WO2019065566A1 - リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2019065566A1
WO2019065566A1 PCT/JP2018/035288 JP2018035288W WO2019065566A1 WO 2019065566 A1 WO2019065566 A1 WO 2019065566A1 JP 2018035288 W JP2018035288 W JP 2018035288W WO 2019065566 A1 WO2019065566 A1 WO 2019065566A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
active material
electrode active
secondary battery
Prior art date
Application number
PCT/JP2018/035288
Other languages
English (en)
French (fr)
Inventor
拓真 中村
治輝 金田
裕希 小鹿
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to US16/651,965 priority Critical patent/US11594726B2/en
Priority to KR1020207008966A priority patent/KR20200058420A/ko
Priority to EP18861760.9A priority patent/EP3690999A4/en
Priority to CN201880063023.3A priority patent/CN111466047B/zh
Publication of WO2019065566A1 publication Critical patent/WO2019065566A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium ion secondary battery comprising a lithium nickel manganese composite oxide, a method for producing the same, and a lithium ion secondary battery.
  • lithium ion secondary battery as a secondary battery which satisfies such a demand.
  • lithium ion secondary batteries using layered or spinel type lithium transition metal complex oxide as a positive electrode active material can be put into practical use as batteries having high energy density because high voltages of 4 V class can be obtained. .
  • lithium nickel cobalt manganese complex oxide LiNi 1/3 Co 1/3 Mn 1/3 O 2 which has excellent thermal stability and high capacity
  • the lithium-nickel-cobalt-manganese composite oxide is a layered compound like the lithium-cobalt composite oxide and the lithium-nickel composite oxide, and the composition ratio of nickel, cobalt and manganese is basically 1: 1 at the transition metal site. Contains at a rate of 1.
  • Patent Document 1 discloses a mixing step of mixing a nickel-containing hydroxide, a lithium compound and a titanium compound to obtain a lithium mixture, and a firing step of firing a lithium mixture to obtain a lithium transition metal composite oxide
  • a positive electrode active material for a lithium ion secondary battery comprising a lithium transition metal complex oxide composed of particles of a polycrystalline structure obtained by a production method including the above. This positive electrode active material is considered to enable realization of high thermal stability and charge / discharge capacity and excellent cycle characteristics.
  • Patent Document 2 describes a positive electrode active material for a non-aqueous electrolyte secondary battery having at least a lithium transition metal composite oxide having a layered structure, wherein the lithium transition metal composite oxide is a primary particle and an aggregate thereof.
  • a non-aqueous compound having a compound having at least one selected from the group consisting of molybdenum, vanadium, tungsten, boron and fluorine is present in the form of particles consisting of one or both of secondary particles that are
  • a positive electrode active material for an electrolyte secondary battery has been proposed. It is said that the conductivity is improved by having the above-described compound on the surface of the particles.
  • Patent Document 3 contains a lithium transition metal-based compound capable of inserting and releasing lithium ions as a main component, and a compound containing at least one element selected from B and Bi as a main component material.
  • a lithium transition metal based compound powder for a lithium secondary battery positive electrode material is proposed which is formed by adding one compound of each containing at least one element selected from Mo, W, Ti, Ta and Re together and then baking it. It is done. By adding and sintering the additive element, it is possible to improve the rate and output characteristics and to obtain a lithium-containing transition metal compound powder that is easy to handle and prepare an electrode.
  • Patent Document 4 the general formula Li a Ni 1-x-y Co x M 1 y W z M 2 w O 2 (1.0 ⁇ a ⁇ 1.5,0 ⁇ x ⁇ 0.5,0 Y ⁇ 0.5, 0.002 ⁇ z ⁇ 0.03, 0 ⁇ w ⁇ 0.02, 0 ⁇ x + y ⁇ 0.7, M 1 is at least one selected from the group consisting of Mn and Al, M 2 ) a lithium transition metal composite oxide represented by at least one selected from the group consisting of Zr, Ti, Mg, Ta, Ti and Mo), and a boron compound containing at least a boron element and an oxygen element;
  • a positive electrode composition for a water electrolyte secondary battery has been proposed. By using a positive electrode composition containing a lithium transition metal composite oxide essentially containing nickel and tungsten and a specific boron compound, it is possible to improve output characteristics and cycle characteristics.
  • the present invention has been made in view of these circumstances, and improves not only the capacity and the electron conductivity, but also the durability and the thermal stability at the time of overcharge, and makes the durability and the thermal stability compatible at a high level. It is an object of the present invention to provide a positive electrode active material from which a lithium ion secondary battery can be obtained. Another object of the present invention is to provide a method by which such a positive electrode active material can be easily produced in industrial scale production.
  • the positive electrode active material for a lithium ion secondary battery is a positive electrode active material for a lithium ion secondary battery comprising a lithium-nickel-manganese composite oxide composed of secondary particles in which a plurality of primary particles are aggregated.
  • the lithium-nickel-manganese composite oxide is generally represented by the general formula (1): Li d Ni 1 -a-b c Mn a M b T c O 2 (wherein M is Co, in the above general formula (1)) At least one element selected from W, Mo, V, Mg, Ca, Al, Cr, Zr and Ta, 0.05 ⁇ a ⁇ 0.60, 0 ⁇ b ⁇ 0.60, 0.02 ⁇ c ⁇ 0.08, 0.95 ⁇ d ⁇ 1.20), and at least a part of titanium in the lithium-nickel-manganese composite oxide forms a solid solution in the primary particles, and Lithium titanium compound is the lithium ion Characterized in that it is a positive active material for a lithium ion secondary battery, characterized in that present on the surface of the positive electrode active material for the next cell.
  • a positive electrode active material can be provided.
  • the average titanium concentration in the primary particles may be 0.5 at% or more and 5 at% or less of the component metal elements other than lithium.
  • the durability and the thermal stability at the time of overcharging can be improved, and the durability and the thermal stability of the lithium ion secondary battery can be compatible at an even higher level.
  • the lithium titanium compound may be any one or more of Li 3 TiO 4 , LiTiO 3 , LiTi 3 O 8 , and Li 8 Ti 2 O 9 .
  • the composition of the lithium titanium compound becomes optimum, and not only the capacity and the electron conductivity, but also the durability of the secondary battery and the thermal stability during overcharge are improved, and the durability and the thermal stability are further enhanced.
  • the positive electrode active material which can obtain the lithium ion secondary battery made to make it compatible in a high dimension can be provided.
  • the lithium titanium compound may include an amorphous phase.
  • the battery characteristics of the lithium ion secondary battery can be further improved.
  • the volume average particle size MV of the secondary particles may be 5 ⁇ m or more and 20 ⁇ m or less.
  • the high output characteristics and battery capacity of the lithium ion secondary battery can be compatible with the high fillability of the positive electrode.
  • the crystallite diameter of the lithium-nickel-manganese composite oxide determined from the half value width of the 003 diffraction peak may be 500 ⁇ or more and 2000 ⁇ or less by the Scheller method using the measurement result of XRD.
  • a method for producing a positive electrode active material for a lithium ion secondary battery comprising a lithium nickel manganese composite oxide, which comprises at least nickel manganese composite hydroxide particles, a titanium compound, and a lithium compound
  • a firing step of firing the mixture to obtain the lithium-nickel-manganese composite oxide, and the nickel-manganese composite hydroxide particles added in the mixing step have a general formula (2): Ni 1-ab M a M b (OH) 2 + ⁇ (wherein M is selected from Co, W, Mo, V, Mg, Ca, Al, Cr, Zr and Ta At least one element, represented by 0.05 ⁇ a ⁇ 0.60, 0 ⁇ b ⁇ 0.60, 0 ⁇ ⁇ ⁇ 0.4), and in the firing step, the oxygen concentration is 40% by volume More than 10 In a volume percent of an oxidizing atmosphere is carried out at 750 ° C.
  • the lithium-nickel-manganese composite oxide obtained in the burning step the formula (3): Li d Ni 1 -a-b-c Mn a M b T i c O 2
  • M is at least one element selected from Co, W, Mo, V, Mg, Ca, Al, Cr, Zr, and Ta, 0.05 ⁇ a ⁇ 0.60, 0 ⁇ b ⁇ 0.60, 0.02 ⁇ c ⁇ 0.08, 0.95 ⁇ d ⁇ 1.20)
  • a plurality of primary particles are Characterized in that it is composed of aggregated secondary particles, at least a part of titanium is in solid solution in the primary particles, and a lithium titanium compound is present on the surface of the positive electrode active material for the lithium ion secondary battery.
  • a positive electrode active material can be provided.
  • the baking step is performed at a temperature of 750 ° C. or more and less than 850 ° C. for 1 hour or more and 4 hours or less, and then at a temperature of 850 ° C. or more and 1000 ° C. or more for 20 hours or more. Firing may be performed for a time or less.
  • lithium in the lithium compound diffuses into the composite hydroxide particles to form a lithium-nickel-manganese composite oxide composed of particles having a polycrystalline structure, so that the electron conductivity of the lithium ion secondary battery and The thermal stability at the time of overcharge can be made compatible at a higher level.
  • the volume average particle diameter MV of the titanium compound to be added may be 0.01 ⁇ m to 10 ⁇ m.
  • the titanium compound can be added with the targeted composition, and Ti in the lithium-nickel-manganese composite oxide after firing can be uniformly distributed, thereby further ensuring the thermal stability of the lithium ion secondary battery. be able to.
  • the titanium compound to be added in the mixing step, may be a titanate compound or titanium oxide.
  • the method further includes a roasting step of heat-treating the nickel-manganese composite hydroxide particles before the mixing step, and the roasting step is performed at a temperature of 105 ° C. to 700 ° C. You may do it.
  • One aspect of the present invention is characterized in that the positive electrode active material for a lithium ion secondary battery is used as a positive electrode.
  • a positive electrode can be provided.
  • the present invention not only the capacity and the electron conductivity, but also the durability and the thermal stability at the time of overcharging can be improved, and a lithium ion secondary battery having both the durability and the thermal stability in high dimensions can be obtained.
  • a positive electrode active material can be provided. Further, the present invention can easily produce such a positive electrode active material in industrial scale production, and the industrial value can be said to be extremely large.
  • FIG. 1 is a process diagram showing an outline of a method of producing a positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a coin-type secondary battery used to evaluate battery characteristics.
  • the inventor of the present invention added a specific amount of titanium to a lithium-nickel-manganese composite oxide containing a specific amount of manganese while maintaining battery characteristics. It has been found that it is possible to achieve both electron conductivity and high thermal stability due to suppression of oxygen release during overcharge, and the present invention has been completed.
  • preferred embodiments of the present invention will be described.
  • the present embodiment described below does not unduly limit the contents of the present invention described in the claims, and can be modified without departing from the scope of the present invention. Moreover, not all the configurations described in the present embodiment are essential as the solution means of the present invention.
  • the positive electrode active material for a lithium ion secondary battery, the method for producing a positive electrode active material for a lithium ion secondary battery, and the lithium ion secondary battery according to an embodiment of the present invention will be described in the following order. 1.
  • Positive electrode active material for lithium ion secondary battery Method of manufacturing positive electrode active material for lithium ion secondary battery 2-1. Crystallization process 2-2. Roasting process 2-3. Mixing process 2-4. Firing process 3.
  • a positive electrode active material for a lithium ion secondary battery (hereinafter referred to as "positive electrode active material") according to an embodiment of the present invention is a secondary particle composed of particles of a polycrystalline structure and having a plurality of primary particles aggregated. It consists of the comprised lithium nickel manganese complex oxide (henceforth "lithium nickel manganese complex oxide").
  • the lithium-nickel-manganese composite oxide is generally represented by the general formula (1): Li d Ni 1 -a-b-c Mn a M b T c O 2 (in the general formula (1), M is Co, W, Mo And at least one element selected from V, Mg, Ca, Al, Cr, Zr and Ta, and 0.05 ⁇ a ⁇ 0.60, 0 ⁇ b ⁇ 0.60, 0.02 ⁇ c ⁇ 0.08, 0.95 ⁇ d ⁇ 1.20).
  • a lithium ion secondary battery uses a flammable non-aqueous electrolyte as a battery material, high thermal safety is required.
  • a lithium ion secondary battery it is known that when heat is applied during charging, oxygen is released from crystals of the positive electrode active material, and reaction with the electrolyte causes thermal runaway.
  • a method of enhancing the thermal stability a method of adding a different element to the positive electrode active material to stabilize the crystal structure, or covering the surface of the positive electrode active material with an oxide such as SiO 2 , Al 2 O 3 or ZrO 2 A method has been proposed.
  • the initial decrease in charge and discharge capacity is large, and it is difficult to simultaneously achieve both the battery capacity and the thermal stability.
  • industrial scale production is often difficult because the process is complicated or difficult to scale up.
  • the positive electrode active material according to one embodiment of the present invention contains a specific amount of titanium (Ti), and titanium is present in the primary particles and on the surface of the positive electrode active material in the form of a lithium titanium compound.
  • a lithium ion secondary battery (hereinafter, referred to as "secondary battery") using this positive electrode active material has a high capacity and high durability and electron conductivity.
  • the above-described secondary battery has high thermal stability particularly when the positive electrode active material is overcharged, as compared to the case where the positive electrode active material containing no titanium is used.
  • the range of a indicating the content of Mn is 0.05 ⁇ a ⁇ 0.60, preferably 0.10 ⁇ a ⁇ 0.55, more preferably 0.10 ⁇ a ⁇ It is 0.50, more preferably 0.12 ⁇ a ⁇ 0.45.
  • the value of a is in the above range, excellent durability, high capacity and electron conductivity can be obtained, and furthermore, high thermal stability can be obtained.
  • the durability and the thermal stability of the secondary battery can be improved.
  • the value of a is less than 0.05, the effect of improving the thermal stability can not be obtained.
  • the value of a exceeds 0.60 the charge and discharge capacity of the secondary battery is reduced.
  • the range of c is the above range, extremely good durability can be obtained, and when used in the positive electrode of the secondary battery, oxygen release during overcharge can be suppressed, and high thermal stability can be obtained.
  • the value of c is less than 0.02, titanium forms a solid solution in the primary particles, but the lithium titanium compound is hardly formed on the surface of the positive electrode active material, and the durability improvement effect is not observed.
  • the value of c exceeds 0.08, a large amount of lithium titanium compound which functions as a resistance layer is generated, so that the battery capacity is significantly reduced.
  • the range of c is more preferably 0.02 ⁇ c ⁇ 0.04.
  • the composition of the lithium-nickel-manganese composite oxide can be measured by quantitative analysis by inductively coupled plasma (ICP) emission analysis.
  • the presence of the lithium titanium compound can be confirmed by X-ray diffraction measurement or the like.
  • M representing an additive element is at least one element selected from Co, W, Mo, V, Mg, Ca, Al, Cr, Zr and Ta (hereinafter referred to as “addition And when b exceeds 0, it is possible to improve the thermal stability, the storage characteristics, and the battery characteristics.
  • the range of b is 0 ⁇ b ⁇ 0.60.
  • M contains Co, the battery capacity and output characteristics are more excellent.
  • M is Co, preferably 0.05 ⁇ b ⁇ 0.5, more preferably 0.1 ⁇ b ⁇ 0.4.
  • the positive electrode active material in the positive electrode active material according to an embodiment of the present invention, at least a part of titanium is in solid solution with primary particles, and a lithium titanium compound is present on the surface of the positive electrode active material.
  • the thermal stability improving effect is due to the solid solution of titanium in the primary particles
  • the electron conductivity improving effect is due to the lithium titanium compound present on the primary particle surface and the secondary particle surface.
  • solid solution of titanium means, for example, that titanium is detected by ICP emission analysis, and titanium is determined by surface analysis of the primary particle cross section using EDX in a scanning transmission electron microscope (S-TEM). It refers to a state detected in the primary particle, preferably titanium is detected over the entire surface of the primary particle.
  • the maximum titanium concentration in a portion where the titanium concentration in the primary particles is locally high is three or less times the average titanium concentration in the primary particles.
  • the maximum titanium concentration in the primary particle exceeds the above range, the variation of the titanium concentration in the primary particle is too large, and locally high and low titanium concentration portions will be present. For this reason, a portion where the reaction resistance is high may occur in a portion where the titanium concentration is locally high, and a thermal stability effect due to the solid solution of titanium may not be sufficiently obtained in a portion where the titanium concentration is locally low.
  • the maximum titanium concentration in the primary particles is more preferably 2 times or less of the average titanium concentration in the primary particles.
  • the minimum titanium concentration in the primary particle is relative to the average titanium concentration in the primary particle. Preferably, it is 0.5 times or more.
  • the concentration of titanium in the grain boundaries and surface of the primary particles may be three or more times the concentration of titanium in the primary particles.
  • the average titanium concentration in the primary particles is preferably 0.5 at% (atomic%) or more and 5 at% (atomic%) or less of the component metal elements (Ni, Mn, additive elements M, Ti) other than lithium. In this way, not only the capacity and the electron conductivity, but also the durability of the secondary battery and the thermal stability during overcharge can be improved, and the durability and the thermal stability can be compatible at a high level.
  • Ti forms a solid solution in the primary particles, thereby strengthening the bond between oxygen and the transition metal and improving thermal stability. Improve. Furthermore, Ti in solid solution has the effect of suppressing the structural phase transition of the lithium-nickel-manganese composite oxide crystal accompanying overcharge, which also contributes to the improvement of the thermal stability of the secondary battery.
  • a lithium titanium compound is present on the surface of primary particles.
  • the lithium titanium compound may be present on at least a portion of the primary particle surface, and may cover the entire primary particle surface. Furthermore, a part of the lithium titanium compound may be present separately from the positive electrode active material.
  • the lithium titanium compound can enhance the electron conductivity of the resulting secondary battery if it is present on at least a part of the primary particle surface.
  • the lithium titanium compound Since the lithium titanium compound has high lithium ion conductivity, the lithium titanium compound layer formed on the primary particle surface forms a lithium conduction path between the electrolytic solution and the primary particles, and the surface resistance of the positive electrode active material Can be lowered. Also, lithium titanium compounds have very high chemical stability. Therefore, direct contact between the surface of the active material whose activity is increased during charge and discharge and the electrolytic solution is suppressed while lithium ions are smoothly passed, thereby suppressing deterioration of the positive electrode active material, and as a result, the secondary battery has extremely high durability. It is thought that sex is obtained.
