WO2018225328A1 - 半固体電解液、半固体電解質、半固体電解質層、電極および二次電池 - Google Patents

半固体電解液、半固体電解質、半固体電解質層、電極および二次電池 Download PDF

Info

Publication number
WO2018225328A1
WO2018225328A1 PCT/JP2018/010429 JP2018010429W WO2018225328A1 WO 2018225328 A1 WO2018225328 A1 WO 2018225328A1 JP 2018010429 W JP2018010429 W JP 2018010429W WO 2018225328 A1 WO2018225328 A1 WO 2018225328A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
solid electrolyte
electrolyte
secondary battery
negative electrode
Prior art date
Application number
PCT/JP2018/010429
Other languages
English (en)
French (fr)
Inventor
克 上田
篤 宇根本
明秀 田中
敦史 飯島
純 川治
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201880024823.4A priority Critical patent/CN110506355A/zh
Priority to US16/605,527 priority patent/US11063298B2/en
Priority to JP2019523351A priority patent/JP6894973B2/ja
Publication of WO2018225328A1 publication Critical patent/WO2018225328A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a semi-solid electrolyte, a semi-solid electrolyte, a semi-solid electrolyte layer, an electrode, and a secondary battery.
  • Lithium secondary batteries capable of realizing high voltage and high energy density are used in a wide range of applications from in-vehicle use such as electric vehicles and hybrid vehicles to personal computers and portable communication devices.
  • the central issue in the research and development of lithium secondary batteries is to further improve the energy density and improve the safety and reliability of the battery itself.
  • an organic electrolytic solution having a low boiling point and a low flash point is used as an electrolyte as in a conventional lithium secondary battery, there are safety problems such as leakage of a combustible electrolytic solution and short circuit.
  • Patent Document 1 discloses a method characterized in that battery life can be improved by using glymes excluding tetraglyme in an electrolytic solution in which glymes having a high boiling point and a high flash point are mixed with a lithium salt. ing.
  • the mixed solution of triglyme and lithium bis (fluorosulfonyl) imide in Patent Document 1 has a high viscosity, so that the ionic conductivity (conductivity) of lithium ions is low.
  • an organic solvent having a low viscosity such as a carbonate-based solvent (for example, dimethyl carbonate, ethylene carbonate, propylene carbonate, etc.).
  • propylene carbonate for example, is added as a low-viscosity organic solvent, the flash point and ionic conductivity at low temperatures can be prevented.
  • graphite is contained in the negative electrode, depending on the amount of propylene carbonate added, propylene carbonate may be prevented. May be decomposed and battery capacity may be reduced.
  • the present invention aims to improve the battery capacity of a secondary battery.
  • the battery capacity of the secondary battery can be improved. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
  • Described in this specification is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value described in another stepwise manner.
  • the upper limit value or the lower limit value of the numerical ranges described in this specification may be replaced with the values shown in the examples.
  • a lithium ion secondary battery is an electrochemical device that can store or use electric energy by occlusion / release of lithium ions to and from an electrode in a non-aqueous electrolyte. This is called by another name of a lithium ion battery, a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery, and any battery is a subject of the present invention.
  • the technical idea of the present invention can be applied to sodium ion secondary batteries, magnesium ion secondary batteries, aluminum ion secondary batteries and the like in addition to lithium ion secondary batteries.
  • FIG. 1 is a cross-sectional view of a secondary battery according to an embodiment of the present invention.
  • FIG. 1 shows a stacked secondary battery.
  • the secondary battery 100 includes a positive electrode 70, a negative electrode 80, a battery case 30, and a semi-solid electrolyte layer 50.
  • Battery case 30 accommodates semi-solid electrolyte layer 50, positive electrode 70, and negative electrode 80.
  • the material of the battery case 30 can be selected from materials that are corrosion resistant to the non-aqueous electrolyte, such as aluminum, stainless steel, and nickel-plated steel.
  • the present invention can also be applied to a wound secondary battery.
  • an electrode body composed of the positive electrode 70, the semi-solid electrolyte layer 50, and the negative electrode 80 is laminated.
  • the positive electrode 70 has a positive electrode current collector 10 and a positive electrode mixture layer 40.
  • a positive electrode mixture layer 40 is formed on both surfaces of the positive electrode current collector 10.
  • the negative electrode 80 includes a negative electrode current collector 20 and a negative electrode mixture layer 60. Negative electrode mixture layers 60 are formed on both surfaces of the negative electrode current collector 20.
  • the positive electrode current collector 10 and the negative electrode current collector 20 protrude outside the battery case 30, and the plurality of protruding positive electrode current collectors 10 and the plurality of negative electrode current collectors 20 are bonded together by, for example, ultrasonic bonding. As a result, a parallel connection is formed in the secondary battery 100.
  • the present invention can also be applied to a bipolar secondary battery in which an electrical series connection is configured in the secondary battery 100.
  • the positive electrode 70 or the negative electrode 80 may be referred to as an electrode
  • the positive electrode mixture layer 40 or the negative electrode mixture layer 60 may be referred to as an electrode mixture layer
  • the positive electrode current collector 10 or the negative electrode current collector 20 may be referred to as an electrode current collector.
  • the positive electrode mixture layer 40 includes a positive electrode active material, a positive electrode conductive agent, and a positive electrode binder.
  • the negative electrode mixture layer 60 includes a negative electrode active material, a negative electrode conductive agent, and a negative electrode binder.
  • the semi-solid electrolyte layer 50 has a semi-solid electrolyte binder and a semi-solid electrolyte.
  • the semi-solid electrolyte has supported particles and a semi-solid electrolyte.
  • the positive electrode active material or the negative electrode active material may be referred to as an electrode active material
  • the positive electrode conductive agent or the negative electrode conductive agent may be referred to as an electrode conductive agent
  • the positive electrode binder or the negative electrode binder may be referred to as an electrode binder.
  • the semi-solid electrolyte layer 50 has a semi-solid electrolyte composed of a semi-solid electrolyte and support particles.
  • the feature of the semi-solid electrolyte layer 50 is that there is almost no fluid semi-solid electrolyte and it is difficult for the semi-solid electrolyte to leak out.
  • the semi-solid electrolyte layer 50 serves as a medium for transmitting lithium ions between the positive electrode 70 and the negative electrode 80.
  • the semi-solid electrolyte layer 50 also functions as an electronic insulator and prevents a short circuit between the positive electrode 70 and the negative electrode 80.
  • the semisolid electrolyte When the semisolid electrolyte is filled in the pores of the electrode mixture layer, the semisolid electrolyte may be added to the electrode mixture layer and filled in the pores of the electrode mixture layer. At this time, the supported particles contained in the semi-solid electrolyte are not required, and the particles such as the electrode active material and the electrode conductive agent in the electrode mixture layer function as the supported particles, and these particles hold the semi-solid electrolyte. .
  • a slurry in which the semisolid electrolyte, electrode active material, electrode conductive agent, and electrode binder are mixed is prepared, and the adjusted slurry is collected into the electrode current collector. There are methods such as applying together on the body.
  • the electrode conductive agent improves the conductivity of the electrode mixture layer.
  • As the electrode conductive agent ketjen black, acetylene black and the like are preferably used, but are not limited thereto.
  • the electrode binder binds an electrode active material or an electrode conductive agent in the electrode.
  • the electrode binder include, but are not limited to, styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), and a mixture thereof.
  • ⁇ Positive electrode active material> lithium ions are desorbed in the charging process, and lithium ions desorbed from the negative electrode active material in the negative electrode mixture layer 60 are inserted in the discharging process.
  • a lithium composite oxide containing a transition metal is preferable, and specific examples include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O.
  • ⁇ Positive electrode current collector 10 As the positive electrode current collector 10, an aluminum foil having a thickness of 10 to 100 ⁇ m or an aluminum perforated foil having a thickness of 10 to 100 ⁇ m and a hole diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, or the like is used. In addition to aluminum, materials such as stainless steel and titanium can also be applied. Any positive electrode current collector 10 can be used without being limited by the material, shape, manufacturing method, and the like.
  • ⁇ Positive electrode 70> A positive electrode slurry in which a positive electrode active material, a positive electrode conductive agent, a positive electrode binder, and an organic solvent are mixed is attached to the positive electrode current collector 10 by a doctor blade method, a dipping method, or a spray method, and then the organic solvent is dried and a roll press
  • the positive electrode 70 can be produced by pressure forming with the above.
  • a plurality of positive electrode mixture layers 40 may be stacked on the positive electrode current collector 10 by performing the process from application to drying a plurality of times.
  • the thickness of the positive electrode mixture layer 40 is desirably equal to or greater than the average particle diameter of the positive electrode active material. This is because if the thickness of the positive electrode mixture layer 40 is made smaller than the average particle diameter of the positive electrode active material, the electron conductivity between the adjacent positive electrode active materials deteriorates.
  • ⁇ Negative electrode active material> lithium ions are desorbed in the discharging process, and lithium ions desorbed from the positive electrode active material in the positive electrode mixture layer 40 are inserted in the charging process.
  • the negative electrode active material include carbon materials (eg, graphite, graphitizable carbon materials, amorphous carbon materials), conductive polymer materials (eg, polyacene, polyparaphenylene, polyaniline, polyacetylene), lithium A composite oxide (for example, lithium titanate: Li 4 Ti 5 O 12 ), metal lithium, or a metal alloyed with lithium (for example, aluminum, silicon, tin) can be used, but is not limited thereto.
  • ⁇ Negative electrode current collector 20> As the negative electrode current collector 20, a copper foil having a thickness of 10 to 100 ⁇ m, a copper perforated foil having a thickness of 10 to 100 ⁇ m and a hole diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, or the like is used. In addition to copper, stainless steel, titanium, nickel, etc. can also be applied. Any negative electrode current collector 20 can be used without being limited by the material, shape, manufacturing method and the like.
  • ⁇ Negative electrode 80> A negative electrode slurry obtained by mixing a negative electrode active material, a negative electrode conductive agent, and an organic solvent containing a trace amount of water is attached to the negative electrode current collector 20 by a doctor blade method, a dipping method, a spray method, and the like, and then the organic solvent is dried.
  • the negative electrode 80 can be produced by pressure forming with a roll press.
  • a plurality of negative electrode mixture layers 60 may be laminated on the negative electrode current collector 20 by performing a plurality of times from application to drying.
  • the thickness of the negative electrode mixture layer 60 is desirably equal to or greater than the average particle diameter of the negative electrode active material. This is because if the thickness of the negative electrode mixture layer 60 is made smaller than the average particle diameter of the negative electrode active material, the electron conductivity between the adjacent negative electrode active materials deteriorates.
  • the supported particles are preferably insulative particles and insoluble in a semi-solid electrolytic solution containing an organic solvent or an ionic liquid from the viewpoint of electrochemical stability.
  • oxide inorganic particles such as silica (SiO 2 ) particles, ⁇ -alumina (Al 2 O 3 ) particles, ceria (CeO 2 ) particles, and zirconia (ZrO 2 ) particles can be preferably used. Further, other known metal oxide particles may be used.
  • the average primary particle size of the supported particles is preferably 1 nm to 10 ⁇ m. If the average particle size of the primary particles of the support particles is large, the support particles may not properly hold a sufficient amount of the semisolid electrolyte, and it may be difficult to form a semisolid electrolyte. In addition, if the average particle size of the primary particles of the supported particles is small, the inter-surface force between the supported particles is increased and the supported particles are likely to aggregate with each other, which may make it difficult to form a semi-solid electrolyte.
  • the average primary particle diameter of the supported particles is more preferably 1 nm to 50 nm, and further preferably 1 nm to 10 nm.
  • the average particle size of the primary particles of the supported particles can be measured using a known particle size distribution measuring apparatus using a laser scattering method.
  • the semi-solid electrolyte has a semi-solid electrolyte solvent, a low viscosity solvent, optional additives, and optional electrolyte salts.
  • the semi-solid electrolyte solvent has a mixture (complex) of an ether solvent and a solvated electrolyte salt that exhibits properties similar to those of an ionic liquid.
  • An ionic liquid is a compound that dissociates into a cation and an anion at room temperature, and maintains a liquid state.
  • the ionic liquid may be referred to as an ionic liquid, a low melting point molten salt or a room temperature molten salt.
  • the semi-solid electrolyte solvent is desirably a low volatility, specifically, a vapor pressure at room temperature of 150 Pa or less from the viewpoint of stability in the air and heat resistance in the secondary battery.
  • the content of the semi-solid electrolyte in the electrode mixture layer is preferably 20% by volume to 40% by volume.
  • the content of the semi-solid electrolytic solution is small, there is a possibility that the ion conduction path inside the electrode mixture layer is not sufficiently formed and the rate characteristic is lowered.
  • a semi-solid electrolyte solution may leak from an electrode mixture layer.
  • the ether solvent constitutes a solvated electrolyte salt and a solvated ionic liquid.
  • a symmetrical glyme RO (CH 2 CH 2 O) n —R ′ (R and R ′ are saturated hydrocarbons, n is an integer) having a property similar to that of an ionic liquid) (Generic name for glycol diether).
  • tetraglyme tetraethylene dimethyl glycol, G4
  • triglyme triethylene glycol dimethyl ether, G3
  • pentaglime pentaglime
  • pentaglime pentaglime
  • hexaglyme hexaethylene glycol dimethyl ether, G6
  • crown ether a general term for macrocyclic ethers represented by (—CH 2 —CH 2 —O) n (n is an integer)
  • ether solvent a general term for macrocyclic ethers represented by (—CH 2 —CH 2 —O) n (n is an integer)
  • 12-crown-4, 15-crown-5, 18-crown-6, dibenzo-18-crown-6 and the like can be preferably used, but are not limited thereto.
  • These crown ethers may be used alone or in combination.
  • Tetraglyme and triglyme are preferably used in that they can form a complex structure with a solvated electrolyte salt.
  • lithium imide salts such as lithium bis (fluorosulfonyl) imide (LiFSI), lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), lithium bis (pentafluoroethanesulfonyl) imide (LiBETI) and the like can be used.
  • LiFSI lithium bis (fluorosulfonyl) imide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • LiBETI lithium bis (pentafluoroethanesulfonyl) imide
  • semi-solid electrolyte solvent a mixture of an ether solvent and a solvated electrolyte salt may be used alone or in combination.
  • electrolyte salt e.g., LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, lithium bis oxalate borate (LiBOB), LiFSI, LiTFSI, LiBTFI and preferably Can be used.
  • LiAsF 6, LiSbF 6, lithium bis oxalate borate (LiBOB) LiFSI, LiTFSI, LiBTFI and preferably Can be used.
  • the low-viscosity solvent improves the output characteristics such as the rate characteristics of the secondary battery by lowering the viscosity of the semi-solid electrolyte and promoting lithium ion conduction.
  • organic solvents such as propylene carbonate, ethylene carbonate, dimethyl carbonate, ionic liquids such as N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide, Hydrofluoroethers (for example, 1,1,2,2-tetrafluoroethyl-12,2,3,3-tetrafluoropropyl ether) and the like can be used.
  • the low viscosity solvent has a lower viscosity than a mixed solution of an ether solvent and a solvated electrolyte salt. It is desirable that the solvation structure of the ether solvent and the solvated electrolyte salt is not greatly disturbed.
  • those having the same number of donors as those of ether solvents such as glyme or crown ether, or those having a small number of donors, such as propylene carbonate, ethylene carbonate, acetonitrile, dichloroethane, dimethyl carbonate, 1,1,2 , 2-tetrafluoroethyl-12,2,3,3-tetrafluoropropyl ether can be preferably used.
  • low viscosity solvents may be used alone or in combination.
  • ethylene carbonate is preferable, and propylene cardnate is particularly preferable.
  • the boiling point of ethylene carbonate or propylene cardnate is high, and when the electrode contains a low-viscosity solvent, it is difficult to volatilize and is not easily affected by changes in the composition of the semi-solid electrolyte due to volatilization.
  • the mixing ratio of the ether solvent to the solvated electrolyte salt is preferably more than 0 and 0.5 or less in terms of mole, particularly preferably 0.2 to 0.5, and further preferably 0.3 to 0.4.
  • the addition amount of the ether solvent is small, for example, when graphite is used for the negative electrode 80, the reductive decomposition of the low viscosity solvent may proceed.
  • the addition amount of an ether solvent reductive decomposition resulting from ethers advances and there exists a possibility of causing the lifetime of a battery to fall.
  • the mixing ratio of the low-viscosity solvent to the solvated electrolyte salt is preferably 2 to 6 in terms of mole, and particularly preferably 3 to 5. If the amount of the low viscosity solvent added is small, the output characteristics of the secondary battery may be lowered. Moreover, when there is much addition amount of a low-viscosity solvent, the reductive reaction of the low-viscosity solvent in the negative electrode 80 containing graphite will advance easily, and there exists a possibility that the lifetime of a secondary battery may fall.
  • an additive in the semi-solid electrolyte can be expected to improve the rate characteristics of the secondary battery and the battery life.
  • the addition amount of the additive is preferably 30% by mass or less, particularly preferably 10% by mass or less, based on the weight of the semisolid electrolytic solution. If it is 30 mass% or less, even if an additive is introduce
  • vinylene carbonate, fluoroethylene carbonate and the like can be preferably used. These additives may be used alone or in combination.
  • ⁇ Semi-solid electrolyte binder As the semi-solid electrolyte binder, a fluorine-based resin is preferably used. As the fluororesin, polytetrafluoroethylene (PTFE) is preferably used. By using PTFE, the adhesion between the semi-solid electrolyte layer 50 and the electrode current collector is improved, so that the battery performance is improved.
  • PTFE polytetrafluoroethylene
  • a semi-solid electrolyte is constituted by supporting or holding the semi-solid electrolyte on the support particles.
  • a method for producing a semi-solid electrolyte a semi-solid electrolyte solution and supported particles are mixed at a specific volume ratio, an organic solvent such as methanol is added and mixed, and a slurry of the semi-solid electrolyte is prepared. And a method of obtaining a semi-solid electrolyte powder by evaporating the organic solvent.
  • ⁇ Semi-solid electrolyte layer 50> As a method for producing the semi-solid electrolyte layer 50, a method of compressing a semi-solid electrolyte powder into a pellet shape with a molding die or the like, a method of adding a semi-solid electrolyte binder to the semi-solid electrolyte powder, mixing it into a sheet, etc. There is. By adding and mixing an electrolyte binder powder to the semisolid electrolyte, a highly flexible sheet-like semisolid electrolyte layer 50 can be produced.
  • the semi-solid electrolyte layer 50 can be manufactured by adding and mixing the solution of the binder which melt
  • the semi-solid electrolyte layer 50 may be produced by applying and drying a solution obtained by adding and mixing a binder solution to the semi-solid electrolyte.
  • a separator such as a microporous membrane may be used as the semisolid electrolyte layer 50.
  • the separator polyolefin such as polyethylene or polypropylene, glass fiber, or the like can be used.
  • the semi-solid electrolyte solution is injected into the secondary battery 100 by injecting the semi-solid electrolyte solution into the secondary battery 100 from the empty side or the injection hole of the battery case 30. Filled.
  • the content of the semisolid electrolytic solution in the semisolid electrolyte layer 50 is desirably 70% by volume to 90% by volume.
  • the interface resistance between the electrode and the semisolid electrolyte layer 50 may increase.
  • the content of the semi-solid electrolyte is large, the semi-solid electrolyte may leak from the semi-solid electrolyte layer 50.
  • ⁇ Semi-solid electrolyte> Stirring lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) with tetraglyme (G4) and propylene carbonate (PC) in a molar ratio of 1: 0.5: 4, using a magnetic stirrer in a glass bottle, A semi-solid electrolyte was prepared by dissolution.
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • G4 tetraglyme
  • PC propylene carbonate
  • ⁇ Negative electrode 80> Graphite (amorphous coating, average particle size 10 ⁇ m), polyvinylidene fluoride (PVDF), and conductive additive (acetylene black) are mixed at a weight ratio of 88: 10: 2, and N-methyl-2-pyrrolidone is mixed.
  • a slurry-like solution was prepared by further mixing. The prepared slurry was applied to a negative electrode current collector 20 made of SUS foil having a thickness of 10 ⁇ m using a doctor blade, and dried at 80 ° C. for 2 hours or more. At this time, the coating amount of the slurry was adjusted so that the weight of the negative electrode mixture layer 60 per 1 cm 2 after drying was 8 mg / cm 2 . The electrode after drying was pressurized to a density of 1.5 g / cm 3 and punched out with a diameter of 13 mm to obtain a negative electrode 80.
  • ⁇ Secondary battery 100> The produced negative electrode 80 was dried at 100 ° C. for 2 hours or more and then transferred into a glove box filled with argon. Next, an appropriate amount of the semisolid electrolytic solution was added to the negative electrode 80 or a polypropylene separator having a thickness of 30 ⁇ m, and the semisolid electrolytic solution was permeated into the negative electrode 80 or the separator. Then, the secondary battery 100 was produced by putting in the 2032 size coin-type battery cell holder in the state which has arrange
  • Examples 2 to 4 A secondary battery 100 was produced in the same manner as in Example 1 except that the mixing molar ratio of LiTFSI, G4, and PC in the semisolid electrolyte was changed as shown in FIG.
  • a semi-solid electrolyte and a semi-solid electrolyte layer 50 were prepared according to the following procedure. First, LiTFSI, G4, and PC were mixed to prepare a semi-solid electrolyte. In a glove box in an argon atmosphere, a semi-solid electrolyte and SiO 2 nanoparticles (particle size: 7 nm) were mixed at a volume fraction of 80:20, methanol was added thereto, and the mixture was stirred for 30 minutes using a magnetic stirrer. .
  • the obtained mixed solution was spread on a petri dish, and methanol was distilled off to obtain a powdery semi-solid electrolyte.
  • 5% by mass of PTFE powder was added and stretched under pressure while mixing well to obtain a sheet-like semi-solid electrolyte layer 50 having a thickness of about 200 ⁇ m.
  • the obtained semi-solid electrolyte layer 50 was punched out with a size of ⁇ 15 mm.
  • the molar ratio of LiTFSI, G4, and PC in the semi-solid electrolyte layer 50 was 1: 0.5: 4.
  • ⁇ Positive electrode 70> The positive electrode active material LiNiMnCoO 2 (NCM), polyvinylidene fluoride (PVDF), and conductive additive (acetylene black) are mixed at a weight ratio of 84: 9: 7, and N-methyl-2-pyrrolidone is added and further mixed. Thus, a slurry-like solution was produced.
  • the prepared slurry was applied to the positive electrode current collector 10 made of SUS foil having a thickness of 10 ⁇ m using a doctor blade, and dried at 80 ° C. for 2 hours or more. At this time, the application amount of the slurry was adjusted so that the weight of the positive electrode mixture layer 40 per 1 cm 2 after drying was 18 mg / cm 2 . Pressurization was performed so that the electrode density after drying was 2.5 g / cm 3, and punched out at ⁇ 13 mm to obtain a positive electrode 70.
  • a secondary battery 100 was fabricated in the same manner as in Example 1 using the positive electrode 70 instead of the lithium metal of Example 1 and the semisolid electrolyte layer 50 instead of the separator.
  • Examples 6 to 14> A secondary battery 100 was produced in the same manner as in Example 5 except that the mixing molar ratio of LiTFSI, G4, and PC in the semisolid electrolyte was changed as shown in FIG.
  • a secondary battery 100 was produced in the same manner as in Example 1 except that the mixing molar ratio of LiTFSI, G4, and PC in the semisolid electrolyte was changed as shown in FIG.
  • the battery capacity of the secondary battery 100 was measured at 25 degreeC and 50 degreeC.
  • the battery was charged at a 0.05 C rate using a 1480 potentiostat manufactured by Solartron. Then, after resting in an open circuit state for 1 hour, it discharged at a 0.05 C rate.
  • the secondary battery 100 is charged at a constant current of 0.05 C rate until the interelectrode potential reaches 0.005 V, and then charged at a potential of 0.005 V until the current value reaches the 0.005 C rate. Performed (constant current constant voltage charging). At the time of discharge, it was discharged to 1.5 V at a constant current of 0.05 C rate (constant current discharge).
  • the battery capacity of the secondary battery 100 was measured at 25 ° C. Except for the following points, the example is the same as the example using the separator.
  • charging is performed at a constant current of 0.05 C until the interelectrode potential of the secondary battery 100 reaches 4.2 V, and then charging is performed until the current value reaches the 0.005 C rate at a potential of 4.2 V. went.
  • discharging the battery was discharged to 2.7 V at a constant current of 0.05C.
  • the results of the battery capacity and cycle characteristics of the secondary battery 100 are shown in FIG. It is considered that the initial Coulomb efficiency strongly influences the battery capacity of the secondary battery 100 and the Coulomb efficiency at 10 cycles strongly influences the life of the secondary battery 100. Therefore, the battery capacity is evaluated on the condition that the coulombic efficiency at the first charging / discharging is 80.5% or more, and the life condition is that the coulomb efficiency at 10 cycles is 98.5% or more. .
  • the secondary batteries of the examples were superior in battery capacity and life compared to the secondary batteries of the comparative examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

二次電池の電池容量を向上させる。 溶媒和電解質塩と、溶媒和電解質塩と溶媒和イオン液体を構成するエーテル系溶媒と、を有し、溶媒和電解質塩に対するエーテル系溶媒の混合比率がモル換算で0より大きく0.5以下である半固体電解液。望ましくは、溶媒和電解質塩に対するエーテル系溶媒の混合比率がモル換算で0.2~0.5であり、低粘度溶媒を有する場合、溶媒和電解質塩に対する低粘度溶媒の混合比率がモル換算で2~6である半固体電解液。

Description

半固体電解液、半固体電解質、半固体電解質層、電極および二次電池
 本発明は、半固体電解液、半固体電解質、半固体電解質層、電極および二次電池に関する。
 高電圧および高エネルギー密度を実現できるリチウム二次電池は、電気自動車やハイブリット自動車などの車載用から、パソコンや携帯型の通信機器に至るまで幅広い用途で用いられている。
 リチウム二次電池の研究開発における中心課題は、エネルギー密度のさらなる向上と、電池自体の安全性、信頼性向上との両立である。特に、従来のリチウム二次電池のように、低沸点かつ低引火点の有機電解液を電解質として用いる場合、可燃性電解液の漏れ出しや短絡などの安全上の問題点がある。
 こうした電解液の熱力学的な安定性を改善するために、酸化物粒子を用いて有機電解液を半固体化させた半固体電解質も提案されている。このほかに、高揮発性や低引火点などの安全性を改善する方法として、高沸点かつ高引火点の有機溶媒を電解液として用いることが検討されている。特許文献1には、高沸点かつ高引火点を有するグライム類をリチウム塩と混合させた電解液において、テトラグライムを除くグライム類を用いて電池寿命の改善が図れることを特徴する方法が開示されている。
特開2015-216124号公報
 特許文献1のトリグライムとリチウムビス(フルオロスルホニル)イミドの混合溶液は、粘度が高いためにリチウムイオンのイオン伝導度(導電率)が低い。イオン伝導度を向上させるには、カーボネート系溶剤などの低粘度の有機溶剤(例えば、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネートなど)を添加することが望ましい。しかし、低粘度の有機溶剤として例えばプロピレンカーボネートを添加した場合、引火点の低下と低温でのイオン伝導度低下は防げるが、負極に黒鉛が含まれる場合、プロピレンカーボネートの添加量によっては、プロピレンカーボネートが分解されて電池容量が低下する可能性がある。
 本発明は、二次電池の電池容量を向上させることを目的とする。
 上記課題を解決するための本発明の特徴は、例えば以下の通りである。
 溶媒和電解質塩と、溶媒和電解質塩と溶媒和イオン液体を構成するエーテル系溶媒と、を有し、溶媒和電解質塩に対するエーテル系溶媒の混合比率がモル換算で0より大きく0.5以下である半固体電解液。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2017-113117号の開示内容を包含する。
 本発明により、二次電池の電池容量を向上できる。上記した以外の課題、構成および効果は以下の実施形態の説明により明らかにされる。
二次電池の断面図である。 実施例および比較例の結果を示す表である。
 以下、図面などを用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 本明細書に記載される「~」は、その前後に記載される数値を下限値および上限値として含む意味で使用する。本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値または下限値は、他の段階的に記載されている上限値または下限値に置き換えてもよい。本明細書に記載される数値範囲の上限値または下限値は、実施例中に示されている値に置き換えてもよい。
 本明細書では、二次電池としてリチウムイオン二次電池を例にして説明する。リチウムイオン二次電池とは、非水電解質中における電極へのリチウムイオンの吸蔵・放出により、電気エネルギーを貯蔵または利用可能とする電気化学デバイスである。これは、リチウムイオン電池、非水電解質二次電池、非水電解液二次電池の別の名称で呼ばれており、いずれの電池も本発明の対象である。本発明の技術的思想は、リチウムイオン二次電池の他、ナトリウムイオン二次電池、マグネシウムイオン二次電池、アルミニウムイオン二次電池などに対しても適用できる。
 図1は、本発明の一実施形態に係る二次電池の断面図である。図1は積層型の二次電池であり、二次電池100は、正極70、負極80、電池ケース30および半固体電解質層50を有する。電池ケース30は、半固体電解質層50、正極70および負極80を収容する。電池ケース30の材料としては、アルミニウム、ステンレス鋼、ニッケルメッキ鋼など、非水電解質に対し耐食性のある材料から選択することができる。本発明は、捲回型の二次電池にも適用できる。
 二次電池100内で、正極70、半固体電解質層50および負極80から構成される電極体が積層されている。
 正極70は、正極集電体10および正極合剤層40を有する。正極集電体10の両面に正極合剤層40が形成されている。負極80は、負極集電体20および負極合剤層60を有する。負極集電体20の両面に負極合剤層60が形成されている。
 正極集電体10および負極集電体20は電池ケース30の外部に突出しており、突出した複数の正極集電体10同士、複数の負極集電体20同士が、例えば超音波接合などで接合されることで、二次電池100内で並列接続が形成される。本発明は、二次電池100中で電気的な直列接続を構成させたバイポーラ型の二次電池にも適用できる。正極70または負極80を電極、正極合剤層40または負極合剤層60を電極合剤層、正極集電体10または負極集電体20を電極集電体と称する場合がある。
 正極合剤層40は、正極活物質、正極導電剤および正極バインダを有する。負極合剤層60は、負極活物質、負極導電剤および負極バインダを有する。半固体電解質層50は、半固体電解質バインダおよび半固体電解質を有する。半固体電解質は、担持粒子および半固体電解液を有する。正極活物質または負極活物質を電極活物質、正極導電剤または負極導電剤を電極導電剤、正極バインダまたは負極バインダを電極バインダと称する場合がある。
 半固体電解質層50は、半固体電解液および担持粒子から構成される半固体電解質を有する。半固体電解質層50の特徴は、流動性のある半固体電解液がほとんどなく、半固体電解液が漏れ出にくいことである。半固体電解質層50は正極70と負極80の間にリチウムイオンを伝達させる媒体となる。半固体電解質層50は電子の絶縁体としても働き、正極70と負極80の短絡を防止する。
 電極合剤層の細孔に半固体電解液を充填する場合、電極合剤層に半固体電解液を添加し、電極合剤層の細孔に充填させてもよい。この時、半固体電解質に含まれる担持粒子を要せず、電極合剤層中の電極活物質や電極導電剤などの粒子が担持粒子として機能し、それらの粒子が半固体電解液を保持する。電極合剤層の細孔に半固体電解液を充填する別の方法として、半固体電解液、電極活物質、電極導電剤、電極バインダを混合したスラリーを調製し、調整したスラリーを電極集電体上に一緒に塗布する方法などがある。
 <電極導電剤>
 電極導電剤は、電極合剤層の導電性を向上させる。電極導電剤としては、ケッチェンブラック、アセチレンブラックなどが好適に用いられるが、これに限られない。
 <電極バインダ>
 電極バインダは、電極中の電極活物質や電極導電剤などを結着させる。電極バインダとしては、スチレン-ブタジエンゴム、カルボキシメチルセルロ-ス、ポリフッ化ビニリデン(PVDF)およびこれらの混合物などが挙げられるが、これに限られない。
 <正極活物質>
 正極活物質は、充電過程においてリチウムイオンが脱離し、放電過程において負極合剤層60中の負極活物質から脱離したリチウムイオンが挿入される。正極活物質の材料として、遷移金属を含むリチウム複合酸化物が好ましく、具体例としては、LiCoO、LiNiO、LiMn、LiMnO、LiMn、LiMnO、LiMn12、LiMn2-x(ただし、M=Co、Ni、Fe、Cr、Zn、Ta、x=0.01~0.2)、LiMnMO(ただし、M=Fe、Co、Ni、Cu、Zn)、Li1-xMn(ただし、A=Mg、B、Al、Fe、Co、Ni、Cr、Zn、Ca、x=0.01~0.1)、LiNi1-x(ただし、M=Co、Fe、Ga、x=0.01~0.2)、LiFeO、Fe(SO、LiCo1-x(ただし、M=Ni、Fe、Mn、x=0.01~0.2)、LiNi1-x(ただし、M=Mn、Fe、Co、Al、Ga、Ca、Mg、x=0.01~0.2)、Fe(MoO、FeF、LiFePO、LiMnPOなどが挙げられるが、これに限られない。
 <正極集電体10>
 正極集電体10として、厚さが10~100μmのアルミニウム箔、あるいは厚さが10~100μm、孔径0.1~10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板などが用いられ、材質もアルミニウムの他に、ステンレス鋼、チタンなども適用できる。材質、形状、製造方法などに制限されることなく、任意の正極集電体10を使用できる。
 <正極70>
 正極活物質、正極導電剤、正極バインダおよび有機溶媒を混合した正極スラリーを、ドクターブレード法、ディッピング法またはスプレー法などによって正極集電体10へ付着させた後、有機溶媒を乾燥させ、ロールプレスによって加圧成形することにより、正極70を作製できる。塗布から乾燥までを複数回行うことにより、複数の正極合剤層40を正極集電体10に積層させてもよい。正極合剤層40の厚さは、正極活物質の平均粒径以上とすることが望ましい。正極合剤層40の厚さを正極活物質の平均粒径より小さくすると、隣接する正極活物質間の電子伝導性が悪化するからである。
 <負極活物質>
 負極活物質は、放電過程においてリチウムイオンが脱離し、充電過程において正極合剤層40中の正極活物質から脱離したリチウムイオンが挿入される。負極活物質の材料として、例えば、炭素系材料(例えば、黒鉛、易黒鉛化炭素材料、非晶質炭素材料)、導電性高分子材料(例えば、ポリアセン、ポリパラフェニレン、ポリアニリン、ポリアセチレン)、リチウム複合酸化物(例えば、チタン酸リチウム:LiTi12)、金属リチウム、リチウムと合金化する金属(例えば、アルミニウム、シリコン、スズ)を用いることができるが、これに限られない。
 <負極集電体20>
 負極集電体20として、厚さが10~100μmの銅箔、厚さが10~100μm、孔径0.1~10mmの銅製穿孔箔、エキスパンドメタル、発泡金属板などが用いられる。銅の他に、ステンレス鋼、チタン、ニッケルなども適用できる。材質、形状、製造方法などに制限されることなく、任意の負極集電体20を使用できる。
 <負極80>
 負極活物質、負極導電剤および水を微量含んだ有機溶媒を混合した負極スラリーを、ドクターブレード法、ディッピング法、スプレー法などによって負極集電体20へ付着させた後、有機溶媒を乾燥させ、ロールプレスによって加圧成形することにより、負極80を作製できる。塗布から乾燥までを複数回行うことにより、複数の負極合剤層60を負極集電体20に積層させてもよい。負極合剤層60の厚さは、負極活物質の平均粒径以上とすることが望ましい。負極合剤層60の厚さを負極活物質の平均粒径より小さくすると、隣接する負極活物質間の電子伝導性が悪化するからである。
 <担持粒子>
 担持粒子としては、電気化学的安定性の観点から、絶縁性粒子であり有機溶媒またはイオン液体を含む半固体電解液に不溶であることが好ましい。担持粒子として、例えば、シリカ(SiO)粒子、γ-アルミナ(Al)粒子、セリア(CeO)粒子、ジルコニア(ZrO)粒子などの酸化物無機粒子を好ましく用いることができる。また、他の公知の金属酸化物粒子を用いてもよい。
 半固体電解液の保持量は担持粒子の比表面積に比例すると考えられるため、担持粒子の一次粒子の平均粒径は、1nm~10μmが好ましい。担持粒子の一次粒子の平均粒径が大きいと、担持粒子が十分な量の半固体電解液を適切に保持できず半固体電解質の形成が困難になる可能性がある。また、担持粒子の一次粒子の平均粒径が小さいと、担持粒子間の表面間力が大きくなって担持粒子同士が凝集し易くなり、半固体電解質の形成が困難になる可能性がある。担持粒子の一次粒子の平均粒径は、1nm~50nmがより好ましく、1nm~10nmがさらに好ましい。担持粒子の一次粒子の平均粒径は、レーザー散乱法を利用した公知の粒径分布測定装置を用いて測定できる。
 <半固体電解液>
 半固体電解液は、半固体電解質溶媒、低粘度溶媒、任意の添加剤、および任意の電解質塩を有する。半固体電解質溶媒は、イオン液体に類似の性質を示す、エーテル系溶媒および溶媒和電解質塩の混合物(錯体)を有する。イオン液体とは、常温でカチオンとアニオンに解離する化合物であって、液体の状態を保持するものである。イオン液体は、イオン性液体、低融点溶融塩あるいは常温溶融塩と称されることがある。半固体電解質溶媒は、大気中での安定性や二次電池内での耐熱性の観点から、低揮発性、具体的には室温における蒸気圧が150Pa以下であるものが望ましい。
 電極合剤層に半固体電解液が含まれている場合、電極合剤層中の半固体電解液の含有量は20体積%~40体積%であることが望ましい。半固体電解液の含有量が少ない場合、電極合剤層内部でのイオン伝導経路が十分に形成されずレート特性が低下する可能性がある。また、半固体電解液の含有量が多い場合、電極合剤層から半固体電解液が漏れ出す可能性がある。
 エーテル系溶媒は、溶媒和電解質塩と溶媒和イオン液体を構成する。エーテル系溶媒として、イオン液体に類似の性質を示す公知のグライム(R-O(CHCHO)-R’(R、R’は飽和炭化水素、nは整数)で表される対称グリコールジエーテルの総称)を利用できる。イオン伝導性の観点から、テトラグライム(テトラエチレンジメチルグリコール、G4)、トリグライム(トリエチレングリコールジメチルエーテル、G3)、ペンタグライム(ペンタエチレングリコールジメチルエーテル、G5)、ヘキサグライム(ヘキサエチレングリコールジメチルエーテル、G6)を好ましく用いることができる。これらのグライムを単独または複数組み合わせて使用してもよい。また、エーテル系溶媒として、クラウンエーテル((-CH-CH-O)(nは整数)で表わされる大環状エーテルの総称)を利用できる。具体的には、12-クラウン―4、15-クラウン―5、18-クラウン―6、ジベンゾ―18-クラウン―6などを好ましく用いることができるが、これに限らない。これらのクラウンエーテルを単独または複数組み合わせて使用してもよい。溶媒和電解質塩と錯体構造を形成できる点で、テトラグライム、トリグライムを用いることが好ましい。
 溶媒和電解質塩としては、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(LiBETI)などのリチウムイミド塩を利用できるが、これに限らない。半固体電解質溶媒として、エーテル系溶媒および溶媒和電解質塩の混合物を単独または複数組み合わせて使用してもよい。
 電解質塩としては、例えば、LiPF、LiBF、LiClO、LiCFSO、LiCFCO、LiAsF、LiSbF、リチウムビスオキサレートボラート(LiBOB)、LiFSI、LiTFSI、LiBTFIなどを好ましく用いることができる。これらの電解質塩を単独または複数組み合わせて使用してもよい。
 <低粘度溶媒>
 低粘度溶媒は、半固体電解液の粘度を下げてリチウムイオン伝導を促進することで、二次電池のレート特性などの出力特性を向上させる。低粘度溶媒として、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネートなどの有機溶媒や、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)イミドなどのイオン液体、ハイドロフルオロエーテル類(例えば、1,1,2,2-テトラフルオロエチル-12,2,3,3-テトラフルオロプロピルエーテル)などを利用できる。低粘度溶媒として、エーテル系溶媒と溶媒和電解質塩との混合溶液よりも低粘度であることが望ましい。また、エーテル系溶媒と溶媒和電解質塩との溶媒和構造を大きく乱さないことが望ましい。具体的には、グライムもしくはクラウンエーテルなどのエーテル系溶媒とドナー数が同程度のもの、またはドナー数の小さなもの、例えば、プロピレンカーボネート、エチレンカーボネート、アセトニトリル、ジクロロエタン、ジメチルカーボネート、1,1,2,2-テトラフルオロエチル-12,2,3,3-テトラフルオロプロピルエーテルなどを好ましく用いることができる。これらの低粘度溶媒を単独または複数組み合わせて使用してもよい。この中で、エチレンカーボネートが好ましく、プロピレンカードネートが特に好ましい。エチレンカーボネートやプロピレンカードネートの沸点は高く、電極に低粘度溶媒が含まれていた場合に揮発しにくく、揮発による半固体電解液の組成変化の影響を受けにくい。
 <混合割合>
 溶媒和電解質塩に対するエーテル系溶媒の混合比率がモル換算で0より大きく0.5以下が好ましく、0.2~0.5が特に好ましく、さらに0.3~0.4が好ましい。エーテル系溶媒の添加量が少ないと、例えば負極80に黒鉛を用いた際に、低粘度溶媒の還元分解が進行する可能性がある。また、エーテル系溶媒の添加量が多いと、エーテル類起因の還元分解が進行し、電池寿命の低下を招く可能性がある。
 溶媒和電解質塩に対する低粘度溶媒の混合比率がモル換算で2~6が好ましく、3~5が特に好ましい。低粘度溶媒の添加量が少ないと、二次電池の出力特性が低くなる可能性がある。また、低粘度溶媒の添加量が多いと、黒鉛が含まれた負極80での低粘度溶媒の還元反応が進行しやすくなり二次電池の寿命が低下する可能性がある。
 <添加剤>
 半固体電解液に添加剤を含めることにより二次電池のレート特性の向上や電池寿命の向上が期待できる。添加剤の添加量は、半固体電解液の重量に対して30質量パーセント以下が好ましく、10質量パーセント以下が特に好ましい。30質量パーセント以下であれば、添加剤を導入してもグライム類やクラウンエーテル系溶媒と溶媒和電解質塩との溶媒和構造を大きく乱さない。添加剤として、ビニレンカーボネート、フルオロエチレンカーボネートなどを好ましく用いることができる。これらの添加剤を単独または複数組み合わせて使用してもよい。
 <半固体電解質バインダ>
 半固体電解質バインダは、フッ素系の樹脂が好適に用いられる。フッ素系の樹脂としては、ポリテトラフルオロエチレン(PTFE)が好適に用いられる。PTFEを用いることで、半固体電解質層50と電極集電体の密着性が向上するため、電池性能が向上する。
 <半固体電解質>
 半固体電解液が担持粒子に担持または保持されることにより半固体電解質が構成される。半固体電解質の作製方法として、半固体電解液と担持粒子とを特定の体積比率で混合し、メタノールなどの有機溶媒を添加・混合して、半固体電解質のスラリーを調合した後、スラリーをシャーレに広げ、有機溶媒を留去して半固体電解質の粉末が得る方法などが挙げられる。
 <半固体電解質層50>
 半固体電解質層50の作製方法として、半固体電解質の粉末を成型ダイスなどでペレット状に圧縮成型する方法や、半固体電解質バインダを半固体電解質の粉末に添加・混合し、シート化する方法などがある。半固体電解質に電解質バインダの粉末を添加・混合することにより、柔軟性の高いシート状の半固体電解質層50を作製できる。また、半固体電解質に、分散溶媒に半固体電解質バインダを溶解させた結着剤の溶液を添加・混合し、分散溶媒を留去することで、半固体電解質層50を作製できる。半固体電解質層50は、前記の、半固体電解質に結着剤の溶液を添加・混合したものを電極上に塗布および乾燥することにより作製してもよい。
 半固体電解質層50として微多孔膜などのセパレータを用いてもよい。セパレータとして、ポリエチレンやポリプロピレンといったポリオレフィンやガラス繊維などを利用できる。セパレータに微多孔膜が用いられる場合、電池ケース30の空いている1辺や注液孔から二次電池100に半固体電解液を注入することで、二次電池100中に半固体電解液が充填される。
 半固体電解質層50中の半固体電解液の含有量は70体積%~90体積%であることが望ましい。半固体電解液の含有量が小さい場合、電極と半固体電解質層50との界面抵抗が増加する可能性がある。また、半固体電解液の含有量が大きい場合、半固体電解質層50から半固体電解液が漏れ出してしまう可能性がある。
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 <実施例1>
 <半固体電解液>
 リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)とテトラグライム(G4)およびプロピレンカーボネート(PC)をモル比で1:0.5:4となるようにとりわけ、ガラス瓶内でマグネティックスターラーを用いて撹拌、溶解させて半固体電解液を作製した。
 <負極80>
 黒鉛(非晶質被覆、平均粒径10μm)と、ポリフッ化ビニリデン(PVDF)、導電助剤(アセチレンブラック)を重量比88:10:2の割合で混合し、N-メチル-2-ピロリドンを加えてさらに混合することでスラリー状の溶液を作製した。作製したスラリーを厚さ10μmのSUS箔からなる負極集電体20にドクターブレードを用いて塗布し、80℃で2時間以上乾燥した。このとき、乾燥後の1cm当たりの負極合剤層60の重量が8mg/cmとなるように、スラリーの塗布量を調整した。乾燥後の電極を密度1.5g/cmとなるように加圧して、φ13mmで打ち抜いて負極80とした。
 <二次電池100>
 作製した負極80は、100℃で2時間以上乾燥した後に、アルゴンで充填したグローブボックス内に移した。次に、半固体電解液を負極80や厚さ30μmのポリプロピレン製セパレータに適量加え、負極80やセパレータ中に半固体電解液を浸透させた。その後、セパレータの片面に負極80、他面にリチウム金属を配置した状態で2032サイズのコイン型電池セルホルダに入れ、かしめ機により密閉することで二次電池100を作製した。
 <実施例2~4>
 半固体電解液においてLiTFSIとG4およびPCの混合モル比を図2のように変更した以外は実施例1と同様にして二次電池100を作製した。
 <実施例5>
 <半固体電解質>
 セパレータを使用する代わりに、以下に示す手順で半固体電解質、半固体電解質層50を作製した。まず、LiTFSIとG4およびPCを混合し半固体電解液を作製した。アルゴン雰囲気のグローブボックス内で、半固体電解液とSiOナノ粒子(粒径7nm)を体積分率80:20で混合し、これにメタノールを添加した後に、マグネットスターラーを用いて30分間攪拌した。その後、得られた混合液をシャーレに広げ、メタノールを留去して粉末状の半固体電解質を得た。この粉末に、PTFE粉末5質量%を添加して、よく混合しながら加圧により伸ばすことで厚さ約200μmのシート状の半固体電解質層50を得た。得られた半固体電解質層50はφ15mmのサイズで打ち抜いた。半固体電解質層50中のLiTFSI、G4、PCのモル比は1:0.5:4であった。
 <正極70>
 正極活物質LiNiMnCoO(NCM)と、ポリフッ化ビニリデン(PVDF)、導電助剤(アセチレンブラック)を重量比84:9:7の割合で混合し、N-メチル-2-ピロリドンを加えてさらに混合することでスラリー状の溶液を作製した。作製したスラリーを厚さ10μmのSUS箔からなる正極集電体10にドクターブレードを用いて塗布し、80℃で2時間以上乾燥した。このとき、乾燥後の1cm当たりの正極合剤層40の重量が18mg/cmとなるように、スラリーの塗布量を調整した。乾燥後の電極密度が2.5g/cmとなるように加圧して、φ13mmで打ち抜いて正極70とした。
 <二次電池100>
 実施例1のリチウム金属の代わりに正極70、セパレータの代わりに半固体電解質層50を用いて実施例1と同様に二次電池100を作製した。
 <実施例6~14>
 半固体電解液においてLiTFSIとG4およびPCの混合モル比を図2のように変更した以外は実施例5と同様に二次電池100を作製した。
 <比較例1~6>
 半固体電解液においてLiTFSIとG4およびPCの混合モル比を図2のように変更した以外は実施例1と同様に二次電池100を作製した。
 <電池容量の評価>
 セパレータを利用した例の二次電池100について、25℃および50℃で二次電池100の電池容量を測定した。ソーラトロン社製の1480ポテンシオスタットを用いて、0.05Cレートで充電した。その後、1時間開回路状態で休止した後に0.05Cレートで放電した。充放電時は二次電池100の電極間電位が0.005Vに達するまで0.05Cレートの一定電流で充電し、その後0.005Vの電位にて電流値が0.005Cレートに達するまで充電を行った(定電流定電圧充電)。放電時は、0.05Cレートの一定電流で1.5Vまで放電した(定電流放電)。
 半固体電解質層50を利用した例の二次電池100について、25℃で二次電池100の電池容量を測定した。以下の点以外はセパレータを利用した例と同様である。充放電時は二次電池100の電極間電位が4.2Vに達するまで0.05Cレートの一定電流で充電し、その後4.2Vの電位にて電流値が0.005Cレートに達するまで充電を行った。放電時は、0.05Cレートの一定電流で2.7Vまで放電した。
 <サイクル特性の評価>
 電池容量の評価時で初回充放電を実施した後に、充電容量と放電容量の比から初回クーロン効率を評価した。同様に、10サイクル後の充放電結果から10サイクル時のクーロン効率を評価した。なお、試験中の充電後と放電後には、二次電池100は開回路状態で1時間休止した。
 <結果および結果の考察>
 二次電池100の電池容量およびサイクル特性の結果を図2に示す。二次電池100の電池容量には初回クーロン効率が、二次電池100の寿命には10サイクル時のクーロン効率が強く影響すると考えられている。そこで、電池容量の評価基準としては初回充放電時のクーロン効率が80.5%以上あることを条件とし、寿命に関しては10サイクル時のクーロン効率が98.5%以上であることを条件とした。実施例の二次電池は、比較例の二次電池に比べて電池容量および寿命が優れていた。
10  正極集電体
20  負極集電体
30  電池ケース
40  正極合剤層
50  半固体電解質層
60  負極合剤層
70  正極
80  負極
100 二次電池
 本明細書で引用した全ての刊行物、特許および特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (8)

  1.  溶媒和電解質塩と、
     前記溶媒和電解質塩と溶媒和イオン液体を構成するエーテル系溶媒と、を有し、
     前記溶媒和電解質塩に対する前記エーテル系溶媒の混合比率がモル換算で0より大きく0.5以下である半固体電解液。
  2.  請求項1の半固体電解液において、
     前記溶媒和電解質塩に対する前記エーテル系溶媒の混合比率がモル換算で0.2~0.5である半固体電解液。
  3.  請求項1の半固体電解液において、
     低粘度溶媒を有し、
     前記溶媒和電解質塩に対する前記低粘度溶媒の混合比率がモル換算で2~6である半固体電解液。
  4.  請求項1の半固体電解液において、
     添加剤を含む半固体電解液。
  5.  請求項1の半固体電解液と、
     担持粒子と、を有し、
     前記半固体電解液は前記担持粒子に担持される半固体電解質。
  6.  請求項5の半固体電解質および半固体電解質バインダを有する半固体電解質層。
  7.  請求項1の半固体電解液を有する電極。
  8.  正極、負極および請求項6の半固体電解質層を有する二次電池。
PCT/JP2018/010429 2017-06-08 2018-03-16 半固体電解液、半固体電解質、半固体電解質層、電極および二次電池 WO2018225328A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880024823.4A CN110506355A (zh) 2017-06-08 2018-03-16 半固体电解液、半固体电解质、半固体电解质层、电极和二次电池
US16/605,527 US11063298B2 (en) 2017-06-08 2018-03-16 Semisolid electrolyte solution, semisolid electrolyte, semisolid electrolyte layer, electrode, and secondary battery
JP2019523351A JP6894973B2 (ja) 2017-06-08 2018-03-16 半固体電解液、半固体電解質、半固体電解質層、電極および二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017113117 2017-06-08
JP2017-113117 2017-06-08

Publications (1)

Publication Number Publication Date
WO2018225328A1 true WO2018225328A1 (ja) 2018-12-13

Family

ID=64566711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010429 WO2018225328A1 (ja) 2017-06-08 2018-03-16 半固体電解液、半固体電解質、半固体電解質層、電極および二次電池

Country Status (4)

Country Link
US (1) US11063298B2 (ja)
JP (1) JP6894973B2 (ja)
CN (1) CN110506355A (ja)
WO (1) WO2018225328A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816869A (zh) * 2020-08-07 2020-10-23 深圳先进技术研究院 负极材料、负极、钾离子电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327362A (ja) * 2003-04-28 2004-11-18 Sanyo Electric Co Ltd 非水電解質二次電池
JP2006196464A (ja) * 1990-03-16 2006-07-27 Ricoh Co Ltd 固体電解質、それを含む電気化学素子及び固体電解質の形成方法
JP2009245911A (ja) * 2008-03-11 2009-10-22 Hitachi Chem Co Ltd 電解液及びこれを用いた二次電池
JP2017059432A (ja) * 2015-09-17 2017-03-23 株式会社日立製作所 擬似固体電解質およびそれを用いた全固体リチウム二次電池
JP2017509120A (ja) * 2014-03-13 2017-03-30 ブルー ソリューション リチウム硫黄電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512913A (ja) * 1990-03-16 1993-01-22 Ricoh Co Ltd 電気化学素子、それに用いる固体電解質
DE4190481T1 (ja) 1990-03-16 1992-04-23 Ricoh Co., Ltd., Tokio/Tokyo, Jp
KR20010041259A (ko) * 1998-12-25 2001-05-15 마츠시타 덴끼 산교 가부시키가이샤 리튬 2차 전지
JP2005259379A (ja) * 2004-03-09 2005-09-22 Nissan Motor Co Ltd バイポーラ電池
CN101243134A (zh) * 2005-08-19 2008-08-13 株式会社Lg化学 含低共熔混合物的电解质及利用其的电化学装置
KR100898291B1 (ko) * 2007-09-12 2009-05-18 삼성에스디아이 주식회사 리튬 이차 전지
CN101882696B (zh) * 2009-05-05 2014-11-26 中国科学院物理研究所 一种含氟磺酰亚胺基锂盐的非水电解质材料及其应用
JP5678539B2 (ja) * 2009-09-29 2015-03-04 三菱化学株式会社 非水系電解液電池
JP5804557B2 (ja) 2010-10-29 2015-11-04 国立大学法人横浜国立大学 アルカリ金属−硫黄系二次電池
EP2672561B1 (en) * 2011-01-31 2019-04-17 Mitsubishi Chemical Corporation Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same
US9601803B2 (en) * 2013-07-22 2017-03-21 Nanotek Instruments, Inc. Non-flammable quasi-solid electrolyte-separator layer product for lithium battery applications
US9911984B2 (en) * 2014-06-17 2018-03-06 Medtronic, Inc. Semi-solid electrolytes for batteries
WO2016130484A1 (en) * 2015-02-09 2016-08-18 SolidEnergy Systems High salt concentration electrolytes for rechargeable lithium battery
JP6620027B2 (ja) * 2015-02-10 2019-12-11 パナソニック株式会社 電気化学エネルギー蓄積デバイス
JP6587235B2 (ja) * 2015-03-12 2019-10-09 セイコーインスツル株式会社 非水電解質二次電池
US11094966B2 (en) * 2017-03-02 2021-08-17 Battelle Memorial Institute High efficiency electrolytes for high voltage battery systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196464A (ja) * 1990-03-16 2006-07-27 Ricoh Co Ltd 固体電解質、それを含む電気化学素子及び固体電解質の形成方法
JP2004327362A (ja) * 2003-04-28 2004-11-18 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009245911A (ja) * 2008-03-11 2009-10-22 Hitachi Chem Co Ltd 電解液及びこれを用いた二次電池
JP2017509120A (ja) * 2014-03-13 2017-03-30 ブルー ソリューション リチウム硫黄電池
JP2017059432A (ja) * 2015-09-17 2017-03-23 株式会社日立製作所 擬似固体電解質およびそれを用いた全固体リチウム二次電池

Also Published As

Publication number Publication date
US11063298B2 (en) 2021-07-13
CN110506355A (zh) 2019-11-26
JP6894973B2 (ja) 2021-06-30
JPWO2018225328A1 (ja) 2020-01-09
US20200119404A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
CN110024048B (zh) 半固体电解质层、电池片和二次电池
CN104170120B (zh) 锂二次电池组、以及使用了其的电子设备、充电系统和充电方法
JP6814225B2 (ja) リチウム二次電池
JP2018195372A (ja) リチウムイオン電池用電極組成物、その組成物を用いたリチウムイオン電池用電極及びリチウムイオン電池、並びにリチウムイオン電池用電極の製造方法
JP2019053983A (ja) 非水電解液用添加剤、非水電解液電池用電解液、及び非水電解液電池
CN105449189A (zh) 锂二次电池
KR102294200B1 (ko) 반고체 전해액, 반고체 전해질, 반고체 전해질층 및 이차 전지
JP6843966B2 (ja) 半固体電解液、半固体電解質、半固体電解質層、電極、二次電池
JP2020532841A (ja) リチウム−硫黄電池用分離膜及びこれを含むリチウム−硫黄電池
CN110521049B (zh) 半固体电解质、电极、带有半固体电解质层的电极和二次电池
JP6894973B2 (ja) 半固体電解液、半固体電解質、半固体電解質層、電極および二次電池
KR20160146552A (ko) 비수 전해질 이차 전지의 제조 방법
WO2015151145A1 (ja) 全固体リチウム二次電池
JP2016081707A (ja) 負極及びそれを用いたリチウムイオン二次電池
JP2019175652A (ja) リチウムイオン二次電池
WO2024071253A1 (ja) 非水電解質二次電池
WO2019142502A1 (ja) 負極、半二次電池、二次電池
WO2019087815A1 (ja) 正極合剤層、正極、半二次電池、二次電池
JP2016081706A (ja) 負極及びそれを用いたリチウムイオン二次電池
JPWO2019177055A1 (ja) リチウムイオン二次電池
KR20230137980A (ko) 충전식 배터리 셀
WO2019065287A1 (ja) リチウムイオン二次電池
CN112005419A (zh) 绝缘层、单体电池片和电池
JPWO2017221677A1 (ja) リチウム二次電池
JP2019061836A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523351

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813870

Country of ref document: EP

Kind code of ref document: A1