CN107758644B - 一种超高压热还原制备石墨烯薄膜的方法 - Google Patents

一种超高压热还原制备石墨烯薄膜的方法 Download PDF

Info

Publication number
CN107758644B
CN107758644B CN201710953502.XA CN201710953502A CN107758644B CN 107758644 B CN107758644 B CN 107758644B CN 201710953502 A CN201710953502 A CN 201710953502A CN 107758644 B CN107758644 B CN 107758644B
Authority
CN
China
Prior art keywords
graphene film
graphene
super
film
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710953502.XA
Other languages
English (en)
Other versions
CN107758644A (zh
Inventor
高超
彭蠡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Gaoxi Technology Co Ltd
Original Assignee
Hangzhou Gaoxi Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Gaoxi Technology Co Ltd filed Critical Hangzhou Gaoxi Technology Co Ltd
Priority to CN201710953502.XA priority Critical patent/CN107758644B/zh
Publication of CN107758644A publication Critical patent/CN107758644A/zh
Application granted granted Critical
Publication of CN107758644B publication Critical patent/CN107758644B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种超高压热还原制备石墨烯薄膜的方法,该石墨烯膜由大片氧化石墨烯、少层石墨烯或者纳米级石墨微片经过溶液成膜、化学还原、超高压热还原等步骤得到。此石墨烯膜高度取向,结构特别致密,具有一定的柔性;石墨烯片层结构完美,极少含有缺陷,具有较高的导电性和导热性。

Description

一种超高压热还原制备石墨烯薄膜的方法
技术领域
本发明涉及新型导热导电材料及其制备方法,尤其涉及超高压热还原制备石墨烯薄膜的方法。
背景技术
2010年,英国曼彻斯特大学的两位教授Andre GeiM和Konstantin Novoselov因为首次成功分离出稳定的石墨烯获得诺贝尔物理学奖,掀起了全世界对石墨烯研究的热潮。石墨烯有优异的电学性能(室温下电子迁移率可达2×105cM2/Vs),突出的导热性能(5000W/(MK),超常的比表面积(2630M2/g),其杨氏模量(1100GPa)和断裂强度(125GPa)。石墨烯优异的导电导热性能完全超过金属,同时石墨烯具有耐高温耐腐蚀的优点,而其良好的机械性能和较低的密度更让其具备了在电热材料领域取代金属的潜力。
宏观组装氧化石墨烯或者石墨烯纳米片的石墨烯膜是纳米级石墨烯的主要应用形式,常用的制备方法是抽滤法、刮膜法、旋涂法、喷涂法和浸涂法等。通过进一步的高温处理,能够修补石墨烯的缺陷,能够有效的提高石墨烯膜的导电性和热导性,可以广泛应用于智能手机、智能随身硬件、平板电脑、笔记本电脑等高散热需求随身电子设备中去。
但是目前,宏观组装石墨烯膜都需要3000度的高温烧结过程。这一过程耗能严重,极易损伤炉体,容易发生安全事故;并且高温过程会使得气体进入石墨烯膜,容易造成石墨烯膜不致密,影响其应用的稳定性和持久性;高温过程还会引入过多的褶皱,减少AB结构含量并进一步降低导热性能。因此我们迫切需要寻找一种低温还原的方法,同时将其性能维持在最高水平。
发明内容
本发明的目的是克服现有技术的不足,提供一种超高压热还原制备石墨烯薄膜的方法。
本发明的目的是通过以下技术方案实现的:一种超高压热还原制备石墨烯薄膜的方法,其特征在于,包含如下步骤:
(1)将单层的氧化石墨烯配制成浓度为6~30mg/mL水溶液,溶液成膜后自然晾干,然后用还原剂进行还原。
(2)将还原后的石墨烯膜在热压机下以0.1-5℃/min的速率升温到300-400℃,保温0.5-2h并自然降温;整个过程维持压力0.5-5GPa。
(3)将上述石墨烯膜在惰性气体氛围下以1-20℃/min的速率升温到1500-1800℃,保温0.5-6h;整个过程维持压力3-10GPa,得到AB结构含量超过90%的石墨烯膜。
一种超高压热还原制备石墨烯薄膜的方法,包含如下步骤:
(1)将少层石墨烯(1-10层)或者石墨微纳米片(厚度小于100nm)配制成浓度为6~30mg/mL水溶液,溶液成膜后自然晾干。
(2)将石墨烯膜在热压机下以0.1-5℃/min的速率升温到300-400℃,保温0.5-2h并自然降温;整个过程维持压力0.5-5GPa。
(3)将上述石墨烯膜在惰性气体氛围下以1-20℃/min的速率升温到1500-1800℃,保温0.5-6h;整个过程维持压力3-10GPa,得到AB结构含量超过90%的石墨烯膜。
进一步地,所述的成膜方法为抽滤法、刮膜法、旋涂法、喷涂法和浸涂法等。
进一步地,所述的还原剂为抗坏血酸、维生素C或碘化氢等等。
本发明通过使用超高压热还原的方式制备得到的石墨烯膜高度取向,结构特别致密,具有一定的柔性;石墨烯片层结构完美,极少含有缺陷,具有较高的导电性和导热性。
附图说明
图1为常压烧结以后的截面。
图2为高压烧结以后的截面。
具体实施方式
本发明通过超高压热还原的方法制备石墨烯薄膜,其中,高压过程有三个作用:其一,控制石墨烯膜发泡,抑制其形成封闭的气孔,为后续石墨烯膜的工业压制扫清了障碍;其二,控制烧结温度,高压过程可以让石墨烯膜结构在相对低的温度下就能得到完美的修复,为其高的导热导电性能打下了基础;其三,高压过程控制了石墨烯片层褶皱密度,提高了石墨烯片的取向程度,从而进一步提升了性能;其四,高压过程可以使得石墨烯膜最高程度的形成三维石墨结构,大量三维石墨结构的形成是高性能石墨膜成功制备的关键。
实施例1:
(1)将单层的氧化石墨烯配制成浓度为6mg/mL水溶液,溶液成膜后自然晾干,然后用还原剂进行还原。
(2)将还原后的石墨烯薄膜在热压机下以0.1℃/min的速率升温到300℃,保温2h并自然降温;整个过程维持压力5GPa。
(3)将上述石墨烯膜在惰性气体氛围下以1℃/min的速率升温到1500℃,保温6h;整个过程维持压力10GPa。
所得到石墨烯膜AB结构含量为95%,电导率为9300S/cm。
实施例2:
(1)将单层的氧化石墨烯配制成浓度为30mg/mL水溶液,溶液成膜后自然晾干,然后用还原剂进行还原。
(2)将还原后的石墨烯薄膜在热压机下以5℃/min的速率升温到400℃,保温0.5h并自然降温;整个过程维持压力0.5GPa。
(3)将上述石墨烯膜在惰性气体氛围下以20℃/min的速率升温到1800℃,保温0.5h;整个过程维持压力3GPa。
所得到石墨烯膜AB结构含量为90%,电导率为8500S/cm。
实施例3:
(1)将少层石墨烯(1-10层)或者石墨微纳米片(厚度小于100nm)配制成浓度为16mg/mL水溶液,溶液成膜后自然晾干。
(2)将石墨烯薄膜在热压机下以1℃/min的速率升温到350℃,保温1h并自然降温;整个过程维持压力2GPa。
(3)将上述石墨烯膜在惰性气体氛围下以10℃/min的速率升温到1600℃,保温2h;整个过程维持压力5GPa。
所得到石墨烯膜AB结构含量为92.3%,电导率为8800S/cm。
实施例4:
(1)将少层石墨烯(1-10层)或者石墨微纳米片(厚度小于100nm)配制成浓度为20mg/mL水溶液,溶液成膜后自然晾干。
(2)将石墨烯薄膜在热压机下以3℃/min的速率升温到400℃,保温2h并自然降温;整个过程维持压力3GPa。
(3)将上述石墨烯膜在惰性气体氛围下以10℃/min的速率升温到1700℃,保温3h;整个过程维持压力4GPa。
所得到石墨烯膜AB结构含量为91%,电导率为8600S/cm。
对比例1:
(1)将单层的氧化石墨烯配制成浓度为6mg/mL水溶液,溶液成膜后自然晾干,然后用还原剂进行还原。
(2)将还原后的石墨烯薄膜在热压机下以0.1℃/min的速率升温到300℃,保温2h并自然降温。
(3)将上述石墨烯膜在惰性气体氛围下以1℃/min的速率升温到1500℃,保温6h。
所得到石墨烯膜AB结构含量为0%,电导率为1700S/cm。
对比例2:
(1)将单层的氧化石墨烯配制成浓度为6mg/mL水溶液,溶液成膜后自然晾干,然后用还原剂进行还原。
(2)将还原后的石墨烯薄膜在热压机下以0.1℃/min的速率升温到300℃,保温2h并自然降温。
(3)将上述石墨烯膜在惰性气体氛围下以1℃/min的速率升温到3000℃,保温6h。
所得到石墨烯膜AB结构含量为0%,电导率为1900S/cm。

Claims (4)

1.一种超高压热还原制备石墨烯薄膜的方法,其特征在于,包含如下步骤:
(1)将单层的氧化石墨烯配制成浓度为6~30mg/mL水溶液,溶液成膜后自然晾干,然后用还原剂进行还原;
(2)将还原后的石墨烯膜在热压机下以0.1-5oC/min的速率升温到300-400oC,保温0.5-2h并自然降温;整个过程维持压力0.5-5GPa;
(3)将上述石墨烯膜在惰性气体氛围下以1-20oC/min的速率升温到1500-1800oC,保温0.5-6h;整个过程维持压力3-10GPa,得到AB结构含量超过90%的石墨烯膜。
2.一种超高压热还原制备石墨烯薄膜的方法,其特征在于,包含如下步骤:
(1)将少层石墨烯1-10层或者石墨微纳米片厚度小于100nm配制成浓度为6~30mg/mL水溶液,溶液成膜后自然晾干;
(2)将石墨烯膜在热压机下以0.1-5oC/min的速率升温到300-400oC,保温0.5-2h并自然降温;整个过程维持压力0.5-5GPa;
(3)将上述石墨烯膜在惰性气体氛围下以1-20oC/min的速率升温到1500-1800oC,保温0.5-6h;整个过程维持压力3-10GPa,得到AB结构含量超过90%的石墨烯膜。
3.如权利要求1或2所述的超高压热还原制备石墨烯薄膜的方法,其特征在于,所述的成膜方法为抽滤法、刮膜法、旋涂法、喷涂法和浸涂法。
4.如权利要求1或2所述的一种超高压热还原制备石墨烯薄膜的方法,其特征在于,所述的还原剂为抗坏血酸或碘化氢。
CN201710953502.XA 2017-10-13 2017-10-13 一种超高压热还原制备石墨烯薄膜的方法 Active CN107758644B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710953502.XA CN107758644B (zh) 2017-10-13 2017-10-13 一种超高压热还原制备石墨烯薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710953502.XA CN107758644B (zh) 2017-10-13 2017-10-13 一种超高压热还原制备石墨烯薄膜的方法

Publications (2)

Publication Number Publication Date
CN107758644A CN107758644A (zh) 2018-03-06
CN107758644B true CN107758644B (zh) 2019-08-20

Family

ID=61268587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710953502.XA Active CN107758644B (zh) 2017-10-13 2017-10-13 一种超高压热还原制备石墨烯薄膜的方法

Country Status (1)

