,去除MCE膜。
(5)将上述得到的固体转移剂支撑的石墨烯膜在300度下缓慢挥发掉松香,得到独立自支撑的石墨烯膜,其厚度为2000原子层左右,透明的为10%,片层上无明显褶皱,如图2所示。
实施例3:
(1)将氧化石墨烯配制成浓度为8ug/mL氧化石墨烯水溶液,以混和纤维素酯(MCE)为基底抽滤成膜,膜的厚度为100nm。
(2)将贴附于MCE膜的氧化石墨烯膜置于密闭容器中,80度HI高温熏蒸8h。
(3)用蒸镀、流延等方法将融化的降冰片烯均匀涂敷在还原氧化石墨烯膜表面,并于室温下缓慢冷却。
(4)将涂敷有固体转移剂的石墨烯膜放置于异丙醇中,去除MCE膜。
(5)将上述得到的固体转移剂支撑的石墨烯膜在100度下缓慢挥发掉固体转移剂,得到独立自支撑的石墨烯膜,其厚度为1000原子层左右,透明的为6%,片层上无明显褶皱。实施例4:
(1)将氧化石墨烯配制成浓度为0.5ug/mL氧化石墨烯DMF溶液,并用乙酸乙酯缓慢沉淀氧化石墨烯片,以阳极氧化铝(AAO)为基底抽滤成膜。
(2)将贴附于AAO膜的氧化石墨烯膜置于密闭容器中,60度下HI蒸汽 熏蒸1h。
(3)将上述还原的氧化石墨烯膜用100℃升华蒸镀的方法将固体转移剂樟脑均匀涂敷在石墨烯膜表面,并于低于固体转移剂熔点5度以下温度加热一段时间。将涂敷有固体转移剂的石墨烯膜置于室温下,石墨烯膜自动于AAO膜分离。
(4)将上述得到的固体转移剂支撑的石墨烯膜在室温下缓慢挥发掉固体转移剂,得到独立自支撑的还原氧化石墨烯膜。
(5)将独立自支撑的还原氧化石墨烯膜置于高温炉中高温退火,退火温度为3000℃,维持时间为1h,升温速率为20℃/min。
得到的石墨烯膜可在空气中独立自支撑,其厚度为130nm,透明度为47%;由无规褶皱的石墨烯片组成,AB堆叠率50%;石墨烯片缺陷极少,其I D/I G<0.01。
实施例5:
(1)将氧化石墨烯配制成浓度为10ug/mL氧化石墨烯DMSO溶液,并用乙酸乙酯缓慢沉淀氧化石墨烯片,以阳极氧化铝(AAO)为基底抽滤成膜。
(2)将贴附于AAO膜的氧化石墨烯膜置于密闭容器中,100度下HI蒸汽熏蒸5h。
(3)将上述还原的氧化石墨烯膜用低温融化涂敷(52度)的方法将固体转移剂石蜡均匀涂敷在石墨烯膜表面,并于低于固体转移剂熔点5度以下温度加热一段时间。将涂敷有固体转移剂的石墨烯膜置于室温下,石墨烯膜自动于AAO膜分离。
(4)将上述得到的固体转移剂支撑的石墨烯膜在120℃下缓慢挥发掉固体转移剂,得到独立自支撑的还原氧化石墨烯膜;如果步骤2中还原不均匀,或者碘化氢蒸汽直接接触到了AAO膜,在固体转移剂转移的过程中,石墨烯不会和AAO膜自动分离,此时需要用5%的磷酸刻蚀掉AAO膜,刻蚀时间为2min。
(5)将独立自支撑的还原氧化石墨烯膜置于高温炉中高温退火,退火温度为2400℃,维持时间为12h,升温速率为20℃/min。
得到的石墨烯膜可在空气中独立自支撑,其厚度为16nm,透明度为48%;由无规褶皱的石墨烯片组成,AB堆叠率70%;石墨烯片缺陷极少,其I D/I G<0.01。
实施例6:
(1)将氧化石墨烯配制成浓度为2ug/mL氧化石墨烯丙酮溶液,并用正己烷缓慢沉淀氧化石墨烯片,以阳极氧化铝(AAO)为基底抽滤成膜。
(2)将贴附于AAO膜的氧化石墨烯膜置于密闭容器中,80度下HI蒸汽熏蒸10h。
(3)将上述还原的氧化石墨烯膜用溶液涂敷的方法将固体转移剂氯化铝均匀涂敷在石墨烯膜表面,并于低于固体转移剂熔点5度以下温度加热一段时间。将涂敷有固体转移剂的石墨烯膜置于室温下,石墨烯膜自动于AAO膜分离。
(4)将上述得到的固体转移剂支撑的石墨烯膜在180℃下缓慢挥发掉固体转移剂,得到独立自支撑的还原氧化石墨烯膜;如果步骤2中还原不均匀,或者碘化氢蒸汽直接接触到了AAO膜,在固体转移剂转移的过程中,石墨烯不会和AAO膜自动分离,此时需要用1-10%的磷酸刻蚀掉AAO膜,刻蚀时间为1-10min。
(5)将独立自支撑的还原氧化石墨烯膜置于高温炉中高温退火,退火温度为2600℃,维持时间为2h,升温速率为10℃/min。
得到的石墨烯膜可在空气中独立自支撑,其厚度为39nm,透明度为36%;由无规褶皱的石墨烯片组成,AB堆叠率66%;石墨烯片缺陷极少,其I D/I G<0.01。
实施例7:
(1)将氧化石墨烯配制成浓度为10ug/mL氧化石墨烯四氢呋喃溶液,并用甲苯缓慢沉淀氧化石墨烯片,以阳极氧化铝(AAO)为基底抽滤成膜。
(2)将贴附于AAO膜的氧化石墨烯膜置于密闭容器中,90度下HI蒸汽熏蒸10h。
(3)将上述还原的氧化石墨烯膜用高温流延(130℃)的方法将固体转移剂硫均匀涂敷在石墨烯膜表面,并于低于固体转移剂熔点5度以下温度加热一段时间。将涂敷有固体转移剂的石墨烯膜置于室温下,石墨烯膜自动于AAO膜分离。
(4)将上述得到的固体转移剂支撑的石墨烯膜采用低压升华的方法慢挥发掉固体转移剂,得到独立自支撑的还原氧化石墨烯膜;如果步骤2中还原不均匀,或者碘化氢蒸汽直接接触到了AAO膜,在固体转移剂转移的过程中,石墨烯不会和AAO膜自动分离,此时需要用1-10%的磷酸刻蚀掉AAO膜,刻蚀时间为1-10min。
(5)将独立自支撑的还原氧化石墨烯膜置于高温炉中高温退火,退火温度为2500℃,维持时间为12h,升温速率为10℃/min。
得到的石墨烯膜可在空气中独立自支撑,其厚度为109nm,透明度为41%;由无规褶皱的石墨烯片组成,AB堆叠率59%;石墨烯片缺陷极少,其I D/I G<0.01。
实施例8:
(1)将氧化石墨烯配制成浓度为0.5ug/mL氧化石墨烯水溶液,以阳极氧化铝(AAO)为基底抽滤成膜,厚度为600nm。
(2)将贴附于AAO膜的氧化石墨烯膜置于密闭容器中,用HI蒸汽在60℃下熏蒸10h。
(3)将上述还原的氧化石墨烯膜用100℃升华蒸镀的方法将固体转移剂樟脑均匀涂敷在石墨烯膜表面,并于低于固体转移剂熔点5度以下温度加热一段时间。将涂敷有固体转移剂的石墨烯膜置于室温下,石墨烯膜自动于AAO膜分离。
(4)将上述得到的固体转移剂支撑的石墨烯膜在固体转移剂缓慢挥发的温度下缓慢挥发掉固体转移剂,得到独立自支撑的还原氧化石墨烯膜。
(5)将独立自支撑的还原氧化石墨烯膜置于高温炉中高温退火,退火温度为3000℃,维持时间为1h,升温速率为20℃/min。
所得到的石墨烯膜可在空气中独立自支撑,透明度为46%;厚度为70nm,内部只有一层连续的气泡;气泡的壁面由片层间距为0.34nm的石墨烯片构成,且石墨烯片缺陷极少,其I D/I G<0.01;AB堆叠率大于80%,片层上无褶皱。
实施例9:
(1)将氧化石墨烯配制成浓度为10ug/mL氧化石墨烯水溶液,以阳极氧化铝(AAO)为基底抽滤成膜,厚度为200nm。
(2)将贴附于AAO膜的氧化石墨烯膜置于密闭容器中,用HI蒸汽在100℃下熏蒸1h。
(3)将上述还原的氧化石墨烯膜用低温融化涂敷(52℃)的方法将固体转移剂石蜡均匀涂敷在石墨烯膜表面,并于低于固体转移剂熔点5度以下温度加热一段时间。将涂敷有固体转移剂的石墨烯膜置于室温下,石墨烯膜自动于AAO膜分离。
(4)将上述得到的固体转移剂支撑的石墨烯膜在120℃下缓慢挥发掉固体转移剂,得到独立自支撑的还原氧化石墨烯膜;如果步骤2中还原不均匀,或者碘化氢蒸汽直接接触到了AAO膜,在固体转移剂转移的过程中,石墨烯不会和AAO膜自动分离,此时需要用5%的磷酸刻蚀掉AAO膜,刻蚀时间为2min。
(5)将独立自支撑的还原氧化石墨烯膜置于高温炉中高温退火,退火温度为2400℃,维持时间为12h,升温速率为15℃/min。
所得到的石墨烯膜可在空气中独立自支撑,透明度为31%;厚度为138nm,内部只有一层连续的气泡;气泡的壁面由片层间距为0.34nm的石墨烯片构成,且石墨烯片缺陷极少,其I D/I G<0.01;AB堆叠率大于80%,片层上无褶皱。
实施例10:
(1)将氧化石墨烯配制成浓度为2ug/mL氧化石墨烯水溶液,以阳极氧化铝(AAO)为基底抽滤成膜,厚度为280nm。
(2)将贴附于AAO膜的氧化石墨烯膜置于密闭容器中,用HI蒸汽在80℃下9h。
(3)将上述还原的氧化石墨烯膜溶液涂敷的方法将固体转移剂氯化铝均匀涂敷在石墨烯膜表面,并于低于固体转移剂熔点5度以下温度加热一段时间。将涂敷有固体转移剂的石墨烯膜置于室温下,石墨烯膜自动于AAO膜分离。
(4)将上述得到的固体转移剂支撑的石墨烯膜在180℃下缓慢挥发的温度下缓慢挥发掉固体转移剂,得到独立自支撑的还原氧化石墨烯膜;如果步骤2中还原不均匀,或者碘化氢蒸汽直接接触到了AAO膜,在固体转移剂转移的过程中,石墨烯不会和AAO膜自动分离,此时需要用1-10%的磷酸刻蚀掉AAO膜,刻蚀时间为1-10min。
(5)将独立自支撑的还原氧化石墨烯膜置于高温炉中高温退火,退火温度为2600℃,维持时间为2h,升温速率为10℃/min。
所得到的石墨烯膜可在空气中独立自支撑,透明度为15%;厚度为198nm,内部只有一层连续的气泡;气泡的壁面由片层间距为0.34nm的石墨烯片构成,且石墨烯片缺陷极少,其I D/I G<0.01;AB堆叠率大于80%,片层上无褶皱。
实施例11:
(1)将氧化石墨烯配制成浓度为10ug/mL氧化石墨烯水溶液,以阳极氧化铝(AAO)为基底抽滤成膜,厚度为400nm。
(2)将贴附于AAO膜的氧化石墨烯膜置于密闭容器中,用HI蒸汽在60℃下8h。
(3)将上述还原的氧化石墨烯膜用高温流延(130℃)的方法将固体转移剂硫均匀涂敷在石墨烯膜表面,并于低于固体转移剂熔点5℃以下温度加热一段时间。将涂敷有固体转移剂的石墨烯膜置于室温下,石墨烯膜自动于AAO膜分离。
(4)将上述得到的固体转移剂支撑的石墨烯膜采用低压升华缓慢挥发掉固 体转移剂,得到独立自支撑的还原氧化石墨烯膜;如果步骤2中还原不均匀,或者碘化氢蒸汽直接接触到了AAO膜,在固体转移剂转移的过程中,石墨烯不会和AAO膜自动分离,此时需要用1-10%的磷酸刻蚀掉AAO膜,刻蚀时间为1-10min。
(5)将独立自支撑的还原氧化石墨烯膜置于高温炉中高温退火,退火温度为2500℃,维持时间为8h,升温速率为20℃/min。
所得到的石墨烯膜可在空气中独立自支撑,透明度为22%;厚度为90nm,内部只有一层连续的气泡;气泡的壁面由片层间距为0.34nm的石墨烯片构成,且石墨烯片缺陷极少,其I D/I G<0.01;AB堆叠率大于80%,片层上无褶皱。
最后,需要说明的是,通过大量实验证明,步骤1中的石墨烯膜的厚度以及高温退火温度和升温速率均是构建单层气泡的关键,违反这些条件将得到杂乱无章的气泡,不能构成石墨烯功能的研究单元。

Claims (14)

  1. 一种独立自支撑石墨烯膜的制备方法,其特征在于,包含如下步骤:
    (1)将氧化石墨烯配制成浓度为0.5-10ug/mL氧化石墨烯水溶液,以混和纤维素酯(MCE)为基底抽滤成膜;
    (2)将贴附于MCE膜的氧化石墨烯膜置于密闭容器中,60-100度HI高温熏蒸1-10h;
    (3)用蒸镀或流延的方法将融化的固体转移剂均匀涂敷在还原氧化石墨烯膜表面,并于室温下缓慢冷却;
    (4)将涂敷有固体转移剂的石墨烯膜放置于MCE膜的良溶剂中,刻蚀掉MCE膜;
    (5)将上述得到的固体转移剂支撑的石墨烯膜在固体转移剂挥发的温度下挥发掉固体转移剂,得到独立自支撑的石墨烯膜。
  2. 如权利要求1所述的方法,其特征在于,所述的固体转移剂,选自如下物质:石蜡、氯化铝、碘、萘、三氧化二砷、五氯化磷、丙烯酰胺、三氯化铁、硫、红磷、氯化铵、碳酸氢铵、碘化钾、降冰片烯、咖啡因、三聚氰胺、水、松香、叔丁醇、三氧化硫。
  3. 根据权利要求1所述的方法,其特征在于,所述MCE膜的良溶剂选自丙酮、正丁醇、乙醇、异丙醇中的一种或多种。
  4. 一种纳米级厚度独立自支撑褶皱石墨烯膜的制备方法,其特征在于,包含如下步骤:
    (1)将氧化石墨烯配制成浓度为0.5-10ug/mL氧化石墨烯有机溶液,并用不良溶剂沉淀氧化石墨烯片,最后用以阳极氧化铝为基底抽滤成膜。
    (2)将贴附于AAO膜的氧化石墨烯膜置于密闭容器中,60-100度高温熏蒸HI蒸汽1-10h。
    (3)用蒸镀或流延的方法将固体转移剂均匀涂敷在石墨烯膜表面,并于低于固体转移剂熔点5度以下的温度进行加热,使得固体转移剂固化。
    (4)将涂敷有固体转移剂的石墨烯膜置于室温下,石墨烯膜自动与AAO膜分离。
    (5)将上述得到的固体转移剂支撑的石墨烯膜在固体转移剂挥发的温度下挥发掉固体转移剂,得到独立自支撑的还原氧化石墨烯膜。
    (6)将独立自支撑的还原氧化石墨烯膜置于高温炉中高温退火,退火温度为2400-3000℃,维持时间为1-12h,升温速率不大于20℃/min。
  5. 根据权利要求4所述的方法,其特征在于,所述步骤1中,有机溶液为丙 酮,四氢呋喃,DMF,甲醇,乙醇,乙二醇,NMP,DMSO;不良溶剂为乙酸乙酯,甲苯,邻二甲苯,乙腈,乙酸乙酯,乙醚,正己烷。
  6. 根据权利要求4所述的方法,其特征在于,所述步骤4中,采用1-10%的磷酸刻蚀掉未与石墨烯膜分离的AAO膜,刻蚀时间为1-10min。
  7. 如权利要求4所述的方法,其特征在于,所述的固体转移剂,选自如下物质:石蜡、樟脑、氯化铝、碘、萘、三氧化二砷、五氯化磷、丙烯酰胺、三氯化铁、硫、红磷、氯化铵、碳酸氢铵、碘化钾、降冰片烯、咖啡因、三聚氰胺、水、松香、叔丁醇、三氧化硫。
  8. 如权利要求4所述的方法,其特征在于,所述的固体转移剂的升华温度要控制在320度以下;升华压力以及环境含氧量根据物性而定。
  9. 如权利要求4所述方法制备得到的纳米级厚度独立自支撑褶皱石墨烯膜,其特征在于,所述石墨烯膜的厚度为16-130nm,透明度小于50%;由无规褶皱的石墨烯片组成,AB堆叠率50~70%;石墨烯片缺陷极少,其I D/I G<0.01。
  10. 一种纳米级厚度独立自支撑发泡石墨烯膜的制备方法,其特征在于,包含如下步骤:
    (1)将氧化石墨烯配制成浓度为0.5-10ug/mL氧化石墨烯水溶液,以阳极氧化铝为基底抽滤成膜,厚度为200-600nm。
    (2)将贴附于AAO膜的氧化石墨烯膜置于密闭容器中,60-100度高温熏蒸HI蒸汽1-10h。
    (3)将固体转移剂均匀涂敷在石墨烯膜表面,并于低于固体转移剂熔点5度以下温度进行加热,使得固体转移剂固化。
    (4)将涂敷有固体转移剂的石墨烯膜置于室温下,石墨烯膜自动与AAO膜分离。
    (5)将上述得到的固体转移剂支撑的石墨烯膜在固体转移剂挥发的温度下挥发掉固体转移剂,得到独立自支撑的还原氧化石墨烯膜。
    (6)将独立自支撑的还原氧化石墨烯膜置于高温炉中高温退火,退火温度为2400-3000℃,维持时间为1-12h,升温速率不高于20℃/min。
  11. 根据权利要求10所述的方法,其特征在于,所述步骤4中,采用1-10%的磷酸刻蚀掉未与石墨烯膜分离的AAO膜,刻蚀时间为1-10min。
  12. 如权利要求10所述的方法,其特征在于,所述的固体转移剂,选自如下物质:石蜡、樟脑、氯化铝、碘、萘、三氧化二砷、五氯化磷、丙烯酰胺、三氯化铁、硫、红磷、氯化铵、碳酸氢铵、碘化钾、降冰片烯、咖啡因、三聚氰胺、水、松香、叔丁醇、三氧化硫。
  13. 如权利要求10所述的方法,其特征在于,所述的固体转移剂的升华温度要控制在320度以下;升华压力以及环境含氧量根据物性而定。
  14. 如权利要求10所述方法制备得到的纳米级厚度独立自支撑发泡石墨烯膜,其特征在于,所述石墨烯膜的厚度为70-200nm,内部具有一层连续的气泡;气泡的壁面由片层间距为0.34nm的石墨烯片构成,且石墨烯片缺陷极少,其I D/I G<0.01;AB堆叠率大于80%,片层上无褶皱。
PCT/CN2018/086085 2017-10-13 2018-05-08 独立自支撑石墨烯膜及其制备方法 WO2019071943A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18866208.4A EP3620435B1 (en) 2017-10-13 2018-05-08 Independent free-standing graphene film and preparation method therefor
JP2020510549A JP2020531387A (ja) 2017-10-13 2018-05-08 自立グラフェン膜およびその製造方法
KR1020207006088A KR102316218B1 (ko) 2017-10-13 2018-05-08 독립적 자가지지형 그래핀 필름 및 그 제조 방법
US16/476,117 US11834336B2 (en) 2017-10-13 2018-05-08 Independent free-standing graphene film and method of preparing the same
RU2020115707A RU2753510C1 (ru) 2017-10-13 2018-05-08 Независимая свободнорасполагающаяся графеновая пленка и способ ее получения

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201710955058.5A CN107651673B (zh) 2017-10-13 2017-10-13 一种纳米级厚度独立自支撑褶皱石墨烯膜及其制备方法
CN201710953503.4 2017-10-13
CN201710953513.8 2017-10-13
CN201710953513.8A CN107857252B (zh) 2017-10-13 2017-10-13 一种独立自支撑石墨烯膜的制备方法
CN201710955058.5 2017-10-13
CN201710953503.4A CN107857251B (zh) 2017-10-13 2017-10-13 一种纳米级厚度独立自支撑发泡石墨烯膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2019071943A1 true WO2019071943A1 (zh) 2019-04-18

Family

ID=66101244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086085 WO2019071943A1 (zh) 2017-10-13 2018-05-08 独立自支撑石墨烯膜及其制备方法

Country Status (6)

Country Link
US (1) US11834336B2 (zh)
EP (1) EP3620435B1 (zh)
JP (2) JP2020531387A (zh)
KR (1) KR102316218B1 (zh)
RU (1) RU2753510C1 (zh)
WO (1) WO2019071943A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022106866A1 (en) * 2020-11-18 2022-05-27 Arcelormittal Method for the manufacture of a self-standing graphene oxide or reduced graphene oxide film

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111807355B (zh) * 2020-08-10 2023-01-06 北京航空航天大学 一种面内各向同性的高取向密实化石墨烯薄膜的制备方法
WO2022141179A1 (zh) * 2020-12-30 2022-07-07 浙江大学 基于弱耦合增强的石墨烯结构、石墨烯膜及光电器件
CN113522059B (zh) * 2021-07-02 2023-02-17 五邑大学 一种褶皱化氧化石墨烯膜及其制备方法
CN114180559B (zh) * 2021-12-08 2023-12-12 重庆石墨烯研究院有限公司 一种石墨烯薄膜转移隔离层的制备装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103935994A (zh) * 2014-04-28 2014-07-23 上海交通大学 一种自支撑还原氧化石墨烯纸及其制备方法
CN104030275A (zh) * 2014-05-30 2014-09-10 上海应用技术学院 一种还原氧化石墨烯导热薄膜的制备方法
CN104401987A (zh) * 2014-11-26 2015-03-11 东华大学 一种多孔石墨烯弹性泡沫的制备方法
CN106185901A (zh) * 2016-07-15 2016-12-07 浙江大学 一种高弹性石墨烯膜
CN107651673A (zh) * 2017-10-13 2018-02-02 浙江大学 一种纳米级厚度独立自支撑褶皱石墨烯膜及其制备方法
CN107857252A (zh) * 2017-10-13 2018-03-30 浙江大学 一种独立自支撑石墨烯膜的制备方法
CN107857251A (zh) * 2017-10-13 2018-03-30 浙江大学 一种纳米级厚度独立自支撑发泡石墨烯膜及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776444B2 (en) * 2002-07-19 2010-08-17 University Of Florida Research Foundation, Inc. Transparent and electrically conductive single wall carbon nanotube films
US8236118B2 (en) * 2009-08-07 2012-08-07 Guardian Industries Corp. Debonding and transfer techniques for hetero-epitaxially grown graphene, and products including the same
KR101142525B1 (ko) 2011-03-17 2012-05-07 한국전기연구원 그래핀을 이용한 플렉시블 디스플레이의 제조방법 그리고 이를 이용한 디스플레이
KR101331521B1 (ko) * 2011-09-23 2013-11-21 중앙대학교 산학협력단 그래핀 박막의 제조 방법
KR101984693B1 (ko) * 2012-03-16 2019-05-31 삼성전자주식회사 환원 그래핀 옥사이드의 제조 방법
KR101479830B1 (ko) * 2013-01-22 2015-01-06 인천대학교 산학협력단 슈퍼커패시터용 그래핀/전도성 고분자 필름 및 이의 제조방법
US20140311967A1 (en) * 2013-03-15 2014-10-23 Massachusetts Institute Of Technology Porous materials and methods including nanoporous materials for water filtration
RU2538040C2 (ru) * 2013-04-30 2015-01-10 Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН) Способ получения приборных графеновых структур
CN105960276A (zh) 2013-12-10 2016-09-21 南卡罗来纳大学 用于水处理的超薄石墨烯基膜及其形成方法和用途
CN106197839B (zh) * 2016-07-05 2019-01-22 浙江大学 一种可呼吸石墨烯膜在检测真空度稳定性中的应用
CN107055517B (zh) * 2017-04-11 2019-09-13 杭州高烯科技有限公司 一种柔性石墨烯膜及其制备方法
RU2742409C1 (ru) 2017-04-11 2021-02-05 Ханчжоу Гаоси Технолоджи Ко., Лтд. Гибкая графеновая пленка и способ ее изготовления

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103935994A (zh) * 2014-04-28 2014-07-23 上海交通大学 一种自支撑还原氧化石墨烯纸及其制备方法
CN104030275A (zh) * 2014-05-30 2014-09-10 上海应用技术学院 一种还原氧化石墨烯导热薄膜的制备方法
CN104401987A (zh) * 2014-11-26 2015-03-11 东华大学 一种多孔石墨烯弹性泡沫的制备方法
CN106185901A (zh) * 2016-07-15 2016-12-07 浙江大学 一种高弹性石墨烯膜
CN107651673A (zh) * 2017-10-13 2018-02-02 浙江大学 一种纳米级厚度独立自支撑褶皱石墨烯膜及其制备方法
CN107857252A (zh) * 2017-10-13 2018-03-30 浙江大学 一种独立自支撑石墨烯膜的制备方法
CN107857251A (zh) * 2017-10-13 2018-03-30 浙江大学 一种纳米级厚度独立自支撑发泡石墨烯膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ROMANOS, G. ET AL.: "A facile approach for the development of fine-tuned se- lf-standing graphene oxide membranes and their gas and vapor separation per- formance", JOURNAL OF MEMBRANE SCIENCE, vol. 493, 18 July 2015 (2015-07-18), pages 734 - 747, XP055592428, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2015.07.034 *
See also references of EP3620435A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022106866A1 (en) * 2020-11-18 2022-05-27 Arcelormittal Method for the manufacture of a self-standing graphene oxide or reduced graphene oxide film

Also Published As

Publication number Publication date
RU2753510C1 (ru) 2021-08-17
EP3620435A4 (en) 2020-10-28
EP3620435A1 (en) 2020-03-11
JP2021119118A (ja) 2021-08-12
KR102316218B1 (ko) 2021-10-22
EP3620435B1 (en) 2021-07-07
KR20200035105A (ko) 2020-04-01
JP7186464B2 (ja) 2022-12-09
US11834336B2 (en) 2023-12-05
JP2020531387A (ja) 2020-11-05
US20200231444A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
CN107651673B (zh) 一种纳米级厚度独立自支撑褶皱石墨烯膜及其制备方法
WO2019071943A1 (zh) 独立自支撑石墨烯膜及其制备方法
CN107857251B (zh) 一种纳米级厚度独立自支撑发泡石墨烯膜及其制备方法
CN108249424B (zh) 一种溴掺杂的高导电超薄石墨烯膜的制备方法
CN107857252B (zh) 一种独立自支撑石墨烯膜的制备方法
WO2017128648A1 (zh) 一种超柔性高导热石墨烯膜及其制备方法
CN109911888B (zh) 一种无缺陷乱层堆叠石墨烯纳米膜的制备方法与应用
CN108217627B (zh) 一种独立自支撑石墨烯碳管复合膜的制备方法
US20140283970A1 (en) Large-area films using interfacial self-assembly of microparticles and method of manufacturing the same
Wang et al. Chemical and thermal robust tri-layer rGO/Ag NWs/GO composite film for wearable heaters
CN106698407A (zh) 一种可反复折叠的柔性石墨烯膜、其制备方法以及包括其的柔性器件
US11104989B2 (en) Chemical vapor deposition process to build 3D foam-like structures
WO2020187332A1 (zh) 一种电催化制备无缺陷乱层堆叠石墨烯纳米膜的方法与应用
CN104098089A (zh) 一种掺杂石墨烯泡沫的制备方法
KR20200017679A (ko) 그래핀 습식방사 응고욕 및 이를 이용한 그래핀 옥사이드 섬유 제조방법
CN107758644B (zh) 一种超高压热还原制备石墨烯薄膜的方法
Balgis et al. Synthesis of uniformly porous NiO/ZrO2 particles
WO2011066809A1 (zh) 寡层石墨及其薄膜的制备方法
WO2016037456A1 (zh) 基于一字形模口的石墨烯及其复合膜的制备方法
Henrist et al. Hierarchical porous TiO2 thin films by soft and dual templating: A quantitative approach of specific surface and porosity
CN108821264B (zh) 一种纳米级声波发生器
Ji et al. Effects of oxidation processes and microstructures on the hydrophilicity of copper surface
CN108821263B (zh) 一种高强石墨烯膜及其制备方法
TW200949954A (en) Mathod for making thin film transistor
CN108840322B (zh) 一种发泡碳膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018866208

Country of ref document: EP

Effective date: 20191202

ENP Entry into the national phase

Ref document number: 2020510549

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207006088

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE