WO2019058986A1 - 樹脂組成物、成形品およびフィルム - Google Patents
樹脂組成物、成形品およびフィルム Download PDFInfo
- Publication number
- WO2019058986A1 WO2019058986A1 PCT/JP2018/033049 JP2018033049W WO2019058986A1 WO 2019058986 A1 WO2019058986 A1 WO 2019058986A1 JP 2018033049 W JP2018033049 W JP 2018033049W WO 2019058986 A1 WO2019058986 A1 WO 2019058986A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyamide resin
- derived
- mol
- diamine
- resin
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
- C08G69/265—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/10—Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2377/00—Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
- C08J2377/06—Polyamides derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2477/00—Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
- C08J2477/06—Polyamides derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/10—Transparent films; Clear coatings; Transparent materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/14—Gas barrier composition
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
Definitions
- the present invention relates to a resin composition, and a molded article and a film using the resin composition.
- the present invention relates to a resin composition using a polyamide resin.
- Polymetaxylylene adipamide (MXD6) is a polyamide resin excellent in mechanical strength, and is also useful as a packaging material because of its excellent oxygen barrier properties.
- Patent Document 1 describes that MXD 6 is used in a layer made of a gas barrier resin.
- Patent Document 2 discloses, as a polyamide resin excellent in oxygen barrier properties, a polyamide resin obtained by reacting xylylene diamine, isophthalic acid and adipic acid (Patent Document 2).
- MXD 6 is excellent in oxygen barrier properties, but in recent years, there is a demand for further excellent oxygen barrier performance. In particular, it is required that the oxygen barrier property does not change with humidity. In addition, even if the oxygen barrier property does not easily change due to humidity, it becomes a problem if the transparency is inferior. In particular, there are various applications in which the oxygen barrier property is required, and it is required to provide a novel material.
- An object of the present invention is to solve such problems, and a resin composition having an oxygen barrier property that is less dependent on humidity and high transparency, and a molded article using the resin composition, and It aims to provide a film.
- the above problems are solved by blending MXD 6 with a polyamide resin obtained by reacting xylylenediamine, isophthalic acid and adipic acid. I found it to be possible. Specifically, the above problems have been solved by the following means ⁇ 1>, preferably ⁇ 2> to ⁇ 13>.
- the polyamide resin (B) contains 90 to 10 parts by mass with respect to 10 to 90 parts by mass of the polyamide resin (A), and the polyamide resin (A) is a constituent unit derived from diamine and a constituent unit derived from dicarboxylic acid And 70 mol% or more of the structural units derived from the diamine are derived from xylylene diamine, and the structural units derived from the dicarboxylic acid are more than 90 mol% derived from adipic acid, and the polyamide resin (B) is A constituent unit derived from a diamine and a constituent unit derived from a dicarboxylic acid, wherein 70 mol% or more of the constituent unit derived from the diamine is derived from xylylene diamine, and 30 to 65 moles of the constituent unit derived from the dicarboxylic acid % Is derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms, and 70 to 35 mole% is
- ⁇ 4> The resin composition according to any one of ⁇ 1> to ⁇ 3>, wherein 30 to 90 mol% of the constituent unit derived from dicarboxylic acid in the polyamide resin (B) is derived from adipic acid.
- the resin composition contains 80 to 20 parts by mass of the polyamide resin (B) with respect to 20 to 80 parts by mass of the polyamide resin (A), and is a constituent unit derived from diamine in the polyamide resin (A) 90 mol% or more is derived from metaxylylene diamine, 90 mol% or more of the constituent unit derived from diamine in the polyamide resin (B) is derived from meta xylylene diamine, and is derived from dicarboxylic acid in the polyamide resin (B)
- ⁇ 6> Of ⁇ 1> to ⁇ 5>, wherein 30 to 59 mol% of the structural units derived from dicarboxylic acid in the polyamide resin (B) is derived from adipic acid and 70 to 41 mol% is derived from isophthalic acid
- the polyamide resin (A) is a crystalline polyamide resin
- the polyamide resin (B) is an amorphous polyamide resin
- the polyamide resin composition according to any one of ⁇ 1> to ⁇ 6>, wherein 60 mol% or more of the constituent units constituting (B) are common.
- the present invention it has become possible to provide a resin composition in which the oxygen barrier property hardly depends on humidity and having high transparency, and a molded article and a film using the resin composition.
- the resin composition of the present invention comprises 90 to 10 parts by mass of the polyamide resin (B) with respect to 10 to 90 parts by mass of the polyamide resin (A), and the polyamide resin (A) comprises a diamine-derived structural unit and a dicarboxylic acid
- the constituent unit derived from an acid, 70 mol% or more of the constituent unit derived from diamine is derived from xylylene diamine, the constituent unit derived from dicarboxylic acid is derived from adipic acid by more than 90 mol%
- the resin (B) is composed of a constituent unit derived from a diamine and a constituent unit derived from a dicarboxylic acid, and 70 mol% or more of the constituent unit derived from the diamine is derived from xylylene diamine, and the constituent unit derived from the dicarboxylic acid 30 to 65 mol% is derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms,
- the polyamide resin (A) and the polyamide resin (B) are xylylene diamine in common with 70% by mole or more of the constituent units derived from diamine, and they are excellent in mutual compatibility and transparency is improved. Be done. Furthermore, it is estimated that the oxygen barrier property has succeeded in making it hard to change with humidity by mix
- the polyamide resin (A) used in the present invention is composed of a constituent unit derived from a diamine and a constituent unit derived from a dicarboxylic acid, and 70 mol% or more of the constituent unit derived from diamine is derived from xylylenediamine, and is derived from a dicarboxylic acid
- the constituent unit is more than 90% by mole and derived from adipic acid.
- the polyamide resin (A) is preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more, still more preferably 99 mol% or more of xylylenediamine derived from the diamine-derived constitutional unit Do.
- xylylenediamine metaxylylenediamine and paraxylylenediamine are preferable, and metaxylylenediamine is more preferable.
- One example of a preferred embodiment of the polyamide resin (A) in the present invention is a polyamide resin in which 70 mol% or more of the constituent unit derived from diamine is derived from metaxylylene diamine.
- diamine other than xylylene diamine which can be used as a raw material diamine component of polyamide resin (A)
- tetramethylene diamine pentamethylene diamine, 2-methyl pentane diamine, hexamethylene diamine, hepta methylene diamine, octa methylene diamine, nona Aliphatic diamines such as methylenediamine, decamethylenediamine, dodecamethylenediamine, 2,2,4-trimethyl-hexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, bis (4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclohexyl) ester Pan, bis (aminomethyl)
- diamine component When a diamine other than xylylene diamine is used as the diamine component, it is 30 mol% or less of the constituent unit derived from diamine, more preferably 1 to 25 mol%, and particularly preferably 5 to 20 mol%.
- the polyamide resin (A) preferably 95 mol% or more, more preferably 99 mol% or more of the structural units derived from dicarboxylic acid are derived from adipic acid.
- a dicarboxylic acid other than adipic acid preferable for use as a raw material dicarboxylic acid component of the polyamide resin (A)
- Aliphatic dicarboxylic acid phthalic acid compounds such as isophthalic acid, terephthalic acid and orthophthalic acid, 1,2-naphthalenedicarboxylic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid Acid, 1,6-naphthalenedicarboxylic acid, 1,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid Naphthalene dicarboxylic acid compounds etc.
- dicarboxylic acid other than adipic acid is used as the dicarboxylic acid component, it is less than 10% by mole, more preferably 1 to 8% by mole, and particularly preferably 1 to 5% by mole of the constitutional unit derived from dicarboxylic acid Use.
- the polyamide resin (A) is mainly composed of a constituent unit derived from a diamine and a constituent unit derived from a dicarboxylic acid, but the constituent units other than these are not completely excluded, and ⁇ -caprolactam and laurolactam are not included. It is needless to say that structural units derived from lactams such as E.C., aminocaproic acid and aliphatic aminocarboxylic acids such as aminoundecanoic acid may be contained.
- the main component means that the total number of the structural unit derived from diamine and the structural unit derived from dicarboxylic acid among the structural units constituting the polyamide resin (A) is the largest among all the structural units.
- the total of the structural unit derived from diamine and the structural unit derived from dicarboxylic acid in the polyamide resin (A) preferably accounts for 90% or more of the total structural units, and more preferably 95% or more. It is more preferable to occupy 98% or more.
- the number average molecular weight (Mn) of the polyamide resin (A) is preferably 10,000 or more, and more preferably 15,000 or more.
- the upper limit of the number average molecular weight of the polyamide resin (A) is not particularly limited, but may be, for example, 100,000 or less, and may be 50,000 or less, or 40,000 or less.
- the number average molecular weight in the present invention is measured according to the method described in paragraph 0016 of WO 2017/090556, the contents of which are incorporated herein.
- the polyamide resin (A) is usually a crystalline resin, and the melting point thereof is preferably 190 to 300 ° C., more preferably 200 to 270 ° C., and still more preferably 210 to 250 ° C. .
- the melting point in the present invention is measured according to the description in paragraph 0017 of JP-A-2016-216661, the contents of which are incorporated herein.
- the polyamide resin (A) used in the present invention preferably contains phosphorus atoms in a proportion of 3 to 300 mass ppm, more preferably in a proportion of 4 to 250 mass ppm, and contains 20 to 200 mass ppm Is more preferred.
- the resin composition of the present invention preferably contains 10 to 90% by mass, and more preferably 20 to 80% by mass of the polyamide resin (A).
- the polyamide resin (A) may contain only one kind, or two or more kinds.
- the polyamide resin (B) is composed of a constituent unit derived from a diamine and a constituent unit derived from a dicarboxylic acid, and 70 mol% or more of the constituent unit derived from diamine is derived from xylylenediamine, and is a constituent unit derived from a dicarboxylic acid 30 to 65% by mole is derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms, and 70 to 35% by mole is derived from isophthalic acid (provided that the total does not exceed 100% by mole) ).
- transparency and oxygen barrier properties can be further improved.
- the polyamide resin (B) used in the present invention is usually an amorphous resin.
- Amorphous resin is a resin which does not have a definite melting point, and specifically, it means that the crystal melting enthalpy ⁇ Hm is less than 5 J / g, preferably 3 J / g or less, further 1 J / g or less. preferable.
- the polyamide resin (B) 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more, still more preferably 99 mol% of the constituent unit derived from diamine % Or more originates from xylylene diamine.
- xylylenediamine metaxylylenediamine and paraxylylenediamine are preferable, and metaxylylenediamine is more preferable.
- One example of a preferred embodiment of the polyamide resin (B) in the present invention is a polyamide resin in which 70 mol% or more of the constituent unit derived from diamine is derived from metaxylylene diamine.
- diamines other than xylylene diamine aromatic diamines such as paraphenylene diamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, tetramethylenediamine, pentamethylenediamine, hexamethylene Aliphatic diamines such as diamine, octamethylene diamine and nona methylene diamine are exemplified. These other diamines may be used alone or in combination of two or more. When a diamine other than xylylene diamine is used as the diamine component, it is 30 mol% or less of the constituent unit derived from diamine, more preferably 1 to 25 mol%, and particularly preferably 5 to 20 mol%.
- an ⁇ , ⁇ -linear aliphatic dicarboxylic acid (preferably having 4 carbon atoms) having a carbon number of 4 to 20 is contained in an amount of 30 to 65 mol% of the dicarboxylic acid-derived constitutional units in the polyamide resin (B). It is derived from .about.8 ⁇ , ⁇ -linear aliphatic dicarboxylic acids, more preferably adipic acid, and 70 to 35 mole% is derived from isophthalic acid.
- the lower limit of the proportion of isophthalic acid is 35 mol% or more, preferably 40 mol% or more, and 41 mol% or more of all the dicarboxylic acids constituting the constituent unit derived from dicarboxylic acid in the polyamide resin (B). preferable.
- the upper limit of the proportion of isophthalic acid is 70 mol% or less, preferably 67 mol% or less, more preferably 65 mol% or less, still more preferably 62 mol% or less, and still more preferably 60 mol% or less. It may be% or less. By setting it as such a range, the haze tends to be further reduced, which is preferable.
- ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms preferably, ⁇ , ⁇ having 4 to 8 carbon atoms
- the lower limit of the proportion of the linear aliphatic dicarboxylic acid, more preferably adipic acid is 30 mol% or more, preferably 33 mol% or more, more preferably 35 mol% or more, and still more preferably 38 mol% or more, 40 mol% or more is more preferable, and 42 mol% or more may be sufficient.
- the upper limit value of the proportion of the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms is 65 mol% or less, preferably 60 mol% or less, and more preferably 59 mol% or less.
- the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms is preferably, as described above, an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 8 carbon atoms.
- preferred ⁇ , ⁇ -linear aliphatic dicarboxylic acids having 4 to 20 carbon atoms for use as raw material dicarboxylic acid components of polyamide resins include, for example, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, adipic acid, Aliphatic dicarboxylic acids such as sebacic acid, undecanedioic acid, dodecanedioic acid, etc. can be exemplified, and one or two or more kinds can be mixed and used.
- the melting point of the polyamide resin is a suitable range for molding processing Adipic acid is preferred because
- the proportion of the total of isophthalic acid and ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms in the total dicarboxylic acids constituting the constituent unit derived from dicarboxylic acid in the polyamide resin (B) is 90 mol%
- the above content is preferably, more preferably 95 mol% or more, still more preferably 98 mol% or more, and 100 mol%.
- dicarboxylic acids other than isophthalic acid and ⁇ , ⁇ -linear aliphatic dicarboxylic acids having 4 to 20 carbon atoms include phthalic acid compounds such as terephthalic acid and orthophthalic acid, 1,2-naphthalenedicarboxylic acid, and 1,3-naphthalene Dicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 1,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid Examples thereof include naphthalenedicarboxylic acid compounds such as 2,6-naphthalenedicarboxylic acid and 2,7-naphthalenedicarboxylic acid, and one kind or a mixture of two or more kinds can be used.
- the polyamide resin (B) preferably contains substantially no constituent unit derived from terephthalic acid.
- the term “substantially free” is 5 mol% or less of the molar amount of isophthalic acid contained in the polyamide resin (B), preferably 3 mol% or less, and more preferably 1 mol% or less.
- the polyamide resin (B) used by this invention is comprised from the structural unit derived from dicarboxylic acid and the structural unit derived from diamine, structural units other than the structural unit derived from dicarboxylic acid and the structural unit derived from diamine, Other moieties such as groups may be included. Examples of other structural units include structural units derived from lactams such as ⁇ -caprolactam, valerolactam, laurolactam and undecalactam, aminocarboxylic acids such as 11-aminoundecanoic acid and 12-aminododecanoic acid, etc. It is not limited to these. Furthermore, the polyamide resin (B) used in the present invention contains minor components such as additives used in the synthesis. In the polyamide resin (B) used in the present invention, usually 95% by mass or more, preferably 98% by mass or more is a structural unit derived from a dicarboxylic acid or a structural unit derived from a diamine.
- the number average molecular weight (Mn) of the polyamide resin (B) is preferably 8,000 or more, and more preferably 10,000 or more.
- the upper limit of the number average molecular weight of the polyamide resin (B) is not particularly limited, but is, for example, 50,000 or less, and may be 30,000 or less, or 20,000 or less.
- a form in which Mn of the polyamide resin (B) is smaller than Mn of the polyamide resin (A) can be mentioned. More preferably, the Mn of the polyamide resin (B) is 5,000 or more smaller than the Mn of the polyamide resin (A), still more preferably 8,000 or more, more preferably 10, It is smaller than 000.
- the upper limit of the difference between the Mn of the polyamide resin (B) and the Mn of the polyamide resin (A) is, for example, 25,000 or less. With such a configuration, the dispersibility and compatibility of the polyamide resin (A) and the polyamide resin (B) become good, and the transparency and the gas barrier property tend to be more excellent.
- the polyamide resin (B) used in the present invention preferably contains a phosphorus atom in a proportion of 3 to 300 mass ppm, more preferably in a proportion of 4 to 250 mass ppm, and in a proportion of 20 to 200 mass ppm It is more preferable that the content be 20 to 100 mass ppm, more preferably 20 to 50 mass ppm. Moreover, it is preferable that the polyamide resin (B) used by this invention contains a calcium atom. By containing a calcium atom, the transparency can be further improved.
- the polyamide resin (B) used in the present invention contains calcium atoms in a ratio of phosphorus atom: calcium atom molar ratio of 1: 0.3 to 0.7.
- the molar ratio of phosphorus atom to calcium atom in the polyamide resin (B) used in the present invention is more preferably 1: 0.4 to 0.6, and 1: 0.45 to 0.55. It is more preferable that the ratio be 1: 0.48 to 0.52.
- the polyamide resin (B) used in the present invention contains a phosphorus atom in a proportion of 3 to 300 mass ppm and contains a calcium atom in a proportion of 1: 0.3 to 0.7 of phosphorus atom: calcium atom molar ratio. Is more preferred.
- the calcium atom is preferably derived from calcium hypophosphite.
- the phosphorus atom concentration and the calcium atom concentration are measured as described in paragraph 0037 of WO 2017/090556, the contents of which are incorporated herein.
- the resin composition of the present invention preferably contains 10 to 90% by mass, and more preferably 20 to 80% by mass of the polyamide resin (B).
- the blend ratio of the polyamide resin (A) and the polyamide resin (B) in the resin composition of the present invention is 90 to 10 parts by mass of the polyamide resin (B) with respect to 10 to 90 parts by mass of the polyamide resin (A) It is preferable that 80 to 20 parts by mass of polyamide resin (B) is contained with respect to 20 to 80 parts by mass of resin (A), and 77 to 23 parts by mass of polyamide resin (B) is per 23 to 77 parts by mass of polyamide resin (A).
- the resin composition contains 55 to 23 parts by mass of the polyamide resin (B) with respect to 45 to 77 parts by mass of the polyamide resin (A), and more preferably 45 to 65 parts by mass of the polyamide resin (A) And still more preferably 55 to 35 parts by mass of the polyamide resin (B), relative to 45 to 60 parts by mass of the polyamide resin (A) Even more preferably contains 0 parts by weight, relative to the polyamide resin (A) 45 ⁇ 55 parts by weight, the polyamide resin (B) is particularly more preferably contains 55 to 45 mass parts.
- the polyamide resin (A) and the polyamide resin (B) may each contain only one type, or may contain two or more types. When it contains 2 or more types, it is preferable that a total amount becomes said range.
- the resin composition of the present invention is preferably 80 mol% or more, more preferably 90 mol% or more, of both of the polyamide resin (A) and the polyamide resin (B). It is preferable to use a polyamide resin derived from metaxylylenediamine, which is 95 mol% or more, more preferably 99 mol% or more. With such a configuration, the gas barrier properties tend to be more excellent.
- the ratio of the structural unit derived from isophthalic acid is preferably 10 to 40 mol%, and is 20 to 40 mol%. Is more preferred.
- the resin composition of the present invention it is preferable that 60 mol% or more of the structural units constituting the polyamide resin (A) and 60 mol% or more of the structural units constituting the polyamide resin (B) be common and 64 mol% or more be common Is more preferable, and 67 mol% or more is more preferable in common.
- the compatibility between the polyamide resin (A) and the polyamide resin (B) can be improved, and a resin composition having excellent transparency can be obtained.
- the upper limit of the common constituent units is 95 mol% or less, and more preferably 90 mol% or less.
- the resin composition of the present invention blends a polyamide resin (A) which is a crystalline polyamide resin and a polyamide resin (B) which is an amorphous polyamide resin. With such a configuration, appropriate molding processability is maintained, and the gas barrier properties are less likely to change due to humidity. Further, the dispersion degree (Mw / Mn) of the polyamide resin (B) is preferably 1.5 to 4.5, more preferably 1.5 to 3.5, and 2.0 to 2.6. It is further preferable to With such a configuration, the film forming property of the film can be further improved. In the resin composition of the present invention, it is preferable that the polyamide resin (A) and the polyamide resin (B) satisfy the above-mentioned relationship in combination.
- the resin composition of the present invention may or may not contain another polyamide resin other than the above-mentioned polyamide resin (A) and polyamide resin (B).
- Other polyamide resins include, specifically, polyamide 11, polyamide 12, MXD10 (polymetaxylylene sebasamide), MPXD10 (polymumbleraxylylene sebasamide) and PXD10 (polyparaxylylene sebasamide) Is illustrated. Each of these other polyamide resins may be of one type or of two or more types.
- the resin composition of the present invention can be configured to be substantially free of polyamide resins other than the polyamide resin (A) and the polyamide resin (B).
- substantially free means that the content of the other polyamide resin is 5% by mass or less of the total content of the polyamide resin (A) and the polyamide resin (B), and is 3% by mass or less Preferably, it is 1% by mass or less.
- the resin composition of the present invention comprises 80 to 20 parts by mass of the polyamide resin (B) with respect to 20 to 80 parts by mass of the polyamide resin (A) 90 mol% or more of the units are derived from metaxylylenediamine, and 90 mol% or more of the constituent units derived from diamine in the polyamide resin (B) are derived from metaxylylenediamine, derived from the dicarboxylic acid in the polyamide resin (B)
- An example is a resin composition in which 30 to 65% by mole of the constituent unit is derived from adipic acid and 70 to 35% by mole is isophthalic acid.
- the resin composition of the present invention may contain components other than the above-mentioned polyamide resin.
- a filler As components other than the said polyamide resin, a filler, a matting agent, a heat resistant stabilizer, a weathering stabilizer, an antioxidant, an ultraviolet absorber, a plasticizer, a flame retardant, an antistatic agent, a coloring inhibitor, an antigelling agent Impact modifiers, lubricants, colorants, conductive additives, oxidation reaction accelerators and the like.
- a filler a matting agent, a heat resistant stabilizer, a weathering stabilizer, an antioxidant, an ultraviolet absorber, a plasticizer, a flame retardant, an antistatic agent, a coloring inhibitor, an antigelling agent Impact modifiers, lubricants, colorants, conductive additives, oxidation reaction accelerators and the like.
- a filler As components other than the said polyamide resin, a filler, a matting agent, a heat resistant stabilizer, a weathering stabilizer, an
- the resin composition of the present invention may contain an oxidation reaction accelerator.
- the oxidation reaction accelerator may be any as long as it has an oxidation reaction promoting effect, but from the viewpoint of promoting the oxidation reaction of the polyamide resin, a compound containing a transition metal element is preferable.
- the transition metal element is preferably at least one selected from transition metals of Group VIII of the Periodic Table of the Elements, manganese, copper and zinc, and cobalt, iron, manganese, and the like from the viewpoint of effectively expressing oxygen absorbing ability.
- an oxidation reaction accelerator in addition to the above-mentioned metal single substance, it is used in the form of a low-valent oxide containing the above-mentioned metal, inorganic acid salt, organic acid salt or complex salt.
- inorganic acid salts include halides such as chlorides and bromides, carbonates, sulfates, nitrates, phosphates and silicates.
- organic acid salt include carboxylates, sulfonates, phosphonates and the like.
- transition metal complexes with ⁇ -diketones or ⁇ -keto acid esters can also be used.
- the present invention it is preferable to use at least one selected from carboxylates, carbonates, acetylacetonate complexes, oxides and halides containing the above-mentioned metal atoms, since oxygen absorbing ability is well expressed. It is more preferable to use at least one selected from octanoate, neodecanoate, naphthenate, stearate, acetate, carbonate and acetylacetonate complex, and cobalt octanoate, cobalt naphthenate, cobalt acetate It is further preferred to use cobalt carboxylates such as cobalt stearate.
- the above-mentioned oxidation reaction accelerator functions not only as a catalyst for promoting the oxidation reaction of the polyamide resin but also as a catalyst for the oxidation reaction of the organic compound having unsaturated carbon bond and the compound having secondary or tertiary hydrogen in the molecule. Therefore, in the resin composition of the present invention, in addition to the above-mentioned oxidation reaction accelerator, polymers of unsaturated hydrocarbons such as polybutadiene and polyisoprene, or oligomers thereof, xylyl, in addition to the above-mentioned oxidation reaction accelerators. It is also possible to blend various compounds as exemplified by compounds having a diazinamine as a skeleton or compounds to which a functional group for enhancing the compatibility of the compound with the polyester is added.
- the oxidation reaction accelerator contains a transition metal element
- the content thereof is preferably as the transition metal concentration in the resin composition from the viewpoint of promoting the oxidation reaction of the polyamide resin to enhance the oxygen absorbing ability of the molded article.
- the amount is 10 to 1,000 mass ppm, more preferably 20 to 500 mass ppm, and still more preferably 40 to 300 mass ppm.
- the transition metal concentration in the molded article can be measured using a known method such as ICP emission spectrometry, ICP mass spectrometry, X-ray fluorescence analysis and the like.
- the oxidation reaction accelerators may be used alone or in combination of two or more. When two or more types are used in combination, the total amount is preferably in the above range.
- the resin composition of the present invention can have a haze of 2.5% or less, further 1.0% or less, in particular, when it is formed into a 100 ⁇ m thick single layer film. It can also be 7% or less, 0.6 or less, or 0.5 or less.
- the lower limit value of the haze is desirably 0%, but 0.1% or more, or even 0.2% or more can sufficiently satisfy the required performance.
- the haze is measured according to the method described in the examples described later.
- the resin composition of the present invention has an oxygen permeability coefficient (OTC 60 ) at 23 ° C.
- a relative humidity of 60% when molded into a 100 ⁇ m thick single layer film 1 cc ⁇ mm / (m 2 ⁇ day ⁇ atm) or less Furthermore, it can be 0.1 cc ⁇ mm / (m 2 ⁇ day ⁇ atm) or less, in particular, 0.09 cc ⁇ mm / (m 2 ⁇ day ⁇ atm) or less.
- the resin composition of the present invention also has an oxygen permeability coefficient (OTC 90 ) at 23 ° C. and 90% relative humidity when formed into a 100 ⁇ m thick single layer film, 2.0 cc ⁇ mm / (m 2 ⁇ day) -Atm) or less, further 1.0 cc-mm / (m 2 ⁇ day ⁇ atm) or less, particularly 0.3 cc ⁇ mm / (m 2 ⁇ day ⁇ atm) or less.
- OTC 90 oxygen permeability coefficient
- the lower limit of the oxygen permeability coefficient at 23 ° C and 90% relative humidity is preferably 0 cc ⁇ mm / (m 2 ⁇ day ⁇ atm), but 0.05 cc ⁇ mm / (m 2 ⁇ day ⁇ atm) or more is sufficient. It can meet the required performance.
- the resin composition of the present invention further has an oxygen permeability measured at 23 ° C. and 90% relative humidity (RH) to an oxygen permeability coefficient (OTC 60 ) measured at 60% relative humidity (RH)
- the rate of change of coefficient (OTC 90 ) (OTC 90 / OTC 60 ) can be less than 5.5 or even less than 4.5, in particular less than 2.8 .
- the lower limit value is not particularly limited, but may be, for example, 1.0 or more, 1.2 or more, 1.5 or more, or 1.7 or more.
- the oxygen permeability coefficient (OTC) is measured according to the method described in the examples below.
- a method of producing the resin composition Any method can be adopted as a method of producing the resin composition.
- a polyamide resin and other components optionally mixed are mixed using a mixing means such as a V-type blender to prepare a one-piece blended product, and then melt-kneaded and pelletized in a vented extruder The method is mentioned.
- a method of dry-blending each resin, a method of melt-blending in advance, or a method of partially masterbatching and diluting may be employed.
- the heating temperature at the time of melt-kneading can be appropriately selected from the range of 190 to 350 ° C. according to the melting point of the resin. If the temperature is too high, decomposition gas is likely to be generated, which may cause opacification. Therefore, it is desirable to select a screw configuration in consideration of shear heating and the like. Moreover, it is desirable to use an antioxidant and a heat stabilizer from the viewpoint of suppressing the decomposition at the time of kneading and molding at the later step.
- the present invention also relates to a molded article formed from the resin composition of the present invention. Furthermore, the present invention relates to a molded article having a layer comprising the resin composition of the present invention. That is, the resin composition of the present invention can be molded into various molded articles.
- the method for producing molded articles using the resin composition of the present invention is not particularly limited, and molding methods generally used for thermoplastic resins, that is, molding methods such as injection molding, hollow molding, extrusion molding, press molding, etc. Can be applied.
- a single layer film (which is a meaning including a single layer sheet), a multilayer film (which is a purpose including a multilayer sheet), a fiber, a yarn, a rope, a tube, a hose, various molding materials, a container, various parts,
- a finished product, a case, a shrink packaging material (a shrink film, a shrink tube, etc.) and the like are exemplified.
- the molded articles in particular, films
- Stretching may be uniaxial stretching or biaxial stretching.
- biaxial stretching may be simultaneous stretching or sequential stretching.
- the stretching ratio is preferably 1.1 to 5.0 times for each of MD (Machine Direction) and TD (Transverse Direction).
- the area stretching ratio is preferably 1 to 25 times.
- the resin composition of the present invention can be used for transportation parts of automobiles, general machine parts, precision machine parts, electronic and electric parts, OA equipment parts, building materials and housing related parts, medical equipment, leisure sports goods, play equipment, medical Widely used for containers of goods and food, defense and aerospace products, etc.
- the present invention also relates to a film formed from the resin composition of the present invention.
- the film of the present invention can be used as a single layer film or a multilayer film.
- the thickness of the single-layer film can be 5 to 1000 ⁇ m, further 15 to 500 ⁇ m, and in particular 50 to 200 ⁇ m.
- the single layer film can be preferably used for packaging containers such as wraps, pouches of various shapes, lids of containers, bottles, cups, trays, tubes and the like.
- the multilayer film is a multilayer film including at least one layer formed from the resin composition of the present invention.
- the multilayer film can be preferably used for packaging containers such as wraps, pouches of various shapes, lids of containers, bottles, cups, trays, tubes and the like.
- the details of the single layer film and the multilayer film can be referred to the description of paragraphs 0085 to 0123 of JP-A-2016-169291, the contents of which are incorporated herein.
- the resin composition of the present invention is preferably used for a container.
- the shape of the container is not particularly limited, and may be, for example, a molded container such as a bottle, a cup, a tube, a tray, or a Tupperware, or a bag-shaped container such as a pouch, a standing pouch, or a zipper storage bag It is also good.
- the container can store and store various items for which the contents are desired to be visualized in order to motivate the customer to purchase.
- processed fish products, processed livestock products, rice and liquid food can be mentioned.
- it is suitable for the preservation of foods susceptible to oxygen. The details of these can be referred to the description in paragraphs 0032 to 0035 of JP-A-2011-37199, the contents of which are incorporated herein.
- Synthesis Example A-1 15 kg of adipic acid, 13.1 g of sodium hypophosphite monohydrate, and sodium acetate 6 in a jacketed 50 L reaction vessel equipped with a stirrer, partial condenser, condenser, thermometer, dropping tank and nitrogen gas inlet tube 9 g was charged, sufficiently purged with nitrogen, and further heated to 180 ° C. in a small amount of nitrogen gas flow to uniformly melt adipic acid, and then metaxylylenediamine 13 was added thereto while stirring the inside of the system. 9 kg was dropped over 170 minutes. During this time, the internal temperature was continuously raised to 245 ° C.
- the system was heated to 140 ° C. under nitrogen flow.
- the pressure in the system is reduced, and the temperature is further raised continuously to 190 ° C. and maintained at 190 ° C. for 30 minutes, then nitrogen is introduced to return the pressure in the system to normal pressure, and then the resin is cooled and polyamide resin A- I got one.
- the melting point of the obtained polyamide resin was 237 ° C., and the number average molecular weight was 26,000.
- the obtained polyamide resin (B-1) was vacuum dried at 115 ° C. for 24 hours.
- the resin B-1 was found to be amorphous, as the crystal melting enthalpy ⁇ Hm was approximately 0 J / g in the temperature rising process.
- the number average molecular weight was 13,500.
- Synthesis Example B-2 In Synthesis Example B-1, the molar ratio of adipic acid and isophthalic acid was adjusted to be 40:60, and the other procedures were performed in the same manner to obtain a polyamide resin B-2.
- the obtained polyamide resin (B-2) was vacuum dried at 115 ° C. for 24 hours.
- the resin B-2 was found to be amorphous, as the crystal melting enthalpy ⁇ Hm was approximately 0 J / g in the temperature rising process.
- the number average molecular weight was 13,000.
- Synthesis Example B-3 In Synthesis Example B-1, the molar ratio of adipic acid and isophthalic acid was adjusted to be 60:40, and the other procedures were performed in the same manner to obtain a polyamide resin B-3.
- the obtained polyamide resin (B-3) was vacuum dried at 105 ° C. for 24 hours.
- the resin B-3 was found to be noncrystalline because the crystal melting enthalpy ⁇ Hm in the temperature rising process was approximately 0 J / g.
- the number average molecular weight was 13,800.
- Synthesis Example B-4 6,001 g (41.06 mol) of precisely weighed adipic acid, 6,821 g (41.06 mol) of isophthalic acid, and metaxirily in a control vessel equipped with a stirrer, a partial condenser, a thermometer, a dropping funnel and a nitrogen introducing pipe. 11, 185 g (82.12 mol) of diazinamine were prepared at an internal temperature of 115 ° C.
- the degree of dispersion was determined by GPC measurement. Specifically, using “HLC-8320GPC” manufactured by Tosoh Corp. as an apparatus and two “TSK gel Super HM-H” manufactured by Tosoh Corp. as a column, a hexafluoroisopropanol having a concentration of 10 mmol / L sodium trifluoroacetate as an eluent. It measured on the conditions of (HFIP), resin concentration 0.02 mass%, column temperature 40 degreeC, flow rate 0.3 mL / min, and a refractive index detector (RI), and calculated
- Example 1 ⁇ Production of single layer film>
- the polyamide resin (A) pellets shown in Table 1 and the polyamide resin (B) pellets are dry blended in the ratio shown in Table 1 and then a single-screw extruder with a T-die (manufactured by Plastic Engineering Research Institute, PTM-30) And kneaded. Extrusion was performed at an extrusion temperature of 260 ° C. to prepare a single-layer film 150 mm wide and 100 ⁇ m thick.
- ⁇ Evaluation of transparency> The haze (HAZE) was measured about the single layer film obtained above. The measurement of the haze was performed according to JIS K7136.
- the oxygen permeation coefficient (OTC) of the single-layer film obtained above was measured by an isobaric method in an atmosphere of 23 ° C. and 60% relative humidity (RH). Moreover, the oxygen permeation coefficient was measured by the isobaric method in the atmosphere of 23 degreeC and 90% of relative humidity (RH) about the single layer film obtained above.
- the oxygen permeability coefficient was measured using an oxygen permeability measurement device (manufactured by MOCON, product name: "OX-TRAN (registered trademark) 2/21").
- Humidity dependence of oxygen barrier properties It was evaluated as follows from the change rate of the oxygen permeability coefficient measured in the atmosphere of 23 ° C., relative humidity (RH) 90% to the oxygen permeation coefficient measured in the atmosphere of 23 ° C., relative humidity (RH) 60%. Evaluation C or more is a practical level.
- D OTC 90 / OTC 60 is 5.5 or more
- Example 2 Examples 2 to 6 and Reference Example 1 In Example 1, the following changes are made as shown in Table 1 below, and the others are carried out in the same manner. Single layer film was obtained. It evaluated similarly to Example 1.
- the resin composition of the present invention has high transparency, and the oxygen barrier property hardly depends on humidity (Examples 1 to 6). Further, by using a polyamide resin having a degree of dispersion of 1.5 to 3.5 as the polyamide resin (B), a film excellent in film forming property was obtained (Examples 1 to 5). On the other hand, when only the polyamide resin (A) is blended and the polyamide resin (B) is not blended (Reference Example 1), the oxygen barrier property is lower than that of the resin composition of the present invention although it is practical. It was easy to rely on.
- an oxidation reaction accelerator (cobalt (II) stearate, manufactured by Kanto Chemical Co., Ltd.) is blended so as to be 100 mass ppm with respect to 100 parts by mass of the polyamide resin component. I went to get the film. Both OTC 90 and OTC 60 were less than 0.01 cc ⁇ mm / (m 2 ⁇ day ⁇ atm).
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyamides (AREA)
Abstract
酸素バリア性が湿度に依存しにくく、かつ、透明性が高い樹脂組成物、ならびに、前記樹脂組成物を用いた成形品およびフィルムの提供。ポリアミド樹脂(A)10~90質量部に対し、ポリアミド樹脂(B)90~10質量部を含み、ポリアミド樹脂(A)は、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位が90モル%を超えてアジピン酸に由来し、ポリアミド樹脂(B)は、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の、30~65モル%が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来し、70~35モル%がイソフタル酸に由来する、樹脂組成物。
Description
本発明は、樹脂組成物、ならびに、前記樹脂組成物を用いた成形品およびフィルムに関する。
特に、ポリアミド樹脂を用いた樹脂組成物に関する。
特に、ポリアミド樹脂を用いた樹脂組成物に関する。
ポリメタキシリレンアジパミド(MXD6)は、機械的強度に優れたポリアミド樹脂であり、酸素バリア性にも優れることから包装材料として有用である。例えば、特許文献1には、ガスバリア性樹脂からなる層に、MXD6を用いることが記載されている。
また、特許文献2には、酸素バリア性に優れたポリアミド樹脂として、キシリレンジアミンと、イソフタル酸と、アジピン酸とを反応させて得られるポリアミド樹脂が開示されている(特許文献2)。
また、特許文献2には、酸素バリア性に優れたポリアミド樹脂として、キシリレンジアミンと、イソフタル酸と、アジピン酸とを反応させて得られるポリアミド樹脂が開示されている(特許文献2)。
MXD6は、上述の通り酸素バリア性に優れているが、近年、さらに優れた酸素バリア性能の要求がある。特に、酸素バリア性が湿度によって変化しないことが求められる。また、単に、酸素バリア性が湿度によって変化しにくくても、透明性が劣れば問題となる。特に、酸素バリア性が求められる用途も種々あり、新規な材料の提供が求められている。
本発明はかかる課題を解決することを目的とするものであって、酸素バリア性が湿度に依存しにくく、かつ、透明性が高い樹脂組成物、ならびに、前記樹脂組成物を用いた成形品およびフィルムを提供することを目的とする。
本発明はかかる課題を解決することを目的とするものであって、酸素バリア性が湿度に依存しにくく、かつ、透明性が高い樹脂組成物、ならびに、前記樹脂組成物を用いた成形品およびフィルムを提供することを目的とする。
上記課題のもと、本発明者が検討を行った結果、MXD6に、キシリレンジアミンと、イソフタル酸と、アジピン酸とを反応させて得られるポリアミド樹脂をブレンドすることにより、上記課題を解決しうることを見出した。具体的には、下記手段<1>により、好ましくは<2>~<13>により、上記課題は解決された。
<1>ポリアミド樹脂(A)10~90質量部に対し、ポリアミド樹脂(B)90~10質量部を含み、前記ポリアミド樹脂(A)は、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位が90モル%を超えてアジピン酸に由来し、前記ポリアミド樹脂(B)は、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位の、30~65モル%が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来し、70~35モル%がイソフタル酸に由来する(但し、合計が100モル%を超えることはない)、樹脂組成物。
<2>前記ポリアミド樹脂(A)におけるジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来する、<1>に記載の樹脂組成物。
<3>前記ポリアミド樹脂(B)におけるジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来する、<1>または<2>に記載の樹脂組成物。
<4>前記ポリアミド樹脂(B)におけるジカルボン酸由来の構成単位の30~90モル%がアジピン酸に由来する、<1>~<3>のいずれか1つに記載の樹脂組成物。
<5>前記樹脂組成物は、前記ポリアミド樹脂(A)20~80質量部に対し、前記ポリアミド樹脂(B)80~20質量部を含み、前記ポリアミド樹脂(A)におけるジアミン由来の構成単位の90モル%以上がメタキシリレンジアミンに由来し、前記ポリアミド樹脂(B)におけるジアミン由来の構成単位の90モル%以上がメタキシリレンジアミンに由来し、前記ポリアミド樹脂(B)におけるジカルボン酸由来の構成単位の、30~65モル%がアジピン酸に由来し、70~35モル%がイソフタル酸に由来する、<1>に記載の樹脂組成物。
<6>前記ポリアミド樹脂(B)におけるジカルボン酸由来の構成単位の、30~59モル%がアジピン酸に由来し、70~41モル%がイソフタル酸に由来する、<1>~<5>のいずれか1つに記載の樹脂組成物。
<7>前記ポリアミド樹脂(A)は結晶性ポリアミド樹脂であり、前記ポリアミド樹脂(B)は非晶性ポリアミド樹脂であり、かつ、前記ポリアミド樹脂(A)を構成する構成単位と、前記ポリアミド樹脂(B)を構成する構成単位の60モル%以上が共通する、<1>~<6>のいずれか1つに記載の樹脂組成物。
<8>前記ポリアミド樹脂(B)が非晶性ポリアミド樹脂である、<1>~<7>のいずれか1つに記載の樹脂組成物。
<9>前記ポリアミド樹脂(B)の分散度である、Mw/Mnが1.5~3.5である、<1>~<8>のいずれか1つに記載の樹脂組成物。
<10><1>~<9>のいずれか1つに記載の樹脂組成物から形成される成形品。
<11><1>~<9>のいずれか1つに記載の樹脂組成物からなる層を有する成形品。
<12><1>~<9>のいずれか1つに記載の樹脂組成物から形成されるフィルム。
<13>延伸されている、<12>に記載のフィルム。
<1>ポリアミド樹脂(A)10~90質量部に対し、ポリアミド樹脂(B)90~10質量部を含み、前記ポリアミド樹脂(A)は、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位が90モル%を超えてアジピン酸に由来し、前記ポリアミド樹脂(B)は、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位の、30~65モル%が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来し、70~35モル%がイソフタル酸に由来する(但し、合計が100モル%を超えることはない)、樹脂組成物。
<2>前記ポリアミド樹脂(A)におけるジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来する、<1>に記載の樹脂組成物。
<3>前記ポリアミド樹脂(B)におけるジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来する、<1>または<2>に記載の樹脂組成物。
<4>前記ポリアミド樹脂(B)におけるジカルボン酸由来の構成単位の30~90モル%がアジピン酸に由来する、<1>~<3>のいずれか1つに記載の樹脂組成物。
<5>前記樹脂組成物は、前記ポリアミド樹脂(A)20~80質量部に対し、前記ポリアミド樹脂(B)80~20質量部を含み、前記ポリアミド樹脂(A)におけるジアミン由来の構成単位の90モル%以上がメタキシリレンジアミンに由来し、前記ポリアミド樹脂(B)におけるジアミン由来の構成単位の90モル%以上がメタキシリレンジアミンに由来し、前記ポリアミド樹脂(B)におけるジカルボン酸由来の構成単位の、30~65モル%がアジピン酸に由来し、70~35モル%がイソフタル酸に由来する、<1>に記載の樹脂組成物。
<6>前記ポリアミド樹脂(B)におけるジカルボン酸由来の構成単位の、30~59モル%がアジピン酸に由来し、70~41モル%がイソフタル酸に由来する、<1>~<5>のいずれか1つに記載の樹脂組成物。
<7>前記ポリアミド樹脂(A)は結晶性ポリアミド樹脂であり、前記ポリアミド樹脂(B)は非晶性ポリアミド樹脂であり、かつ、前記ポリアミド樹脂(A)を構成する構成単位と、前記ポリアミド樹脂(B)を構成する構成単位の60モル%以上が共通する、<1>~<6>のいずれか1つに記載の樹脂組成物。
<8>前記ポリアミド樹脂(B)が非晶性ポリアミド樹脂である、<1>~<7>のいずれか1つに記載の樹脂組成物。
<9>前記ポリアミド樹脂(B)の分散度である、Mw/Mnが1.5~3.5である、<1>~<8>のいずれか1つに記載の樹脂組成物。
<10><1>~<9>のいずれか1つに記載の樹脂組成物から形成される成形品。
<11><1>~<9>のいずれか1つに記載の樹脂組成物からなる層を有する成形品。
<12><1>~<9>のいずれか1つに記載の樹脂組成物から形成されるフィルム。
<13>延伸されている、<12>に記載のフィルム。
本発明により、酸素バリア性が湿度に依存しにくく、かつ、透明性が高い樹脂組成物、ならびに、前記樹脂組成物を用いた成形品およびフィルムを提供可能になった。
以下において、本発明の内容について詳細に説明する。なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
本発明の樹脂組成物は、ポリアミド樹脂(A)10~90質量部に対し、ポリアミド樹脂(B)90~10質量部を含み、前記ポリアミド樹脂(A)は、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位が90モル%を超えてアジピン酸に由来し、前記ポリアミド樹脂(B)は、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位の、30~65モル%が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来し、70~35モル%がイソフタル酸に由来する(但し、合計が100モル%を超えることはない)ことを特徴とする。このような構成とすることにより、酸素バリア性が湿度に依存しにくく、かつ、透明性が高い樹脂組成物が得られる。この理由は、ポリアミド樹脂(A)とポリアミド樹脂(B)は、ジアミン由来の構成単位の70モル%以上が共通してキシリレンジアミンであり、互いに相溶性に優れ、透明性が向上したためと推定される。さらに、ポリアミド樹脂(B)を配合することにより、酸素バリア性が湿度によって変化しにくくすることに成功したと推定される。
<ポリアミド樹脂(A)>
本発明で用いるポリアミド樹脂(A)は、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位が90モル%を超えてアジピン酸に由来する。
本発明で用いるポリアミド樹脂(A)は、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位が90モル%を超えてアジピン酸に由来する。
ポリアミド樹脂(A)は、ジアミン由来の構成単位の好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上が、一層好ましくは99モル%以上がキシリレンジアミンに由来する。キシリレンジアミンは、メタキシリレンジアミンおよびパラキシリレンジアミンが好ましく、メタキシリレンジアミンがより好ましい。本発明におけるポリアミド樹脂(A)の好ましい実施形態の一例は、ジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来するポリアミド樹脂である。
ポリアミド樹脂(A)の原料ジアミン成分として用いることができるキシリレンジアミン以外のジアミンとしては、テトラメチレンジアミン、ペンタメチレンジアミン、2-メチルペンタンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチル-ヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノメチル)デカリン、ビス(アミノメチル)トリシクロデカン等の脂環式ジアミン、ビス(4-アミノフェニル)エーテル、パラフェニレンジアミン、ビス(アミノメチル)ナフタレン等の芳香環を有するジアミン等を例示することができ、1種または2種以上を混合して使用できる。
ジアミン成分として、キシリレンジアミン以外のジアミンを用いる場合は、ジアミン由来の構成単位の30モル%以下であり、より好ましくは1~25モル%、特に好ましくは5~20モル%の割合で用いる。
ジアミン成分として、キシリレンジアミン以外のジアミンを用いる場合は、ジアミン由来の構成単位の30モル%以下であり、より好ましくは1~25モル%、特に好ましくは5~20モル%の割合で用いる。
ポリアミド樹脂(A)は、ジカルボン酸由来の構成単位の好ましくは95モル%以上、より好ましくは99モル%以上がアジピン酸に由来する。
ポリアミド樹脂(A)の原料ジカルボン酸成分として用いるのに好ましいアジピン酸以外のジカルボン酸としては、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸、イソフタル酸、テレフタル酸、オルソフタル酸等のフタル酸化合物、1,2-ナフタレンジカルボン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、1,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸といったナフタレンジカルボン酸化合物等を例示することができ、1種または2種以上を混合して使用できる。
ジカルボン酸成分として、アジピン酸以外のジカルボン酸を用いる場合は、ジカルボン酸由来の構成単位の10モル%未満であり、より好ましくは1~8モル%、特に好ましくは1~5モル%の割合で用いる。
ポリアミド樹脂(A)の原料ジカルボン酸成分として用いるのに好ましいアジピン酸以外のジカルボン酸としては、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸、イソフタル酸、テレフタル酸、オルソフタル酸等のフタル酸化合物、1,2-ナフタレンジカルボン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、1,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸といったナフタレンジカルボン酸化合物等を例示することができ、1種または2種以上を混合して使用できる。
ジカルボン酸成分として、アジピン酸以外のジカルボン酸を用いる場合は、ジカルボン酸由来の構成単位の10モル%未満であり、より好ましくは1~8モル%、特に好ましくは1~5モル%の割合で用いる。
なお、ポリアミド樹脂(A)は、ジアミン由来の構成単位とジカルボン酸由来の構成単位を主成分として構成されるが、これら以外の構成単位を完全に排除するものではなく、ε-カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等の脂肪族アミノカルボン酸類由来の構成単位を含んでいてもよいことは言うまでもない。ここで主成分とは、ポリアミド樹脂(A)を構成する構成単位のうち、ジアミン由来の構成単位とジカルボン酸由来の構成単位の合計数が全構成単位のうち最も多いことをいう。本発明では、ポリアミド樹脂(A)における、ジアミン由来の構成単位とジカルボン酸由来の構成単位の合計は、全構成単位の90%以上を占めることが好ましく、95%以上を占めることがより好ましく、98%以上を占めることがさらに好ましい。
ポリアミド樹脂(A)の数平均分子量(Mn)は、10,000以上であることが好ましく、15,000以上であることがより好ましい。上記ポリアミド樹脂(A)の数平均分子量の上限値は特に定めるものではないが、例えば、100,000以下であり、さらには50,000以下、40,000以下であってもよい。本発明における数平均分子量は、WO2017/090556号公報の段落0016に記載の方法に従って測定され、これらの内容は本明細書に組み込まれる。
ポリアミド樹脂(A)は、通常、結晶性樹脂であり、その融点は、190~300℃であることが好ましく、200~270℃であることがより好ましく、210~250℃であることがさらに好ましい。本発明における融点は、特開2016-216661号公報の段落0017の記載に従って測定され、これらの内容は本明細書に組み込まれる。
本発明で用いるポリアミド樹脂(A)は、リン原子を3~300質量ppmの割合で含むことが好ましく、4~250質量ppmの割合で含むことがより好ましく、20~200質量ppmの割合で含むことがさらに好ましい。
ポリアミド樹脂(A)は、通常、結晶性樹脂であり、その融点は、190~300℃であることが好ましく、200~270℃であることがより好ましく、210~250℃であることがさらに好ましい。本発明における融点は、特開2016-216661号公報の段落0017の記載に従って測定され、これらの内容は本明細書に組み込まれる。
本発明で用いるポリアミド樹脂(A)は、リン原子を3~300質量ppmの割合で含むことが好ましく、4~250質量ppmの割合で含むことがより好ましく、20~200質量ppmの割合で含むことがさらに好ましい。
本発明の樹脂組成物は、ポリアミド樹脂(A)を10~90質量%含むことが好ましく、20~80質量%含むことがより好ましい。ポリアミド樹脂(A)は1種のみ含んでいてもよいし、2種以上含んでいてもよい。
<ポリアミド樹脂(B)>