Country Link
CN (1) CN107758644B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109205602B (zh) * 2018-11-05 2020-11-10 盐城师范学院 一种低褶皱密度石墨烯膜的制备方法
CN111384267B (zh) * 2018-12-29 2021-09-10 Tcl科技集团股份有限公司 石墨烯量子点薄膜的制备方法和发光二极管及其制备方法
CN112279239A (zh) * 2020-09-21 2021-01-29 宁波华丰包装有限公司 一种批量化制备石墨烯膜的方法以及由此制得的石墨烯膜

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103253656B (zh) * 2013-05-02 2016-01-20 南京科孚纳米技术有限公司 一种石墨烯分散液制备方法
CN105731435B (zh) * 2016-01-25 2017-11-28 浙江碳谷上希材料科技有限公司 一种高强柔性石墨烯复合导热膜及其制备方法
CN105523547B (zh) * 2016-01-25 2017-09-29 浙江大学 一种超柔性高导热石墨烯膜及其制备方法
CN105692600B (zh) * 2016-01-25 2017-10-10 浙江大学 一种超柔轻质石墨烯电热膜的制备方法
CN106495133A (zh) * 2016-11-09 2017-03-15 嘉兴中易碳素科技有限公司 高导热柔性石墨烯薄膜制备方法
CN106744836A (zh) * 2016-11-30 2017-05-31 温县兴发生物科技有限公司 一种利用生物质原料制备石墨烯的方法
CN106986332B (zh) * 2017-05-04 2019-04-09 哈尔滨赫兹新材料科技有限公司 一种柔性高导电石墨烯薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ultrahigh Thermal Conductive yet Superflexible Graphene Films;Li Peng et al.;《Adv. Mater.》;20170512;第29卷(第27期);1700589

Also Published As

Publication number Publication date
CN107758644A (zh) 2018-03-06

Similar Documents

Publication Publication Date Title
CN107555419B (zh) 一种低褶皱密度石墨烯膜及其制备方法
Li et al. Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites
CN107758644B (zh) 一种超高压热还原制备石墨烯薄膜的方法
WO2020168838A1 (zh) 柔性氮化硼纳米带气凝胶及其制备方法
CN105523547B (zh) 一种超柔性高导热石墨烯膜及其制备方法
CN103420352B (zh) 一种高氟含量氟化石墨烯及其制备方法
CN107651673B (zh) 一种纳米级厚度独立自支撑褶皱石墨烯膜及其制备方法
CN105645404B (zh) 一种蜂窝状结构石墨烯气凝胶球及其制备方法
CN108251076B (zh) 碳纳米管-石墨烯复合散热膜、其制备方法与应用
CN105752963B (zh) 一种基于石墨烯的可折叠电热膜器件
CN104229783B (zh) 一种高导热石墨烯膜的制备方法
CN107857251A (zh) 一种纳米级厚度独立自支撑发泡石墨烯膜及其制备方法
CN108128768B (zh) 仿生叠层结构的石墨烯-碳量子点复合导热薄膜及其制备
CN107140619A (zh) 一种高导热的石墨烯厚膜及其制备方法
CN105692600B (zh) 一种超柔轻质石墨烯电热膜的制备方法
WO2016011905A1 (zh) 银掺杂石墨烯复合纸及其制备方法
CN105293452B (zh) 三维结构氮化硼及其制备方法和应用
CN108217627B (zh) 一种独立自支撑石墨烯碳管复合膜的制备方法
CN105217611A (zh) 黑磷烯量子点-石墨烯纳米片三维复合材料的制备方法
CN107651671B (zh) 一种催化石墨化的方法以及一种超柔性高导热石墨烯膜的制备方法
KR102316218B1 (ko) 독립적 자가지지형 그래핀 필름 및 그 제조 방법
CN105129787A (zh) 三维分级多孔石墨烯的制备方法
CN107808958A (zh) 四氧化三铁/氮掺杂石墨烯复合材料的制备方法及其产品和应用
JP2015101722A (ja) 三次元網目状材料の生成方法
CN108264041A (zh) 氧化石墨烯/铜氧化物复合粉体及其制备方法、微观层状结构石墨烯/铜复合材料制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant