WO2019064645A1 - 半二次電池および二次電池 - Google Patents

半二次電池および二次電池 Download PDF

Info

Publication number
WO2019064645A1
WO2019064645A1 PCT/JP2018/011208 JP2018011208W WO2019064645A1 WO 2019064645 A1 WO2019064645 A1 WO 2019064645A1 JP 2018011208 W JP2018011208 W JP 2018011208W WO 2019064645 A1 WO2019064645 A1 WO 2019064645A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
secondary battery
semi
current collector
positive electrode
Prior art date
Application number
PCT/JP2018/011208
Other languages
English (en)
French (fr)
Inventor
栄二 關
野家 明彦
阿部 誠
繁貴 坪内
篤 宇根本
祐介 加賀
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65901499&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019064645(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to KR1020197029905A priority Critical patent/KR102278388B1/ko
Priority to CN201880024822.XA priority patent/CN110506357B/zh
Priority to JP2019544219A priority patent/JP6893247B2/ja
Publication of WO2019064645A1 publication Critical patent/WO2019064645A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a semi-secondary battery and a secondary battery.
  • patent document 1 is a non-aqueous electrolyte secondary battery in which a positive electrode, a negative electrode, and a separator are stacked and spirally wound to form a flat cross-sectional wound electrode body and a non-aqueous electrolyte in an outer package,
  • the positive electrode has a metal current collector and a positive electrode mixture layer on both sides of the current collector, and the current collector of the positive electrode has a tensile strength of 3.6 N / mm or more,
  • Patent Document 1 the relationship between the tensile strength of the current collector and the melting point of the resin contained in the separator when using a nail whose tip angle is a predetermined angle is not taken into consideration.
  • the nail penetration test of the secondary battery generates white smoke, which may impair the safety of the non-aqueous electrolyte secondary battery.
  • An object of the present invention is to improve the safety of a secondary battery.
  • the tensile strength of the electrode current collector is 16 N or less when using a nail having an electrode current collector and an electrode mixture layer, and an insulating layer formed on the electrode and having a tip angle of 30 °.
  • the insulating layer has a low melting point material, and the melting point of the low melting point material is equal to or lower than the valence reduction temperature of the positive electrode active material.
  • a lithium ion secondary battery is an electrochemical device capable of storing or utilizing electrical energy by insertion and extraction of lithium ions to an electrode in an electrolyte. This is called by another name of a lithium ion battery, a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery, and any battery is an object of the present invention.
  • the technical concept of the present invention is also applicable to sodium ion secondary batteries, magnesium ion secondary batteries, calcium ion secondary batteries, zinc secondary batteries, aluminum ion secondary batteries and the like.
  • FIG. 1 is a cross-sectional view of a secondary battery according to an embodiment of the present invention.
  • FIG. 1 shows a stacked-type secondary battery, and the secondary battery 1000 includes a positive electrode 100, a negative electrode 200, an outer package 500, and a semisolid electrolyte layer 300 (insulating layer).
  • the exterior body 500 accommodates the semi-solid electrolyte layer 300, the positive electrode 100, and the negative electrode 200.
  • the material of the exterior body 500 can be selected from materials having corrosion resistance to the non-aqueous electrolyte, such as aluminum, stainless steel, nickel plated steel, and the like.
  • the present invention is also applicable to a wound secondary battery.
  • an electrode assembly 400 including the positive electrode 100, the semi-solid electrolyte layer 300, and the negative electrode 200 is stacked.
  • the positive electrode 100 or the negative electrode 200 may be referred to as an electrode or an electrode for a secondary battery.
  • the positive electrode 100, the negative electrode 200, or the semisolid electrolyte layer 300 may be referred to as a secondary battery sheet. What the semi-solid electrolyte layer 300 and the positive electrode 100 or the negative electrode 200 have an integral structure may be called a semi-secondary battery.
  • the positive electrode 100 has a positive electrode current collector 120 and a positive electrode mixture layer 110.
  • the positive electrode mixture layer 110 is formed on both sides of the positive electrode current collector 120.
  • the negative electrode 200 includes a negative electrode current collector 220 and a negative electrode mixture layer 210.
  • a negative electrode mixture layer 210 is formed on both sides of the negative electrode current collector 220.
  • the positive electrode mixture layer 110 or the negative electrode mixture layer 210 may be referred to as an electrode mixture layer, and the positive electrode current collector 120 or the negative electrode current collector 220 may be referred to as an electrode current collector.
  • the positive electrode current collector 120 has a positive electrode tab portion 130.
  • the negative electrode current collector 220 has a negative electrode tab portion 230.
  • the positive electrode tab portion 130 or the negative electrode tab portion 230 may be referred to as an electrode tab portion.
  • An electrode mixture layer is not formed on the electrode tab portion. However, the electrode mixture layer may be formed on the electrode tab portion as long as the performance of the secondary battery 1000 is not adversely affected.
  • the positive electrode tab portion 130 and the negative electrode tab portion 230 protrude to the outside of the exterior body 500, and a plurality of protruding positive electrode tab portions 130 and a plurality of negative electrode tab portions 230 are joined by ultrasonic bonding, for example. Then, parallel connection is formed in the secondary battery 1000.
  • the present invention can also be applied to a bipolar secondary battery in which electrical series connection is configured in the secondary battery 1000.
  • the positive electrode mixture layer 110 includes a positive electrode active material, a positive electrode conductive agent, and a positive electrode binder.
  • the negative electrode mixture layer 210 includes a negative electrode active material, a negative electrode conductive agent, and a negative electrode binder.
  • the semisolid electrolyte layer 300 has a semisolid electrolyte binder and a semisolid electrolyte.
  • a semi-solid electrolyte comprises carrier particles and a semi-solid electrolyte.
  • the positive electrode active material or the negative electrode active material may be referred to as an electrode active material
  • the positive electrode conductive agent or the negative electrode conductive agent may be referred to as an electrode conductive agent
  • the positive electrode binder or the negative electrode binder may be referred to as an electrode binder.
  • the pores of the electrode mixture layer may be filled with a semi-solid electrolyte.
  • a semi-solid electrolyte is injected into the secondary battery 1000 from one open side of the outer package 500 or a liquid injection hole, and the pores of the electrode mixture layer are filled with the semi-solid electrolyte.
  • the support particles contained in the semi-solid electrolyte are not required, and particles such as the electrode active material and the electrode conductive agent in the electrode mixture layer function as the support particles, and the particles retain the semi-solid electrolyte Do.
  • a slurry is prepared by mixing a semi-solid electrolyte, an electrode active material, an electrode conductive agent, and an electrode binder, and the prepared slurry is used as an electrode current collector. There is a method of applying together on top.
  • a semisolid electrolyte may be contained in any one or two or more of the positive electrode 100, the negative electrode 200, or the semisolid electrolyte layer 300.
  • the electrode conductive agent improves the conductivity of the electrode mixture layer.
  • the electrode conductive agent ketjen black, acetylene black, graphite and the like are suitably used, but it is not limited thereto.
  • the electrode binder binds an electrode active material, an electrode conductive agent, and the like in the electrode.
  • an electrode binder styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), P (VDF-HFP) which is a copolymer of polyvinylidene fluoride (PVDF) and hexafluoropropylene (HFP), and these And mixtures thereof, but not limited thereto.
  • the thickness of the electrode current collector is preferably 15 ⁇ m or less.
  • the thickness of the electrode current collector is greater than 15 ⁇ m, the volumetric energy density of the secondary battery 1000 may be reduced.
  • the tensile strength of the electrode current collector may be increased, which may make it difficult to suppress a short circuit when the secondary battery 1000 is nailed.
  • the tensile strength of the electrode current collector when using a nail having a tip angle of 30 ° is desirably 16 N or less, preferably 14 N or less.
  • the tensile strength of the electrode current collector is greater than 16 N, the tensile strength of the electrode current collector is increased, and burrs are generated in the electrode current collector at the time of nailing to the secondary battery 1000, and short circuit with the electrode causes white smoke May occur or ignite.
  • the tensile strength of the electrode current collector is measured by the strength when the electrode current collector is broken by piercing the electrode current collector at a speed of 40 mm / sec.
  • a nail may be used as the piercing jig, and the tip angle of the nail may be 30 ° and the diameter of the nail may be 3 mm.
  • the desired electrode current collector thickness varies depending on the Young's modulus of the electrode current collector. For example, in the case of aluminum having a Young's modulus of 70 GPa, when the thickness of the electrode current collector is 15 ⁇ m, the cross-sectional area of the portion pierced by a nail having a tip angle of 30 ° is 196 ⁇ m 2 and the tensile strength is 13.7 N. On the other hand, when the thickness of the electrode current collector is 17 ⁇ m, the cross-sectional area of the portion pierced with a nail having a tip angle of 30 ° is 251 ⁇ m 2 and the tensile strength is 17.6 N.
  • the thickness of the electrode current collector is preferably 15 ⁇ m or less.
  • the tensile strength is 39 N.
  • the thickness of the electrode current collector is 9 ⁇ m, the cross-sectional area of the portion pierced with a nail having a tip angle of 30 ° is 70 ⁇ m 2 and the tensile strength is 14.1 N. Therefore, when using SUS foil with a Young's modulus of 200 GPa, the thickness of the electrode current collector is preferably 9 ⁇ m or less.
  • ⁇ Positive electrode active material> In the positive electrode active material exhibiting a noble potential, lithium ions are desorbed in the charging process, and lithium ions desorbed from the negative electrode active material in the negative electrode mixture layer are inserted in the discharging process.
  • a lithium composite oxide containing a transition metal is desirable as a material of the positive electrode active material, and specific examples thereof include LiMO 2 , Li excess composition Li [LiM] O 2 , LiM 2 O 4 , LiMPO 4 , LiMVO x , LiMBO 3 And Li 2 MSiO 4 (wherein, at least one or more of M Co Co, Ni, Mn, Fe, Cr, Zn, Ta, Al, Mg, Cu, Cd, Mo, Nb, W, Ru, etc.) can be mentioned. .
  • a part of oxygen in these materials may be substituted with another element such as fluorine.
  • chalcogenides such as sulfur, TiS 2 , MoS 2 , Mo 6 S 8 , and TiSe 2
  • vanadium oxides such as V 2 O 5
  • halides such as FeF 3, and Fe (MoO 4 ) 3 constituting a polyanion such as Fe 2 (SO 4) 3, Li 3 Fe 2 (PO 4) 3, but such quinone organic crystals, but is not limited thereto.
  • the amounts of lithium and anion in the chemical composition may be deviated from the above-mentioned stoichiometric composition.
  • ⁇ Positive Electrode Current Collector 120 As the positive electrode current collector 120, an aluminum foil, a perforated aluminum foil, an expanded metal, a foam metal plate or the like is used, and in addition to aluminum, stainless steel, titanium or the like can be applied. Any positive electrode current collector 120 can be used without limitation to the material, shape, manufacturing method, and the like.
  • ⁇ Anode active material> lithium ions are desorbed in the discharge process, and lithium ions desorbed from the positive electrode active material in the positive electrode mixture layer 110 are inserted in the charge process.
  • a material of the negative electrode active material exhibiting a slight potential for example, carbon-based materials (eg, graphite, graphitizable carbon materials, amorphous carbon materials, organic crystals, activated carbon, etc.), conductive polymer materials (eg, polyacene) , Polyparaphenylene, polyaniline, polyacetylene, lithium complex oxide (eg, lithium titanate: Li 4 Ti 5 O 12 , Li 2 TiO 4, etc.), metallic lithium, metal alloyed with lithium (eg, aluminum, silicon) And tin and the like) or oxides thereof can be used, but the invention is not limited thereto.
  • carbon-based materials eg, graphite, graphitizable carbon materials, amorphous carbon materials, organic crystals, activated carbon, etc.
  • conductive polymer materials
  • ⁇ Anode Current Collector 220 As the negative electrode current collector 220, copper foil, perforated copper foil, expanded metal, foamed metal plate or the like is used. Besides copper, stainless steel, titanium, nickel and the like can also be applied. Any negative electrode current collector 220 can be used without limitation to the material, shape, manufacturing method, and the like.
  • An electrode mixture layer is formed by adhering an electrode slurry obtained by mixing an electrode active material, an electrode conductive agent, an electrode binder and an organic solvent to an electrode current collector by a coating method such as a doctor blade method, dipping method, or spray method. Be done. Thereafter, the electrode mixture layer is dried in order to remove the organic solvent, and the electrode mixture layer is pressure-formed by a roll press to produce an electrode.
  • the electrode slurry may include a semi-solid electrolyte or a semi-solid electrolyte.
  • a plurality of electrode mixture layers may be stacked on the electrode current collector by performing application to drying a plurality of times.
  • the thickness of the electrode mixture layer is desirably equal to or more than the average particle diameter of the electrode active material.
  • the electrode active material powder contains coarse particles having an average particle diameter equal to or larger than the thickness of the electrode mixture layer, the coarse particles are removed in advance by sieve classification, air flow classification, etc., and particles smaller than the thickness of the electrode mixture layer It is desirable to
  • the support particles are preferably insulating particles and insoluble in a semisolid electrolytic solution containing an organic solvent or an ionic liquid.
  • oxide inorganic particles such as silica (SiO 2 ) particles, ⁇ -alumina (Al 2 O 3 ) particles, ceria (CeO 2 ) particles, zirconia (ZrO 2 ) particles and the like can be preferably used.
  • a solid electrolyte may be used as the support particles.
  • solid electrolytes include particles of inorganic solid electrolytes such as oxide-based solid electrolytes such as Li-La-Zr-O and sulfide-based solid electrolytes such as Li 10 Ge 2 PS 12 .
  • the average particle diameter of the primary particles of the support particles is 1 nm to 10 ⁇ m, since it is considered that the holding amount of the semi-solid electrolytic solution is proportional to the specific surface area of the support particles. If the average particle size of the primary particles of the support particles is large, the support particles may not be able to properly hold a sufficient amount of the semisolid electrolyte solution, and it may be difficult to form a semisolid electrolyte. In addition, when the average particle diameter of the primary particles of the support particles is small, the surface-to-surface force between the support particles becomes large, and the support particles are easily aggregated, which may make it difficult to form a semisolid electrolyte.
  • the average particle diameter of the primary particles of the support particles is more preferably 1 nm to 50 nm, and further preferably 1 nm to 10 nm.
  • the average particle size of the primary particles of the supported particles can be measured using a known particle size distribution measuring device using a laser scattering method.
  • the semi-solid electrolyte has a semi-solid electrolyte solvent, an optional low viscosity organic solvent, an electrolyte salt and an optional additive.
  • Semi-solid electrolyte solvents have ether solvents that exhibit properties similar to ionic liquids or ionic liquids.
  • the ionic liquid or ether solvent may be referred to as a main solvent.
  • An ionic liquid is a compound which dissociates into a cation and an anion at normal temperature, and maintains the liquid state.
  • the ionic liquid may be referred to as an ionic liquid, a low melting point molten salt or a room temperature molten salt.
  • the semi-solid electrolyte solvent preferably has low volatility, specifically, one having a vapor pressure of 150 Pa or less at room temperature, from the viewpoint of the stability in the air and the heat resistance in the secondary battery.
  • the content of the semi-solid electrolyte in the electrode mixture layer is preferably 20% by volume to 40% by volume.
  • the content of the semi-solid electrolyte is small, the ion conduction path inside the electrode mixture layer may not be sufficiently formed, and the rate characteristics may be degraded.
  • the active material may be insufficient to cause a decrease in energy density.
  • the ionic liquid is composed of cations and anions.
  • the ionic liquid is classified into imidazolium type, ammonium type, pyrrolidinium type, piperidinium type, pyridinium type, morpholinium type, phosphonium type, sulfonium type and the like according to the cationic species.
  • Examples of the cation constituting the imidazolium-based ionic liquid include alkylimidazolium cations such as 1-ethyl-3-methylimidazolium and 1-butyl-3-methylimidazolium (BMI).
  • Examples of the cation constituting the ammonium-based ionic liquid include N, N, N-, in addition to N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium (DEME) and tetraamyl ammonium.
  • There is an alkyl ammonium cation such as trimethyl-N-propyl ammonium.
  • Examples of the cation constituting the pyrrolidinium-based ionic liquid include alkyl pyrrolidinium cations such as N-methyl-N-propyl pyrrolidinium (Py13) and 1-butyl-1-methyl pyrrolidinium.
  • Examples of the cation constituting the piperidinium-based ionic liquid include alkyl piperidinium cations such as N-methyl-N-propyl piperidinium (PP13) and 1-butyl-1-methyl piperidinium.
  • Examples of the cation constituting the pyridinium-based ionic liquid include alkyl pyridinium cations such as 1-butyl pyridinium and 1-butyl-4-methyl pyridinium.
  • Examples of the cation constituting the morpholinium-based ionic liquid include alkyl morpholinium such as 4-ethyl-4-methyl morpholinium.
  • Examples of the cation constituting the phosphonium-based ionic liquid include alkyl phosphonium cations such as tetrabutyl phosphonium and tributyl methyl phosphonium.
  • Examples of the cation constituting the sulfonium-based ionic liquid include alkylsulfonium cations such as trimethylsulfonium and tributylsulfonium.
  • TFSI bis (trifluoromethanesulfonyl) imide
  • PF 6 bis (fluorosulfonyl) imide
  • BETI bis (penta) Fluoroethanesulfonyl) imide
  • triflate triflate
  • acetate dimethyl phosphate, dicyanamide, trifluoro (trifluoromethyl) borate and the like. You may use these ionic liquids individually or in combination of multiple.
  • Lithium having a cation and the above anion can be used as a lithium salt, for example, lithium bis (fluorosulfonyl) imide (LiFSI), lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), lithium bis (pentafluoroethane) Examples include, but are not limited to, sulfonyl) imide (LiBETI), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium triflate and the like. These electrolyte salts may be used alone or in combination of two or more.
  • the ether-based solvent constitutes a solvated ionic liquid with the electrolyte salt.
  • symmetric glycol represented by the known exhibit similar properties to the ionic liquid glyme (RO (CH 2 CH 2 O ) n -R '(R, R' is a saturated hydrocarbon, n represents an integer)
  • Generic term for ether can be used. From the viewpoint of ion conductivity, tetraglyme (tetraethylene dimethyl glycol, G4), triglyme (triethylene glycol dimethyl ether, G3), pentag lime (pentaethylene glycol dimethyl ether, G5), hexaglyme (hexaethylene glycol dimethyl ether, G6) It can be used preferably.
  • crown ethers (general name of macrocyclic ethers represented by (—CH 2 —CH 2 —O) n (n is an integer)) can be used. Specifically, 12-crown-4, 15-crown-5, 18-crown-6, dibenzo-18-crown-6 and the like can be preferably used, but not limited thereto. These ether solvents may be used alone or in combination of two or more. It is preferable to use tetraglyme and triglyme in that they can form a complex structure with the electrolyte salt.
  • electrolyte salt used with an ether type solvent although lithium salts, such as LiFSI, LiTFSI, LiBETI, can be utilized, it is not restricted to this.
  • a mixture of an ether solvent and an electrolyte salt may be used alone or in combination as a mixed solvent containing a semisolid electrolyte solvent and an electrolyte salt.
  • the low viscosity organic solvent lowers the viscosity of the semi-solid electrolyte solvent and improves the ion conductivity. Since the internal resistance of the semisolid electrolyte containing the semisolid electrolyte solvent is large, the internal resistance of the semisolid electrolyte can be lowered by increasing the ion conductivity of the semisolid electrolyte solvent by adding a low viscosity organic solvent . However, since the semi-solid electrolyte solvent is electrochemically unstable, the decomposition reaction is promoted for the cell operation, causing the resistance increase and the capacity decrease of the secondary battery 1000 along with the repeated operation of the secondary battery 1000 there is a possibility.
  • the cation of the semi-solid electrolyte solvent may be inserted into the graphite to destroy the graphite structure and the secondary battery 1000 can not be repeatedly operated. There is.
  • the low viscosity organic solvent is preferably a solvent having a viscosity smaller than 140 Pa ⁇ s, which is the viscosity at 25 ° C. of a mixture of an ether solvent and an electrolyte salt, for example.
  • an electrolyte salt for example.
  • low viscosity organic solvents propylene carbonate (PC), trimethyl phosphate (TMP), gamma butyl lactone (GBL), ethylene carbonate (EC), triethyl phosphate (TEP), tris (2,2,2- phosphite) And trifluoroethyl) (TFP), dimethyl methylphosphonate (DMMP) and the like.
  • PC propylene carbonate
  • TMP trimethyl phosphate
  • GBL gamma butyl lactone
  • EC ethylene carbonate
  • TEP triethyl phosphate
  • TMP trifluoroethyl
  • DMMP dimethyl methylphosphonate
  • the semi-solid electrolytic solution contain an additive that forms a film that does not easily dissolve metal even when the positive electrode current collector 120 is exposed to a high electrochemical potential.
  • PF 6 - or BF 4 - like include anionic species, and it is desirable to include a cationic species having a strong chemical bond to form a stable compound moisture atmosphere containing.
  • the solubility in water and the presence or absence of hydrolysis can be mentioned.
  • the solubility in water is desirably less than 1%.
  • the presence or absence of hydrolysis can be evaluated by molecular structure analysis of the sample after mixing with water.
  • “not hydrolysed” means that 95% of the residue after removing the water after heating after heating to 100 ° C or higher after the additive has absorbed moisture or mixed with water exhibits the same molecular structure as the additive Means
  • additives examples include tetrabutylammonium hexafluorophosphate (NBu 4 PF 6 ), quaternary ammonium salt of tetrabutylammonium tetrafluoroborate (NBu 4 BF 4 ), 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF 4 ), 1-ethyl-3-methylimidazolium hexafluorophosphate (EMI-PF 6 ), 1-butyl-3-methylimidazolium tetrafluoroborate (BMI-BF 4 ), 1-butyl-3- And imidazolium salts such as methyl imidazolium hexafluorophosphate (BMI-PF 6 ).
  • the anion is PF 6 - if, it is possible to suppress elution of the positive electrode current collector 120.
  • the additive is preferably added in an amount of 1 wt% to 20 wt%, more preferably 2.5 wt% to 10 wt%, based on the total weight of the semisolid electrolyte solvent, the optional low viscosity organic solvent, and the mixed solvent containing an electrolyte salt. It is.
  • the amount of additive added is small, the effect of suppressing the elution of the electrode current collector is reduced, and the battery capacity tends to be reduced with charge and discharge.
  • the additive amount of the additive is large, the lithium ion conductivity is lowered, further, a large amount of stored energy is consumed for the additive decomposition, and as a result, the battery capacity is lowered.
  • the semi-solid electrolyte may have a negative electrode interface stabilizer.
  • the addition amount of the negative electrode interface stabilizer is preferably 30 wt% or less, particularly 10 wt% or less based on the weight of the semi-solid electrolyte. If it exceeds 30 wt%, it may inhibit ion conduction or react with the electrode to increase resistance.
  • the negative electrode interface stabilizer include vinylene carbonate (VC) and fluoroethylene carbonate (FEC), but not limited thereto. These negative electrode interface stabilizers may be used alone or in combination.
  • the low melting point material means a material whose melting point is equal to or lower than the valence reduction temperature of the positive electrode active material.
  • the valence reduction temperature of the positive electrode active material is a temperature at which the valence of the metal element on the surface of the positive electrode active material particles in a charged state decreases with the temperature rise.
  • the material is melted at the valence reduction temperature of the positive electrode active material and nails to the secondary battery 1000
  • the section of the positive electrode 100 or the negative electrode 200 that appeared in the above can be insulated and protected.
  • the temperature at which the positive electrode active material decreases is about 170 ° C. Therefore, it is desirable to have a material having a melting point of 170 ° C. or less, preferably 160 ° C. or less, and more preferably 155 ° C. as the semi-solid electrolyte binder.
  • Low melting point materials such as polyethylene (PE), ethylene vinyl acetate (EVAC), polypropylene (PP), vinyl chloride (PVC), polystyrene (PA), acrylonitrile styrene (AS), acrylonitrile butadiene styrene (ABS), Resins such as methacrylic resin (PMMA), polyvinyl alcohol (PVA), polycarbonate (PC), acetal resin (PCM), styrene butadiene rubber (SBR), vinylidene fluoride / hexafluoropropylene copolymer (P (VDF-HFP)) Can be mentioned. You may use these resin individually or in combination of multiple.
  • the adhesion between the semi-solid electrolyte layer 300 and the electrode current collector is improved, so that the battery performance is improved.
  • a material such as PVDF having a melting point higher than the valence reduction temperature of the positive electrode active material may be included.
  • the addition amount of the low melting point material in the semisolid electrolyte layer 300 as the insulating layer is desirably 4 wt% to 15 wt%. If the amount of the low melting point material added is small, it may be difficult to ensure the insulation of the cross section of the positive electrode 100 or the negative electrode 200. When the amount of the low melting point material added is large, the number of supported particles for holding the semi-solid electrolyte may be small, the semi-solid electrolyte may not be sufficient, and the resistance of the secondary battery 1000 may be increased.
  • the addition amount of the low melting point material can be calculated as follows.
  • the secondary battery is disassembled, the semi-solid electrolyte solution in the secondary battery is removed by methanol washing, the electrode is dried, and then the remaining components of the semi-solid electrolyte layer are scraped to measure the weight. Thereafter, the remaining components that have been scraped out are immersed in NMP, and after centrifugation, the supernatant is subjected to NMR analysis, and the addition amount is calculated by the peak ratio derived from various low melting materials.
  • the semisolid electrolyte is constituted by supporting or holding the semisolid electrolyte on the carrier particles.
  • a semi-solid electrolyte and supporting particles are mixed at a specific volume ratio, an organic solvent such as methanol is added and mixed, a slurry of the semi-solid electrolyte is prepared, and then the slurry is A method of spreading in a petri dish and distilling off the organic solvent to obtain a semi-solid electrolyte powder, and the like can be mentioned.
  • the semi-solid electrolyte layer 300 serves as a medium for transferring lithium ions between the positive electrode 100 and the negative electrode 200.
  • the semi-solid electrolyte layer 300 also acts as an insulator of electrons and prevents a short circuit between the positive electrode 100 and the negative electrode 200.
  • the semisolid electrolyte layer 300 As a method of producing the semisolid electrolyte layer 300, a method of compression molding semisolid electrolyte powder into a pellet shape by a molding die or the like, a method of adding a semisolid electrolyte binder to a semisolid electrolyte powder and mixing, etc. There is.
  • the highly flexible sheet-like semisolid electrolyte layer 300 can be manufactured.
  • a semisolid electrolyte layer 300 can be manufactured by adding and mixing a solution of a binder in which a semisolid electrolyte binder is dissolved in a dispersion solvent to the semisolid electrolyte and distilling off the dispersion solvent.
  • the semi-solid electrolyte layer 300 may be produced by applying and mixing the above-mentioned semi-solid electrolyte with a binder solution added and mixed on an electrode.
  • the semi-solid electrolyte layer 300 may be filled with the semi-solid electrolyte solution by injecting the semi-solid electrolyte solution into the secondary battery 1000 from an open side of the exterior body 500 or a liquid injection hole.
  • the content of the semisolid electrolyte in the semisolid electrolyte layer 300 is preferably 70% by volume to 90% by volume.
  • the content of the semi-solid electrolyte is small, the interfacial resistance between the electrode and the semi-solid electrolyte layer 300 may increase.
  • the content of the semi-solid electrolyte is large, the semi-solid electrolyte may leak out of the semi-solid electrolyte layer 300.
  • a microporous membrane may be added to the semisolid electrolyte layer 300.
  • polyolefin such as polyethylene and polypropylene and glass fiber can be used.
  • an insulating layer not containing a semi-solid electrolyte may be used as the insulating layer in the present invention.
  • the non-aqueous electrolyte is injected into the exterior body 500, and the non-aqueous electrolyte is filled in the secondary battery 1000.
  • coated the slurry which made the said microporous film and oxide inorganic particle contain a binder on an electrode or a microporous film is mentioned.
  • the inorganic oxide particles silica particles, ⁇ -alumina particles, ceria particles, zirconia particles and the like can be mentioned. You may use these materials individually or in combination of multiple.
  • the above-mentioned semisolid electrolyte binder can be used as a binder.
  • the non-aqueous electrolytic solution is a solution in which an electrolyte salt is dissolved in a non-aqueous solvent.
  • a nonaqueous solvent propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3- Dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphoric acid triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, 3-methyl-2-oxazolidinone, tetrahydrofuran, 1,2-diethoxyethane, chloro Ethylene carbonate, chloropropylene carbonate and the like can be mentioned.
  • the electrolyte salt LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6 or a lithium salt such as imide lithium salts represented by lithium trifluoromethane sulfonimide, by the chemical formula Can be mentioned.
  • These electrolyte salts may be used alone or in combination of two or more.
  • the non-aqueous electrolytic solution may have a negative electrode interface stabilizer.
  • Example 1 In order to produce the positive electrode mixture layer 110, LiNi 1/3 Mn 1/3 Co 1/3 O 2 was used as a positive electrode active material, a carbon material was used as a positive electrode conductive agent, and P (VDF-HFP) was used as a positive electrode binder. .
  • the coating amount of the positive electrode mixture layer 110 was 375 g / m 2 .
  • the density was adjusted by a roll press to set the density of the positive electrode mixture layer 110 to 2.8 g / cm 3 .
  • silica (SiO 2 ) particles were used as support particles, and P (VDF-HFP) was used as a semi-solid electrolyte binder.
  • a slurry of semi-solid electrolyte layer in which the weight ratio of supported particles to the semi-solid electrolyte binder is 89.3: 10.7 is coated on the positive electrode 100 while adjusting the viscosity with the dispersion solvent of N-methyl-2-pyrrolidone, A 20 ⁇ m semisolid electrolyte layer 300 was produced.
  • the semi-secondary battery after the application of the semi-solid electrolyte layer 300 was dried at 100 ° C.
  • the negative electrode mixture layer 210 graphite was used as a negative electrode active material, a carbon material as a negative electrode conductive agent, and P (VDF-HFP) was used as a negative electrode binder.
  • the coating amount of the negative electrode mixture layer 210 was 165 g / m 2 . After drying the negative electrode 200 after coating at 120 ° C., the density was adjusted by a roll press, and the density of the negative electrode mixture layer 210 was 1.6 g / cm 3 .
  • a semi-solid electrolyte layer 300 similar to the semi-solid electrolyte layer 300 formed on the positive electrode 100 was fabricated on the negative electrode 200.
  • the semi-secondary battery after the application of the semi-solid electrolyte layer 300 was dried at 100 ° C.
  • the positive electrode 100 and the negative electrode 200 were cut into a predetermined size. At the time of cutting, an electrode tab portion was formed on each of the positive electrode 100 and the negative electrode 200 where the electrode mixture layer was not coated on part of the electrode current collector.
  • the cut positive electrode 100 and the negative electrode 200 were alternately stacked to produce an electrode assembly 400.
  • the plurality of positive electrode tab portions 130 and the plurality of negative electrode tab portions 230 in the electrode body 400 were respectively bundled.
  • the electrode tab portion bundled with the positive electrode terminal and the negative electrode terminal electrically connecting the inside and outside of the secondary battery 1000 was ultrasonically welded.
  • the electrode assembly 400 was placed in the outer package 500, and the crucible of the outer package 500 was thermally welded and sealed at 175 ° C.
  • the sealing is performed by first heat welding other than one side, injecting the semi-solid electrolyte into the gap of the electrode group, and filling the electrode and the semi-solid electrolyte layer 300 with the semi-solid electrolyte. The After that, the other side was vacuum-sealed while being thermally welded and sealed.
  • the method for producing the semi-solid electrolyte is as follows. First, weigh it into a beaker so that tetraglyme (G4) and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) become 1: 1 in molar ratio, mix in a beaker, and mix until uniform solvent to make lithium glyme complex Made. Next, a lithium glyme complex and propylene carbonate (PC) were weighed to a weight ratio of 56.5: 43.5, and charged into a beaker, and mixed until it became a uniform solvent.
  • G4 tetraglyme
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • PC propylene carbonate
  • a mixed solution of lithium glyme complex and PC, vinylene carbonate (VC) and tetrabutylammonium hexafluorophosphate (NBu 4 PF 6 ) are weighed to be 100: 3: 2.5 in weight ratio, and charged into a beaker, It mixed until it became a uniform solvent, and produced the semi-solid electrolyte solution.
  • the secondary battery 1000 is fixed using a fixing jig having a vacant central portion, and the nail is pierced until the secondary battery 1000 penetrates at a nailing speed of 40 mm / sec at the center of the secondary battery 1000. I kept for a minute. A nail having a tip angle of 30 ° and a nail diameter of 3 mm was used. The nail penetration test result was visually confirmed.
  • Examples 2 to 3 A secondary battery was produced in the same manner as in Example 1 except that the semisolid electrolyte binder and the like were changed as shown in FIG. 2, and a nail penetration test was conducted.
  • Example 4 LiNi 1/3 Mn 1/3 Co 1/3 O 2 as a positive electrode active material, acetylene black (manufactured by Electrochemicals: HS100) as a positive electrode conductive agent, and polyvinylidene fluoride (PVDF) as a positive electrode binder in a weight ratio of 94: 4: 2
  • the mixture was uniformly mixed using a kneader at a ratio of This mixture is slurried with N-methyl-2-pyrrolidone (NMP), adjusted to a predetermined solid content ratio, passed through a drying oven at 120 ° C. with a desktop coater (made by Sank Metal), and used as a positive electrode current collector It coated on the foil.
  • NMP N-methyl-2-pyrrolidone
  • the coating amount was 30.1 mg / cm 2 on both sides.
  • the density was adjusted with a roll press to make the electrode density 3.15 g / cm 3 .
  • graphite was used as a negative electrode active material
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • Water was added to this mixture and adjusted to a predetermined solid content ratio, and then it was applied to a Cu foil as a negative electrode current collector through a drying oven at 100 ° C. using a desktop coater.
  • the coating amount was 18.1 mg / cm 2 on both sides.
  • the density was adjusted with a roll press to make the electrode density 1.55 g / cm 3 .
  • the mixture was uniformly mixed using a kneader so that the weight ratio of SiO 2 having a diameter of 1 ⁇ m and P (VDF-HFP) was 89.3: 10.7.
  • This mixture was charged with NMP, slurried, and adjusted to a predetermined solid content ratio. Thereafter, the slurry was applied to both sides of the electrode through a drying oven at 100 ° C. with a desktop coater to produce an insulating layer.
  • the electrode on which the insulating layer was formed was punched out by an air punching machine so that the positive electrode mixture layer 110 had a size of 178 ⁇ 178 mm and the negative electrode mixture layer 210 had a size of 182 ⁇ 183 mm, to produce an electrode tab portion.
  • the electrode was then dried to remove the NMP in the electrode.
  • the positive electrode 100 was sandwiched in a separator having a thickness of 30 ⁇ m and a three-layer structure of PP / PE / PP, and three sides of the separator other than the side on which the positive electrode tab portion 130 was formed were thermally welded.
  • a predetermined number of the positive electrode 100 and the negative electrode 200 sandwiched by the separators were alternately laminated, and an electrode assembly 400 was produced.
  • a 50 ⁇ m-thick sheet containing polytetrafluoroethylene was disposed on the outermost negative electrode 200.
  • the electrode body 400 is fixed with a polyimide tape, and the electrode tab portions formed at the end portions of the electrodes are bundled, and the bundled electrode tab portion, the positive electrode terminal made of Al and the negative electrode terminal made of Ni are each ultrasonicated. Welded.
  • the electrode body 400 was sandwiched in a laminate film, one side for liquid injection was left, and three sides including the side on which the electrode tab portion was formed were heat sealed with a lamination sealing apparatus and vacuum dried.
  • the electrolyte was poured from one side for pouring, and one side for pouring was vacuum sealed.
  • the electrolytic solution is obtained by adding 1 wt% of VC (vinylene carbonate) as a non-aqueous electrolytic solution to 1 M of LiPF 6 , EC (ethylene carbonate) and EMC (ethyl methyl carbonate).
  • the volume ratio of EC to EMC was 1: 2.
  • Comparative Examples 1 to 5 A secondary battery was produced in the same manner as in Example 1 except that the semisolid electrolyte binder and the like were changed as shown in FIG. 2, and a nail penetration test was conducted.
  • Examples 1 to 4 The results of Examples and Comparative Examples are shown in FIG. White smoke was not confirmed in Examples 1 to 4.
  • the electrode current collector is broken because the tensile strength of the electrode current collector is 16 N or less and the semisolid electrolyte binder contains a material whose melting point is equal to or lower than the valence reduction temperature of the positive electrode active material.
  • the semi-solid electrolyte binder is dissolved at a temperature of 170 ° C or less at which oxygen is released from the positive electrode 100 when heat is generated due to a short circuit between the positive and negative electrodes. Is considered to have not occurred.
  • Comparative Examples 1 to 5 white smoke and ignition were reached in Comparative Examples 1 to 5.
  • Comparative Examples 1, 3 and 4 since the melting point of the semi-solid electrolyte binder exceeds 170 ° C., it does not dissolve even at around 170 ° C. where oxygen is released from the positive electrode 100 when heat is generated due to a short circuit between positive and negative electrodes. It is thought that it could not protect.
  • Comparative Examples 2 to 5 since the tensile strength of the positive electrode current collector 120 or the negative electrode current collector 220 exceeds 16 N, burrs are generated in the electrode current collector at the time of nailing to the secondary battery 1000 and a short circuited portion It is considered that white smoke is generated or ignited because it occurs widely.
  • Electrode Body 500 Sheath Body, 1000 Secondary Battery All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

二次電池の安全性を向上させる。 電極集電体および電極合剤層を有する電極と、電極上に形成される絶縁層と、を有し、先端角度が30°の釘を用いたときの電極集電体の引張強度が16N以下であり、絶縁層は、低融点材料を有し、低融点材料の融点は正極活物質の価数減少温度以下である半二次電池。低融点材料はP(VDF-HFP)であり、絶縁層における低融点材料の添加量は4wt%~15wt%であり、電極集電体の厚みは15μm以下であり、電極集電体は正極集電体であることが望ましい。

Description

半二次電池および二次電池
 本発明は、半二次電池および二次電池に関する。
 セパレータが塗布により形成されている従来技術として、特許文献1には以下の内容が開示されている。正極、負極およびセパレータを重ねて渦巻状に巻回し、横断面を扁平状にした巻回電極体と、非水電解質とが、外装体内に収容されてなる非水電解質二次電池であって、前記正極は、金属製の集電体と、前記集電体の両面に正極合剤層とを有しており、前記正極の集電体は、引張強度が3.6N/mm以上であり、前記セパレータは、片面または両面に接着層を有していることを特徴とする非水電解質二次電池。
特開2017-073330号公報
 特許文献1では、先端角度が所定の角度である釘を用いたときの集電体の引張強度とセパレータに含まれる樹脂の融点の関係性を考慮していないため、場合によっては非水電解質二次電池の釘刺し試験により白煙が発生し、非水電解質二次電池の安全性が損なわれる可能性がある。
 本発明は、二次電池の安全性を向上させる目的とする。
 上記課題を解決するための本発明の特徴は、例えば以下の通りである。
 電極集電体および電極合剤層を有する電極と、電極上に形成される絶縁層と、を有し、先端角度が30°の釘を用いたときの電極集電体の引張強度が16N以下であり、絶縁層は、低融点材料を有し、低融点材料の融点は正極活物質の価数減少温度以下である半二次電池。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2017-187406号の開示内容を包含する。
 本発明により二次電池の安全性を向上できる。上記した以外の課題、構成および効果は以下の実施形態の説明により明らかにされる。
二次電池の断面図である。 実施例および比較例の結果を示す表である。
 以下、図面などを用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 本明細書に記載される「~」は、その前後に記載される数値を下限値および上限値として含む意味で使用する。本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値または下限値は、他の段階的に記載されている上限値または下限値に置き換えてもよい。本明細書に記載される数値範囲の上限値または下限値は、実施例中に示されている値に置き換えてもよい。
 本明細書では、二次電池としてリチウムイオン二次電池を例にして説明する。リチウムイオン二次電池とは、電解質中における電極へのリチウムイオンの吸蔵・放出により、電気エネルギーを貯蔵または利用可能とする電気化学デバイスである。これは、リチウムイオン電池、非水電解質二次電池、非水電解液二次電池の別の名称で呼ばれており、いずれの電池も本発明の対象である。本発明の技術的思想は、ナトリウムイオン二次電池、マグネシウムイオン二次電池、カルシウムイオン二次電池、亜鉛二次電池、アルミニウムイオン二次電池などに対しても適用できる。
 図1は、本発明の一実施形態に係る二次電池の断面図である。図1は積層型の二次電池であり、二次電池1000は、正極100、負極200、外装体500および半固体電解質層300(絶縁層)を有する。外装体500は、半固体電解質層300、正極100、負極200、を収容する。外装体500の材料としては、アルミニウム、ステンレス鋼、ニッケルメッキ鋼など、非水電解質に対し耐食性のある材料から選択することができる。本発明は、捲回型の二次電池にも適用できる。
 二次電池1000内で正極100、半固体電解質層300、負極200で構成される電極体400が積層されている。正極100または負極200を電極または二次電池用電極と称する場合がある。正極100、負極200、または半固体電解質層300を二次電池用シートと称する場合がある。半固体電解質層300および正極100または負極200が一体構造になっているものを半二次電池と称する場合がある。
 正極100は、正極集電体120および正極合剤層110を有する。正極集電体120の両面に正極合剤層110が形成されている。負極200は、負極集電体220および負極合剤層210を有する。負極集電体220の両面に負極合剤層210が形成されている。正極合剤層110または負極合剤層210を電極合剤層、正極集電体120または負極集電体220を電極集電体と称する場合がある。
 正極集電体120は正極タブ部130を有する。負極集電体220は負極タブ部230を有する。正極タブ部130または負極タブ部230を電極タブ部と称する場合がある。電極タブ部には電極合剤層が形成されていない。ただし、二次電池1000の性能に悪影響を与えない範囲で電極タブ部に電極合剤層を形成してもよい。正極タブ部130および負極タブ部230は、外装体500の外部に突出しており、突出した複数の正極タブ部130同士、複数の負極タブ部230同士が、例えば超音波接合などで接合されることで、二次電池1000内で並列接続が形成される。本発明は、二次電池1000中で電気的な直列接続を構成させたバイポーラ型の二次電池にも適用できる。
 正極合剤層110は、正極活物質、正極導電剤、正極バインダ、を有する。負極合剤層210は、負極活物質、負極導電剤、負極バインダ、を有する。半固体電解質層300は、半固体電解質バインダおよび半固体電解質を有する。半固体電解質は、担持粒子および半固体電解液を有する。正極活物質または負極活物質を電極活物質、正極導電剤または負極導電剤を電極導電剤、正極バインダまたは負極バインダを電極バインダと称する場合がある。
 電極合剤層の細孔に半固体電解液を充填させてもよい。この場合、外装体500の空いている1辺や注液孔から二次電池1000に半固体電解液を注入し、電極合剤層の細孔に半固体電解液を充填させる。この場合、半固体電解質に含まれる担持粒子を要せず、電極合剤層中の電極活物質や電極導電剤などの粒子が担持粒子として機能して、それらの粒子が半固体電解液を保持する。電極合剤層の細孔に半固体電解液を充填する別の方法として、半固体電解質、電極活物質、電極導電剤、電極バインダを混合したスラリーを調製し、調整したスラリーを電極集電体上に一緒に塗布する方法などがある。
 正極100、負極200、または半固体電解質層300のいずれか一つのみまたは二つ以上に半固体電解質が含まれていてもよい。
 <電極導電剤>
 電極導電剤は、電極合剤層の導電性を向上させる。電極導電剤としては、ケッチェンブラック、アセチレンブラック、黒鉛などが好適に用いられるが、これに限られない。
 <電極バインダ>
 電極バインダは、電極中の電極活物質や電極導電剤などを結着させる。電極バインダとしては、スチレン-ブタジエンゴム、カルボキシメチルセルロ-ス、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン(PVDF)とヘキサフルオロプロピレン(HFP)の共重合体であるP(VDF-HFP)およびこれらの混合物などが挙げられるが、これに限られない。
 <電極集電体>
 電極集電体がアルミニウムの場合、電極集電体の厚さは15μm以下であることが望ましい。電極集電体の厚さが15μmより大きくなると、二次電池1000の体積エネルギー密度が低下する可能性がある。また、電極集電体の引張強度が高くなり、二次電池1000への釘刺し時の短絡抑制が困難となる可能性がある。
 先端角度が30°の釘を用いたときの電極集電体の引張強度が、16N以下、好ましくは14N以下であることが望ましい。電極集電体の引張強度が16Nより大きくなると、電極集電体の引張強度が高くなり、二次電池1000への釘刺し時に電極集電体にバリが発生し、電極との短絡により白煙が生じるかまたは発火する可能性がある。電極集電体の引張強度は、速度40mm/secで電極集電体を突き刺し、電極集電体が破断した時の強度で計測される。突き刺し治具には釘を用い、釘の先端角度が30°、釘の径は3mmを用いることができる。
 電極集電体のヤング率によって望ましい電極集電体の厚さが変わる。例えば、ヤング率が70GPaのアルミニウムでは、電極集電体の厚さが15μmの場合、先端角度が30°の釘で刺さる部分の断面積が196μm2、引張強度が13.7Nである。対して、電極集電体の厚さが17μmの場合、先端角度が30°の釘で刺さる部分の断面積が251μm2、引張強度が17.6Nである。すなわち、電極集電体がアルミニウムの場合、電極集電体の厚さは15μm以下であることが望ましい。一方、ヤング率が200GPaのSUSでは、電極集電体の厚さが15μmの場合、引張強度が39Nである。対して、電極集電体の厚さが9μmの場合、先端角度が30°の釘で刺さる部分の断面積が70μm2、引張強度が14.1Nとなる。従って、ヤング率200GPaのSUS箔を用いる場合、電極集電体の厚さは9μm以下が望ましい。
 <正極活物質>
 貴な電位を示す正極活物質は、充電過程においてリチウムイオンが脱離し、放電過程において負極合剤層の負極活物質から脱離したリチウムイオンが挿入される。正極活物質の材料として、遷移金属を含むリチウム複合酸化物が望ましく、具体例としては、LiMO2、Li過剰組成のLi[LiM]O2、LiM2O4、LiMPO4、LiMVOx、LiMBO3、Li2MSiO4(ただし、M = Co、Ni、Mn、Fe、Cr、Zn、Ta、Al、Mg、Cu、Cd、Mo、Nb、W、Ruなどを少なくとも1種類以上含む)が挙げられる。また、これら材料における酸素の一部をフッ素など、他の元素に置換してもよい。さらに、硫黄、TiS2、MoS2、Mo6S8、TiSe2などのカルコゲナイドや、V2O5などのバナジウム系酸化物、FeF3などのハライド、ポリアニオンを構成するFe(MoO4)3、Fe2(SO4)3、Li3Fe2(PO4)3など、キノン系有機結晶などが挙げられるが、これらに限られない。さらに、化学組成におけるリチウムやアニオン量は上記定比組成からずれていても良い。
 <正極集電体120>
 正極集電体120として、アルミニウム箔、アルミニウム製穿孔箔、エキスパンドメタル、発泡金属板などが用いられ、材質もアルミニウムの他に、ステンレス鋼、チタンなども適用できる。材質、形状、製造方法などに制限されることなく、任意の正極集電体120を使用できる。
 <負極活物質>
 負極活物質は、放電過程においてリチウムイオンが脱離し、充電過程において正極合剤層110中の正極活物質から脱離したリチウムイオンが挿入される。卑な電位を示す負極活物質の材料として、例えば、炭素系材料(例えば、黒鉛、易黒鉛化炭素材料、非晶質炭素材料、有機結晶、活性炭など)、導電性高分子材料(例えば、ポリアセン、ポリパラフェニレン、ポリアニリン、ポリアセチレン)、リチウム複合酸化物(例えば、チタン酸リチウム:Li4Ti5O12やLi2TiO4など)、金属リチウム、リチウムと合金化する金属(例えば、アルミニウム、シリコン、スズなどを少なくとも1種類以上含む)やこれらの酸化物を用いることができるが、これに限られない。
 <負極集電体220>
 負極集電体220として、銅箔、銅製穿孔箔、エキスパンドメタル、発泡金属板などが用いられる。銅の他に、ステンレス鋼、チタン、ニッケルなども適用できる。材質、形状、製造方法などに制限されることなく、任意の負極集電体220を使用できる。
 <電極>
 電極活物質、電極導電剤、電極バインダおよび有機溶媒を混合した電極スラリーを、ドクターブレード法、ディッピング法、スプレー法などの塗工方法によって電極集電体へ付着させることで電極合剤層が作製される。その後、有機溶媒を除去するために電極合剤層を乾燥し、ロールプレスによって電極合剤層を加圧成形することにより電極が作製される。電極スラリーに半固体電解液または半固体電解質を含めてもよい。塗布から乾燥までを複数回行うことにより、複数の電極合剤層を電極集電体に積層させてもよい。
 電極合剤層の厚さは、電極活物質の平均粒径以上とすることが望ましい。電極合剤層の厚さが小さいと、隣接する電極活物質間の電子伝導性が悪化する可能性がある。電極活物質粉末中に電極合剤層の厚さ以上の平均粒径を有する粗粒がある場合、ふるい分級、風流分級などにより粗粒を予め除去し、電極合剤層の厚さ以下の粒子とすることが望ましい。
 <担持粒子>
 担持粒子としては、電気化学的安定性の観点から、絶縁性粒子であり有機溶媒またはイオン液体を含む半固体電解液に不溶であることが好ましい。担持粒子として、例えば、シリカ(SiO2)粒子、γ-アルミナ(Al2O3)粒子、セリア(CeO2)粒子、ジルコニア(ZrO2)粒子などの酸化物無機粒子を好ましく用いることができる。担持粒子として固体電解質を用いてもよい。固体電解質としては、例えば、Li-La-Zr-Oなどの酸化物系固体電解質やLi10Ge2PS12などの硫化物系固体電解質などの無機系固体電解質の粒子が挙げられる。
 半固体電解液の保持量は担持粒子の比表面積に比例すると考えられるため、担持粒子の一次粒子の平均粒径は、1nm~10μmが好ましい。担持粒子の一次粒子の平均粒径が大きいと、担持粒子が十分な量の半固体電解液を適切に保持できず半固体電解質の形成が困難になる可能性がある。また、担持粒子の一次粒子の平均粒径が小さいと、担持粒子間の表面間力が大きくなって担持粒子同士が凝集し易くなって、半固体電解質の形成が困難になる可能性がある。担持粒子の一次粒子の平均粒径は、1nm~50nmがより好ましく、1nm~10nmがさらに好ましい。担持粒子の一次粒子の平均粒径は、レーザー散乱法を利用した公知の粒径分布測定装置を用いて測定できる。
 <半固体電解液>
 半固体電解液は、半固体電解質溶媒、任意の低粘度有機溶媒、電解質塩、任意の添加剤を有する。半固体電解質溶媒は、イオン液体またはイオン液体に類似の性質を示すエーテル系溶媒を有する。イオン液体またはエーテル系溶媒を主溶媒と称する場合がある。イオン液体とは、常温でカチオンとアニオンに解離する化合物であって、液体の状態を保持するものである。イオン液体は、イオン性液体、低融点溶融塩あるいは常温溶融塩と称されることがある。半固体電解質溶媒は、大気中での安定性や二次電池内での耐熱性の観点から、低揮発性、具体的には室温における蒸気圧が150Pa以下であるものが望ましい。
 電極合剤層に半固体電解液が含まれている場合、電極合剤層中の半固体電解液の含有量は20体積%~40体積%であることが望ましい。半固体電解液の含有量が少ない場合、電極合剤層内部でのイオン伝導経路が十分に形成されずレート特性が低下する可能性がある。また、半固体電解液の含有量が多い場合、電極合剤層から半固体電解液が漏れ出す可能性があることに加え、活物質が不十分となりエネルギー密度の低下を招く可能性がある。
 イオン液体はカチオンおよびアニオンで構成される。イオン液体としては、カチオン種に応じ、イミダゾリウム系、アンモニウム系、ピロリジニウム系、ピペリジニウム系、ピリジニウム系、モルホリニウム系、ホスホニウム系、スルホニウム系などに分類される。イミダゾリウム系イオン液体を構成するカチオンには、例えば、1-エチル-3-メチルイミダゾリウムや1-ブチル-3-メチルイミダゾリウム(BMI)などのアルキルイミダゾリウムカチオンなどがある。アンモニウム系イオン液体を構成するカチオンには、例えば、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム(DEME)やテトラアミルアンモニウムなどのほかに、N,N,N-トリメチル-N-プロピルアンモニウムなどのアルキルアンモニウムカチオンがある。ピロリジニウム系イオン液体を構成するカチオンには、例えば、N-メチル-N-プロピルピロリジニウム(Py13)や1-ブチル-1-メチルピロリジニウムなどのアルキルピロリジニウムカチオンなどがある。ピペリジニウム系イオン液体を構成するカチオンには、例えば、N-メチル-N-プロピルピペリジニウム(PP13)や1-ブチル-1-メチルピペリジニウムなどのアルキルピペリジニウムカチオンなどがある。ピリジニウム系イオン液体を構成するカチオンには、例えば、1-ブチルピリジニウムや1-ブチル-4-メチルピリジニウムなどのアルキルピリジニウムカチオンなどがある。モルホリニウム系イオン液体を構成するカチオンには、例えば、4-エチル-4-メチルモルホリニウムなどのアルキルモルホリニウムなどがある。ホスホニウム系イオン液体を構成するカチオンには、例えば、テトラブチルホスホニウムやトリブチルメチルホスホニウムなどのアルキルホスホニウムカチオンなどがある。スルホニウム系イオン液体を構成するカチオンには、例えば、トリメチルスルホニウムやトリブチルスルホニウムなどのアルキルスルホニウムカチオンなどがある。これらカチオンと対になるアニオンとしては、例えば、ビス(トリフルオロメタンスルホニル)イミド(TFSI)、ビス(フルオロスルホニル)イミド、テトラフルオロボレート(BF4)、ヘキサフルオロホスファート(PF6)、ビス(ペンタフルオロエタンスルホニル)イミド(BETI)、トリフルオロメタンスルホネート(トリフラート)、アセテート、ジメチルホスファート、ジシアナミド、トリフルオロ(トリフルオロメチル)ボレートなどがある。これらのイオン液体を単独または複数組み合わせて使用してもよい。
 イオン液体とともに用いる電解質塩として、溶媒に均一に分散できるものを使用できる。カチオンがリチウム、上記アニオンからなるものがリチウム塩として使用することができ、例えば、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(LiBETI)、リチウムテトラフルオロボレート(LiBF4)、リチウムヘキサフルオロホスファート(LiPF6)、リチウムトリフラートなどが挙げられるが、これに限られない。これらの電解質塩を単独または複数組み合わせて使用してもよい。
 エーテル系溶媒は、電解質塩とともに溶媒和イオン液体を構成する。エーテル系溶媒として、イオン液体に類似の性質を示す公知のグライム(R-O(CH2CH2O)n-R’(R、R’は飽和炭化水素、nは整数)で表される対称グリコールジエーテルの総称)を利用できる。イオン伝導性の観点から、テトラグライム(テトラエチレンジメチルグリコール、G4)、トリグライム(トリエチレングリコールジメチルエーテル、G3)、ペンタグライム(ペンタエチレングリコールジメチルエーテル、G5)、ヘキサグライム(ヘキサエチレングリコールジメチルエーテル、G6)を好ましく用いることができる。また、エーテル系溶媒として、クラウンエーテル((-CH2-CH2-O)n(nは整数)で表される大環状エーテルの総称)を利用できる。具体的には、12-クラウン-4、15-クラウン-5、18-クラウン-6、ジベンゾ-18-クラウン-6などを好ましく用いることができるが、これに限らない。これらのエーテル系溶媒を単独または複数組み合わせて使用してもよい。電解質塩と錯体構造を形成できる点で、テトラグライム、トリグライムを用いることが好ましい。
 エーテル系溶媒とともに用いる電解質塩としては、LiFSI、LiTFSI、LiBETIなどのリチウム塩を利用できるが、これに限らない。半固体電解質溶媒および電解質塩を含む混合溶媒として、エーテル系溶媒および電解質塩の混合物を単独または複数組み合わせて使用してもよい。
 <低粘度有機溶媒>
 低粘度有機溶媒は、半固体電解質溶媒の粘度を下げ、イオン伝導率を向上させる。半固体電解質溶媒を含む半固体電解液の内部抵抗は大きいため、低粘度有機溶媒を添加して半固体電解質溶媒のイオン伝導率を上げることにより、半固体電解液の内部抵抗を下げることができる。ただ、半固体電解質溶媒が電気化学的に不安定であるため、電池動作に対して分解反応が促進され、二次電池1000の繰返し動作に伴って二次電池1000の抵抗増加や容量低下を引き起こす可能性がある。さらに、負極活物質として黒鉛を利用した二次電池1000では、充電反応中、半固体電解質溶媒のカチオンが黒鉛に挿入されて黒鉛構造を破壊し、二次電池1000の繰返し動作ができなくなる可能性がある。
 低粘度有機溶媒は、例えばエーテル系溶媒および電解質塩の混合物の25℃における粘度である140Pa・sよりも粘度の小さい溶媒であることが望ましい。低粘度有機溶媒として、炭酸プロピレン(PC)、リン酸トリメチル(TMP)、ガンマブチルラクトン(GBL)、炭酸エチレン(EC)、リン酸トリエチル(TEP)、亜リン酸トリス(2,2,2-トリフルオロエチル)(TFP)、メチルホスホン酸ジメチル(DMMP)などが挙げられる。これらの低粘度有機溶媒を単独または複数組み合わせて使用してもよい。低粘度有機溶媒に上記の電解質塩を溶解させてもよい。
 <添加剤>
 半固体電解液には、正極集電体120が高い電気化学電位に晒されても金属が溶出しにくい皮膜を形成する添加剤を含ませることが望ましい。添加剤としては、PF6 -やBF4 -といったアニオン種を含むこと、および水分を含んだ大気で安定な化合物を形成するための強い化学結合を有するカチオン種を含むことが望ましい。
 大気で安定な化合物であることを示す一指標としては、水に対する溶解度や加水分解の有無を挙げることができる。添加剤が固体の場合、水に対する溶解度が1%未満であることが望ましい。また、加水分解の有無は、水と混合後の試料の分子構造解析で評価できる。ここで、加水分解しない、とは、添加剤が吸湿あるいは水と混和した後、100℃以上で加熱し水分を除去した後の残留物の95%が添加剤と同じ分子構造を示していることを意味する。
 添加剤は(M-R)+An-で表される(M-R)+An-のカチオンは、(M-R)+であり、Mは窒素(N)、ホウ素(B)、リン(P)、硫黄(S)のいずれかからなり、Rは炭化水素基から構成される。また、(M-R)+An-のアニオンはAn-であり、BF4 -やPF6 -が好適に用いられる。添加剤のアニオンをBF4 -やPF6 -にすることで、正極集電体120の溶出を効率的に抑制できる。これは、BF4 -やPF6 -のFアニオンが電極集電体のSUSやアルミニウムと反応し、不動態皮膜を形成することが影響すると考えられる。
 添加剤の例として、テトラブチルアンモニウム ヘキサフルオロホスフェート(NBu4PF6)、テトラブチルアンモニウム テトラフルオロボレート(NBu4BF4)の4級アンモニウム塩、1-エチル-3-メチルイミダゾリウムテトラフルオロボレート(EMI-BF4)、1-エチル-3-メチルイミダゾリウムヘキサフルオロホスフェート(EMI-PF6)、1-ブチル-3-メチルイミダゾリウムテトラフルオロボレート(BMI-BF4)、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェート(BMI-PF6)などのイミダゾリウム塩が挙げられる。特に、アニオンがPF6 -であれば、正極集電体120の溶出を抑制できる。これらの添加剤を単独または複数組み合わせて使用してもよい。
 添加剤の添加量は、半固体電解質溶媒、任意の低粘度有機溶媒および電解質塩を含む混合溶媒の総重量に対して、好ましくは1wt%~20wt%、さらに好ましくは、2.5wt%~10wt%である。添加剤の添加量が少ないと、電極集電体の溶出を抑制する効果が低下し、充放電に伴い電池容量が低下しやすい。また、添加剤の添加量が多いと、リチウムイオン伝導度が低下し、さらに、添加剤分解のために多くの蓄電エネルギーが消費されてしまい、結果として電池容量が低下する。
 <負極界面安定化剤>
 半固体電解液は、負極界面安定化剤を有していてもよい。半固体電解液が負極界面安定化剤を有することにより、二次電池のレート特性や電池寿命を向上させることができる。負極界面安定化剤の添加量は、半固体電解液の重量に対して30wt%以下、特に10wt%以下が好ましい。30wt%を超えるとイオン伝導を阻害するか、あるいは電極と反応して抵抗が上昇する可能性がある。負極界面安定化剤として、ビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)などが挙げられるが、これらに限らない。これらの負極界面安定化剤を単独または複数組み合わせて使用してもよい。
 <半固体電解質バインダ>
 半固体電解質バインダとして、低融点材料を有することが望ましい。低融点材料とは、融点が正極活物質の価数減少温度以下の材料を意味する。正極活物質の価数減少温度とは、充電状態の正極活物質粒子表面の金属元素の価数が温度上昇に伴い低くなる温度である。二次電池1000が正極活物質の価数減少温度を超えると、正極100から酸素が放出され、正極100と負極200との短絡により火花などが生じ、発火する可能性がある。それに対して、半固体電解質バインダとして融点が正極活物質の価数減少温度以下の材料を用いることにより、正極活物質の価数減少温度以下で材料が溶解し、二次電池1000への釘刺しで現れた正極100または負極200断面を絶縁保護できる。
 正極活物質がLiNi1/3Mn1/3Co1/3O2の場合、正極活物質の価数減少温度は約170℃である。よって、半固体電解質バインダとして、融点が170℃以下、好ましくは160℃以下、さらに好ましくは155℃の材料を有することが望ましい。
 低融点材料として、ポリエチレン(PE)、エチレン・酢酸ビニル(EVAC)、ポリプロピレン(PP)、塩化ビニル(PVC)、ポリスチレン(PA)、アクリロニトリル・スチレン(AS)、アクリロニトリル・ブタジエン・スチレン(ABS)、メタクリル樹脂(PMMA)、ポリビニルアルコール(PVA)、ポリカーボネート(PC)、アセタール樹脂(PCM)、スチレンブタジエンゴム(SBR)、フッ化ビニリデン・ヘキサフルオロプロピレン共重体(P(VDF-HFP))などの樹脂が挙げられる。これら樹脂を単独または複数組み合わせて使用してもよい。P(VDF-HFP)を用いることで、半固体電解質層300と電極集電体の密着性が向上するため、電池性能が向上する。半固体電解質バインダ内に、低融点材料以外にPVDFなどの融点が正極活物質の価数減少温度より大きい材料を含めてもよい。
 絶縁層としての半固体電解質層300における低融点材料の添加量は4wt%~15wt%であることが望ましい。低融点材料の添加量が少ないと正極100または負極200断面の絶縁性を確保することが難しくなる可能性がある。低融点材料の添加量が多いと、半固体電解液を保持する担持粒子が少なくなり、半固体電解液が十分でなくなり、二次電池1000の抵抗が高くなる可能性がある。低融点材料の添加量は以下のとおり算出することができる。まず、二次電池を解体し、メタノール洗浄により二次電池中の半固体電解液を除去し、電極を乾燥させた後、半固体電解質層の残りの成分をかきだして、重量を測定する。その後、かきだした残りの成分をNMPに浸漬し、遠心分離後に上澄み液をNMR分析し、各種低融点材料由来のピーク比により添加量が算出される。
 <半固体電解質>
 半固体電解液が担持粒子に担持または保持されることにより半固体電解質が構成される。半固体電解質の作製方法として、半固体電解液と担持粒子とを特定の体積比率で混合し、メタノールなどの有機溶媒を添加し・混合して、半固体電解質のスラリーを調合した後、スラリーをシャーレに広げ、有機溶媒を留去して半固体電解質の粉末を得る方法、などが挙げられる。
 <半固体電解質層300>
 半固体電解質層300は、正極100と負極200の間にリチウムイオンを伝達させる媒体となる。半固体電解質層300は電子の絶縁体としても働き、正極100と負極200の短絡を防止する。
 半固体電解質層300の作製方法として、半固体電解質の粉末を成型ダイスなどでペレット状に圧縮成型する方法や、半固体電解質バインダを半固体電解質の粉末に添加・混合し、シート化する方法などがある。半固体電解質に半固体電解質バインダの粉末を添加・混合することにより、柔軟性の高いシート状の半固体電解質層300を作製できる。また、半固体電解質に、分散溶媒に半固体電解質バインダを溶解させた結着剤の溶液を添加・混合し、分散溶媒を留去することで、半固体電解質層300を作製できる。半固体電解質層300は、前記の、半固体電解質に結着剤の溶液を添加・混合したものを電極上に塗布および乾燥することにより作製してもよい。外装体500の空いている1辺や注液孔から二次電池1000に半固体電解液を注入することで、半固体電解質層300に半固体電解液を充填させてもよい。
 半固体電解質層300中の半固体電解液の含有量は70体積%~90体積%であることが望ましい。半固体電解液の含有量が小さい場合、電極と半固体電解質層300との界面抵抗増加する可能性がある。また、半固体電解液の含有量が大きい場合、半固体電解質層300から半固体電解液が漏れ出してしまう可能性がある。
 半固体電解質層300に微多孔膜を追加してもよい。微多孔膜として、ポリエチレンやポリプロピレンといったポリオレフィンやガラス繊維などを利用できる。
 上記の半固体電解質層300のほか、本発明における絶縁層として、半固体電解液を含まない絶縁層を用いてもよい。この場合、外装体500内に非水電解液を注入して、二次電池1000中に非水電解液が充填される。
 絶縁層として、上記の微多孔膜や酸化物無機粒子にバインダを含有させたスラリーを電極または微多孔膜上に塗布したものが挙げられる。酸化物無機粒子として、シリカ粒子、γ-アルミナ粒子、セリア粒子、ジルコニア粒子などが挙げられる。これらの材料を単独または複数組み合わせて使用してもよい。バインダとして上記の半固体電解質バインダを用いることができる。
 非水電解液は、非水溶媒に電解質塩を溶解させた溶液である。非水溶媒として、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1、2-ジメトキシエタン、2-メチルテトラヒドロフラン、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン、ジエチルエーテル、スルホラン、3-メチル-2-オキサゾリジノン、テトラヒドロフラン、1,2-ジエトキシエタン、クロルエチレンカーボネート、クロルプロピレンカーボネートなどが挙げられる。これらの非水溶媒を単独または複数組み合わせて使用してもよい。電解質塩には、化学式でLiPF6、LiBF4、LiClO4、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、あるいはリチウムトリフルオロメタンスルホンイミドで代表されるリチウムのイミド塩などのリチウム塩が挙げられる。これらの電解質塩を単独または複数組み合わせて使用してもよい。非水電解液は、負極界面安定化剤を有していてもよい。
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 <実施例1>
 正極合剤層110を作製するために、正極活物質としてLiNi1/3Mn1/3Co1/3O2、正極導電剤として炭素材料、および正極バインダとしてP(VDF-HFP)を用いた。正極活物質、正極導電剤、正極バインダの重量比率を84:9:7で混合した正極合剤層スラリーを、N-メチル-2-ピロリドンの分散溶媒で粘度を調整しながら、15μmのアルミニウム箔(正極集電体120)へ塗工し、正極合剤層110を作製した。正極合剤層110の塗工量は375g/m2とした。塗工後の正極100を120℃で乾燥した後、ロールプレスで密度を調整し、正極合剤層110の密度を2.8g/cm3とした。
 次に、正極100上に半固体電解液を含まない半固体電解質層300を作製するために、担持粒子としてシリカ(SiO2)粒子、半固体電解質バインダとしてP(VDF-HFP)を用いた。担持粒子と半固体電解質バインダの重量比率を89.3:10.7で混合した半固体電解質層スラリーを、N-メチル-2-ピロリドンの分散溶媒で粘度を調整しながら、正極100上に塗工し、厚み20μmの半固体電解質層300を作製した。半固体電解質層300塗工後の半二次電池を100℃で乾燥した。
 負極合剤層210を作製するために、負極活物質として黒鉛、負極導電剤として炭素材料、および負極バインダとしてP(VDF-HFP)を用いた。負極活物質、負極導電剤、負極バインダの重量比率を88:2:10で混合した負極合剤層スラリーを、N-メチル-2-ピロリドンの分散溶媒で粘度を調整しながら、10μmの銅箔(負極集電体220)へ塗工し、負極合剤層210を作製した。負極合剤層210の塗工量は165g/m2とした。塗工後の負極200を120℃で乾燥した後、ロールプレスで密度を調整し、負極合剤層210の密度を1.6g/cm3とした。
 次に、正極100上に形成した半固体電解質層300と同様の半固体電解質層300を負極200上に作製した。半固体電解質層300塗工後の半二次電池を100℃で乾燥した。
 正極100および負極200を所定のサイズに裁断した。裁断の際、正極100および負極200に電極集電体の一部に電極合剤層が塗工されない電極タブ部をそれぞれ形成した。裁断した正極100と負極200を交互に積層し、電極体400を作製した。電極体400中の複数の正極タブ部130および複数の負極タブ部230をそれぞれ束ねた。二次電池1000内外を電気的に接続する正極端子および負極端子に束ねた電極タブ部を超音波溶接した。電極体400を外装体500内に入れ、外装体500の淵を175℃で10秒間熱溶着封止させ電気的に絶縁した状態で正極端子と負極端子を貫通させた。封止は、注液口を設けるために、1辺以外をはじめに熱溶着させ、半固体電解液を電極群の空隙に注液し、電極および半固体電解質層300に半固体電解液を充填させた。その後、残りの一辺を真空加圧しながら、熱溶着封止させた。
 半固体電解液の作製方法は以下の通りである。まず、テトラグライム(G4)とリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)がモル比で1:1となるよう、秤量してビーカーに投入し、均一溶媒になるまで混合してリチウムグライム錯体を作製した。次いで、リチウムグライム錯体と炭酸プロピレン(PC)を重量比で56.5:43.5となるよう、秤量してビーカーに投入し、均一溶媒になるまで混合した。さらに、リチウムグライム錯体とPCの混合液とビニレンカーボネート(VC)とテトラブチルアンモニウム ヘキサフルオロホスフェート(NBu4PF6)を重量比で100:3:2.5となるよう、秤量してビーカーに投入し、均一溶媒になるまで混合し、半固体電解液を作製した。
 作製したラミネート型の二次電池1000を電圧4.2V、電流0.05CAの定電流で充電させた後、20時間定電圧充電を行った。また、二次電池1000を電圧2.7V、電流0.05CAの定電流で放電させた後、再度、電圧4.2V、電流0.05CAの定電流で充電させた後、20時間定電圧充電を行った。
 その後、二次電池1000を中央部が空いた固縛治具を用いて固縛し、二次電池1000の中央を釘刺し速度40mm/secで二次電池1000が貫通するまで釘を刺し、1分保持した。先端角度は30°、釘径は3mmの釘を用いた。釘刺し試験結果は、目視により確認した。
 <実施例2~3>
 半固体電解質バインダなどを図2のように変更した以外は実施例1と同様にして二次電池を作製し、釘刺し試験を行った。
 <実施例4>
 正極活物質としてLiNi1/3Mn1/3Co1/3O2、正極導電剤としてアセチレンブラック(電気化学製:HS100)、正極バインダとしてポリフッ化ビニリデン(PVDF)を重量比率94:4:2の割合で混練機を用いて均一混合した。この混合物にN-メチル-2-ピロリドン(NMP)を入れスラリー化し、所定の固形分比に調整した後、卓上コーター(サンクメタル製)にて120℃の乾燥炉を通して正極集電体としてのAl箔上に塗工した。塗工量は、両面30.1mg/cm2とした。次に、ロールプレスで密度を調整し、電極密度を3.15g/cm3とした。
 一方、負極活物質として黒鉛、負極バインダとしてスチレン・ブタジエンゴム(SBR)およびカルボキシルメチルセルロース(CMC)を重量比率98:1:1の割合で混練機を用いて均一混合した。この混合物に水を入れ、所定の固形分比に調整した後、卓上コーターにて100℃の乾燥炉を通して負極集電体としてのCu箔上に塗工した。塗工量は両面18.1mg/cm2とした。次に、ロールプレスで密度を調整し、電極密度を1.55g/cm3とした。
 直径1μmのSiO2とP(VDF-HFP)の重量割合が89.3:10.7になるように混練機を用いて均一混合した。この混合物にNMPを入れ、スラリー化し、所定の固形分比に調整した。その後、卓上コーターにて100℃の乾燥炉を通して、電極の両面にスラリーを塗工し、絶縁層を作製した。
 次に、絶縁層を形成した電極をエアー式打ち抜き機で正極合剤層110が178×178mm、負極合剤層210が182×183mmとなるように打ち抜き、電極タブ部を作製した。次に、電極を乾燥させて電極中のNMPを除去した。次に、厚みが30μmでPP/PE/PPの3層構造であるセパレータに正極100を挟み込み、セパレータにおいて正極タブ部130が形成されている辺以外の3辺を熱溶着した。
 セパレータで挟み込まれた正極100および負極200を所定枚数交互に積層し、電極体400を作製した。次に、最外層の負極200上に厚さ50μmのポリテトラフルオロエチレンを含むシートを配置した。次に、電極体400をポリイミドテープで固定し、電極の端部に形成された電極タブ部を束ねて、束ねた電極タブ部とAl製の正極端子およびNi製の負極端子をそれぞれ超音波で溶接した。
 電極体400をラミネートフィルムに挟み込み、注液用の1辺を残し、電極タブ部が形成された辺を含む3辺をラミネート封止装置にて熱封止し、真空乾燥させた。注液用の1辺から電解液を注液し、注液用の1辺を真空封止した。電解液は、1MのLiPF6、EC(エチレンカーボネート)、EMC(エチルメチルカーボネート)に非水電解液としてVC(ビニレンカーボネート)を1wt%添加したものである。ECとEMCの体積比率で1:2とした。
 <比較例1~5>
 半固体電解質バインダなどを図2のように変更した以外は実施例1と同様にして二次電池を作製し、釘刺し試験を行った。
 <結果および考察>
 実施例および比較例の結果を図2に示す。実施例1~4では白煙が確認できなかった。実施例1~4では、電極集電体の引張強度が16N以下、半固体電解質バインダが融点が正極活物質の価数減少温度以下である材料を含んでいるため、電極集電体が破断しやすく正負極間の短絡を抑制し、正負極間の短絡による発熱時に正極100から酸素が放出される170℃以下で、半固体電解質バインダが溶解し、短絡部を絶縁保護することにより、白煙が発生しなかったものと考えられる。
 一方、比較例1~5では白煙、発火に至った。比較例1、3、4では、半固体電解質バインダの融点が170℃を超えるため、正負極間の短絡による発熱時に正極100から酸素が放出される170℃付近でも溶解せず、短絡部を絶縁保護できなかったと考えられる。また、比較例2~5では、正極集電体120または負極集電体220の引張強度が16Nを超えるため、二次電池1000への釘刺し時に電極集電体にバリが発生し、短絡部が広範囲で起きるため白煙が発生または発火したものと考えられる。
100 正極、110 正極合剤層、120 正極集電体、130 正極タブ部
200 負極、210 負極合剤層、220 負極集電体、230 負極タブ部
300 半固体電解質層、400 電極体、500 外装体、1000 二次電池
 本明細書で引用した全ての刊行物、特許および特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (7)