ポリアミド樹脂(B)は、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の、30~65モル%が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来し、70~35モル%がイソフタル酸に由来する(但し、合計が100モル%を超えることはない)。このようなポリアミド樹脂を配合することにより、透明性および酸素バリア性をより向上させることができる。本発明で用いるポリアミド樹脂(B)は、通常、非晶性樹脂である。非晶性樹脂を用いることにより、透明性をより向上させることができる。非晶性樹脂とは、明確な融点を持たない樹脂であり、具体的には、結晶融解エンタルピーΔHmが5J/g未満であることをいい、3J/g以下が好ましく、1J/g以下がさらに好ましい。
ポリアミド樹脂(B)は、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の、30~65モル%が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来し、70~35モル%がイソフタル酸に由来する(但し、合計が100モル%を超えることはない)。このようなポリアミド樹脂を配合することにより、透明性および酸素バリア性をより向上させることができる。本発明で用いるポリアミド樹脂(B)は、通常、非晶性樹脂である。非晶性樹脂を用いることにより、透明性をより向上させることができる。非晶性樹脂とは、明確な融点を持たない樹脂であり、具体的には、結晶融解エンタルピーΔHmが5J/g未満であることをいい、3J/g以下が好ましく、1J/g以下がさらに好ましい。
ポリアミド樹脂(B)は、ジアミン由来の構成単位の70モル%以上が、好ましくは80モル%以上が、より好ましくは90モル%以上が、さらに好ましくは95モル%以上が、一層好ましくは99モル%以上がキシリレンジアミンに由来する。キシリレンジアミンは、メタキシリレンジアミンおよびパラキシリレンジアミンが好ましく、メタキシリレンジアミンがより好ましい。
本発明におけるポリアミド樹脂(B)の好ましい実施形態の一例は、ジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来するポリアミド樹脂である。
本発明におけるポリアミド樹脂(B)の好ましい実施形態の一例は、ジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来するポリアミド樹脂である。
キシリレンジアミン以外のジアミンとしては、パラフェニレンジアミン等の芳香族ジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン等の脂肪族ジアミンが例示される。これらの他のジアミンは、1種のみでも2種以上であってもよい。
ジアミン成分として、キシリレンジアミン以外のジアミンを用いる場合は、ジアミン由来の構成単位の30モル%以下であり、より好ましくは1~25モル%、特に好ましくは5~20モル%の割合で用いる。
ジアミン成分として、キシリレンジアミン以外のジアミンを用いる場合は、ジアミン由来の構成単位の30モル%以下であり、より好ましくは1~25モル%、特に好ましくは5~20モル%の割合で用いる。
本発明では、上述の通り、ポリアミド樹脂(B)におけるジカルボン酸由来の構成単位の、30~65モル%が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸(好ましくは炭素数4~8のα,ω-直鎖脂肪族ジカルボン酸、より好ましくはアジピン酸)に由来し、70~35モル%がイソフタル酸に由来する。
ポリアミド樹脂(B)におけるジカルボン酸由来の構成単位を構成する全ジカルボン酸のうち、イソフタル酸の割合の下限値は、35モル%以上であり、40モル%以上が好ましく、41モル%以上がより好ましい。前記イソフタル酸の割合の上限値は、70モル%以下であり、67モル%以下が好ましく、65モル%以下がより好ましく、62モル%以下がさらに好ましく、60モル%以下が一層好ましく、58モル%以下であってもよい。このような範囲とすることにより、ヘイズがより低下する傾向にあり好ましい。
ポリアミド樹脂(B)におけるジカルボン酸由来の構成単位を構成する全ジカルボン酸のうち、イソフタル酸の割合の下限値は、35モル%以上であり、40モル%以上が好ましく、41モル%以上がより好ましい。前記イソフタル酸の割合の上限値は、70モル%以下であり、67モル%以下が好ましく、65モル%以下がより好ましく、62モル%以下がさらに好ましく、60モル%以下が一層好ましく、58モル%以下であってもよい。このような範囲とすることにより、ヘイズがより低下する傾向にあり好ましい。
ポリアミド樹脂(B)におけるジカルボン酸由来の構成単位を構成する全ジカルボン酸のうち、炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸(好ましくは炭素数4~8のα,ω-直鎖脂肪族ジカルボン酸、より好ましくはアジピン酸)の割合の下限値は、30モル%以上であり、33モル%以上が好ましく、35モル%以上がより好ましく、38モル%以上がさらに好ましく、40モル%以上が一層好ましく、42モル%以上であってもよい。前記炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸の割合の上限値は、65モル%以下であり、60モル%以下が好ましく、59モル%以下であることがより好ましい。
炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸は、上述のとおり、炭素数4~8のα,ω-直鎖脂肪族ジカルボン酸であることが好ましい。
ポリアミド樹脂の原料ジカルボン酸成分として用いるのに好ましい炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸としては、例えばコハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、アジピン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸が例示でき、1種または2種以上を混合して使用できるが、これらの中でもポリアミド樹脂の融点が成形加工するのに適切な範囲となることから、アジピン酸が好ましい。
ポリアミド樹脂の原料ジカルボン酸成分として用いるのに好ましい炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸としては、例えばコハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、アジピン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸が例示でき、1種または2種以上を混合して使用できるが、これらの中でもポリアミド樹脂の融点が成形加工するのに適切な範囲となることから、アジピン酸が好ましい。
ポリアミド樹脂(B)における、ジカルボン酸由来の構成単位を構成する全ジカルボン酸のうち、イソフタル酸と炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸の合計の割合は、90モル%以上であることが好ましく、95モル%以上であることがより好ましく、98モル%以上であることがさらに好ましく、100モル%であってもよい。このような割合とすることにより、本発明の樹脂組成物の透明性がより向上する傾向にある。
イソフタル酸と炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸以外のジカルボン酸としては、テレフタル酸、オルソフタル酸等のフタル酸化合物、1,2-ナフタレンジカルボン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、1,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸といったナフタレンジカルボン酸化合物等を例示することができ、1種または2種以上を混合して使用できる。
ポリアミド樹脂(B)はテレフタル酸由来の構成単位を実質的に含まないことが好ましい。実質的に含まないとは、ポリアミド樹脂(B)に含まれるイソフタル酸のモル量の5モル%以下であり、3モル%以下が好ましく、1モル%以下がさらに好ましい。このような構成とすることにより、適度な成形加工性が維持され、ガスバリア性が湿度によってより変化しにくくなる。
ポリアミド樹脂(B)はテレフタル酸由来の構成単位を実質的に含まないことが好ましい。実質的に含まないとは、ポリアミド樹脂(B)に含まれるイソフタル酸のモル量の5モル%以下であり、3モル%以下が好ましく、1モル%以下がさらに好ましい。このような構成とすることにより、適度な成形加工性が維持され、ガスバリア性が湿度によってより変化しにくくなる。
なお、本発明で用いるポリアミド樹脂(B)は、ジカルボン酸由来の構成単位とジアミン由来の構成単位から構成されるが、ジカルボン酸由来の構成単位およびジアミン由来の構成単位以外の構成単位や、末端基等の他の部位を含みうる。他の構成単位としては、ε-カプロラクタム、バレロラクタム、ラウロラクタム、ウンデカラクタム等のラクタム、11-アミノウンデカン酸、12-アミノドデカン酸等のアミノカルボン酸等由来の構成単位が例示できるが、これらに限定されるものではない。さらに、本発明で用いるポリアミド樹脂(B)は、合成に用いた添加剤等の微量成分が含まれる。本発明で用いるポリアミド樹脂(B)は、通常、95質量%以上、好ましくは98質量%以上が、ジカルボン酸由来の構成単位またはジアミン由来の構成単位である。
ポリアミド樹脂(B)の数平均分子量(Mn)は、8,000以上であることが好ましく、10,000以上であることがより好ましい。上記ポリアミド樹脂(B)の数平均分子量の上限値は特に定めるものではないが、例えば、50,000以下であり、さらには30,000以下、20,000以下であってもよい。本発明の実施形態の一例として、ポリアミド樹脂(B)のMnがポリアミド樹脂(A)のMnよりも小さい形態が挙げられる。より好ましくは、ポリアミド樹脂(B)のMnがポリアミド樹脂(A)のMnよりも、5,000以上小さいことであり、さらに好ましくは、8,000以上小さいことであり、一層好ましくは、10,000以上小さいことである。前記ポリアミド樹脂(B)のMnとポリアミド樹脂(A)のMnの差の上限は、25,000以下であることが例示される。このような構成とすることにより、ポリアミド樹脂(A)とポリアミド樹脂(B)の分散性、相溶性が良好となり、透明性とガスバリア性により優れる傾向にある。
本発明で用いるポリアミド樹脂(B)は、リン原子を3~300質量ppmの割合で含むことが好ましく、4~250質量ppmの割合で含むことがより好ましく、20~200質量ppmの割合で含むことがさらに好ましく、20~100質量ppmの割合で含むことが一層好ましく、20~50質量ppmの割合で含むことがより一層好ましい。
また、本発明で用いるポリアミド樹脂(B)は、カルシウム原子を含むことが好ましい。カルシウム原子を含むことにより、透明性をより向上させることができる。
また、本発明で用いるポリアミド樹脂(B)は、カルシウム原子を含むことが好ましい。カルシウム原子を含むことにより、透明性をより向上させることができる。
さらに、本発明で用いるポリアミド樹脂(B)は、カルシウム原子をリン原子:カルシウム原子のモル比が1:0.3~0.7となる割合で含むことが好ましい。本発明で用いるポリアミド樹脂(B)におけるリン原子:カルシウム原子のモル比は、1:0.4~0.6となる割合がより好ましく、1:0.45~0.55となる割合であることがさらに好ましく、1:0.48~0.52となる割合であることが特に好ましい。
本発明で用いるポリアミド樹脂(B)は、リン原子を3~300質量ppmの割合で含み、カルシウム原子をリン原子:カルシウム原子のモル比が1:0.3~0.7となる割合で含むことがより好ましい。このような構成とすることにより、透明性がより高く、黄色度(YI)が低く、加熱処理後の透明性により優れた樹脂組成物が得られる。カルシウム原子は、次亜リン酸カルシウムに由来することが好ましい。
リン原子濃度およびカルシウム原子濃度は、WO2017/090556号公報の段落0037の記載に従って測定され、これらの内容は本明細書に組み込まれる。
本発明で用いるポリアミド樹脂(B)は、リン原子を3~300質量ppmの割合で含み、カルシウム原子をリン原子:カルシウム原子のモル比が1:0.3~0.7となる割合で含むことがより好ましい。このような構成とすることにより、透明性がより高く、黄色度(YI)が低く、加熱処理後の透明性により優れた樹脂組成物が得られる。カルシウム原子は、次亜リン酸カルシウムに由来することが好ましい。
リン原子濃度およびカルシウム原子濃度は、WO2017/090556号公報の段落0037の記載に従って測定され、これらの内容は本明細書に組み込まれる。
本発明の樹脂組成物は、ポリアミド樹脂(B)を10~90質量%含むことが好ましく、20~80質量%含むことがより好ましい。
<樹脂組成物の組成>
本発明の樹脂組成物におけるポリアミド樹脂(A)とポリアミド樹脂(B)のブレンド比は、ポリアミド樹脂(A)10~90質量部に対し、ポリアミド樹脂(B)90~10質量部を含み、ポリアミド樹脂(A)20~80質量部に対し、ポリアミド樹脂(B)80~20質量部を含むことが好ましく、ポリアミド樹脂(A)23~77質量部に対し、ポリアミド樹脂(B)77~23質量部を含むことがより好ましく、ポリアミド樹脂(A)45~77質量部に対し、ポリアミド樹脂(B)55~23質量部を含むことが一層好ましく、ポリアミド樹脂(A)45~65質量部に対し、ポリアミド樹脂(B)55~35質量部を含むことがより一層好ましく、ポリアミド樹脂(A)45~60質量部に対し、ポリアミド樹脂(B)55~40質量部を含むことがさらに一層好ましく、ポリアミド樹脂(A)45~55質量部に対し、ポリアミド樹脂(B)55~45質量部を含むことが特に一層好ましい。
ポリアミド樹脂(A)およびポリアミド樹脂(B)は、それぞれ1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合は、合計量が上記範囲となることが好ましい。
本発明の樹脂組成物におけるポリアミド樹脂(A)とポリアミド樹脂(B)のブレンド比は、ポリアミド樹脂(A)10~90質量部に対し、ポリアミド樹脂(B)90~10質量部を含み、ポリアミド樹脂(A)20~80質量部に対し、ポリアミド樹脂(B)80~20質量部を含むことが好ましく、ポリアミド樹脂(A)23~77質量部に対し、ポリアミド樹脂(B)77~23質量部を含むことがより好ましく、ポリアミド樹脂(A)45~77質量部に対し、ポリアミド樹脂(B)55~23質量部を含むことが一層好ましく、ポリアミド樹脂(A)45~65質量部に対し、ポリアミド樹脂(B)55~35質量部を含むことがより一層好ましく、ポリアミド樹脂(A)45~60質量部に対し、ポリアミド樹脂(B)55~40質量部を含むことがさらに一層好ましく、ポリアミド樹脂(A)45~55質量部に対し、ポリアミド樹脂(B)55~45質量部を含むことが特に一層好ましい。
ポリアミド樹脂(A)およびポリアミド樹脂(B)は、それぞれ1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合は、合計量が上記範囲となることが好ましい。
本発明の樹脂組成物は、ポリアミド樹脂(A)とポリアミド樹脂(B)の両方について、それぞれ、ジアミン由来の構成単位の好ましくは80モル%以上が、より好ましくは90モル%以上が、さらに好ましくは95モル%以上が、一層好ましくは99モル%以上が、メタキシリレンジアミンに由来するポリアミド樹脂を採用することが好ましい。このような構成とすることにより、ガスバリア性がより優れる傾向にある。
本発明の樹脂組成物に含まれるポリアミド樹脂を構成する全構成単位のうち、イソフタル酸に由来する構成単位の割合は、10~40モル%であることが好ましく、20~40モル%であることがより好ましい。このような範囲とすることにより、このような構成とすることにより、適度な成形加工性が維持され、ガスバリア性が湿度によってより変化しにくくなる。
本発明の樹脂組成物は、ポリアミド樹脂(A)を構成する構成単位と、ポリアミド樹脂(B)を構成する構成単位の60モル%以上が共通することが好ましく、64モル%以上が共通することがより好ましく、67モル%以上が共通することがさらに好ましい。このような構成とすることにより、ポリアミド樹脂(A)とポリアミド樹脂(B)の相溶性を向上させることができ、透明性に優れた樹脂組成物が得られる。上記共通する構成単位の上限は、95モル%以下であり、90モル%以下であることがより好ましい。
本発明の樹脂組成物は、結晶性ポリアミド樹脂であるポリアミド樹脂(A)と、非晶性ポリアミド樹脂であるポリアミド樹脂(B)をブレンドする。このような構成とすることにより、適度な成形加工性が維持され、ガスバリア性が湿度によってより変化しにくくなる。
また、ポリアミド樹脂(B)の分散度(Mw/Mn)を1.5~4.5にすることが好ましく、1.5~3.5にすることがより好ましく、2.0~2.6にすることがさらに好ましい。このような構成とすることにより、フィルムの製膜性をより向上させることが可能になる。
本発明の樹脂組成物において、ポリアミド樹脂(A)とポリアミド樹脂(B)は、上記の関係を組み合わせて満たすことが好ましい。
本発明の樹脂組成物に含まれるポリアミド樹脂を構成する全構成単位のうち、イソフタル酸に由来する構成単位の割合は、10~40モル%であることが好ましく、20~40モル%であることがより好ましい。このような範囲とすることにより、このような構成とすることにより、適度な成形加工性が維持され、ガスバリア性が湿度によってより変化しにくくなる。
本発明の樹脂組成物は、ポリアミド樹脂(A)を構成する構成単位と、ポリアミド樹脂(B)を構成する構成単位の60モル%以上が共通することが好ましく、64モル%以上が共通することがより好ましく、67モル%以上が共通することがさらに好ましい。このような構成とすることにより、ポリアミド樹脂(A)とポリアミド樹脂(B)の相溶性を向上させることができ、透明性に優れた樹脂組成物が得られる。上記共通する構成単位の上限は、95モル%以下であり、90モル%以下であることがより好ましい。
本発明の樹脂組成物は、結晶性ポリアミド樹脂であるポリアミド樹脂(A)と、非晶性ポリアミド樹脂であるポリアミド樹脂(B)をブレンドする。このような構成とすることにより、適度な成形加工性が維持され、ガスバリア性が湿度によってより変化しにくくなる。
また、ポリアミド樹脂(B)の分散度(Mw/Mn)を1.5~4.5にすることが好ましく、1.5~3.5にすることがより好ましく、2.0~2.6にすることがさらに好ましい。このような構成とすることにより、フィルムの製膜性をより向上させることが可能になる。
本発明の樹脂組成物において、ポリアミド樹脂(A)とポリアミド樹脂(B)は、上記の関係を組み合わせて満たすことが好ましい。
本発明の樹脂組成物は、上記ポリアミド樹脂(A)およびポリアミド樹脂(B)以外の他のポリアミド樹脂を含んでいてもよいし、含んでいなくてもよい。他のポリアミド樹脂としては、具体的には、ポリアミド11、ポリアミド12、MXD10(ポリメタキシリレンセバサミド)、MPXD10(ポリメタパラキシリレンセバサミド)およびPXD10(ポリパラキシリレンセバサミド)が例示される。これらの他のポリアミド樹脂は、それぞれ、1種であってもよいし、2種以上であってもよい。
本発明の樹脂組成物は、ポリアミド樹脂(A)およびポリアミド樹脂(B)以外の他のポリアミド樹脂を実質的に含まない構成とすることができる。実質的に含まないとは、他のポリアミド樹脂の含有量がポリアミド樹脂(A)およびポリアミド樹脂(B)の合計含有量の5質量%以下であることをいい、3質量%以下であることが好ましく、1質量%以下であることがより好ましい。
本発明の樹脂組成物は、ポリアミド樹脂(A)およびポリアミド樹脂(B)以外の他のポリアミド樹脂を実質的に含まない構成とすることができる。実質的に含まないとは、他のポリアミド樹脂の含有量がポリアミド樹脂(A)およびポリアミド樹脂(B)の合計含有量の5質量%以下であることをいい、3質量%以下であることが好ましく、1質量%以下であることがより好ましい。
本発明の樹脂組成物の好ましい実施形態の一例として、ポリアミド樹脂(A)20~80質量部に対し、ポリアミド樹脂(B)80~20質量部を含み、ポリアミド樹脂(A)におけるジアミン由来の構成単位の90モル%以上がメタキシリレンジアミンに由来し、ポリアミド樹脂(B)におけるジアミン由来の構成単位の90モル%以上がメタキシリレンジアミンに由来し、ポリアミド樹脂(B)におけるジカルボン酸由来の構成単位の、30~65モル%がアジピン酸に由来し、70~35モル%がイソフタル酸に由来する樹脂組成物が例示される。
本発明の樹脂組成物は、上記ポリアミド樹脂以外の成分を含んでいてもよい。上記ポリアミド樹脂以外の成分としては、充填剤、艶消剤、耐熱安定剤、耐候安定剤、酸化防止剤、紫外線吸収剤、可塑剤、難燃剤、帯電防止剤、着色防止剤、ゲル化防止剤、耐衝撃改良剤、滑剤、着色剤、導電性添加剤、酸化反応促進剤等が挙げられる。これらの添加剤は、それぞれ、1種であってもよいし、2種以上であってもよい。
<<酸化反応促進剤>>
本発明の樹脂組成物は酸化反応促進剤を含んでいてもよい。酸化反応促進剤を含むことで、本発明の樹脂組成物からなる成形品のガスバリア性をさらに高めることができる。
酸化反応促進剤は、酸化反応促進効果を奏するものであればよいが、ポリアミド樹脂の酸化反応を促進する観点から、遷移金属元素を含む化合物が好ましい。遷移金属元素としては、元素周期律表の第VIII族の遷移金属、マンガン、銅および亜鉛から選ばれる少なくとも1種が好ましく、酸素吸収能を効果的に発現させる観点から、コバルト、鉄、マンガン、およびニッケルから選ばれる少なくとも1種がより好ましく、コバルトがさらに好ましい。
このような酸化反応促進剤としては、上記金属単体の他、上述の金属を含む低価数の酸化物、無機酸塩、有機酸塩または錯塩の形で使用される。無機酸塩としては、塩化物や臭化物等のハロゲン化物、炭酸塩、硫酸塩、硝酸塩、リン酸塩、ケイ酸塩等が挙げられる。一方、有機酸塩としては、カルボン酸塩、スルホン酸塩、ホスホン酸塩等が挙げられる。また、β-ジケトンまたはβ-ケト酸エステル等との遷移金属錯体も利用することができる。
特に本発明では酸素吸収能が良好に発現することから、上記金属原子を含むカルボン酸塩、炭酸塩、アセチルアセトネート錯体、酸化物およびハロゲン化物から選ばれる少なくとも1種を使用することが好ましく、オクタン酸塩、ネオデカン酸塩、ナフテン酸塩、ステアリン酸塩、酢酸塩、炭酸塩およびアセチルアセトネート錯体から選ばれる少なくとも1種を使用することがより好ましく、オクタン酸コバルト、ナフテン酸コバルト、酢酸コバルト、ステアリン酸コバルト等のコバルトカルボキシレート類を使用することがさらに好ましい。
本発明の樹脂組成物は酸化反応促進剤を含んでいてもよい。酸化反応促進剤を含むことで、本発明の樹脂組成物からなる成形品のガスバリア性をさらに高めることができる。
酸化反応促進剤は、酸化反応促進効果を奏するものであればよいが、ポリアミド樹脂の酸化反応を促進する観点から、遷移金属元素を含む化合物が好ましい。遷移金属元素としては、元素周期律表の第VIII族の遷移金属、マンガン、銅および亜鉛から選ばれる少なくとも1種が好ましく、酸素吸収能を効果的に発現させる観点から、コバルト、鉄、マンガン、およびニッケルから選ばれる少なくとも1種がより好ましく、コバルトがさらに好ましい。
このような酸化反応促進剤としては、上記金属単体の他、上述の金属を含む低価数の酸化物、無機酸塩、有機酸塩または錯塩の形で使用される。無機酸塩としては、塩化物や臭化物等のハロゲン化物、炭酸塩、硫酸塩、硝酸塩、リン酸塩、ケイ酸塩等が挙げられる。一方、有機酸塩としては、カルボン酸塩、スルホン酸塩、ホスホン酸塩等が挙げられる。また、β-ジケトンまたはβ-ケト酸エステル等との遷移金属錯体も利用することができる。
特に本発明では酸素吸収能が良好に発現することから、上記金属原子を含むカルボン酸塩、炭酸塩、アセチルアセトネート錯体、酸化物およびハロゲン化物から選ばれる少なくとも1種を使用することが好ましく、オクタン酸塩、ネオデカン酸塩、ナフテン酸塩、ステアリン酸塩、酢酸塩、炭酸塩およびアセチルアセトネート錯体から選ばれる少なくとも1種を使用することがより好ましく、オクタン酸コバルト、ナフテン酸コバルト、酢酸コバルト、ステアリン酸コバルト等のコバルトカルボキシレート類を使用することがさらに好ましい。
上述した酸化反応促進剤は、ポリアミド樹脂の酸化反応促進だけではなく、不飽和炭素結合を有する有機化合物や、分子内に2級もしくは3級水素を有する化合物の酸化反応の触媒としても機能する。そのため、本発明の樹脂組成物には、酸素吸収能をより高めるために、上述した酸化反応促進剤に加えて、ポリブタジエンやポリイソプレン等の不飽和炭化水素類の重合物ないしそれらのオリゴマー、キシリレンジアミンを骨格として有する化合物、あるいは前記化合物とポリエステルの相溶性を高めるための官能基を付加した化合物等に例示される、各種化合物を配合することもできる。
酸化反応促進剤が遷移金属元素を含むものである場合、その含有量は、ポリアミド樹脂の酸化反応を促進して成形品の酸素吸収能を高める観点から、樹脂組成物中の遷移金属濃度として、好ましくは10~1,000質量ppm、より好ましくは20~500質量ppm、さらに好ましくは40~300質量ppmである。
成形品中の遷移金属濃度は、公知の方法、例えばICP発光分光分析、ICP質量分析、蛍光X線分析等を用いて測定することができる。
上記酸化反応促進剤は、1種を単独で、および2種以上を組み合わせて用いてもよい。2種以上併用する場合は、合計量が上記範囲となることが好ましい。
成形品中の遷移金属濃度は、公知の方法、例えばICP発光分光分析、ICP質量分析、蛍光X線分析等を用いて測定することができる。
上記酸化反応促進剤は、1種を単独で、および2種以上を組み合わせて用いてもよい。2種以上併用する場合は、合計量が上記範囲となることが好ましい。
<樹脂組成物の物性>
本発明の樹脂組成物は、100μm厚さの単層フィルムに成形した時のヘイズを2.5%以下とすることができ、さらには1.0%以下とすることができ、特には0.7%以下、0.6以下、0.5以下とすることもできる。ヘイズの下限値は0%が望ましいが、0.1%以上、さらには0.2%以上でも十分に要求性能を満たし得る。ヘイズは、後述する実施例に記載の方法に従って測定される。
本発明の樹脂組成物は、100μm厚さの単層フィルムに成形した時の23℃、相対湿度60%における酸素透過係数(OTC60)を、1cc・mm/(m2・day・atm)以下、さらには0.1cc・mm/(m2・day・atm)以下、特には、0.09cc・mm/(m2・day・atm)以下とすることができる。前記23℃、相対湿度60%における酸素透過係数の下限値は0cc・mm/(m2・day・atm)が望ましいが、0.01cc・mm/(m2・day・atm)以上でも十分に要求性能を満たし得る。
本発明の樹脂組成物は、また、100μm厚さの単層フィルムに成形した時の23℃、相対湿度90%における酸素透過係数(OTC90)を、2.0cc・mm/(m2・day・atm)以下、さらには1.0cc・mm/(m2・day・atm)以下、特には、0.3cc・mm/(m2・day・atm)以下とすることができる。前記23℃、相対湿度90%における酸素透過係数の下限値は0cc・mm/(m2・day・atm)が望ましいが、0.05cc・mm/(m2・day・atm)以上でも十分に要求性能を満たし得る。
本発明の樹脂組成物は、さらに、相対湿度(RH)60%の雰囲気下で測定した酸素透過係数(OTC60)に対する、23℃、相対湿度(RH)90%の雰囲気下で測定した酸素透過係数の変化率(OTC90)(OTC90/OTC60)を、5.5未満とすることができ、さらには4.5未満とすることができ、特には2.8未満とすることができる。下限値については、特に定めるものではないが、例えば、1.0以上、1.2以上、1.5以上、1.7以上とすることができる。
酸素透過係数(OTC)は、後述する実施例に記載の方法に従って測定される。
本発明の樹脂組成物は、100μm厚さの単層フィルムに成形した時のヘイズを2.5%以下とすることができ、さらには1.0%以下とすることができ、特には0.7%以下、0.6以下、0.5以下とすることもできる。ヘイズの下限値は0%が望ましいが、0.1%以上、さらには0.2%以上でも十分に要求性能を満たし得る。ヘイズは、後述する実施例に記載の方法に従って測定される。
本発明の樹脂組成物は、100μm厚さの単層フィルムに成形した時の23℃、相対湿度60%における酸素透過係数(OTC60)を、1cc・mm/(m2・day・atm)以下、さらには0.1cc・mm/(m2・day・atm)以下、特には、0.09cc・mm/(m2・day・atm)以下とすることができる。前記23℃、相対湿度60%における酸素透過係数の下限値は0cc・mm/(m2・day・atm)が望ましいが、0.01cc・mm/(m2・day・atm)以上でも十分に要求性能を満たし得る。
本発明の樹脂組成物は、また、100μm厚さの単層フィルムに成形した時の23℃、相対湿度90%における酸素透過係数(OTC90)を、2.0cc・mm/(m2・day・atm)以下、さらには1.0cc・mm/(m2・day・atm)以下、特には、0.3cc・mm/(m2・day・atm)以下とすることができる。前記23℃、相対湿度90%における酸素透過係数の下限値は0cc・mm/(m2・day・atm)が望ましいが、0.05cc・mm/(m2・day・atm)以上でも十分に要求性能を満たし得る。
本発明の樹脂組成物は、さらに、相対湿度(RH)60%の雰囲気下で測定した酸素透過係数(OTC60)に対する、23℃、相対湿度(RH)90%の雰囲気下で測定した酸素透過係数の変化率(OTC90)(OTC90/OTC60)を、5.5未満とすることができ、さらには4.5未満とすることができ、特には2.8未満とすることができる。下限値については、特に定めるものではないが、例えば、1.0以上、1.2以上、1.5以上、1.7以上とすることができる。
酸素透過係数(OTC)は、後述する実施例に記載の方法に従って測定される。
<樹脂組成物の製造方法>
樹脂組成物の製造方法としては、任意の方法を採用することができる。例えば、ポリアミド樹脂と、必要に応じ配合される他の成分とをV型ブレンダー等の混合手段を用いて混合し、一括ブレンド品を調製した後、ベント付き押出機で溶融混練してペレット化する方法が挙げられる。あるいは、各々の樹脂をドライブレンドする方法や、予めメルトブレンドする方法や、一部をマスターバッチ化し、希釈する方法も採用することができる。
樹脂組成物の製造方法としては、任意の方法を採用することができる。例えば、ポリアミド樹脂と、必要に応じ配合される他の成分とをV型ブレンダー等の混合手段を用いて混合し、一括ブレンド品を調製した後、ベント付き押出機で溶融混練してペレット化する方法が挙げられる。あるいは、各々の樹脂をドライブレンドする方法や、予めメルトブレンドする方法や、一部をマスターバッチ化し、希釈する方法も採用することができる。
溶融混練に際しての加熱温度は、樹脂の融点に応じて190~350℃の範囲から適宜選択することができる。温度が高すぎると分解ガスが発生しやすく、不透明化の原因になる場合がある。そのため、剪断発熱等を考慮したスクリュー構成を選定することが望ましい。また、混練り時や、後行程の成形時の分解を抑制する観点から、酸化防止剤や熱安定剤を使用することが望ましい。
<成形品>
本発明は、また、本発明の樹脂組成物から形成される成形品に関する。さらに、本発明は、本発明の樹脂組成物からなる層を有する成形品に関する。すなわち、本発明の樹脂組成物は、各種成形品に成形加工することができる。本発明の樹脂組成物を用いた成形品の製造方法は、特に制限されず、熱可塑性樹脂について一般に使用されている成形方法、すなわち、射出成形、中空成形、押出成形、プレス成形などの成形方法を適用することができる。
本発明は、また、本発明の樹脂組成物から形成される成形品に関する。さらに、本発明は、本発明の樹脂組成物からなる層を有する成形品に関する。すなわち、本発明の樹脂組成物は、各種成形品に成形加工することができる。本発明の樹脂組成物を用いた成形品の製造方法は、特に制限されず、熱可塑性樹脂について一般に使用されている成形方法、すなわち、射出成形、中空成形、押出成形、プレス成形などの成形方法を適用することができる。
成形品としては、単層フィルム(単層シートを含む趣旨である)、多層フィルム(多層シートを含む趣旨である)、繊維、糸、ロープ、チューブ、ホース、各種成形材料、容器、各種部品、完成品、筐体、シュリンク包装材料(シュリンクフィルム、シュリンクチューブなど)等が例示される。さらに成形品(特に、フィルム)は、延伸されていてもよい。延伸は、一軸延伸であっても、二軸延伸であってもよい。さらに、二軸延伸は、同時延伸であっても、逐次延伸であってもよい。また、延伸倍率としては、MD(Machine Direction)およびTD(Transverse Direction)にそれぞれ1.1~5.0倍であることが好ましい。また、面積延伸倍率としては、1~25倍であることが好ましい。
本発明の樹脂組成物は、自動車等輸送機部品、一般機械部品、精密機械部品、電子・電気機器部品、OA機器部品、建材・住設関連部品、医療装置、レジャースポーツ用品、遊戯具、医療品や食品等の容器、防衛および航空宇宙製品等に広く用いられる。
<<フィルム>>
本発明は、また、本発明の樹脂組成物から形成されるフィルムに関する。本発明のフィルムは、単層フィルムまたは多層フィルムとして用いることができる。
単層フィルムとしては、厚さを、5~1000μmとすることができ、さらには、15~500μmとすることもでき、特には、50~200μmとすることもできる。
単層フィルムは、ラップ、あるいは各種形状のパウチ、容器の蓋材、ボトル、カップ、トレイ、チューブ等の包装容器に好ましく利用できる。
多層フィルムは、本発明の樹脂組成物から形成される層を少なくとも1層含む多層フィルムである。多層フィルムは、ラップ、あるいは各種形状のパウチ、容器の蓋材、ボトル、カップ、トレイ、チューブ等の包装容器に好ましく利用できる。
単層フィルムおよび多層フィルムの詳細は、特開2016-169291号公報の段落0085~0123の記載を参酌でき、これらの内容は本明細書に組み込まれる。
本発明は、また、本発明の樹脂組成物から形成されるフィルムに関する。本発明のフィルムは、単層フィルムまたは多層フィルムとして用いることができる。
単層フィルムとしては、厚さを、5~1000μmとすることができ、さらには、15~500μmとすることもでき、特には、50~200μmとすることもできる。
単層フィルムは、ラップ、あるいは各種形状のパウチ、容器の蓋材、ボトル、カップ、トレイ、チューブ等の包装容器に好ましく利用できる。
多層フィルムは、本発明の樹脂組成物から形成される層を少なくとも1層含む多層フィルムである。多層フィルムは、ラップ、あるいは各種形状のパウチ、容器の蓋材、ボトル、カップ、トレイ、チューブ等の包装容器に好ましく利用できる。
単層フィルムおよび多層フィルムの詳細は、特開2016-169291号公報の段落0085~0123の記載を参酌でき、これらの内容は本明細書に組み込まれる。
<<容器>>
本発明の樹脂組成物は、容器に好ましく用いられる。容器の形状は特に限定されず、例えば、ボトル、カップ、チューブ、トレイ、タッパウェア等の成形容器であってもよく、また、パウチ、スタンディングパウチ、ジッパー式保存袋等の袋状容器であってもよい。
本発明の樹脂組成物は、容器に好ましく用いられる。容器の形状は特に限定されず、例えば、ボトル、カップ、チューブ、トレイ、タッパウェア等の成形容器であってもよく、また、パウチ、スタンディングパウチ、ジッパー式保存袋等の袋状容器であってもよい。
容器は顧客の購入意欲を高めるために内容物を可視化したい様々な物品を収納、保存することができる。例えば、水産加工品、畜産加工品、飯類、液体食品が挙げられる。特に、酸素の影響を受けやすい食品の保存に適している。これらの詳細は、特開2011-37199号公報の段落0032~0035の記載を参酌でき、これらの内容は本明細書に組み込まれる。
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
<合成例A-1>
攪拌機、分縮器、冷却器、温度計、滴下槽および窒素ガス導入管を備えたジャケット付きの50L反応缶に、アジピン酸15kg、次亜リン酸ナトリウム一水和物13.1gおよび酢酸ナトリウム6.9gを仕込み、十分窒素置換し、さらに少量の窒素気流下にて180℃に昇温し、アジピン酸を均一に溶融させた後、系内を撹拌しつつ、これにメタキシリレンジアミン13.9kgを、170分を要して滴下した。この間、内温は連続的に245℃まで上昇させた。なお重縮合により生成する水は、分縮器および冷却器を通して系外に除いた。メタキシリレンジアミンの滴下終了後、内温をさらに260℃まで昇温し、1時間反応を継続した後、ポリマーを反応缶下部のノズルからストランドとして取り出し、水冷後ペレット化してポリマーを得た。
次に、上記の操作にて得たポリマーを加熱ジャケット、窒素ガス導入管、真空ラインを備えた50L回転式タンブラーに入れ、回転させつつ系内を減圧にした後、純度99容量%以上の窒素で常圧にする操作を3回行った。その後、窒素流通下にて系内を140℃まで昇温させた。次に系内を減圧にし、さらに190℃まで連続的に昇温し、190℃で30分保持した後、窒素を導入して系内を常圧に戻した後、冷却してポリアミド樹脂A-1を得た。
得られたポリアミド樹脂の融点は、237℃、数平均分子量は26,000であった。
攪拌機、分縮器、冷却器、温度計、滴下槽および窒素ガス導入管を備えたジャケット付きの50L反応缶に、アジピン酸15kg、次亜リン酸ナトリウム一水和物13.1gおよび酢酸ナトリウム6.9gを仕込み、十分窒素置換し、さらに少量の窒素気流下にて180℃に昇温し、アジピン酸を均一に溶融させた後、系内を撹拌しつつ、これにメタキシリレンジアミン13.9kgを、170分を要して滴下した。この間、内温は連続的に245℃まで上昇させた。なお重縮合により生成する水は、分縮器および冷却器を通して系外に除いた。メタキシリレンジアミンの滴下終了後、内温をさらに260℃まで昇温し、1時間反応を継続した後、ポリマーを反応缶下部のノズルからストランドとして取り出し、水冷後ペレット化してポリマーを得た。
次に、上記の操作にて得たポリマーを加熱ジャケット、窒素ガス導入管、真空ラインを備えた50L回転式タンブラーに入れ、回転させつつ系内を減圧にした後、純度99容量%以上の窒素で常圧にする操作を3回行った。その後、窒素流通下にて系内を140℃まで昇温させた。次に系内を減圧にし、さらに190℃まで連続的に昇温し、190℃で30分保持した後、窒素を導入して系内を常圧に戻した後、冷却してポリアミド樹脂A-1を得た。
得られたポリアミド樹脂の融点は、237℃、数平均分子量は26,000であった。
<合成例B-1>
以下の方法に従って表1に示すポリアミド樹脂B-1を合成した。
撹拌機、分縮器、全縮器、温度計、滴下ロートおよび窒素導入管、ストランドダイを備えた反応容器に、精秤したアジピン酸6,001g(41.06mol)、イソフタル酸6,821g(41.06mol)、次亜リン酸カルシウム(Ca(H2PO2)2)1.73g(ポリアミド樹脂中のリン原子濃度として30質量ppm)、酢酸ナトリウム1.11gを入れ、十分に窒素置換した後、窒素を内圧0.4MPaまで充填し、さらに少量の窒素気流下で系内を撹拌しながら190℃まで加熱した。酢酸ナトリウム/次亜リン酸カルシウムのモル比は1.33とした。
これにメタキシリレンジアミン11,185g(82.12mol)を撹拌下に滴下し、生成する縮合水を系外へ除きながら系内を連続的に昇温した。メタキシリレンジアミンの滴下終了後、内温を上昇させ、265℃に達した時点で反応容器内を減圧にし、さらに内温を上昇させて270℃で10分間、溶融重縮合反応を継続した。その後、系内を窒素で加圧し、得られた重合物をストランドダイから取り出して、これをペレット化し、約21kgのポリアミド樹脂ペレットB-1を得た。得られたポリアミド樹脂(B-1)は、115℃、24時間の条件で真空乾燥した。
樹脂B-1は、昇温過程における結晶融解エンタルピーΔHmがほぼ0J/gであり、非晶性であることが分かった。数平均分子量は13,500であった。
以下の方法に従って表1に示すポリアミド樹脂B-1を合成した。
撹拌機、分縮器、全縮器、温度計、滴下ロートおよび窒素導入管、ストランドダイを備えた反応容器に、精秤したアジピン酸6,001g(41.06mol)、イソフタル酸6,821g(41.06mol)、次亜リン酸カルシウム(Ca(H2PO2)2)1.73g(ポリアミド樹脂中のリン原子濃度として30質量ppm)、酢酸ナトリウム1.11gを入れ、十分に窒素置換した後、窒素を内圧0.4MPaまで充填し、さらに少量の窒素気流下で系内を撹拌しながら190℃まで加熱した。酢酸ナトリウム/次亜リン酸カルシウムのモル比は1.33とした。
これにメタキシリレンジアミン11,185g(82.12mol)を撹拌下に滴下し、生成する縮合水を系外へ除きながら系内を連続的に昇温した。メタキシリレンジアミンの滴下終了後、内温を上昇させ、265℃に達した時点で反応容器内を減圧にし、さらに内温を上昇させて270℃で10分間、溶融重縮合反応を継続した。その後、系内を窒素で加圧し、得られた重合物をストランドダイから取り出して、これをペレット化し、約21kgのポリアミド樹脂ペレットB-1を得た。得られたポリアミド樹脂(B-1)は、115℃、24時間の条件で真空乾燥した。
樹脂B-1は、昇温過程における結晶融解エンタルピーΔHmがほぼ0J/gであり、非晶性であることが分かった。数平均分子量は13,500であった。
<合成例B-2>
合成例B-1において、アジピン酸とイソフタル酸のモル比が40:60となるように調整し、他は同様に行ってポリアミド樹脂B-2を得た。得られたポリアミド樹脂(B-2)は、115℃、24時間の条件で真空乾燥した。
樹脂B-2は、昇温過程における結晶融解エンタルピーΔHmがほぼ0J/gであり、非晶性であることが分かった。数平均分子量は13,000であった。
合成例B-1において、アジピン酸とイソフタル酸のモル比が40:60となるように調整し、他は同様に行ってポリアミド樹脂B-2を得た。得られたポリアミド樹脂(B-2)は、115℃、24時間の条件で真空乾燥した。
樹脂B-2は、昇温過程における結晶融解エンタルピーΔHmがほぼ0J/gであり、非晶性であることが分かった。数平均分子量は13,000であった。
<合成例B-3>
合成例B-1において、アジピン酸とイソフタル酸のモル比が60:40となるように調整し、他は同様に行ってポリアミド樹脂B-3を得た。得られたポリアミド樹脂(B-3)は、105℃、24時間の条件で真空乾燥した。
樹脂B-3は、昇温過程における結晶融解エンタルピーΔHmがほぼ0J/gであり、非晶性であることが分かった。数平均分子量は13,800であった。
合成例B-1において、アジピン酸とイソフタル酸のモル比が60:40となるように調整し、他は同様に行ってポリアミド樹脂B-3を得た。得られたポリアミド樹脂(B-3)は、105℃、24時間の条件で真空乾燥した。
樹脂B-3は、昇温過程における結晶融解エンタルピーΔHmがほぼ0J/gであり、非晶性であることが分かった。数平均分子量は13,800であった。
<合成例B-4>
撹拌機、分縮器、温度計、滴下ロートおよび窒素導入管を備えた調整容器に、精秤したアジピン酸6,001g(41.06mol)、イソフタル酸6,821g(41.06mol)、メタキシリレンジアミン11,185g(82.12mol)を内温115℃にて調合した。つづいて、次亜リン酸カルシウム(Ca(H2PO2)2)1.73g(ポリアミド樹脂中のリン原子濃度として30質量ppm)、酢酸ナトリウム1.11gを投入して、30分間撹拌し、塩の混合溶液とした。その混合溶液を反応容器に移送し、容器内温度190℃、容器内圧1.0MPaの条件下で撹拌して反応させた。留出する水を系外に除き、容器内温度が270℃になった時点で、容器内圧を60分間かけて常圧に戻した。常圧で撹拌を行ない、所定の溶融粘度に到達した時点で撹拌を停止し、30分間放置した。その後、反応容器下部のストランドダイから溶融樹脂を取り出して、これを水冷後ペレット化し、約21kgのポリアミド樹脂(B-4)のペレットを得た。得られたポリアミド樹脂(B-4)は、115℃、24時間の条件で真空乾燥した。
樹脂B-4は、昇温過程における結晶融解エンタルピーΔHmがほぼ0J/gであり、非晶性であることが分かった。数平均分子量は13,500であった。
撹拌機、分縮器、温度計、滴下ロートおよび窒素導入管を備えた調整容器に、精秤したアジピン酸6,001g(41.06mol)、イソフタル酸6,821g(41.06mol)、メタキシリレンジアミン11,185g(82.12mol)を内温115℃にて調合した。つづいて、次亜リン酸カルシウム(Ca(H2PO2)2)1.73g(ポリアミド樹脂中のリン原子濃度として30質量ppm)、酢酸ナトリウム1.11gを投入して、30分間撹拌し、塩の混合溶液とした。その混合溶液を反応容器に移送し、容器内温度190℃、容器内圧1.0MPaの条件下で撹拌して反応させた。留出する水を系外に除き、容器内温度が270℃になった時点で、容器内圧を60分間かけて常圧に戻した。常圧で撹拌を行ない、所定の溶融粘度に到達した時点で撹拌を停止し、30分間放置した。その後、反応容器下部のストランドダイから溶融樹脂を取り出して、これを水冷後ペレット化し、約21kgのポリアミド樹脂(B-4)のペレットを得た。得られたポリアミド樹脂(B-4)は、115℃、24時間の条件で真空乾燥した。
樹脂B-4は、昇温過程における結晶融解エンタルピーΔHmがほぼ0J/gであり、非晶性であることが分かった。数平均分子量は13,500であった。
<リン原子濃度の測定方法>
ポリアミド樹脂0.2gと35質量%硝酸水溶液8mLをTFM変性PTFE容器(3M社製)に入れ、マイルストーンゼネラル(株)製、ETHOS Oneを用いて内部温度230℃で30分間、マイクロウエーブ分解を行った。分解液を超純水で定容し、ICP測定溶液とした。(株)島津製作所製、ICPE-9000を用いて、リン原子濃度を測定した。
ポリアミド樹脂0.2gと35質量%硝酸水溶液8mLをTFM変性PTFE容器(3M社製)に入れ、マイルストーンゼネラル(株)製、ETHOS Oneを用いて内部温度230℃で30分間、マイクロウエーブ分解を行った。分解液を超純水で定容し、ICP測定溶液とした。(株)島津製作所製、ICPE-9000を用いて、リン原子濃度を測定した。
<分散度(Mw/Mn)の測定>
分散度は、GPC測定により求めた。具体的には、装置として東ソー社製「HLC-8320GPC」、カラムとして、東ソー社製「TSK gel Super HM-H」2本を使用し、溶離液トリフルオロ酢酸ナトリウム濃度10mmol/Lのヘキサフルオロイソプロパノール(HFIP)、樹脂濃度0.02質量%、カラム温度40℃、流速0.3mL/分、屈折率検出器(RI)の条件で測定し、標準ポリメチルメタクリレート換算の値として求めた。また、検量線は6水準のPMMAをHFIPに溶解させて測定し作成した。
分散度は、GPC測定により求めた。具体的には、装置として東ソー社製「HLC-8320GPC」、カラムとして、東ソー社製「TSK gel Super HM-H」2本を使用し、溶離液トリフルオロ酢酸ナトリウム濃度10mmol/Lのヘキサフルオロイソプロパノール(HFIP)、樹脂濃度0.02質量%、カラム温度40℃、流速0.3mL/分、屈折率検出器(RI)の条件で測定し、標準ポリメチルメタクリレート換算の値として求めた。また、検量線は6水準のPMMAをHFIPに溶解させて測定し作成した。
実施例1
<単層フィルムの作製>
表1に示すポリアミド樹脂(A)ペレットおよびポリアミド樹脂(B)ペレットを、表1に示す比率でドライブレンドし、その後、Tダイ付き単軸押出機(プラスチック工学研究所社製、PTM-30)に供給し、混練した。押出温度260℃にて押出し、幅150mm、厚み100μmの単層フィルムを作製した。
<単層フィルムの作製>
表1に示すポリアミド樹脂(A)ペレットおよびポリアミド樹脂(B)ペレットを、表1に示す比率でドライブレンドし、その後、Tダイ付き単軸押出機(プラスチック工学研究所社製、PTM-30)に供給し、混練した。押出温度260℃にて押出し、幅150mm、厚み100μmの単層フィルムを作製した。
<透明性の評価>
上記で得られた単層フィルムについて、ヘイズ(HAZE)を測定した。ヘイズの測定は、JIS K7136に準じて行った。
上記で得られた単層フィルムについて、ヘイズ(HAZE)を測定した。ヘイズの測定は、JIS K7136に準じて行った。
<酸素バリア性の評価>
上記で得られた単層フィルムについて、23℃、相対湿度(RH)60%の雰囲気下、等圧法にて、酸素透過係数(OTC)を測定した。また、上記で得られた単層フィルムについて、23℃、相対湿度(RH)90%の雰囲気下、等圧法にて、酸素透過係数を測定した。
酸素透過係数は、酸素透過率測定装置(MOCON社製、製品名:「OX-TRAN(登録商標) 2/21」)を使用して測定した。
上記で得られた単層フィルムについて、23℃、相対湿度(RH)60%の雰囲気下、等圧法にて、酸素透過係数(OTC)を測定した。また、上記で得られた単層フィルムについて、23℃、相対湿度(RH)90%の雰囲気下、等圧法にて、酸素透過係数を測定した。
酸素透過係数は、酸素透過率測定装置(MOCON社製、製品名:「OX-TRAN(登録商標) 2/21」)を使用して測定した。
<酸素バリア性の湿度依存性>
23℃、相対湿度(RH)60%の雰囲気下で測定した酸素透過係数に対する、23℃、相対湿度(RH)90%の雰囲気下で測定した酸素透過係数の変化率から以下の通り評価した。評価C以上が実用レベルである。
A:OTC90/OTC60が、2.8未満
B:OTC90/OTC60が、2.8以上4.5未満
C:OTC90/OTC60が、4.5以上5.5未満
D:OTC90/OTC60が、5.5以上
23℃、相対湿度(RH)60%の雰囲気下で測定した酸素透過係数に対する、23℃、相対湿度(RH)90%の雰囲気下で測定した酸素透過係数の変化率から以下の通り評価した。評価C以上が実用レベルである。
A:OTC90/OTC60が、2.8未満
B:OTC90/OTC60が、2.8以上4.5未満
C:OTC90/OTC60が、4.5以上5.5未満
D:OTC90/OTC60が、5.5以上
<フィルムの製膜性>
上記で得られた単層フィルム(幅150mm)の製膜性について、以下の通り評価した。すなわち、単層フィルムの幅方向の中央部に対する端から15mmの距離の部位(最端部)の厚みの差を以下の通り算出し、評価した。C以上が実用レベルである。
[(幅方向の中央部-最端部の厚み)/幅方向の中央部]×100(単位:%)
A: ±7%未満
B: ±8.5%未満(Aに該当するものを除く)
C: ±10%未満(A、Bに該当するものを除く)
D: ±10%以上
上記で得られた単層フィルム(幅150mm)の製膜性について、以下の通り評価した。すなわち、単層フィルムの幅方向の中央部に対する端から15mmの距離の部位(最端部)の厚みの差を以下の通り算出し、評価した。C以上が実用レベルである。
[(幅方向の中央部-最端部の厚み)/幅方向の中央部]×100(単位:%)
A: ±7%未満
B: ±8.5%未満(Aに該当するものを除く)
C: ±10%未満(A、Bに該当するものを除く)
D: ±10%以上
実施例2~6および参考例1
実施例1において、下記表1に示す通り変更し、他は同様に行って実施例2~6および参考例1
の単層フィルムを得た。実施例1と同様に評価した。
実施例1において、下記表1に示す通り変更し、他は同様に行って実施例2~6および参考例1
の単層フィルムを得た。実施例1と同様に評価した。
上記結果から明らかなとおり、本発明の樹脂組成物は、透明性が高く、かつ、酸素バリア性が湿度に依存しにくいことが分かった(実施例1~6)。
また、ポリアミド樹脂(B)として、分散度が1.5~3.5の範囲内のポリアミド樹脂を用いることにより、製膜性により優れたフィルムが得られた(実施例1~5)。
これに対し、ポリアミド樹脂(A)のみを配合し、ポリアミド樹脂(B)を配合しない場合(参考例1)、実用レベルではあるものの、本発明の樹脂組成物に比べ、酸素バリア性が湿度に依存しやすかった。
また、実施例1~6において、酸化反応促進剤(ステアリン酸コバルト(II)、関東化学社製)をポリアミド樹脂成分100質量部に対し、100質量ppmとなるように配合し、他は同様に行ってフィルムを得た。OTC90およびOTC60のいずれも、0.01cc・mm/(m2・day・atm)以下であった。
また、ポリアミド樹脂(B)として、分散度が1.5~3.5の範囲内のポリアミド樹脂を用いることにより、製膜性により優れたフィルムが得られた(実施例1~5)。
これに対し、ポリアミド樹脂(A)のみを配合し、ポリアミド樹脂(B)を配合しない場合(参考例1)、実用レベルではあるものの、本発明の樹脂組成物に比べ、酸素バリア性が湿度に依存しやすかった。
また、実施例1~6において、酸化反応促進剤(ステアリン酸コバルト(II)、関東化学社製)をポリアミド樹脂成分100質量部に対し、100質量ppmとなるように配合し、他は同様に行ってフィルムを得た。OTC90およびOTC60のいずれも、0.01cc・mm/(m2・day・atm)以下であった。
Claims (13)
- ポリアミド樹脂(A)10~90質量部に対し、ポリアミド樹脂(B)90~10質量部を含み、
前記ポリアミド樹脂(A)は、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位が90モル%を超えてアジピン酸に由来し、
前記ポリアミド樹脂(B)は、ジアミン由来の構成単位と、ジカルボン酸由来の構成単位から構成され、前記ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、前記ジカルボン酸由来の構成単位の、30~65モル%が炭素数4~20のα,ω-直鎖脂肪族ジカルボン酸に由来し、70~35モル%がイソフタル酸に由来する(但し、合計が100モル%を超えることはない)、樹脂組成物。 - 前記ポリアミド樹脂(A)におけるジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来する、請求項1に記載の樹脂組成物。
- 前記ポリアミド樹脂(B)におけるジアミン由来の構成単位の70モル%以上がメタキシリレンジアミンに由来する、請求項1または2に記載の樹脂組成物。
- 前記ポリアミド樹脂(B)におけるジカルボン酸由来の構成単位の30~65モル%がアジピン酸に由来する、請求項1~3のいずれか1項に記載の樹脂組成物。
- 前記樹脂組成物は、前記ポリアミド樹脂(A)20~80質量部に対し、前記ポリアミド樹脂(B)80~20質量部を含み、
前記ポリアミド樹脂(A)におけるジアミン由来の構成単位の90モル%以上がメタキシリレンジアミンに由来し、
前記ポリアミド樹脂(B)におけるジアミン由来の構成単位の90モル%以上がメタキシリレンジアミンに由来し、
前記ポリアミド樹脂(B)におけるジカルボン酸由来の構成単位の、30~65モル%がアジピン酸に由来し、70~35モル%がイソフタル酸に由来する、請求項1に記載の樹脂組成物。 - 前記ポリアミド樹脂(B)におけるジカルボン酸由来の構成単位の、30~59モル%がアジピン酸に由来し、70~41モル%がイソフタル酸に由来する、請求項1~5のいずれか1項に記載の樹脂組成物。
- 前記ポリアミド樹脂(B)が非晶性ポリアミド樹脂である、請求項1~6のいずれか1項に記載の樹脂組成物。
- 前記ポリアミド樹脂(A)は結晶性ポリアミド樹脂であり、前記ポリアミド樹脂(B)は非晶性ポリアミド樹脂であり、かつ、前記ポリアミド樹脂(A)を構成する構成単位と、前記ポリアミド樹脂(B)を構成する構成単位の60モル%以上が共通する、請求項1~7のいずれか1項に記載の樹脂組成物。
- 前記ポリアミド樹脂(B)の分散度である、Mw/Mnが1.5~3.5である、請求項1~8のいずれか1項に記載の樹脂組成物。
- 請求項1~9のいずれか1項に記載の樹脂組成物から形成される成形品。
- 請求項1~9のいずれか1項に記載の樹脂組成物からなる層を有する成形品。
- 請求項1~9のいずれか1項に記載の樹脂組成物から形成されるフィルム。
- 延伸されている、請求項12に記載のフィルム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019543546A JP7124830B2 (ja) | 2017-09-22 | 2018-09-06 | 樹脂組成物、成形品およびフィルム |
US16/649,057 US11254818B2 (en) | 2017-09-22 | 2018-09-06 | Resin composition, formed article, and film |
EP18857881.9A EP3686247B1 (en) | 2017-09-22 | 2018-09-06 | Resin composition, formed article and film |
CN201880060394.6A CN111094456B (zh) | 2017-09-22 | 2018-09-06 | 树脂组合物、成型品和薄膜 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-181922 | 2017-09-22 | ||
JP2017181922 | 2017-09-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019058986A1 true WO2019058986A1 (ja) | 2019-03-28 |
Family
ID=65809698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/033049 WO2019058986A1 (ja) | 2017-09-22 | 2018-09-06 | 樹脂組成物、成形品およびフィルム |
Country Status (6)
Country | Link |
---|---|
US (1) | US11254818B2 (ja) |
EP (1) | EP3686247B1 (ja) |
JP (1) | JP7124830B2 (ja) |
CN (1) | CN111094456B (ja) |
TW (1) | TWI771491B (ja) |
WO (1) | WO2019058986A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020188963A1 (ja) * | 2019-03-19 | 2020-09-24 | 三菱瓦斯化学株式会社 | 樹脂組成物、成形品、フィルムおよび樹脂組成物の製造方法 |
WO2023145276A1 (ja) | 2022-01-27 | 2023-08-03 | 三菱瓦斯化学株式会社 | 多層容器および多層容器の製造方法 |
JP7342439B2 (ja) | 2019-06-11 | 2023-09-12 | 三菱瓦斯化学株式会社 | 延伸フィルムおよび多層体 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115956097B (zh) * | 2020-08-20 | 2023-12-15 | 三菱瓦斯化学株式会社 | 聚酰胺树脂 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60238355A (ja) * | 1984-05-14 | 1985-11-27 | Mitsui Petrochem Ind Ltd | ポリエステル組成物 |
JPS61108542A (ja) | 1984-10-31 | 1986-05-27 | 三菱瓦斯化学株式会社 | 多層容器 |
JPH03103438A (ja) * | 1989-07-21 | 1991-04-30 | General Electric Co <Ge> | 優れた酸素バリヤー特性を有する無定形ポリアミド |
JP2010248417A (ja) * | 2009-04-17 | 2010-11-04 | Mitsubishi Gas Chemical Co Inc | バリア性に優れた熱可塑性樹脂組成物 |
JP2011037199A (ja) | 2009-08-17 | 2011-02-24 | Mitsubishi Gas Chemical Co Inc | 多層容器 |
JP2014047289A (ja) * | 2012-08-31 | 2014-03-17 | Mitsubishi Gas Chemical Co Inc | ポリアミド樹脂組成物及びその製造方法 |
JP2016102546A (ja) * | 2014-11-28 | 2016-06-02 | 三菱瓦斯化学株式会社 | 圧力容器および圧力容器の製造方法 |
JP2016169291A (ja) | 2015-03-12 | 2016-09-23 | 三菱瓦斯化学株式会社 | ポリアミド樹脂組成物及びその製造方法、フィルム、並びに多層フィルム |
JP2016216661A (ja) | 2015-05-25 | 2016-12-22 | 三菱瓦斯化学株式会社 | 複合シートの製造方法 |
WO2017090556A1 (ja) | 2015-11-27 | 2017-06-01 | 三菱瓦斯化学株式会社 | ポリアミド樹脂、成形品およびポリアミド樹脂の製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4908272A (en) * | 1987-04-27 | 1990-03-13 | Mitsubishi Gas Chemical Company, Inc. | Gas-barrier multilayered structure |
JPH07102659B2 (ja) * | 1987-04-27 | 1995-11-08 | 三菱瓦斯化学株式会社 | ガスバリヤ−性多層構造物 |
JPS63297549A (ja) * | 1987-05-29 | 1988-12-05 | Komatsu Ltd | 真空蒸着装置 |
JP3103438B2 (ja) | 1992-06-09 | 2000-10-30 | 旭光学工業株式会社 | 光ファイバの切断装置 |
CN104520381A (zh) | 2012-08-31 | 2015-04-15 | 三菱瓦斯化学株式会社 | 聚酰胺树脂组合物及其制造方法 |
CN107002873A (zh) | 2014-11-28 | 2017-08-01 | 三菱瓦斯化学株式会社 | 压力容器、衬垫和压力容器的制造方法 |
EP3360530B1 (en) | 2015-10-09 | 2020-02-12 | Mitsubishi Gas Chemical Company, Inc. | Multilayer container for medical use and method for producing multilayer container for medical use |
-
2018
- 2018-09-06 WO PCT/JP2018/033049 patent/WO2019058986A1/ja unknown
- 2018-09-06 JP JP2019543546A patent/JP7124830B2/ja active Active
- 2018-09-06 CN CN201880060394.6A patent/CN111094456B/zh active Active
- 2018-09-06 EP EP18857881.9A patent/EP3686247B1/en active Active
- 2018-09-06 US US16/649,057 patent/US11254818B2/en active Active
- 2018-09-12 TW TW107132020A patent/TWI771491B/zh active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60238355A (ja) * | 1984-05-14 | 1985-11-27 | Mitsui Petrochem Ind Ltd | ポリエステル組成物 |
JPS61108542A (ja) | 1984-10-31 | 1986-05-27 | 三菱瓦斯化学株式会社 | 多層容器 |
JPH03103438A (ja) * | 1989-07-21 | 1991-04-30 | General Electric Co <Ge> | 優れた酸素バリヤー特性を有する無定形ポリアミド |
JP2010248417A (ja) * | 2009-04-17 | 2010-11-04 | Mitsubishi Gas Chemical Co Inc | バリア性に優れた熱可塑性樹脂組成物 |
JP2011037199A (ja) | 2009-08-17 | 2011-02-24 | Mitsubishi Gas Chemical Co Inc | 多層容器 |
JP2014047289A (ja) * | 2012-08-31 | 2014-03-17 | Mitsubishi Gas Chemical Co Inc | ポリアミド樹脂組成物及びその製造方法 |
JP2016102546A (ja) * | 2014-11-28 | 2016-06-02 | 三菱瓦斯化学株式会社 | 圧力容器および圧力容器の製造方法 |
JP2016169291A (ja) | 2015-03-12 | 2016-09-23 | 三菱瓦斯化学株式会社 | ポリアミド樹脂組成物及びその製造方法、フィルム、並びに多層フィルム |
JP2016216661A (ja) | 2015-05-25 | 2016-12-22 | 三菱瓦斯化学株式会社 | 複合シートの製造方法 |
WO2017090556A1 (ja) | 2015-11-27 | 2017-06-01 | 三菱瓦斯化学株式会社 | ポリアミド樹脂、成形品およびポリアミド樹脂の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3686247A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020188963A1 (ja) * | 2019-03-19 | 2020-09-24 | 三菱瓦斯化学株式会社 | 樹脂組成物、成形品、フィルムおよび樹脂組成物の製造方法 |
JP7342439B2 (ja) | 2019-06-11 | 2023-09-12 | 三菱瓦斯化学株式会社 | 延伸フィルムおよび多層体 |
WO2023145276A1 (ja) | 2022-01-27 | 2023-08-03 | 三菱瓦斯化学株式会社 | 多層容器および多層容器の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20200270453A1 (en) | 2020-08-27 |
EP3686247B1 (en) | 2024-04-24 |
JP7124830B2 (ja) | 2022-08-24 |
JPWO2019058986A1 (ja) | 2020-10-15 |
CN111094456A (zh) | 2020-05-01 |
CN111094456B (zh) | 2022-09-20 |
EP3686247A1 (en) | 2020-07-29 |
TW201920478A (zh) | 2019-06-01 |
TWI771491B (zh) | 2022-07-21 |
EP3686247A4 (en) | 2020-11-18 |
US11254818B2 (en) | 2022-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6819606B2 (ja) | ポリアミド樹脂、成形品およびポリアミド樹脂の製造方法 | |
JP7124830B2 (ja) | 樹脂組成物、成形品およびフィルム | |
TWI491640B (zh) | 聚醯胺樹脂組成物 | |
TWI525126B (zh) | 聚醯胺樹脂組成物 | |
JP7160029B2 (ja) | 樹脂組成物、成形品、フィルムおよび多層フィルム | |
WO2019026499A1 (ja) | 易裂性フィルム、多層フィルム、包装材料および容器 | |
JP7327386B2 (ja) | 延伸フィルム、包装材料および延伸フィルムの製造方法 | |
JP5652590B2 (ja) | アニソール類バリア性に優れた包装用材料 | |
JP2014125617A (ja) | ポリアミド樹脂組成物及びその製造方法 | |
JP7415920B2 (ja) | ポリアミド樹脂、成形品およびポリアミド樹脂の製造方法 | |
JP2018145291A (ja) | 延伸成形体および延伸成形体の製造方法 | |
JP2018053033A (ja) | ポリアミド樹脂組成物および多層成形体 | |
JP2017110101A (ja) | ポリアミド樹脂および成形品 | |
JP6661914B2 (ja) | ポリアミド樹脂組成物、成形品および成形品の製造方法 | |
JP2021195402A (ja) | 樹脂組成物の製造方法、組成物およびペレット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18857881 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019543546 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018857881 Country of ref document: EP Effective date: 20200422 |