WO2019052400A1 - 用于无线通信系统的电子设备、方法和存储介质 - Google Patents

用于无线通信系统的电子设备、方法和存储介质 Download PDF

Info

Publication number
WO2019052400A1
WO2019052400A1 PCT/CN2018/104497 CN2018104497W WO2019052400A1 WO 2019052400 A1 WO2019052400 A1 WO 2019052400A1 CN 2018104497 W CN2018104497 W CN 2018104497W WO 2019052400 A1 WO2019052400 A1 WO 2019052400A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
base station
bpl
adjustment
electronic device
Prior art date
Application number
PCT/CN2018/104497
Other languages
English (en)
French (fr)
Inventor
曹建飞
Original Assignee
索尼公司
曹建飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 曹建飞 filed Critical 索尼公司
Priority to US16/640,731 priority Critical patent/US11265069B2/en
Priority to EP18855724.3A priority patent/EP3683978A4/en
Priority to CN201880057485.4A priority patent/CN111052628B/zh
Priority to JP2020512046A priority patent/JP7192855B2/ja
Priority to KR1020207007305A priority patent/KR20200054198A/ko
Publication of WO2019052400A1 publication Critical patent/WO2019052400A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06966Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using beam correspondence; using channel reciprocity, e.g. downlink beam training based on uplink sounding reference signal [SRS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0805Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching
    • H04B7/0814Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching based on current reception conditions, e.g. switching to different antenna when signal level is below threshold
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points

Definitions

  • the present disclosure relates generally to wireless communication systems and, in particular, to techniques for maintaining beam pair links.
  • wireless communication has never met the needs of people's voice and data communication.
  • wireless communication systems employ various technologies at different levels, such as beamforming techniques. Beamforming can provide beamforming gain to compensate for loss of wireless signals by increasing the directivity of antenna transmission and/or reception.
  • future wireless communication systems for example, 5G systems such as the NR (New Radio) system
  • the number of antenna ports on the base station and the terminal device side will further increase.
  • the number of antenna ports on the base station side can be increased to hundreds or more to constitute a Massive MIMO system.
  • Massive MIMO Massive MIMO
  • a beam scanning (Beam Sweeping) process is used to find a matching transmit beam and a receive beam between a base station and a terminal device, thereby establishing a Beam Pair Link (BPL) between the base station and the terminal device.
  • Beam scanning can be performed in the uplink and downlink, respectively, and beam link pairs of the uplink and the downlink can be established accordingly.
  • beam-pair links are susceptible to environmental and other factors and are not stable enough. For example, in the case where there is a line of sight blocking or a terminal device moves or rotates, the beam pair link quality may deteriorate or even fail. This phenomenon is more pronounced at high frequencies.
  • the electronic device may comprise processing circuitry.
  • the processing circuit can be configured to monitor an uplink signal state; determine, based on an uplink signal state, that the first uplink beam pair link needs to be adjusted, wherein the first uplink beam pair link includes a first transmit beam on the terminal device side And a first receive beam on the base station side; and performing operations to adjust the first uplink beam pair link.
  • the electronic device comprises a processing circuit.
  • the processing circuit can be configured to transmit an uplink signal through a first uplink beam pair link, wherein the first uplink beam pair link includes a first transmit beam on a terminal device side and a first receive beam on a base station side; An adjustment message from the base station indicating adjustment of the first uplink beam pair link is received.
  • the electronic device comprises a processing circuit.
  • the processing circuit can be configured to transmit an uplink signal through a first uplink beam pair link, wherein the first uplink beam pair link includes a first transmit beam on a terminal device side and a first receive beam on a base station side; An adjustment message from the base station indicating adjustment of the first uplink beam pair link; and transmitting feedback to the base station for the adjustment message.
  • the method can include monitoring an uplink signal state; determining, based on an uplink signal state, that the first uplink beam pair link needs to be adjusted, wherein the first uplink beam pair link includes a terminal device side a transmit beam and a first receive beam on the base station side; and performing operations to adjust the first uplink beam pair link.
  • the method can include transmitting an uplink signal over the first uplink beam pair link, wherein the first uplink beam pair link includes a first transmit beam on the terminal device side and a first receive on the base station side And receiving an adjustment message from the base station indicating that the first uplink beam pair is adjusted.
  • the method can include transmitting an uplink signal over the first uplink beam pair link, wherein the first uplink beam pair link includes a first transmit beam on the terminal device side and a first receive on the base station side a beam; receiving, from the base station, an adjustment message indicating a link adjustment to the first uplink beam pair; and transmitting feedback to the base station for the adjustment message.
  • Yet another aspect of the present disclosure is directed to a computer readable storage medium having stored one or more instructions.
  • the one or more instructions when executed by one or more processors of an electronic device, cause the electronic device to perform methods in accordance with various embodiments of the present disclosure.
  • Still another aspect of the present disclosure is directed to various apparatus, including components or units for performing the operations of the methods in accordance with embodiments of the present disclosure.
  • FIG. 1 depicts an exemplary beam scanning process in a wireless communication system.
  • FIG. 2 illustrates an example of an uplink BPL in accordance with an embodiment of the present disclosure.
  • FIG. 3A illustrates an exemplary electronic device for a base station side in accordance with an embodiment of the present disclosure.
  • FIG. 3B illustrates an exemplary electronic device for a terminal device side in accordance with an embodiment of the present disclosure.
  • FIG. 3C illustrates an example process between a base station and a terminal device for uplink BPL adjustment in accordance with an embodiment of the present disclosure.
  • FIG. 4A illustrates a first example of uplink signal transmission in accordance with an embodiment of the present disclosure.
  • FIG. 4B illustrates a second example of uplink signal transmission in accordance with an embodiment of the present disclosure.
  • FIG. 4C illustrates a third example of uplink signal transmission in accordance with an embodiment of the present disclosure.
  • FIG. 5 illustrates an example process of an uplink BPL adjustment decision in accordance with an embodiment of the present disclosure.
  • 6A-6C illustrate several example uplink beam states in accordance with an embodiment of the disclosure.
  • FIG. 7A illustrates an example BPL adjustment message reflecting an adjusted BPL, in accordance with an embodiment of the disclosure.
  • FIG. 7B illustrates an example BPL adjustment message reflecting a BPL to be adjusted, in accordance with an embodiment of the present disclosure.
  • 7C-7E illustrate an example manner of indicating a BPL in accordance with an embodiment of the present disclosure.
  • 8A and 8B illustrate example operations of a base station side in accordance with an embodiment of the present disclosure.
  • FIG. 8C illustrates an example of a downlink BPL in accordance with an embodiment of the present disclosure.
  • FIG. 9A illustrates an example signaling flow for terminal device side initiated recovery processing in accordance with an embodiment of the present disclosure.
  • FIG. 9B illustrates a first example signaling flow for base station side initiated recovery processing in accordance with an embodiment of the present disclosure.
  • FIG. 9C illustrates a second example signaling flow for base station side initiated recovery processing in accordance with an embodiment of the present disclosure.
  • FIG. 10 illustrates an example subframe in accordance with an embodiment of the present disclosure.
  • FIG. 11A and 11B illustrate an example method for communication in accordance with an embodiment of the present disclosure.
  • FIG. 12A illustrates an exemplary electronic device for a terminal device side in accordance with an embodiment of the present disclosure.
  • FIG. 12B illustrates an example method for communication in accordance with an embodiment of the present disclosure.
  • FIG. 13 is a block diagram showing an example structure of a personal computer as an information processing device that can be employed in an embodiment of the present disclosure
  • FIG. 14 is a block diagram showing a first example of a schematic configuration of a gNB to which the technology of the present disclosure may be applied;
  • 15 is a block diagram showing a second example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied;
  • 16 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied;
  • 17 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • the beam scanning process in the wireless communication system will be briefly described below with reference to FIG.
  • the rightward arrow in FIG. 1 indicates the downlink direction from the base station 100 to the terminal device 104
  • the leftward arrow indicates the uplink direction from the terminal device 104 to the base station 100.
  • the number of uplink receiving beams n r_UL of the base station 100 and the coverage of each beam are the same as the downlink transmitting beams, and the number of uplink transmitting beams of the terminal device 104 n t_UL and each The coverage of the beam is the same as the downlink receive beam. It should be understood that the coverage and number of uplink and downlink transmit beams of the base station may be different according to system requirements and settings, as are terminal devices.
  • each downlink transmit beam 102 of the n t_DL downlink transmit beams of the base station 100 transmits n r_DL downlink reference signals to the terminal device 104, and the terminal device 104 passes the n r_DL downlinks.
  • the receiving beam receives the n r_DL downlink reference signals respectively.
  • the n t_DL downlink transmit beams of the base station 100 sequentially transmit n t_DL ⁇ n r_DL downlink reference signals to the terminal device 104, and each downlink receive beam 106 of the terminal device 104 receives n t_DL downlink reference signals, that is, the terminal
  • the n r_DL downlink receive beams of the device 104 collectively receive n t_DL ⁇ n r_DL downlink reference signals from the base station 100.
  • the terminal device 104 measures the n t_DL ⁇ n r_DL downlink reference signals (for example, measures the received signal power of the downlink reference signal (for example, RSRP)), so that the downlink transmit beam and the terminal of the base station 100 are better or better when the measurement result is better or better.
  • the downlink receive beam of device 104 is determined to be a downlink matched transmit receive beam pair and a downlink beam pair link (hereinafter referred to as BPL) is established.
  • each of the n t_UL uplink transmit beams of the terminal device 104 transmits n r_UL uplink reference signals to the base station 100, and the base station 100 passes the n r_UL uplinks.
  • the receiving beam receives the n r_UL uplink reference signals respectively.
  • the n t_UL uplink transmit beams of the terminal device 104 sequentially transmit n t_UL ⁇ n r_UL uplink reference signals to the base station 100, and each uplink receive beam 102 of the base station 100 receives n t_UL uplink reference signals, that is, the base station 100.
  • the n r_UL uplink receiving beams receive a total of n r_UL ⁇ n t_UL uplink reference signals from the terminal device 104.
  • the base station 100 measures the n r_UL ⁇ n t_UL uplink reference signals (for example, measures the received signal power (eg, RSRP) of the uplink reference signal), so that the uplink transmit beam and the base station of the terminal device 104 when the measurement result is better or better
  • the uplink receive beam of 100 is determined to be an uplink matched transmit receive beam pair and an uplink beam pair link is established.
  • the coverage and number of uplink receive beams and downlink transmit beams of the base station may be different and the coverage and number of uplink transmit beams and downlink receive beams of the terminal devices may be different, and the above determining operations may still be performed similarly.
  • the receiving beam and the transmitting beam of the base station and the terminal device can be generated by a DFT (Discrete Fourier Transform) vector.
  • DFT Discrete Fourier Transform
  • the uplink receive beam on the base station side and the transmit/receive beam on the terminal device side can also be generated in a similar manner.
  • the equivalent channel of the base station to the terminal device can be represented as a vector H of n t ⁇ 1.
  • the DFT vector u can be expressed as:
  • the length of the DFT vector u is n t
  • C represents a parameter for adjusting the width of the beam and the shaping gain
  • T represents the transpose operator
  • Multiplying the equivalent channel H of the base station to the terminal device by the DFT vector u may result in a transmit beam of the base station (such as one of the downlink transmit beams shown in Figure 1).
  • the parameter C for adjusting the width and shaping gain of the beam in Equation 1 can be represented by the product of two parameters O 2 , N 2 , by adjusting the two parameters O 2 , N 2 , respectively.
  • the beam width and shaping gain can be adjusted.
  • the established BPL is used to perform the transmission of the next data and/or control signals.
  • the above process of determining a matched transmit and receive beam pair of a base station and a terminal device by beam scanning is sometimes referred to as a Beam Training process.
  • the BPL may be established by matching transmit beams and receive beams.
  • transmit beam and receive beam matching may mean that the quality of the communication using the transmit beam and the receive beam meets a certain threshold level (thus, the quality of the BPL may also be considered to meet a certain threshold level).
  • the BPL can include a matched transmit beam and a receive beam.
  • the matched transmit and receive beams may not be in a one-to-one relationship. For example, there can be two receive beams and one transmit beam match. At this point, each receive beam can be considered to form a BPL with the same transmit beam, respectively.
  • this example is referred to as a transmit beam that coincides for multiple receive beams.
  • this example may be one receive beam matched to two transmit beams. At this time, it can be considered that this one receiving beam and the two transmitting beams respectively form one BPL. In some embodiments, this example is referred to as a receive beam that coincides for multiple transmit beams.
  • the BPL may be classified into an uplink BPL and a downlink BPL.
  • the uplink BPL may include a transmit beam on the terminal device side and a receive beam on the base station side.
  • the downlink BPL may include a transmit beam on the base station side and a receive beam on the terminal device side.
  • the BPL may include an activated BPL and an alternate BPL.
  • the activated BPL may refer to the BPL being used in the current uplink or downlink communication (generally better quality)
  • the alternate BPL may refer to not being used in the current uplink or downlink communication but may be For alternate BPL (generally acceptable quality).
  • the reference to the terms BPL, uplink and downlink BPL generally refers to an activated BPL, unless otherwise specified.
  • the adjustment of any one of the transmit beam and the receive beam forming the BPL can be considered an adjustment to the BPL. Therefore, the BPL adjustment scenarios include, but are not limited to, adjusting the transmit beam, adjusting the receive beam, adjusting the transmit beam and receive beam, establishing a BPL, and the like. Embodiments of the present disclosure are not limited in this regard.
  • FIG. 2 illustrates an example of an uplink BPL in accordance with an embodiment of the present disclosure.
  • the nine receive beams 102 of the base station 100 in FIG. 1 are denoted as 102(1) to 102(9), respectively, and the five transmit beams 106 of the terminal device 106 in FIG. 1 are respectively recorded as 106(1).
  • a first uplink BPL 130 is established by a matched transmit beam 106(3) and receive beam 102(4).
  • transmit beams 106(1) through 106(5) may each have one or more reference signal ports.
  • transmit beam 106(3) has three reference signal ports 150(1) through 150(3).
  • the reference signal ports 150(1) through 150(3) may correspond to one or more sets of reference signal resources, respectively.
  • reference signal port 150(3) may correspond to three sets of reference signal resources 160(1) through 160(3). Therefore, there may be a correspondence between the reference signal resource and the terminal device side transmit beam.
  • the second uplink BPL can also be established by other matched transmit and receive beams.
  • FIG. 3A illustrates an exemplary electronic device for a base station side, where the base station can be used in various wireless communication systems, in accordance with an embodiment of the present disclosure.
  • the electronic device 300 illustrated in FIG. 3A can include various units to implement various embodiments in accordance with the present disclosure.
  • the electronic device 300 may include a monitoring unit 302, a judging unit 304, and an operating unit 306.
  • the electronic device 300 may be implemented as the base station 100 in FIG. 1 or a portion thereof, or may be implemented as a device (eg, a base station controller) for controlling the base station 100 or otherwise associated with the base station 100. Or part of the device.
  • the various operations described below in connection with the base station can be implemented by units 302 through 306 of electronic device 300 or other possible units.
  • monitoring unit 302 can be configured to monitor the status of various uplink signals. Examples of uplink signals and corresponding monitoring processes are described in detail below.
  • the determining unit 304 can be configured to determine whether an uplink BPL (eg, the first uplink BPL 130) needs to be adjusted based on an uplink signal state. For example, when the received power, the reception quality, and the like of the uplink signal satisfy certain conditions, the determining unit 304 may determine that the first uplink BPL 130 needs to be adjusted.
  • the adjustment information transmitting unit 306 can be configured to perform operations to adjust the first uplink BPL 130.
  • the operations performed may include adjusting a receive beam (e.g., 102(4)) on the base station side and/or transmitting a message indicating the first uplink BPL 130 adjustment to the terminal device.
  • a message indicating a BPL adjustment may sometimes also be simply referred to as a "BPL adjustment message” or an "adjustment message.”
  • FIG. 3B illustrates an exemplary electronic device for a terminal device side, which may be used in various wireless communication systems, in accordance with an embodiment of the present disclosure.
  • the electronic device 350 illustrated in FIG. 3B can include various units to implement various embodiments in accordance with the present disclosure.
  • the electronic device 350 can include a transmitting unit 352 and a receiving unit 356.
  • the electronic device 350 can be implemented as the terminal device 104 of FIG. 1 or a portion thereof.
  • the various operations described below in connection with the terminal device can be implemented by units 352 through 356 of electronic device 350 or other possible units.
  • transmitting unit 352 can be configured to transmit an uplink signal over an uplink BPL (eg, first uplink BPL 130).
  • receiving unit 356 can be configured to receive a message from the base station indicating uplink BPL adjustment.
  • electronic devices 300 and 350 can be implemented at the chip level, or can also be implemented at the device level by including other external components.
  • each electronic device can operate as a communication device as a complete machine.
  • processing circuitry may refer to various implementations of digital circuitry, analog circuitry, or mixed-signal (combination of analog and digital) circuitry that perform functions in a computing system.
  • Processing circuitry may include, for example, circuitry such as an integrated circuit (IC), an application specific integrated circuit (ASIC), a portion or circuit of a separate processor core, an entire processor core, a separate processor, such as a field programmable gate array (FPGA) Programmable hardware device, and/or system including multiple processors.
  • IC integrated circuit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FIG. 3C illustrates an example process between a base station and a terminal device for uplink BPL adjustment in accordance with an embodiment of the present disclosure. This example process can be performed by the electronic device 300 and the electronic device 350 described above.
  • a terminal device e.g., electronic device 350
  • can transmit an uplink signal to a base station e.g., electronic device 300.
  • the uplink signal may include an uplink control signal (eg, PUCCH, NR-PUCCH), a demodulation reference signal accompanying the uplink control channel and the shared channel (eg, accompanying PUCCH, NR- DMRS of PUCCH, NR-DMRS accompanying PUSCH, NR-PUSCH) and uplink sounding reference signals (for example, SRS, NR-SRS).
  • an uplink control signal eg, PUCCH, NR-PUCCH
  • a demodulation reference signal accompanying the uplink control channel and the shared channel
  • uplink sounding reference signals for example, SRS, NR-SRS
  • the sounding reference signal and the uplink control signal are required to be quasi-co-located.
  • the appropriate quasi co-location configuration can be performed by the base station prior to transmitting such an uplink signal, as shown at 3002.
  • the base station detects the state of the uplink signal and determines whether it is necessary to adjust the uplink BPL of the terminal device based on the uplink signal state. Where appropriate, for example, when the uplink control signal cannot be correctly detected or the reference signal received power is below a predetermined threshold, the base station can determine that the uplink BPL of the terminal device needs to be adjusted.
  • the base station transmits an uplink BPL adjustment message to the terminal device.
  • the terminal device receives the BPL adjustment message and processes it. For example, the terminal device may determine to adjust the BPL involved and the associated transmit and/or receive beams based on the BPL adjustment message. In an embodiment, the terminal device may obtain the adjustment time specified by the base station based on the BPL adjustment message, and determine an actual adjustment time according to the local situation, and the adjustment time may be the same as or different from the adjustment time specified by the base station.
  • the terminal device can send feedback to the base station for the BPL adjustment message.
  • the feedback may be NACK feedback.
  • the feedback may be ACK feedback.
  • the actual adjustment time (the actual adjustment time is not required when adjusting the base station side transmit beam) may be included in the ACK feedback and sent to the base station together.
  • ACK and NACK feedback may be sent over the currently activated BPL.
  • the ACK feedback may alternatively or additionally be transmitted via the adjusted BPL.
  • the base station receives and processes feedback for the BPL adjustment message.
  • Example electronic devices and processing operations performed in accordance with embodiments of the present disclosure are briefly described above with reference to FIGS. 3A-3C. These processing operations will be specifically described below.
  • the uplink signal may include at least one of various uplink signals.
  • the uplink signal can include at least one of an uplink control signal and an uplink reference signal.
  • the uplink control signal may be a PUCCH signal in an LTE system or an NR-PUCCH signal in an NR system.
  • the uplink reference signal may be a Sounding Reference Signal (SRS) in an LTE system, a Demodulation Reference Signal (DMRS) accompanying a PUCCH or a PUSCH, or an NR system.
  • SRS Sounding Reference Signal
  • DMRS Demodulation Reference Signal
  • NR-SRS, NR-DMRS NR-DMRS.
  • description may be made primarily with reference to an uplink signal in a certain communication system. However, it should be understood that these embodiments are equally applicable to other communication systems.
  • the uplink control signal is generally used by the terminal device to transmit control information related to the communication to the base station.
  • the case where the terminal device needs to send the signal to the base station may include: transmitting a HARQ acknowledgement to the base station to indicate whether the downlink transport block is successfully received; and transmitting a channel status report to the base station to assist the channel-dependent Scheduling; and requesting resources from the base station to transmit uplink data.
  • the terminal device side electronic device 350 may transmit an uplink control signal through an uplink BPL with, but not limited to, the above example scenario.
  • the uplink BPL used to transmit the uplink control signal is typically an active BPL between the terminal device and the base station. Accordingly, the base station side electronic device 300 can monitor the uplink control signal status for determining the quality of the activated uplink BPL based on the monitoring.
  • the DMRS is mainly transmitted together with the PUCCH or the PUSCH for the base station to perform channel state estimation and correlation demodulation.
  • the SRS may be transmitted periodically or non-periodically for the base station to perform channel state estimation to support uplink channel dependent scheduling and link adaptation.
  • the electronic device 350 may transmit the uplink reference signal through the activated uplink BPL when an uplink reference signal needs to be transmitted. Accordingly, the electronic device 300 can monitor the uplink reference signal status and determine the quality of the uplink BPL (ie, the activated uplink BPL) used to transmit the uplink reference signal based on the monitoring.
  • FIG. 4A illustrates a first example of uplink signal transmission in accordance with an embodiment of the present disclosure.
  • PUCCH signal 401 may be transmitted by electronic device 350 when needed (eg, need to transmit HARQ ACK/NACK, channel status report).
  • the PUCCH signal 401 can be transmitted by activating the BPL, that is, by the terminal device side transmit beam included in the active BPL.
  • the electronic device 300 can receive the PUCCH signal 401 and monitor its status for determining the quality of the activated BPL based on the monitoring.
  • the transmission of the DMRS and NR-DMRS
  • the situation is slightly different for determining the quality of the uplink BPL based on SRS (and NR-SRS) and other uplink signals.
  • the uplink control signal is originally transmitted over the activated uplink BPL (similar to the case of demodulating the reference signal). Therefore, the quality of the uplink BPL can naturally be judged based on the uplink control signal (thus, the BPL or the transmit beam used to transmit the uplink control signal need not be configured).
  • the SRS may not (or is not always) transmitted through the activated uplink BPL, and the resources for the SRS may be different from the resources of the activated uplink BPL (refer to the description of FIG. 2). Therefore, the SRS may experience different spatial channel conditions than the activated BPL, which may affect the accuracy of determining the BPL quality based on the state of the SRS.
  • the SRS can be configured to transmit by activating the BPL such that the SRS experiences the same channel conditions as the uplink activated BPL.
  • the quality of the activated BPL can be determined more accurately based on the state of the SRS.
  • the above configuration can be implemented by a quasi-co-location configuration.
  • the two signals may be referred to as Quasi-colocation (QCL).
  • the base station side electronic device 300 may transmit the SRS of the terminal device side electronic device 350 and the signal transmitted through the uplink control channel (for example, PUCCH or DMRS accompanying PUCCH) through higher layer signaling (eg, RRC layer signaling). ) configured for quasi-co-location.
  • the uplink control channel for example, PUCCH or DMRS accompanying PUCCH
  • higher layer signaling eg, RRC layer signaling
  • the electronic device 300 can set the transmit beam and BPL used by the electronic device 350 to transmit the SRS.
  • K uplink control signal eg, PUCCH signal
  • the correspondence may be determined according to a protocol or agreed upon by the electronic device 300 and the electronic device 350.
  • the electronic device 300 can insert a resource identifier (eg, SRI, ie, SRS Resource Indicator) of the SRS in the downlink control channel (eg, PDCCH) to notify the electronic device 350 of the transmit beam corresponding to the resource and the corresponding BPL.
  • a resource identifier eg, SRI, ie, SRS Resource Indicator
  • the electronic device 300 can configure the SRS and uplink control signals to be quasi-co-located and have the same terminal The device side transmit beam is transmitted. For example, the electronic device 300 may determine the SRS resource based on the transmit beam of the activated BPL and notify the electronic device 350 of the corresponding SRI, then the transmit beam determined by the electronic device 350 based on the SRI is the same as the transmit beam of the activated BPL, and the SRS and the uplink The link control signals are quasi-co-located.
  • the quasi co-location configuration can be signaled by downlink control information (eg, DCI, Downlink Control Information).
  • the electronic device 300 can track the transmit beams by configuring the electronic device 350 to transmit the SRS with an alternate transmit beam. At this time, the resource of the SRS needs to be determined based on the candidate transmit beam, and corresponding processing such as notification is performed. For details, refer to the foregoing embodiment. In this way, the terminal device 300 can monitor both the activated BPL and the alternate BPL.
  • SRSs 402 and 403 can be transmitted by electronic device 350 at a certain period.
  • the SRS 402 can be transmitted by activating the transmit beam of the BPL for the electronic device 300 to monitor the activated BPL quality.
  • the SRS 403 may also be transmitted through the alternate transmit beam for the electronic device 300 to track the quality of the alternate transmit beam.
  • the transmit frequency of the transmit beam that activates the BPL can be made greater than the transmit frequency of the alternate transmit beam.
  • the transmit frequency of the transmit beam that activates the BPL in Figure 4B is three times the transmit frequency of the alternate transmit beam.
  • the electronic device 300 can receive the SRSs 402 and 403 and monitor their status to determine the quality of the activated BPL and the alternate transmit beam based on the monitoring.
  • the periodic SRS resources may be configured by the electronic device 300 to the electronic device 350 through RRC signaling.
  • SRSs 402 and 403 in FIG. 4B may also be sent aperiodically by electronic device 350.
  • the situation is similar to FIG. 4B, but the triggering and resources of the aperiodic SRS can be configured by the electronic device 300 to the electronic device 350 via DCI signaling.
  • the triggering and quasi-co-location configuration of the aperiodic SRS can be done with a single DCI signaling to save time overhead.
  • Aperiodic SRS has a certain degree of flexibility since aperiodic SRS can be triggered by underlying signaling such as DCI.
  • periodic SRS and aperiodic SRS can be used in combination.
  • the electronic device 300 determines that the activated BPL is of poor quality and may need to adjust the BPL. Therefore, the electronic device 300 needs to monitor the quality of the alternate transmit beam.
  • the periodic SRS signal 410 transmitted by the alternate transmit beam takes several cycles to transmit.
  • electronic device 300 can trigger aperiodic SRS signal 404, which can be transmitted through the alternate transmit beam. In this way, the electronic device 300 can monitor the quality of the alternate transmit beam in a shorter time, thereby assisting in the adjustment of the BPL.
  • FIG. 4C shows a third example of uplink signal transmission in accordance with the present disclosure.
  • the example of FIG. 4C can simultaneously monitor the activated BPL or the alternate transmit beam by both the PUCCH signal and the SRS signal, and the specific process is not repeated.
  • the accuracy of estimating the uplink BPL is higher by setting the SRS to be transmitted by activating BPL, in general, the accuracy of the uplink BPL is estimated without performing the above-described setting of transmission of the SRS. It may also be acceptable.
  • quasi co-location between the SRS and the uplink control signal is an optional setting.
  • the uplink signals are not limited to PUCCH and SRS, but may be appropriate uplink signals (eg, DMRS, NR-PUCCH, NR-SRS, and NR-DMRS, etc.) in various systems. .
  • the dimensions and relative relationships of the various blocks and spacings are merely schematic and may be appropriately set according to system requirements.
  • the uplink signal can be monitored by monitoring unit 302.
  • monitoring unit 302 can be configured to determine the detection performance of the uplink control signal (eg, receive signal to noise ratio, etc.), or determine uplink reference signal received power (RSRP) to determine if The corresponding uplink signal is correctly detected.
  • monitoring unit 302 may also send ACK or NACK feedback to the terminal device with respect to receipt of the uplink signal.
  • the determination process related to the BPL adjustment may be performed by the determination unit 304.
  • FIG. 5 illustrates an example process of an uplink BPL adjustment decision in accordance with an embodiment of the present disclosure. Referring to FIG. 5, at 505, it may be determined whether adjustment of the uplink BPL used to transmit the uplink signal is required. In an embodiment, the determining unit 304 may determine that an uplink used for transmitting the uplink control signal is required if the uplink control signal cannot be correctly detected (or when the situation continues for a predetermined time) BPL makes adjustments.
  • the determining unit 304 may determine that the uplink reference signal needs to be transmitted when the uplink reference signal received power (RSRP) is lower than a predetermined threshold (or when the situation continues for a predetermined time).
  • RSRP uplink reference signal received power
  • the uplink BPL used is adjusted.
  • the uplink BPL may be determined how to adjust the uplink BPL, ie, determine the BPL adjustment policy.
  • the determination of the BPL adjustment strategy may require consideration of the uplink beam state. For example, in the case where there are multiple uplink BPLs, it may be determined to cancel the first uplink BPL; in the case where there are alternative matching transmit and receive beams in the uplink to establish a BPL, it may be determined based on the candidate The matched transmit and receive beams establish a second uplink BPL; or in some cases, it may be determined to perform an uplink beam scan.
  • An example of a BPL adjustment policy will be specifically described below with reference to FIGS. 6A through 6C.
  • a BPL adjustment message can be formed according to an adjustment policy of the BPL.
  • the BPL adjustment message may include an uplink transmit beam involved in the BPL adjustment.
  • an example form of the BPL adjustment message may be 1) reflecting the adjusted BPL, or 2) reflecting the BPL to be adjusted.
  • An example of a BPL adjustment message will be specifically described below with reference to FIGS. 7A and 7B.
  • FIGS. 6A-6C illustrate several example uplink beam states in accordance with an embodiment of the disclosure.
  • An example of determining a BPL adjustment policy is described below with reference to FIGS. 6A through 6C.
  • the base station side has five reception beams (denoted as 601 to 605), and the terminal device side has five transmission beams (recorded as 621 to 625).
  • the uplink of Figure 6A there is only a single activated BPL between the base station and the terminal device and no alternative matched transmit and receive beams.
  • each activated BPL there may be multiple (eg, 2) activated BPLs between the base station and the terminal device.
  • different transmit beams e.g., 623 and 624
  • different receive beams e.g., 602 and 604
  • different transmit beams e.g., 623 and 624
  • different transmit beams form separate active BPLs (e.g., 650 and 660) with the same receive beam (e.g., 602), respectively, where the aforementioned receive beams coincide for multiple transmit beams.
  • the same transmit beam (e.g., 623) and the different receive beams (e.g., 602 and 603) form separate active BPLs (e.g., 650 and 660), respectively, where the aforementioned transmit beams coincide for multiple receive beams.
  • the cancellation of the BPL 650 may first be determined. At this time, communication may be performed by other existing BPLs (for example, BPL 660) before a new uplink BPL is established. At or after the determination to cancel the BPL 650, an attempt may also be made to establish a new BPL through other matched transmit and receive beams.
  • the base station and the terminal device may have one or more active BPLs (e.g., 650) and one or more alternate matched transmit and receive beams (which may be used to establish a backup BPL (e.g., 660, as indicated by the dotted line)).
  • active BPLs e.g., 650
  • alternate BPL which may be used to establish a backup BPL (e.g., 660, as indicated by the dotted line)
  • the receive beam coincidence both receive beams 602 between the BPL 650 and the alternate BPL 660 is activated, ie the case where the aforementioned receive beams coincide for multiple transmit beams.
  • the transmit beam coincidence (both transmit beams 623) between the BPL 650 and the alternate BPL 660 is activated, ie the case where the aforementioned transmit beams coincide for multiple receive beams.
  • the one or more active BPLs e.g., BPL 650
  • the uplink BPL needs to be adjusted
  • 650 and establishes a new uplink BPL based on the alternate paired transmit and receive beams (e.g., 624 and 604, 623 and 602, and 623 and 602).
  • FIG. 7A illustrates an example BPL adjustment message reflecting an adjusted BPL, in accordance with an embodiment of the disclosure.
  • the BPL adjustment message 700 has information (eg, TX_Beam IDs 1 through 3) of the transmit beams to be used after adjustment by the BPL adjustment policy.
  • the TX_Beam IDs 1 to 3 in the corresponding BPL adjustment message may respectively correspond to the identification information of the transmit beams 624, 622, and 623.
  • the transmit beams before and after the BPL adjustment are consistent, both being 623.
  • the BPL adjustment only involves adjustment of the reception beam at the base station side, and does not require the terminal device to adjust the transmission beam.
  • the BPL adjustment message may or may not be sent.
  • FIG. 7B illustrates an example BPL adjustment message reflecting a BPL to be adjusted, in accordance with an embodiment of the present disclosure.
  • the BPL adjustment message 720 has information on the transmit beams to be adjusted by the BPL adjustment policy (eg, TX_Beam IDs 1 through 3) and how to adjust the information of these transmit beams.
  • the bit "1" may indicate that the uplink BPL is established using the transmit beam
  • the bit "0" may indicate that the uplink BPL corresponding to the transmit beam is cancelled.
  • there may be a single such bit for all transmit beams In the three scenarios of FIG.
  • the BPL adjustment message may be identification information of the transmit beam 623 + "0" + identification information of the transmit beam 624 + “1", identification information of the transmit beam 623 + "0” + transmit beam 622 Identification information + "1" and identification information of the transmission beam 623 + "1". It should be noted that in the case (3) of FIG. 6C, the BPL 650 to be canceled and the transmission beam of the BPL 660 to be established coincide. Since the result of the BPL adjustment is that the transmit beam 623 is still to be used, the BPL adjustment message does not include the identification information of the transmit beam 623 corresponding to the BPL 650 + "0".
  • the BPL adjustment message may include an adjustment time in addition to the uplink transmit beam involved in the BPL adjustment.
  • the adjustment time may indicate the time when the base station expects the terminal device to complete the BPL adjustment.
  • the adjustment time can be in units of subframes.
  • the corresponding uplink BPL is indicated by beam information (for example, terminal device side TX_Beam IDs 1 to 3).
  • the manner of indicating the BPL may not be limited thereto.
  • the corresponding BPL can be indicated by tagging each BPL.
  • the tag added for the uplink BPL may be based on a base station side beam (receive beam).
  • the tag added for the uplink BPL may be based on a terminal device side beam (transmitting beam).
  • the tags added for the uplink BPL may be based only on a certain order, such as based on the order established by the BPL.
  • the terminal device side transmit beams "1" and “2” respectively form an uplink BPL with the base station side receive beam “1” (ie, the case where the receive beam coincides with the transmit beam), and the terminal device side
  • the transmit beam "4" and the base station side receive beams "3" and “4" form an uplink BPL (i.e., the case where the transmit beam coincides with the receive beam).
  • the uplink BPL is tagged based on the base station side beam. The same label can be added to the same BPL for the base station side beam.
  • the uplink BPL is tagged based on the terminal device side beam.
  • the uplink BPL is tagged based on a certain order (e.g., BPL setup order). Specifically, assuming that the four BPLs in Fig. 7E are sequentially established from left to right, they can be labeled as 1 to 4, respectively. The result of such tagging is shown in the tag mapping table in Figure 7E.
  • a certain order e.g., BPL setup order
  • the base station side and the terminal device side can generate the label mapping in the above manner and can maintain the corresponding label mapping table.
  • This makes it possible to indicate the BPL between the base station and the terminal device through the BPL tag, and to perform operations such as adjustment by knowing the corresponding transmitting and/or receiving beam by, for example, looking up a table.
  • One advantage of this approach is that the signaling overhead indicating BPL can be saved because the number of established BPLs is generally smaller than the number of beams, and the label indicates that the BPL can save bit overhead compared to the beam identification information.
  • the advantages of the examples of Figures 7C and 7D are more apparent in this respect. Taking FIG.
  • the example of FIG. 7E may have the additional advantage that, in the presence of a transmit or receive beam coincidence, the respective transmit and receive beams may be determined by the BPL tag to distinguish the BPL.
  • the electronic device 300 may perform BPL adjustment alone or together with the terminal device side electronic device.
  • the electronic device 300 can be configured to execute (eg, via the operating unit 306) at an appropriate time. BPL adjustment. For example, the electronic device 300 can adjust the receive beam immediately.
  • the electronic device 300 when the BPL adjustment involves an operation of the electronic device 350 or whether the BPL adjustment involves an operation of the electronic device 350, the electronic device 300 can be configured (eg, by the operating unit 306) after forming the BPL adjustment message, The BPL adjustment message is indicated to the terminal device (e.g., electronic device 350). In some embodiments, it may be useful to still send a BPL adjustment message to the terminal device if the BPL adjustment does not involve operation of the electronic device 350, such as to assist in tracking the downlink BPL, as described in detail below.
  • the operating unit 306 can transmit the BPL adjustment message to the electronic device 350 through the currently activated downlink BPL, and can perform the corresponding based on the BPL adjustment policy (or also consider the feedback of the electronic device 350 to the BPL adjustment message). BPL adjustment.
  • the receiving unit 356 of the electronic device 350 can receive the BPL adjustment message through the currently activated downlink BPL.
  • the electronic device 350 can transmit ACK or NACK feedback information to the electronic device 300. For example, if the BPL adjustment message is received correctly, the electronic device 350 may send ACK feedback to the electronic device 300 and perform a corresponding BPL adjustment based on the BPL adjustment policy; otherwise, send NACK feedback and wait for the electronic device 300 to resend the BPL adjustment Message.
  • performing the corresponding BPL adjustment based on the BPL adjustment policy by the electronic device 350 may include, for example, the following scenario.
  • the electronic device 350 may be configured to no longer use the first device side from the adjustment time or a certain time if the BPL adjustment message indicates cancellation of the first uplink beam pair link.
  • the transmit beam is transmitted and the feedback to the adjustment message is sent to the base station.
  • the feedback includes an adjustment time or a specific time.
  • the electronic device 350 can be configured to, from the time of the adjustment or a certain time, if the BPL adjustment message indicates that the second uplink beam pair link is established based on the candidate uplink paired beam.
  • the second transmit beam on the terminal device side is used for transmission, and feedback to the adjustment message is sent to the base station. Further, the feedback includes the adjustment time or a specific time.
  • the electronic device 350 can be configured to perform an uplink beam scan if the BPL adjustment message indicates an uplink beam scan.
  • the feedback information described above may be sent by the electronic device 350 over the currently activated uplink BPL.
  • the threshold level upon which the BPL needs to be adjusted is not very low. Therefore, when making an adjustment judgment, the currently activated BPL can still be used to transmit the feedback information. In this way, the electronic device 300 can know that the BPL adjustment message is successfully transmitted as early as possible, and can not be retransmitted to save downlink transmission resources.
  • the feedback information may also be sent via the adjusted active BPL. In the case where the transmission of the feedback information by the previously activated BPL fails, this practice can help the electronic device 300 successfully receive the feedback information.
  • the electronic device 350 may be configured to determine an adjustment time n of the BPL (which may similarly represent the nth subframe after the current subframe) and adjust the time Complete the BPL adjustment.
  • the n value may be equal to or not equal to the aforementioned m value (eg, n>m), and the electronic device 350 may determine the m value based on the condition of the electronic device 350 and include the m value in the feedback information ACK together.
  • electronic device 300 may perform BPL adjustments (eg, at the time of negotiation described above) upon receipt of ACK feedback information.
  • the electronic device 300 may perform HARQ retransmission on the BPL adjustment message.
  • the electronic device 300 may still not receive any feedback information.
  • it may be necessary to replace and adjust the BPL of the downlink. For example, the electronic device may first transmit a BPL adjustment command over the transmit beam of the first downlink BPL.
  • the electronic device 300 may be replaced or adjusted to be the second downlink BPL. Send an adjustment command.
  • the first downlink BPL and the second downlink BPL may be received beam coincident.
  • it may be necessary to trigger a recovery mechanism to ensure that the communication continues.
  • 8A and 8B illustrate example operations of this aspect of an electronic device 300 in accordance with an embodiment of the present disclosure.
  • electronic device 300 may determine an adjustment message to transmit an uplink BPL through a first downlink BPL (eg, downlink BPL 801 in FIG. 8C).
  • the electronic device 300 can send a BPL adjustment message through the BPL 801.
  • FIG. 8C is an example of a downlink BPL according to an embodiment of the present disclosure.
  • the two transmit beams 842 and 843 on the base station side form separate active BPLs 801 and 802, respectively, with the same receive beam 893 on the terminal device side, ie, receive beam coincidence between different BPLs.
  • BPL 802 may only be an alternate downlink BPL, and need not be activated.
  • the HARQ retransmission interval time T1 has elapsed and the electronic device 300 has not received the ACK feedback.
  • the BPL adjustment message can be sent by the downlink BPL 802 formed by transmit beam 843 and receive beam 893. After that, return to 805 to repeat the above process. If the determination at 825 is no, then a recovery process can be triggered at 830, such as a downlink beam scan or a double-connected forwarding operation, etc., as described in detail below.
  • the electronic device 300 can similarly determine an adjustment message for transmitting the uplink BPL through the downlink BPL 801 in FIG. 8C.
  • the electronic device 300 can send a BPL adjustment message through the BPL 801.
  • the HARQ retransmission interval T1 has elapsed and the electronic device 300 has not received the ACK feedback.
  • it can be determined at 865 whether the BPL adjustment message is transmitted up to the number of HARQ retransmissions N. If the determination at 865 is negative, then return to 855 and the BPL adjustment message is repeatedly transmitted through the BPL 801.
  • the BPL adjustment message can be sent by the downlink BPL 802 formed by transmit beam 843 and receive beam 893. After that, return to 855 to repeat the above process. If the determination at 875 is no, the recovery process can be triggered at 880.
  • the examples of Figures 8A and 8B can be used in combination.
  • one effect of the electronic device 350 transmitting feedback information for the BPL adjustment message is that the electronic device 300 can be assisted in tracking the status of the downlink BPL. This is because the electronic device 300 is capable of receiving feedback information (whether ACK or NACK, as described with reference to Figures 8A and 8B) may indicate that the electronic device 350 must have received the adjustment information in the downlink. Conversely, it may be indicated to some extent that the electronic device 350 may not receive the adjustment information in the downlink, and the downlink BPL may fail. In this way, the electronic device 300 can appropriately adjust the downlink BPL without receiving a feedback message.
  • the uplink and downlink are said to have beam symmetry.
  • beam symmetry information may be utilized to assist in adjusting the downlink BPL.
  • the electronic device 300 determines (eg, by the determining unit 304) that the first BPL (and the corresponding first transmit beam and the receive beam) needs to be adjusted, the determining unit 304 may determine that the BPL is The downlink direction is also of poor quality and may require adjustment.
  • the electronic device 300 can transmit an adjustment command over the second BPL (and the corresponding second transmit beam).
  • this operation to satisfy beam symmetry can be used in conjunction with the examples of Figures 8A and 8B.
  • the terminal device side electronic device 350 may judge that the uplink BPL is invalid and initiate an uplink recovery process.
  • electronic device 350 receives a plurality of identical adjustment messages, for example, at a given time, where the given time may be greater than the normal transmission time of a single adjustment message.
  • the electronic device 350 may determine that the base station side electronic device 300 still transmits the downlink BPL after the normal transmission time of the single adjustment message, because the electronic device 300 does not receive the feedback information for the adjustment message, that is, the uplink. Road BPL has expired.
  • the electronic device 350 can recover the uplink BPL, for example, by performing a random access procedure.
  • FIG. 9A shows an example signaling flow for a terminal device side initiated recovery process.
  • the terminal device determines that the downlink BPL fails, the uplink BPL can be re-established through the random access procedure. Specifically, at 1022, the terminal device can initiate a random access procedure.
  • the feedback information for the BPL adjustment information is still not received after the BPL adjustment information is transmitted, for example, using the activated and alternate downlink BPLs (eg, the BPL adjustment information is sent a given number of times and/or In the case of a given time), the base station side electronic device 300 can transmit a BPL adjustment command by a recovery process, as described in the following example.
  • the electronic device 300 may re-establish the downlink BPL by downlink reference signal beam scanning to transmit a BPL adjustment command over the new downlink BPL.
  • FIG. 9B shows a first example signaling flow for base station side initiated recovery processing.
  • the base station determines that the downlink BPL fails, the downlink BPL can be re-established by the downlink beam scanning procedure.
  • the base station can initiate a downlink beam scanning procedure with the terminal device.
  • the electronic device 300 may indicate a BPL adjustment message to the terminal device side electronic device 350 in a dual connectivity manner.
  • Dual Connectivity is a technology that enables a terminal device to communicate with multiple base stations to increase the data rate.
  • the terminal device can maintain a connection with both the first base station and the second base station.
  • the second base station may be added to form a dual connection according to a desire (for example, an increase in data rate), then the first base station becomes the primary node, and the second base station becomes the secondary node.
  • the master node may be an eNB (eg, Master eNB) in the LTE system
  • the slave base station may be a corresponding node in the 5G system, such as a gNB (eg, Secondary gNB) in the NR system.
  • gNB eg, Secondary gNB
  • the first base station may not be limited to be an eNB, and the second base station may not be limited to a gNB.
  • the signaling flow description below refer to the signaling flow description below.
  • FIG. 9C shows a second example signaling flow for base station side initiated recovery processing.
  • the uplink BPL adjustment message may be sent to the terminal device by the second base station serving the terminal device in the dual connectivity manner together with the first base station.
  • the first base station may send a BPL adjustment message to the second base station.
  • the gNB sends backhaul signaling including the BPL adjustment message to the eNB through the Xx interface; the first base station is implemented as a gNB and the second base station is implemented as another gNB.
  • the first base station sends backhaul signaling including a BPL adjustment message to the second base station through the Xn interface.
  • the second base station can forward the BPL adjustment message to the terminal device.
  • the second base station corresponds to the primary node implemented by the eNB, so that it can serve a larger coverage and may provide beam management support between the gNB and the terminal device for multiple gNBs within its coverage.
  • the terminal device may send feedback information to the first base station for the BPL adjustment message.
  • An example of assisting recovery of BPL by dual connectivity can improve BPL recovery efficiency and reduce communication interruption time.
  • FIGS. 9A through 9C are just a few examples of the restoration process. Alternative forms of recovery processing may be devised by those skilled in the art without departing from the teachings of the present disclosure, which are still within the scope of the present disclosure.
  • the BPL adjustment message may include an adjustment time, which may indicate that the base station expects the terminal device to complete the BPL adjustment in the mth subframe after the current subframe.
  • the adjustment time may indicate that the base station expects the terminal device to complete the BPL adjustment in the current subframe to quickly recover the BPL.
  • uplink signal transmission/monitoring, BPL adjustment message transmission/reception, and transmission/reception of feedback to the adjustment message may be completed in the same subframe.
  • FIG. 10 shows an example subframe in this case, in which an uplink signal, a BPL adjustment message, and feedback to a BPL adjustment message are all included.
  • such a subframe may be referred to as a self-contained subframe.
  • uplink signal transmission/monitoring, and BPL adjustment message transmission/reception may be completed within the same subframe.
  • both the uplink signal and the BPL adjustment message are included in the subframe.
  • such a subframe may also be referred to as a self-contained subframe.
  • the use of the self-contained subframe needs to satisfy a condition that the subframe is a subframe in which the terminal device sends a sounding reference signal (for example, SRS), wherein the sounding reference signal may be periodic or non-periodic. of.
  • the beam adjustment has a higher priority than other services, and therefore, in this subframe, a downlink channel colliding with information about beam adjustment, such as BPL adjustment message and feedback to BPL adjustment message. And the uplink channel should circumvent these information about beam adjustment.
  • FIG. 11A illustrates an example method for communication in accordance with an embodiment of the present disclosure.
  • the method 1100 can include monitoring an uplink signal state (block 1105), determining, based on an uplink signal state, that the first uplink beam pair link needs to be adjusted, wherein the first uplink beam pair link includes The first transmit beam on the terminal device side and the first receive beam on the base station side (block 1110).
  • the method 1100 can also include performing an operation to adjust the first uplink beam pair link (block 1115).
  • the method may be performed by the electronic device 300, and detailed example operations of the method may refer to the above description regarding the operation and function of the electronic device 300, which is briefly described as follows.
  • the performing the adjusting the first uplink beam pair link operation comprises at least one of: adjusting a first receive beam on a base station side; and transmitting an indication to the terminal device to the first uplink beam Adjustment message for link adjustment.
  • the uplink signal includes at least one of an uplink control signal and an uplink reference signal
  • the method may further include: determining that adjustment is needed if the uplink control signal cannot be correctly detected The first uplink beam pair is linked; and/or if the reference signal received power is below a predetermined threshold, it is determined that the first uplink beam pair link needs to be adjusted.
  • the method may further include: determining that the first uplink beam pair link needs to be adjusted if the uplink control signal cannot be correctly detected for a predetermined time; and/or the reference signal received power is lower than In the case where the predetermined threshold is up to the predetermined time, it is judged that the first uplink beam pair link needs to be adjusted.
  • the uplink reference signal and the uplink control signal are quasi-co-located and transmitted in a first transmit beam on the terminal side.
  • the method may further include determining an uplink beam pair link adjustment policy based on at least one of the following operations based on an uplink beam state: in the case where there are multiple activated uplink beam pair links, Determining to cancel the first uplink beam pair link; in the case where there is an alternate uplink paired beam, determining to establish a second uplink beam pair link based on the candidate uplink paired beam; and in other cases , determine to perform uplink beam scanning.
  • adjusting the message includes adjusting the uplink transmit beam involved, or including adjusting the uplink transmit beam involved and adjusting the time.
  • the method may further include: if the adjustment message is sent by the first transmit beam on the base station side for a given number of times or after receiving the feedback of the adjustment message by the terminal device, Transmitting, by the base station side, a second transmit beam transmission adjustment message, wherein the base station side first transmit beam and the second transmit beam match the same receive beam on the terminal device side; and/or change base station side transmit if beam symmetry is satisfied The beam is sent to adjust the message.
  • the method may further include: after transmitting the adjustment message by the base station side transmit beam for a given number of times and/or not receiving feedback of the adjustment information of the terminal device after the given time, by at least One sends an adjustment message: re-establishing a downlink beam pair link by downlink reference signal beam scanning, thereby transmitting an adjustment message; and transmitting an adjustment message to the terminal device by means of dual connectivity.
  • transmitting the adjustment message to the terminal device in a dual connectivity manner includes communicating the adjustment message to another base station serving the terminal device through the dual connection, the adjustment message being indicated by the other base station to the terminal device.
  • the method may further include: receiving feedback from the terminal device on the adjustment message, and completing monitoring the uplink signal, transmitting the adjustment message, and receiving feedback on the adjustment message in the same subframe, or The monitoring of the uplink signal and the transmission of the adjustment message are completed within the same subframe.
  • FIG. 11B illustrates another example method for communication in accordance with an embodiment of the present disclosure.
  • the method 1150 can include transmitting an uplink signal through a first uplink beam pair link, where the first uplink beam pair link includes a first transmit beam on the terminal device side and a first on the base station side Receive beam (block 1255).
  • the method 1150 can also include receiving, from the base station, an adjustment message indicating a link adjustment to the first uplink beam pair (block 1260).
  • the method can be performed by electronic device 350, and detailed example operations of the method can be referred to above for a description of the operation and function of electronic device 350, briefly described below.
  • adjusting the message includes adjusting the uplink transmit beam involved, or including adjusting the uplink transmit beam involved and adjusting the time.
  • the uplink signal includes at least one of an uplink control signal and an uplink reference signal, and the uplink control signal determines that the first uplink needs to be adjusted if the uplink control signal cannot be correctly detected.
  • the link beam pair is linked; and/or the uplink reference signal causes the base station to determine that the first uplink beam pair link needs to be adjusted if the received power is below a predetermined threshold.
  • the uplink reference signal and the uplink control signal are quasi-co-located and transmitted in a first transmit beam on the terminal side.
  • the uplink reference signals are respectively transmitted with the first transmit beam and the alternate second transmit beam on the terminal device side to track the states of the first transmit beam and the alternate second transmit beam, and
  • the transmit frequency of one transmit beam is greater than the transmit frequency of the second transmit beam.
  • the method may further include: when the adjustment message indicates that the first uplink beam pair link is cancelled, the first transmit beam on the terminal device side is no longer used from the adjustment time or a certain time. Transmitting and transmitting feedback to the base station for the adjustment message, wherein the feedback includes the adjustment time or a specific time.
  • the method may further include: using the terminal device from the adjustment time or a certain time if the adjustment message indicates that the second uplink beam pair link is established based on the candidate uplink paired beam The second transmit beam of the side transmits, and the feedback to the adjustment message is sent to the base station, where the feedback includes the adjustment time or a specific time.
  • the method may further include performing uplink beam scanning in the case where the adjustment message indicates uplink beam scanning, and transmitting a response to the adjustment message to the base station.
  • the method may further include: completing the sending of the uplink signal, receiving the adjustment message, and sending the feedback to the adjustment message in the same subframe, or completing the sending the uplink signal and receiving the adjustment in the same subframe. Message.
  • the method may further include performing a random access procedure to recover the uplink if a plurality of identical adjustment messages are received within a given time.
  • FIG. 12A illustrates an exemplary electronic device for a terminal device side, which may be used for various wireless communication systems, in accordance with an embodiment of the present disclosure.
  • Aspects of the electronic device 1200 shown in FIG. 12A can be similar to the aforementioned electronic device 350.
  • electronic device 1200 can include a similar transmitting unit 352 and receiving unit 356.
  • electronic device 1200 can also include a feedback unit 354, which in one embodiment can be configured to send feedback to the base station for BPL adjustment messages.
  • FIG. 12B illustrates an example method for an electronic device 1200 in accordance with an embodiment of the present disclosure.
  • the method 1250 can be similar to the method 1150 described above.
  • the method 1250 can include transmitting an uplink signal over a first uplink beam pair link (block 1255) and receiving an adjustment message from the base station indicating a first uplink beam pair link adjustment (block 1260). Additionally, the method 1250 can also include transmitting feedback to the base station for the BPL adjustment message.
  • machine-executable instructions in a machine-readable storage medium or program product in accordance with embodiments of the present disclosure may be configured to perform operations corresponding to the apparatus and method embodiments described above.
  • Embodiments of the machine-readable storage medium or program product will be apparent to those skilled in the art when reference is made to the above-described apparatus and method embodiments, and thus the description is not repeated.
  • Machine-readable storage media and program products for carrying or including the machine-executable instructions described above are also within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • FIG. 13 is a block diagram showing an example structure of a personal computer which is an information processing device which can be employed in the embodiment of the present disclosure.
  • the personal computer may correspond to the above-described exemplary terminal device in accordance with the present disclosure.
  • a central processing unit (CPU) 1301 executes various processes in accordance with a program stored in a read only memory (ROM) 1302 or a program loaded from a storage portion 1308 to a random access memory (RAM) 1303.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1301 executes various processes and the like is also stored as needed.
  • the CPU 1301, the ROM 1302, and the RAM 1303 are connected to each other via a bus 1304.
  • Input/output interface 1305 is also coupled to bus 1304.
  • the following components are connected to the input/output interface 1305: an input portion 1306 including a keyboard, a mouse, etc.; an output portion 1307 including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; the storage portion 1308 , including a hard disk or the like; and a communication portion 1309 including a network interface card such as a LAN card, a modem, and the like.
  • the communication section 1309 performs communication processing via a network such as the Internet.
  • the driver 1310 is also connected to the input/output interface 1305 as needed.
  • a removable medium 1311 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 1310 as needed, so that the computer program read therefrom is installed into the storage portion 1308 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1311.
  • such a storage medium is not limited to the removable medium 1311 shown in FIG. 13 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the detachable medium 1311 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be a ROM 1302, a hard disk included in the storage portion 1308, or the like, in which programs are stored, and distributed to the user together with the device containing them.
  • the base stations mentioned in this disclosure may be implemented as any type of evolved Node B (gNB), such as macro gNBs and small gNBs.
  • the small gNB may be a gNB that covers a cell smaller than the macro cell, such as pico gNB, micro gNB, and home (femto) gNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a Base Transceiver Station (BTS).
  • the base station may include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRHs) disposed at a different location from the main body.
  • RRHs remote radio heads
  • various types of terminals which will be described below, can operate as a base station by performing base station functions temporarily or semi-persistently.
  • the terminal device mentioned in the present disclosure is also referred to as a user device in some examples, and can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle dog). Mobile routers and digital camera devices) or vehicle terminals (such as car navigation devices).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • the term base station in this disclosure has the full breadth of its ordinary meaning and includes at least a wireless communication station that is used as part of a wireless communication system or radio system to facilitate communication.
  • the base station may be, for example but not limited to, the following: the base station may be one or both of a base transceiver station (BTS) and a base station controller (BSC) in the GSM system, and may be a radio network controller in the WCDMA system.
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • One or both of (RNC) and Node B may be eNBs in LTE and LTE-Advanced systems, or may be corresponding network nodes in future communication systems (eg, gNBs that may appear in 5G communication systems, eLTE eNB, etc.).
  • Some of the functions in the base station of the present disclosure may also be implemented as an entity having a control function for communication in a D2D, M2M, and V2V communication scenario
  • FIG. 14 is a block diagram showing a first example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • the gNB 1400 includes a plurality of antennas 1410 and a base station device 1420.
  • the base station device 1420 and each antenna 1410 may be connected to each other via an RF cable.
  • the gNB 1400 (or base station device 1420) herein may correspond to the electronic devices 300A, 1300A, and/or 1500B described above.
  • Each of the antennas 1410 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 1420 to transmit and receive wireless signals.
  • gNB 1400 can include multiple antennas 1410.
  • multiple antennas 1410 can be compatible with multiple frequency bands used by gNB 1400.
  • the base station device 1420 includes a controller 1421, a memory 1422, a network interface 1423, and a wireless communication interface 1425.
  • the controller 1421 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1420. For example, controller 1421 generates data packets based on data in signals processed by wireless communication interface 1425 and communicates the generated packets via network interface 1423. The controller 1421 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 1421 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 1422 includes a RAM and a ROM, and stores programs executed by the controller 1421 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 1423 is a communication interface for connecting base station device 1420 to core network 1424. Controller 1421 can communicate with a core network node or another gNB via network interface 1423. In this case, the gNB 1400 and the core network node or other gNBs can be connected to each other through logical interfaces such as an S1 interface and an X2 interface. Network interface 1423 may also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 1423 is a wireless communication interface, network interface 1423 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 1425.
  • the wireless communication interface 1425 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the gNB 1400 via the antenna 1410.
  • Wireless communication interface 1425 may typically include, for example, baseband (BB) processor 1426 and RF circuitry 1427.
  • the BB processor 1426 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 1426 may have some or all of the logic functions described above.
  • the BB processor 1426 may be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 1426 to change.
  • the module can be a card or blade that is inserted into a slot of base station device 1420. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1427 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1410.
  • FIG. 14 shows an example in which one RF circuit 1427 is connected to one antenna 1410, the present disclosure is not limited to the illustration, but one RF circuit 1427 may connect a plurality of antennas 1410 at the same time.
  • the wireless communication interface 1425 can include a plurality of BB processors 1426.
  • multiple BB processors 1426 can be compatible with multiple frequency bands used by gNB 1400.
  • the wireless communication interface 1425 can include a plurality of RF circuits 1427.
  • multiple RF circuits 1427 can be compatible with multiple antenna elements.
  • FIG. 14 illustrates an example in which the wireless communication interface 1425 includes a plurality of BB processors 1426 and a plurality of RF circuits 1427, the wireless communication interface 1425 may also include a single BB processor 1426 or a single RF circuit 1427.
  • the gNB 1530 includes a plurality of antennas 1540, a base station device 1550, and an RRH 1560.
  • the RRH 1560 and each antenna 1540 may be connected to each other via an RF cable.
  • the base station device 1550 and the RRH 1560 can be connected to each other via a high speed line such as a fiber optic cable.
  • the gNB 1530 (or base station device 1550) herein may correspond to the electronic devices 300A, 1300A, and/or 1500B described above.
  • Each of the antennas 1540 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1560 to transmit and receive wireless signals.
  • gNB 1530 can include multiple antennas 1540.
  • multiple antennas 1540 can be compatible with multiple frequency bands used by gNB 1530.
  • the base station device 1550 includes a controller 1551, a memory 1552, a network interface 1553, a wireless communication interface 1555, and a connection interface 1557.
  • the controller 1551, the memory 1552, and the network interface 1553 are the same as the controller 1421, the memory 1422, and the network interface 1423 described with reference to FIG.
  • the wireless communication interface 1555 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 1560 via the RRH 1560 and the antenna 1540.
  • Wireless communication interface 1555 can typically include, for example, BB processor 1556.
  • the BB processor 1556 is identical to the BB processor 1426 described with reference to FIG. 14 except that the BB processor 1556 is connected to the RF circuit 1564 of the RRH 1560 via the connection interface 1557.
  • the wireless communication interface 1555 can include a plurality of BB processors 1556.
  • multiple BB processors 1556 can be compatible with multiple frequency bands used by gNB 1530.
  • FIG. 15 illustrates an example in which the wireless communication interface 1555 includes a plurality of BB processors 1556, the wireless communication interface 1555 can also include a single BB processor 1556.
  • connection interface 1557 is an interface for connecting the base station device 1550 (wireless communication interface 1555) to the RRH 1560.
  • the connection interface 1557 may also be a communication module for communicating the base station device 1550 (wireless communication interface 1555) to the above-described high speed line of the RRH 1560.
  • the RRH 1560 includes a connection interface 1561 and a wireless communication interface 1563.
  • connection interface 1561 is an interface for connecting the RRH 1560 (wireless communication interface 1563) to the base station device 1550.
  • the connection interface 1561 can also be a communication module for communication in the above high speed line.
  • the wireless communication interface 1563 transmits and receives wireless signals via the antenna 1540.
  • Wireless communication interface 1563 can generally include, for example, RF circuitry 1564.
  • the RF circuit 1564 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1540.
  • FIG. 15 shows an example in which one RF circuit 1564 is connected to one antenna 1540, the present disclosure is not limited to the illustration, but one RF circuit 1564 may connect a plurality of antennas 1540 at the same time.
  • wireless communication interface 1563 can include a plurality of RF circuits 1564.
  • multiple RF circuits 1564 can support multiple antenna elements.
  • FIG. 15 illustrates an example in which the wireless communication interface 1563 includes a plurality of RF circuits 1564, the wireless communication interface 1563 may also include a single RF circuit 1564.
  • FIG. 16 is a block diagram showing an example of a schematic configuration of a smartphone 1600 to which the technology of the present disclosure can be applied.
  • the smart phone 1600 includes a processor 1601, a memory 1602, a storage device 1603, an external connection interface 1604, an imaging device 1606, a sensor 1607, a microphone 1608, an input device 1609, a display device 1610, a speaker 1611, a wireless communication interface 1612, and one or more An antenna switch 1615, one or more antennas 1616, a bus 1617, a battery 1618, and an auxiliary controller 1619.
  • smart phone 1600 (or processor 1601) herein may correspond to terminal device 300B and/or 1500A described above.
  • the processor 1601 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smartphone 1600.
  • the memory 1602 includes a RAM and a ROM, and stores data and programs executed by the processor 1601.
  • the storage device 1603 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1604 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 1600.
  • the imaging device 1606 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 1607 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1608 converts the sound input to the smartphone 1600 into an audio signal.
  • the input device 1609 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1610, and receives an operation or information input from a user.
  • the display device 1610 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1600.
  • the speaker 1611 converts the audio signal output from the smartphone 1600 into sound.
  • the wireless communication interface 1612 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 1612 may typically include, for example, BB processor 1613 and RF circuitry 1614.
  • the BB processor 1613 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • RF circuitry 1614 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 1616.
  • the wireless communication interface 1612 can be a chip module on which the BB processor 1613 and the RF circuit 1614 are integrated. As shown in FIG.
  • the wireless communication interface 1612 can include a plurality of BB processors 1613 and a plurality of RF circuits 1614.
  • FIG. 16 illustrates an example in which the wireless communication interface 1612 includes a plurality of BB processors 1613 and a plurality of RF circuits 1614, the wireless communication interface 1612 may also include a single BB processor 1613 or a single RF circuit 1614.
  • wireless communication interface 1612 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1612 can include a BB processor 1613 and RF circuitry 1614 for each wireless communication scheme.
  • Each of the antenna switches 1615 switches the connection destination of the antenna 1616 between a plurality of circuits included in the wireless communication interface 1612, such as circuits for different wireless communication schemes.
  • Each of the antennas 1616 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 1612 to transmit and receive wireless signals.
  • smart phone 1600 can include multiple antennas 1616.
  • FIG. 16 illustrates an example in which smart phone 1600 includes multiple antennas 1616, smart phone 1600 may also include a single antenna 1616.
  • smart phone 1600 can include an antenna 1616 for each wireless communication scheme.
  • the antenna switch 1615 can be omitted from the configuration of the smartphone 1600.
  • the bus 1617 has a processor 1601, a memory 1602, a storage device 1603, an external connection interface 1604, an imaging device 1606, a sensor 1607, a microphone 1608, an input device 1609, a display device 1610, a speaker 1611, a wireless communication interface 1612, and an auxiliary controller 1619. connection.
  • Battery 1618 provides power to various blocks of smart phone 1600 shown in FIG. 16 via a feeder, which is partially shown as a dashed line in the figure.
  • the secondary controller 1619 operates the minimum required function of the smartphone 1600, for example, in a sleep mode.
  • FIG. 17 is a block diagram showing an example of a schematic configuration of a car navigation device 1720 to which the technology of the present disclosure can be applied.
  • the car navigation device 1720 includes a processor 1721, a memory 1722, a global positioning system (GPS) module 1724, a sensor 1725, a data interface 1726, a content player 1727, a storage medium interface 1728, an input device 1729, a display device 1730, a speaker 1731, and a wireless device.
  • car navigation device 1720 (or processor 1721) herein may correspond to terminal device 300B and/or 1500A described above.
  • the processor 1721 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 1720.
  • the memory 1722 includes a RAM and a ROM, and stores data and programs executed by the processor 1721.
  • the GPS module 1724 measures the position (such as latitude, longitude, and altitude) of the car navigation device 1720 using GPS signals received from GPS satellites.
  • Sensor 1725 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 1726 is connected to, for example, the in-vehicle network 1741 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 1727 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 1728.
  • the input device 1729 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 1730, and receives an operation or information input from a user.
  • the display device 1730 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 1731 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1733 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 1733 can generally include, for example, BB processor 1734 and RF circuitry 1735.
  • the BB processor 1734 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 1735 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1737.
  • the wireless communication interface 1733 can also be a chip module on which the BB processor 1734 and the RF circuit 1735 are integrated. As shown in FIG.
  • the wireless communication interface 1733 can include a plurality of BB processors 1734 and a plurality of RF circuits 1735.
  • FIG. 17 illustrates an example in which the wireless communication interface 1733 includes a plurality of BB processors 1734 and a plurality of RF circuits 1735, the wireless communication interface 1733 may also include a single BB processor 1734 or a single RF circuit 1735.
  • wireless communication interface 1733 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless LAN schemes.
  • the wireless communication interface 1733 can include a BB processor 1734 and an RF circuit 1735 for each wireless communication scheme.
  • Each of the antenna switches 1736 switches the connection destination of the antenna 1737 between a plurality of circuits included in the wireless communication interface 1733, such as circuits for different wireless communication schemes.
  • Each of the antennas 1737 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 1733 to transmit and receive wireless signals.
  • car navigation device 1720 can include a plurality of antennas 1737.
  • FIG. 17 shows an example in which the car navigation device 1720 includes a plurality of antennas 1737, the car navigation device 1720 may also include a single antenna 1737.
  • car navigation device 1720 can include an antenna 1737 for each wireless communication scheme.
  • the antenna switch 1736 can be omitted from the configuration of the car navigation device 1720.
  • Battery 1738 provides power to various blocks of car navigation device 1720 shown in FIG. 17 via a feeder, which is partially shown as a dashed line in the figure. Battery 1738 accumulates power supplied from the vehicle.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 1740 including one or more of the car navigation device 1720, the in-vehicle network 1741, and the vehicle module 1742.
  • vehicle module 1742 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 1741.
  • a plurality of functions included in one unit in the above embodiment may be implemented by separate devices.
  • a plurality of functions implemented by a plurality of units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processes performed in time series in the stated order, but also processes performed in parallel or individually rather than necessarily in time series. Further, even in the step of processing in time series, it is needless to say that the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开内容涉及用于无线通信系统的电子设备、方法和存储介质。描述了关于波束对链接的各种实施例。在一个实施例中,用于无线通信系统中的基站侧的电子设备可以包括处理电路系统,该处理电路系统可以被配置为监测上行链路信号状态;基于上行链路信号状态判断需要调整第一上行链路波束对链接,其中第一上行链路波束对链接包括终端设备侧的第一发射波束和基站侧的第一接收波束;以及执行操作,以便调整第一上行链路波束对链接。

Description

用于无线通信系统的电子设备、方法和存储介质 技术领域
本公开一般地涉及无线通信系统,并且具体地涉及用于维护波束对链接的技术。
背景技术
近年来,随着移动互联网技术的发展和广泛应用,无线通信前所未有地满足了人们的语音和数据通信需求。为了提供更高的通信质量和容量,无线通信系统采用了不同层面的各种技术,例如波束成形(Beamforming)技术。波束成形可以通过增加天线发射和/或接收的指向性,提供波束成形增益以补偿无线信号的损耗。在未来无线通信系统(例如像NR(New Radio)系统这样的5G系统)中,基站和终端设备侧的天线端口数将进一步提升。例如,基站侧的天线端口数可以增加到成百甚至更多,从而构成大规模天线(Massive MIMO)系统。这样,在大规模天线系统中,波束成形将具有更大的应用空间。
在波束扫描技术中,通过波束扫描(Beam Sweeping)过程找出基站和终端设备之间匹配的发射波束和接收波束,从而建立基站和终端设备之间的波束对链接(Beam Pair Link,BPL)。波束扫描可以分别在上下行链路中进行,相应地可以建立上行链路和下行链路的波束对链接。然而,这样的波束对链接容易受到环境等因素影响而显得不够稳定。例如,在存在视距阻挡或者终端设备移动、转动的情况下,波束对链接质量会恶化甚至失效。该现象在高频段更加明显。
发明内容
本公开的一个方面涉及用于无线通信系统中的基站侧的电子设备。根据一个实施例,该电子设备可以包括处理电路。该处理电路可以被配置为监测上行链路信号状态;基于上行链路信号状态判断需要调整第一上行链路波束对链接,其中第一上行链路波束对链接包括终端设备侧的第一发射波束和基站侧的第一接收波束;以及执行操作,以便调整第一上行链路波束对链接。
本公开的一个方面涉及用于无线通信系统中的终端设备侧的电子设备。根据一个实施例,该电子设备包括处理电路。该处理电路可以被配置为通过第一上行链路波束对链接发送上行链路信号,其中第一上行链路波束对链接包括终端设备侧的第一发射波束和基站侧的第一接收波束;以及接收来自基站的指示对第一上行链路波束对链接调整的调整消息。
本公开的一个方面涉及用于无线通信系统中的终端设备侧的电子设备。根据一个实施例,该电子设备包括处理电路。该处理电路可以被配置为通过第一上行链路波束对链接发送上行链路信号,其中第一上行链路波束对链接包括终端设备侧的第一发射波束和基站侧的第一接收波束;接收来自基站的指示对第一上行链路波束对链接调整的调整消息;以及向基站发送对所述调整消息的反馈。
本公开的另一个方面涉及无线通信方法。在一个实施例中,该方法可以包括监测上行链路信号状态;基于上行链路信号状态判断需要调整第一上行链路波束对链接,其中第一上行链路波束对链接包括终端设备侧的第一发射波束和基站侧的第一接收波束;以及执行操作,以便调整第一上行链路波束对链接。
本公开的另一个方面涉及无线通信方法。在一个实施例中,该方法可以包括通过第一上行链路波束对链接发送上行链路信号,其中第一上行链路波束对链接包括终端设备侧的第一发射波束和基站侧的第一接收波束;以及接收来自基站的指示对第一上行链路波束对链接调整的调整消息。
本公开的另一个方面涉及无线通信方法。在一个实施例中,该方法可以包括通过第一上行链路波束对链接发送上行链路信号,其中第一上行链路波束对链接包括终端设备侧的第一发射波束和基站侧的第一接收波束;接收来自基站的指示对第一上行链路波束对链接调整的调整消息;以及向基站发送对所述调整消息的反馈。
本公开的再一个方面涉及存储有一个或多个指令的计算机可读存储介质。在一些实施例中,该一个或多个指令可以在由电子设备的一个或多个处理器执行时,使电子设备执行根据本公开的各种实施例的方法。
本公开的再一个方面涉及各种装置,包括用于执行根据本公开实施例的各方法的操作的部件或单元。
提供上述概述是为了总结一些示例性的实施例,以提供对本文所描述的主题的各方 面的基本理解。因此,上述特征仅仅是例子并且不应该被解释为以任何方式缩小本文所描述的主题的范围或精神。本文所描述的主题的其他特征、方面和优点将从以下结合附图描述的具体实施方式而变得明晰。
附图说明
当结合附图考虑实施例的以下具体描述时,可以获得对本公开内容更好的理解。在各附图中使用了相同或相似的附图标记来表示相同或者相似的部件。各附图连同下面的具体描述一起包含在本说明书中并形成说明书的一部分,用来例示说明本公开的实施例和解释本公开的原理和优点。其中:
图1描述了无线通信系统中的示例性波束扫描过程。
图2示出了根据本公开实施例的上行链路BPL示例。
图3A示出了根据本公开实施例的用于基站侧的示例性电子设备。
图3B示出了根据本公开实施例的用于终端设备侧的示例性电子设备。
图3C示出了根据本公开实施例的用于上行链路BPL调整的基站与终端设备之间的示例处理。
图4A示出了根据本公开实施例的上行链路信号发送的第一示例。
图4B示出了根据本公开实施例的上行链路信号发送的第二示例。
图4C示出了根据本公开实施例的上行链路信号发送的第三示例。
图5示出了根据本公开实施例的上行链路BPL调整判断的示例处理。
图6A至图6C示出了根据本公开实施例的几种示例的上行链路波束状态。
图7A示出了根据本公开实施例的反映调整后BPL的示例BPL调整消息。
图7B示出了根据本公开实施例的反映要调整的BPL的示例BPL调整消息。
图7C至图7E示出了根据本公开实施例的指示BPL的示例方式。
图8A和图8B示出了根据本公开实施例的基站侧的示例操作。
图8C示出了根据本公开实施例的下行链路BPL示例。
图9A示出了根据本公开实施例的用于终端设备侧发起的恢复处理的示例信令流程。
图9B示出了根据本公开实施例的用于基站侧发起的恢复处理的第一示例信令流程。
图9C示出了根据本公开实施例的用于基站侧发起的恢复处理的第二示例信令流程。
图10示出了根据本公开实施例的示例子帧。
图11A和图11B示出了根据本公开实施例的用于通信的示例方法。
图12A示出了根据本公开实施例的用于终端设备侧的示例性电子设备。
图12B示出了根据本公开实施例的用于通信的示例方法。
图13是作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图;
图14是示出可以应用本公开的技术的gNB的示意性配置的第一示例的框图;
图15是示出可以应用本公开的技术的gNB的示意性配置的第二示例的框图;
图16是示出可以应用本公开的技术的智能电话的示意性配置的示例的框图;以及
图17是示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
虽然在本公开内容中所描述的实施例可能易于有各种修改和另选形式,但是其具体实施例在附图中作为例子示出并且在本文中被详细描述。但是,应当理解,附图以及对其的详细描述不是要将实施例限定到所公开的特定形式,而是相反,目的是要涵盖属于权利要求的精神和范围内的所有修改、等同和另选方案。
具体实施方式
以下描述根据本公开的设备和方法等各方面的代表性应用。这些例子的描述仅是为了增加上下文并帮助理解所描述的实施例。因此,对本领域技术人员而言明晰的是,以下所描述的实施例可以在没有具体细节当中的一些或全部的情况下被实施。在其他情况下,众所周知的过程步骤没有详细描述,以避免不必要地模糊所描述的实施例。其他应用也是可能的,本公开的方案并不限制于这些示例。
下面结合图1简单介绍无线通信系统中的波束扫描过程。图1中的向右的箭头表示从基站100到终端设备104的下行链路方向,向左的箭头表示从终端设备104到基站100的上行链路方向。如图1所示,基站100包括n t_DL个下行发射波束(n t_DL为大于等于1的自然数,图1中例示为n t_DL=9),终端设备104包括n r_DL个下行接收波束(n r_DL为大于等于1的自然数,图1中例示为n r_DL=5)。另外,在图1所示的无线通信系统中,基站100的上行接收波束的个数n r_UL以及各波束的覆盖范围与下行发射波束相同,终端设备104的上行发射波束的个数n t_UL以及各波束的覆盖范围与下行接收波束相同。应当理解,根据系统需求和设定,基站的上行接收波束和下行发射波束的覆盖范围以及数量可以不同,终端设备也是如此。
如图1所示,在下行波束扫描过程中,基站100的n t_DL个下行发射波束中的每个下行发射波束102向终端设备104发送n r_DL个下行参考信号,终端设备104通过n r_DL个下行接收波束分别接收该n r_DL个下行参考信号。以这种方式,基站100的n t_DL个下行发射波束依次向终端设备104发送n t_DL×n r_DL个下行参考信号,终端设备104的每个下行接收波束106接收n t_DL个下行参考信号,即终端设备104的n r_DL个下行接收波束共接收来自基站100的n t_DL×n r_DL个下行参考信号。终端设备104对该n t_DL×n r_DL个下行参考信号进行测量(例如测量下行参考信号的接收信号功率(例如RSRP)),从而将测量结果较好或最好时基站100的下行发射波束和终端设备104的下行接收波束确定为下行链路匹配的发射接收波束对,并建立下行链路波束对链接(以下简称BPL)。
在上行波束扫描过程中,与下行波束扫描类似地,终端设备104的n t_UL个上行发射波束中的每个上行发射波束106向基站100发送n r_UL个上行参考信号,基站100通过n r_UL个上行接收波束分别接收该n r_UL个上行参考信号。以这种方式,终端设备104的n t_UL个上行发射波束依次向基站100发送n t_UL×n r_UL个上行参考信号,基站100的每个上行接收波束102接收n t_UL个上行参考信号,即基站100的n r_UL个上行接收波束共接收来自终端设备104的n r_UL×n t_UL个上行参考信号。基站100对该n r_UL×n t_UL个上行参考信号进行测量(例如测量上行参考信号的接收信号功率(例如RSRP)),从而将测量结果较好或最好时终端设备104的上行发射波束和基站100的上行接收波束确定为上行链路匹配的发射接收波束对,并建立上行链路波束对链接。
应理解,基站的上行接收波束和下行发射波束的覆盖范围以及数量可以不同以及终 端设备的上行发射波束和下行接收波束的覆盖范围以及数量可以不同,而上述确定操作仍可被类似地执行。
基站以及终端设备的接收波束和发射波束可以通过DFT(Discrete Fourier Transform,离散傅立叶变换)向量来产生。下面以基站侧的下行发射波束为例进行介绍,基站侧的上行接收波束以及终端设备侧的收发波束也可以通过类似的方法产生。
例如,假设在基站侧配备有n t根发射天线,则基站到终端设备的等效信道可以表示为一个n t×1的向量H。DFT向量u可以表示为:
[式1]
Figure PCTCN2018104497-appb-000001
其中,DFT向量u的长度为n t,C表示用于调节波束的宽度和赋形增益的参数,“T”表示转置运算符。
将基站到终端设备的等效信道H与DFT向量u相乘可以得到基站的一个发射波束(例如图1中所示的下行发射波束中的一个)。
在一个实施例中,式1中的用于调节波束的宽度和赋形增益的参数C可以用两个参数O 2、N 2的乘积来表示,通过分别调节两个参数O 2、N 2,可以调整波束的宽度和赋形增益。一般来说,天线的数量n t越大,或者参数C(例如O 2、N 2的乘积)越大,则所得到的波束的空间指向性越强,但波束宽度一般也越窄。在一个实施例中,可以取O 2=1并且N 2=1,这样得到的DFT向量u是n t个元素都为1的向量。
在完成了下行波束扫描和上行波束扫描过程之后,利用所建立的BPL来进行接下来的数据和/或控制信号的传输。上述通过波束扫描来确定基站和终端设备的匹配的发射接收波束对的过程有时也称为波束训练(Beam Training)过程。
在本公开的实施例中,BPL可以通过匹配的发射波束和接收波束建立。一般而言,发射波束和接收波束匹配可以指使用该发射波束和接收波束的通信的质量符合一定门限水平(因此,可以认为BPL的质量也符合一定门限水平)。在一些情况下,BPL可以包括匹配的一个发射波束和一个接收波束。然而,在另一些情况下,匹配的发射波束和接收波束可以不是一对一的关系。例如,可以有两个接收波束和一个发射波束匹配。此时,可以认为每个接收波束与该同一个发射波束分别形成一个BPL。在一些实施例中,将该例子称为发 射波束对于多个接收波束重合。再例如,可以有一个接收波束与两个发射波束匹配。此时,可以认为这一个接收波束与两个发射波束分别形成一个BPL。在一些实施例中,将该例子称为接收波束对于多个发射波束重合。
根据本公开的实施例,BPL可以分为上行链路BPL和下行链路BPL。在一个实施例中,上行链路BPL可以包括终端设备侧的发射波束和基站侧的接收波束。类似地,下行链路BPL可以包括基站侧的发射波束和终端设备侧的接收波束。
根据本公开的实施例,BPL可以包括激活的BPL和备用的BPL。在一个实施例中,激活的BPL可以指当前上行或下行链路通信中正在使用的BPL(一般而言质量较好),备用的BPL可以指未在当前上行或下行链路通信中使用但可供备用的BPL(一般而言质量可接受)。在一个实施例中,上下行链路中可以有一个或多于一个的激活BPL,也可以有一个或多于一个的备用BPL。在本文中,如无特别限定,对术语BPL、上下行链路BPL的引用一般是指激活的BPL。
在一个实施例中,形成BPL的发射波束和接收波束中的任何一个元素的调整都可以被认为是对BPL的调整。因此,BPL调整的情形包括但不限于:调整发射波束、调整接收波束、发射波束和接收波束均被调整、建立BPL,等等。本公开的实施例在此方面不受限制。
图2示出了根据本公开实施例的上行链路BPL示例。在图2中,图1中基站100的9个接收波束102分别被记为102(1)至102(9),图1中终端设备106的5个发射波束106分别被记为106(1)至106(5)。在图2中,通过匹配的发射波束106(3)和接收波束102(4)建立了第一上行链路BPL 130。在本公开的实施例中,发射波束106(1)至106(5)可以分别具有一个或多个参考信号端口。例如,发射波束106(3)具有3个参考信号端口150(1)至150(3)。参考信号端口150(1)至150(3)可以分别对应一组或多组参考信号资源。例如,参考信号端口150(3)可以对应3组参考信号资源160(1)至160(3)。因此,在参考信号资源与终端设备侧发射波束之间可以存在对应关系。在图2中,还可以通过其他匹配的发射波束和接收波束建立第二上行链路BPL。
图3A示出了根据本公开实施例的用于基站侧的示例性电子设备,其中该基站可以用于各种无线通信系统。图3A所示的电子设备300可以包括各种单元以实现根据本公开的各实施例。在该示例中,电子设备300可以包括监测单元302、判断单元304和操作单元 306。在一种实施方式中,电子设备300可被实现为图1中的基站100或其一部分,或者可被实现为用于控制基站100或以其他方式与基站100相关的设备(例如基站控制器)或该设备的一部分。以下结合基站描述的各种操作可以由电子设备300的单元302至306或者其他可能的单元实现。
在一个实施例中,监测单元302可以被配置为监测各种上行链路信号的状态。上行链路信号的示例以及相应的监测处理将在下文具体描述。在一个实施例中,判断单元304可以被配置为基于上行链路信号状态判断是否需要调整上行链路BPL(例如第一上行链路BPL 130)。例如,在上行链路信号的接收功率、接收质量等满足一定条件时,判断单元304可以判断需要调整第一上行链路BPL 130。在一个实施例中,调整信息发送单元306可以被配置为执行操作,以便调整第一上行链路BPL 130。在进一步的实施例中,所执行的操作可以包括调整基站侧的接收波束(例如102(4)),以及/或者向终端设备发送指示第一上行链路BPL 130调整的消息。在本文中,指示BPL调整的消息有时也可简称为“BPL调整消息”或“调整消息”。
图3B示出了根据本公开实施例的用于终端设备侧的示例性电子设备,其中该终端设备可以用于各种无线通信系统。图3B所示的电子设备350可以包括各种单元以实现根据本公开的各实施例。在该示例中,电子设备350可以包括发送单元352和接收单元356。在一种实施方式中,电子设备350可被实现为图1中的终端设备104或其一部分。以下结合终端设备描述的各种操作可以由电子设备350的单元352至356或者其他可能的单元实现。
在一个实施例中,发送单元352可以被配置为通过上行链路BPL(例如第一上行链路BPL 130)发送上行链路信号。在一个实施例中,接收单元356可以被配置为接收来自基站的指示上行链路BPL调整的消息。
在一些实施例中,电子设备300和350可以以芯片级来实现,或者也可以通过包括其他外部部件而以设备级来实现。例如,各电子设备可以作为整机而工作为通信设备。
应注意,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。其中,处理电路可以指在计算系统中执行功能的数字电 路系统、模拟电路系统或混合信号(模拟和数字的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)这样的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
图3C示出了根据本公开实施例的用于上行链路BPL调整的基站与终端设备之间的示例处理。该示例处理可以由上述电子设备300和电子设备350执行。
如图3C所示,在3004处,终端设备(例如电子设备350)可以向基站(例如电子设备300)发送上行链路信号。根据本公开的各实施例,该上行链路信号可以包括上行链路控制信号(例如PUCCH、NR-PUCCH)、伴随上行链路控制信道和共享信道的解调参考信号(例如伴随PUCCH、NR-PUCCH的DMRS、伴随PUSCH、NR-PUSCH的NR-DMRS)以及上行链路探测参考信号(例如SRS、NR-SRS)。在一个实施例中,在基于上行链路探测参考信号判断上行链路BPL调整的情况下,需要该探测参考信号与上行链路控制信号是准共址的。因此,在该实施例中,在发送这样的上行链路信号之前,可以由基站进行适当的准共址配置,如3002所示。
在3005处,基站检测上行链路信号的状态,并基于上行链路信号状态判断是否需要调整终端设备的上行链路BPL。在适当的情况下,例如在不能正确检测上行链路控制信号或者参考信号接收功率低于预定门限时,基站可以判断需要调整终端设备的上行链路BPL。接着,在3006处,基站向终端设备发送上行链路BPL调整消息。
在3007处,终端设备接收到BPL调整消息并对其进行处理。例如,终端设备可以基于BPL调整消息确定调整涉及的BPL及相关发射和/或接收波束。在一个实施例中,终端设备可以基于BPL调整消息获得基站指定的调整时间,并根据本地情况确定实际的调整时间,该调整时间可以与基站指定的调整时间相同或不同。
在3008处,终端设备可以向基站发送对BPL调整消息的反馈。在终端设备没有正确接收到BPL调整消息的情况下,该反馈可以是NACK反馈。在正确接收到BPL调整消息的情况下,该反馈可以是ACK反馈。在一个实施例中,上述实际的调整时间(调整基站侧发射波束时不需要实际调整时间)可以包括在ACK反馈中一起发送给基站。在一个实施例中,ACK和NACK反馈可以通过当前激活的BPL发送。在另一个实施例中,ACK反馈可以另选或附加地通过调整后的BPL发送。在3009处,基站接收并处理对BPL调整消息的反馈。
以上参考图3A至图3C简要描述了根据本公开实施例的示例电子设备和所执行的处理操作。以下将对这些处理操作进行具体描述。
上行链路信号发送
在本公开的实施例中,上行链路信号可以包括各种上行链路信号中的至少一者。例如,上行链路信号可以包括上行链路控制信号和上行链路参考信号中的至少一者。在一些实施例中,上行链路控制信号可以是LTE系统中的PUCCH信号或NR系统中的NR-PUCCH信号。在另一些实施例中,上行链路参考信号可以是LTE系统中的探测参考信号(Sounding Reference Signal,SRS)、伴随PUCCH或PUSCH的解调参考信号(Demodulation Reference Signal,DMRS),或者是NR系统中的NR-SRS、NR-DMRS。在本公开的实施例中,可能主要参考某个通信系统中的上行链路信号进行描述。然而,应当理解,这些实施例对于其他通信系统同样适用。
在本公开的通信系统中,上行链路控制信号一般由终端设备用于向基站发送与通信相关的控制信息。以PUCCH信号为例,终端设备需要向基站发送该信号的情况可以包括:向基站发送HARQ确认,以指示下行链路传输块是否被成功接收;向基站发送信道状态报告,以辅助依赖于信道的调度;以及向基站请求资源,以发送上行链路数据。在本公开的实施例中,终端设备侧电子设备350可以在包括(但不限于)以上示例情形的情况下通过上行链路BPL发送上行链路控制信号。发送上行链路控制信号所使用的该上行链路BPL一般是终端设备与基站之间的激活BPL。相应地,基站侧电子设备300可以监测上行链路控制信号状态,以供基于该监测来判断该激活的上行链路BPL的质量。
在本公开的通信系统中,不同的上行链路参考信号具有不同的使用场景和目的。以LTE系统为例,DMRS主要伴随PUCCH或PUSCH一起发送,以供基站进行信道状态估计和相关解调。SRS可以周期性或非周期性地被发送,以供基站进行信道状态估计以便支持上行链路依赖于信道的调度和链路自适应。在本公开的实施例中,电子设备350可以在需要发送上行链路参考信号时通过激活的上行链路BPL发送该上行链路参考信号。相应地,电子设备300可以监测上行链路参考信号状态,并且基于该监测来判断发送该上行链路参考信号所使用的上行链路BPL(即激活的上行链路BPL)的质量。
图4A示出了根据本公开实施例的上行链路信号发送的第一示例。在图4A中,PUCCH信号401可以在需要时(例如,需要发送HARQ ACK/NACK、信道状态报告)被电子设备350 发送。PUCCH信号401可以通过激活BPL发送,也即通过该激活BPL所包括的终端设备侧发射波束发送。电子设备300可以接收PUCCH信号401并监测其状态,以供基于该监测来判断激活BPL的质量。应当理解,DMRS(以及NR-DMRS)的发送与该示例大致相同,可以参考该示例进行发送。
根据本公开的实施例,对于基于SRS(以及NR-SRS)和其他上行链路信号判断上行链路BPL的质量来说,情况稍有不同。如上文指出的,上行链路控制信号原本就通过激活的上行链路BPL发送(解调参考信号的情况类似)。因此,基于上行链路控制信号自然可以判断该上行链路BPL的质量(因而,不需要对发送上行链路控制信号所使用的BPL或发射波束进行配置)。然而,SRS可能不是(或者不总是)通过激活的上行链路BPL发送,用于SRS的资源与激活的上行链路BPL的资源可能不同(参考图2的描述)。因此,SRS可能经历与激活BPL不同的空间信道条件,进而可能影响基于SRS的状态判断BPL质量时的精度。
针对上述问题,在一个实施例中,SRS可以被配置为通过激活BPL来发送,从而使SRS经历与上行链路激活的BPL相同的信道条件。这样,可以基于SRS的状态更精确地判断该激活BPL的质量。在该实施例中,上述配置可以通过准共址配置来实现。在本公开的实施例中,如果两个信号经历相同的信道条件(例如相同的空间大尺度衰落),则可以称这两个信号是准共址的(Quasi-colocation,QCL)。在一个实施例中,基站侧电子设备300可以通过高层信令(例如RRC层信令)将终端设备侧电子设备350的SRS与通过上行链路控制信道传送的信号(例如PUCCH或伴随PUCCH的DMRS)配置为准共址的。
此处描述准共址的配置示例。电子设备300可以对电子设备350发送SRS所使用的发射波束和BPL进行设置。往回参考图2,BPL 130的发射波束160(3)可以对应一个或多个天线端口150(1)至150(3),每个天线端口又可以对应一组或多组SRS资源。如果指定了用于发送SRS的SRS资源,则可以基于上述对应关系确定用于发送SRS的发射波束和相应的BPL。因此,可以在N个上行链路SRS资源中的K个资源与K个上行链路控制信号(例如PUCCH信号)波束之间建立对应关系,其中N>=K并且K可以等于1。在一个例子中,该对应关系可以是根据协议确定的,或者是由电子设备300和电子设备350协商达成一致的。这样,电子设备300可以在下行链路控制信道(例如PDCCH)中插入SRS的资源标识(例如SRI,即SRS Resource Indicator)来向电子设备350通知该资源对应的发射波束和相应的BPL。
在一些实施例中,通过对电子设备350发送SRS所使用的发射波束以及BPL进行设置,电子设备300可以将SRS与上行链路控制信号配置为是准共址的,并使它们以相同的终端设备侧发射波束被发送。例如,电子设备300可以基于激活BPL的发射波束确定SRS资源,并向电子设备350通知相应的SRI,则电子设备350基于该SRI所确定的发射波束与激活BPL的发射波束相同,并且SRS与上行链路控制信号是准共址的。在一个例子中,准共址的配置可以通过下行链路控制信息(例如DCI,Downlink Control Information)信令通知。在另一些实施例中,通过将电子设备350配置为以备选的发射波束发送SRS,电子设备300可以对这些发射波束进行跟踪。此时,需要基于备选发射波束确定SRS的资源,并进行通知等相应处理,具体可参考前述实施例。这样,终端设备300既可以监测激活BPL,也可以跟踪备选BPL。
图4B示出了根据本公开的上行链路信号发送的第二示例。在图4B中,SRS 402和403可以以一定的周期由电子设备350发送。SRS 402可以通过激活BPL的发射波束发送,以供电子设备300监测激活BPL质量。SRS 403也可以通过备选发射波束发送,以供电子设备300跟踪备选发射波束的质量。在一些情况下,可以使激活BPL的发射波束的发送频率大于备选发射波束的发送频率。例如,图4B中激活BPL的发射波束的发送频率是备选发射波束的发送频率的3倍。电子设备300可以接收SRS 402和403并监测其状态,以便基于该监测来判断激活BPL和备选发射波束的质量。这里,周期性SRS资源可以由电子设备300通过RRC信令配置给电子设备350。
在一个实施例中,图4B中的SRS 402和403也可以被电子设备350非周期性地发送。此时情形与图4B相似,但非周期性SRS的触发和资源可以由电子设备300通过DCI信令配置给电子设备350。在一些实施例中,非周期SRS的触发和准共址的配置可以通过单个DCI信令完成,以便节省时间开销。
由于可以通过DCI这样的底层信令来触发非周期性SRS,因此非周期性SRS具有一定程度的灵活性。继续参考图4B,在一个实施例中,可以结合使用周期性SRS和非周期性SRS。例如,在接收到第一个SRS信号402之后,电子设备300确定激活BPL质量不佳,可能需要调整BPL。因此,电子设备300需要监测备选发射波束的质量。然而,通过备选发射波束发送的周期性SRS信号410需要几个周期才会发送。此时,电子设备300可以触发非周期性SRS信号404,SRS信号404可以通过备选发射波束发送。这样,电子设备300 可以在较短时间内监测到备选发射波束的质量,从而辅助BPL的调整。
图4C示出了根据本公开的上行链路信号发送的第三示例。在图4A和4B示例的基础上,图4C的示例可以同时通过PUCCH信号和SRS信号二者对激活BPL或备选发射波束进行监测,具体过程不再重复。
应当理解,虽然通过将SRS设置为通过激活BPL发送从而估计上行链路BPL的精确度较高,但是一般而言,在不对SRS的发送进行上述设置的情况下,估计上行链路BPL的精确度也可能是可接受的。因此,在一个实施例中,SRS与上行链路控制信号之间准共址是可选的设置。
应当理解,图4A至图4C的实施例仅是示例性的。在各种其他实施例中,上行链路信号不限于PUCCH和SRS,而是可以为各种系统中的适当的上行链路信号(如DMRS、NR-PUCCH、NR-SRS和NR-DMRS等)。在图4A至图4C的实施例,各个框和间隔的尺寸和相对关系仅是示意性的,可以根据系统需求进行适当地设定。
上行链路信号监测、BPL调整判断
在一些实施例中,可以由监测单元302对上行链路信号进行监测。例如,在一个实施例中,监测单元302可以被配置为确定上行链路控制信号的检测性能(例如接收信噪比等),或者确定上行链路参考信号接收功率(RSRP),从而确定是否能够正确检测出相应的上行链路信号。在一些情况下,监测单元302还可以关于上行链路信号的接收向终端设备发送ACK或NACK反馈。
在一些实施例中,可以由判断单元304执行与BPL调整相关的判断处理。图5示出了根据本公开实施例的上行链路BPL调整判断的示例处理。参考图5,在505处,可以判断是否需要对发送上行链路信号所使用的上行链路BPL进行调整。在一个实施例中,判断单元304可以在不能正确检测上行链路控制信号的情况下(或者在该情况持续达预定时间时),判断需要对发送该上行链路控制信号所使用的上行链路BPL进行调整。在一个实施例中,判断单元304可以在上行链路参考信号接收功率(RSRP)低于预定门限的情况下(或者在该情况持续达预定时间时),判断需要对发送该上行链路参考信号所使用的上行链路BPL进行调整。
在510处,在需要调整上行链路BPL的情况下,可以确定如何调整上行链路BPL, 也即确定BPL调整策略。BPL调整策略的确定可能需要考虑上行链路波束状态。例如,在存在多个上行链路BPL的情况下,可以确定取消第一上行链路BPL;在上行链路中存在备选的匹配发射和接收波束以建立BPL的情况下,可以确定基于备选的匹配发射和接收波束建立第二上行链路BPL;或者在一些情况下,可以确定进行上行链路波束扫描。下文将参考图6A至图6C具体描述BPL调整策略的示例。
在515处,可以根据BPL的调整策略形成BPL调整消息。在一个实施例中,BPL调整消息可以包括BPL调整所涉及的上行链路发射波束。根据系统设置,BPL调整消息的示例形式可以是1)反映调整后的BPL,或2)反映要调整的BPL。下文将参考图7A和图7B具体描述BPL调整消息的示例。
图6A至图6C示出了根据本公开实施例的几种示例的上行链路波束状态。以下参考图6A至图6C描述确定BPL调整策略的示例。
在图6A至图6C中,基站侧具有5个接收波束(记为601至605),终端设备侧具有5个发射波束(记为621至625)。在图6A的上行链路中,基站与终端设备之间仅具有单个激活的BPL并且不具有备选的匹配发射和接收波束。在该情况下,当例如在510处判断需要调整上行链路BPL时,可以确定进行上行链路波束扫描,以重新确定匹配的发射和接收波束,从而建立新的上行链路BPL。
在图6B的上行链路中,基站与终端设备之间可以具有多个(例如2个)激活的BPL。在情形(1)下,不同的发射波束(例如623和624)分别与不同的接收波束(例如602和604)形成单独的激活BPL(例如650和660)。在情形(2)下,不同的发射波束(例如623和624)分别与同一接收波束(例如602)形成单独的激活BPL(例如650和660),此即前述的接收波束对于多个发射波束重合的情形。在情形(3)下,同一发射波束(例如623)与不同的接收波束(例如602和603)分别形成单独的激活BPL(例如650和660),此即前述的发射波束对于多个接收波束重合的情形。在这些情况下,当例如在510处判断BPL650失效并且因此需要调整上行链路BPL时,可以首先确定取消BPL 650。此时,在未建立新的上行链路BPL之前,可以通过其他现有的BPL(例如BPL 660)进行通信。在确定取消BPL 650的同时或之后,也可以尝试通过其他匹配的发射和接收波束建立新的BPL。
在图6C的上行链路中,基站与终端设备之间可以同时具有一个或多个激活的BPL(例如650)以及一个或多个备用的匹配的发射和接收波束(可用于建立备用BPL(例如 660,如虚线所示))。在情形(1)下,激活BPL 650和备用BPL 660之间发射波束和接收波束均没有重合。在情形(2)下,激活BPL 650和备用BPL 660之间接收波束重合(均为接收波束602),即前述接收波束对于多个发射波束重合的情形。在情形(3)下,激活BPL650和备用BPL 660之间发射波束重合(均为发射波束623),即前述发射波束对于多个接收波束重合的情形。在这些情况下,当例如在510处判断这一个或多个激活BPL(例如BPL650)失效并且因此需要调整上行链路BPL时,由于此时存在备选的上行链路BPL,所以可以确定取消BPL 650并基于备选的配对发射和接收波束(例如624和604、623和602、以及623和602)建立新的上行链路BPL。
除了图6A至图6C示出的情形之外,可以存在多个激活BPL和/或备选发射接收波束并存的其他情形(例如不同情形中,激活BPL和备选发射接收波束的数量可能不同)。本领域技术人员可以不背离本公开教导的情况下构想用于确定BPL调整策略的另选形式,这些仍落在本公开的范围内。
图7A示出了根据本公开实施例的反映调整后BPL的示例BPL调整消息。在图7A中,BPL调整消息700具有经BPL调整策略调整后要使用的发射波束的信息(例如TX_Beam ID 1至3)。以图6C三种情形为例,相应的BPL调整消息中的TX_Beam ID 1至3可以分别对应发射波束624、622和623的标识信息。需注意的是,在图6C情形(3)下,BPL调整前后的发射波束一致,均为623。此时,BPL调整仅涉及基站侧接收波束的调整,并且不需要终端设备调整发射波束。因此,在一个实施例中,在该情形下,也可以不形成或者不发送BPL调整消息。
图7B示出了根据本公开实施例的反映要调整的BPL的示例BPL调整消息。在图7B中,BPL调整消息720具有BPL调整策略要调整的发射波束的信息(例如TX_Beam ID 1至3)以及如何调整这些发射波束的信息。例如,比特“1”可以表示使用该发射波束建立上行链路BPL,比特“0”可以表示取消该发射波束所对应的上行链路BPL。在图7B中,可以存在多个这种比特分别用于各个发射波束。在其他例子中,可以存在单个这种比特用于所有发射波束。在图6C的三种情形下,BPL调整消息可以是发射波束623的标识信息+“0”+发射波束624的标识信息+“1”、发射波束623的标识信息+“0”+发射波束622的标识信息+“1”和发射波束623的标识信息+“1”。需注意的是,在图6C情形(3)下,要取消的BPL 650和要建立的BPL 660的发射波束发生重合。由于BPL调整的结果是 仍然要使用发射波束623,因此BPL调整消息中不会包括与BPL 650对应的发射波束623的标识信息+“0”这样的信息。
在一个实施例中,除了BPL调整所涉及的上行链路发射波束之外,BPL调整消息还可以包括调整时间。该调整时间可以表示基站期望终端设备完成BPL调整的时间。在一个例子中,调整时间可以以子帧为单位。调整时间为m可以表示基站期望终端设备在当前子帧后的第m个子帧内完成BPL调整。应当理解,当m=0时,该调整时间可以表示基站期望终端设备在当前子帧内完成BPL调整。
在图7A和图7B所示的示例BPL调整消息中,通过波束信息(例如终端设备侧TX_Beam ID 1至3)来指示相应的上行链路BPL。然而,在本公开的实施例中,指示BPL的方式可以不限于此。例如,可以通过为各BPL加标签的方式来指示相应的BPL。在一个实施例中,为上行链路BPL所加的标签可以基于基站侧波束(接收波束)。在另一个实施例中,为上行链路BPL所加的标签可以基于终端设备侧波束(发射波束)。在又一个实施例中,为上行链路BPL所加的标签可以仅仅基于一定的次序,例如基于BPL建立的次序。虽然以下主要结合上行链路BPL描述加标签的实施例,但是可以理解,加标签的方式对于下行链路BPL而言同样适用。
图7C至图7E示出了分别与上述实施例相关的示例。在图7C至图7E中,终端设备侧发射波束“1”和“2”分别与基站侧接收波束“1”形成一个上行链路BPL(即接收波束对于发射波束重合的情形),终端设备侧发射波束“4”与基站侧接收波束“3”和“4”分别形成一个上行链路BPL(即发射波束对于接收波束重合的情形)。在图7C中,基于基站侧波束为上行链路BPL加标签(tag)。可以为基站侧波束相同的BPL加相同的标签。具体而言,可以为由基站侧波束“1”形成的两个BPL加相同的标签,例如tag=0。可以为由基站侧波束“3”和“4”形成的两个BPL分别加标签,例如tag=1和tag=2。这样加标签的结果如图7C中的标签映射表格所示。
在图7D中,基于终端设备侧波束为上行链路BPL加标签。可以为终端设备侧波束相同的BPL加相同的标签。具体而言,可以为由终端设备侧波束“4”形成的两个BPL加相同的标签,例如tag=2。可以为由终端设备侧波束“1”和“2”形成的两个BPL分别加标签,例如tag=0和tag=1。这样加标签的结果如图7D中的标签映射表格所示。
在图7E中,基于一定的次序(例如BPL建立次序)为上行链路BPL加标签。具体 而言,假设图7E中的4个BPL从左至右是依次建立的,那么可以分别对它们加标签为1至4。这样加标签的结果如图7E中的标签映射表格所示。
在无线通信系统中,基站侧和终端设备侧可以按照上述方式生成标签映射并且可以维护相应的标签映射表格。这使得能够通过BPL标签来在基站和终端设备之间指示BPL,并通过例如查找表格的方式获知相应的发射和/或接收波束进而进行调整等操作。该方式的一个优势在于可以节省指示BPL的信令开销,原因在于所建立的BPL的数量一般小于波束的数量,通过标签指示BPL相比通过波束标识信息能够节省比特开销。图7C和图7D的例子在该方面的优势更加明显。以图7C为例,通过波束标识信息指示BPL需要3个比特,而通过加标签的方式需要2个比特。在其他情况下,所节省的比特开销可能更加明显。这种开销节省对于相对频繁的DCI等底层信令而言是很有意义的。图7E的例子可以具有额外的优势,即使得在存在发射或接收波束重合的情况下,可以通过BPL标签来确定相应的发射和接收波束,从而对BPL进行区分。
应当理解,本领域技术人员可以在不背离本公开教导的情况下构想BPL调整消息的另选形式,这些仍落在本公开的范围内。
BPL调整的执行
根据本公开的实施例,在基站侧电子设备300作出上行链路BPL调整判断以及形成BPL调整策略之后,电子设备300可以单独或与终端设备侧电子设备一起执行BPL调整。
在一些实施例中,当BPL调整不涉及电子设备350的操作时(例如以上结合图6C情况(3)所描述的),电子设备300可以被配置为(例如通过操作单元306)在适当时间执行BPL调整。例如,电子设备300可以立即调整接收波束。
在一些实施例中,当BPL调整涉及电子设备350的操作时或者无论BPL调整是否涉及电子设备350的操作,电子设备300可以被配置为(例如通过操作单元306)在形成BPL调整消息之后,将该BPL调整消息指示给终端设备(例如电子设备350)。在一些实施例中,在BPL调整不涉及电子设备350的操作的情况下仍然向终端设备发送BPL调整消息会是有用的,例如用于辅助跟踪下行链路BPL,如下文具体描述的。一般而言,操作单元306可以通过当前激活的下行链路BPL将BPL调整消息发送给电子设备350,并且可以基于BPL调整策略(或者还考虑电子设备350对BPL调整消息的反馈)来执行相应的BPL调整。
相应地,电子设备350的接收单元356可以通过该当前激活的下行链路BPL接收BPL调整消息。在BPL调整消息经电子设备350(例如通过接收单元356)处理后,电子设备350可以向电子设备300发送ACK或NACK反馈信息。例如,如果BPL调整消息被正确接收,则电子设备350可以向电子设备300发送ACK反馈,并且基于BPL调整策略来执行相应的BPL调整;否则,发送NACK反馈,并且等待电子设备300重新发送BPL调整消息。
在一些实施例中,电子设备350基于BPL调整策略执行相应的BPL调整可以例如包括以下情形。在一个实施例中,电子设备350可以被配置为在BPL调整消息指示取消第一上行链路波束对链接的情况下,从该调整时间或某一特定时间起不再使用终端设备侧的第一发射波束进行发送,并且向基站发送对调整消息的反馈。进一步的,该反馈包括调整时间或特定时间。在一个实施例中,电子设备350可以被配置为在BPL调整消息指示基于备选的上行链路配对波束建立第二上行链路波束对链接的情况下,从该调整时间或某一特定时间起使用终端设备侧的第二发射波束进行发送,并且向基站发送对调整消息的反馈。进一步的,该反馈包括所述调整时间或特定时间。在一个实施例中,电子设备350可以被配置为在BPL调整消息指示进行上行链路波束扫描的情况下,进行上行链路波束扫描。
在一个实施例中,上述反馈信息可以由电子设备350通过当前激活的上行链路BPL发送。一般而言,在例如操作505中判断需要调整BPL所依赖的门限水平不是很低。因此,在作出调整判断时,当前激活BPL仍可以用于发送该反馈信息。这样,电子设备300可以尽早知道BPL调整消息发送成功,并且可以不再重发从而节省下行链路传输资源。在另一个实施例中,附加地或另选地,反馈信息还可以通过调整后的激活BPL发送。在通过先前激活的BPL发送反馈信息失败的情况下,这种做法可以有助于电子设备300成功接收到该反馈信息。在进一步的实施例中,在获取BPL调整消息的内容后,电子设备350可以被配置为确定BPL的调整时间n(其可以类似地表示当前子帧后的第n个子帧),并在调整时间时完成BPL调整。在一个实施例中,该n值可以等于或者不等于前述m值(例如n>m),电子设备350可以基于电子设备350的情况确定m值,并将该m值包括在反馈信息ACK中一起发送给电子设备300。通过这样的协商方式,电子设备300可以在m值所指示的时间完成上行链路BPL调整。
在一些实施例中,电子设备300在接收到ACK反馈信息的情况下,可以执行BPL调整(例如在上述协商的时间)。电子设备300在接收到NACK反馈信息的情况下,可以对 BPL调整消息进行HARQ重传。在一些情况下,在合理的等待时间(该合理时间例如可以基于HARQ重传间隔时间和/或允许的重传次数)之后,电子设备300可能仍然接收不到任何反馈信息。此时,可能需要更换、调整下行链路的BPL。例如,电子设备可能首先通过第一下行链路BPL的发射波束发送BPL调整命令。如果经过给定时间或者通过第一下行链路BPL发送达给定次数之后,电子设备300没有接收到终端设备对该调整命令的响应,则可以更换或调整为第二下行链路BPL来重新发送调整命令。在一个实施例中,第一下行链路BPL和第二下行链路BPL可以是接收波束重合的。此外,在电子设备300接收不到任何反馈信息的情况下,也可能需要触发恢复机制,以保证通信继续进行。图8A和图8B示出了根据本公开实施例的电子设备300的涉及该方面的示例操作。
在图8A中的开始出,电子设备300可以确定通过第一下行链路BPL(例如图8C中的下行链路BPL 801)发送上行链路BPL的调整消息。在805处,电子设备300可以通过BPL 801发送BPL调整消息。需说明的是,图8C是根据本公开实施例的下行链路BPL的示例。在图8C中,基站侧两个发射波束842和843分别与终端设备侧的同一接收波束893形成单独的激活BPL 801和802,即不同的BPL之间接收波束重合。在一些实施例中,BPL802可以仅是备选的下行链路BPL,而不必定是激活的。返回到图8A中,在810处,经过了HARQ重传间隔时间T1并且电子设备300没有接收到ACK反馈。此时,可以在815处判断是否经过了时间T2,该T2是考虑到重传间隔时间T1和HARQ重传次数N而确定的合理时间(例如,可以为T1×N或者稍大)。如果在815处判断为否,则返回到805,通过BPL 801重复发送BPL调整消息。否则,前进到825处判断对于BPL 801的接收波束893而言是否存在与发射波束842重合的另一发射波束。如果判断为是(例如图6C中的发射波束843),则可以通过发射波束843和接收波束893形成的下行链路BPL 802发送BPL调整消息。之后,返回到805重复上述过程。如果在825处判断为否,则可以在830处触发恢复处理,例如下行链路波束扫描或者通过双连接的转发操作等,如下文具体描述的。
图8B示出了另一个示例。在图8B中的开始出,电子设备300可以类似地确定通过图8C中的下行链路BPL 801发送上行链路BPL的调整消息。在855处,电子设备300可以通过BPL 801发送BPL调整消息。在860处,经过了HARQ重传间隔时间T1并且电子设备300没有接收到ACK反馈。此时,可以在865处判断BPL调整消息是否传送达HARQ重传次数N。如果在865处判断为否,则返回到855,通过BPL 801重复发送BPL调整消息。否则, 前进到875处判断对于BPL 801的接收波束893而言是否存在与发射波束842重合的另一发射波束。如果判断为是(例如图6C中的发射波束843),则可以通过发射波束843和接收波束893形成的下行链路BPL 802发送BPL调整消息。之后,返回到855重复上述过程。如果在875处判断为否,则可以在880处触发恢复处理。在一些例子中,图8A和图8B的示例可以结合使用。
在本公开的实施例中,电子设备350发送对BPL调整消息的反馈信息的一个作用在于:可以辅助电子设备300跟踪下行链路BPL的状态。这是因为,电子设备300能够接收到反馈信息(不论ACK还是NACK,如参考图8A和图8B所描述的)可以表明电子设备350必定已经接收到下行链路中的调整信息。反之,在一定程度上可以表明电子设备350可能没有接收到下行链路中的调整信息,下行链路BPL可能失效。这样,电子设备300在没有接收到反馈消息的情况下,可以对下行链路BPL进行适当调整。
在本公开的实施例中,在上行链路中匹配的发射波束和接收波束与下行链路中匹配的接收波束和发射波束对应(例如相同)的情况下,称上下行链路是具有波束对称性的。在一些实施例中,可以利用波束对称信息来辅助调整下行链路BPL。例如,在具有波束对称性的情况下,在电子设备300(例如通过判断单元304)判断需要调整第一BPL(以及相应的第一发射波束和接收波束)时,判断单元304可以确定该BPL在下行链路方向也质量不佳,并且可能需要调整。这样,电子设备300(例如通过操作单元306)可以通过第二BPL(以及相应的第二发射波束)发送调整命令。在一些实施例中,该满足波束对称性的操作可以与图8A和图8B的示例结合使用。
BPL恢复
终端设备侧发起的恢复处理
在一些情况下,终端设备侧电子设备350可以判断上行链路BPL失效,并发起上行链路恢复处理。在一个实施例中,电子设备350例如在给定时间内接收到多个相同的调整消息,此处的给定时间可能大于单个调整消息的正常发送时间。此时,电子设备350可以确定,基站侧电子设备300在单个调整消息的正常发送时间后仍然发送下行链路BPL,原因可能在于电子设备300没有接收到对调整消息的反馈信息,也即上行链路BPL已经失效。在该情况下,电子设备350可以例如通过执行随机接入过程来恢复上行链路BPL。图9A示出了用于终端设备侧发起的恢复处理的示例信令流程。当终端设备确定下行链路BPL失效 时,可以通过随机接入过程重新建立上行链路BPL。具体地,在1022处,终端设备可以发起随机接入过程。
基站侧发起的恢复处理
在一些实施例中,在例如使用激活的以及备选的下行链路BPL发送BPL调整信息后、仍不能接收到对BPL调整信息的反馈信息(例如发送BPL调整信息达给定次数和/或经给定时间之后)的情况下,基站侧电子设备300可以通过恢复处理发送BPL调整命令,如以下示例所描述的。
在一个实施例中,电子设备300可以通过下行链路参考信号波束扫描重新建立下行链路BPL,从而通过新的下行链路BPL发送BPL调整命令。图9B示出了用于基站侧发起的恢复处理的第一示例信令流程。当基站确定下行链路BPL失效时,可以通过下行链路波束扫描过程重新建立下行链路BPL。具体地,在1032处,基站可以发起与终端设备的下行链路波束扫描过程。
在另一个实施例中,电子设备300可以通过双连接(Dual Connectivity)的方式向终端设备侧电子设备350指示BPL调整消息。
双连接(Dual Connectivity)是使终端设备能够与多个基站通信,从而提高数据速率的技术。例如,终端设备可以维护与第一基站和第二基站两者的连接。在第一基站与终端设备通信的过程中,可以根据期望(例如期望提高数据速率)添加第二基站形成双连接,则第一基站成为主节点,第二基站成为辅节点。在一些情况下,主节点可以是LTE系统中的eNB(例如Master eNB),从基站可以是5G系统中的对应节点,例如是NR系统中的gNB(例如Secondary gNB)。相反的情况也可以适用。在一些实施例中,第一基站可以不限于是eNB,第二基站也可以不限于是gNB。例如,第一基站和第二基站可以是属于同一无线通信系统或者属于不同的无线通信系统的任何基站。通过双连接的方式向终端设备发送调整消息可以包括将该调整消息传递给通过双连接一起服务电子设备350的另一基站,该调整消息可以由该另一基站指示给电子设备350。具体操作可参考下文的信令流程描述。
图9C示出了用于基站侧发起的恢复处理的第二示例信令流程。当第一基站确定下行链路BPL失效时,可以通过与第一基站一起以双连接方式服务终端设备的第二基站向终端设备发送上行链路BPL调整消息。具体地,在1042处,第一基站可以将BPL调整消息发 送给上述第二基站。在第一基站实现为gNB而第二基站实现为eNB的示例中,gNB通过Xx接口发送包含BPL调整消息的回程信令给eNB;在第一基站实现为gNB而第二基站实现为另一gNB的示例中,第一基站通过Xn接口发送包含BPL调整消息的回程信令给第二基站。在1044处,第二基站可以将BPL调整消息转发给终端设备。优选地,第二基站对应于以eNB实现的主节点,从而可以服务于较大的覆盖范围并可能为在其覆盖范围内的多个gNB提供gNB与终端设备之间的波束管理支持。在1046处,经过接收以及相应处理后,终端设备可以向第一基站发送对BPL调整消息的反馈信息。通过双连接方式辅助恢复BPL的示例能够提高BPL恢复效率、减少通信中断时间。
应当理解,图9A至图9C仅仅是恢复处理的几个示例。本领域技术人员可以不背离本公开教导的情况下构想恢复处理的另选形式,这些仍落在本公开的范围内。
自包含子帧
在前述实施例中,BPL调整消息可以包括调整时间,该调整时间例如可以表示基站期望终端设备在当前子帧后的第m个子帧内完成BPL调整。当m=0时,该调整时间可以表示基站期望终端设备在当前子帧内完成BPL调整,以便快速恢复BPL。为了快速恢复BPL,在一个实施例中,可以在同一子帧内完成上行链路信号发送/监测、BPL调整消息发送/接收、以及对调整消息的反馈的发送/接收。图10示出了该情况下的一个示例子帧,上行链路信号、BPL调整消息和对BPL调整消息的反馈均包含在该子帧中。在一些实施例中,这种子帧可以称为自包含子帧。在另一个实施例中,可以在同一子帧内完成上行链路信号发送/监测、以及BPL调整消息发送/接收。在该例子中,上行链路信号和BPL调整消息均包含在该子帧中。在一些实施例中,这种子帧也可以称为自包含子帧。
应当理解,自包含子帧的使用需要满足一定的条件,即该子帧是终端设备发送探测参考信号(例如SRS)的子帧,其中该探测参考信号可以是周期性的,也可以是非周期性的。一般而言,波束调整的优先级高于其他业务的优先级,因此,在该子帧中,与关于波束调整的信息(例如BPL调整消息和对BPL调整消息的反馈)碰撞的下行链路信道和上行链路信道应当避让这些关于波束调整的信息。
示例性方法
图11A示出了根据本公开实施例的用于通信的示例方法。如图11A所示,该方法 1100可以包括监测上行链路信号状态(框1105),基于上行链路信号状态判断需要调整第一上行链路波束对链接,其中第一上行链路波束对链接包括终端设备侧的第一发射波束和基站侧的第一接收波束(框1110)。该方法1100还可以包括执行操作以便调整第一上行链路波束对链接(框1115)。该方法可以由电子设备300执行,该方法的详细示例操作可以参考上文关于电子设备300的操作和功能的描述,简单描述如下。
在一个实施例中,所执行的调整第一上行链路波束对链接的操作包括以下中的至少一者:调整基站侧的第一接收波束;和向终端设备发送指示对第一上行链路波束对链接调整的调整消息。
在一个实施例中,上行链路信号包括上行链路控制信号和上行链路参考信号中的至少一者,该方法还可以包括:在不能正确检测上行链路控制信号的情况下,判断需要调整第一上行链路波束对链接;和/或在参考信号接收功率低于预定门限的情况下,判断需要调整第一上行链路波束对链接。
在一个实施例中,该方法还可以包括:在不能正确检测上行链路控制信号达预定时间的情况下,判断需要调整第一上行链路波束对链接;和/或在参考信号接收功率低于预定门限达预定时间的情况下,判断需要调整第一上行链路波束对链接。
在一个实施例中,上行链路参考信号与上行链路控制信号是准共址的,并以终端设备侧的第一发射波束被发送。
在一个实施例中,该方法还可以包括基于上行链路波束状态,通过以下操作至少之一确定上行链路波束对链接调整策略:在存在多个激活的上行链路波束对链接的情况下,确定取消第一上行链路波束对链接;在存在备选的上行链路配对波束的情况下,确定基于备选的上行链路配对波束建立第二上行链路波束对链接;以及在其他情况下,确定进行上行链路波束扫描。
在一个实施例中,调整消息包括调整所涉及的上行链路发射波束,或者包括调整所涉及的上行链路发射波束和调整时间。
在一个实施例中,该方法还可以包括:在以基站侧第一发射波束发送调整消息达给定次数或经给定时间之后未接收到终端设备对所述调整消息的反馈的情况下,以基站侧第二发射波束发送调整消息,其中基站侧第一发射波束和第二发射波束二者与终端设备侧的 同一接收波束匹配;和/或在满足波束对称性的情况下,变更基站侧发射波束以发送调整消息。
在一个实施例中,该方法还可以包括:在以基站侧发射波束发送调整消息达给定次数和/或经给定时间之后未接收到终端设备对调整消息的反馈的情况下,通过以下至少一者发送调整消息:通过下行链路参考信号波束扫描重新建立下行链路波束对链接,从而发送调整消息;以及通过双连接的方式向终端设备发送调整消息。
在一个实施例中,通过双连接的方式向终端设备发送调整消息包括将调整消息传递给通过双连接一起服务终端设备的另一基站,调整消息由该另一基站指示给终端设备。
在一个实施例中,该方法还可以包括:接收来自终端设备的对调整消息的反馈,以及:在同一子帧内完成监测上行链路信号、发送调整消息以及接收对调整消息的反馈,或者在同一子帧内完成监测上行链路信号以及发送调整消息。
图11B示出了根据本公开实施例的用于通信的另一示例方法。如图11B所示,该方法1150可以包括通过第一上行链路波束对链接发送上行链路信号,其中第一上行链路波束对链接包括终端设备侧的第一发射波束和基站侧的第一接收波束(框1255)。该方法1150还可以包括接收来自基站的指示对第一上行链路波束对链接调整的调整消息(框1260)。该方法可以由电子设备350执行,该方法的详细示例操作可以参考上文关于电子设备350的操作和功能的描述,简单描述如下。
在一个实施例中,调整消息包括调整所涉及的上行链路发射波束,或者包括调整所涉及的上行链路发射波束和调整时间。
在一个实施例中,上行链路信号包括上行链路控制信号和上行链路参考信号中的至少一者,上行链路控制信号在不能被正确检测的情况下,使得基站判断需要调整第一上行链路波束对链接;和/或上行链路参考信号在接收功率低于预定门限的情况下,使得基站判断需要调整第一上行链路波束对链接。
在一个实施例中,上行链路参考信号与上行链路控制信号是准共址的,并以终端设备侧的第一发射波束被发送。
在一个实施例中,上行链路参考信号分别以终端设备侧的第一发射波束和备选的第二发射波束发送,以跟踪第一发射波束和备选的第二发射波束的状态,并且第一发射波束 的发送频率大于第二发射波束的发送频率。
在一个实施例中,该方法还可以包括:在调整消息指示取消第一上行链路波束对链接的情况下,从调整时间或某一特定时间起不再使用终端设备侧的第一发射波束进行发送,并且向基站发送对调整消息的反馈,其中,该反馈包括该调整时间或特定时间。
在一个实施例中,该方法还可以包括:在调整消息指示基于备选的上行链路配对波束建立第二上行链路波束对链接的情况下,从调整时间或某一特定时间起使用终端设备侧的第二发射波束进行发送,并且向基站发送对调整消息的反馈,其中,该反馈包括该调整时间或特定时间。
在一个实施例中,该方法还可以包括:在调整消息指示进行上行链路波束扫描的情况下,进行上行链路波束扫描,并且向基站发送对所述调整消息的响应。
在一个实施例中,该方法还可以包括:在同一子帧内完成发送上行链路信号、接收调整消息以及发送对调整消息的反馈,或者在同一子帧内完成发送上行链路信号以及接收调整消息。
在一个实施例中,该方法还可以包括:在给定时间内接收到多个相同调整消息的情况下,执行随机接入过程以恢复上行链路。
用于终端设备侧的另一电子设备示例
图12A示出了根据本公开实施例的用于终端设备侧的示例性电子设备,其中该终端设备可以用于各种无线通信系统。图12A所示的电子设备1200的各个方面可以与前述电子设备350类似。例如,电子设备1200可以包括类似的发送单元352和接收单元356。另外,电子设备1200还可以包括反馈单元354,在一个实施例中,反馈单元354可以被配置为向基站发送对BPL调整消息的反馈。
图12B示出了根据本公开实施例的用于电子设备1200的示例方法。如图12B所示,该方法1250可以与前述方法1150类似。例如,该方法1250可以包括通过第一上行链路波束对链接发送上行链路信号(框1255)以及接收来自基站的指示对第一上行链路波束对链接调整的调整消息(框1260)。另外,该方法1250还可以包括向基站发送对BPL调整消息的反馈。
应当理解,电子设备1200和相应的方法1250的更多细节可以参考上文关于电子设 备350和方法1150的详细描述,因此不再重复。
以上分别描述了根据本公开实施例的各示例性电子设备和方法。应当理解,这些电子设备的操作或功能可以相互组合,从而实现比所描述的更多或更少的操作或功能。各方法的操作步骤也可以以任何适当的顺序相互组合,从而类似地实现比所描述的更多或更少的操作。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图13所示的通用个人计算机1300安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。图13是示出作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图。在一个例子中,该个人计算机可以对应于根据本公开的上述示例性终端设备。
在图13中,中央处理单元(CPU)1301根据只读存储器(ROM)1302中存储的程序或从存储部分1308加载到随机存取存储器(RAM)1303的程序执行各种处理。在RAM 1303中,也根据需要存储当CPU 1301执行各种处理等时所需的数据。
CPU 1301、ROM 1302和RAM 1303经由总线1304彼此连接。输入/输出接口1305也连接到总线1304。
下述部件连接到输入/输出接口1305:输入部分1306,包括键盘、鼠标等;输出部分1307,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分1308,包括硬盘等;和通信部分1309,包括网络接口卡比如LAN卡、调制解调器等。通信部分1309经由网络比如因特网执行通信处理。
根据需要,驱动器1310也连接到输入/输出接口1305。可拆卸介质1311比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1310上,使得从中读出的计算 机程序根据需要被安装到存储部分1308中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1311安装构成软件的程序。
本领域技术人员应当理解,这种存储介质不局限于图13所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1311。可拆卸介质1311的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1302、存储部分1308中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本公开的技术能够应用于各种产品。例如,本公开中提到的基站可以被实现为任何类型的演进型节点B(gNB),诸如宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的终端设备在一些示例中也称为用户设备,可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以下将参照图14至图17描述根据本公开的应用示例。
[关于基站的应用示例]
应当理解,本公开中的基站一词具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的例子可以例如是但不限于以下:基站可以是GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中 的一者或两者,可以是WCDMA系统中的无线电网络控制器(RNC)和Node B中的一者或两者,可以是LTE和LTE-Advanced系统中的eNB,或者可以是未来通信系统中对应的网络节点(例如可能在5G通信系统中出现的gNB,eLTE eNB等等)。本公开的基站中的部分功能也可以实现为在D2D、M2M以及V2V通信场景下对通信具有控制功能的实体,或者实现为在认知无线电通信场景下起频谱协调作用的实体。
第一应用示例
图14是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 1400包括多个天线1410以及基站设备1420。基站设备1420和每个天线1410可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1400(或基站设备1420)可以对应于上述电子设备300A、1300A和/或1500B。
天线1410中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1420发送和接收无线信号。如图14所示,gNB1400可以包括多个天线1410。例如,多个天线1410可以与gNB 1400使用的多个频段兼容。
基站设备1420包括控制器1421、存储器1422、网络接口1423以及无线通信接口1425。
控制器1421可以为例如CPU或DSP,并且操作基站设备1420的较高层的各种功能。例如,控制器1421根据由无线通信接口1425处理的信号中的数据来生成数据分组,并经由网络接口1423来传递所生成的分组。控制器1421可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1421可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1422包括RAM和ROM,并且存储由控制器1421执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1423为用于将基站设备1420连接至核心网1424的通信接口。控制器1421可以经由网络接口1423而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1400与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1423还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1423 为无线通信接口,则与由无线通信接口1425使用的频段相比,网络接口1423可以使用较高频段用于无线通信。
无线通信接口1425支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1410来提供到位于gNB 1400的小区中的终端的无线连接。无线通信接口1425通常可以包括例如基带(BB)处理器1426和RF电路1427。BB处理器1426可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1421,BB处理器1426可以具有上述逻辑功能的一部分或全部。BB处理器1426可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1426的功能改变。该模块可以为插入到基站设备1420的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1427可以包括例如混频器、滤波器和放大器,并且经由天线1410来传送和接收无线信号。虽然图14示出一个RF电路1427与一根天线1410连接的示例,但是本公开并不限于该图示,而是一个RF电路1427可以同时连接多根天线1410。
如图14所示,无线通信接口1425可以包括多个BB处理器1426。例如,多个BB处理器1426可以与gNB 1400使用的多个频段兼容。如图14所示,无线通信接口1425可以包括多个RF电路1427。例如,多个RF电路1427可以与多个天线元件兼容。虽然图14示出其中无线通信接口1425包括多个BB处理器1426和多个RF电路1427的示例,但是无线通信接口1425也可以包括单个BB处理器1426或单个RF电路1427。
第二应用示例
图15是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 1530包括多个天线1540、基站设备1550和RRH 1560。RRH 1560和每个天线1540可以经由RF线缆而彼此连接。基站设备1550和RRH 1560可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 1530(或基站设备1550)可以对应于上述电子设备300A、1300A和/或1500B。
天线1540中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1560发送和接收无线信号。如图15所示,gNB 1530可以包括多个天线1540。例如,多个天线1540可以与gNB 1530使用的多个频段兼容。
基站设备1550包括控制器1551、存储器1552、网络接口1553、无线通信接口1555以及连接接口1557。控制器1551、存储器1552和网络接口1553与参照图14描述的控制器1421、存储器1422和网络接口1423相同。
无线通信接口1555支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH1560和天线1540来提供到位于与RRH 1560对应的扇区中的终端的无线通信。无线通信接口1555通常可以包括例如BB处理器1556。除了BB处理器1556经由连接接口1557连接到RRH 1560的RF电路1564之外,BB处理器1556与参照图14描述的BB处理器1426相同。如图15所示,无线通信接口1555可以包括多个BB处理器1556。例如,多个BB处理器1556可以与gNB 1530使用的多个频段兼容。虽然图15示出其中无线通信接口1555包括多个BB处理器1556的示例,但是无线通信接口1555也可以包括单个BB处理器1556。
连接接口1557为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的接口。连接接口1557还可以为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的上述高速线路中的通信的通信模块。
RRH 1560包括连接接口1561和无线通信接口1563。
连接接口1561为用于将RRH 1560(无线通信接口1563)连接至基站设备1550的接口。连接接口1561还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1563经由天线1540来传送和接收无线信号。无线通信接口1563通常可以包括例如RF电路1564。RF电路1564可以包括例如混频器、滤波器和放大器,并且经由天线1540来传送和接收无线信号。虽然图15示出一个RF电路1564与一根天线1540连接的示例,但是本公开并不限于该图示,而是一个RF电路1564可以同时连接多根天线1540。
如图15所示,无线通信接口1563可以包括多个RF电路1564。例如,多个RF电路1564可以支持多个天线元件。虽然图15示出其中无线通信接口1563包括多个RF电路1564的示例,但是无线通信接口1563也可以包括单个RF电路1564。
[关于用户设备的应用示例]
第一应用示例
图16是示出可以应用本公开内容的技术的智能电话1600的示意性配置的示例的框 图。智能电话1600包括处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612、一个或多个天线开关1615、一个或多个天线1616、总线1617、电池1618以及辅助控制器1619。在一种实现方式中,此处的智能电话1600(或处理器1601)可以对应于上述终端设备300B和/或1500A。
处理器1601可以为例如CPU或片上系统(SoC),并且控制智能电话1600的应用层和另外层的功能。存储器1602包括RAM和ROM,并且存储数据和由处理器1601执行的程序。存储装置1603可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1604为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1600的接口。
摄像装置1606包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1607可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1608将输入到智能电话1600的声音转换为音频信号。输入装置1609包括例如被配置为检测显示装置1610的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1610包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1600的输出图像。扬声器1611将从智能电话1600输出的音频信号转换为声音。
无线通信接口1612支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1612通常可以包括例如BB处理器1613和RF电路1614。BB处理器1613可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1614可以包括例如混频器、滤波器和放大器,并且经由天线1616来传送和接收无线信号。无线通信接口1612可以为其上集成有BB处理器1613和RF电路1614的一个芯片模块。如图16所示,无线通信接口1612可以包括多个BB处理器1613和多个RF电路1614。虽然图16示出其中无线通信接口1612包括多个BB处理器1613和多个RF电路1614的示例,但是无线通信接口1612也可以包括单个BB处理器1613或单个RF电路1614。
此外,除了蜂窝通信方案之外,无线通信接口1612可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1612可以包括针对每种无线通信方案的BB处理器1613和RF电路1614。
天线开关1615中的每一个在包括在无线通信接口1612中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1616的连接目的地。
天线1616中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1612传送和接收无线信号。如图16所示,智能电话1600可以包括多个天线1616。虽然图16示出其中智能电话1600包括多个天线1616的示例,但是智能电话1600也可以包括单个天线1616。
此外,智能电话1600可以包括针对每种无线通信方案的天线1616。在此情况下,天线开关1615可以从智能电话1600的配置中省略。
总线1617将处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612以及辅助控制器1619彼此连接。电池1618经由馈线向图16所示的智能电话1600的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1619例如在睡眠模式下操作智能电话1600的最小必需功能。
第二应用示例
图17是示出可以应用本公开内容的技术的汽车导航设备1720的示意性配置的示例的框图。汽车导航设备1720包括处理器1721、存储器1722、全球定位系统(GPS)模块1724、传感器1725、数据接口1726、内容播放器1727、存储介质接口1728、输入装置1729、显示装置1730、扬声器1731、无线通信接口1733、一个或多个天线开关1736、一个或多个天线1737以及电池1738。在一种实现方式中,此处的汽车导航设备1720(或处理器1721)可以对应于上述终端设备300B和/或1500A。
处理器1721可以为例如CPU或SoC,并且控制汽车导航设备1720的导航功能和另外的功能。存储器1722包括RAM和ROM,并且存储数据和由处理器1721执行的程序。
GPS模块1724使用从GPS卫星接收的GPS信号来测量汽车导航设备1720的位置(诸如纬度、经度和高度)。传感器1725可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1726经由未示出的终端而连接到例如车载网络1741,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1727再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被 插入到存储介质接口1728中。输入装置1729包括例如被配置为检测显示装置1730的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1730包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1731输出导航功能的声音或再现的内容。
无线通信接口1733支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1733通常可以包括例如BB处理器1734和RF电路1735。BB处理器1734可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1735可以包括例如混频器、滤波器和放大器,并且经由天线1737来传送和接收无线信号。无线通信接口1733还可以为其上集成有BB处理器1734和RF电路1735的一个芯片模块。如图17所示,无线通信接口1733可以包括多个BB处理器1734和多个RF电路1735。虽然图17示出其中无线通信接口1733包括多个BB处理器1734和多个RF电路1735的示例,但是无线通信接口1733也可以包括单个BB处理器1734或单个RF电路1735。
此外,除了蜂窝通信方案之外,无线通信接口1733可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1733可以包括BB处理器1734和RF电路1735。
天线开关1736中的每一个在包括在无线通信接口1733中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1737的连接目的地。
天线1737中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1733传送和接收无线信号。如图17所示,汽车导航设备1720可以包括多个天线1737。虽然图17示出其中汽车导航设备1720包括多个天线1737的示例,但是汽车导航设备1720也可以包括单个天线1737。
此外,汽车导航设备1720可以包括针对每种无线通信方案的天线1737。在此情况下,天线开关1736可以从汽车导航设备1720的配置中省略。
电池1738经由馈线向图17所示的汽车导航设备1720的各个块提供电力,馈线在图中被部分地示为虚线。电池1738累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备1720、车载网络1741以及车 辆模块1742中的一个或多个块的车载系统(或车辆)1740。车辆模块1742生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1741。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (27)

  1. 一种用于无线通信系统中的基站侧的电子设备,包括处理电路系统,所述处理电路系统被配置为:
    监测上行链路信号状态;
    基于上行链路信号状态判断需要调整第一上行链路波束对链接,其中,第一上行链路波束对链接包括终端设备侧的第一发射波束和基站侧的第一接收波束;以及
    执行操作,以便调整第一上行链路波束对链接。
  2. 如权利要求1所述的电子设备,其中,所述操作包括以下中的至少一者:
    调整基站侧的第一接收波束;和
    向终端设备发送指示对第一上行链路波束对链接调整的调整消息。
  3. 如权利要求1或2所述的电子设备,其中,所述上行链路信号包括上行链路控制信号和上行链路参考信号中的至少一者,所述处理电路系统还被配置为:
    在不能正确检测所述上行链路控制信号的情况下,判断需要调整第一上行链路波束对链接;和/或
    在参考信号接收功率低于预定门限的情况下,判断需要调整第一上行链路波束对链接。
  4. 如权利要求3所述的电子设备,其中,所述处理电路系统还被配置为:
    在不能正确检测所述上行链路控制信号达预定时间的情况下,判断需要调整第一上行链路波束对链接;和/或
    在参考信号接收功率低于预定门限达预定时间的情况下,判断需要调整第一上行链路波束对链接。
  5. 如权利要求3所述的电子设备,其中,所述上行链路参考信号与所述上行链路控制信号是准共址的,并以终端设备侧的第一发射波束被发送。
  6. 如权利要求3所述的电子设备,其中,所述处理电路系统还被配置为基于上行链路波束状态,通过以下操作至少之一确定上行链路波束对链接调整策略:
    在存在多个激活的上行链路波束对链接的情况下,确定取消第一上行链路波束对链接;
    在存在备选的上行链路配对波束的情况下,确定基于所述备选的上行链路配对波束建立第二上行链路波束对链接;以及
    在其他情况下,确定进行上行链路波束扫描。
  7. 如权利要求6所述的电子设备,其中,所述调整消息包括调整所涉及的上行链路发射波束,或者包括调整所涉及的上行链路发射波束和调整时间。
  8. 如权利要求2述的电子设备,其中,所述处理电路系统还被配置为:
    在以基站侧第一发射波束发送所述调整消息达给定次数或经给定时间之后未接收到终端设备对所述调整消息的反馈的情况下,以基站侧第二发射波束发送所述调整消息,其中基站侧第一发射波束和第二发射波束二者与终端设备侧的同一接收波束匹配;和/或
    在满足波束对称性的情况下,变更基站侧发射波束以发送所述调整消息。
  9. 如权利要求8所述的电子设备,其中,所述处理电路系统还被配置为在以基站侧发射波束发送所述调整消息达给定次数和/或经给定时间之后未接收到终端设备对所述调整消息的反馈的情况下,通过以下至少一者发送所述调整消息:
    通过下行链路参考信号波束扫描重新建立下行链路波束对链接,从而发送所述调整 消息;以及
    通过双连接的方式向终端设备发送所述调整消息。
  10. 如权利要求9所述的电子设备,其中,通过双连接的方式向终端设备发送所述调整消息包括将所述调整消息传递给通过双连接一起服务终端设备的另一基站,所述调整消息由所述另一基站指示给终端设备。
  11. 如权利要求2所述的电子设备,所述处理电路系统还被配置为接收来自终端设备的对所述调整消息的反馈,并且被配置为:
    在同一子帧内完成监测上行链路信号、发送所述调整消息以及接收对所述调整消息的反馈;或者
    在同一子帧内完成监测上行链路信号以及发送所述调整消息。
  12. 一种用于无线通信系统中的终端设备侧的电子设备,包括处理电路系统,所述处理电路系统被配置为:
    通过第一上行链路波束对链接发送上行链路信号,其中,第一上行链路波束对链接包括终端设备侧的第一发射波束和基站侧的第一接收波束;以及
    接收来自基站的指示对第一上行链路波束对链接调整的调整消息。
  13. 如权利要求12所述的电子设备,其中,所述调整消息包括调整所涉及的上行链路发射波束,或者包括调整所涉及的上行链路发射波束和调整时间。
  14. 如权利要求12或13所述的电子设备,其中,所述上行链路信号包括上行链路控制信号和上行链路参考信号中的至少一者,
    所述上行链路控制信号在不能被正确检测的情况下,使得基站判断需要调整第一上 行链路波束对链接;和/或
    所述上行链路参考信号在接收功率低于预定门限的情况下,使得基站判断需要调整第一上行链路波束对链接。
  15. 如权利要求14所述的电子设备,其中,所述上行链路参考信号与所述上行链路控制信号是准共址的,并以终端设备侧的第一发射波束被发送。
  16. 如权利要求14所述的电子设备,其中,所述上行链路参考信号分别以终端设备侧的第一发射波束和备选的第二发射波束发送,以跟踪第一发射波束和备选的第二发射波束的状态,并且第一发射波束的发送频率大于第二发射波束的发送频率。
  17. 如权利要求14所述的电子设备,其中,所述处理电路系统还被配置为:
    在所述调整消息指示取消第一上行链路波束对链接的情况下,从所述调整时间或某一特定时间起不再使用终端设备侧的第一发射波束进行发送,并且向基站发送对所述调整消息的反馈,其中,该反馈包括所述调整时间或特定时间。
  18. 如权利要求14所述的电子设备,其中,所述处理电路系统还被配置为:
    在所述调整消息指示基于所述备选的上行链路配对波束建立第二上行链路波束对链接的情况下,从所述调整时间或某一特定时间起使用终端设备侧的第二发射波束进行发送,并且向基站发送对所述调整消息的反馈,其中,该反馈包括所述调整时间或特定时间。
  19. 如权利要求14所述的电子设备,其中,所述处理电路系统还被配置为:
    在所述调整消息指示进行上行链路波束扫描的情况下,进行上行链路波束扫描,并且向基站发送对所述调整消息的响应。
  20. 如权利要求17至19中任一项所述的电子设备,其中,所述处理电路系统还被配置为:
    在同一子帧内完成发送上行链路信号、接收所述调整消息以及发送对所述调整消息的反馈;或者
    在同一子帧内完成发送上行链路信号以及接收所述调整消息。
  21. 如权利要求17至19中任一项所述的电子设备,其中,所述处理电路系统还被配置为在给定时间内接收到多个相同调整消息的情况下,执行随机接入过程以恢复上行链路。
  22. 一种用于无线通信系统中的终端设备侧的电子设备,包括处理电路系统,所述处理电路系统被配置为:
    通过第一上行链路波束对链接发送上行链路信号,其中,第一上行链路波束对链接包括终端设备侧的第一发射波束和基站侧的第一接收波束;
    接收来自基站的指示对第一上行链路波束对链接调整的调整消息;以及
    向基站发送对所述调整消息的反馈。
  23. 一种无线通信方法,包括:
    监测上行链路信号状态;
    基于上行链路信号状态判断需要调整第一上行链路波束对链接,其中,第一上行链路波束对链接包括终端设备侧的第一发射波束和基站侧的第一接收波束;以及
    执行操作,以便调整第一上行链路波束对链接。
  24. 一种无线通信方法,包括:
    通过第一上行链路波束对链接发送上行链路信号,其中,第一上行链路波束对链接包括终端设备侧的第一发射波束和基站侧的第一接收波束;以及
    接收来自基站的指示对第一上行链路波束对链接调整的调整消息。
  25. 一种无线通信方法,包括:
    通过第一上行链路波束对链接发送上行链路信号,其中,第一上行链路波束对链接包括终端设备侧的第一发射波束和基站侧的第一接收波束;
    接收来自基站的指示对第一上行链路波束对链接调整的调整消息;以及
    向基站发送对所述调整消息的反馈。
  26. 一种存储有一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理器执行时使该电子设备执行根据权利要求23、24或25所述的方法。
  27. 一种用于无线通信系统中的装置,包括用于执行如权利要求23、24或25所述的方法的操作的部件。
PCT/CN2018/104497 2017-09-12 2018-09-07 用于无线通信系统的电子设备、方法和存储介质 WO2019052400A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/640,731 US11265069B2 (en) 2017-09-12 2018-09-07 Electronic device, method and storage medium for wireless communication system
EP18855724.3A EP3683978A4 (en) 2017-09-12 2018-09-07 ELECTRONIC DEVICE AND METHOD FOR RADIO COMMUNICATION SYSTEM, AND INFORMATION MEDIA
CN201880057485.4A CN111052628B (zh) 2017-09-12 2018-09-07 用于无线通信系统的电子设备、方法和存储介质
JP2020512046A JP7192855B2 (ja) 2017-09-12 2018-09-07 無線通信システムに用いられる電気機器、方法及び記憶媒体
KR1020207007305A KR20200054198A (ko) 2017-09-12 2018-09-07 무선 통신 시스템을 위한 전자 디바이스 및 방법, 및 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710814633.XA CN109495151A (zh) 2017-09-12 2017-09-12 用于无线通信系统的电子设备、方法和存储介质
CN201710814633.X 2017-09-12