  1.  電極集電体および電極合剤層を有する電極と、
     前記電極上に形成される絶縁層と、を有し、
     先端角度が30°の釘を用いたときの前記電極集電体の引張強度が16N以下であり、
     前記絶縁層は、低融点材料を有し、
     前記低融点材料の融点は正極活物質の価数減少温度以下である半二次電池。
  2.  請求項1の半二次電池において、
     前記低融点材料はP(VDF-HFP)である半二次電池。
  3.  請求項1の半二次電池において、
     前記絶縁層における前記低融点材料の添加量は4wt%~15wt%である半二次電池。
  4.  請求項1の半二次電池において、
     前記電極集電体の厚みは15μm以下である半二次電池。
  5.  請求項1の半二次電池において、
     前記電極集電体は正極集電体である半二次電池。
  6.  請求項1の半二次電池および非水電解液を有する二次電池。
  7.  請求項1の半二次電池を有し、
     絶縁層が、担持粒子および半固体電解液を含む半固体電解質と、半固体電解質バインダとを有する半固体電解質層である、二次電池。
PCT/JP2018/011208 2017-09-28 2018-03-20 半二次電池および二次電池 WO2019064645A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197029905A KR102278388B1 (ko) 2017-09-28 2018-03-20 반이차 전지 및 이차 전지
CN201880024822.XA CN110506357B (zh) 2017-09-28 2018-03-20 半二次电池和二次电池
JP2019544219A JP6893247B2 (ja) 2017-09-28 2018-03-20 半二次電池および二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-187406 2017-09-28
JP2017187406 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019064645A1 true WO2019064645A1 (ja) 2019-04-04

