WO2019234977A1 - 半固体電解質層及び二次電池 - Google Patents

半固体電解質層及び二次電池 Download PDF

Info

Publication number
WO2019234977A1
WO2019234977A1 PCT/JP2019/005568 JP2019005568W WO2019234977A1 WO 2019234977 A1 WO2019234977 A1 WO 2019234977A1 JP 2019005568 W JP2019005568 W JP 2019005568W WO 2019234977 A1 WO2019234977 A1 WO 2019234977A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
solid electrolyte
electrolyte layer
inorganic particles
secondary battery
Prior art date
Application number
PCT/JP2019/005568
Other languages
English (en)
French (fr)
Inventor
西村 悦子
栄二 關
誠之 廣岡
祐介 加賀
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019234977A1 publication Critical patent/WO2019234977A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a semi-solid electrolyte layer and a secondary battery using the same.
  • Patent Document 1 discloses an inorganic nanofiber having a functional group capable of intermolecular interaction with a molten salt on the surface, an electrolyte containing a molten salt and metal ions, and a positive electrode containing a positive electrode active material.
  • An electricity storage device including an electrode and a negative electrode including a negative electrode active material is disclosed.
  • a pseudo-solid electrolyte is formed on the mixture electrode by coating.
  • the mechanical strength is weak, and it may be difficult to prevent a short circuit between the positive electrode and the negative electrode.
  • an object of the present invention is to provide a semi-solid electrolyte layer excellent in mechanical strength and heat resistance while securing a sufficient capacity as a secondary battery, and a secondary battery using the same.
  • the present inventors have found that the above problem can be solved by adding a certain amount of fibrous or scale-like inorganic particles as a component of the semi-solid electrolyte layer, and have completed the invention.
  • the semi-solid electrolyte layer of the present invention includes a semi-solid electrolyte solution containing a semi-solid electrolyte solvent, a semi-solid electrolyte having fibrous or scale-like inorganic particles, and a semi-solid electrolyte binder,
  • the addition amount is 10 wt% or more and less than 40 wt%, and the tensile strength is 0.5 MPa or more.
  • This specification includes the disclosure of Japanese Patent Application No. 2018-110068, which is the basis of the priority of the present application.
  • a semi-solid electrolyte layer having sufficient mechanical strength can be obtained, and in a secondary battery using this semi-solid electrolyte, a short circuit between the positive electrode and the negative electrode can be reliably prevented.
  • a semi-solid electrolyte layer with improved heat resistance can be obtained.
  • the upper limit value or lower limit value described in one numerical range may be replaced with the upper limit value or lower limit value described in another stepwise manner.
  • the upper limit value or lower limit value of the numerical range described in this specification may be replaced with the values shown in the examples.
  • a lithium ion secondary battery is an electrochemical device that can store or use electrical energy by occlusion / release of lithium ions to and from an electrode in an electrolyte. This is called by another name such as a lithium ion battery, a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, etc., and any battery is the subject of the present invention.
  • this invention is not limited to a lithium ion secondary battery, It is the same also about a sodium ion secondary battery, a magnesium ion secondary battery, a calcium ion secondary battery, a zinc secondary battery, an aluminum ion secondary battery, etc. Can be applied to.
  • FIG. 1 is a cross-sectional view of a secondary battery according to an embodiment of the present invention.
  • FIG. 1 shows a stacked secondary battery, and the secondary battery 1000 includes a positive electrode 100, a negative electrode 200, an outer package 500 and a semi-solid electrolyte layer 300.
  • the outer package 500 houses the semi-solid electrolyte layer 300, the positive electrode 100, and the negative electrode 200.
  • the material of the outer package 500 can be appropriately selected from materials that are corrosion resistant to the nonaqueous electrolyte, such as aluminum, stainless steel, and nickel-plated steel.
  • the present invention can be similarly applied to a wound secondary battery.
  • an electrode body 400 composed of a positive electrode 100 (electrode), a semi-solid electrolyte layer 300, and a negative electrode 200 (electrode) is laminated.
  • the positive electrode 100, the negative electrode 200, or the semi-solid electrolyte layer 300 may be referred to as a secondary battery sheet.
  • a structure in which the semi-solid electrolyte layer 300 and the positive electrode 100 or the negative electrode 200 are integrated may be referred to as a semi-secondary battery.
  • the positive electrode 100 has a positive electrode mixture layer 110 (electrode mixture layer), a positive electrode current collector 120 (electrode current collector), and a positive electrode tab 130 (electrode tab).
  • a positive electrode mixture layer 110 is formed on both surfaces of the positive electrode current collector 120.
  • the negative electrode 200 includes a negative electrode mixture layer 210 (electrode mixture layer), a negative electrode current collector 220 (electrode current collector), and a negative electrode tab 230 (electrode tab). Negative electrode mixture layers 210 are formed on both surfaces of the negative electrode current collector 220.
  • the electrode mixture layer (positive electrode mixture layer 110, negative electrode mixture layer 210) is not formed on the electrode tab (positive electrode tab 130, negative electrode tab 230). However, an electrode mixture layer may be formed on the electrode tab as long as the performance of the secondary battery 1000 is not adversely affected.
  • the positive electrode tab 130 and the negative electrode tab 230 protrude to the outside of the outer package 500, and the plurality of protruding positive electrode tabs 130 and the plurality of negative electrode tabs 230 are bonded to each other by, for example, ultrasonic bonding.
  • a parallel connection is formed in the battery 1000.
  • the secondary battery according to the present invention may be a bipolar secondary battery configured in an electrical series connection in the secondary battery 1000.
  • the positive electrode mixture layer 110 includes a positive electrode active material (electrode active material), a positive electrode conductive agent (electrode conductive agent), and a positive electrode binder (electrode binder).
  • the negative electrode mixture layer 210 includes a negative electrode active material (electrode active material), a negative electrode conductive agent (electrode conductive agent), and a negative electrode binder (electrode binder).
  • the semi-solid electrolyte layer 300 has a semi-solid electrolyte binder and a semi-solid electrolyte. In the present embodiment, the semi-solid electrolyte has a semi-solid electrolyte containing a semi-solid electrolyte solvent and fibrous or scale-like inorganic particles.
  • the pores of the electrode mixture layer may be filled with a semi-solid electrolyte.
  • the semi-solid electrolyte is injected into the secondary battery 1000 from the vacant side or the injection hole of the outer package 500, and the pores of the electrode mixture layer are filled with the semi-solid electrolyte.
  • the inorganic particles contained in the semi-solid electrolyte layer 300 need not be filled in the pores of the electrode mixture layer. That is, particles such as an electrode active material and an electrode conductive agent in the electrode mixture layer function as support particles, and these particles hold the semi-solid electrolyte.
  • a slurry in which the semi-solid electrolyte, the electrode active material, the electrode conductive agent and the electrode binder are mixed is prepared, and the adjusted slurry is collected into the electrode current collector.
  • methods such as applying together on the body.
  • the content of the semisolid electrolyte in the electrode mixture layer is preferably 30% by weight or more and 50% by weight or less.
  • the content of the semi-solid electrolytic solution is small, there is a possibility that the ion conduction path inside the electrode mixture layer is not sufficiently formed and the rate characteristic is lowered.
  • an active material may become insufficient and may cause a reduction in energy density.
  • the secondary battery 1000 may have a separator such as a microporous membrane.
  • a separator such as a microporous membrane.
  • polyolefin such as polyethylene or polypropylene, glass fiber, or the like can be used.
  • the semi-solid electrolyte can be filled into the separator by injecting the semi-solid electrolyte into the secondary battery 1000 from the vacant side or the injection hole of the outer package 500. .
  • the electrode conductive agent improves the conductivity of the electrode mixture layer.
  • As the electrode conductive agent ketjen black, acetylene black, graphite or the like is preferably used, but is not limited thereto.
  • the electrode binder binds an electrode active material or an electrode conductive agent in the electrode.
  • the electrode binder include, but are not limited to, styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), and a mixture thereof.
  • ⁇ Positive electrode active material> In the positive electrode active material exhibiting a noble potential, lithium ions are desorbed in the charging process, and lithium ions desorbed from the negative electrode active material are inserted in the discharging process.
  • a lithium composite oxide containing a transition metal As a material of the positive electrode active material, a lithium composite oxide containing a transition metal is desirable, and specific examples include LiMO 2 , Li-rich composition Li [LiM] O 2 , LiM 2 O 4 , LiMPO 4 , LiMVO x , LiMBO 3. , Li 2 MSiO 4 (wherein M includes at least one of Co, Ni, Mn, Fe, Cr, Zn, Ta, Al, Mg, Cu, Cd, Mo, Nb, W, Ru, etc.). It is done.
  • part of oxygen in these materials may be substituted with other elements such as fluorine.
  • chalcogenides such as sulfur, TiS 2 , MoS 2 , Mo 6 S 8 , TiSe 2 , vanadium-based oxides such as V 2 O 5 , halides such as FeF 3 , Fe (MoO 4 ) 3 constituting polyanions, Fe 2 (SO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , quinone organic crystals, and the like are also applicable.
  • the amount of lithium or anion in the chemical composition may deviate from the above stoichiometric composition.
  • ⁇ Positive electrode current collector 120 As the positive electrode current collector 120, an aluminum foil having a thickness of 1 ⁇ m to 100 ⁇ m, an aluminum perforated foil having a thickness of 10 ⁇ m to 100 ⁇ m, and a hole diameter of 0.1 mm to 10 mm, an expanded metal, a foam metal plate, and the like Can be applied. As a material, in addition to aluminum, stainless steel, titanium, or the like can be applied.
  • ⁇ Negative electrode active material> lithium ions are desorbed in the discharging process, and lithium ions desorbed from the positive electrode active material are inserted in the charging process.
  • the negative electrode active material exhibiting a base potential include carbon-based materials (eg, graphite, graphitizable carbon materials, amorphous carbon materials, organic crystals, activated carbon, etc.), conductive polymer materials (eg, polyacene).
  • lithium composite oxide for example, lithium titanate: Li 4 Ti 5 O 12 and Li 2 TiO 4, etc.
  • metal lithium metal that is alloyed with lithium (for example, aluminum, silicon) , Tin or the like) and oxides thereof can be used, but are not limited thereto.
  • a copper foil having a thickness of 1 ⁇ m or more and 100 ⁇ m or less, a copper perforated foil having a thickness of 1 ⁇ m or more and 100 ⁇ m or less, and a pore diameter of 0.1 mm or more and 10 mm or less, an expanded metal, a foam metal plate, or the like is applicable.
  • stainless steel, titanium, nickel or the like can be used in addition to copper.
  • Electrode mixture layer by adhering electrode slurry mixed with electrode active material, electrode conductive agent, electrode binder and organic solvent to electrode current collector by coating method such as doctor blade method, dipping method, spray method etc. Is produced. Then, in order to remove an organic solvent, an electrode mixture layer is dried, and an electrode can be obtained by press-molding an electrode mixture layer with a roll press.
  • the electrode slurry may contain a semi-solid electrolyte or a semi-solid electrolyte.
  • the thickness of the electrode mixture layer is desirably equal to or greater than the average particle diameter of the electrode active material. If the thickness of the electrode mixture layer is small, the electron conductivity between adjacent electrode active materials may deteriorate.
  • the electrode active material has coarse particles having an average particle size equal to or greater than the thickness of the electrode mixture layer, the coarse particles are removed in advance by sieving classification, wind classification, etc., and particles having a thickness of the electrode mixture layer or less. It is desirable that
  • the semi-solid electrolyte layer 300 has a semi-solid electrolyte binder and a semi-solid electrolyte.
  • the semi-solid electrolyte has a semi-solid electrolytic solution containing a semi-solid electrolyte solvent and fibrous or scaly inorganic particles.