Publications (1)

Publication Number Publication Date
WO2019052400A1 true WO2019052400A1 (zh) 2019-03-21

Family

ID=65688772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104497 WO2019052400A1 (zh) 2017-09-12 2018-09-07 用于无线通信系统的电子设备、方法和存储介质

Country Status (6)

Country Link
US (1) US11265069B2 (zh)
EP (1) EP3683978A4 (zh)
JP (1) JP7192855B2 (zh)
KR (1) KR20200054198A (zh)
CN (2) CN109495151A (zh)
WO (1) WO2019052400A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111212478A (zh) * 2019-12-30 2020-05-29 深圳前海达闼云端智能科技有限公司 确定通信资源的方法、装置、存储介质及电子设备
WO2022052027A1 (en) * 2020-09-11 2022-03-17 Qualcomm Incorporated Beam indications for a single frequency network (sfn)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11683106B2 (en) * 2019-03-13 2023-06-20 Apple Inc. Dynamic antenna selection and beam steering
BR112022013130A2 (pt) * 2020-01-21 2022-09-06 Zte Corp Sistemas e métodos para projeto e configuração de sinalização de referência em redes de comunicação sem fio
CN115243334B (zh) * 2020-09-02 2024-05-14 北京小米移动软件有限公司 调整指示方法和装置、通信链路调整方法和装置
US11758536B2 (en) * 2020-12-29 2023-09-12 Qualcomm Incorporated Sidelink FR2 beam alignment over data slots
WO2023010563A1 (zh) * 2021-08-06 2023-02-09 Oppo广东移动通信有限公司 一种无线通信方法及装置、终端设备、网络设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105871437A (zh) * 2016-04-26 2016-08-17 深圳前海智讯中联科技有限公司 一种多波束选择智能天线通信系统
CN105959966A (zh) * 2016-04-26 2016-09-21 深圳前海智讯中联科技有限公司 一种多波束选择智能天线通信装置及其通信方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101995266B1 (ko) 2012-08-17 2019-07-02 삼성전자 주식회사 빔포밍을 이용한 시스템에서 시스템 액세스 방법 및 장치
KR102171561B1 (ko) * 2014-04-07 2020-10-29 삼성전자주식회사 빔포밍 기반 셀룰러 시스템의 상향링크 빔 추적 방법 및 장치
US10700752B2 (en) 2016-01-14 2020-06-30 Samsung Electronics Co., Ltd. System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system
US20180249394A1 (en) * 2017-02-27 2018-08-30 Telefonaktiebolaget Lm Ericsson (Publ) Handling of beam link failure
EP3523885A1 (en) * 2017-07-04 2019-08-14 Telefonaktiebolaget LM Ericsson (PUBL) Ue rx beam switching during ue beam training

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105871437A (zh) * 2016-04-26 2016-08-17 深圳前海智讯中联科技有限公司 一种多波束选择智能天线通信系统
CN105959966A (zh) * 2016-04-26 2016-09-21 深圳前海智讯中联科技有限公司 一种多波束选择智能天线通信装置及其通信方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Details for UL Beam Management", 3GPP TSG-RAN WG1 #88BIS R1-1704723, XP051251451 *
"Details for UL Beam Management", 3GPP TSG-RAN WG1 #88BIS R1-1707354, 19 May 2017 (2017-05-19), XP051272566 *
"Details for UL Beam Management", 3GPP TSG-RAN WG1 NR ADHOC #2 R1-1710525, 30 June 2017 (2017-06-30), XP051299732 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111212478A (zh) * 2019-12-30 2020-05-29 深圳前海达闼云端智能科技有限公司 确定通信资源的方法、装置、存储介质及电子设备
WO2022052027A1 (en) * 2020-09-11 2022-03-17 Qualcomm Incorporated Beam indications for a single frequency network (sfn)

Also Published As

Publication number Publication date
KR20200054198A (ko) 2020-05-19
EP3683978A1 (en) 2020-07-22
CN111052628A (zh) 2020-04-21
US11265069B2 (en) 2022-03-01
CN111052628B (zh) 2023-10-03
CN109495151A (zh) 2019-03-19
JP2020533842A (ja) 2020-11-19
US20200186231A1 (en) 2020-06-11
JP7192855B2 (ja) 2022-12-20
EP3683978A4 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
CN111052628B (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2020108473A1 (zh) 电子设备、通信方法和存储介质
CN111183706A (zh) 在双重连通中使能非活跃模式的gNB的装置
WO2020029950A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
US11101850B2 (en) Electronic device and communication method
WO2019205997A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021139669A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2021088797A1 (zh) 网络侧设备、终端侧设备、通信方法、通信装置以及介质
US11412491B2 (en) Communication control device, communication control method, and terminal device
WO2017076215A1 (zh) 无线通信系统中的电子设备、用户设备和无线通信方法
JP6872116B2 (ja) 無線通信装置、情報処理方法およびプログラム
WO2021031882A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2022161441A1 (zh) 无线通信系统中的电子设备和方法
WO2022194082A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20210227425A1 (en) Communication apparatus
WO2021027802A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2022017303A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2023134528A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022206720A1 (zh) 电子设备、通信方法、存储介质和计算机程序产品
WO2023134717A1 (zh) 用于波束失败恢复的设备、方法和介质
WO2023221913A1 (zh) 用于指示tci状态的方法及相关设备
JP7424317B2 (ja) 通信装置、通信方法、及びプログラム
WO2022083525A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512046

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018855724

Country of ref document: EP

Effective date: 20200414