Family

ID=65901499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011208 WO2019064645A1 (ja) 2017-09-28 2018-03-20 半二次電池および二次電池

Country Status (4)

Country Link
JP (1) JP6893247B2 (ja)
KR (1) KR102278388B1 (ja)
CN (1) CN110506357B (ja)
WO (1) WO2019064645A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199846A (zh) * 2011-04-29 2011-09-28 华南师范大学 一种多孔聚合物电解质支撑膜材料及其制备方法和应用
JP2013020835A (ja) * 2011-07-12 2013-01-31 Otsuka Chem Co Ltd 非水電解液及び非水電解液電池
WO2013051308A1 (ja) * 2011-10-05 2013-04-11 国立大学法人東北大学 二次電池
JP2014207217A (ja) * 2013-03-19 2014-10-30 ソニー株式会社 電池、電解質層、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2015140912A1 (ja) * 2014-03-17 2015-09-24 株式会社東芝 非水電解質二次電池用負極、非水電解質二次電池および電池パック
JP2017059432A (ja) * 2015-09-17 2017-03-23 株式会社日立製作所 擬似固体電解質およびそれを用いた全固体リチウム二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659187B2 (ja) * 1999-09-14 2011-03-30 日本バイリーン株式会社 電池用セパレータ
KR100353867B1 (ko) * 1999-11-30 2002-09-26 한국전자통신연구원 리튬 2차 전지용 고분자 전해질
US7060388B2 (en) * 2001-08-24 2006-06-13 Japan Storage Battery Co., Ltd. Nonaqueous electrolyte secondary battery
CN106575795A (zh) * 2014-09-29 2017-04-19 松下知识产权经营株式会社 层压电池
JPWO2016140352A1 (ja) * 2015-03-04 2018-01-18 日揮触媒化成株式会社 非水電解質二次電池用正極活物質、正極及び非水電解質二次電池
JP6597021B2 (ja) * 2015-07-28 2019-10-30 株式会社村田製作所 電池の製造方法
JP6974930B2 (ja) 2015-10-09 2021-12-01 マクセル株式会社 非水電解質二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199846A (zh) * 2011-04-29 2011-09-28 华南师范大学 一种多孔聚合物电解质支撑膜材料及其制备方法和应用
JP2013020835A (ja) * 2011-07-12 2013-01-31 Otsuka Chem Co Ltd 非水電解液及び非水電解液電池
WO2013051308A1 (ja) * 2011-10-05 2013-04-11 国立大学法人東北大学 二次電池
JP2014207217A (ja) * 2013-03-19 2014-10-30 ソニー株式会社 電池、電解質層、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2015140912A1 (ja) * 2014-03-17 2015-09-24 株式会社東芝 非水電解質二次電池用負極、非水電解質二次電池および電池パック
JP2017059432A (ja) * 2015-09-17 2017-03-23 株式会社日立製作所 擬似固体電解質およびそれを用いた全固体リチウム二次電池

Also Published As

Publication number Publication date
JPWO2019064645A1 (ja) 2020-01-16
KR102278388B1 (ko) 2021-07-19
KR20190123337A (ko) 2019-10-31
CN110506357A (zh) 2019-11-26
JP6893247B2 (ja) 2021-06-23
CN110506357B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
KR102232148B1 (ko) 반고체 전해질층, 전지셀 시트 및 이차전지
EP2365574A2 (en) Nonaqueous electrolytic solution and battery
WO2019234977A1 (ja) 半固体電解質層及び二次電池
WO2019176174A1 (ja) 正極スラリー、正極、電池セルシート、二次電池
KR102294200B1 (ko) 반고체 전해액, 반고체 전해질, 반고체 전해질층 및 이차 전지
CN110521049B (zh) 半固体电解质、电极、带有半固体电解质层的电极和二次电池
JP2020004598A (ja) 電池
JP6843966B2 (ja) 半固体電解液、半固体電解質、半固体電解質層、電極、二次電池
WO2019225078A1 (ja) 絶縁層、電池セルシート、二次電池
JP2020202158A (ja) 絶縁層、電池セル用シート及び電池セル
KR102278388B1 (ko) 반이차 전지 및 이차 전지
WO2019225077A1 (ja) 電池セルシート、電池
WO2019142502A1 (ja) 負極、半二次電池、二次電池
WO2021225065A1 (ja) 非水電解液、半固体電解質層、二次電池用シート及び二次電池
WO2020003864A1 (ja) 負極、電池セルシートおよび二次電池
WO2019087815A1 (ja) 正極合剤層、正極、半二次電池、二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544219

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197029905

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862670

Country of ref document: EP

Kind code of ref document: A1