  • Such inorganic particles are preferably insulative particles and insoluble in a semi-solid electrolytic solution containing an organic solvent, an ionic liquid, or the like from the viewpoint of electrochemical stability.
  • inorganic particles for example, inorganic particles such as silica (SiO 2 ) particles, ⁇ -alumina (Al 2 O 3 ) particles, ceria (CeO 2 ) particles, boehmite (AlOOH) particles, zirconia (ZrO 2 ) particles are used. Can do.
  • a solid electrolyte may be used as the inorganic particles. Examples of the solid electrolyte include particles of an inorganic solid electrolyte such as an oxide solid electrolyte such as Li—La—Zr—O and a sulfide solid electrolyte such as Li 10 Ge 2 PS 12 .
  • silica, ⁇ -alumina, ceria, boehmite and zirconia particles are preferably used. Any one of these inorganic particles may be used alone, or a plurality of these inorganic particles may be used in combination.
  • fibrous or scale-like particles are used as the inorganic particles.
  • fibrous or scale-like inorganic particles By including fibrous or scale-like inorganic particles, the initial capacity of the battery is improved, and an effect excellent in heat resistance is obtained.
  • “fibrous” refers to an elongated thread, columnar shape, needle shape, or the like.
  • the “scale shape” means a flat plate shape whose thickness direction is thinner than other directions, a bent plate shape, or the like.
  • the fibrous or scale-like inorganic particles preferably have a high aspect ratio. If the aspect ratio is too small, when the semi-solid electrolyte layer 300 becomes high temperature, the inorganic particles flow together with the semi-solid electrolyte binder, and heat resistance deteriorates. In addition, if the aspect ratio is too high, there is a problem that the fluidity of the slurry when preparing the semisolid electrolyte is deteriorated or the surface of the semisolid electrolyte layer 300 is roughened. Is set. For example, the aspect ratio is preferably 10 or more and 100 or less.
  • the aspect ratio of the fibrous inorganic particles is a value obtained by dividing the fiber length by the wire diameter.
  • the length of the fibrous inorganic particles is selected by randomly selecting 100 inorganic particles in the image analysis using a scanning electron microscope, and measuring the length of the longest side of each inorganic particle. A value obtained by averaging the measured lengths for 100 inorganic particles.
  • the fiber diameter of the fibrous inorganic particles is selected by randomly selecting 100 inorganic particles in the image analysis using a scanning electron microscope, and the fiber diameter at the midpoint of the longest side of each inorganic particle. The value which measured and averaged those measured fiber diameters about 100 inorganic particles is said.
  • the length of the fibrous inorganic particles is preferably 1 ⁇ m or more and 500 ⁇ m or less
  • the wire diameter is preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the aspect ratio of the scale-like inorganic particles is a value obtained by dividing the length of the long side of the scale by the plate thickness.
  • the length of the long side of the scale-like inorganic particles means that the length of the longest side on the plate surface of each inorganic particle is selected by randomly selecting 100 inorganic particles in image analysis using a scanning electron microscope. Is a value obtained by averaging the measured lengths of 100 inorganic particles.
  • the plate thickness of the scale-like inorganic particles is the same as that in the image analysis with a scanning electron microscope, 100 inorganic particles are randomly selected, and at the midpoint of the longest side of the plate surface of each inorganic particle.
  • the plate thickness is measured, and the measured plate thickness is an average value for 100 inorganic particles.
  • the length of the long side of the scale-like inorganic particles is preferably 1 ⁇ m or more and 500 ⁇ m or less, and the plate thickness is preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the addition amount of the fibrous or scale-like inorganic particles in the semi-solid electrolyte layer 300 is 10 wt% or more and less than 40 wt%. Preferably, it is 10 weight% or more and 25 weight% or less. Since the amount of inorganic particles added in the dry state when the semisolid electrolyte is removed from the semisolid electrolyte layer has a composition excluding the amount of the semisolid electrolyte, it is larger than the above-described value.
  • the added amount of the fibrous or scale-like inorganic particles is less than 10% by weight, the heat resistance of the semi-solid electrolyte layer is deteriorated, and conversely, when it is 40% by weight or more, a relatively semi-solid electrolyte binder or semi-solid is obtained. Since the amount of the electrolytic solution is reduced, the mechanical strength of the semi-solid electrolyte layer is deteriorated and the electrical conductivity is lowered, which is not possible.
  • the semi-solid electrolyte layer 300 may additionally contain inorganic particles that are not fibrous or scale-like, such as granular, in addition to the above-described fibrous or scale-like inorganic particles. good.
  • inorganic particles include silica, ⁇ -alumina, boehmite, zirconia, and magnesium oxide (MgO) and calcium oxide (CaO) particles. These inorganic particles may be used alone or in combination of two or more. If the amount of inorganic particles that are not fibrous or scaly in the semi-solid electrolyte layer 300 is too large, the amount of inorganic particles that are fibrous or scaly is relatively small, and the effects of the present invention cannot be obtained. In consideration of this point, it can be set as appropriate. For example, it is preferably 10% by weight or less in the semi-solid electrolyte layer 300. Especially preferably, it is 5 weight% or less.
  • the semi-solid electrolyte has a semi-solid electrolyte solvent and an optional low viscosity organic solvent.
  • the semi-solid electrolyte solvent is preferably low volatile from the viewpoint of stability in the air and heat resistance in the secondary battery, and specifically, a solvent having a vapor pressure at room temperature of 150 Pa or less.
  • an ionic liquid, a mixture (complex) of an ether solvent or a carbonate ester exhibiting similar properties to the ionic liquid, and an electrolyte salt can be used.
  • An ionic liquid, an ether solvent or a carbonate may be referred to as a main solvent.
  • An ionic liquid is a compound that dissociates into a cation and an anion at room temperature, and maintains a liquid state.
  • the ionic liquid may be referred to as an ionic liquid, a low melting point molten salt or a room temperature molten salt.
  • the ionic liquid is composed of a cation and an anion, and is classified into imidazolium, ammonium, pyrrolidinium, piperidinium, pyridinium, morpholinium, phosphonium, sulfonium, and the like depending on the cation species.
  • Examples of the cation constituting the imidazolium-based ionic liquid include alkyl imidazolium cations such as 1-ethyl-3-methylimidazolium and 1-butyl-3-methylimidazolium (BMI).
  • Examples of the cation constituting the ammonium-based ionic liquid include N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium (DEME) and tetraamylammonium, as well as N, N, N-trimethyl. There are alkylammonium cations such as -N-propylammonium. Examples of the cation constituting the pyrrolidinium ionic liquid include alkylpyrrolidinium cations such as N-methyl-N-propylpyrrolidinium (Py13) and 1-butyl-1-methylpyrrolidinium.
  • Examples of the cation constituting the piperidinium-based ionic liquid include alkylpiperidinium cations such as N-methyl-N-propylpiperidinium (PP13) and 1-butyl-1-methylpiperidinium.
  • Examples of the cation constituting the pyridinium-based ionic liquid include alkylpyridinium cations such as 1-butylpyridinium and 1-butyl-4-methylpyridinium.
  • Examples of the cation constituting the morpholinium-based ionic liquid include alkylmorpholinium such as 4-ethyl-4-methylmorpholinium.
  • Examples of the cation constituting the phosphonium-based ionic liquid include alkylphosphonium cations such as tetrabutylphosphonium and tributylmethylphosphonium.
  • Examples of the cation constituting the sulfonium-based ionic liquid include alkylsulfonium cations such as trimethylsulfonium and tributylsulfonium.
  • anions that are paired with these cations include bis (trifluoromethanesulfonyl) imide (TFSI), bis (fluorosulfonyl) imide, tetrafluoroborate (BF 4 ), hexafluorophosphate (PF 6 ), and bis (pentafluoro).
  • Ethanesulfonyl) imide (BETI) trifluoromethanesulfonate (triflate), acetate, dimethyl phosphate, dicyanamide, trifluoro (trifluoromethyl) borate and the like.
  • ionic liquids can be used alone or in combination of two or more.
  • the ether solvent constitutes a solvated ionic liquid together with the electrolyte salt.
  • a symmetry represented by a known glyme (RO (CH 2 CH 2 O) n -R ′ (R and R ′ are saturated hydrocarbons, n is an integer)) exhibiting properties similar to ionic liquids (Generic name of glycol diether) can be used.
  • tetraglyme tetraethylene dimethyl glycol, G4
  • triglyme triethylene glycol dimethyl ether, G3)
  • pentaglime pentaglime
  • hexaglyme hexaethylene glycol dimethyl ether, G6
  • crown ether a general term for macrocyclic ethers represented by (—CH 2 —CH 2 —O) n (n is an integer)
  • ether solvents can be used alone or in combination of two or more. It is particularly preferable to use tetraglyme or triglyme in that a complex structure with an electrolyte salt can be easily formed.
  • carbonate esters examples include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, gamma butyrolactone, and mixtures thereof.
  • the electrolyte salt contained in the semi-solid electrolyte solvent it is preferable to select one that can be uniformly dispersed in the semi-solid electrolyte solvent or the low-viscosity organic solvent.
  • lithium bis (fluorosulfonyl) imide LiFSI
  • lithium bis (trifluoromethanesulfonyl) imide LiTFSI
  • lithium bis (pentafluoroethanesulfonyl) imide LiBETI
  • lithium tetrafluoroborate LiBF 4
  • lithium hexafluoro Examples thereof include, but are not limited to, phosphate (LiPF 6 ) and lithium triflate.
  • the weight ratio of the main solvent in the semisolid electrolyte is not particularly limited, but the weight ratio of the main solvent in the total solvent in the semisolid electrolyte is 30% by weight from the viewpoint of battery stability and high-speed charge / discharge performance. It is desirable that the content be 70% by weight or less, particularly 40% by weight or more and 60% by weight or less, and more preferably 45% by weight or more and 55% by weight or less.
  • a low viscosity organic solvent lowers the viscosity of the semi-solid electrolyte and improves ionic conductivity. Since the internal resistance of the semi-solid electrolyte containing the semi-solid electrolyte solvent is large, the internal resistance of the semi-solid electrolyte can be lowered by increasing the ionic conductivity of the semi-solid electrolyte by adding a low-viscosity organic solvent. .
  • Such a low-viscosity organic solvent is preferably used particularly when the main solvent is an ionic liquid or an ether solvent.
  • the low-viscosity organic solvent is desirably a solvent having a viscosity lower than a viscosity of 140 Pa ⁇ s at 25 ° C. of a mixture of an ether solvent and an electrolyte salt, for example.
  • an electrolyte salt for example.
  • low-viscosity organic solvents propylene carbonate (PC), trimethyl phosphate (TMP), ⁇ -butyl lactone (GBL), ethylene carbonate (EC), triethyl phosphate (TEP), tris phosphite (2, 2, 2 -Trifluoroethyl) (TFP), dimethyl methylphosphonate (DMMP) and the like.
  • PC propylene carbonate
  • TMP trimethyl phosphate
  • TBP trimethyl phosphate
  • GBL ⁇ -butyl lactone
  • EC ethylene carbonate
  • TEP triethyl phosphate
  • TMP tris phosphite (2, 2, 2 -Tri
  • the semi-solid electrolytic solution may include a negative electrode interface stabilizer to improve the rate characteristics of the secondary battery and the battery life.
  • the amount of the negative electrode interface stabilizer added is preferably 30% by weight or less, preferably 10% by weight or less, based on the weight of the solvent (semi-solid electrolyte solvent and any low-viscosity organic solvent) in the semi-solid electrolyte. Particularly preferred. If it is 30% by weight or less, even if a negative electrode interface stabilizer is introduced, the solvation structure of the main solvent such as an ether solvent and the electrolyte salt is not significantly disturbed.
  • the negative electrode interface stabilizer vinylene carbonate, fluoroethylene carbonate or the like can be preferably used. These negative electrode interface stabilizers can be used alone or in combination of two or more.
  • the semi-solid electrolytic solution preferably contains a corrosion inhibitor that forms a film in which the metal is difficult to elute even when the positive electrode current collector 120 is exposed to a high electrochemical potential.
  • a corrosion inhibitor it is desirable to use a material containing an anionic species such as PF 6 and BF 4 and a cationic species having a strong chemical bond for forming a stable compound in the atmosphere containing moisture.
  • water solubility and presence / absence of hydrolysis can be mentioned.
  • the solubility in water is desirably less than 1%.
  • the presence or absence of hydrolysis can be evaluated by molecular structure analysis of the sample after mixing with water.
