WO2019056951A1 - 微通道换热器的扁管以及微通道换热器 - Google Patents

微通道换热器的扁管以及微通道换热器 Download PDF

Info

Publication number
WO2019056951A1
WO2019056951A1 PCT/CN2018/104483 CN2018104483W WO2019056951A1 WO 2019056951 A1 WO2019056951 A1 WO 2019056951A1 CN 2018104483 W CN2018104483 W CN 2018104483W WO 2019056951 A1 WO2019056951 A1 WO 2019056951A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
flat tube
protrusion
groove
tube according
Prior art date
Application number
PCT/CN2018/104483
Other languages
English (en)
French (fr)
Inventor
董洪洲
Original Assignee
浙江盾安机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江盾安机械有限公司 filed Critical 浙江盾安机械有限公司
Priority to EP18858124.3A priority Critical patent/EP3677865A4/en
Priority to US16/649,150 priority patent/US20200256624A1/en
Priority to KR1020207008465A priority patent/KR20200044882A/ko
Priority to JP2020514290A priority patent/JP2020537103A/ja
Publication of WO2019056951A1 publication Critical patent/WO2019056951A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0471Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/06Tubular elements of cross-section which is non-circular crimped or corrugated in cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F2001/027Tubular elements of cross-section which is non-circular with dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Definitions

  • the invention relates to the field of air conditioners, and in particular to a flat tube of a microchannel heat exchanger and a microchannel heat exchanger.
  • air-cooled heat exchangers mainly include copper tube aluminum fin heat exchangers and all-aluminum microchannel heat exchangers.
  • copper tube aluminum fin heat exchangers are being challenged by more similar products, and all-aluminum microchannel heat exchangers are increasingly favored by the industry for their price advantages.
  • all-aluminum microchannel heat exchangers are increasingly favored by the industry for their price advantages.
  • the microchannel porous flat tubes in the prior art mostly adopt a melt extrusion process, and the aluminum ingots need to be second melted, the energy consumption is large, the cost is high, and the technical threshold is high.
  • the flat tube extrusion molding process in the prior art makes the flat tube structure only linear, and for the non-inline heat exchanger structure, it is realized by bending the heat exchanger core body, which is easy to cause the flat tube hole extrusion Pressure blockage, cracking and other issues.
  • a multi-channel shaped flat tube is disclosed, which is formed by bending a plurality of sheets of aluminum sheet.
  • the present invention provides a flat tube of a novel microchannel heat exchanger, which reduces production cost and production difficulty.
  • a flat tube of a microchannel heat exchanger comprising a first wall and a second wall formed separately, the first wall and the second wall being connected to form a refrigerant flow chamber
  • the first wall plate and/or the second wall plate have protrusions protruding into the refrigerant flow chamber to form a plurality of refrigerant passages along the longitudinal direction of the flat tube in the refrigerant flow chamber .
  • the convex portion includes a first convex portion and a second convex portion, and the first convex portion protrudes from the first wall plate toward the second wall plate, and the second convex portion a portion protruding from the second wall toward the first wall panel, the first boss portion and the second boss portion abutting and connecting with each other; or the boss portion including the first boss portion And a second raised portion protruding from the first wall to the second wall, the second raised portion being directed by the second wall toward the first wall
  • the plate protrudes, the first protrusion is connected to the second wall, the second protrusion is connected to the first wall, and the first protrusion and the second protrusion are staggered.
  • first wall plate is recessed into the refrigerant circulation cavity to form the first convex portion
  • second wall plate is recessed into the refrigerant circulation cavity to form the second convex portion.
  • the height of the first raised portion and the second raised portion is 0.3 mm to 1.0 mm.
  • first wall plate has the same structure as the second wall plate.
  • the protrusion protrudes from the first wall to the second wall, the protrusion connects the second wall; or the protrusion is from the second wall A plate protrudes toward the first wall, and the boss connects the first wall.
  • the convex portion is formed by the first wall plate being recessed into the refrigerant circulation cavity; or the convex portion is formed by the second wall plate being recessed into the refrigerant circulation cavity,
  • the height of the boss is 0.5 mm to 1.2 mm.
  • the adjacent three first protrusions on the first wall plate or the adjacent three second protrusions on the second wall plate form an angle along the flow direction of the refrigerant flow direction Lv is the distance between two protrusions adjacent to the width direction of the wall, and Lh is the distance between two protrusions adjacent to the length of the wall.
  • the included angle ⁇ is 60° to 150°.
  • the draft angle is 10° to 25°.
  • the raised portions are spaced apart along the longitudinal direction of the flat tube in the refrigerant flow chamber to form a gap between adjacent convex portions that allows refrigerants of adjacent refrigerant passages to flow through each other.
  • the first wall has a first recess recessed away from the second wall
  • the second wall has a second recess recessed away from the first wall.
  • the sidewall of the first groove and the sidewall of the second groove are connected to form the refrigerant flow chamber.
  • a sidewall of the first groove extends outwardly from the first groove to form a first flange
  • a sidewall of the second groove extends outwardly from the second groove to form a second flange
  • the sidewall of the first groove and the sidewall of the second groove overlap at least partially with each other, and the overlapping portion is welded and fixed.
  • the first wall has a recess that is recessed away from the second wall, and a sidewall of the groove extends outwardly of the groove to form a flange, the flange and the flange a second wall plate; or the second wall plate has a groove recessed away from the first wall plate, the side wall of the groove extending outwardly from the groove to form a flange, the flange Connected to the first wall panel.
  • the first wall and the second wall have a thickness of 0.2 mm to 0.8 mm.
  • the present invention also discloses a microchannel heat exchanger comprising the flat tube of any of the above.
  • microchannel heat exchanger has a straight shape, a circular shape, a square shape, an L shape, a U shape or a V shape.
  • the flat tube of the microchannel heat exchanger disclosed by the invention forms a refrigerant circulation cavity through the wall plate, and forms a microchannel through which the refrigerant flows through the protrusion formed by the depression of the wall plate.
  • the structure can adopt the stamping press forming technology. Compared with the current porous flat tube extrusion molding, the stamping and pressing technology is simple, the energy consumption is low, and the technical threshold is low.
  • the heat exchanger manufacturer can choose to independently produce or purchase, reduce the purchase cost of the flat tube and raise the bargaining power.
  • the flat tube of the microchannel heat exchanger disclosed by the invention adopts stamping and pressing forming technology, so different molds can be designed to punch the material to form a microchannel flat tube with various internal structures, compared with the current one.
  • the porous flat tube is extruded, the structure is flexible, the process is simple, and the reliability is high.
  • the stamping molding is adopted, and the bending operation is not required, thereby avoiding problems such as easy blockage and cracking of the flat tube microchannel in the bending operation.
  • the flat tube of the microchannel heat exchanger disclosed by the invention can be arranged in two symmetrical forms, so that only one mold opening is required, the processing of the two wall panels can be completed, thereby simplifying the production. The steps and the cost of mold opening are reduced, which saves production costs.
  • the flat tube of the microchannel heat exchanger disclosed by the invention adopts brazed connection for the flange and the protrusion, the process is simple and reliable, the sealing property is good, and at the same time, due to the protrusion or the connection with the wall plate, or the protrusion Interconnected, the joint is brazed, so the bump can withstand higher refrigerant pressure, and the brazed joint can prevent the convex position from being impacted by the high-pressure refrigerant, thus improving the reliability of the flat tube and enhancing the two The connection strength of the block wall.
  • the flat tube of the microchannel heat exchanger disclosed by the present invention has a space between the longitudinal direction of the flat tube because the protrusion has a space between the longitudinal direction of the flat tube, and the turbulent flow in the tube is more easily realized, compared with the current linear shape.
  • the flat tube can further enhance the heat transfer inside the tube.
  • the cross section of the microchannel formed by the two in the flat tube is positively small, and the solder is easily blocked by the refrigerant passage during the welding process, so that the refrigerant circulates in the flat tube. Poor, affecting the heat exchange effect; when the height of the first protrusion and the second protrusion is greater than 1.0 mm, because the height of the protrusions is too large, the wall is stretched to a higher degree, so that the strength of the material It is bound to be weakened and it is difficult to withstand the pressure of refrigerant.
  • the height of the third protrusion is less than 0.5 mm, the cross section of the micro-channel formed by the third protrusion and the first wall plate or the second wall plate in the flat tube is positively small, and the solder is soldered during the soldering process. It is easy to block the refrigerant passage, which causes the refrigerant to flow poorly in the flat tube and affect the heat exchange effect.
  • the height of the third protrusion is greater than 1.2 mm, the wall is stretched to a higher degree because the height of the protrusion is too large. As a result, the strength of the material is bound to be weakened, and it is difficult to withstand the pressure of the refrigerant.
  • the thickness of the first wall plate and the second wall plate is too thick to increase the difficulty of pressing, and the thickness is too thin to withstand the pressure of the refrigerant, so the thickness is selected from 0.2 mm to 0.8 mm.
  • the present invention also discloses a microchannel heat exchanger comprising the flat tube of any of the above.
  • microchannel heat exchanger can achieve are the same as those achieved by the flat tube described above, and the derivation process is similar, so it will not be described here.
  • Figure 2 is a plan view of the first embodiment of the present invention.
  • Figure 3 is a schematic view of a first wall panel in the first embodiment of the present invention.
  • Figure 4 is a schematic view showing a pressure angle in the first embodiment of the present invention.
  • Figure 5 is a cross-sectional view showing a first embodiment of the present invention.
  • Figure 6 is a cross-sectional view showing a second embodiment of the present invention.
  • Figure 7 is a cross-sectional view showing a third embodiment of the present invention.
  • Figure 8 is a cross-sectional view showing a fourth embodiment of the present invention.
  • Figure 9 is a schematic view of an eighth embodiment of the present invention.
  • Figure 10 is a schematic view of Embodiment 9 of the present invention.
  • Figure 11 is a schematic view of Embodiment 10 of the present invention.
  • Figure 12 is a schematic view of Embodiment 11 of the present invention.
  • Figure 13 is a schematic view of Embodiment 12 of the present invention.
  • Figure 14 is a schematic view of a thirteenth embodiment of the present invention.
  • a microchannel heat exchanger includes a first wall plate 1.1 and a second wall plate 1.2 which are separately formed, and the first wall plate 1.1 and the second wall plate 1.2 are oppositely disposed, and the thickness is t. It is 0.2mm.
  • the first wall plate 1.1 is recessed toward the direction away from the second wall plate 1.2 to form a first groove (not shown), and the second wall plate 1.2 is recessed toward the direction away from the first wall plate 1.1 to form a second groove (Fig.
  • the first groove and the second groove form a refrigerant flow chamber.
  • the first wall plate 1 is provided with a first protrusion 1.3
  • the second wall plate 1.2 is provided with a second protrusion 1.4.
  • the first protrusion 1.3 has a truncated cone shape, and may also have other shapes such as a strip shape.
  • the truncated cone shape is evenly distributed on the bottom wall of the first groove
  • the second protrusion 1.4 has a truncated cone shape and is evenly distributed on the bottom wall of the second groove.
  • the height d of the first protrusions 1.3 and the second protrusions 1.4 is 0.3 mm
  • the top diameter Di of the first protrusions 1.3 and the second protrusions 1.4 is 0.8 to 1.5 mm
  • the bottom diameter Do Di+ 2*d*tan ⁇ , where ⁇ is the draft angle of the first protrusion 1.3 and the second protrusion 1.4.
  • the draft angle ⁇ is 10° to 25°.
  • the two sidewalls of the first recess extend outwardly from the first recess to form two first flanges 1.5
  • the two sidewalls of the second recess extend outwardly from the second recess to form two Two cuffs 1.6
  • the first protrusion 1.3 and the first flange 1.5 are both stamped and formed by the first wall plate 1.1
  • the second protrusion 1.4 and the second flange 1.6 are both stamped and formed by the second wall plate 1.2, compared to
  • the current porous flat tube extrusion molding, simple stamping and pressing technology, low energy consumption, low technical threshold, heat exchanger manufacturers can choose to produce or purchase independently, reduce flat tube procurement costs and increase bargaining power.
  • the shape, number and position of the first protrusions 1.3 and the second protrusions 1.4 are the same, and the shape and position of the first flange 1.5 and the second flange 1.6 are both the same, thus the first wall panel 1.1 and the second wall
  • the plate 1.2 is formed in a symmetrical arrangement, and only one mold opening is required to complete the processing of the two wall plates, thereby simplifying the production steps, reducing the mold opening cost and saving the production cost.
  • the first wall plate 1.1 and the second wall plate 1.2 are connected, and the two first flanges 1.5 and the two second flanges 1.6 are brazed, and at the same time, the top surface of the first boss 1.3 and the second boss 1.4
  • the top brazed joint has simple and reliable process and good sealing performance.
  • the top surface of the first protrusion 1.3 and the top surface of the second protrusion 1.4 abut each other and are also brazed so that the first protrusion 1.3 and the second protrusion 1.4 can withstand higher refrigerant pressure by means of The brazed joint prevents the first protrusions 1.3 and the second protrusions 1.4 from being impact-deformed by the high-pressure refrigerant, thereby improving the reliability of the flat tubes and enhancing the joint strength of the first wall panel 1.1 and the second wall panel 1.2.
  • the angle formed by the adjacent three first protrusions 1.3 on the first wall plate or the adjacent three second protrusions on the second wall plate along the flow direction of the refrigerant is defined as the flow pressure angle ⁇ .
  • Lv is a distance between two protrusions adjacent to the width direction of the wall plate
  • Lh is a distance between two protrusions adjacent to the longitudinal direction of the wall plate.
  • the inflow pressure angle ⁇ affects the tube pressure drop and the heat exchange efficiency.
  • the inflow pressure angle ⁇ may be 60° to 150°. In practical applications, the appropriate flow pressure angle can be selected according to the heat transfer efficiency.
  • the intensity factor Used to indicate the pressure bearing performance of the flat pipe process The distance Lv adjacent to the two protrusions in the width direction of the wall plate, the distance Lh of the two protrusions adjacent to the longitudinal direction of the wall plate, and the influence of the top diameter Di of the protrusion, specifically, In this embodiment, in order to ensure the connection strength of the wall panel, it is necessary to satisfy It is 13 to 20.
  • the assembled flat tube has a convex portion formed by a plurality of first protrusions 1.3 and a second protrusion 1.4 in the longitudinal direction, and a refrigerant flow passage formed by the first groove and the second groove
  • the inner body forms a refrigerant passage. Since the first protrusion 1.3 and the second protrusion 1.4 are in the shape of a truncated cone, a gap is formed between the adjacent convex portions to allow the refrigerant of the adjacent refrigerant passages to flow with each other, so the lumen of the flat tube is
  • the spatial structure makes it easier to achieve turbulent flow in the tube, which can further enhance the heat transfer inside the tube compared to the current linear flat tube.
  • the plate surface of the first wall plate 1.1 and the plate surface of the second wall plate 1.2 are both recessed into the refrigerant flow chamber to form pits due to the pits.
  • the existence of the channel between the fin and the flat tube is inevitable because it cannot be completely welded.
  • the heat exchanger is mostly installed vertically, and the condensed water is collected by gravity and passes through the pit. Under the flow, the microchannel evaporator drainage is realized to further improve the heat exchange efficiency.
  • a microchannel heat exchanger includes a first wall 2.1 and a second wall 2.2 which are separately formed, and the first wall The plate 2.1 and the second wall plate 2.2 are oppositely disposed.
  • the thickness t of the first wall plate 2.1 and the second wall plate 2.2 is 0.2 mm.
  • the first wall plate 2.1 is recessed toward the direction away from the second wall plate 1.2 to form a first groove
  • the second wall plate 2.2 is recessed toward the direction away from the first wall plate 2.1 to form a second groove, the first groove and the second groove
  • the groove forms a refrigerant flow chamber.
  • the first wall plate 2.1 is provided with a third protrusion 2.3.
  • the third protrusion 2.3 has a truncated cone shape and is evenly distributed on the bottom wall of the first groove. In this embodiment, the height d of the third protrusion 2.3 is 0.5 mm. .
  • the two side walls of the first groove extend outwardly from the first groove to form two first flanges 2.4, and the two side walls of the second groove extend outwardly from the second groove to form two second flanges 2.5.
  • the third protrusion 2.3 and the first flange 2.4 are both stamped and formed by the first wall plate 2.1, and the second flange 2.5 is stamped and formed by the second wall plate 2.2, the first flange 2.4 and the second turn
  • the top surface of the third projection 2.3 is brazed to the surface of the second wall 2.2.
  • a microchannel heat exchanger includes a first wall plate 3.1 and a second wall plate 3.2 which are separately formed, and the first wall The plate 3.1 and the second wall plate 3.2 are oppositely disposed.
  • the thickness t of the first wall plate 3.1 and the second wall plate 3.2 is 0.8 mm.
  • the first wall plate 3.1 is recessed toward the second wall plate 3.2 away from the first groove
  • the second wall plate 3.2 is a flat plate
  • the first wall plate 3.1 is provided with a first protrusion 3.3
  • the second wall plate 3.2 is provided.
  • the first protrusion 3.3 has a truncated cone shape, is evenly distributed on the bottom wall of the first groove, and the second protrusion 3.4 is also in the shape of a truncated cone, the shape of the second protrusion 3.4 and the first protrusion 3.3
  • the number and position are the same.
  • the height d of the first protrusion 3.3 and the second protrusion 3.4 is 1.0 mm.
  • the two side walls of the first groove extend outwardly from the first groove to form two third flanges 3.5.
  • the first protrusions 3.3 and the third flanges 3.5 are both formed by the first wall plate 3.1.
  • the second protrusion 3.4 is stamped and formed by the second wall plate 1.2, and the third flange 3.5 is directly soldered to the surface of the second wall plate 3.2, and the top surface of the first boss 3.3 and the top of the second boss 3.4 Face brazed connection.
  • a microchannel heat exchanger includes a first formed first wall plate 4.1 and a second wall plate 4.2, and a first wall.
  • the plate 4.1 and the second wall plate 4.2 are oppositely disposed.
  • the thickness t of the first wall plate 4.1 and the second wall plate 4.2 is 0.6 mm.
  • the first wall plate 4.1 is recessed in a direction away from the second wall plate 4.2 to form a first groove
  • the second wall plate 4.2 is a flat plate
  • the first wall plate 4.1 is provided with a third protrusion 4.3
  • the third protrusion 4.3 is round.
  • the table shape is evenly distributed on the bottom wall of the first recess.
  • the height d of the third protrusion 4.3 is 1.2 mm.
  • the two side walls of the first groove extend outwardly from the first groove to form two third flanges 4.4.
  • the third protrusions 4.3 and the third flanges 4.4 are both formed by the first wall plate 4.1.
  • the third flange 4.4 is directly brazed to the plate surface of the second wall plate 4.2, and the top surface of the third boss 4.3 and the plate surface of the second wall plate 4.2 are brazed.
  • first wall plate and the second wall plate have a thickness of 0.4 mm
  • first wall plate is provided with a first protrusion
  • second wall plate is provided with a second portion.
  • the protrusions, the first protrusions and the second protrusions are all in the shape of a truncated cone, the height of the first protrusion is 1.0 mm, the top surface is brazed to the second wall plate, and the height of the second protrusion is 1.0 mm, the top surface
  • the first wall and the second protrusion are alternately arranged to be brazed to the first wall to form a plurality of refrigerant passages disposed along the length of the flat tube.
  • first wall plate and the second wall plate have a thickness of 0.5 mm
  • the third protrusion has a height of 1.0 mm.
  • the embodiment provides a microchannel heat exchanger, comprising two headers 1.7, one of which is provided with a connection tube 1.10 connected to the refrigeration system, and two sets.
  • a plurality of flat tubes as described in the first embodiment are connected between the flow tubes 1.7, and corrugated fins 1.8 are disposed between the adjacent flat tubes to increase the heat dissipation area, and at the end of the header 1.7
  • the outer side of the two flat tubes is also provided with fins 1.8, where the fins 1.8 are protected by a baffle 1.9 to prevent deformation and damage of the fins 1.8 therein.
  • the microchannel heat exchanger in this embodiment has a straight plate shape.
  • the embodiment is different from the eighth embodiment in that the microchannel heat exchanger in this embodiment has an L shape, and the flat tube and the baffle 1.9 are bent in the longitudinal direction to form an L-shaped microchannel. Fins 1.8 are provided between the heat exchanger, between the flat tube and the flat tube, and between the flat tube and the baffle 1.9.
  • the embodiment is different from the eighth embodiment in that the microchannel heat exchanger in this embodiment has a U shape, and the flat tube and the baffle 1.9 are bent in the longitudinal direction to form a U-shaped microchannel. Fins 1.8 are provided between the heat exchanger, between the flat tube and the flat tube, and between the flat tube and the baffle 1.9.
  • the embodiment is different from the eighth embodiment in that the microchannel heat exchanger in this embodiment has a V shape, and the flat tube and the baffle 1.9 are bent in the longitudinal direction to form a V-shaped microchannel. Fins 1.8 are provided between the heat exchanger, between the flat tube and the flat tube, and between the flat tube and the baffle 1.9.
  • the embodiment is different from the eighth embodiment in that the microchannel heat exchanger in this embodiment has a circular shape, and the flat tube and the baffle 1.9 are bent in the longitudinal direction to form a circular microchannel.
  • the heat exchanger, the two manifolds of the microchannel heat exchanger 1.7 are formed by a closed loop, and the fins 1.8 are provided between the flat tube and the flat tube and between the flat tube and the baffle 1.9.
  • the embodiment is different from the eighth embodiment in that the microchannel heat exchanger in the embodiment has a square shape, and the flat tube and the baffle 1.9 are bent in the longitudinal direction to form a square microchannel heat exchange.
  • the two manifolds 1.7 of the microchannel heat exchanger are formed to form a closed loop, and fins 1.8 are provided between the flat tube and the flat tube and between the flat tube and the baffle 1.9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种微通道换热器的扁管以及微通道换热器,涉及空调器领域,所述扁管包括分体成型的第一壁板(1.1)和第二壁板(1.2),所述第一壁板(1.1)和/或所述第二壁板(1.2)具有向所述冷媒流通腔内突出的凸起部,以形成多个沿所述扁管长度方向设置的冷媒通道。该微通道换热器的扁管采用冲压的方法降低了生产成本和生产难度。

Description

微通道换热器的扁管以及微通道换热器 技术领域
本发明涉及空气调节器领域,具体涉及一种微通道换热器的扁管以及微通道换热器。
背景技术
目前,风冷换热器主要有铜管铝翅片换热器和全铝微通道换热器两种。近年来,随着铜价的不断攀升,铜管铝翅片换热器正遭受更多同类产品的挑战,而全铝微通道换热器以其价格上的优势越来越受到行业的青睐,正逐步从汽车空调领域扩展到家用空调和商用空调领域。然而,现有技术中的微通道多孔扁管多采用熔融挤压工艺,铝锭需二次熔融,能源消耗大,成本高昂,并且技术门槛高。而且,现有技术中的扁管挤出成型工艺,使得扁管结构仅为直线状,对于非直排换热器结构,需通过折弯换热器芯体来实现,容易造成扁管孔挤压堵塞、开裂等问题。在申请号为“201611225638.0”的对比文件中,公开了一种多通道异形扁管,该种扁管采用一片铝板进行多次折弯形成。这种工艺虽然解决了挤压成型能源消耗大、成本高昂、技术门槛高等问题,但是在进行折弯加工过程中,存在扁管微通道易堵塞、折弯位置易开裂等问题。
发明内容
为解决前述问题,本发明提供了一种新型的微通道换热器的扁管,降低了生产成本和生产难度。
为了达到上述目的,本发明采用如下技术方案:
一种微通道换热器的扁管,所述扁管包括分体成型的第一壁板和第二壁板,所述第一壁板和所述第二壁板连接形成冷媒流通腔,所述第一壁板和/或所述第二壁板具有向所述冷媒流通腔内突出的凸起部,以在所述冷媒流通腔中形成多个沿所述扁管长度方向设置的冷媒通道。
进一步的,所述凸起部包括第一凸起部和第二凸起部,所述第一凸起部由所述第一壁板向所述第二壁板突出,所述第二凸起部由所述第二壁板向所述第一壁板突出,所述第一凸起部和所述第二凸起部相互抵靠并连接;或所述凸起部包括第一凸起部和第二凸起部,所述第一凸起部由所述第一壁板向所述第二壁板突出,所述第二凸起部由所述第二壁板向所述第一壁板突出,所述第一凸起部连接所述第二壁板,所述第二凸起部连接所述第一壁板,所述第一凸起部和第二凸起部交错分布。
更进一步的,所述第一壁板向所述冷媒流通腔内凹陷形成所述第一凸起部,所述第二壁板向所述冷媒流通腔内凹陷形成所述第二凸起部,所述第一凸起部和第二凸起部的高度为0.3mm~1.0mm。
更进一步的,所述第一壁板与所述第二壁板的结构相同。
可选的,所述凸起部由所述第一壁板向所述第二壁板突出,所述凸起部连接所述第二壁板;或所述凸起部由所述第二壁板向所述第一壁板突出,所述凸起部连接所述第一壁板。
可选的,所述凸起部由所述第一壁板向所述第二壁板突出,所述凸起部连接所述第二壁板;或所述凸起部由所述第二壁板向所述第一壁板突出,所述凸起部连接所述第一壁板。
进一步的,所述凸起部由所述第一壁板向所述冷媒流通腔内凹陷形成;或所述凸起部由所述第二壁板向所述冷媒流通腔内凹陷形成,所述凸起部的高度为0.5mm~1.2mm。
进一步的,所述第一壁板上相邻的三个第一凸起或所述第二壁板上相邻的三个第二凸起沿冷媒流向流动方向所形成的夹角
Figure PCTCN2018104483-appb-000001
Lv为沿壁板宽度方向相邻两个凸起的距离,Lh为沿壁板长度方向相邻两个凸起的距离。
更进一步的,所述夹角θ为60°~150°。
可选的,当所述凸起部为圆台形时,所述凸起部的顶径Di与所述凸起部的底径Do满足:Do=Di+2*d*tanα,所述α为所述凸起部的拔模角度。
进一步的,所述拔模角度为10°~25°。
可选的,所述凸起部在所述冷媒流通腔中沿着所述扁管长度方向间隔分布,以在相邻凸起部之间形成允许相邻冷媒通道的冷媒相互流通的间隙。
可选的,所述第一壁板具有向远离所述第二壁板方向凹陷的第一凹槽,所述第二壁板具有向远离所述第一壁板方向凹陷的第二凹槽,所述第一凹槽的侧壁和所述第二凹槽的侧壁相连接形成所述冷媒流通腔。
进一步的,所述第一凹槽的侧壁向所述第一凹槽外延伸形成第一翻边,所述第二凹槽的侧壁向所述第二凹槽外延伸形成第二翻边,所述第一翻边和第二翻边相互连接。
进一步的,所述第一凹槽的侧壁和所述第二凹槽的侧壁彼此至少有部分重叠,且重叠部分焊接固定。
可选的,所述第一壁板具有向远离所述第二壁板方向凹陷的凹槽,所述凹槽的侧壁向所述凹槽外延伸形成翻边,所述翻边与所述第二壁板连接;或所述第二壁板具有向远离所述第一壁板方向凹陷的凹槽,所述凹槽的侧壁向所述凹槽外延伸形成翻边,所述翻边与所述第一壁板连接。
可选的,所述第一壁板和第二壁板的厚度为0.2mm~0.8mm。
另外,本发明还公开了一种微通道换热器,包括上述任意一项所述的扁管。
进一步的,所述微通道换热器呈直板形、圆形、方形、L形、U形或V形。
采用上述技术方案后,本发明具有如下优点:
1、本发明所公开的微通道换热器的扁管,通过壁板形成冷媒流通腔,通过壁板凹陷形成的凸起来形成供冷媒流过的微通道,这种结构可采用冲压压制成型技术,相比于现行的多孔扁管挤压成型,冲压压制技术简单,能耗低,技术门槛低,换热器生产商可选择自主生产或采购,降低扁管采购成本及提高议价权。
2、本发明所公开的微通道换热器的扁管采用了冲压压制成型技术,因此可以设计不同的模具对材料进行冲压,以形成多种内部结构的微通道扁管,相比于现行的多孔扁管挤压成型,结构灵活,工艺简单,可靠性高,同时,采用冲压成型,无需折弯操作,避免了折弯操作中扁管微通道易堵塞、开裂等问题。
3、本发明所公开的微通道换热器的扁管,由于可以设置成两个壁板对称的形式,因此只需要一次开模,便可完成对两个壁板的加工,因此精简了生产步骤,并且降低了开模费用,节约了生产成本。
4、本发明所公开的微通道换热器的扁管,翻边、凸起均采用钎焊连接,工艺简单可靠,密封性好,同时,由于凸起或与壁板连接,或与凸起相互连接,连接处采用钎焊工艺,因此凸起可以承受较高的冷媒压力,借助钎焊连接,可以防止凸起位置被高压冷媒冲击变形,因此提高了扁管的可靠性,也增强了两块壁板的连接强度。
5、本发明所公开的微通道换热器的扁管,由于凸起在扁管长度方向之间具有空隙,因此扁管内腔为空间结构,更容易实现管内湍流流动,相比于现行的线形孔扁管,可进一步强化管内换热。
6、本发明所公开的微通道换热器的扁管,由于壁板采用冲压加工形成向内突出的凸起,因此扁管表面必然排列有凹坑。由于凹坑的存在,翅片和扁管间必然存在因不能完全焊合而留有的通道,在蒸发器和热泵工况下,换热器多采用垂直安装,冷凝水在重力作用下汇集并通过凹坑流下,实现微通道蒸发器排水,进一步提升换热效率。
7、当第一凸起和第二凸起的高度小于0.3mm时,二者在扁管内所构成的微通道截面积极小,在焊接过程中焊料极易阻塞冷媒通道,致使冷媒在扁管内流通不畅,影响换热效果;当第一凸起和第二凸起的高度大于1.0mm时,由于二者凸起高度过大,因此壁板被拉伸的程度更高,以至于材料的强度势必被削弱,难以承受冷媒的压力。第三凸起同理,当第三凸起的高度小于0.5mm时,第三凸起和第一壁板或第二壁板在扁管内所构成的微通道截面积极小,在焊接过程中焊料极易阻塞冷媒通道,致使冷媒在扁管内流通不畅,影响换热效果;当第三凸起的高度大于1.2mm时,由于凸起高度过大,因此壁板被拉伸的程度更高,以至于材料的强度势必被削弱,难以承受冷媒的压力。同时,第一壁板和第二壁板的厚度,过厚将加大冲压难度,过薄无法承受冷媒的压力,因此选用0.2mm~0.8mm厚度。另外,本发明还公开了一种微通道换热器,包括上述任意一项所述的扁管。
该微通道换热器所能达到的有益效果与上文中所描述的扁管所能达到的有益效果相同,两者推导过程相类似,故在此不再赘述。
本发明的这些特点和优点将会在下面的具体实施方式以及附图中进行详细的揭露。本发明最佳的实施方式或手段将结合附图来详尽表现,但并非是对本发明技术方案的限制。另外,在每个下文和附图中出现的这些特征、要素和组件是具有多个,并且为了表示方便而标记了不同的符号或数字,但均表示相同或相似构造或功能的部件。
附图说明
下面结合附图对本发明作进一步说明:
图1是本发明实施例一的示意图;
图2是本发明实施例一的俯视图;
图3是本发明实施例一中第一壁板的示意图;
图4是本发明实施例一中压力角的示意图;
图5是本发明实施例一的截面视图;
图6是本发明实施例二的截面视图;
图7是本发明实施例三的截面视图;
图8是本发明实施例四的截面视图;
图9是本发明实施例八的示意图;
图10是本发明实施例九的示意图;
图11是本发明实施例十的示意图;
图12是本发明实施例十一的示意图;
图13是本发明实施例十二的示意图;
图14是本发明实施例十三的示意图。
附图中:
1.1-第一壁板、1.2-第二壁板、1.3-第一凸起、1.4-第二凸起、1.5-第一翻边、1.6-第二翻边、1.7-集流管、1.8-翅片、1.9-挡板、1.10-连接管,
2.1-第一壁板、2.2-第二壁板、2.3-第三凸起、2.4-第一翻边、2.5-第二翻边,
3.1-第一壁板、3.2-第二壁板、3.3-第一凸起、3.4-第二凸起、3.5-第三翻边,
4.1-第一壁板、4.2-第二壁板、4.3-第三凸起、4.4-第三翻边
具体实施方式
下面结合本发明实施例的附图对本发明实施例的技术方案进行解释和说明,但下述实施例仅为本发明的优选实施例,并非全部。基于实施方式中的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得其他实施例,都属于本发明的保护范围。
在本说明书中引用的“一个实施例”或“实例”或“例子”意指结合实施例本身描述的特定特征、结构或特性可被包括在本专利公开的至少一个实施例中。短语“在一个实施例中”在说明书中的各位置的出现不必都是指同一个实施例。
在本发明实施例的描述中,术语“上”、“下”、“左”、“右”、“横向”、“纵向”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不能理解为对本发明的限制。
实施例一
本实施例提供一种微通道换热器。如图1至图5所示,一种微通道换热器,包括分体成型的第一壁板1.1和第二壁板1.2,第一壁板1.1和第二壁板1.2相对设置,厚度t为0.2mm。第一壁板1.1向第二壁板1.2远离的方向凹陷形成第一凹槽(图中未标出),第二壁板1.2向第一壁板1.1远离的方向凹陷形成第二凹槽(图中未标出),第一凹槽和第二凹槽形成冷媒流通腔。第一壁板1.1上设有第一凸起1.3,第二壁板1.2上设有第二凸起1.4,第一凸起1.3呈圆台形,也可以呈条形等其他形状,本实施例优选圆台形,均布于第一凹槽的底壁,第二凸起1.4呈圆台形,均布于第二凹槽的底壁。本实施例中,第一凸起1.3和第二凸起1.4的高度d为0.3mm,第一凸起1.3和第二凸起1.4的顶径Di为0.8~1.5mm,底径Do=Di+2*d*tanα,其中α为第一凸起1.3和第二凸起1.4的拔模角度,本实施例中,拔模角度α为10°~25°。如此,一方面可避免扁管内通道过小造成的冷媒流通不畅的问题,提高换热效率;另一方面,通过凸起顶径、底径以及拔模角度的合理设计,可保证壁板的连接强度,使得第一凸起和第二凸起相连后能承受较大的冷媒压力。
本实施例中,第一凹槽的两个侧壁向第一凹槽外延伸形成两条第一翻边1.5,第二凹槽的两个侧壁向第二凹槽外延伸形成两条第二翻边1.6。本实施例中,第一凸起1.3和第一翻边1.5均由第一壁板1.1冲压成型,第二凸起1.4和第二翻边1.6均由第二壁板1.2冲压成型,相比于现行的多孔扁管挤压成型,冲压压制技术简单,能耗低,技术门槛低,换热器生产商可选择自主生产或采购,降低扁管采购成本及提高议价权。同时,在不同使用场合,根据不同的工况,可以设计不同的模具对壁板进行冲压,形成多种内部结构的微通道扁管,以适应不同的需求,相比于现行的多孔扁管挤压成型,结构灵活,工艺简单,可靠性高,同时,采用冲压成型,无需折弯操作,避免了折弯操作中扁管微通道易堵塞、开裂等问题。第一凸起1.3和第二凸起1.4的形状、数量与位置均相同,并且第一翻边1.5和第二翻边1.6的形状和位置均形同,因此第一壁板1.1和第二壁板1.2形成了对称设置,只需要一次开模,便可完成对 两个壁板的加工,因此精简了生产步骤,并且降低了开模费用,节约了生产成本。第一壁板1.1和第二壁板1.2相连接,两条第一翻边1.5和两条第二翻边1.6采用钎焊连接,同时,第一凸台1.3的顶面和第二凸台1.4的顶面钎焊连接,工艺简单可靠,密封性好。同时,第一凸起1.3的顶面和第二凸起1.4的顶面相互抵靠并且也采用钎焊连接,使第一凸起1.3和第二凸起1.4可以承受较高的冷媒压力,借助钎焊连接,可以防止第一凸起1.3和第二凸起1.4被高压冷媒冲击变形,因此提高了扁管的可靠性,也增强了第一壁板1.1和第二壁板1.2的连接强度。
如图4所示,将第一壁板上相邻三个第一凸起1.3或者第二壁板上相邻三个第二凸起沿冷媒流向所形成的夹角定义为来流压力角θ,
Figure PCTCN2018104483-appb-000002
其中,Lv为沿壁板宽度方向相邻两个凸起的距离,Lh为沿壁板长度方向相邻两个凸起的距离。来流压力角θ影响管程压降和换热效率,本实施例中,来流压力角θ可为60°~150°。实际应用中,可根据换热效率的需要,选用合适的来流压力角,例如,需要高换热效率时,应采用大的来流压力角,如θ=90°~150°,以通过增大压降提高换热效率。反之,对于有压降限制的需求时,应采用小的来流压力角,如θ=60°~90°。
此外,定义强度因子
Figure PCTCN2018104483-appb-000003
用以表示扁管管程的承压性能,
Figure PCTCN2018104483-appb-000004
会受到壁板宽度方向相邻两个凸起的距离Lv,壁板长度方向相邻两个凸起的距离Lh,以及凸起的顶径Di的影响,具体地,
Figure PCTCN2018104483-appb-000005
本实施例中,为保证壁板的连接强度,需满足
Figure PCTCN2018104483-appb-000006
为13~20。
组装完成的扁管,在长度方向上,多个第一凸起1.3和第二凸起1.4相钎焊连接所构成的凸起部在由第一凹槽和第二凹槽构成的冷媒流通腔内体形成了冷媒通道,由于第一凸起1.3和第二凸起1.4为圆台形,因此,相邻凸起部之间形成允许相邻冷媒通道的冷媒相互流通的间隙,因此扁管内腔为空间结构,更容易实现管内湍流流动,相比于现行的线形孔扁管,可进一步强化管内换热。
由于第一凸起1.3和第二凸起1.4均为冲压成型,因此,第一壁板1.1的板面和第二壁板1.2的板面均向冷媒流通腔内凹陷形成凹坑,由于凹坑的存在,翅片和扁管间必然存在因不能完全焊合而留有的通道,在蒸发器和热泵工况下,换热器多采用垂直安装,冷凝水在重力作用下汇集并通过凹坑流下,实现微通道蒸发器排水,进一步提升换热效率。
实施例二
如图6所示,本实施例与实施例一不同的是,本实施例中,一种微通道换热器,包括分体成型的第一壁板2.1和第二壁板2.2,第一壁板2.1和第二壁板2.2相对设置,本实施例中,第一壁板2.1和第二壁板2.2的厚度t为0.2mm。第一壁板2.1向第二壁板1.2远离的方向凹陷形成第一凹槽,第二壁板2.2向第一壁板2.1远离的方向凹陷形成第二凹槽,第一凹槽和 第二凹槽形成冷媒流通腔。第一壁板2.1上设有第三凸起2.3,第三凸起2.3呈圆台形,均布于第一凹槽的底壁,本实施例中,第三凸起2.3的高度d为0.5mm。第一凹槽的两个侧壁向第一凹槽外延伸形成两条第一翻边2.4,第二凹槽的两个侧壁向第二凹槽外延伸形成两条第二翻边2.5。本实施例中,第三凸起2.3和第一翻边2.4均由第一壁板2.1冲压成型,第二翻边2.5均由第二壁板2.2冲压成型,第一翻边2.4和第二翻边2.5钎焊连接,第三凸起2.3的顶面与第二壁板2.2的板面钎焊连接。
实施例三
如图7所示,本实施例与实施例一不同的是,本实施例中,一种微通道换热器,包括分体成型的第一壁板3.1和第二壁板3.2,第一壁板3.1和第二壁板3.2相对设置,本实施例中,第一壁板3.1和第二壁板3.2的厚度t为0.8mm。第一壁板3.1向第二壁板3.2远离的方向凹陷形成第一凹槽,第二壁板3.2为平板,第一壁板3.1上设有第一凸起3.3,第二壁板3.2上设有第二凸起3.4,第一凸起3.3呈圆台形,均布于第一凹槽的底壁,第二凸起3.4也呈圆台形,第二凸起3.4和第一凸起3.3的形状、数量与位置均相同,本实施例中,第一凸起3.3和第二凸起3.4的高度d为1.0mm。第一凹槽的两个侧壁向第一凹槽外延伸形成两条第三翻边3.5,本实施例中,第一凸起3.3和第三翻边3.5均由第一壁板3.1冲压成型,第二凸起3.4由第二壁板1.2冲压成型,第三翻边3.5直接与第二壁板3.2的板面钎焊连接,第一凸台3.3的顶面和第二凸台3.4的顶面钎焊连接。
实施例四
如图8所示,本实施例与实施例一不同的是,本实施例中,一种微通道换热器,包括分体成型的第一壁板4.1和第二壁板4.2,第一壁板4.1和第二壁板4.2相对设置,本实施例中,第一壁板4.1和第二壁板4.2的厚度t为0.6mm。第一壁板4.1向第二壁板4.2远离的方向凹陷形成第一凹槽,第二壁板4.2为平板,第一壁板4.1上设有第三凸起4.3,第三凸起4.3呈圆台形,均布于第一凹槽的底壁,本实施例中,第三凸起4.3的高度d为1.2mm。第一凹槽的两个侧壁向第一凹槽外延伸形成两条第三翻边4.4,本实施例中,第三凸起4.3和第三翻边4.4均由第一壁板4.1冲压成型,第三翻边4.4直接与第二壁板4.2的板面钎焊连接,第三凸台4.3的顶面和第二壁板4.2的板面钎焊连接。
实施例五
本实施例与实施例一不同的是,本实施例中,第一壁板和第二壁板的厚度为0.4mm,第一壁板设有第一凸起,第二壁板设有第二凸起,第一凸起和第二凸起均呈圆台形,第一凸起的高度为1.0mm,顶面与第二壁板钎焊连接,第二凸起的高度为1.0mm,顶面与第一壁板钎焊连接,第一凸起和第二凸起交错设置,形成多个沿扁管长度方向设置的冷媒通道。
实施例六
本实施例与实施例一不同的是,本实施例中,第一壁板和第二壁板的厚度为0.5mm,第一凸起和第二凸起的高度为0.8mm。第一凹槽的侧壁和第二凹槽的侧壁彼此至少有部分重叠,重叠的部分采用钎焊连接固定。
实施例七
本实施例与实施例二不同的是,本实施例中,第一壁板和第二壁板的厚度为0.5mm,第三凸起的高度为1.0mm。
实施例八
如图9所示,本实施例提供了一种微通道换热器,包括两根集流管1.7、其中一根集流管1.7上设有与制冷系统相连接的连接管1.10,两根集流管1.7之间连接有若干实施例一中所描述的扁管,在相邻的扁管之间设有波纹型翅片1.8,以增大散热面积,同时,位于集流管1.7端部位置的两根扁管的外侧面上也设有翅片1.8,此处的翅片1.8通过挡板1.9进行防护,防止此处的翅片1.8变形损坏。本实施例中的微通道换热器呈直板形。
实施例九:
如图10所示,本实施例与实施例八不同的是,本实施例中的微通道换热器呈L形,由扁管及挡板1.9在其长度方向上折弯形成L形微通道换热器,扁管和扁管之间以及扁管和挡板1.9之间均设有翅片1.8。
实施例十
如图11所示,本实施例与实施例八不同的是,本实施例中的微通道换热器呈U形,由扁管及挡板1.9在其长度方向上折弯形成U形微通道换热器,扁管和扁管之间以及扁管和挡板1.9之间均设有翅片1.8。
实施例十一
如图12所示,本实施例与实施例八不同的是,本实施例中的微通道换热器呈V形,由扁管及挡板1.9在其长度方向上折弯形成V形微通道换热器,扁管和扁管之间以及扁管和挡板1.9之间均设有翅片1.8。
实施例十二
如图13所示,本实施例与实施例八不同的是,本实施例中的微通道换热器呈圆形,由扁管及挡板1.9在其长度方向上折弯形成圆形微通道换热器,微通道换热器的两个集流管1.7相靠形成闭环,扁管和扁管之间以及扁管和挡板1.9之间均设有翅片1.8。
实施例十三
如图14所示,本实施例与实施例八不同的是,本实施例中的微通道换热器呈方形,由扁管及挡板1.9在其长度方向上折弯形成方形微通道换热器,微通道换热器的两个集流管1.7相靠形成闭环,扁管和扁管之间以及扁管和挡板1.9之间均设有翅片1.8。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,熟悉该本领域的技术人员应该明白本发明包括但不限于附图和上面具体实施方式中描述的内容。任何不偏离本发明的功能和结构原理的修改都将包括在权利要求书的范围中。

Claims (18)

  1. 一种微通道换热器的扁管,其特征在于,所述扁管包括分体成型的第一壁板和第二壁板,所述第一壁板和所述第二壁板连接形成冷媒流通腔,所述第一壁板和/或所述第二壁板具有向所述冷媒流通腔内突出的凸起部,以在所述冷媒流通腔中形成多个沿所述扁管长度方向设置的冷媒通道。
  2. 根据权利要求1所述的扁管,其特征在于,所述凸起部包括第一凸起部和第二凸起部,所述第一凸起部由所述第一壁板向所述第二壁板突出,所述第二凸起部由所述第二壁板向所述第一壁板突出,所述第一凸起部和所述第二凸起部相互抵靠并连接;或所述凸起部包括第一凸起部和第二凸起部,所述第一凸起部由所述第一壁板向所述第二壁板突出,所述第二凸起部由所述第二壁板向所述第一壁板突出,所述第一凸起部连接所述第二壁板,所述第二凸起部连接所述第一壁板,所述第一凸起部和第二凸起部交错分布。
  3. 根据权利要求2所述的扁管,其特征在于,所述第一壁板向所述冷媒流通腔内凹陷形成所述第一凸起部,所述第二壁板向所述冷媒流通腔内凹陷形成所述第二凸起部,所述第一凸起部和第二凸起部的高度为0.3mm~1.0mm。
  4. 根据权利要求3所述的扁管,其特征在于,所述第一壁板与所述第二壁板的结构相同。
  5. 根据权利要求1所述的扁管,其特征在于,所述凸起部由所述第一壁板向所述第二壁板突出,所述凸起部连接所述第二壁板;或所述凸起部由所述第二壁板向所述第一壁板突出,所述凸起部连接所述第一壁板。
  6. 根据权利要求5所述的扁管,其特征在于,所述凸起部由所述第一壁板向所述冷媒流通腔内凹陷形成;或所述凸起部由所述第二壁板向所述冷媒流通腔内凹陷形成,所述凸起部的高度为0.5mm~1.2mm。
  7. 根据权利要求2或5所述的扁管,其特征在于,所述第一壁板上相邻的三个第一凸起或所述第二壁板上相邻的三个第二凸起沿冷媒流向流动方向所形成的夹角
    Figure PCTCN2018104483-appb-100001
    Lv为沿壁板宽度方向相邻两个凸起的距离,Lh为沿壁板长度方向相邻两个凸起的距离。
  8. 根据权利要求7所述的扁管,其特征在于,所述夹角θ为60°~150°。
  9. 根据权利要求1所述的扁管,其特征在于,当所述凸起部为圆台形时,所述凸起部的顶径Di与所述凸起部的底径Do满足:Do=Di+2*d*tanα,所述α为所述凸起部的拔模角度。
  10. 根据权利要求9所述的扁管,其特征在于,所述拔模角度为10°~25°。
  11. 根据权利要求1所述的扁管,其特征在于,所述凸起部在所述冷媒流通腔中沿着所述扁管长度方向间隔分布,以在相邻凸起部之间形成允许相邻冷媒通道的冷媒相互流通的间隙。
  12. 根据权利要求1至6中任一项所述的扁管,其特征在于,所述第一壁板具有向远离所述第二壁板方向凹陷的第一凹槽,所述第二壁板具有向远离所述第一壁板方向凹陷的第二凹槽,所述第一凹槽的侧壁和所述第二凹槽的侧壁相连接形成所述冷媒流通腔。
  13. 根据权利要求12所述的扁管,其特征在于,所述第一凹槽的侧壁向所述第一凹槽外延伸形成第一翻边,所述第二凹槽的侧壁向所述第二凹槽外延伸形成第二翻边,所述第一翻边和第二翻边相互连接。
  14. 根据权利要求13所述的扁管,其特征在于,所述第一凹槽的侧壁和所述第二凹槽的侧壁彼此至少有部分重叠,且重叠部分焊接固定。
  15. 根据权利要求1至6中任一项所述的扁管,其特征在于,所述第一壁板具有向远离所述第二壁板方向凹陷的凹槽,所述凹槽的侧壁向所述凹槽外延伸形成翻边,所述翻边与所述第二壁板连接;或所述第二壁板具有向远离所述第一壁板方向凹陷的凹槽,所述凹槽的侧壁向所述凹槽外延伸形成翻边,所述翻边与所述第一壁板连接。
  16. 根据权利要求1所述的扁管,其特征在于,所述第一壁板和第二壁板的厚度为0.2mm~0.8mm。
  17. 一种微通道换热器,其特征在于,所述微通道换热器包括权利要求1至16中任一项所述的扁管。
  18. 根据权利要求17所述的微通道换热器,其特征在于,所述微通道换热器呈直板形、圆形、方形、L形、U形或V形。
PCT/CN2018/104483 2017-09-22 2018-09-07 微通道换热器的扁管以及微通道换热器 WO2019056951A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18858124.3A EP3677865A4 (en) 2017-09-22 2018-09-07 FLAT TUBE FOR MICRO-CHANNEL HEAT EXCHANGER, AND MICRO-CHANNEL HEAT EXCHANGER
US16/649,150 US20200256624A1 (en) 2017-09-22 2018-09-07 Flat Tube for Microchannel Heat Exchanger and Microchannel Heat Exchanger
KR1020207008465A KR20200044882A (ko) 2017-09-22 2018-09-07 마이크로채널 열교환기의 평판관 및 마이크로채널 열교환기
JP2020514290A JP2020537103A (ja) 2017-09-22 2018-09-07 マイクロチャネル熱交換器の扁平管及びマイクロチャネル熱交換器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710866253.0A CN109539852A (zh) 2017-09-22 2017-09-22 一种微通道换热器的扁管以及微通道换热器
CN201710866253.0 2017-09-22

Publications (1)

Publication Number Publication Date
WO2019056951A1 true WO2019056951A1 (zh) 2019-03-28

Family

ID=65810106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104483 WO2019056951A1 (zh) 2017-09-22 2018-09-07 微通道换热器的扁管以及微通道换热器

Country Status (6)

Country Link
US (1) US20200256624A1 (zh)
EP (1) EP3677865A4 (zh)
JP (1) JP2020537103A (zh)
KR (1) KR20200044882A (zh)
CN (1) CN109539852A (zh)
WO (1) WO2019056951A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021077895A1 (zh) * 2019-10-21 2021-04-29 浙江盾安人工环境股份有限公司 扁管、微通道换热器以及空调

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP1615542S (zh) * 2017-08-21 2018-10-09
JP7263970B2 (ja) * 2019-08-06 2023-04-25 株式会社デンソー 熱交換器
CN113310340A (zh) * 2020-02-27 2021-08-27 浙江盾安热工科技有限公司 换热器
CN112944972A (zh) * 2021-02-09 2021-06-11 广东鑫统仕集团有限公司 一种打点散热管

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719774A (ja) * 1993-06-30 1995-01-20 Zexel Corp 熱交換器の偏平チューブ
JPH1019494A (ja) * 1996-07-05 1998-01-23 Zexel Corp 熱交換器用偏平チューブ
JPH1085879A (ja) * 1996-09-17 1998-04-07 Nippon Light Metal Co Ltd フィン付き熱交換器の曲げ加工方法及びフィン付き熱交換器
JP2000205784A (ja) * 1999-01-19 2000-07-28 Calsonic Kansei Corp 熱交換器用偏平チュ―ブ
JP2006266528A (ja) * 2005-03-22 2006-10-05 T Rad Co Ltd 熱交換器用偏平チューブ
CN101050925A (zh) * 2006-04-04 2007-10-10 株式会社电装 热交换器
JP2012149789A (ja) * 2011-01-17 2012-08-09 Denso Corp 熱交換器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073181Y2 (ja) * 1988-08-12 1995-01-30 カルソニック株式会社 マルチフロータイプの熱交換器
JPH0228981U (zh) * 1988-08-12 1990-02-23
JPH08200977A (ja) * 1995-01-27 1996-08-09 Zexel Corp 熱交換器用偏平チューブ及びその製造方法
JPH09310989A (ja) * 1996-05-23 1997-12-02 Calsonic Corp 熱交換器
JPH11294990A (ja) * 1998-04-06 1999-10-29 Zexel:Kk 並設一体型熱交換器
EP1022532A3 (en) * 1999-01-19 2001-08-01 Calsonic Kansei Corporation Flat tubes for use with heat exchanger and manufacturing method thereof
JP2004003855A (ja) * 2003-08-06 2004-01-08 Zexel Valeo Climate Control Corp 熱交換器用偏平チューブ及びその製造方法
CN101589286B (zh) * 2007-01-23 2011-09-28 摩丁制造公司 热交换器和方法
JP2009162426A (ja) * 2008-01-07 2009-07-23 Denso Corp 熱交換器
EP2306134B1 (fr) * 2009-10-01 2012-05-30 Techspace Aero S.A. Procédé de fabrication d'un échangeur de chaleur et échangeur obtenu par le procédé
CN102079038B (zh) * 2010-12-08 2013-02-13 三花控股集团有限公司 一种换热器及其制冷剂导流管,以及制冷剂导流管的加工方法
KR20150126386A (ko) * 2013-03-01 2015-11-11 사파 에이에스 멀티 포트 압출 성형체 (mpe) 구성
CN104167399B (zh) * 2014-05-14 2017-09-01 北京工业大学 错位复杂微通道微型换热器
CN106767090A (zh) * 2016-12-07 2017-05-31 泰安福星汽车配件有限公司 一种加强型散热管及加工工艺
CN106885487A (zh) * 2017-03-28 2017-06-23 珠海格力电器股份有限公司 水箱换热器和热水器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719774A (ja) * 1993-06-30 1995-01-20 Zexel Corp 熱交換器の偏平チューブ
JPH1019494A (ja) * 1996-07-05 1998-01-23 Zexel Corp 熱交換器用偏平チューブ
JPH1085879A (ja) * 1996-09-17 1998-04-07 Nippon Light Metal Co Ltd フィン付き熱交換器の曲げ加工方法及びフィン付き熱交換器
JP2000205784A (ja) * 1999-01-19 2000-07-28 Calsonic Kansei Corp 熱交換器用偏平チュ―ブ
JP2006266528A (ja) * 2005-03-22 2006-10-05 T Rad Co Ltd 熱交換器用偏平チューブ
CN101050925A (zh) * 2006-04-04 2007-10-10 株式会社电装 热交换器
JP2012149789A (ja) * 2011-01-17 2012-08-09 Denso Corp 熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3677865A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021077895A1 (zh) * 2019-10-21 2021-04-29 浙江盾安人工环境股份有限公司 扁管、微通道换热器以及空调

Also Published As

Publication number Publication date
CN109539852A (zh) 2019-03-29
EP3677865A1 (en) 2020-07-08
US20200256624A1 (en) 2020-08-13
EP3677865A4 (en) 2021-06-02
KR20200044882A (ko) 2020-04-29
JP2020537103A (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
WO2019056951A1 (zh) 微通道换热器的扁管以及微通道换热器
CN100513976C (zh) 具有强化变形部的热交换器管
US8267163B2 (en) Radiator tube dimple pattern
CN101050925A (zh) 热交换器
KR20150014826A (ko) 열교환기 및 그 코르게이트 핀
KR20070102173A (ko) 열교환기
JP3870865B2 (ja) 熱交換器
CN214501700U (zh) 换热器和具有其的空调器
CN107990598B (zh) 微通道换热器
JPH1123182A (ja) 熱交換器
CN103307918A (zh) 组合型翅片、管翅式换热器
CN104296563A (zh) 扁管式制冷剂芯体结构
CN209588755U (zh) 一种散热器
CN220472418U (zh) 一种高效热交换铜管
CN217737974U (zh) 一种高强度板翅式散热芯体
CN211777753U (zh) Egr冷却器壳体及egr冷却器
US11802733B2 (en) Heat exchanger
CN216523335U (zh) 一种空调制冷热交换器的铜合金微通道管
CN220602295U (zh) 一种空调翅片优化结构
CN105051480B (zh) 热交换器
CN215413346U (zh) 一种新型单开肩翅片
CN102230696A (zh) 平行流换热器
CN216115512U (zh) 一种改善钎焊变形的微通道结构
CN211204965U (zh) 一种平行流换热器、换热系统及除湿机
CN217358145U (zh) 一种新型一管式换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514290

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207008465

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018858124

Country of ref document: EP

Effective date: 20200331