  • the lithium titanium compound is preferably any one or more of LiTiO 3 , Li 8 Ti 2 O 9, Li 3 TiO 4 and LiTi 3 O 8 , and furthermore, LiTiO 3 having a high electron conductivity improving effect. It is more preferable that
  • part of the lithium titanium compound may contain an amorphous phase. Since the amorphous phase is more excellent in lithium ion conductivity than the crystalline phase, the battery characteristics of the secondary battery can be further improved.
  • the lithium titanium compound is present on the primary particle surface which can be in contact with the electrolytic solution.
  • the primary particle surface which can be in contact with the electrolytic solution includes not only the surface of the primary particle exposed at the outer surface of the secondary particle, but also the secondary particle which can permeate the electrolytic solution inside the secondary particle. Primary particle surface near the surface of the primary particle, and the primary particle surface exposed to the void inside the secondary particle. Furthermore, even if the primary particle surface that can be in contact with the electrolyte is a grain boundary between primary particles, the primary particle exposed to the grain boundary where the bonding of the primary particle is incomplete and the electrolyte can penetrate. The surface is also included.
  • the lithium titanium compound layer formed on the surface of the primary particle which can be in contact with the above-mentioned electrolytic solution functions as a coating layer having high lithium conductivity in the positive electrode of the secondary battery, lithium nickel manganese composite oxide It is possible to suppress the rise in reaction resistance of the secondary battery when using as a positive electrode active material, while suppressing direct contact between the lithium nickel manganese composite oxide and the electrolytic solution, and further higher durability It is possible to obtain
  • the lithium titanium compound can be formed by increasing the content of titanium within the above range and raising the synthesis temperature. When the titanium content is increased within the above range, the crystallite diameter to be described later can be reduced, and the lithium titanium compound can be formed on the primary particle surface to obtain high durability.
  • the excess lithium referred to herein is a transition metal contained in the lithium-nickel-manganese composite oxide and a lithium component which does not form the lithium-nickel-manganese composite oxide, and quantitatively the ratio of lithium to all transition metals is 1. It is considered to be a part exceeding 0.
  • the excess lithium that did not form a lithium-nickel-manganese composite oxide is presumed to form a lithium-titanium compound with a titanium compound that has not reacted with the lithium-nickel-manganese composite oxide as well.
  • the lithium titanium compound may exist in the coexistence state of crystal and amorphous, or in the state of amorphous.
  • the presence can be confirmed by X-ray diffraction measurement as the amount is increased.
  • the lithium titanium compound is presumed to promote the migration of lithium between the lithium-nickel-manganese composite oxide and the electrolytic solution in any of the present forms, and is present at least in part of the primary particle surface.
  • the deterioration of the active material can be suppressed, and high durability of the secondary battery can be obtained.
  • the volume average particle diameter MV of the secondary particles is preferably 5 ⁇ m or more and 20 ⁇ m or less, and more preferably 4 ⁇ m or more and 15 ⁇ m or less.
  • the volume average particle diameter MV of the secondary particles is in the above range, when the positive electrode active material is used for the positive electrode of the secondary battery, both high output characteristics and battery capacity and high fillability to the positive electrode can be compatible. it can.
  • the volume average particle size MV of the secondary particles is less than 5 ⁇ m, high packing properties to the positive electrode may not be obtained, and when the volume average particle size MV exceeds 20 ⁇ m, high output characteristics and battery capacity can not be obtained.
  • the volume average particle size MV of the secondary particles can be determined, for example, from the volume integration value measured by a laser light diffraction scattering type particle size distribution analyzer.
  • the crystallite diameter of the lithium-nickel-manganese composite oxide is preferably 500 ⁇ or more and 2000 ⁇ or less, and more preferably 700 ⁇ or more and 1300 ⁇ or less. When the crystallite diameter is in this range, high durability of the secondary battery can be obtained without reducing the battery capacity. If the crystallite diameter is less than 500 ⁇ , the number of crystal grain boundaries in the positive electrode active material will be too large, and the internal resistance of the positive electrode active material will increase, so that sufficient charge / discharge capacity may not be obtained.
  • the crystallite diameter exceeds 2000 ⁇ , crystal growth proceeds too much, and there is a possibility that cation mixing in which nickel is mixed in the lithium site of the lithium nickel manganese composite oxide which is a layered compound may occur to reduce charge and discharge capacity. .
  • the crystallite diameter is too large, the specific surface area may be reduced, which may cause an increase in reaction resistance, and the durability of the secondary battery may be lowered.
  • the above-mentioned crystallite diameter can be made into the above-mentioned range by adjusting the crystallization conditions, Ti addition amount, calcination temperature, calcination time, etc. which are mentioned below.
  • the positive electrode active material for a lithium ion secondary battery not only the capacity and the electron conductivity, but also the durability and the thermal stability at the time of overcharging are improved, and the durability and the thermal stability
  • the present invention can provide a positive electrode active material capable of obtaining a lithium ion secondary battery in which the
  • FIG. 1 is a process diagram showing an outline of a method of producing a positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • the method for producing a positive electrode active material for a lithium ion secondary battery according to one embodiment of the present invention comprises a lithium-nickel-manganese composite oxide, and includes a crystallization step S1, a roasting step S2, a mixing step S3, and a firing step shown in FIG. At least a mixing step S3 and a firing step S4 of step S4 are included. Each step will be described in detail below. The following description is an example of the manufacturing method and does not limit the manufacturing method.
  • Crystallization process S1> The basic concept of the positive electrode active material in the method for producing a positive electrode active material for a lithium ion secondary battery according to one embodiment of the present invention will be described below. While containing manganese as a basic positive electrode active material composition improves the thermal stability and also contains titanium, it reduces the electron conductivity of the positive electrode active material and makes it difficult for an overcurrent to flow. Express the effect of improving battery safety.
  • the crystallization step S1 for obtaining the nickel-manganese composite hydroxide can be carried out by a known method as long as composite hydroxide particles containing the above-mentioned content of manganese can be obtained, for example, in a reaction tank
  • the composite hydroxide particles are formed by coprecipitation by neutralizing a mixed aqueous solution containing at least nickel and manganese while adding a neutralizing agent while controlling the pH to a constant value while stirring at a constant speed. be able to.
  • the mixed aqueous solution containing nickel and manganese for example, a sulfate solution of nickel and manganese, a nitrate solution, or a chloride solution can be used. Further, as described later, the mixed aqueous solution may contain the above-described additional element M.
  • the composition of the metal element contained in the mixed aqueous solution substantially matches the composition of the metal element contained in the obtained composite hydroxide particles. Therefore, the composition of the metal element of the mixed aqueous solution can be prepared to be the same as the composition of the metal element of the target composite hydroxide particle.
  • the neutralizing agent an aqueous alkaline solution can be used, and for example, sodium hydroxide, potassium hydroxide and the like can be used.
  • a complexing agent to the mixed aqueous solution in combination with the neutralizing agent.
  • the complexing agent is not particularly limited as long as it can form a complex by bonding with nickel ions and other transition metal ions in an aqueous solution in the reaction tank (hereinafter referred to as "reacted aqueous solution"), and known complexing agents
  • An ammonium ion donor can be used, for example.
  • As the ammonium ion supplier for example, aqueous ammonia or ammonium salt solutions such as ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride and the like can be used.
  • the temperature of the reaction aqueous solution is preferably 30 ° C. or more and 60 ° C. or less because the solubility of Ni in the reaction aqueous solution increases. And, it is preferable that pH of the reaction aqueous solution is 10 or more and 13 or less (25 ° C. standard).
  • the ammonia concentration in the reaction aqueous solution at a constant value in the range of 3 g / L to 25 g / L.
  • the ammonia concentration is less than 3 g / L, the solubility of the metal ion can not be kept constant, and thus primary particles of the composite hydroxide having a uniform shape and particle size may not be formed.
  • the particle size distribution of the obtained composite hydroxide particles is also easily expanded.
  • a batch crystallization method may be used, or a continuous crystallization method may be used.
  • the precipitate can be collected after the reaction aqueous solution in the reaction vessel has reached a steady state, and can be filtered and washed with water to obtain composite hydroxide particles.
  • a mixed raw material solution, an aqueous alkaline solution, and optionally an aqueous solution containing an ammonium ion supplier are continuously supplied, and the precipitate overflowing from the reaction tank is collected, filtered and washed with water.
  • Composite hydroxide particles can be obtained.
  • the composite hydroxide particles contain at least one element (hereinafter referred to as “additional element M”) selected from Co, W, Mo, V, Mg, Ca, Al, Cr, Zr, and Ta. May be.
  • additional element M selected from Co, W, Mo, V, Mg, Ca, Al, Cr, Zr, and Ta. May be.
  • the method of adding the additive element M to the composite hydroxide particles is not particularly limited, and a known method can be used.
  • a mixed raw material containing nickel, manganese and the additive element M By using a solution, composite hydroxide particles containing the additive element M can be obtained, and a solution containing the additive element M is added separately from the raw material solution of nickel and manganese, and compound hydroxide containing the additive element M It is also possible to choose a method of coprecipitating the particles of matter.
  • an aqueous solution of sulfate, chloride, oxide, sulfide, oxo acid salt, peroxo acid salt, oxalate hydroxide or the like can be used.
  • the obtained composite hydroxide particles are further coated with the additional element M. It is good.
  • the coating method of the additive element M is not particularly limited, and known methods can be used.
  • composite hydroxide particles obtained by crystallization are dispersed in pure water to form a slurry.
  • a solution containing the additional element M of the intended coverage is mixed with the slurry, and an acid is added dropwise while being adjusted to a predetermined pH while stirring.
  • the acid for example, sulfuric acid, hydrochloric acid, nitric acid and the like are used.
  • the slurry may be filtered and dried to obtain composite hydroxide particles coated with the additional element M.
  • blending additional element M to composite hydroxide particle may combine two or more of these methods, for example, alkaline aqueous solution to mixed aqueous solution (however, except for additional element M) containing nickel and manganese.
  • the nickel-containing hydroxide crystallized by addition may be coated with the additional element M, 2) a mixed aqueous solution containing nickel, manganese and part of the additional element M is prepared, and the nickel-manganese composite hydroxide
  • the particles (including the additive element M) may be coprecipitated, and the coprecipitate may be further coated with the additive element M to adjust the content of M.
  • the method for producing a positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention preferably further includes a roasting step S2.
  • the roasting step S2 oxidizes the composite hydroxide particles obtained in the above-mentioned crystallization step S1 from the viewpoint of reducing the variation of Li / Me more to form composite oxide particles.
  • the step of converting the composite hydroxide into a composite oxide by heat treatment is often referred to as a roasting step or an oxidation roasting step, but is referred to herein as a roasting step S2.
  • the heat treatment in the roasting step S2 may be performed at a temperature at which the residual water content in the composite hydroxide particles is removed, and for example, preferably 105 ° C. or more and 700 ° C. or less.
  • a temperature at which the residual water content in the composite hydroxide particles is removed preferably 105 ° C. or more and 700 ° C. or less.
  • the composite hydroxide particles are heated at 105 ° C. or higher, at least a portion of the residual water can be removed.
  • the temperature of the heat treatment is less than 105 ° C., it takes a long time to remove the residual moisture, which is not industrially suitable.
  • the temperature of heat treatment exceeds 700 ° C., the composite oxide particles may be sintered and agglomerated. Therefore, in order to convert most of the composite hydroxide particles to composite oxide particles and to prevent sintering, the temperature of the heat treatment is more preferably 350 ° C. or more and 700 ° C. or less.
  • the atmosphere in which the heat treatment is performed is not particularly limited, and can be performed, for example, in an air stream from the viewpoint of easy operation.
  • the heat treatment time is not particularly limited, but if the heat treatment time is less than 1 hour, residual water in the composite hydroxide particles may not be sufficiently removed, and the above heat treatment may be performed for a long time heat treatment.
  • the heat treatment time is preferably 5 hours or more and 15 hours or less because the possibility of sintering like this increases.
  • the equipment used for the heat treatment is not particularly limited as long as the composite hydroxide particles can be heated in a stream of air, and for example, an air drier, an electric furnace without gas generation, etc. can be suitably used. .
  • the composite hydroxide particles to be added in the mixing step S3 have the general formula (2): Ni 1 -ab Mn a M b (OH) 2 + ⁇ (wherein M is Co, W, Mo in the above formula (2) At least one element selected from V, Mg, Ca, Al, Cr, Zr and Ta, and 0.05 ⁇ a ⁇ 0.60, 0 ⁇ b ⁇ 0.60, 0 ⁇ ⁇ ⁇ 0. It is represented by 4).
  • the content (composition) of the metal (Ni, Mn, M) in the composite hydroxide particles is substantially maintained in the lithium nickel manganese composite oxide, so the content of each metal (Ni, Mn, M) is the same as described above. It is preferable that it is the range similar to content in lithium nickel manganese complex oxide.
  • the composite hydroxide particles use nickel composite hydroxide particles containing at least manganese in the above range. Thereby, manganese can be uniformly distributed in a plurality of primary particles of the obtained positive electrode active material.
  • the positive electrode active material in which manganese and titanium are contained (solid solution) in the plurality of primary particles has high thermal stability.
  • the inclusion of manganese in the primary particles makes it possible to sinter the lithium titanium mixture at a relatively high temperature. By firing at a high temperature, titanium in the titanium compound can be more uniformly dissolved in the primary particles.
  • the manufacturing method of the composite hydroxide particle to be used is not specifically limited, It is preferable to use the composite hydroxide particle obtained by the above crystallization processes S1. The reason is that the composite hydroxide particles obtained by the above-mentioned crystallization step S1 are those in which nickel and manganese are uniformly contained in the particles.
  • titanium compound to be added a known compound containing titanium can be used, and for example, titanate, titanium oxide, titanium nitrate, titanium pentachloride, titanium nitrate and the like can be used.
  • titanate, titanium oxide, titanium nitrate, titanium pentachloride, titanium nitrate and the like can be used.
  • a titanate compound or titanium oxide is preferable from the viewpoint of easy availability and prevention of mixing of impurities into the lithium nickel manganese composite oxide.
  • the heat stability of the secondary battery obtained, the battery capacity, and the fall of cycling characteristics may be caused.
  • the volume average particle size MV (hereinafter referred to as average particle size) is taken as one of the particle sizes of the titanium compound to be added, the volume average particle size MV of the titanium compound is preferably 0.01 ⁇ m or more and 10 ⁇ m or less. Preferably they are 0.05 micrometer or more and 3.0 micrometers or less, More preferably, they are 0.08 micrometers or more and 1.0 micrometers or less.
  • volume average particle size MV is smaller than 0.01 ⁇ m, the powder is likely to scatter and handling becomes very difficult, and the titanium compound scatters and is lost in the mixing step S3 and the firing step S4 described later, There may be a problem that it can not be added with the intended composition.
  • the volume average particle size MV is larger than 10 ⁇ m, the distribution of Ti in the lithium-nickel-manganese composite oxide after firing becomes uneven, and sufficient thermal stability may not be secured.
  • the volume average particle size MV can be determined from, for example, a volume integrated value measured by a laser light diffraction scattering type particle size distribution analyzer.
  • the titanium compound may be previously ground to a particle size in the above range using various grinders such as a ball mill, a planetary ball mill, a jet mill / nano jet mill, a bead mill, and a pin mill.
  • various grinders such as a ball mill, a planetary ball mill, a jet mill / nano jet mill, a bead mill, and a pin mill.
  • the titanium compound may be classified by a dry classifier or a sieve, if necessary.
  • the lithium compound is not particularly limited, and known compounds containing lithium can be used.
  • lithium carbonate, lithium hydroxide, lithium nitrate, or a mixture thereof can be used.
  • lithium carbonate, lithium hydroxide, or a mixture of these is preferable from the viewpoint of being less affected by residual impurities and having high reactivity by melting at the calcination temperature.
  • the method of mixing the composite hydroxide particles, the lithium compound and the titanium compound is not particularly limited, and the composite hydroxide particles, the lithium compound and the titanium compound are sufficiently sufficient to prevent destruction of the complex such as the composite hydroxide particles. It should just be mixed.
  • mixing can be performed using a common mixer, and for example, mixing can be performed using a shaker mixer, a lodige mixer, a Julia mixer, a V blender, or the like.
  • the lithium-titanium mixture is preferably mixed until it becomes sufficiently uniform before the later-described firing step. If mixing is not sufficient, the ratio Li / Me of the amount of substance of Li to the amount of substance of metal element Me other than Li varies among individual particles of the positive electrode active material, so that sufficient battery characteristics can not be obtained. May occur.
  • the lithium compound is mixed such that Li / Me in the lithium titanium mixture is 0.95 or more and 1.20 or less. That is, Li / Me in the mixture is mixed to be the same as Li / Me in the obtained positive electrode active material. This is because the molar ratio of Li / Me and each metal element does not change before and after the firing step, so Li / Me of the mixture in the mixing step S3 is almost equal to Li / Me of the positive electrode active material to be obtained.
  • the average titanium concentration in the primary particles is 0.5 at% or more and 5 at% or less with respect to the total mass of metal elements (Ni, Mn, additive elements M, Ti) other than lithium in the mixture. Preferably, they are mixed, more preferably 0.03 at% or more and 3 at% or less.
  • Firing step S4> In the firing step S4, the above-mentioned mixture obtained in the mixing step S3 is fired to obtain the above lithium nickel manganese composite oxide.
  • the firing step S4 is performed at 750 ° C. or more and 1000 ° C. or less in an oxidizing atmosphere with an oxygen concentration of 40% by volume or more and 100% by volume or less.
  • the atmosphere at the time of firing is preferably an oxidative atmosphere, and firing is preferably performed in the air or in an oxygen stream. This is because if the oxygen concentration is less than 40% by volume, the oxygen can not be sufficiently oxidized, and the crystallinity of the lithium-nickel-manganese composite oxide may not be sufficient. In particular, in consideration of the battery characteristics, it is most preferable to carry out in an oxygen stream.