  • does not hydrolyze means that 95% of the residue after removing moisture by heating at 100 ° C. or higher after the corrosion inhibitor has been absorbed or mixed with water has the same molecular structure as the corrosion inhibitor.
  • Corrosion inhibitors (M-R) + An - can be represented by.
  • the cation of (M ⁇ R) + An ⁇ is (M ⁇ R) + , where M is nitrogen (N), boron (B), phosphorus (P), or sulfur (S), and R is carbonized. Consists of hydrogen groups.
  • the anion of (M ⁇ R) + An ⁇ is An ⁇ , and BF 4 ⁇ and PF 6 ⁇ are preferably used.
  • the anions of corrosion inhibitor BF 4 - or PF 6 - is to be done, it is possible to effectively suppress the elution of the positive electrode current collector 120. This, BF 4 - or PF 6 - F anions react with SUS and aluminum electrode current collector, it is considered that affect to form a passivation film.
  • corrosion inhibitors examples include quaternary ammonium salts such as tetrabutylammonium hexafluorophosphate (NBu 4 PF 6 ) and tetrabutylammonium tetrafluoroborate (NBu 4 BF 4 ), 1-ethyl-3-methylimidazolium tetrafluoro Borate (EMI-BF 4 ), 1-ethyl-3-methylimidazolium hexafluorophosphate (EMI-PF 6 ), 1-butyl-3-methylimidazolium tetrafluoroborate (BMI-BF 4 ), 1-butyl- Examples thereof include imidazolium salts such as 3-methylimidazolium hexafluorophosphate (BMI-PF 6 ). In particular, if the anion is PF 6 , elution of the positive electrode current collector 120 can be efficiently suppressed. These corrosion inhibitors can be used alone or in combination of two or more.
  • the addition amount of the corrosion inhibitor is preferably 1% by weight or more and 20% by weight or less, more preferably 2.5% by weight or more and 10% by weight or less with respect to the total weight of the semi-solid electrolyte.
  • the addition amount of the corrosion inhibitor is large, the lithium ion conductivity is lowered, and furthermore, a large amount of stored energy is consumed for the decomposition of the corrosion inhibitor, resulting in a decrease in battery capacity.
  • a fluorine-based resin is preferably used as the semi-solid electrolyte binder.
  • the fluorine-based resin polyvinylidene fluoride (PVDF), a copolymer of vinylidene fluoride and hexafluoropropylene (P (VDF-HFP)), or the like is applicable.
  • PVDF polyvinylidene fluoride
  • P (VDF-HFP) a copolymer of vinylidene fluoride and hexafluoropropylene
  • P (VDF-HFP) is preferably used.
  • These semi-solid electrolyte binders can be used alone or in combination of two or more. By using PVDF or P (VDF-HFP), the adhesion between the semi-solid electrolyte layer 300 and the electrode current collector is improved, so that the battery performance is improved.
  • a semi-solid electrolyte is constituted by carrying or holding a semi-solid electrolyte on inorganic particles.
  • a semi-solid electrolyte and inorganic particles are mixed at a predetermined ratio, an organic solvent such as methanol is added and mixed to prepare a semi-solid electrolyte slurry, and the slurry is then mixed with a petri dish.
  • a method of obtaining a semi-solid electrolyte powder by distilling off the organic solvent but is not limited thereto.
  • the semi-solid electrolyte layer 300 functions as a medium for transmitting lithium ions between the positive electrode 100 and the negative electrode 200.
  • the semi-solid electrolyte layer 300 also functions as an electronic insulator and prevents a short circuit between the positive electrode 100 and the negative electrode 200.
  • the semi-solid electrolyte layer 300 As a method for producing the semi-solid electrolyte layer 300, a method of compressing a semi-solid electrolyte powder into a pellet shape with a molding die or the like, a method of adding and mixing a semi-solid electrolyte binder to a semi-solid electrolyte powder, and forming a sheet, etc. Is mentioned. By adding and mixing a semi-solid electrolyte binder powder to the semi-solid electrolyte, a highly flexible sheet-like semi-solid electrolyte layer 300 can be produced.
  • a semi-solid electrolyte layer 300 is prepared by adding and mixing a solution of a binder in which a semi-solid electrolyte binder is dissolved in a dispersion solvent to the semi-solid electrolyte, and then distilling off the dispersion solvent. May be.
  • the semi-solid electrolyte layer 300 may be produced by applying and drying a mixture of a semi-solid electrolyte and a semi-solid electrolyte binder on the electrode.
  • the conductivity of the semisolid electrolyte layer 300 is preferably increased.
  • the addition amount of the semi-solid electrolyte is small, the interface resistance between the electrode and the semi-solid electrolyte layer 300 may increase.
  • a semi-solid electrolyte solution may leak from the semi-solid electrolyte layer 300.
  • the amount of the semi-solid electrolyte binder added to the semi-solid electrolyte layer 300 is not particularly limited. It is preferable to do.
  • the semi-solid electrolyte layer 300 has a tensile strength of 0.5 MPa or more.
  • the tensile strength is a value obtained by dividing the stress when the semi-solid electrolyte layer is pulled left and right and is broken by the cross-sectional area (thickness ⁇ width) of the semi-solid electrolyte layer.
  • it is 0.7 MPa or more, More preferably, it is 1 MPa or more.
  • the tensile strength in this invention can be measured using well-known apparatuses, such as the Shimadzu Corporation autograph, For example, the sample of thickness 25micrometer, width 1cm, and length 5cm is used. In this case, since the cross-sectional area of the sample is 2.5 ⁇ 10 ⁇ 7 m 2 , this corresponds to a tensile strength of about 0.5 MPa when the stress when the semi-solid electrolyte layer breaks is 0.13 N. .
  • the secondary battery 1000 can be obtained by combining the semi-solid electrolyte layer 300 as described above with the positive electrode 100 and the negative electrode 200.
  • Fibrous alumina particles were used as the inorganic particles.
  • the shape of the alumina particles and the amount added in the semi-solid electrolyte layer are shown in the table below.
  • PVDF-HFP is used as a semi-solid electrolyte binder
  • an equimolar mixture of LiTFSI and G4 (tetraglyme) is used as a semi-solid electrolyte
  • propylene carbonate as a low-viscosity organic solvent is 1: 2 (LiTFSI and G4: propylene carbonate).
  • the amount of vinylene carbonate added to the semi-solid electrolyte is 10% by weight.
  • the following table shows each component. The above components were mixed and formed into a sheet shape to obtain a semi-solid electrolyte layer having a thickness of 25 ⁇ m.
  • the tensile strength of the obtained semi-solid electrolyte layer was measured using an autograph manufactured by Shimadzu Corporation. A sample having a thickness of 25 ⁇ m, a width of 1 cm, and a length of 5 cm was used, and the stress when fractured was 0.15 N. Therefore, the tensile strength was 0.6 MPa.
  • a multilayer secondary battery shown in FIG. 1 having a design capacity of 3 Ah was prototyped, charged at a current of 0.1 C (0.3 A), and constant voltage at 4.2 V. After charging, the discharge capacity was measured at a current of 0.1 C or 1 C, respectively. The results are shown in the table below.
  • the obtained semi-solid electrolyte layer was evaluated for heat resistance.
  • the semi-solid electrolyte layer was sandwiched between the positive electrode and the negative electrode, and a voltage of 0.1 V was applied to the positive electrode and the negative electrode.
  • the tip of a soldering iron heated to 200 ° C. was pierced in the center of the semi-solid electrolyte layer, and the insulation resistance was measured from the value of the current flowing through the positive electrode and the negative electrode and the applied voltage (0.1 V). The results are shown in the table below.
  • Examples 2 to 3> A semi-solid electrolyte layer and a secondary battery were produced in the same manner as in Example 1 except that the amount of fibrous alumina particles added was changed to 15% by weight or 20% by weight. It was measured. The results are shown in the table below.
  • Examples 4 to 6> A semi-solid electrolyte layer was produced in the same manner as in Example 1 except that scale-like alumina particles were used in a predetermined addition amount instead of the fibrous alumina particles.
  • the shape of the scaly alumina particles is shown in the table below.
  • the characteristics measured for the obtained semi-solid electrolyte layer and the secondary battery using the same are shown in the table below.
  • “length ( ⁇ m)” in the table means the length of the long side when using scaly inorganic particles.
  • Examples 7 to 9 A semi-solid electrolyte layer and a secondary battery were produced in the same manner as in Example 1 except that fibrous silica particles were used in a predetermined addition amount instead of the fibrous alumina particles. Various characteristics were measured. The results are shown in the table below.
  • Example 10 to 12 A semi-solid electrolyte layer and a secondary battery were produced in the same manner as in Example 1 except that the fibrous boehmite particles were used in a predetermined addition amount instead of the fibrous alumina particles. Various characteristics were measured. The results are shown in the table below.
  • Examples 13 to 15 A semi-solid electrolyte layer and a secondary battery were produced in the same manner as in Example 1 except that scaly boehmite particles were used in a predetermined addition amount instead of the fibrous alumina particles. Various characteristics were measured. The results are shown in the table below.
  • Examples 16 to 17> In addition to fibrous or scaly alumina particles, 5% by weight of granular silica particles were added, and the same as in Example 1 or Example 4 except that the amount of semisolid electrolyte binder was changed to 35% by weight. A semi-solid electrolyte layer and a secondary battery were prepared, and various characteristics were measured in the same manner as in Example 1. The results are shown in the table below.
  • Example 18 A semi-solid electrolyte layer and a secondary battery were produced in the same manner as in Example 16 except that fibrous silica particles were used in place of the fibrous alumina particles, and various characteristics were measured in the same manner as in Example 1. . The results are shown in the table below.
  • Examples 19 to 20> A semi-solid electrolyte layer and a secondary battery were produced in the same manner as in Example 16 except that fibrous or scaly boehmite particles were used in place of the fibrous alumina particles. Was measured. The results are shown in the table below.
  • Examples 21 to 23 A semi-solid electrolyte layer and a secondary battery were produced in the same manner as in Example 14 except that the amount of added flaky boehmite particles, semi-solid electrolyte binder, and semi-solid electrolyte was changed, and in the same manner as in Example 1. Various characteristics were measured. The results are shown in the table below.
  • Example 24 A semi-solid electrolyte layer and a secondary battery were prepared in the same manner as in Example 12 except that the semi-solid electrolyte was changed to a solution of 1M LiPF 6 in ethylene carbonate and ethyl carbonate (volume ratio of solvent 1: 2). Various characteristics were measured in the same manner as in Example 1. The results are shown in the table below.
  • Examples 25 to 26 Semi-solid in the same manner as in Example 13 except that the amount of scale-like boehmite particles was increased to 30% by weight or 35% by weight and the addition amounts of the semi-solid electrolyte binder and the semi-solid electrolyte were changed accordingly.
  • An electrolyte layer and a secondary battery were prepared, and various characteristics were measured in the same manner as in Example 1. The results are shown in the table below.
  • Example 1 5% by weight of silica particles having an average particle diameter of 10 ⁇ m was added without adding fibrous or scale-like inorganic particles, and a semi-solid electrolyte layer and a secondary battery were produced according to Example 1, and Example 1 Various characteristics were measured in the same manner as above. The results are shown in the table below.
  • the addition amount of the semisolid electrolyte binder is within the range of 20 wt% to 45 wt%, and the addition amount of the semisolid electrolyte solution is within the range of 30 wt% to 70 wt%. It turns out that an effect is acquired.
  • Example 24 it was revealed that even when a semi-solid electrolytic solution containing ethylene carbonate (carbonate ester) was used, the capacity was large and the heat resistance was excellent.
  • Examples 25 and 26 show a case where the amount of scale-like inorganic particles is 30% by weight or more.
  • the tensile strength is 0.6 MPa or more
  • the initial capacity is 2.7 Ah or more
  • the performance is comparable to the other examples. I understood.
  • the resistance value at 200 ° C. was remarkably increased as compared with the results of other examples, and it was revealed that the heat resistance was superior.
  • the tensile strength is 0.5 MPa or more because the amount of the semisolid electrolyte binder added is large, but the heat resistance is inferior because no fibrous or scaly inorganic particles are used.
  • the heat resistance deteriorated because the addition amount of the fibrous or scale-like inorganic particles was as small as 5% by weight.
  • the tensile strength was 1 MPa or more, but the amount of fibrous or scale-like inorganic particles added was as large as 40% by weight, so the capacity was reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

二次電池としての十分な容量を確保しつつ、機械的強度及び耐熱性に優れた半固体電解質層及びそれを用いた二次電池を提供することを目的とする。 本発明の半固体電解質層は、半固体電解質溶媒を含む半固体電解液、並びに繊維状又は鱗片状の無機粒子を有する半固体電解質と、半固体電解質バインダとを含み、前記無機粒子の添加量が10重量%以上40重量%未満であり、引張強度が0.5MPa以上であることを特徴とする。

Description

半固体電解質層及び二次電池
 本発明は、半固体電解質層及びそれを用いた二次電池に関する。
 固体電解質を用いた二次電池として、特許文献1には、表面に溶融塩と分子間相互作用する官能基を有する無機ナノファイバー、溶融塩、及び金属イオンを含む電解質、正極活物質を含む正極電極、及び負極活物質を含む負極電極を含む蓄電デバイスが開示されている。
特開2017-130448号公報
 特許文献1の二次電池では、液体電解質と同等のレート特性を示す全固体二次電池を提供するために、合剤電極上に擬固体化電解質を塗布により形成しており、擬固体化電解質を自立膜とするには機械的強度が弱く、正極及び負極の短絡防止が難しくなる可能性があった。また、擬固体化電解質が高温になった場合の耐熱性についても、なお改良の余地があった。
 そこで本発明は、二次電池としての十分な容量を確保しつつ、機械的強度及び耐熱性に優れた半固体電解質層及びそれを用いた二次電池を提供することを目的とする。
 本発明者らは、半固体電解質層の成分として、繊維状又は鱗片状の無機粒子を一定量添加することによって、上記課題が解決されることを見い出し、発明を完成した。すなわち、本発明の半固体電解質層は、半固体電解質溶媒を含む半固体電解液、並びに繊維状又は鱗片状の無機粒子を有する半固体電解質と、半固体電解質バインダとを含み、前記無機粒子の添加量が10重量%以上40重量%未満であり、引張強度が0.5MPa以上であることを特徴とする。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2018-110068号の開示内容を包含する。
 本発明により、十分な機械的強度を有する半固体電解質層を得ることができ、この半固体電解質を用いた二次電池では正極及び負極の短絡を確実に防止することができる。また、本発明により、耐熱性が向上した半固体電解質層を得ることができる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。
本発明の一実施形態に係る二次電池の断面図である。
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更及び修正が可能である。
 本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的に記載されている上限値又は下限値に置き換えても良い。また、本明細書に記載される数値範囲の上限値又は下限値は、実施例中に示されている値に置き換えても良い。
 以下の実施形態においては、二次電池としてリチウムイオン二次電池を例にして説明する。リチウムイオン二次電池とは、電解質中における電極へのリチウムイオンの吸蔵・放出により、電気エネルギーを貯蔵又は利用可能とする電気化学デバイスである。これは、リチウムイオン電池、非水電解質二次電池、非水電解液二次電池等の別の名称で呼ばれており、いずれの電池も本発明の対象である。なお、本発明はリチウムイオン二次電池には限定されず、ナトリウムイオン二次電池、マグネシウムイオン二次電池、カルシウムイオン二次電池、亜鉛二次電池、アルミニウムイオン二次電池等に対しても同様に適用することができる。
 図1は、本発明の一実施形態に係る二次電池の断面図である。図1は積層型の二次電池であり、二次電池1000は、正極100、負極200、外装体500及び半固体電解質層300を有する。外装体500は、半固体電解質層300、正極100、負極200、を収容する。外装体500の材料としては、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等、非水電解質に対し耐食性のある材料から適宜選択することができる。本発明は、捲回型の二次電池にも同様に適用することができる。
 二次電池1000内で、正極100(電極)、半固体電解質層300及び負極200(電極)で構成される電極体400が積層されている。正極100、負極200又は半固体電解質層300を二次電池用シートと称する場合がある。半固体電解質層300及び正極100又は負極200が一体構造になっているものを半二次電池と称する場合がある。
 正極100は、正極合剤層110(電極合剤層)、正極集電体120(電極集電体)及び正極タブ130(電極タブ)を有する。正極集電体120の両面に正極合剤層110が形成されている。負極200は、負極合剤層210(電極合剤層)、負極集電体220(電極集電体)、負極タブ230(電極タブ)を有する。負極集電体220の両面に負極合剤層210が形成されている。
 電極タブ(正極タブ130、負極タブ230)には電極合剤層(正極合剤層110、負極合剤層210)が形成されていない。ただし、二次電池1000の性能に悪影響を与えない範囲で電極タブに電極合剤層を形成しても良い。正極タブ130及び負極タブ230は、外装体500の外部に突出しており、突出した複数の正極タブ130同士、複数の負極タブ230同士が、例えば超音波接合等で接合されることで、二次電池1000内で並列接続が形成される。本発明に係る二次電池は、二次電池1000中で電気的な直列接続を構成したバイポーラ型の二次電池であっても良い。
 正極合剤層110は、正極活物質(電極活物質)、正極導電剤(電極導電剤)及び正極バインダ(電極バインダ)を有する。負極合剤層210は、負極活物質(電極活物質)、負極導電剤(電極導電剤)及び負極バインダ(電極バインダ)を有する。半固体電解質層300は、半固体電解質バインダ及び半固体電解質を有する。本実施形態において、半固体電解質は、半固体電解質溶媒を含む半固体電解液と、繊維状又は鱗片状の無機粒子とを有する。
 必要に応じて、電極合剤層の細孔に半固体電解液を充填させても良い。この場合、外装体500の空いている一辺や注液孔から二次電池1000に半固体電解液を注入し、電極合剤層の細孔に半固体電解液を充填させる。ここで、半固体電解質層300に含まれる無機粒子は電極合剤層の細孔に充填させることを要しない。すなわち、電極合剤層中の電極活物質や電極導電剤等の粒子が担持粒子として機能して、それらの粒子が半固体電解液を保持する。電極合剤層の細孔に半固体電解液を充填する別の方法として、半固体電解液、電極活物質、電極導電剤及び電極バインダを混合したスラリーを調製し、調整したスラリーを電極集電体上に一緒に塗布する方法等がある。
 電極合剤層に半固体電解液が含まれている場合、電極合剤層中の半固体電解液の含有量は、30重量%以上50重量%以下とすることが望ましい。半固体電解液の含有量が少ない場合、電極合剤層内部でのイオン伝導経路が十分に形成されずレート特性が低下する可能性がある。また、半固体電解液の含有量が多い場合、電極合剤層から半固体電解液が漏れ出す可能性があることに加え、活物質が不十分となりエネルギー密度の低下を招く可能性がある。
 二次電池1000は、微多孔膜等のセパレータを有していても良い。セパレータの材料としては、ポリエチレンやポリプロピレンといったポリオレフィンや、ガラス繊維等を利用することができる。セパレータとして微多孔膜が用いられる場合、外装体500の空いている一辺や注液孔から二次電池1000に半固体電解液を注入することで、セパレータに半固体電解液を充填することができる。
 次に、正極100、半固体電解質層300及び負極200を構成する各要素について詳述する。
<電極導電剤>
 電極導電剤は、電極合剤層の導電性を向上させる。電極導電剤としては、ケッチェンブラック、アセチレンブラック、黒鉛等が好適に用いられるが、これらに限定されるものではない。
<電極バインダ>
 電極バインダは、電極中の電極活物質や電極導電剤等を結着させる。電極バインダとしては、スチレン-ブタジエンゴム、カルボキシメチルセルロ-ス、ポリフッ化ビニリデン(PVDF)及びこれらの混合物等が挙げられるが、これらに限定されるものではない。
<正極活物質>
 貴な電位を示す正極活物質は、充電過程においてリチウムイオンが脱離し、放電過程において負極活物質から脱離したリチウムイオンが挿入される。正極活物質の材料として、遷移金属を含むリチウム複合酸化物が望ましく、具体例としては、LiMO、Li過剰組成のLi[LiM]O、LiM、LiMPO、LiMVO、LiMBO、LiMSiO(ただし、Mは、Co、Ni、Mn、Fe、Cr、Zn、Ta、Al、Mg、Cu、Cd、Mo、Nb、W、Ru等を少なくとも1種類以上含む)が挙げられる。また、これらの材料における酸素の一部を、フッ素等の他の元素に置換しても良い。さらに、硫黄、TiS、MoS、Mo、TiSe等のカルコゲナイドや、V等のバナジウム系酸化物、FeF等のハライド、ポリアニオンを構成するFe(MoO、Fe(SO、LiFe(PO等、キノン系有機結晶等も適用可能である。なお、化学組成におけるリチウムやアニオン量は、上記定比組成からずれていても良い。
<正極集電体120>
 正極集電体120として、厚さが1μm以上100μm以下のアルミニウム箔、厚さが10μm以上100μm以下、孔径0.1mm以上10mm以下の孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板等を適用することができる。材質として、アルミニウムの他に、ステンレス鋼、チタン等が適用可能である。
<負極活物質>
 負極活物質は、放電過程においてリチウムイオンが脱離し、充電過程において正極活物質から脱離したリチウムイオンが挿入される。卑な電位を示す負極活物質の材料として、例えば、炭素系材料(例えば、黒鉛、易黒鉛化炭素材料、非晶質炭素材料、有機結晶、活性炭等)、導電性高分子材料(例えば、ポリアセン、ポリパラフェニレン、ポリアニリン、ポリアセチレン)、リチウム複合酸化物(例えば、チタン酸リチウム:LiTi12やLiTiO等)、金属リチウム、リチウムと合金化する金属(例えば、アルミニウム、シリコン、スズ等を少なくとも一種類以上含む)やこれらの酸化物を用いることができるが、これらに限定されるものではない。
<負極集電体220>
 負極集電体220として、厚さが1μm以上100μm以下の銅箔、厚さが1μm以上100μm以下、孔径0.1mm以上10mm以下の銅製穿孔箔、エキスパンドメタル、発泡金属板等が適用可能である。材質として、銅の他に、ステンレス鋼、チタン、ニッケル等を用いることができる。
<電極>
 上述の電極活物質、電極導電剤、電極バインダ及び有機溶媒を混合した電極スラリーを、ドクターブレード法、ディッピング法、スプレー法等の塗工方法によって電極集電体へ付着させることで電極合剤層が作製される。その後、有機溶媒を除去するために電極合剤層を乾燥し、ロールプレスによって電極合剤層を加圧成形することによって電極を得ることができる。電極スラリーに半固体電解液又は半固体電解質を含めても良い。また、塗布から乾燥までを複数回行うことにより、複数の電極合剤層を電極集電体に積層させても良い。
 電極合剤層の厚さは、電極活物質の平均粒径以上とすることが望ましい。電極合剤層の厚さが小さいと、隣接する電極活物質間の電子伝導性が悪化する可能性がある。電極活物質中に、電極合剤層の厚さ以上の平均粒径を有する粗粒がある場合、ふるい分級、風流分級等により粗粒を予め除去し、電極合剤層の厚さ以下の粒子とすることが望ましい。
<無機粒子>
 次に、半固体電解質層300について説明する。半固体電解質層300は、半固体電解質バインダ及び半固体電解質を有する。そして、半固体電解質は、半固体電解質溶媒を含む半固体電解液と、繊維状又は鱗片状の無機粒子とを有している。そのような無機粒子としては、電気化学的安定性の観点から、絶縁性粒子であり有機溶媒又はイオン液体等を含む半固体電解液に不溶であることが好ましい。無機粒子として、例えば、シリカ(SiO)粒子、γ-アルミナ(Al)粒子、セリア(CeO)粒子、ベーマイト(AlOOH)粒子、ジルコニア(ZrO)粒子等の無機粒子を用いることができる。また、無機粒子として固体電解質を用いても良い。固体電解質としては、例えば、Li-La-Zr-O等の酸化物系固体電解質やLi10GePS12等の硫化物系固体電解質等の無機系固体電解質の粒子が挙げられる。その中でも、シリカ、γ-アルミナ、セリア、ベーマイト及びジルコニアの粒子が好ましく用いられる。これらの無機粒子は、いずれか一種を単独で用いても良く、複数種を組み合わせて用いても良い。
 特に、本発明では、無機粒子として繊維状又は鱗片状のものを用いる。繊維状又は鱗片状の無機粒子を含有させることにより、電池の初期容量が向上するとともに、耐熱性にも優れた効果が得られる。なお、ここで「繊維状」とは、細長い形状である糸状、柱状、針状等のものをいう。また、「鱗片状」とは、厚み方向が他の方向より薄い平板状、曲がった板状等のものをいう。
 繊維状又は鱗片状の無機粒子は、アスペクト比が高いことが好ましい。アスペクト比が小さ過ぎると、半固体電解質層300が高温になったときに、無機粒子が半固体電解質バインダとともに流動して、耐熱性が悪化する。また、アスペクト比が高過ぎると、半固体電解質を調製する際のスラリーの流動性が悪化したり、半固体電解質層300の表面が荒れてしまう問題が生じるため、これらのバランスを考慮して適宜設定される。例えば、アスペクト比は10以上100以下であることが好ましい。
 なお、繊維状の無機粒子におけるアスペクト比とは、繊維の長さを線径で除した値である。ここで、繊維状の無機粒子の長さは、走査型電子顕微鏡による画像解析において、100個の無機粒子をランダムに選択し、それぞれの無機粒子の最も長い辺の長さを測定し、それらの測定した長さを100個の無機粒子について平均した値をいう。また、繊維状の無機粒子の線径とは、同様に走査型電子顕微鏡による画像解析において、100個の無機粒子をランダムに選択し、それぞれの無機粒子の最も長い辺の中点における繊維径を測定し、それらの測定した繊維径を100個の無機粒子について平均した値をいう。本実施形態において、繊維状の無機粒子の長さは、1μm以上500μm以下であることが好ましく、線径は、0.1μm以上10μm以下であることが好ましい。
 また、鱗片状の無機粒子におけるアスペクト比とは、鱗片の長辺の長さを板厚で除した値である。ここで、鱗片状の無機粒子の長辺の長さとは、走査型電子顕微鏡による画像解析において、100個の無機粒子をランダムに選択し、それぞれの無機粒子の板面における最も長い辺の長さを測定し、それらの測定した長さを100個の無機粒子について平均した値をいう。また、鱗片状の無機粒子の板厚とは、同様に走査型電子顕微鏡による画像解析において、100個の無機粒子をランダムに選択し、それぞれの無機粒子の板面における最も長い辺の中点における板厚を測定し、それらの測定した板厚を100個の無機粒子について平均した値をいう。本実施形態において、鱗片状の無機粒子の長辺の長さは、1μm以上500μm以下であることが好ましく、板厚は、0.1μm以上10μm以下であることが好ましい。
 本実施形態において、半固体電解質層300における繊維状又は鱗片状の無機粒子の添加量は、10重量%以上40重量%未満とする。好ましくは、10重量%以上25重量%以下である。半固体電解質層から半固体電解液が除去されたときの乾燥状態での無機粒子の添加量は、半固体電解液量を除いた組成になるので、上述の値よりも大きくなる。繊維状又は鱗片状の無機粒子の添加量が10重量%未満になると、半固体電解質層の耐熱性が悪化し、逆に、40重量%以上になると、相対的に半固体電解質バインダ又は半固体電解液の量が減少するので、半固体電解質層の機械的強度が悪化し、導電率が低下するため不可である。
 また、本実施形態に係る半固体電解質層300は、上記の繊維状又は鱗片状の無機粒子の他に、例えば粒状等の、繊維状又は鱗片状ではない無機粒子を追加的に含んでいても良い。このような無機粒子としては、上記のシリカ、γ-アルミナ、ベーマイト、ジルコニアや、酸化マグネシウム(MgO)及び酸化カルシウム(CaO)の粒子を挙げることができる。これらの無機粒子は、いずれか一種を単独で用いても良く、複数種を組み合わせて用いても良い。半固体電解質層300における、繊維状又は鱗片状ではない無機粒子の添加量は、多過ぎると相対的に繊維状又は鱗片状の無機粒子の量が少なくなり、本発明の効果が得られないため、この点を考慮して適宜設定することができる。例えば、半固体電解質層300中、10重量%以下とすることが好ましい。特に好ましくは5重量%以下である。
<半固体電解液>
 半固体電解液は、半固体電解質溶媒、及び任意の低粘度有機溶媒を有する。半固体電解質溶媒は、大気中での安定性や二次電池内での耐熱性の観点から、低揮発性であり、具体的には室温における蒸気圧が150Pa以下であるものが望ましい。半固体電解質溶媒の具体例として、イオン液体、イオン液体に類似の性質を示すエーテル系溶媒又は炭酸エステルと、電解質塩との混合物(錯体)を用いることができる。イオン液体、エーテル系溶媒又は炭酸エステルを主溶媒と称する場合がある。イオン液体とは、常温でカチオンとアニオンに解離する化合物であって、液体の状態を保持するものである。イオン液体は、イオン性液体、低融点溶融塩あるいは常温溶融塩と称されることがある。
 イオン液体は、カチオン及びアニオンで構成され、カチオン種に応じて、イミダゾリウム系、アンモニウム系、ピロリジニウム系、ピペリジニウム系、ピリジニウム系、モルホリニウム系、ホスホニウム系、スルホニウム系等に分類される。イミダゾリウム系イオン液体を構成するカチオンには、例えば、1-エチル-3-メチルイミダゾリウムや1-ブチル-3-メチルイミダゾリウム(BMI)等のアルキルイミダゾリウムカチオン等がある。アンモニウム系イオン液体を構成するカチオンには、例えば、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム(DEME)やテトラアミルアンモニウム等の他、N,N,N-トリメチル-N-プロピルアンモニウム等のアルキルアンモニウムカチオンがある。ピロリジニウム系イオン液体を構成するカチオンには、例えば、N-メチル-N-プロピルピロリジニウム(Py13)や1-ブチル-1-メチルピロリジニウム等のアルキルピロリジニウムカチオン等がある。ピペリジニウム系イオン液体を構成するカチオンには、例えば、N-メチル-N-プロピルピペリジニウム(PP13)や1-ブチル-1-メチルピペリジニウム等のアルキルピペリジニウムカチオン等がある。ピリジニウム系イオン液体を構成するカチオンには、例えば、1-ブチルピリジニウムや1-ブチル-4-メチルピリジニウム等のアルキルピリジニウムカチオン等がある。モルホリニウム系イオン液体を構成するカチオンには、例えば、4-エチル-4-メチルモルホリニウム等のアルキルモルホリニウム等がある。ホスホニウム系イオン液体を構成するカチオンには、例えば、テトラブチルホスホニウムやトリブチルメチルホスホニウム等のアルキルホスホニウムカチオン等がある。スルホニウム系イオン液体を構成するカチオンには、例えば、トリメチルスルホニウムやトリブチルスルホニウム等のアルキルスルホニウムカチオン等がある。これらカチオンと対になるアニオンとしては、例えば、ビス(トリフルオロメタンスルホニル)イミド(TFSI)、ビス(フルオロスルホニル)イミド、テトラフルオロボレート(BF)、ヘキサフルオロホスフェート(PF)、ビス(ペンタフルオロエタンスルホニル)イミド(BETI)、トリフルオロメタンスルホネート(トリフラート)、アセテート、ジメチルホスフェート、ジシアナミド、トリフルオロ(トリフルオロメチル)ボレート等がある。これらのイオン液体は、いずれか一種を単独で又は複数種を組み合わせて使用することができる。
 エーテル系溶媒は、電解質塩とともに溶媒和イオン液体を構成する。エーテル系溶媒として、イオン液体と類似の性質を示す公知のグライム(R-O(CHCHO)-R’(R、R’は飽和炭化水素、nは整数)で表される対称グリコールジエーテルの総称)を用いることができる。イオン伝導性の観点から、テトラグライム(テトラエチレンジメチルグリコール、G4)、トリグライム(トリエチレングリコールジメチルエーテル、G3)、ペンタグライム(ペンタエチレングリコールジメチルエーテル、G5)、及びヘキサグライム(ヘキサエチレングリコールジメチルエーテル、G6)を好ましく用いることができる。また、エーテル系溶媒として、クラウンエーテル((-CH-CH-O)(nは整数)で表される大環状エーテルの総称)を用いることもできる。具体的には、12-クラウン-4、15-クラウン-5、18-クラウン-6、ジベンゾ-18-クラウン-6等を好ましく用いることができるが、これらに限定されるものではない。これらのエーテル系溶媒は、いずれか一種を単独で又は複数種を組み合わせて使用することができる。電解質塩と錯体構造を容易に形成できる点で、テトラグライム又はトリグライムを用いることが特に好ましい。
 炭酸エステル類としては、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、ガンマブチロラクトン及びそれらの混合物等を挙げることができる。
 半固体電解質溶媒に含まれる電解質塩として、半固体電解質溶媒あるいは低粘度有機溶媒に対し均一に分散できるものを選択することが好ましい。例えば、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(LiBETI)、リチウムテトラフルオロボレート(LiBF)、リチウムヘキサフルオロホスファート(LiPF)、リチウムトリフラート等が挙げられるが、これに限定されるものではない。これらの電解質塩は、いずれか一種を単独で又は複数種を組み合わせて使用することができる。
 半固体電解液における主溶媒の重量比率は、特には限定されないが、電池安定性及び高速充放電性能の観点から、半固体電解液中の溶媒の総和に占める主溶媒の重量比率は30重量%以上70%重量%以下、特に40重量%以上60重量%以下、さらには45重量%以上55重量%以下であることが望ましい。
<低粘度有機溶媒>
 低粘度有機溶媒は、半固体電解液の粘度を下げ、イオン伝導率を向上させる。半固体電解質溶媒を含む半固体電解液の内部抵抗は大きいため、低粘度有機溶媒を添加して半固体電解液のイオン伝導率を上げることにより、半固体電解液の内部抵抗を下げることができる。このような低粘度有機溶媒は、特に、主溶媒がイオン液体又はエーテル系溶媒である場合に好適に用いられる。低粘度有機溶媒は、例えばエーテル系溶媒及び電解質塩の混合物の25℃における粘度140Pa・sより粘度が小さい溶媒であることが望ましい。低粘度有機溶媒として、炭酸プロピレン(PC)、リン酸トリメチル(TMP)、γ-ブチルラクトン(GBL)、炭酸エチレン(EC)、リン酸トリエチル(TEP)、亜リン酸トリス(2,2,2-トリフルオロエチル)(TFP)、メチルホスホン酸ジメチル(DMMP)等が挙げられる。これらの低粘度有機溶媒は、いずれか一種を単独で又は複数種を組み合わせて使用することができる。低粘度有機溶媒に上記の電解質塩を溶解させても良い。
<負極界面安定化剤>
 半固体電解液には、必要に応じて、負極界面安定化剤を含めることにより二次電池のレート特性の向上や電池寿命の向上を図ることができる。負極界面安定化剤の添加量は、半固体電解液中の溶媒(半固体電解質溶媒及び任意の低粘度有機溶媒)の重量に対して30重量%以下であることが好ましく、10重量%以下が特に好ましい。30重量%以下であれば、負極界面安定化剤を導入してもエーテル系溶媒等の主溶媒と電解質塩との溶媒和構造を大きく乱さない。負極界面安定化剤として、ビニレンカーボネート、フルオロエチレンカーボネート等を好ましく用いることができる。これらの負極界面安定化剤は、いずれか一種を単独で又は複数種を組み合わせて使用することができる。
<腐食防止剤>
 半固体電解液には、正極集電体120が高い電気化学電位に晒されても金属が溶出しにくい皮膜を形成する腐食防止剤を含ませることが望ましい。腐食防止剤としては、PFやBFといったアニオン種と、水分を含む大気で安定な化合物を形成するための強い化学結合を有するカチオン種を含む材料を用いることが望ましい。
 大気で安定な化合物であることを示す一指標としては、水に対する溶解度や加水分解の有無を挙げることができる。腐食防止剤が固体である場合、水に対する溶解度が1%未満であることが望ましい。また、加水分解の有無は、水と混合後の試料の分子構造解析によって評価することができる。ここで、「加水分解しない」とは、腐食防止剤が吸湿あるいは水と混和された後、100℃以上で加熱し水分を除去した後の残留物の95%が腐食防止剤と同じ分子構造を示していることを意味する。
 腐食防止剤は(M-R)Anで表すことができる。(M-R)Anのカチオンは(M-R)であり、Mは窒素(N)、ホウ素(B)、リン(P)、硫黄(S)のいずれかであり、Rは炭化水素基から構成される。また、(M-R)AnのアニオンはAnであり、BF やPF が好適に用いられる。腐食防止剤のアニオンをBF やPF にすることで、正極集電体120の溶出を効率的に抑制することができる。これは、BF やPF のFアニオンが電極集電体のSUSやアルミニウムと反応し、不動態皮膜を形成することが影響しているものと考えられる。