  • the furnace used for baking is not particularly limited as long as it can sinter the lithium titanium mixture in the atmosphere or in a stream of oxygen, but it is preferable to use an electric furnace without gas generation, a batch system or a continuous system. Any of the furnaces of
  • lithium in the lithium compound diffuses into the composite hydroxide particles or titanium-coated composite hydroxide particles described later to cause a solid phase reaction, resulting in particles having a polycrystalline structure.
  • Lithium nickel manganese composite oxide is formed.
  • the lithium compound is melted in the firing step S4 and permeates into the composite hydroxide particles to form a lithium nickel manganese composite oxide.
  • the titanium compound penetrates to the inside of the secondary particles together with the molten lithium compound and further penetrates to the primary particle grain boundaries. Titanium contained in the infiltrated titanium compound diffuses into the primary particles and is uniformly dissolved in the primary particles.
  • the solid solution amount of titanium in the primary particles has a solid solution limit
  • the amount of titanium exceeding the solid solution limit reacts with excess lithium to form a lithium titanium compound. Since the formed lithium titanium compound can not diffuse into the primary particles, it is present on the primary particle surface, the grain boundaries, or the secondary particle surface.
  • baking process S4 although performed at the highest temperature of 750 degreeC or more and 1000 degrees C or less, Preferably it is 750 degreeC or more and 950 degrees C or less.
  • the lithium compound melts and penetrates and diffuses into the composite hydroxide with the titanium compound.
  • the firing temperature is less than 750 ° C., the diffusion of lithium and titanium into the nickel-manganese composite hydroxide particles is not sufficiently performed, excess lithium or unreacted particles remain, or the crystal structure is sufficient. If the battery is not ready, a problem arises that sufficient battery characteristics can not be obtained.
  • the firing temperature exceeds 1000 ° C.
  • severe sintering may occur between the formed lithium-nickel-manganese composite oxide particles, and abnormal grain growth may occur. If abnormal grain growth occurs, the particles after firing may become coarse and the particle form may not be maintained, and when the positive electrode active material is formed, the specific surface area decreases and the resistance of the positive electrode increases. There is a problem that the battery capacity is reduced.
  • the baking time is preferably at least 3 hours or more, and more preferably 6 hours or more and 24 hours or less. When the firing time is less than 3 hours, the formation of the lithium-nickel-manganese composite oxide may not be sufficiently performed.
  • the optimum firing conditions for obtaining the desired lithium-nickel-manganese composite oxide are two-step firing, that is, heat treatment at a temperature of 750 ° C. or more and less than 850 ° C. until the diffusion reaction of the titanium compound is completed, and then 850 ° C.
  • each of the baking times is such that penetration of the molten lithium compound and titanium compound into the secondary particles proceeds rapidly, so that the baking time at 750 ° C. or more and less than 850 ° C. is 1 to 4 hours, 850 ° C. or more and 1000 ° C. or less
  • the baking time is preferably 2 to 20 hours.
  • the firing step S4 may further include a step of heat treatment at a temperature lower than the firing temperature (calcination) before firing at a temperature of 750 ° C. or more and 1000 ° C. or less.
  • the heat treatment is preferably performed at a temperature at which the lithium compound in the mixture melts and can react with the composite hydroxide particles, and can be, for example, 350 ° C. or higher and a temperature lower than the above-described calcination temperature.
  • the lower limit of the heat treatment temperature is preferably 400 ° C. or more.
  • the lithium compound penetrates into the composite hydroxide particles to sufficiently diffuse lithium and titanium, and a uniform lithium-nickel-manganese composite oxide can be obtained.
  • the lithium-nickel-manganese composite oxide obtained in the firing step S4 has the general formula (3): Li d Ni 1 -ab c Mn a M b T c O 2
  • M is at least one element selected from Co, W, Mo, V, Mg, Ca, Al, Cr, Zr and Ta, and 0.05 ⁇ a ⁇ 0.60, 0 ⁇ b ⁇ 0.60, 0.02 ⁇ c ⁇ 0.08, 0.95 ⁇ d ⁇ 1.20).
  • the secondary particle which a plurality of primary particles aggregated, at least one copy of titanium carries out solid solution in the above-mentioned primary particle, and a lithium titanium compound exists on the surface of the above-mentioned cathode active material for lithium ion secondary batteries It is characterized by
  • the particle size distribution can be adjusted by eliminating the above-mentioned sintering and aggregation by crushing.
  • the method for producing a positive electrode active material for a lithium ion secondary battery according to one embodiment of the present invention, not only the capacity and the electron conductivity, but also the durability and the thermal stability at the time of overcharging are improved.
  • the positive electrode active material which can obtain the lithium ion secondary battery which made thermal stability make it compatible in a high dimension can be provided. Further, the present invention can easily produce such a positive electrode active material in industrial scale production, and the industrial value can be said to be extremely large.
  • the lithium ion secondary battery (hereinafter, also referred to as “secondary battery”) according to an embodiment of the present invention uses the above-described positive electrode active material for a positive electrode.
  • a secondary battery according to an embodiment of the present invention will be described for each component.
  • a secondary battery according to an embodiment of the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolyte, and is configured of the same components as a general lithium ion secondary battery.
  • the embodiment described below is merely an example, and the lithium ion secondary battery can be implemented in various modifications and improvements based on the knowledge of those skilled in the art, including the following embodiment. . Further, the secondary battery does not particularly limit its use.
  • Positive electrode> The positive electrode of a secondary battery is manufactured using the positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention described above.
  • a method of manufacturing a positive electrode will be described.
  • the above-mentioned positive electrode active material (powder), a conductive material and a binder (binder) are mixed, and if necessary, activated carbon and a solvent for adjusting viscosity etc. are added, and the mixture is kneaded to obtain a positive electrode.
  • a mixture paste is prepared.
  • the mixing ratio of each material in the positive electrode mixture is a factor that determines the performance of the lithium secondary battery, and can be adjusted according to the application.
  • the mixing ratio of the materials can be the same as that of the positive electrode of a known lithium secondary battery.
  • the positive electrode active material It can contain up to 95% by mass, 1 to 20% by mass of a conductive material, and 1 to 20% by mass of a binder.
  • the obtained positive electrode mixture paste is applied, for example, on the surface of a current collector made of aluminum foil, and dried to disperse the solvent, whereby a sheet-like positive electrode is produced. If necessary, pressure may be applied by a roll press or the like to increase the electrode density.
  • the sheet-like positive electrode obtained in this manner can be cut into an appropriate size according to the target battery, and can be used for battery production.
  • the method for producing the positive electrode is not limited to the above-described one, and may be another method.
  • the conductive material for example, graphite (natural graphite, artificial graphite, expanded graphite and the like), carbon black-based materials such as acetylene black and ketjen black can be used.
  • the binding agent serves to hold active material particles, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluororubber, ethylene propylene diene rubber, styrene butadiene, cellulose type Resin and polyacrylic acid can be used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • fluororubber ethylene propylene diene rubber
  • styrene butadiene cellulose type Resin and polyacrylic acid
  • the positive electrode active material, the conductive material and the activated carbon are dispersed, and a solvent which dissolves the binder is added to the positive electrode mixture.
  • a solvent which dissolves the binder is added to the positive electrode mixture.
  • an organic solvent such as N-methyl-2-pyrrolidone can be used.
  • activated carbon can be added to the positive electrode mixture in order to increase the capacity of the electric double layer.
  • Negative electrode> metal lithium, lithium alloy or the like can be used. Also, for the negative electrode, a negative electrode active material capable of absorbing and desorbing lithium ions is mixed with a binder, and an appropriate solvent is added to form a paste-like negative electrode composite material on the surface of a metal foil current collector such as copper. It may be applied, dried, and compressed as needed to increase the electrode density.
  • the negative electrode active material it is possible to use, for example, a natural graphite, a calcined product of an organic compound such as artificial graphite and a phenol resin, and a powder of a carbon material such as coke.
  • a fluorine-containing resin such as PVDF can be used as in the positive electrode
  • an organic compound such as N-methyl-2-pyrrolidone A solvent can be used.
  • a separator is interposed and disposed between the positive electrode and the negative electrode.
  • a separator separates a positive electrode and a negative electrode and holds an electrolyte, and a known one can be used.
  • a thin film such as polyethylene or polypropylene, which has a large number of fine pores, may be used. it can.
  • the non-aqueous electrolytic solution is one in which a lithium salt as a support salt is dissolved in an organic solvent.
  • organic solvent cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate, linear carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate and dipropyl carbonate, and further tetrahydrofuran, 2- One or a mixture of two or more selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, and phosphorus compounds such as triethyl phosphate and trioctyl phosphate Can.
  • ether compounds such as methyltetrahydrofuran and dimethoxyethane
  • sulfur compounds such as ethylmethylsulfone and butanesultone
  • phosphorus compounds such as triethyl
  • the non-aqueous electrolyte may contain a radical scavenger, a surfactant, a flame retardant, and the like.
  • the solid electrolyte does not decompose even at high potential, it has high thermal stability because there is no gas generation and thermal runaway due to decomposition of the electrolyte during charging as seen in non-aqueous electrolytes. Therefore, when it uses for the lithium ion secondary battery using the positive electrode active material by this invention, the secondary battery with high thermal stability can be obtained.
  • the lithium ion secondary battery of the present invention which is composed of the positive electrode, the negative electrode, the separator and the non-aqueous electrolytic solution described above, can be formed into various shapes such as a cylindrical shape or a laminated shape.
  • the positive electrode and the negative electrode are stacked via a separator to form an electrode body, and the obtained electrode body is impregnated with a non-aqueous electrolytic solution and passed to the positive electrode current collector and the outside.
  • the positive electrode terminal and the negative electrode current collector and the negative electrode terminal leading to the outside are connected using a current collection lead or the like, and sealed in a battery case to complete a lithium ion secondary battery.
  • the secondary battery according to the embodiment of the present invention can achieve both high energy density and durability and high thermal stability due to suppression of oxygen release during overcharge.
  • the positive electrode active material used for said secondary battery can be obtained by the industrial manufacturing method mentioned above.
  • the secondary battery according to an embodiment of the present invention is suitable as a power source of a small portable electronic device (such as a notebook personal computer or a portable telephone terminal) which is always required to have a high capacity.
  • the secondary battery according to one embodiment of the present invention has not only the capacity and the electron conductivity but also the comparison with a battery using a conventional lithium cobalt-based oxide or lithium nickel-based oxide positive electrode active material. Excellent in durability and thermal stability during overcharge.
  • the secondary battery according to an embodiment of the present invention is not only a power source for an electric vehicle driven purely by electric energy, but also as a power source for a so-called hybrid vehicle used in combination with a combustion engine such as a gasoline engine or a diesel engine. Can also be used.
  • a positive electrode active material for a lithium ion secondary battery a method for producing a positive electrode active material for a lithium ion secondary battery, and a lithium ion secondary battery according to an embodiment of the present invention will be described in detail by examples.
  • the present invention is not limited to these examples.
  • the analysis method of the metal contained in the positive electrode active material in an Example and a comparative example and the various evaluation methods of a positive electrode active material are as follows.
  • composition analysis method The analysis of the composition of the nickel-manganese composite hydroxide and the lithium-nickel-manganese composite oxide was measured by ICP emission spectrometry.
  • the average particle size MV and [(D90-D10) / MV] were measured by a laser diffraction scattering type particle size distribution measuring apparatus (Microtrac HRA manufactured by Nikkiso Co., Ltd.).
  • the titanium concentration in the primary particles was subjected to FIB processing so as to enable cross-sectional analysis of the primary particles by STEM after the positive electrode active material was consolidated on the epoxy resin.
  • 10 particles having a particle diameter close to the average particle diameter are randomly selected, and 10 primary particles in the secondary particles are randomly selected.
  • the elemental composition on a line passing through the center of each primary particle cross section and ending at the particle outer edge was line-analyzed by EDX.
  • the average titanium concentration on the line segment was determined by the integral method, and the titanium concentration inside each primary particle was obtained. Furthermore, the average value of the titanium concentration inside each primary particle is calculated, and it is considered as the titanium concentration in the primary particle of the sample.
  • the initial charge capacity and the initial discharge capacity are prepared by preparing the coin-type battery 1 shown in FIG. 2 and leaving it for about 24 hours to stabilize the open circuit voltage OCV (open circuit voltage).
  • the initial charge capacity was charged to a cutoff voltage of 4.3 V as / cm 2 , and the capacity when discharged to a cutoff voltage of 3.0 V after 1 hour of rest was defined as an initial discharge capacity.
  • a multi-channel voltage / current generator (R-6741A, manufactured by Advantest Corporation) was used to measure the discharge capacity.
  • Thermal stability evaluation method The thermal stability of the positive electrode 2 was evaluated by semi-quantitative analysis of the amount of oxygen released by heating the positive electrode active material in an overcharged state.
  • a coin-type battery 1 was produced in the same manner as described above, and CCCV charging (constant current-constant voltage charging) at a 0.2 C rate up to a cutoff voltage of 4.5 V was performed. Thereafter, the coin battery 1 was disassembled, and only the positive electrode 2 was carefully taken out so as not to short circuit, washed with DMC (dimethyl carbonate) and dried. Approximately 2 mg of the dried positive electrode 2 was weighed, and the temperature was raised from room temperature to 450 ° C.
  • GCMS gas chromatograph mass spectrometer
  • Helium was used as a carrier gas.
  • the semi-quantitative value of the amount of generated oxygen was calculated by injecting pure oxygen gas as a standard sample into GCMS and extrapolating the calibration curve obtained from the measurement result.
  • Example 1 ⁇ Crystallization process> A predetermined amount of pure water was put into a reaction tank (60 L), and the temperature in the tank was set to 45 ° C. while stirring. At this time, N 2 gas was blown into the reaction vessel while adjusting the concentration of dissolved oxygen in the reaction vessel liquid to 0.8 mg / L.
  • the flow rate is controlled so that the residence time of the mixed aqueous solution (reaction volume (L) / addition rate of the raw material aqueous solution (L / h)) is 8 hours, and at the same time, the pH in the reaction tank is 11.8-12. 1.
  • a slurry containing the nickel manganese cobalt composite hydroxide discharged from the overflow port was recovered.
  • the obtained slurry was subjected to solid-liquid separation by Denver filtration to obtain a cake of a nickel manganese cobalt composite hydroxide. Impurities contained in the cake were washed and removed by passing 1 L of pure water with respect to 140 g of the nickel-cobalt-manganese composite hydroxide cake present in the filtered dust.
  • the cake after passing through is dried at 120 ° C.
  • Ni 0.55 Mn 0.25 Co 0.20 (OH) 2 The average particle size MV of the obtained composite hydroxide was 9.8 ⁇ m.
  • the obtained raw material mixture is calcined at 830 ° C. for 2 hours in an oxygen-nitrogen mixed gas flow of 50% oxygen concentration, then heated to 900 ° C. at 5 ° C./min and calcined by holding for 8 hours Then, they were crushed to obtain a positive electrode active material consisting of lithium nickel cobalt manganese titanium composite oxide.
  • the volume average particle size MV of the obtained positive electrode active material was 10.1 ⁇ m.
  • a peak attributable to Li 3 TiO 4 (ICDD card No. 75-902) could be confirmed.
  • the lattice constants a and c increase compared to the lithium-nickel-manganese-cobalt composite oxide of the same composition without addition of titanium is recognized, and the result of STEM-EDX analysis is that titanium is in solid solution in the crystal structure. was confirmed.
  • segregation which is considered to be a lithium titanium compound was confirmed on the grain boundary and the surface of the active material.
  • this compound is presumed to be Li 3 TiO 4 .
  • the average primary particle titanium concentration determined by the above method from the result of ED X-ray analysis was 1.3 at%.
  • the crystallite diameter in the 003 plane direction from the XRD measurement result using the Scherrer equation it was 1450 ⁇ .
  • the lithium nickel manganese complex oxide obtained by the above-mentioned process was Li 1.03 Ni 0.54 Mn 0.24 Co 0.19 Ti 0.03 O 2 as a result of ICP emission analysis.
  • Electrode 2 was produced.
  • the produced positive electrode was dried in a vacuum drier at 120 ° C. for 12 hours, and then, using this positive electrode 2, a 2032 type coin battery was produced in a glove box under an Ar atmosphere controlled to have a dew point of ⁇ 80 ° C.
  • a lithium (Li) metal disc with a diameter of 17 mm and a thickness of 1 mm is used for the negative electrode, and an electrolyte containing an equal mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1 M LiClO 4 as a supporting electrolyte. (Manufactured by Toyama Pharmaceutical Co., Ltd.) was used.
  • the separator 4 a polyethylene porous film with a film thickness of 25 ⁇ m was used.
  • the coin-type battery 1 has a gasket 5 and a wave washer 6, and is assembled into a coin-type battery 10 by the positive electrode can 7 and the negative electrode can 8.
  • Table 3 The initial charge capacity of the positive electrode active material obtained by the above-mentioned initial charge / discharge capacity measurement method is shown in Table 3.
  • Durability evaluation Durability evaluation was performed as follows.
  • the obtained positive electrode active material is mixed with acetylene black (conductive material) and PVDF (binder) in a mass ratio of 85: 10: 5, and dispersed in NMP (N-methyl-2-pyrrolidinone) as a solvent to obtain a slurry.
  • NMP N-methyl-2-pyrrolidinone
  • the positive electrode slurry was applied to an aluminum foil (positive electrode current collector) with a thickness of 20 ⁇ m at 7 mg / cm 2 per unit area using an applicator. Then, it dried at 120 degreeC x 30 minutes with a ventilation dryer, and rolled with the roll press, and obtained the positive electrode 2 of 5.0 cm x 3.0 cm.
  • a negative electrode material for lithium ion secondary batteries (natural graphite type) manufactured by Mitsubishi Chemical Corporation and acetylene black were mixed so as to have a mass ratio of 97: 3, and dispersed in NMP as a solvent to make a slurry.
  • the negative electrode slurry was applied to a 15 ⁇ m-thick Cu current collector (negative electrode current collector) using an applicator at a thickness of 5.0 mg / cm 2 . After drying at 120 ° C. for 30 minutes with a blower dryer, the dried electrode was rolled using a roll press. The negative electrode sheet after rolling is cut out into a rectangle having 5.4 cm ⁇ 3.4 cm and a strip (terminal) having a width of 10 mm and the active material layer is removed from the strip to expose the copper foil. Part was obtained to obtain a negative electrode sheet with a terminal.
  • the separator 4 used was a polyethylene separator having a thickness of 16 ⁇ m generally used.
  • the positive electrode 2 and the negative electrode 3 are made to be an electrode unit laminated through the separator 4, the obtained electrode unit is impregnated with an electrolytic solution, and sealed in a battery case to form a laminate cell type.
  • the lithium ion secondary battery was assembled. This was placed in a thermostat controlled at 60 ° C., a charge / discharge device was connected, and charge / discharge was repeated 500 times under the conditions of 2 C rate, 3.0-4.1 V.
  • the capacity retention rate was calculated from the initial discharge capacity and the discharge capacity after 500 cycles. As a result, the initial discharge capacity was 159.8 mAh / g, and the capacity retention rate was 88.1%.
  • Thermal stability evaluation Thermal stability was evaluated by the method described above.
  • the test conditions and the evaluation results are shown in Tables 1 to 3.
  • the method of judging the durability evaluation and the thermal stability evaluation of the battery obtained above is the following three-stage evaluation of the initial discharge capacity and capacity retention rate in the durability evaluation and the oxygen generation amount in the thermal stability evaluation (1, It judged in 2, 3).
  • Initial discharge capacity (mAh / g) Greater than 3: 155.0, 2: 153.0 to 155.0, less than 1: 153.0 (The larger the three-point rating, the higher the performance.
  • Example 2 A lithium composite oxide was prepared in the same manner as in Example 1, except that in the mixing step, the molar ratio of nickel to manganese to cobalt: titanium was 94.0: 6.0 (Ti addition amount: 6.0 at%). Were prepared, and various physical properties and battery evaluations were performed. The test conditions and the evaluation and judgment results are shown in Tables 1 to 3.
  • Example 3 A lithium composite oxide was prepared in the same manner as in Example 1 except that the firing atmosphere in the firing step was changed to oxygen gas (oxygen concentration 100%), and various physical properties and battery evaluations were performed. The test conditions and the evaluation and judgment results are shown in Tables 1 to 3.
  • Example 4 A lithium composite oxide was prepared in the same manner as in Example 1 except that the firing temperature at 750 to 850 ° C. in the firing step was 780 ° C., and various physical properties and battery evaluations were performed. The test conditions and the evaluation and judgment results are shown in Tables 1 to 3.
  • Example 5 A lithium composite oxide was prepared in the same manner as in Example 1 except that the firing time at 750 to 850 ° C. in the firing step was 1.0 hour, and various physical properties and battery evaluations were performed. The test conditions and the evaluation and judgment results are shown in Tables 1 to 3.
  • Example 6 A lithium composite oxide was prepared in the same manner as in Example 1 except that the maximum firing temperature at 850 ° C. or higher in the firing step was 750 ° C., and various physical properties and battery evaluations were performed. The test conditions and the evaluation and judgment results are shown in Tables 1 to 3.
  • Example 7 A lithium composite oxide was prepared in the same manner as in Example 1 except that the maximum firing temperature at 850 ° C. or higher in the firing step was set to 800 ° C., and various physical properties and battery evaluations were performed. The test conditions and the evaluation and judgment results are shown in Tables 1 to 3.
  • Example 8 A lithium composite oxide was prepared in the same manner as in Example 1 except that the maximum firing temperature at 850 ° C. or higher in the firing step was set to 1000 ° C., and various physical properties and battery evaluations were performed. The test conditions and the evaluation and judgment results are shown in Tables 1 to 3.
  • Example 9 A lithium composite oxide was prepared in the same manner as in Example 1 except that the firing time at 850 ° C. or more in the firing step was 18 hours, and various physical properties and battery evaluations were performed. The test conditions and the evaluation and judgment results are shown in Tables 1 to 3.
  • Example 10 A lithium composite oxide was prepared in the same manner as in Example 1 except that the firing time at 850 ° C. or more in the firing step was set to 2 hours, and various physical properties and battery evaluations were performed. The test conditions and the evaluation and judgment results are shown in Tables 1 to 3.
  • Example 2 In the mixing step, a lithium composite oxide was prepared in the same manner as in Example 1, except that the molar ratio of nickel to manganese to cobalt: titanium was 90.0: 10.0 (Ti addition amount 10.0 at%). Were prepared, and various physical properties and battery evaluations were performed. The test conditions and the evaluation and judgment results are shown in Tables 1 to 3.
  • Example 3 A lithium composite oxide was prepared and various physical properties and battery evaluations were performed in the same manner as in Example 1 except that the firing atmosphere in the firing step was an oxygen-nitrogen mixed gas adjusted to an oxygen concentration of 30%. The test conditions and the evaluation and judgment results are shown in Tables 1 to 3.
  • the positive electrode active materials obtained in Examples 1 to 10 were evaluated as ⁇ or ⁇ in the comprehensive determination, and were excellent in durability and thermal stability.
  • Ti was in solid solution in the primary particles, and a lithium titanium compound was present. It is inferred that the thermal stability is improved by suppressing the release of oxygen during overcharge and the structural phase transition by the solid solution of Ti in the primary particles.
  • the lithium titanium compound present on the primary particle surface has high lithium ion conductivity and is chemically stable, the electrochemical characteristics are maintained without deteriorating the active material, and as a result, excellent. It is estimated that it contributed to durability.
  • the addition method of Ti may be either solid phase addition or coating, and in the case of the coat, the heat stability improving effect is high somewhat more than the solid phase addition. From the viewpoint of productivity etc., solid phase addition is dominant industrially.
  • the obtained secondary battery has a thermal stability evaluation of 1 and a thermal stability inferior to that of the example as compared with those in which Ti is added. ing.
  • Comparative Example 2 since the concentration of titanium in the primary particles was too high, the decrease in initial discharge capacity was remarkable, and the initial discharge capacity evaluation was 1.
  • Comparative Example 3 various firing conditions are not suitable for diffusion and solid solution into primary particles of titanium and formation of a lithium-titanium compound on the surface of secondary particles, so discharge capacity, capacity retention ratio, oxygen evolution semi-quantitative It was not possible to maintain all of the values well, and the overall judgment was x.
  • the positive electrode active material for lithium ion secondary batteries which concerns on one Embodiment of this invention, the manufacturing method of a positive electrode active material for lithium ion secondary batteries, and a lithium ion secondary battery are not only capacity
  • a positive electrode active material for a lithium ion secondary battery which improves not only the capacity and the electron conductivity but also the durability and the thermal stability at the time of overcharge, and which achieves both the durability and the thermal stability in high dimensions. It can be obtained by an industrial manufacturing method.
  • the lithium ion secondary battery is suitable as a power source for small portable electronic devices (such as notebook personal computers and mobile phone terminals) which are required to have high capacity and long life at all times.
  • the secondary battery according to one embodiment of the present invention is excellent in safety also in comparison with a battery using a conventional lithium cobalt-based oxide or lithium nickel-based oxide positive electrode active material, and further, Excellent in capacity and durability. Therefore, since miniaturization and long life are possible, it is suitable as a power source for electric vehicles which is restricted in mounting space.
  • the positive electrode active material according to one embodiment of the present invention and the secondary battery using the same are used not only as a power source for an electric vehicle purely driven by electric energy, but also in combination with a combustion engine such as a gasoline engine or a diesel engine. It can also be used as a so-called power supply for hybrid vehicles and stationary storage batteries.
  • the terms described together with the broader or synonymous different terms at least once can be replaced with the different terms anywhere in the specification or the drawings.
  • the positive electrode active material for lithium ion secondary batteries, the method for producing a positive electrode active material for lithium ion secondary batteries, and the configuration and operation of lithium ion secondary batteries are also limited to those described in the embodiments and examples of the present invention. It is not possible to make various modifications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

耐久性及び過充電時の熱安定性を向上させ、耐久性及び熱安定性を高い次元で両立させたリチウムイオン二次電池が得られる正極活物質を提供することを目的とする。 複数の一次粒子が凝集した二次粒子で構成されたリチウムニッケルマンガン複合酸化物からなるリチウムイオン二次電池用正極活物質であって、リチウムニッケルマンガン複合酸化物は、一般式(1):LiNi1-a-b-cMnTi(一般式(1)中、Mは、Co、W、Mo、V、Mg、Ca、Al、Cr、Zr及びTaから選択される少なくとも1種の元素であり、0.05≦a≦0.60、0≦b≦0.60、0.02≦c≦0.08、0.95≦d≦1.20である。)で表され、リチウムニッケルマンガン複合酸化物中のチタンの少なくとも一部は、一次粒子に固溶し、かつ、リチウムチタン化合物がリチウムイオン二次電池用正極活物質の表面に存在していることを特徴とする。

Description

リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池
 本発明は、リチウムニッケルマンガン複合酸化物からなるリチウムイオン二次電池用正極活物質とその製造方法、及びリチウムイオン二次電池に関する。本出願は、日本国において2017年9月28日に出願された日本特許出願番号特願2017-189043を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
 近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度や耐久性を有する小型で軽量な二次電池の開発が強く望まれている。また、電動工具やハイブリット自動車をはじめとする電気自動車用電池として、高出力の二次電池の開発が強く望まれている。
 このような要求を満たす二次電池として、リチウムイオン二次電池がある。特に、層状又はスピネル型のリチウム遷移金属複合酸化物を正極活物質に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。
 リチウムイオン二次電池に用いられる正極活物質としては、近年、熱安定性に優れ、かつ、高容量であるリチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)が注目されている。リチウムニッケルコバルトマンガン複合酸化物は、リチウムコバルト複合酸化物やリチウムニッケル複合酸化物などと同じく層状化合物であり、遷移金属サイトにおいてニッケルと、コバルトと、マンガンとを基本的に組成比1:1:1の割合で含んでいる。
 ところで、リチウムイオン二次電池として高い性能(高サイクル特性、高容量、高出力)を有する正極を得ることを目的として正極活物質にチタン、ジルコニウム等の金属元素を添加する技術が提案されている。
 例えば、特許文献1には、ニッケル含有水酸化物とリチウム化合物とチタン化合物とを混合してリチウム混合物を得る混合工程、およびリチウム混合物を焼成してリチウム遷移金属複合酸化物を得る焼成工程、を含む製造方法によって得られた、多結晶構造の粒子で構成されたリチウム遷移金属複合酸化物からなるリチウムイオン二次電池用正極活物質が提案されている。この正極活物質は、高い熱安定性と充放電容量および優れたサイクル特性の実現を可能とするとされている。
 また、特許文献2には、少なくとも、層状構造のリチウム遷移金属複合酸化物を有する非水電解質二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、一次粒子およびその凝集体である二次粒子の一方又は両方からなる粒子の形態で存在し、前記粒子の少なくとも表面に、モリブデン、バナジウム、タングステン、ホウ素およびフッ素からなる群から選ばれる少なくとも1種を有する化合物を有する非水電解質二次電池用正極活物質が提案されている。粒子の表面に上記化合物を有することにより、導電性が向上するとされている。
 また、特許文献3には、リチウムイオンの挿入・脱離が可能なリチウム遷移金属系化合物を主成分とし、主成分原料に、B及びBiから選ばれる少なくとも1種の元素を含有する化合物と、Mo、W、Ti、Ta及びReから選ばれる少なくとも1種の元素を含有する化合物をそれぞれ1種併用添加した後、焼成されてなるリチウム二次電池正極材料用リチウム遷移金属系化合物粉体が提案されている。添加元素を併用添加した後、焼成することにより、レートや出力特性が改善されるとともに、取り扱いや電極調製の容易なリチウム含有遷移金属系化合物粉体を得ることができるとしている。
 また、特許文献4には、一般式LiNi1-x-yCo (1.0≦a≦1.5、0≦x≦0.5、0≦y≦0.5、0.002≦z≦0.03、0≦w≦0.02、0≦x+y≦0.7、MはMn及びAlからなる群より選択される少なくとも一種、MはZr、Ti、Mg、Ta、Ti及びMoからなる群より選択される少なくとも一種)で表されるリチウム遷移金属複合酸化物と、少なくともホウ素元素と酸素元素を含むホウ素化合物とを含む、非水電解液二次電池用正極組成物が提案されている。ニッケル及びタングステンを必須とするリチウム遷移金属複合酸化物と、特定のホウ素化合物とを含む正極組成物を用いることにより、出力特性及びサイクル特性を向上させることができるとしている。
特開2015-122298号公報 特開2005-251716号公報 特開2011-108554号公報 特開2013-239434号公報
 しかしながら、上記の提案は、いずれも出力特性、エネルギー密度、耐久性に対して改善はみられるものの、熱安定性の改善については十分ではなく、これらの特性を向上可能な正極活物質の開発が望まれている。また、上記の提案では、プロセスが複雑であったり、スケールアップが困難なため、工場規模の生産が困難である場合が多い。さらに上記の電池材料は、可燃性の非水系電解質を用いるため、特に過充電時の高い熱安定性が求められる。
 そこで本発明は、これら事情を鑑みてなされたものであり、容量及び電子伝導性のみならず、耐久性及び過充電時の熱安定性を向上させ、耐久性及び熱安定性を高い次元で両立させたリチウムイオン二次電池が得られる正極活物質を提供することを目的とする。また、本発明は、このような正極活物質を、工業規模の生産において容易に製造することができる方法を提供することを目的とする。
 本発明の一態様に係るリチウムイオン二次電池用正極活物質は、複数の一次粒子が凝集した二次粒子で構成されたリチウムニッケルマンガン複合酸化物からなるリチウムイオン二次電池用正極活物質であって、前記リチウムニッケルマンガン複合酸化物は、一般式(1):LiNi1-a-b-cMnTi(前記一般式(1)中、Mは、Co、W、Mo、V、Mg、Ca、Al、Cr、Zr及びTaから選択される少なくとも1種の元素であり、0.05≦a≦0.60、0≦b≦0.60、0.02≦c≦0.08、0.95≦d≦1.20である。)で表され、前記リチウムニッケルマンガン複合酸化物中のチタンの少なくとも一部は、前記一次粒子に固溶し、かつ、リチウムチタン化合物が前記リチウムイオン二次電池用正極活物質の表面に存在していることを特徴とするリチウムイオン二次電池用正極活物質であることを特徴とする。
 このようにすれば、容量及び電子伝導性のみならず、耐久性及び過充電時の熱安定性を向上させ、耐久性及び熱安定性を高い次元で両立させたリチウムイオン二次電池が得られる正極活物質を提供することができる。
 このとき、本発明の一態様では、前記一次粒子内の平均チタン濃度は、リチウム以外の成分金属元素の0.5at%以上、5at%以下としてもよい。
 このようにすれば、耐久性及び過充電時の熱安定性を向上させ、リチウムイオン二次電池の耐久性及び熱安定性をさらに高い次元で両立することができる。
 このとき、本発明の一態様では、前記リチウムチタン化合物は、LiTiO、LiTiO、LiTi、LiTiの何れか1種以上としてもよい。
 このようにすれば、リチウムチタン化合物の組成が最適となり、容量及び電子伝導性のみならず、二次電池の耐久性及び過充電時の熱安定性を向上させ、耐久性及び熱安定性をさらに高い次元で両立させたリチウムイオン二次電池が得られる正極活物質を提供することができる。
 このとき、本発明の一態様では、前記リチウムチタン化合物は、アモルファス相を含むとしてもよい。
 このようにすれば、アモルファス相は結晶相よりもリチウムイオン伝導率に優れるため、さらにリチウムイオン二次電池の電池特性を向上させることができる。
 このとき、本発明の一態様では、前記二次粒子の体積平均粒径MVは、5μm以上20μm以下としてもよい。
 このようにすれば、リチウムイオン二次電池の高い出力特性および電池容量と、正極への高い充填性とを両立させることができる。
 このとき、本発明の一態様では、XRDの測定結果を用いたシェラー法によって003回折ピークの半価幅より求まる前記リチウムニッケルマンガン複合酸化物の結晶子径は、500Å以上2000Å以下としてもよい。
 このようにすれば、電池容量を下げることなく、二次電池の高い耐久性を得ることができる。
 本発明の一態様では、リチウムニッケルマンガン複合酸化物からなるリチウムイオン二次電池用正極活物質の製造方法であって、少なくとも、ニッケルマンガン複合水酸化物粒子と、チタン化合物と、リチウム化合物とを含む混合物を添加する混合工程と、前記混合物を焼成して前記リチウムニッケルマンガン複合酸化物を得る焼成工程とを有し、前記混合工程で添加される前記ニッケルマンガン複合水酸化物粒子は、一般式(2):Ni1-a-bMn(OH)2+α(前記式(2)中、Mは、Co、W、Mo、V、Mg、Ca、Al、Cr、Zr及びTaから選択される少なくとも1種の元素であり、0.05≦a≦0.60、0≦b≦0.60、0≦α≦0.4)で表され、前記焼成工程では、酸素濃度40体積%以上100体積%以下の酸化雰囲気中、750℃以上1000℃以下で行われ、前記焼成工程で得られた前記リチウムニッケルマンガン複合酸化物は、一般式(3):LiNi1-a-b-cMnTi(前記式(3)中、Mは、Co、W、Mo、V、Mg、Ca、Al、Cr、Zr及びTaから選択される少なくとも1種の元素であり、0.05≦a≦0.60、0≦b≦0.60、0.02≦c≦0.08、0.95≦d≦1.20である。)で表され、複数の一次粒子が凝集した二次粒子で構成され、チタンの少なくとも一部が、前記一次粒子に固溶し、かつリチウムチタン化合物が前記リチウムイオン二次電池用正極活物質の表面に存在していることを特徴とする。
 このようにすれば、容量及び電子伝導性のみならず、耐久性及び過充電時の熱安定性を向上させ、耐久性及び熱安定性を高い次元で両立させたリチウムイオン二次電池が得られる正極活物質を提供することができる。
 このとき、本発明の一態様では、前記焼成工程は、750℃以上850℃未満の温度で1時間以上4時間以下の焼成を行った後、850℃以上1000℃以下の温度で2時間以上20時間以下の焼成を行うこととしてもよい。
 このようにすれば、複合水酸化物粒子にリチウム化合物中のリチウムが拡散し、多結晶構造の粒子からなるリチウムニッケルマンガン複合酸化物が形成されるので、リチウムイオン二次電池の電子伝導性と過充電時の熱安定性とをさらに高い次元で両立させることができる。
 このとき、本発明の一態様では、前記混合工程は、添加される前記チタン化合物の体積平均粒径MVが、0.01μm以上10μm以下としてもよい。
 このようにすれば、チタン化合物を狙い通りの組成で添加でき、また焼成後のリチウムニッケルマンガン複合酸化物中のTiが均一に分布できるので、よりリチウムイオン二次電池の熱安定性を確保することができる。
 このとき、本発明の一態様では、前記混合工程は、添加される前記チタン化合物がチタン酸化合物又は酸化チタンとしてもよい。
 このようにすれば、不純物の混入を避けることができるので、リチウムイオン二次電池の過充電時の熱安定性をさらに向上させることができる。
 このとき、本発明の一態様では、前記混合工程前に、さらに前記ニッケルマンガン複合水酸化物粒子を熱処理する焙焼工程を有し、前記焙焼工程は、105℃以上700℃以下の温度で行うこととしてもよい。
 このようにすれば、複合水酸化物粒子中の残留水分が除去し酸化物への変換が進むため、正極活物質のLi/Meのばらつきを抑制できるので、リチウムイオン二次電池の過充電時の熱安定性をさらに向上させることができる。
 本発明の一態様では、前記リチウムイオン二次電池用正極活物質を正極に用いたことを特徴とする。
 このようにすれば、容量及び電子伝導性のみならず、耐久性及び過充電時の熱安定性を向上させ、耐久性及び熱安定性を高い次元で両立させたリチウムイオン二次電池が得られる正極を提供することができる。
 本発明によれば、容量及び電子伝導性のみならず、耐久性及び過充電時の熱安定性を向上させ、耐久性及び熱安定性を高い次元で両立させたリチウムイオン二次電池が得られる正極活物質を提供することができる。また、本発明は、このような正極活物質を、工業規模の生産において容易に製造することが可能であり、工業的価値は極めて大きいものといえる。
図1は、本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の製造方法の概略を示す工程図である。 図2は、電池特性の評価に使用したコイン型二次電池の概略断面図である。
 本発明者は、上記の課題を解決すべく鋭意検討を行った結果、特定量のマンガンを含むリチウムニッケルマンガン複合酸化物に、特定量のチタンを添加することにより、電池特性を維持しつつ、電子伝導性と過充電時の酸素放出の抑制による高い熱安定性との両立が可能であるとの知見を得て、本発明を完成するに至った。以下、本発明の好適な実施の形態について説明する。
 なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本発明の要旨を逸脱しない範囲で変更が可能である。また、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。本発明の一実施形態に係るリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池について、下記の順に説明する。
 1.リチウムイオン二次電池用正極活物質
 2.リチウムイオン二次電池用正極活物質の製造方法
  2-1.晶析工程
  2-2.焙焼工程
  2-3.混合工程
  2-4.焼成工程
 3.リチウムイオン二次電池
  3-1.正極
  3-2.負極
  3-3.セパレータ
  3-4.非水系電解液
  3-5.二次電池の形状、構成
  3-6.二次電池の特性
<1.リチウムイオン二次電池用正極活物質>
 本発明の一実施形態に係るリチウムイオン二次電池用正極活物質(以下、「正極活物質」という。)は、多結晶構造の粒子で構成され、複数の一次粒子が凝集した二次粒子で構成されたリチウムニッケルマンガン複合酸化物(以下、「リチウムニッケルマンガン複合酸化物」という。)からなる。上記リチウムニッケルマンガン複合酸化物は、一般式(1):LiNi1-a-b-cMnTi(上記一般式(1)中、Mは、Co、W、Mo、V、Mg、Ca、Al、Cr、Zr及びTaから選択される少なくとも1種の元素であり、0.05≦a≦0.60、0≦b≦0.60、0.02≦c≦0.08、0.95≦d≦1.20である。)で表される。
 そして、上記リチウムニッケルマンガン複合酸化物中のチタンの少なくとも一部は、上記一次粒子に固溶し、かつ、リチウムチタン化合物が上記リチウムイオン二次電池用正極活物質の表面に存在していることを特徴とする。
 リチウムイオン二次電池は電池材料として可燃性の非水系電解質を用いるため、高い熱安全性が求められている。例えば、リチウムイオン二次電池では、充電状態の際に熱が与えられることで、正極活物質結晶中から酸素が放出され、電解液と反応することで熱暴走を起こすことが知られている。熱安定性を高める方法としては、正極活物質中に異種元素を添加し結晶構造を安定化させる方法や、正極活物質表面をSiO、Al、ZrOなどの酸化物で被覆する方法が提案されている。しかしながら、これらの方法は、初期の充放電容量低下が大きく、電池容量と熱安定性との両立は困難である。また、プロセスが複雑であったり、スケールアップが困難なため、工業規模の生産が困難である場合が多い。
 そこで本発明によれば、特定量のマンガンを含むリチウムニッケルマンガン複合酸化物に、特定量のチタンを添加することにより、電池特性を維持しつつ、電子伝導性と過充電時の酸素放出の抑制による高い熱安定性との両立が可能であり、工業規模の生産において容易に製造することが可能となる。以下詳細に説明する。
 本発明の一実施形態に係る正極活物質は、チタン(Ti)を特定量含み、チタンが一次粒子中および正極活物質表面にリチウムチタン化合物の形態で存在している。この正極活物質を用いたリチウムイオン二次電池(以下、「二次電池」という。)は、高容量を有し、かつ耐久性や電子伝導性が高い。また、上記の二次電池は、チタンを含まない正極活物質を用いた場合と比較して、特に正極活物質の過充電時の熱安定性が高い。
 上記一般式(1)において、Mnの含有量を示すaの範囲は、0.05≦a≦0.60、好ましくは0.10≦a≦0.55、より好ましくは0.10<a≦0.50、さらに好ましくは0.12≦a≦0.45である。aの値が上記範囲である場合、優れた耐久性、高い容量及び電子伝導性が得られ、さらに、高い熱安定性を有することができる。また、前述したように、リチウムニッケルマンガン複合酸化物中に、MnとTiとを上記の割合で含むことにより、二次電池の耐久性及び熱安定性を向上させることができる。一方、aの値が0.05未満である場合、熱安定性の改善効果が得られない。また、aの値が0.60を超える場合、二次電池の充放電容量が低下する。
 上記一般式(1)において、Tiの含有量を示すcの範囲は、0.02≦c≦0.08である。cの範囲が上記範囲である場合、極めて良好な耐久性が得られるとともに、二次電池の正極に用いた際に過充電時の酸素放出を抑制し、高い熱安定性を得ることができる。一方、cの値が0.02未満である場合、チタンは一次粒子に固溶はするが、正極活物質表面にリチウムチタン化合物がほとんど形成されず、耐久性改善効果がみられない。また、cの値が0.08を超える場合、抵抗層として機能するリチウムチタン化合物が多量に生成するため、電池容量が大幅に低下する。さらに、より高い耐久性と熱安定性を得るという観点から、cの範囲は、0.02≦c≦0.04であることがより好ましい。なお、リチウムニッケルマンガン複合酸化物の組成は、誘導結合プラズマ(ICP)発光分析法による定量分析により測定することができる。リチウムチタン化合物の存在は、X線回折測定等により確認することができる。
 上記一般式(1)において、添加元素を示すMは、Co、W、Mo、V、Mg、Ca、Al、Cr、Zr及びTaの中から選択される少なくとも1種の元素(以下、「添加元素M」という。)であり、bが0を超える場合、熱安定性や保存特性改善及び電池特性等を改善することができる。bの範囲は、0≦b≦0.60である。例えば、MがCoを含む場合、電池容量及び出力特性により優れる。MがCoの場合、好ましくは0.05≦b≦0.5、より好ましくは0.1≦b≦0.4である。
 本発明の一実施形態に係る正極活物質は、チタンの少なくとも一部が、一次粒子に固溶し、かつ正極活物質表面にリチウムチタン化合物が存在している。熱安定性改善効果は、一次粒子内へのチタンの固溶によるものであり、電子伝導性改善効果は、一次粒子表面および二次粒子表面に存在するリチウムチタン化合物によるものである。ここでいうチタンの固溶とは、例えば、ICP発光分析法により、チタンが検出され、かつ、走査型透過電子顕微鏡(S-TEM)におけるEDXを用いた一次粒子断面の面分析により、チタンが一次粒子内に検出される状態をいい、チタンが一次粒子内の全面にわたって検出されることが好ましい。
 さらに、一次粒子内でのチタン濃度が局所的に高い部分の最大チタン濃度が、当該一次粒子内の平均チタン濃度に対して、3倍以下であることが好ましい。一次粒子内における最大チタン濃度が上記範囲を超えると、一次粒子内のチタン濃度の変動が大きすぎ、チタン濃度が局所的に高い部分と低い部分が存在するようになる。このため、チタン濃度が局所的に高い部分では、反応抵抗の高い部分が生じ、また、チタン濃度が局所的に低い部分では、チタン固溶による熱安定性効果が十分に得られないことがある。二次電池の電池特性と熱安定性を両立させるという観点から、一次粒子内での最大チタン濃度は当該一次粒子内の平均チタン濃度の2倍以下であることがより好ましい。また、さらにより高い効果を得るためには、一次粒子内で極度にチタン濃度の低い部分が存在しないことが好ましく、一次粒子内での最小チタン濃度が、当該一次粒子内の平均チタン濃度に対して、0.5倍以上であることが好ましい。一方で、正極活物質表面にリチウムチタン化合物が存在しているとき、一次粒子の粒界や表面のチタン濃度は一次粒子内のチタン濃度に対して3倍以上となることがある。
 上記一次粒子内の平均チタン濃度は、リチウム以外の成分金属元素(Ni、Mn、添加元素M、Ti)の0.5at%(原子%)以上5at%(原子%)以下が好ましい。このようにすれば、容量及び電子伝導性のみならず、さらに二次電池の耐久性及び過充電時の熱安定性を向上させ、耐久性及び熱安定性を高い次元で両立することができる。
 以上のように、本発明の一実施形態に係る正極活物質を用いた二次電池は、Tiが一次粒子内に固溶することで、酸素と遷移金属との結合が強化され熱安定性が改善する。さらに、固溶したTiは、過充電に伴うリチウムニッケルマンガン複合酸化物結晶の構造相転移を抑制する効果があり、このことも二次電池の熱安定性改善に寄与している。
 さらに、本発明の一実施形態に係る正極活物質は、一次粒子の表面にリチウムチタン化合物が存在している。リチウムチタン化合物は、一次粒子表面の少なくとも一部に存在してもよく、一次粒子表面全体を被覆してもよい。さらには、リチウムチタン化合物の一部が、正極活物質とは別に単独で存在していてもよい。リチウムチタン化合物は、一次粒子表面の少なくとも一部に存在していれば、得られる二次電池の電子伝導性を高めることができる。
 リチウムチタン化合物は、高いリチウムイオン伝導率を有するため、一次粒子表面に形成されたリチウムチタン化合物層は、電解液と一次粒子との間にリチウムの伝導パスを形成するため正極活物質の表面抵抗を低下させることができる。また、リチウムチタン化合物は化学的に非常に高い安定性を有する。したがって、リチウムイオンをスムーズに通しながら、充放電時に活性が高くなる活物質表面と電解液との直接接触を抑制するため、正極活物質の劣化を抑制し、結果として二次電池の極めて高い耐久性が得られると考えられる。リチウムチタン化合物としては、LiTiO、LiTi9、LiTiO、LiTi、の何れか1種以上であることが好ましく、さらには電子伝導性改善効果の高いLiTiOであることがより好ましい。
 また、リチウムチタン化合物の一部に、アモルファス相を含んでいてもよい。アモルファス相は結晶相よりもリチウムイオン伝導率に優れるため、さらに二次電池の電池特性を向上させることができる。
 リチウムチタン化合物が存在するのは、電解液との接触が可能な一次粒子表面であることが特に好ましい。電解液との接触が可能な一次粒子表面とは、二次粒子の外面で露出している一次粒子の表面を含むだけでなく、二次粒子内部への電解液の浸透が可能な二次粒子の表面近傍の一次粒子表面、及び、二次粒子内部の空隙に露出している一次粒子の表面などを含む。さらに、電解液との接触が可能な一次粒子表面は、一次粒子間の粒界であっても、一次粒子の結合が不完全で電解液が浸透可能な状態にある粒界に露出した一次粒子表面も含まれる。
 上記のような電解液との接触が可能な一次粒子表面に形成されたリチウムチタン化合物層は、二次電池の正極において、高リチウム伝導率を有する被覆層として機能し、リチウムニッケルマンガン複合酸化物を正極活物質として用いた時の二次電池の反応抵抗の上昇を抑制し、一方で、リチウムニッケルマンガン複合酸化物と電解液の直接的な接触を抑制することができ、より一層高い耐久性を得ることが可能となる。また、リチウムチタン化合物は、上記範囲内でチタンの含有量を増やすこと、合成温度を高くすることにより形成させることができる。上記範囲内でチタン含有量を増やした場合、後述する結晶子径を小さくするとともに、一次粒子表面にリチウムチタン化合物を形成させて、高い耐久性を得ることができる。
 リチウムチタン化合物が微量に形成されている場合、その存在形態を確認することは困難であるが、チタンと化合物を形成する元素としては、上記一次粒子表面に存在する余剰リチウムが考えられる。ここでいう余剰リチウムとは、リチウムニッケルマンガン複合酸化物に含有される遷移金属とリチウムニッケルマンガン複合酸化物を形成しないリチウム分であり、定量的にはリチウムと全ての遷移金属の比で1.0を超える部分であると考えられる。リチウムニッケルマンガン複合酸化物を形成しなかった余剰リチウムは、同じくリチウムニッケルマンガン複合酸化物と反応しなかったチタン化合物と、リチウムチタン化合物を形成しているものと推定される。
 また、リチウムチタン化合物は、結晶とアモルファスの共存状態、あるいはアモルファスの状態で存在していてもよい。リチウムチタン化合物が結晶状態で存在する場合、存在量の増加とともにX線回折測定で存在を確認することができる。いずれの存在形態であっても、リチウムチタン化合物は、リチウムニッケルマンガン複合酸化物と電解液と間のリチウムの移動を促進しているものと推察され、少なくとも一次粒子表面の一部に存在することで、活物質の劣化を抑制し、二次電池の高い耐久性が得られる。
 上記二次粒子の体積平均粒径MVは、5μm以上20μm以下であることが好ましく、4μm以上15μm以下であることがより好ましい。二次粒子の体積平均粒径MVが上記範囲である場合、正極活物質を二次電池の正極に用いた際、高い出力特性および電池容量と、正極への高い充填性とを両立させることができる。二次粒子の体積平均粒径MVが5μm未満になると、正極への高い充填性が得られないことがあり、体積平均粒径MVが20μmを超えると、高い出力特性や電池容量が得られないことがある。なお、二次粒子の体積平均粒径MVは、例えば、レーザー光回折散乱式粒度分布計により測定される体積積算値から求めることができる。
 リチウムニッケルマンガン複合酸化物の結晶子径は、500Å以上2000Å以下であることが好ましく、より好ましくは700Å以上1300Å以下である。上記結晶子径がこの範囲であると、電池容量を下げることなく、二次電池の高い耐久性を得ることができる。結晶子径が500Å未満になると、正極活物質中の結晶粒界が多くなりすぎて、正極活物質内部の抵抗が増加するため、十分な充放電容量が得られないことがある。一方、結晶子径が2000Åを越えると、結晶成長が進みすぎて、層状化合物であるリチウムニッケルマンガン複合酸化物のリチウムサイトにニッケルが混入するカチオンミキシングが起こり、充放電容量が減少することがある。また、結晶子径が大きくなりすぎると比表面積が低下し、反応抵抗の上昇につながり、さらには二次電池の耐久性が低くなることがある。上記の結晶子径は、後述する晶析条件、Ti添加量、焼成温度、焼成時間等を調整することにより、上記範囲とすることができる。
 なお、結晶子径は、X線回折(XRD)における回折ピークからScherrer式(τ=Kλ/βcosθ、ここで、τ:結晶子径、K:形状因子0.9、λ:X線波長、β:回折ピークの半価幅、θブラッグ角)により求めることが出来るが、上記の結晶子径は(003)面の回折ピークから求めた結晶子径を用いている。
 本発明の一実施形態に係るリチウムイオン二次電池用正極活物質によれば、容量及び電子伝導性のみならず、耐久性及び過充電時の熱安定性を向上させ、耐久性及び熱安定性を高い次元で両立させたリチウムイオン二次電池が得られる正極活物質を提供することができる。
 <2.リチウムイオン二次電池用正極活物質の製造方法>
 次に、本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の製造方法について図面を使用しながら説明する。図1は、本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の製造方法の概略を示す工程図である。本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の製造方法は、リチウムニッケルマンガン複合酸化物からなり、図1に示す晶析工程S1、焙焼工程S2、混合工程S3、焼成工程S4の、少なくとも、混合工程S3と焼成工程S4とを有する。以下、工程ごとに詳細に説明する。なお、以下の説明は、製造方法の一例であって、製造方法を限定するものではない。
 <2-1.晶析工程S1>
 本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の製造方法の正極活物質の基本的な考え方を以下に述べる。基本となる正極活物質組成としてはマンガンを含むことにより熱的安定性を向上させるとともに、併せてチタン含むことにより正極活物質の電子導電性を低下させ、過電流が流れにくくすることで二次電池の安全性向上の効果を発現させる。
 ニッケルマンガン複合水酸化物を得るための晶析工程S1は、上記含有量のマンガンを含む複合水酸化物粒子が得られるものであれば公知の方法により行うことができ、例えば、反応槽内において、少なくともニッケルとマンガンとを含む混合水溶液を、一定速度にて攪拌しながら、pHを一定値に制御しつつ中和剤を加えて中和することにより複合水酸化物粒子を共沈殿により生成させることができる。
 ニッケルとマンガンを含む混合水溶液は、例えば、ニッケル及びマンガンの硫酸塩溶液、硝酸塩溶液、塩化物溶液を用いることができる。また、後述するように、混合水溶液は、上述した添加元素Mを含んでもよい。混合水溶液に含まれる金属元素の組成は、得られる複合水酸化物粒子に含まれる金属元素の組成とほぼ一致する。したがって、目的とする複合水酸化物粒子の金属元素の組成と同じになるように混合水溶液の金属元素の組成を調製することができる。中和剤は、アルカリ水溶液を用いることができ、例えば、水酸化ナトリウム、水酸化カリウムなどを用いることができる。
 また、中和剤と併せて、錯化剤を混合水溶液に添加することが好ましい。錯化剤は、反応槽内の水溶液(以下、「反応水溶液」という。)中でニッケルイオンやその他遷移金属イオンと結合して錯体を形成可能なものであれば特に限定されず、公知のものを用いることができ、例えばアンモニウムイオン供給体を用いることができる。アンモニウムイオン供給体としては、例えばアンモニア水や、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウムなどのアンモニウム塩溶液を用いることができる。錯化剤を添加することにより、反応水溶液中に遷移金属イオンの溶解度を増大させ、球状性の良い遷移金属水酸化物を得ることができる。
 晶析工程S1において、アンモニウムイオン供給体(錯化剤)を使用する場合、反応水溶液の温度は、反応水溶液中のNiの溶解度が上昇するため、30℃以上60℃以下であることが好ましく、かつ、反応水溶液のpHが10以上13以下(25℃基準)であることが好ましい。
 また、反応水溶液中のアンモニア濃度は、3g/L以上25g/L以下の範囲内で一定値に保持することが好ましい。アンモニア濃度が3g/L未満である場合、金属イオンの溶解度を一定に保持することができないため、形状及び粒径が整った複合水酸化物の一次粒子が形成されないことがある。また、ゲル状の核が生成しやすいため、得られる複合水酸化物粒子の粒度分布も広がりやすい。一方、アンモニア濃度が25g/Lを越えると、金属イオンの溶解度が大きくなりすぎ、反応水溶液中に残存する金属イオン量が増えて、得られる複合水酸化物粒子の組成のずれなどが起きやすくなる。なお、アンモニア濃度が変動すると、金属イオンの溶解度が変動し、均一な水酸化物粒子が形成されないため、一定値に保持することが好ましい。例えば、アンモニア濃度は、上限と下限の幅を5g/L程度として所望の濃度に保持することが好ましい。
 なお、晶析工程S1は、バッチ式晶析法を用いてもよく、連続式晶析法を用いてもよい。例えば、バッチ式晶析法の場合、反応槽内の反応水溶液が定常状態になった後に沈殿物を採取し、濾過、水洗して複合水酸化物粒子を得ることができる。また、連続式晶析法の場合、混合原料溶液とアルカリ水溶液、場合によってはアンモニウムイオン供給体を含む水溶液を連続的に供給し、反応槽からオーバーフローする沈殿物を採取し、濾過、水洗して複合水酸化物粒子を得ることができる。
 また、複合水酸化物粒子は、Co、W、Mo、V、Mg、Ca、Al、Cr、Zr及びTaから選択される少なくとも1種の元素(以下、「添加元素M」という。)を含んでもよい。複合水酸化物粒子中に、添加元素Mを加える方法は特に限定されず、公知の方法を用いることができ、例えば、生産性を高めるという観点から、ニッケルとマンガンと添加元素Mを含む混合原料溶液を用いることで添加元素Mを含む複合水酸化物粒子を得ることが出来るし、また添加元素Mを含む溶液をニッケルとマンガンの原料溶液とは別に添加し、添加元素Mを含む複合水酸化物粒子を共沈させる方法を選択することもできる。
 添加元素Mを含む溶液としては、硫酸塩、塩化物、酸化物、硫化物、オキソ酸塩、ペルオキソ酸塩、シュウ酸塩水酸化物などの水溶液を用いることができる。
 また、晶析条件を最適化して組成比の制御を容易にするという観点から、晶析により複合水酸化粒子を得た後、さらに、得られた複合水酸化物粒子に添加元素Mで被覆しても良い。添加元素Mの被覆方法は、特に限定されず、公知の方法を用いることができる。
 以下に、添加元素Mの被覆方法の一例について説明する。まず、晶析により得られた複合水酸化物粒子を純水に分散させ、スラリーとする。次いで、このスラリーに目的とする被覆量見合いの添加元素Mを含有する溶液を混合し、攪拌しながら所定のpHになるように調整しながら酸を滴下する。酸としては、例えば、硫酸、塩酸、硝酸などが用いられる。次いで、スラリーを所定の時間混合した後、スラリーのろ過及び乾燥を行い、添加元素Mが被覆された複合水酸化物粒子を得ることができる。なお、他の被覆方法としては、Mを含む化合物を含有する溶液を複合水酸化物粒子に噴霧した後乾燥させるスプレードライ法、Mを含む化合物を含有する溶液を複合水酸化物粒子に含浸させる含浸方法などが挙げられる。
 なお、添加元素Mを複合水酸化物粒子に配合する方法は、これらの方法を複数組み合わせても良く、例えば、1)ニッケル及びマンガンを含む混合水溶液(ただし、添加元素Mを除く)にアルカリ水溶液を加えて晶析させたニッケル含有水酸化物に、添加元素Mを被覆してもよく、2)ニッケル、マンガン及び添加元素Mの一部を含む混合水溶液を作製し、ニッケルマンガン複合水酸化物粒子(添加元素Mを含む)を共沈させ、さらに共沈物に添加元素Mを被覆してMの含有量を調整してもよい。
 <2-2.焙焼工程S2>
 本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の製造方法は、さらに焙焼工程S2を含むことが好ましい。焙焼工程S2は、Li/Meのばらつきをより低減させるという観点から、上記の晶析工程S1で得られた複合水酸化物粒子を、酸化させ、複合酸化物粒子にする。熱処理により複合水酸化物を複合酸化物にする工程は、焙焼工程又は酸化焙焼工程と言われることが多いが、ここでは焙焼工程S2と称する。
 焙焼工程S2では、正極活物質のLi/Meにばらつきが生じない程度に水分が除去できればよいので、必ずしも全ての複合水酸化物粒子中の水酸化物(複合水酸化物)を複合酸化物に転換する必要はない。
 焙焼工程S2の熱処理は、複合水酸化物粒子中の残留水分が除去される温度まで加熱すればよく、例えば、105℃以上700℃以下とすることが好ましい。複合水酸化物粒子を105℃以上で加熱した場合、残留水分の少なくとも一部を除去することができる。なお、熱処理の温度が105℃未満の場合、残留水分を除去するために長時間を要するため工業的に適当でない。一方、熱処理の温度が700℃を超える場合、複合酸化物粒子が焼結して凝集することがある。よって、複合水酸化物粒子の大部分を複合酸化物粒子まで転換し、かつ焼結を防ぐためには、熱処理の温度は350℃以上700℃以下とすることがより好ましい。
 熱処理を行う雰囲気は、特に限定されず、例えば、容易に操作が行えるという観点から、空気気流中において行うことが可能である。また、熱処理の時間は、特に限定されないが、熱処理の時間が1時間未満である場合、複合水酸化物粒子中の残留水分の除去が十分に行われない場合があり、長時間の熱処理では上記のような焼結が起こる可能性が高くなるため、また熱処理の時間は好ましくは5時間以上15時間以下である。また、熱処理に用いられる設備は、特に限定されず、複合水酸化物粒子を空気気流中で加熱できるものであればよく、例えば、送風乾燥器、ガス発生がない電気炉などが好適に使用できる。
 <2-3.混合工程S3>
 次に、混合工程S3について説明する。混合工程S3では、上記の晶析工程S1又は焙焼工程S2で得られたニッケルマンガン複合水酸化物粒子(以下、「複合水酸化物粒子」という。)と、チタン化合物と、リチウム化合物とを含む混合物を添加する。混合物は例えば、複合水酸化物粒子に、チタン化合物を、リチウム化合物とともに、粉末(固相)で添加し、混合して得ることができる。
 混合工程S3で添加される複合水酸化物粒子は、一般式(2):Ni1-a-bMn(OH)2+α(上記式(2)中、Mは、Co、W、Mo、V、Mg、Ca、Al、Cr、Zr及びTaから選択される少なくとも1種の元素であり、0.05≦a≦0.60、0≦b≦0.60、0≦α≦0.4)で表される。複合水酸化粒子中の金属(Ni、Mn、M)の含有量(組成)は、リチウムニッケルマンガン複合酸化物中でもほぼ維持されるため、各金属(Ni、Mn、M)の含有量は、前述のリチウムニッケルマンガン複合酸化物中の含有量と同様の範囲であることが好ましい。
 複合水酸化物粒子は、少なくともマンガンを上記範囲で含むニッケル複合水酸化物粒子を用いる。これにより、得られる正極活物質の複数の一次粒子内で、マンガンを均一に分布させることができる。複数の一次粒子内にマンガンとチタンとが含有(固溶)された正極活物質は、高い熱安定性を有する。
 また、一次粒子内にマンガンが含有されることにより、リチウムチタン混合物を比較的高い温度で焼成することが可能となる。高い温度で焼成することにより、チタン化合物中のチタンを、一次粒子に、より均一に固溶させることができる。用いる複合水酸化物粒子の製造方法は特に限定されないが、上記のような晶析工程S1により得られた複合水酸化物粒子を用いることが好ましい。なぜならば、上記晶析工程S1により得られる複合水酸化物粒子は、粒子内にニッケルとマンガンとが均一に含まれたものである。一方、ニッケル水酸化物粒子とマンガン化合物とを混合した混合物や、マンガン化合物で被覆されたニッケル水酸化物粒子などの場合、得られる正極活物質中のマンガンの分布が不均一にとなって、マンガンを含有させることによって得られる効果が十分ではないことがある。
 添加されるチタン化合物としては、チタンを含む公知の化合物を用いることができ、例えば、チタン酸塩、酸化チタン、硝酸チタン、五塩化チタン、硝酸チタンなどを用いることができる。これらの中でも、入手のしやすさや、リチウムニッケルマンガン複合酸化物中への不純物の混入を避けるという観点から、チタン酸化合物又は酸化チタンが好ましい。なお、リチウムニッケルマンガン複合酸化物中に不純物が混入した場合、得られる二次電池の熱安定性や電池容量、サイクル特性の低下を招くことがある。
 チタンを固相粒子で添加する場合、チタン化合物の粒径により、後述する焼成工程S4における反応性が変化するため、用いるチタン化合物の粒径が重要な要素の一つとなる。添加されるチタン化合物の粒径の一つとして体積平均粒径MV(以下平均粒径)をとった場合、チタン化合物の体積平均粒径MVは、好ましくは0.01μm以上10μm以下であり、より好ましくは0.05μm以上3.0μm以下であり、さらに好ましくは0.08μm以上1.0μm以下である。体積平均粒径MVが0.01μmより小さい場合、粉末が飛散しやすく取り扱いが非常に困難になるという問題や、混合工程S3及び後述する焼成工程S4において、チタン化合物が飛散して喪失するため、狙い通りの組成で添加できないという問題が生じることがある。一方で、体積平均粒径MVが10μmより大きい場合、焼成後のリチウムニッケルマンガン複合酸化物中にTiの分布が不均一になり、十分な熱安定性を確保できないことがある。なお、体積平均粒径MVは、例えばレーザー光回折散乱式粒度分布計により測定される体積積算値から求めることができる。
 チタン化合物は、予め、ボールミル、遊星ボールミル、ジェットミル・ナノジェットミル、ビーズミル、ピンミルなど各種粉砕機を用いて、上記範囲の粒径となるように粉砕してもよい。また、チタン化合物は、必要に応じて、乾式分級機や篩がけにより分級してもよい。
 リチウム化合物は、特に限定されず、リチウムを含む公知の化合物を用いることができ、例えば、炭酸リチウム、水酸化リチウム、硝酸リチリウム、又は、これらの混合物などを用いることができる。これらの中でも、残留不純物の影響が少なく、焼成温度で溶解し高い反応性を持つという観点から、炭酸リチウム、水酸化リチウム、又は、これらの混合物が好ましい。
 複合水酸化物粒子とリチウム化合物とチタン化合物との混合方法は、特に限定されず、複合水酸化物粒子等の形骸が破壊されない程度で、複合水酸化物粒子とリチウム化合物とチタン化合物とが十分に混合されればよい。混合方法としては、例えば、一般的な混合機を使用して混合することができ、例えばシェーカーミキサーやレーディゲミキサー、ジュリアミキサー、Vブレンダーなどを用いて混合することができる。なお、リチウムチタン混合物は、後述する焼成工程の前に十分均一になるまで混合しておくことが好ましい。混合が十分でない場合、正極活物質の個々の粒子間でLiの物質量とLi以外の金属元素Meの物質量との比Li/Meがばらつき、十分な電池特性が得られない等の問題が生じることがある。
 リチウム化合物は、リチウムチタン混合物中のLi/Meが、0.95以上1.20以下となるように混合される。つまり、混合物におけるLi/Meが、得られる正極活物質におけるLi/Meと同じになるように混合される。これは、焼成工程前後で、Li/Me及び各金属元素のモル比は変化しないので、混合工程S3における混合物のLi/Meが、ほぼ得られる正極活物質のLi/Meとなるからである。また、上記一次粒子内の平均チタン濃度は、混合物中のリチウム以外の金属元素(Ni、Mn、添加元素M、Ti)の物質量の合計に対して、0.5at%以上5at%以下となるように混合されることが好ましく、さらに好ましくは0.03at%以上3at%以下である。
 <2-4.焼成工程S4>
 焼成工程S4では、混合工程S3で得られた上記混合物を焼成して上記リチウムニッケルマンガン複合酸化物を得る。焼成工程S4は、酸素濃度40体積%以上100体積%以下の酸化雰囲気中、750℃以上1000℃以下で行われる。
 焼成時の雰囲気は、酸化性雰囲気とし、焼成は、大気ないしは酸素気流中で行うことが好ましい。これは、酸素濃度が40容量%未満であると、十分に酸化できず、リチウムニッケルマンガン複合酸化物の結晶性が十分でない状態になる可能性があるからである。とくに電池特性を考慮すると、酸素気流中で行うことが最も好ましい。また、焼成に用いられる炉は、特に限定されず、大気又は酸素気流中でリチウムチタン混合物を焼成できるものであればよいが、ガス発生がない電気炉を用いることが好ましく、バッチ式又は連続式の炉のいずれも用いることができる。
 上記の酸化性雰囲気及び温度条件で熱処理すると、複合水酸化物粒子、又は、後述するチタン被覆複合水酸化物粒子にリチウム化合物中のリチウムが拡散し固相反応を起こして、多結晶構造の粒子からなるリチウムニッケルマンガン複合酸化物が形成される。リチウム化合物は、焼成工程S4内で溶融し、複合水酸化物粒子内に浸透してリチウムニッケルマンガン複合酸化物を形成する。この際、チタン化合物は溶融したリチウム化合物とともに二次粒子内部まで浸透し、さらに一次粒子粒界まで浸透する。浸透したチタン化合物に含まれるチタンは一次粒子内へ拡散し一次粒子内に均一に固溶する。
 しかし、一次粒子内へのチタンの固溶量には固溶限界があるため、固溶限界を超えた量のチタンは、余剰のリチウム分と反応し、リチウムチタン化合物を形成する。形成されたリチウムチタン化合物は一次粒子内へ拡散できないため、一次粒子表面や粒界、あるいは二次粒子表面に存在することとなる。
 また、焼成工程S4では、750℃以上1000℃以下の最高温度で行われるが、好ましくは750℃以上950℃以下である。750℃以上の最高温度で焼成する場合、リチウム化合物は溶融し、チタン化合物と共に複合水酸化物中へ浸透と拡散する。一方、焼成温度が750℃未満である場合、ニッケルマンガン複合水酸化物粒子中へのリチウムおよびチタンの拡散が十分に行われなくなり、余剰のリチウムや未反応の粒子が残ったり、結晶構造が十分整わなくなったりして、十分な電池特性が得られないという問題が生じる。また、焼成温度が1000℃を超えると、形成されたリチウムニッケルマンガン複合酸化物粒子間で激しく焼結が生じるとともに、異常粒成長を生じる可能性がある。異常粒成長が生じると、焼成後の粒子が粗大となってしまい粒子形態を保持できなくなる可能性があり、正極活物質を形成したときに、比表面積が低下して正極の抵抗が上昇して電池容量が低下するという問題が生じる。
 焼成時間は、少なくとも3時間以上とすることが好ましく、より好ましくは、6時間以上24時間以下である。焼成時間が3時間未満である場合、リチウムニッケルマンガン複合酸化物の生成が十分に行われないことがある。
 ここで、上記のように固溶限界を超えた量のチタンは余剰リチウムとリチウムチタン化合物を形成するが、チタン化合物の拡散中に熱処理温度が850℃以上になると、チタンのカチオンミキシングが起こりやすくなるため、850℃よりも低温でリチウム化合物とチタン化合物の拡散反応を十分に進めてから、850℃以上の温度とすることでリチウムニッケルマンガン複合酸化物の生成を進めてやることが望ましい。よって、目的のリチウムニッケルマンガン複合酸化物を得るために最適な焼成条件は、2段階で行う焼成、つまり750℃以上850℃未満の温度でチタン化合物の拡散反応が終わるまで熱処理し、その後850℃以上1000℃以下の温度でリチウムニッケルマンガン複合酸化物の生成反応を進めてやることが好ましい。各々の焼成時間は、溶融したリチウム化合物とチタン化合物の二次粒子内への浸透は速やかに進むことから、750℃以上850℃未満での焼成時間は1~4時間、850℃以上1000℃以下での焼成時間は2~20時間が好ましい。
 焼成工程S4は、750℃以上1000℃以下の温度で焼成する前に、この焼成温度より低い温度で熱処理する工程をさらに含んでもよい(仮焼)。この熱処理は、混合物中のリチウム化合物が溶融し、複合水酸化物粒子と反応し得る温度で行うことが好ましく、例えば350℃以上、かつ、上記の焼成温度より低い温度とすることができる。また、この熱処理温度の下限は、好ましくは400℃以上である。上記の温度範囲で混合物を保持することにより、複合水酸化物粒子にリチウム化合物が浸透して、リチウムとチタンの拡散が十分に行われ、均一なリチウムニッケルマンガン複合酸化物を得ることができる。例えば、水酸化リチウムを使用する場合、仮焼は、400℃以上550℃以下の温度で1時間以上10時間程度保持して行うことが好ましい。
 以上のように、焼成工程S4で得られた上記リチウムニッケルマンガン複合酸化物は、一般式(3):LiNi1-a-b-cMnTi(上記式(3)中、Mは、Co、W、Mo、V、Mg、Ca、Al、Cr、Zr及びTaから選択される少なくとも1種の元素であり、0.05≦a≦0.60、0≦b≦0.60、0.02≦c≦0.08、0.95≦d≦1.20である。)で表される。そして、複数の一次粒子が凝集した二次粒子で構成され、チタンの少なくとも一部が、上記一次粒子に固溶し、かつリチウムチタン化合物が上記リチウムイオン二次電池用正極活物質の表面に存在していることを特徴とする。
 また、焼成工程S4によって得られたリチウムニッケルマンガン遷移金属複合酸化物は、粒子間の焼結は抑制されているが、弱い焼結や凝集により粗大な粒子を形成していることがある。このような場合には、解砕により上記焼結や凝集を解消して粒度分布を調整することができる。
 本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の製造方法によれば、容量及び電子伝導性のみならず、耐久性及び過充電時の熱安定性を向上させ、耐久性及び熱安定性を高い次元で両立させたリチウムイオン二次電池が得られる正極活物質を提供することができる。また、本発明は、このような正極活物質を、工業規模の生産において容易に製造することが可能であり、工業的価値は極めて大きいものといえる。
 <3.リチウムイオン二次電池>
 本発明の一実施形態に係るリチウムイオン二次電池(以下、「二次電池」ともいう。)は、前述の正極活物質を正極に用いる。以下、本発明の一実施形態に係る二次電池について、構成要素ごとにそれぞれ説明する。本発明の一実施形態に係る二次電池は、正極、負極及び非水電解液を含み、一般のリチウムイオン二次電池と同様の構成要素から構成される。なお、以下で説明する実施形態は例示に過ぎず、リチウムイオン二次電池は、下記実施形態をはじめとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。また、二次電池は、その用途を特に限定するものではない。
 <3-1.正極>
 上述した、本発明の一実施形態に係るリチウムイオン二次電池用正極活物質を用いて、二次電池の正極を作製する。以下に正極の製造方法の一例を説明する。まず、上記の正極活物質(粉末状)、導電材および結着剤(バインダー)を混合し、さらに必要に応じて活性炭や、粘度調整などの目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。
 正極合材中のそれぞれの材料の混合比は、リチウム二次電池の性能を決定する要素となるため、用途に応じて、調整することができる。材料の混合比は、公知のリチウム二次電池の正極と同様とすることができ、例えば、溶剤を除いた正極合材の固形分の全質量を100質量%とした場合、正極活物質を60~95質量%、導電材を1~20質量%、結着剤を1~20質量%含有することができる。
 得られた正極合材ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥して溶剤を飛散させ、シート状の正極が作製される。必要に応じ、電極密度を高めるべくロールプレス等により加圧することもある。このようにして得られたシート状の正極は、目的とする電池に応じて適当な大きさに裁断等し、電池の作製に供することができる。ただし、正極の作製方法は、上記例示のものに限られることなく、他の方法に依ってもよい。
 導電材としては、例えば、黒鉛(天然黒鉛、人造黒鉛および膨張黒鉛など)や、アセチレンブラックやケッチェンブラックなどのカーボンブラック系材料などを用いることができる。
 結着剤(バインダー)としては、活物質粒子をつなぎ止める役割を果たすもので、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂およびポリアクリル酸などを用いることができる。
 必要に応じ、正極活物質、導電材および活性炭を分散させて、結着剤を溶解する溶剤を正極合材に添加する。溶剤としては、具体的には、N-メチル-2-ピロリドンなどの有機溶剤を用いることができる。また、正極合材には、電気二重層容量を増加させるために、活性炭を添加することができる。
 <3-2.負極>
 負極は、金属リチウム、リチウム合金等を用いることができる。また、負極は、リチウムイオンを吸蔵・脱離できる負極活物質に結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを用いてもよい。
 負極活物質としては、例えば、天然黒鉛、人造黒鉛およびフェノール樹脂などの有機化合物焼成体、およびコークスなどの炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、PVDFなどの含フッ素樹脂を用いることができ、これらの活物質および結着剤を分散させる溶剤としては、N-メチル-2-ピロリドンなどの有機溶剤を用いることができる。
 <3-3.セパレータ>
 正極と負極との間には、セパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し、電解質を保持するものであり、公知のものを用いることができ、例えば、ポリエチレンやポリプロピレンなどの薄い膜で、微少な孔を多数有する膜を用いることができる。
 <3-4.非水系電解液>
 非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートおよびトリフルオロプロピレンカーボネートなどの環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートおよびジプロピルカーボネートなどの鎖状カーボネート、さらに、テトラヒドロフラン、2-メチルテトラヒドロフランおよびジメトキシエタンなどのエーテル化合物、エチルメチルスルホンやブタンスルトンなどの硫黄化合物、リン酸トリエチルやリン酸トリオクチルなどのリン化合物などから選ばれる1種を単独、又は2種以上を混合して用いることができる。
 支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO、およびそれらの複合塩などを用いることができる。さらに、非水系電解液は、ラジカル捕捉剤、界面活性剤および難燃剤などを含んでいてもよい。
 なお、非水系電解液に代わり固体電解質を用いて二次電池を構成することも可能である。固体電解質は高電位でも分解しないので、非水系電解液で見られるような充電時の電解液の分解によるガス発生や熱暴走が無いため、高い熱安定性を有している。そのため、本発明による正極活物質を用いたリチウムイオン二次電池に用いた場合、より熱安定性の高い二次電池を得ることができる。
 <3-5.二次電池の形状、構成>
 以上のように説明してきた正極、負極、セパレータおよび非水系電解液で構成される本発明のリチウムイオン二次電池は、円筒形や積層形など、種々の形状にすることができる。いずれの形状を採る場合であっても、正極および負極を、セパレータを介して積層させて電極体とし、得られた電極体に、非水系電解液を含浸させ、正極集電体と外部に通ずる正極端子との間、および、負極集電体と外部に通ずる負極端子との間を、集電用リードなどを用いて接続し、電池ケースに密閉して、リチウムイオン二次電池を完成させる。
 <3-6.二次電池の特性>
 本発明の一実施形態に係る二次電池は、高いエネルギー密度及び耐久性と、過充電時における酸素放出抑制による高い熱安定性とを両立できる。また、上記の二次電池に用いられる正極活物質は、上述した工業的な製造方法で得ることができる。本発明の一実施形態に係る二次電池は、常に高容量を要求される小型携帯電子機器(ノート型パーソナルコンピュータや携帯電話端末など)の電源に好適である。また、本発明の一実施形態に係る二次電池は、従来のリチウムコバルト系酸化物あるいはリチウムニッケル系酸化物の正極活物質を用いた電池との比較においても、容量及び電子伝導性のみならず、耐久性及び過充電時の熱安定性に優れている。そのため、小型化、高容量化が可能であることから、搭載スペースに制約を受ける電気自動車用電源として好適である。なお、本発明の一実施形態に係る二次電池は、純粋に電気エネルギーで駆動する電気自動車用の電源のみならず、ガソリンエンジンやディーゼルエンジンなどの燃焼機関と併用するいわゆるハイブリッド車用の電源としても用いることができる。
 次に、本発明の一実施形態に係るリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池について、実施例により詳しく説明する。なお、本発明は、これらの実施例に限定されるものではない。なお、実施例及び比較例における正極活物質に含有される金属の分析方法及び正極活物質の各種評価方法は、以下の通りである。
 (組成分析方法)
 ニッケルマンガン複合水酸化物および、リチウムニッケルマンガン複合酸化物の組成の分析は、ICP発光分析法で測定した。
 (平均粒径測定方法)
 平均粒径MV、および〔(D90-D10)/MV〕は、レーザー回折散乱式粒度分布測定装置(日機装株式会社製、マイクロトラックHRA)により行なった。
 (一次粒子内のチタン濃度測定方法)
 一次粒子内のチタン濃度は、正極活物質をエポキシ樹脂に固結した後、STEMによる一次粒子の断面分析が可能となるようにFIB加工した。試料に含まれる複数の正極活物質二次粒子のうち、平均粒径に近い粒径を持つ粒子を無作為に10個選び、さらにその二次粒子内の一次粒子から10個を無作為に選択し、個々の一次粒子断面の中心部を通り粒子外縁部を終点とする線分上の元素組成をEDXにより線分析した。積分法により線分上の平均チタン濃度を求め、個々の一次粒子内部のチタン濃度とした。さらに各一次粒子内部のチタン濃度の平均値を求め、そのサンプルの一次粒子内のチタン濃度とした。
 (定性評価方法、および結晶子径算出方法)
 結晶構造とリチウムチタン化合物の定性評価、および結晶子径は、XRD回折装置(パナリティカル社製、X‘Pert PRO)を用い、XRD測定結果から、2θ=18°付近に存在する(003)面のピークの解析を行い、Scherrerの式を用いて003面における結晶子径を算出した。
 (初期充放電容量測定方法)
 初期充電容量及び初期放電容量は、図2に示すコイン型電池1を作製し、24時間程度放置し、開回路電圧OCV(open circuit voltage)が安定した後、正極2に対する電流密度を0.1mA/cmとしてカットオフ電圧4.3Vまで充電して初期充電容量とし、1時間の休止後、カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。放電容量の測定には,マルチチャンネル電圧/電流発生器(株式会社アドバンテスト製、R6741A)を用いた。
 (熱安定性評価方法)
 正極2の熱安定性評価は、正極活物質を過充電状態とし、加熱することで放出される酸素量の半定量分析により行った。上記と同様にコイン型電池1を作製し、カットオフ電圧4.5Vまで0.2CレートでCCCV充電(定電流―定電圧充電)した。その後、コイン型電池1を解体し、短絡しないよう慎重に正極2のみ取り出して、DMC(ジメチルカーボネート)で洗浄し、乾燥した。乾燥後の正極2をおよそ2mg量りとり、ガスクロマトグラフ質量分析計(GCMS、島津製作所、QP-2010plus)を用いて、昇温速度10℃/minで室温から450℃まで昇温した。キャリアガスにはヘリウムを用いた。加熱時に発生した酸素(m/z=32)の発生挙動を測定し、得られた最大酸素発生ピーク高さとピーク面積から酸素発生量の半定量を行い、これらを熱安定性の評価指標とした。なお、酸素発生量の半定量値は、純酸素ガスを標準試料としてGCMSに注入し、その測定結果から得た検量線を外挿して算出した。
 そして、下記の実施例及び比較例の条件について、上記の方法を用いて、測定及び評価を行った。
(実施例1)
<晶析工程>
 反応槽(60L)に純水を所定量入れ、攪拌しながら槽内温度を45℃に設定した。このとき反応槽内に、反応槽液中の溶存酸素濃度が0.8mg/Lとなるように調整しつつNガスを吹き込んだ。この反応槽内にニッケル:マンガン:コバルトのモル比が55:25:20に調製した硫酸ニッケル、硫酸マンガン、硫酸コバルトの混合原料水溶液(Ni、Mn、Coの総モル濃度2.0mol/l)と、アルカリ溶液として25質量%水酸化ナトリウム溶液、錯化剤として25質量%アンモニア水を反応槽に同時に連続的に添加した。このとき混合水溶液の滞留時間(反応容積(L)÷原料水溶液添加速度(L/h))は8時間となるように流量を制御し、同時に、反応槽内のpHは11.8~12.1、アンモニア濃度は12~13g/Lになるように水酸化ナトリウム溶液とアンモニア水の流量を調整しつつ添加した。
 反応槽内のpHおよびアンモニア濃度が安定した後、オーバーフロー口から吐出されるニッケルマンガンコバルト複合水酸化物を含むスラリーを回収した。得られたスラリーはデンバー濾過により固液分離し、ニッケルマンガンコバルト複合水酸化物のケーキを得た。濾過を行ったデンバー内にある該ニッケルコバルトマンガン複合水酸化物ケーキ140gに対して1Lの純水を通液することで、ケーキに含有される不純物の洗浄除去を行った。通液後のケーキを定置式乾燥機で120℃24時間乾燥し、組成式Ni0.55Mn0.25Co0.20(OH)で表されるニッケルコバルトマンガン複合水酸化物粒子を得た。得られた複合水酸化物の平均粒径MVは、9.8μmであった。
<混合工程>
 得られたニッケルマンガンコバルト複合水酸化物粒子と、炭酸リチウムと、平均粒径1.0μmのチタン酸(Ti・nHO)粉末とを、ニッケルとマンガンとコバルト:チタンのモル比が97.0:3.0(Ti添加量3.0at%)になるように、かつ、Li/Me(Liの物質量と、ニッケル、コバルト、マンガン及びチタンの合計メタルの物質量(Me)との比)が1.03になるように、秤量した後、シェーカーミキサー装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて10分間混合し、原料混合物を得た。
<焼成工程>
 得られた原料混合物を酸素濃度50%の酸素-窒素混合ガス気流中にて830℃で2時間焼成した後、5℃/分で900℃まで昇温し、8時間保持して焼成し、その後、解砕してリチウムニッケルコバルトマンガンチタン複合酸化物かなる正極活物質を得た。
 得られた正極活物質の体積平均粒径MVは10.1μmであった。XRD測定の結果、LiTiO(ICDD card No.75-902)に帰属されるピークが確認できた。また、チタンを添加しない同組成のリチウムニッケルマンガンコバルト複合酸化物に比べての格子定数a、cの増加が認められ、STEM-EDX分析の結果からチタンが結晶構造中に固溶していることが確認された。一方で、EDX線分析の結果から、粒界や活物質表面にリチウムチタン化合物とみられる偏析が確認された。XRD測定の結果と合わせると、この化合物はLiTiOと推定される。また、EDX線分析の結果から上記方法で求めた平均一次粒子内チタン濃度は1.3at%であった。さらに、XRD測定結果から、Scherrerの式を用いて003面方向の結晶子径を算出した結果、1450Åであった。また、上記の工程により得られたリチウムニッケルマンガン複合酸化物は、ICP発光分析の結果、Li1.03Ni0.54Mn0.24Co0.19Ti0.03であった。
(電気化学特性評価)
 得られた正極活物質52.5mg、アセチレンブラック15mg、およびポリテトラフッ化エチレン樹脂(PTFE)7.5mgを混合し、100MPaの圧力で直径11mm、厚さ100μmのディスク形状にプレス成形し、評価用正極電極2を作製した。作製した正極電極を真空乾燥機中120℃で12時間乾燥した後、この正極2を用いて2032型コイン電池を、露点が-80℃に管理されたAr雰囲気のグローブボックス内で作製した。
 負極電極には、直径17mm厚さ1mmのリチウム(Li)金属ディスクを用い、電解液には、1MのLiClOを支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液(富山薬品工業株式会社製)を用いた。セパレータ4には膜厚25μmのポリエチレン多孔膜を用いた。また、コイン型電池1は、ガスケット5とウェーブワッシャー6を有し、正極缶7と負極缶8とでコイン型の電池10に組み立てた。上記の初期充放電容量測定方法により得られた正極活物質の初期充電容量を表3に示す。
(耐久性評価)
 耐久性評価は、次のように行った。得られた正極活物質をアセチレンブラック(導電材)とPVDF(バインダー)を質量比85:10:5となるように混合し、溶剤であるNMP(Nメチル-2-ピロリジノン)に分散させてスラリー化した。この正極スラリーを、厚さ20μmのアルミニウム箔(正極集電体)にアプリケーターを用い、単位面積当たり7mg/cmに塗工した。その後、送風乾燥機で120℃×30分乾燥し、ロールプレスにて圧延し、5.0cm×3.0cmの正極2を得た。負極3には三菱化学製のリチウムイオン二次電池用負極材(天然黒鉛系)とアセチレンブラックを質量比97:3となるように混合し、溶剤であるNMPに分散させてスラリー化した。
 この負極スラリーを厚さ15μmのCu集電体(負極集電体)にアプリケーターを用い、5.0mg/cmの厚さで塗工した。その後送風乾燥機で120℃×30分乾燥をおこなったのち乾燥後の電極を、ロールプレスを用いて圧延した。圧延後の負極シートを5.4cm×3.4cmで一角が幅10mmの帯状部(端子)が出た長方形に切り出し、その帯状部から上記活物質層を除去し、銅箔を露出させて端子部を形成し、端子付きの負極シートを得た。セパレータ4は一般的に用いられる厚さ16μmのポリエチレン製セパレータを用いた。電解液は、支持電解質LiPF1モル/Lを含有するエチレンカーボネート(EC)とジメチルカーボネート(DMC)を容積比でEC/DMC=3:7の混合液を用いた。
 以上の部材を用いて、正極2および負極3を、セパレータ4を介して積層させた電極部とし、得られた電極部に、電解液を含浸させ、電池筐体内に密閉して、ラミネートセル型のリチウムイオン二次電池を組み立てた。これを60℃に制御した恒温槽に入れ、充放電装置を接続し、2Cレート、3.0-4.1Vの条件で繰り返し充放電を500回行った。初期放電容量と500サイクル後の放電容量から容量維持率を算出した。その結果、初期放電容量は159.8mAh/g、容量維持率は88.1%であった。
(熱安定性評価)
 上述した方法で熱安定性評価を行った。得られた最大酸素発生ピーク強度とピーク面積から求めた酸素発生量の半定量値は4.0wt%であった。試験条件および評価結果を表1~3に示す。
(耐久性評価及び熱安定性評価の判断方法)
 上記で得られた電池の耐久性評価及び熱安定性評価の判断方法は、耐久性評価における初期放電容量及び容量維持率、熱安定性評価における酸素発生量について、下記の三段階評価(1,2,3)で判定した。
初期放電容量(mAh/g)
3:155.0より大きい、2:153.0~155.0、1:153.0未満(三段階評価の数字が大きいほど、高性能を示す。以下同様。)
容量維持率(%)
3:88.0より大きい、2:86.0~88.0、1:86.0未満
酸素発生量半定量値(wt%)
3:4.8未満、2:4.8~5.0、1:5.0より大きい
そして、各評価の合計を総合評価とし、総合評価が9を◎、8を○、7を△、6以下を×として判定した。その結果を表3に示す。
(実施例2)
 混合工程において、ニッケルとマンガンとコバルト:チタンのモル比が94.0:6.0(Ti添加量6.0at%)になるようにした以外は、実施例1と同様に、リチウム複合酸化物を調製し、各種物性および電池評価を行った。試験条件及び評価・判断結果を表1~3に示す。
(実施例3)
 焼成工程における焼成雰囲気を酸素ガス(酸素濃度100%)にした以外は、実施例1と同様に、リチウム複合酸化物を調製し、各種物性および電池評価を行った。試験条件及び評価・判断結果を表1~3に示す。
(実施例4)
 焼成工程における750~850℃での焼成温度を780℃にした以外は、実施例1と同様に、リチウム複合酸化物を調製し、各種物性および電池評価を行った。試験条件及び評価・判断結果を表1~3に示す。
(実施例5)
 焼成工程における750~850℃での焼成時間を1.0時間にした以外は、実施例1と同様に、リチウム複合酸化物を調製し、各種物性および電池評価を行った。試験条件及び評価・判断結果を表1~3に示す。
(実施例6)
 焼成工程における850℃以上での焼成最高温度を750℃にした以外は、実施例1と同様に、リチウム複合酸化物を調製し、各種物性および電池評価を行った。試験条件及び評価・判断結果を表1~3に示す。
(実施例7)
 焼成工程における850℃以上での焼成最高温度を800℃にした以外は、実施例1と同様に、リチウム複合酸化物を調製し、各種物性および電池評価を行った。試験条件及び評価・判断結果を表1~3に示す。
(実施例8)
 焼成工程における850℃以上での焼成最高温度を1000℃にした以外は、実施例1と同様に、リチウム複合酸化物を調製し、各種物性および電池評価を行った。試験条件及び評価・判断結果を表1~3に示す。
(実施例9)
 焼成工程における850℃以上での焼成時間を18時間にした以外は、実施例1と同様に、リチウム複合酸化物を調製し、各種物性および電池評価を行った。試験条件及び評価・判断結果を表1~3に示す。
(実施例10)
 焼成工程における850℃以上での焼成時間を2時間にした以外は、実施例1と同様に、リチウム複合酸化物を調製し、各種物性および電池評価を行った。試験条件及び評価・判断結果を表1~3に示す。
(比較例1)
 混合工程において、チタン酸粉末を添加しなかった以外は、実施例1と同様に、リチウム複合酸化物を調製し、各種物性および電池評価を行った。試験条件及び評価・判断結果を表1~3に示す。
(比較例2)
 混合工程において、ニッケルとマンガンとコバルト:チタンのモル比が90.0:10.0(Ti添加量10.0at%)になるようにした以外は、実施例1と同様に、リチウム複合酸化物を調製し、各種物性および電池評価を行った。試験条件及び評価・判断結果を表1~3に示す。
(比較例3)
 焼成工程における焼成雰囲気を酸素濃度30%に調製した酸素-窒素混合ガスにした以外は、実施例1と同様に、リチウム複合酸化物を調製し、各種物性および電池評価を行った。試験条件及び評価・判断結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、実施例1~10で得られた正極活物質は、総合判定で○若しくは◎となり耐久性及び熱安定性に優れていた。実施例で得られた正極活物質はいずれも、Tiが一次粒子内に固溶しており、かつリチウムチタン化合物が存在していた。Tiが一次粒子内に固溶していることで、過充電時の酸素放出抑制や構造相転移を抑制し、熱安定性が改善したと推定される。さらに、一次粒子表面に存在するリチウムチタン化合物は、高いリチウムイオン導電率を有しながら、化学的に安定なため、活物質を劣化させることなく、電気化学特性を維持し、結果的に優れた耐久性に寄与したと推定される。また、Tiの添加方法は固相添加、コートのいずれでもよく、コートの場合は固相添加よりも若干、熱安定性改善効果が高い。なお、生産性等の観点から、工業的には、固相添加が優位である。
 一方、比較例1の正極活物質では、Tiを添加していないため、得られた二次電池はTiを添加したものに比べ、熱安定性評価が1となり、熱安定性が実施例より劣っている。比較例2では一次粒子内部のチタン濃度が高すぎるため、初期放電容量の低下が著しく、初期放電容量評価が1となった。比較例3は各種の焼成条件がチタンの一次粒子内への拡散固溶と、二次粒子表面でのリチウム-チタン化合物の生成に適していないため、放電容量、容量維持率、酸素発生半定量値のすべてを良好に維持することができなく、総合判定では×となった。
 以上より、本発明の一実施形態に係るリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池は、容量及び電子伝導性のみならず、耐久性及び過充電時の熱安定性を向上させ、耐久性及び熱安定性を高い次元で両立させることができた。
 本実施形態では、容量及び電子伝導性のみならず、耐久性及び過充電時の熱安定性を向上させ、耐久性及び熱安定性を高い次元で両立するリチウムイオン二次電池用正極活物質を工業的な製造方法で得ることができる。このリチウムイオン二次電池は、常に高容量・高寿命を要求される小型携帯電子機器(ノート型パーソナルコンピュータや携帯電話端末など)の電源に好適である。
 また、本発明の一実施形態に係る二次電池は、従来のリチウムコバルト系酸化物あるいはリチウムニッケル系酸化物の正極活物質を用いた電池との比較においても、安全性に優れており、さらに容量・耐久性の点で優れている。そのため、小型化、高寿命化が可能であることから、搭載スペースに制約を受ける電気自動車用電源として好適である。
 また、本発明の一実施形態に係る正極活物質及びそれを用いた二次電池は、純粋に電気エネルギーで駆動する電気自動車用の電源のみならず、ガソリンエンジンやディーゼルエンジンなどの燃焼機関と併用するいわゆるハイブリッド車用の電源や定置型蓄電池としても用いることができる。
 なお、上記のように本発明の各実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。
 例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。またリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池の構成、動作も本発明の各実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。
S1 晶析工程、S2 焙焼工程、S3 混合工程、S4 焼成工程
1 コイン型電池、2 正極(評価用電極)、3 負極(リチウム金属)、4 セパレータ、5 ガスケット、6 ウェーブワッシャー、7 正極缶、8 負極缶

Claims (12)

  1.  複数の一次粒子が凝集した二次粒子で構成されたリチウムニッケルマンガン複合酸化物からなるリチウムイオン二次電池用正極活物質であって、
     前記リチウムニッケルマンガン複合酸化物は、一般式(1):LiNi1-a-b-cMnTi(前記一般式(1)中、Mは、Co、W、Mo、V、Mg、Ca、Al、Cr、Zr及びTaから選択される少なくとも1種の元素であり、0.05≦a≦0.60、0≦b≦0.60、0.02≦c≦0.08、0.95≦d≦1.20である。)で表され、
     前記リチウムニッケルマンガン複合酸化物中のチタンの少なくとも一部は、前記一次粒子に固溶し、かつ、リチウムチタン化合物が前記リチウムイオン二次電池用正極活物質の表面に存在していることを特徴とするリチウムイオン二次電池用正極活物質。
  2.  前記一次粒子内の平均チタン濃度は、リチウム以外の成分金属元素の0.5at%以上5at%以下であることを特徴とする請求項1に記載のリチウムイオン二次電池用正極活物質。
  3.  前記リチウムチタン化合物は、LiTiO、LiTiO、LiTi、LiTiの何れか1種以上であることを特徴とする請求項1又は2に記載のリチウムイオン二次電池用正極活物質。
  4.  前記リチウムチタン化合物は、アモルファス相を含むことを特徴とする請求項1又は2に記載のリチウムイオン二次電池用正極活物質。
  5.  前記二次粒子の体積平均粒径MVは、5μm以上20μm以下であることを特徴とする請求項1又は2に記載のリチウムイオン二次電池用正極活物質。
  6.  XRDの測定結果を用いたシェラー法によって003回折ピークの半価幅より求まる前記リチウムニッケルマンガン複合酸化物の結晶子径は、500Å以上2000Å以下であることを特徴とする請求項1又は2に記載のリチウムイオン二次電池用正極活物質。
  7.  リチウムニッケルマンガン複合酸化物からなるリチウムイオン二次電池用正極活物質の製造方法であって、
     少なくとも、ニッケルマンガン複合水酸化物粒子と、チタン化合物と、リチウム化合物とを含む混合物を添加する混合工程と、
     前記混合物を焼成して前記リチウムニッケルマンガン複合酸化物を得る焼成工程とを有し、
     前記混合工程で添加される前記ニッケルマンガン複合水酸化物粒子は、一般式(2):Ni1-a-bMn(OH)2+α(前記式(2)中、Mは、Co、W、Mo、V、Mg、Ca、Al、Cr、Zr及びTaから選択される少なくとも1種の元素であり、0.05≦a≦0.60、0≦b≦0.60、0≦α≦0.4)で表され、
     前記焼成工程では、酸素濃度40体積%以上100体積%以下の酸化雰囲気中、750℃以上1000℃以下で行われ、
     前記焼成工程で得られた前記リチウムニッケルマンガン複合酸化物は、一般式(3):LiNi1-a-b-cMnTi(前記式(3)中、Mは、Co、W、Mo、V、Mg、Ca、Al、Cr、Zr及びTaから選択される少なくとも1種の元素であり、0.05≦a≦0.60、0≦b≦0.60、0.02≦c≦0.08、0.95≦d≦1.20である。)で表され、複数の一次粒子が凝集した二次粒子で構成され、チタンの少なくとも一部が、前記一次粒子に固溶し、かつリチウムチタン化合物が前記リチウムイオン二次電池用正極活物質の表面に存在していることを特徴とするリチウムイオン二次電池用正極活物質の製造方法。
  8.  前記焼成工程は、750℃以上850℃未満の温度で1時間以上4時間以下の焼成を行った後、850℃以上1000℃以下の温度で2時間以上20時間以下の焼成を行うことを特徴とする請求項7に記載のリチウムイオン二次電池用正極活物質の製造方法。
  9.  前記混合工程は、添加される前記チタン化合物の体積平均粒径MVが、0.01μm以上10μm以下であることを特徴とする請求項7又は8に記載のリチウムイオン二次電池用正極活物質の製造方法。
  10.  前記混合工程は、添加される前記チタン化合物がチタン酸化合物又は酸化チタンであることを特徴とする請求項7又は8に記載のリチウムイオン二次電池用正極活物質の製造方法。
  11.  前記混合工程前に、さらに前記ニッケルマンガン複合水酸化物粒子を熱処理する焙焼工程を有し、
     前記焙焼工程は、105℃以上700℃以下の温度で行うことを特徴とする請求項7又は8に記載のリチウムイオン二次電池用正極活物質の製造方法。
  12.  請求項1~6の何れか1項に記載のリチウムイオン二次電池用正極活物質を正極に用いたことを特徴とするリチウムイオン二次電池。
PCT/JP2018/035288 2017-09-28 2018-09-25 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池 WO2019065566A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/651,965 US11594726B2 (en) 2017-09-28 2018-09-25 Positive electrode active material for lithium ion secondary battery, method for manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
KR1020207008966A KR20200058420A (ko) 2017-09-28 2018-09-25 리튬 이온 이차전지용 정극 활물질, 리튬 이온 이차전지용 정극 활물질의 제조 방법 및 리튬 이온 이차전지
EP18861760.9A EP3690999A4 (en) 2017-09-28 2018-09-25 POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM-ION SECONDARY BATTERY, METHOD OF MANUFACTURING POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM-ION SECONDARY BATTERY, AND SECONDARY LITHIUM-ION BATTERY
CN201880063023.3A CN111466047B (zh) 2017-09-28 2018-09-25 锂离子二次电池用正极活性物质及其制造方法和锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-189043 2017-09-28
JP2017189043A JP6996198B2 (ja) 2017-09-28 2017-09-28 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2019065566A1 true WO2019065566A1 (ja) 2019-04-04

Family

ID=65902297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035288 WO2019065566A1 (ja) 2017-09-28 2018-09-25 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池

Country Status (6)

Country Link
US (1) US11594726B2 (ja)
EP (1) EP3690999A4 (ja)
JP (1) JP6996198B2 (ja)
KR (1) KR20200058420A (ja)
CN (1) CN111466047B (ja)
WO (1) WO2019065566A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006124A1 (ja) * 2019-07-08 2021-01-14 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
WO2021006125A1 (ja) * 2019-07-08 2021-01-14 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021200766A1 (ja) * 2020-03-30 2021-10-07
KR102390956B1 (ko) * 2020-07-22 2022-04-26 주식회사 탑머티리얼 스피넬 복합고용체 산화물, 이의 제조 방법, 이를 포함하는 양극 활물질 및 리튬 이차 전지
WO2022109453A1 (en) * 2020-11-23 2022-05-27 Princeton Nuenergy Inc. Systems and methods for lithium ion battery cathode material recovery, regeneration, and improvement
JP2024510322A (ja) * 2021-11-24 2024-03-06 エルジー・ケム・リミテッド リチウム二次電池用正極活物質の製造方法、リチウム二次電池用正極活物質、これを含むリチウム二次電池用正極およびリチウム二次電池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251716A (ja) 2004-02-05 2005-09-15 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質、非水電解質二次電池用正極合剤および非水電解質二次電池
JP2008147068A (ja) * 2006-12-12 2008-06-26 Ise Chemicals Corp 非水電解液二次電池用リチウム複合酸化物
JP2010073686A (ja) * 2008-08-19 2010-04-02 Hitachi Maxell Ltd 電気化学素子用電極および非水二次電池
JP2011108554A (ja) 2009-11-19 2011-06-02 Mitsubishi Chemicals Corp リチウム遷移金属系化合物粉体、その製造方法、及びそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2012089521A (ja) * 2009-02-13 2012-05-10 Hitachi Maxell Energy Ltd 非水二次電池
JP2013239434A (ja) 2012-04-18 2013-11-28 Nichia Chem Ind Ltd 非水電解液二次電池用正極組成物
JP2015122298A (ja) 2013-11-22 2015-07-02 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池
WO2016068263A1 (ja) * 2014-10-30 2016-05-06 住友金属鉱山株式会社 ニッケル含有複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP2017189043A (ja) 2016-04-07 2017-10-12 東芝三菱電機産業システム株式会社 全閉形回転電機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4061648B2 (ja) * 2003-04-11 2008-03-19 ソニー株式会社 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
WO2009057722A1 (ja) * 2007-11-01 2009-05-07 Agc Seimi Chemical Co., Ltd. リチウムイオン二次電池用正極活物質の製造方法
JP6346448B2 (ja) * 2014-01-29 2018-06-20 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、および、非水系電解質二次電池
EP3246973B1 (en) * 2015-11-13 2019-02-20 Hitachi Metals, Ltd. Positive-electrode material for lithium-ion secondary battery, method for producing the same, and lithium-ion secondary battery
JP2017152294A (ja) * 2016-02-26 2017-08-31 Tdk株式会社 正極活物質材料及びリチウムイオン二次電池
JP6662663B2 (ja) * 2016-03-09 2020-03-11 Dowaエレクトロニクス株式会社 溶液およびその製造方法、ならびに二次電池用活物質の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251716A (ja) 2004-02-05 2005-09-15 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質、非水電解質二次電池用正極合剤および非水電解質二次電池
JP2008147068A (ja) * 2006-12-12 2008-06-26 Ise Chemicals Corp 非水電解液二次電池用リチウム複合酸化物
JP2010073686A (ja) * 2008-08-19 2010-04-02 Hitachi Maxell Ltd 電気化学素子用電極および非水二次電池
JP2012089521A (ja) * 2009-02-13 2012-05-10 Hitachi Maxell Energy Ltd 非水二次電池
JP2011108554A (ja) 2009-11-19 2011-06-02 Mitsubishi Chemicals Corp リチウム遷移金属系化合物粉体、その製造方法、及びそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2013239434A (ja) 2012-04-18 2013-11-28 Nichia Chem Ind Ltd 非水電解液二次電池用正極組成物
JP2015122298A (ja) 2013-11-22 2015-07-02 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池
WO2016068263A1 (ja) * 2014-10-30 2016-05-06 住友金属鉱山株式会社 ニッケル含有複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP2017189043A (ja) 2016-04-07 2017-10-12 東芝三菱電機産業システム株式会社 全閉形回転電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3690999A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006124A1 (ja) * 2019-07-08 2021-01-14 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
WO2021006125A1 (ja) * 2019-07-08 2021-01-14 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
CN114097114A (zh) * 2019-07-08 2022-02-25 住友金属矿山株式会社 锂离子二次电池用正极活性物质和锂离子二次电池

Also Published As

Publication number Publication date
JP6996198B2 (ja) 2022-01-17
JP2019067529A (ja) 2019-04-25
CN111466047B (zh) 2023-12-05
KR20200058420A (ko) 2020-05-27
CN111466047A (zh) 2020-07-28
US11594726B2 (en) 2023-02-28
US20200259177A1 (en) 2020-08-13
EP3690999A4 (en) 2021-07-28
EP3690999A1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP7176412B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2018043669A1 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP2019186220A (ja) 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池
US11594726B2 (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
US11870071B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, method for evaluating positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7052806B2 (ja) 非水系電解質二次電池用正極活物質、非水系電解質二次電池及び非水系電解質二次電池用正極活物質の製造方法
US20230187625A1 (en) Method for producing positive electrode active material for lithium ion secondary battery
WO2019163846A1 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
WO2020027158A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
US20220278322A1 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP7198777B2 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
US20220177325A1 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
US20220177326A1 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2020087858A (ja) リチウムイオン二次電池用正極活物質の製造方法
US20240021808A1 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
US20230378455A1 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2021114436A (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018861760

Country of ref document: EP

Effective date: 20200428