 腐食防止剤の例として、テトラブチルアンモニウムヘキサフルオロホスフェート(NBuPF)、テトラブチルアンモニウムテトラフルオロボレート(NBuBF)等の4級アンモニウム塩、1-エチル-3-メチルイミダゾリウムテトラフルオロボレート(EMI-BF)、1-エチル-3-メチルイミダゾリウムヘキサフルオロホスフェート(EMI-PF)、1-ブチル-3-メチルイミダゾリウムテトラフルオロボレート(BMI-BF)、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェート(BMI-PF)等のイミダゾリウム塩が挙げられる。特に、アニオンがPFであれば、正極集電体120の溶出を効率的に抑制することができる。これらの腐食防止剤は、いずれか一種を単独で又は複数種を組み合わせて使用することができる。
 腐食防止剤の添加量は、半固体電解液の総重量に対して、好ましくは1重量%以上20重量%以下、さらに好ましくは、2.5重量%以上10重量%以下である。腐食防止剤の添加量が少ないと、電極集電体の溶出を抑制する効果が低下し、充放電に伴い電池容量が低下し易い。また、腐食防止剤の添加量が多いと、リチウムイオン伝導度が低下し、さらに、腐食防止剤分解のために多くの蓄電エネルギーが消費されてしまい、結果として電池容量が低下する。
<半固体電解質バインダ>
 半固体電解質バインダとしては、フッ素系の樹脂が好適に用いられる。フッ素系の樹脂としては、ポリフッ化ビニリデン(PVDF)や、ビニリデンフルオライド及びヘキサフルオロプロピレンの共重合体(P(VDF-HFP))等が適用可能である。その中でも、P(VDF-HFP)は好適に用いられる。これらの半固体電解質バインダは、いずれか一種を単独で又は複数種を組み合わせて使用することができる。PVDFやP(VDF-HFP)を用いることで、半固体電解質層300と電極集電体の密着性が向上するため、電池性能が向上する。
<半固体電解質>
 半固体電解液が無機粒子に担持又は保持されることによって半固体電解質が構成される。半固体電解質の作製方法として、半固体電解液と無機粒子とを所定の比率で混合し、メタノール等の有機溶媒を添加し、混合して、半固体電解質のスラリーを調合した後、スラリーをシャーレ等に広げ、有機溶媒を留去して半固体電解質の粉末を得る方法等が挙げられるが、これに限定されるものではない。
<半固体電解質層300>
 半固体電解質層300は、正極100と負極200の間にリチウムイオンを伝達させる媒体として機能する。半固体電解質層300は電子の絶縁体としても働き、正極100と負極200との短絡を防止する。
 半固体電解質層300の作製方法として、半固体電解質の粉末を成型ダイス等でペレット状に圧縮成型する方法や、半固体電解質バインダを半固体電解質の粉末に添加・混合し、シート化する方法等が挙げられる。半固体電解質に半固体電解質バインダの粉末を添加・混合することによって、柔軟性の高いシート状の半固体電解質層300を作製することができる。また、半固体電解質に対して、分散溶媒に半固体電解質バインダを溶解させた結着剤の溶液を添加・混合し、その後に分散溶媒を留去することで、半固体電解質層300を作製しても良い。半固体電解質層300は、半固体電解質及び半固体電解質バインダの混合物を電極上に塗布及び乾燥することによって作製しても良い。
 半固体電解質層300中の半固体電解液の添加量は、30重量%以下70重量%以下であると、半固体電解質層300の導電性が高くなり望ましい。半固体電解液の添加量が少ない場合、電極と半固体電解質層300との界面抵抗が増加する可能性がある。また、半固体電解液の添加量が多い場合には、半固体電解質層300から半固体電解液が漏れ出してしまう可能性がある。また、半固体電解質層300における半固体電解質バインダの添加量は、特に限定されるものではないが、半固体電解質層300の機械的強度を確保する観点から、20重量%以上45重量%以下とすることが好ましい。
 本実施形態に係る半固体電解質層300は、0.5MPa以上の引張強度を有する。引張強度は、半固体電解質層を左右に引っ張り、それが破断したときの応力を半固体電解質層の断面積(厚さ×幅)で除した値である。好ましくは0.7MPa以上であり、さらに好ましくは1MPa以上である。これにより、自立膜とするための十分な機械的強度が確保され、正極及び負極の短絡を確実に防止することができる。なお、本発明における引張強度は、島津製作所製オートグラフ等の公知の装置を用いて測定することができ、その測定には、例えば、厚さ25μm、幅1cm、長さ5cmの試料を用いる。この場合、試料の断面積は、2.5×10-7であるので、半固体電解質層が破断したときの応力が0.13Nのときに、約0.5MPaの引張強度に相当する。
 以上のような半固体電解質層300を、正極100及び負極200と組み合わせることで、二次電池1000を得ることができる。
 以下、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1>
 無機粒子として、繊維状のアルミナ粒子を用いた。アルミナ粒子の形状と半固体電解質層における添加量を下表に示す。半固体電解質バインダとしてPVDF-HFPを用い、半固体電解液として、LiTFSIとG4(テトラグライム)の等モル混合液に、低粘度有機溶媒である炭酸プロピレンを1:2(LiTFSI及びG4:炭酸プロピレン)の体積比で混合し、さらに負極界面安定化剤としてビニレンカーボネートを添加したものを用いた。半固体電解液におけるビニレンカーボネートの添加量は、10重量%である。各成分の下表に示す。以上の成分を混合してシート状に成形し、厚さ25μmの半固体電解質層を得た。
 得られた半固体電解質層の引張強度を、島津製作所製オートグラフを用いて測定した。厚さ25μm、幅1cm、長さ5cmの試料を用い、破断したときの応力は0.15Nであった。したがって、引張強度は0.6MPaであった。
 得られた半固体電解質層を用いて、設計容量3Ahとして図1に示す積層型の二次電池を試作し、0.1Cの電流(0.3A)で充電し、4.2Vにて定電圧充電をした後に、0.1C又は1Cの電流にて、それぞれ放電容量を測定した。その結果を下表に示す。
 また、得られた半固体電解質層について、耐熱性を評価した。半固体電解質層を正極と負極の間に挟持させ、正極と負極に0.1Vの電圧を印加した。この状態で、半固体電解質層の中央に、はんだこての200℃に加熱したこて先を突きとおし、正極と負極に流れる電流値と印加電圧(0.1V)から絶縁抵抗を測定した。その結果を下表に示す。
<実施例2~3>
 繊維状のアルミナ粒子の添加量を15重量%又は20重量%に変更した以外は、実施例1と同様にして半固体電解質層及び二次電池を作製し、実施例1と同様に諸特性を測定した。結果を下表に示す。
<実施例4~6>
 繊維状のアルミナ粒子に替えて、鱗片状のアルミナ粒子を所定の添加量で用いた以外は、実施例1と同様にして半固体電解質層を作製した。鱗片状のアルミナ粒子の形状等を下表に示す。また、得られた半固体電解質層及びそれを用いた二次電池について測定した諸特性を下表に示す。なお、表中の「長さ(μm)」は、鱗片状の無機粒子を用いる場合には長辺の長さを意味する。
<実施例7~9>
 繊維状のアルミナ粒子に替えて、繊維状のシリカ粒子を所定の添加量で用いた以外は、実施例1と同様にして半固体電解質層及び二次電池を作製し、実施例1と同様に諸特性を測定した。結果を下表に示す。
<実施例10~12>
 繊維状のアルミナ粒子に替えて、繊維状のベーマイト粒子を所定の添加量で用いた以外は、実施例1と同様にして半固体電解質層及び二次電池を作製し、実施例1と同様に諸特性を測定した。結果を下表に示す。
<実施例13~15>
 繊維状のアルミナ粒子に替えて、鱗片状のベーマイト粒子を所定の添加量で用いた以外は、実施例1と同様にして半固体電解質層及び二次電池を作製し、実施例1と同様に諸特性を測定した。結果を下表に示す。
<実施例16~17>
 繊維状又は鱗片状のアルミナ粒子に加えて、粒状のシリカ粒子を5重量%添加し、半固体電解質バインダの添加量を35重量%に変更した以外は、実施例1又は実施例4と同様にして半固体電解質層及び二次電池を作製し、実施例1と同様に諸特性を測定した。結果を下表に示す。
<実施例18>
 繊維状のアルミナ粒子に替えて、繊維状のシリカ粒子を用いた以外は、実施例16と同様にして半固体電解質層及び二次電池を作製し、実施例1と同様に諸特性を測定した。結果を下表に示す。
<実施例19~20>
 繊維状のアルミナ粒子に替えて、繊維状又は鱗片状のベーマイト粒子を用いた以外は、実施例16と同様にして半固体電解質層及び二次電池を作製し、実施例1と同様に諸特性を測定した。結果を下表に示す。
<実施例21~23>
 麟片状のベーマイト粒子、半固体電解質バインダ及び半固体電解液の添加量を変更した以外は、実施例14と同様にして半固体電解質層及び二次電池を作製し、実施例1と同様に諸特性を測定した。結果を下表に示す。
<実施例24>
 半固体電解液を1M LiPFの炭酸エチレン及び炭酸エチルメチル(溶媒の体積混合比1:2)溶液に変更した以外は、実施例12と同様にして半固体電解質層及び二次電池を作製し、実施例1と同様に諸特性を測定した。結果を下表に示す。
<実施例25~26>
 鱗片状のベーマイト粒子の添加量を30重量%又は35重量%にまで高め、それに応じて半固体電解質バインダ及び半固体電解液の添加量を変更した以外は、実施例13と同様にして半固体電解質層及び二次電池を作製し、実施例1と同様に諸特性を測定した。結果を下表に示す。
<比較例1>
 繊維状又は鱗片状の無機粒子を添加せず、平均粒径10μmの粒状のシリカ粒子を5重量%添加し、実施例1に準じて半固体電解質層及び二次電池を作製し、実施例1と同様に諸特性を測定した。結果を下表に示す。
<比較例2~6>
 下表に示すような繊維状又は鱗片状の各無機粒子の添加量を5重量%に変更し、実施例1に準じて半固体電解質層及び二次電池を作製し、諸特性を測定した。結果を下表に示す。
<比較例7~11>
 下表に示すような繊維状又は鱗片状の各無機粒子の添加量を40重量%に変更し、実施例1に準じて半固体電解質層及び二次電池を作製し、諸特性を測定した。結果を下表に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<考察>
 実施例1~15の結果から、所定量の繊維状又は鱗片状の無機粒子を添加することにより、十分な電池容量が得られ、耐熱性にも優れることが明らかとなった。
 実施例16~20の結果から、繊維状又は鱗片状の無機粒子に加えて、粒状の無機粒子を混合した場合にも、同様に高い性能が得られることが分かった。
 実施例21~23の結果から、半固体電解質バインダの添加量は20重量%以上45重量%以下、半固体電解液の添加量は30重量%以上70重量%以下の範囲内で、本発明の効果が得られることが分かった。
 実施例24の結果によれば、炭酸エチレン(炭酸エステル)を含む半固体電解液を用いた場合であっても、容量が大きく、耐熱性に優れていることが明らかになった。
 実施例25及び26は、鱗片状の無機粒子の量を30重量%以上とした場合を示している。このように鱗片状の無機粒子の添加量を多くした場合であっても、引張強度は0.6MPa以上、初期容量は2.7Ah以上であって、他の実施例と遜色ない性能であることが分かった。それに加えて、200℃の抵抗値が他の実施例の結果よりも著しく増大し、耐熱性がより優れることが明らかとなった。
 これらの実施例に対して、比較例では、容量を増大させ、耐熱性を高めることが同時に実現することができない。
 例えば、比較例1では、半固体電解質バインダの添加量が多いため引張強度が0.5MPa以上であるが、繊維状又は鱗片状の無機粒子を用いていないため、耐熱性に劣る。比較例2~6では、繊維状又は鱗片状の無機粒子の添加量が5重量%と小さいため、耐熱性が悪くなった。さらに、比較例7~11では、引張強度が1MPa以上であるが、繊維状又は鱗片状の無機粒子の添加量が40重量%と多量になったため、容量が低下した。
100 正極
110 正極合剤層
120 正極集電体
130 正極タブ
200 負極
210 負極合剤層
220 負極集電体
230 負極タブ
300 半固体電解質層
400 電極体
500 外装体
1000 二次電池
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (10)

  1.  半固体電解質溶媒を含む半固体電解液、並びに繊維状又は鱗片状の無機粒子を有する半固体電解質と、半固体電解質バインダとを含み、
     前記無機粒子の添加量が10重量%以上40重量%未満であり、
     引張強度が0.5MPa以上である、半固体電解質層。
  2.  前記無機粒子が繊維状であって、線径が0.1μm以上10μm以下であり、長さが1μm以上500μm以下であり、アスペクト比が10以上100以下である請求項1に記載の半固体電解質層。
  3.  前記無機粒子が鱗片状であって、板厚が0.1μm以上10μm以下であり、長辺の長さが1μm以上500μm以下であり、アスペクト比が10以上100以下である請求項1に記載の半固体電解質層。
  4.  前記無機粒子が、シリカ、γ-アルミナ、セリア、ベーマイト及びジルコニアからなる群から選択される一種以上である請求項1に記載の半固体電解質層。
  5.  シリカ、γ-アルミナ、ベーマイト、ジルコニア、酸化マグネシウム及び酸化カルシウムからなる群から選択される一種以上の、繊維状又は鱗片状ではない無機粒子をさらに含む請求項1に記載の半固体電解質層。
  6.  前記半固体電解質溶媒が、イオン液体、エーテル系溶媒又は炭酸エステルと、電解質塩とを含む請求項1に記載の半固体電解質層。
  7.  前記半固体電解液の添加量が、30重量%以上70重量%以下である請求項1に記載の半固体電解質層。
  8.  前記半固体電解質バインダが、ビニリデンフルオライド及びヘキサフルオロプロピレンの共重合体を含む請求項1に記載の半固体電解質層。
  9.  前記半固体電解質バインダの添加量が、20重量%以上45重量%以下である請求項1に記載の半固体電解質層。
  10.  請求項1に記載の半固体電解質層、正極及び負極を有する二次電池。
PCT/JP2019/005568 2018-06-08 2019-02-15 半固体電解質層及び二次電池 WO2019234977A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-110068 2018-06-08
JP2018110068A JP2019212576A (ja) 2018-06-08 2018-06-08 半固体電解質層及び二次電池

Publications (1)

Publication Number Publication Date
WO2019234977A1 true WO2019234977A1 (ja) 2019-12-12

Family

ID=68770171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005568 WO2019234977A1 (ja) 2018-06-08 2019-02-15 半固体電解質層及び二次電池

Country Status (2)

Country Link
JP (1) JP2019212576A (ja)
WO (1) WO2019234977A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467194A (zh) * 2020-12-09 2021-03-09 中国科学院上海硅酸盐研究所 一种有机-无机复合准固态电解质以及准固态锂电池
GB2605021A (en) * 2021-03-17 2022-09-21 Thermal Ceramics Uk Ltd Ionically conductive inorganic platelets and the production thereof
CN118040074A (zh) * 2024-04-11 2024-05-14 蜂巢能源科技股份有限公司 一种半固态锂离子电池及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115917824A (zh) * 2020-06-29 2023-04-04 国立大学法人东北大学 电解质、二次电池和复合材料
JP7459982B1 (ja) 2023-01-04 2024-04-02 トヨタ自動車株式会社 リチウムイオン伝導材料、リチウムイオン二次電池、及びリチウムイオン伝導材料の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255842A (ja) * 1997-03-13 1998-09-25 Matsushita Electric Ind Co Ltd リチウム・ポリマ二次電池
JPH1180296A (ja) * 1997-09-11 1999-03-26 Matsushita Electric Ind Co Ltd ゲル状ポリマー電解質
JP2001167794A (ja) * 1999-12-10 2001-06-22 Japan Storage Battery Co Ltd 非水電解質電池
JP2010176869A (ja) * 2009-01-27 2010-08-12 Konica Minolta Holdings Inc 電解質及び二次電池
JP2011060558A (ja) * 2009-09-09 2011-03-24 Sony Corp 非水電解質電池
JP2014207217A (ja) * 2013-03-19 2014-10-30 ソニー株式会社 電池、電解質層、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2015090777A (ja) * 2013-11-05 2015-05-11 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2018074174A1 (ja) * 2016-10-20 2018-04-26 株式会社日立製作所 リチウム二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255842A (ja) * 1997-03-13 1998-09-25 Matsushita Electric Ind Co Ltd リチウム・ポリマ二次電池
JPH1180296A (ja) * 1997-09-11 1999-03-26 Matsushita Electric Ind Co Ltd ゲル状ポリマー電解質
JP2001167794A (ja) * 1999-12-10 2001-06-22 Japan Storage Battery Co Ltd 非水電解質電池
JP2010176869A (ja) * 2009-01-27 2010-08-12 Konica Minolta Holdings Inc 電解質及び二次電池
JP2011060558A (ja) * 2009-09-09 2011-03-24 Sony Corp 非水電解質電池
JP2014207217A (ja) * 2013-03-19 2014-10-30 ソニー株式会社 電池、電解質層、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2015090777A (ja) * 2013-11-05 2015-05-11 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2018074174A1 (ja) * 2016-10-20 2018-04-26 株式会社日立製作所 リチウム二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467194A (zh) * 2020-12-09 2021-03-09 中国科学院上海硅酸盐研究所 一种有机-无机复合准固态电解质以及准固态锂电池
CN112467194B (zh) * 2020-12-09 2022-05-10 中国科学院上海硅酸盐研究所 一种有机-无机复合准固态电解质以及准固态锂电池
GB2605021A (en) * 2021-03-17 2022-09-21 Thermal Ceramics Uk Ltd Ionically conductive inorganic platelets and the production thereof
GB2605021B (en) * 2021-03-17 2023-05-03 Thermal Ceramics Uk Ltd Ionically conductive inorganic platelets and the production thereof
CN118040074A (zh) * 2024-04-11 2024-05-14 蜂巢能源科技股份有限公司 一种半固态锂离子电池及其制备方法

Also Published As

Publication number Publication date
JP2019212576A (ja) 2019-12-12

Similar Documents

Publication Publication Date Title
WO2019234977A1 (ja) 半固体電解質層及び二次電池
US20100092869A1 (en) Lithium ion battery
KR102232148B1 (ko) 반고체 전해질층, 전지셀 시트 및 이차전지
WO2019176174A1 (ja) 正極スラリー、正極、電池セルシート、二次電池
KR102294200B1 (ko) 반고체 전해액, 반고체 전해질, 반고체 전해질층 및 이차 전지
CN110521049B (zh) 半固体电解质、电极、带有半固体电解质层的电极和二次电池
JP6843966B2 (ja) 半固体電解液、半固体電解質、半固体電解質層、電極、二次電池
WO2019225078A1 (ja) 絶縁層、電池セルシート、二次電池
JP7270210B2 (ja) 非水電解液、半固体電解質層、二次電池用シート及び二次電池
JP2020202158A (ja) 絶縁層、電池セル用シート及び電池セル
JP2020004598A (ja) 電池
WO2018225328A1 (ja) 半固体電解液、半固体電解質、半固体電解質層、電極および二次電池
WO2019142502A1 (ja) 負極、半二次電池、二次電池
WO2019225077A1 (ja) 電池セルシート、電池
CN110506357B (zh) 半二次电池和二次电池
WO2019087815A1 (ja) 正極合剤層、正極、半二次電池、二次電池
WO2020003864A1 (ja) 負極、電池セルシートおよび二次電池
WO2019198329A1 (ja) 絶縁層、電池セルシート、電池
JP2021177470A (ja) 非水電解液、半固体電解質層、二次電池用シート及び二次電池
JP2020087640A (ja) 電池セルの診断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814427

Country of ref document: EP

Kind code of ref document: A1