WO2021027802A1 - 用于无线通信系统的电子设备、方法和存储介质 - Google Patents

用于无线通信系统的电子设备、方法和存储介质 Download PDF

Info

Publication number
WO2021027802A1
WO2021027802A1 PCT/CN2020/108364 CN2020108364W WO2021027802A1 WO 2021027802 A1 WO2021027802 A1 WO 2021027802A1 CN 2020108364 W CN2020108364 W CN 2020108364W WO 2021027802 A1 WO2021027802 A1 WO 2021027802A1
Authority
WO
WIPO (PCT)
Prior art keywords
cca
electronic device
beams
directional
multiple beams
Prior art date
Application number
PCT/CN2020/108364
Other languages
English (en)
French (fr)
Inventor
曹建飞
崔焘
Original Assignee
索尼公司
曹建飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 曹建飞 filed Critical 索尼公司
Priority to CN202080056374.9A priority Critical patent/CN114208379A/zh
Publication of WO2021027802A1 publication Critical patent/WO2021027802A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present disclosure generally relates to wireless communication systems, and specifically relates to a directional carrier sensing mechanism for unlicensed frequency bands in wireless communication systems.
  • unlicensed frequency bands may be used for transmission.
  • Different types of systems such as NR systems, WiFi systems, etc.
  • the transmitter of any system needs to do carrier monitoring before using the unlicensed spectrum to determine the current time of the spectrum. Whether it is being occupied.
  • FR1 low frequency band
  • the receiving beam for example, omnidirectional beam
  • FR1 low frequency band
  • the receiving beam for example, omnidirectional beam
  • beamforming directional beams are generally used for transmission.
  • the beamforming technology concentrates the power of the transmitted signal on certain specific In the direction of space, it can achieve better signal coverage to combat path loss.
  • a receiving beam with a wider spatial coverage for example, an omnidirectional beam
  • carrier sense operations may result in some waste Opportunity to use specific beam communication in the direction.
  • the present disclosure proposes a directional idle channel assessment solution, so as to perform idle channel assessment in the direction of the directional beam, so that it is convenient to use the beam in a specific direction for communication.
  • the present disclosure provides an electronic device, method, and storage medium used in a wireless communication system.
  • One aspect of the present disclosure relates to an electronic device used in a wireless communication system, including: a processing circuit configured to: use an unlicensed frequency band for communication; and perform directional clear channel assessment CCA on multiple beams, based on directional CCA Select beams for transmission as a result of the following operations: perform directional CCA on the multiple beams: perform initial CCA on one of the multiple beams; if the initial CCA passes, select to pass The beam of the initial CCA is transmitted; and if the initial CCA fails, a further CCA is performed for one or more of the multiple beams.
  • Another aspect of the present disclosure relates to a method for a wireless communication system, including: a processing circuit configured to: use an unlicensed frequency band for communication; and perform a directional clear channel assessment CCA on multiple beams, based on the directional CCA Select beams for transmission as a result of the following operations: perform directional CCA on the multiple beams: perform initial CCA on one of the multiple beams; if the initial CCA passes, select to pass The beam of the initial CCA is transmitted; and if the initial CCA fails, a further CCA is performed for one or more of the multiple beams.
  • Another aspect of the present disclosure relates to an electronic device for a wireless communication system, including: using an unlicensed frequency band for communication; and performing directional clear channel assessment CCA on multiple beams, and selecting beams based on the results of the directional CCA Transmission, wherein the directional CCA is performed on the multiple beams by the following operations: CCA is performed on the directions of the multiple beams in sequence, and when the CCA of a predetermined threshold number of beams passes, no more The remaining beams in the beam undergo CCA.
  • Another aspect of the present disclosure relates to a method for a wireless communication system, including: using an unlicensed frequency band for communication; and performing directional clear channel assessment CCA on multiple beams, and selecting beams for transmission based on the results of the directional CCA , Wherein the directional CCA is performed on the multiple beams by the following operations: CCA is performed on the directions of the multiple beams in sequence, and when the CCA of a predetermined threshold number of beams passes, the multiple beams are no longer CCA is performed on the remaining beams.
  • Another aspect of the present disclosure relates to a non-transitory computer-readable storage medium storing executable instructions that, when executed, implement any method as described above.
  • Another aspect of the present disclosure relates to a device including: a processor and a storage device storing executable instructions, the executable instructions, when executed, implement any of the methods described above.
  • Figure 1 schematically shows a type 2 "listen before talk” carrier sensing mechanism
  • Figure 2 schematically shows a type 4 "listen before talk” carrier sensing mechanism
  • FIG. 3 schematically shows a communication system according to the present disclosure
  • FIG. 4 schematically shows the conceptual configuration of the electronic device according to the first embodiment of the present disclosure
  • FIG. 5 schematically shows a conceptual operation flow of a clear channel assessment (CCA) unit of an electronic device according to the first embodiment of the present disclosure
  • Fig. 6 schematically shows a flow chart of a directional CCA according to a first example of the first embodiment of the present disclosure
  • FIG. 7 schematically shows a flowchart of a directional CCA according to a second example of the first embodiment of the present disclosure
  • Fig. 8 schematically shows a flow chart of a directional CCA according to a third example of the first embodiment of the present disclosure
  • FIG. 9 schematically shows an example of indicating information related to directional clear channel assessment according to the present disclosure.
  • FIG. 10 schematically shows an exemplary transmission configuration indication state (TCI-State) information element
  • FIG 11a schematically shows an exemplary physical uplink control channel (PUCCH) spatial relationship information (PUCCH-SpatialRelationInfo) information element;
  • PUCCH physical uplink control channel
  • PUCH-SpatialRelationInfo spatial relationship information
  • FIG 11b schematically shows an exemplary channel sounding reference signal (SRS) spatial relationship information (SRS-SpatialRelationInfo) information element;
  • SRS channel sounding reference signal
  • FIG. 12 schematically shows a conceptual operation flow of the electronic device according to the first embodiment of the present disclosure
  • FIG. 13 schematically shows a conceptual configuration of an electronic device according to a second embodiment of the present disclosure
  • FIG. 14 schematically shows a conceptual operation flow of a clear channel assessment (CCA) unit of an electronic device according to the second embodiment of the present disclosure
  • FIG. 15 schematically shows a conceptual operation flow of the electronic device according to the second embodiment of the present disclosure.
  • FIG. 16 is a block diagram of an exemplary structure of a personal computer as an information processing device that can be adopted in an embodiment of the present disclosure
  • FIG. 17 is a block diagram showing a first example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied;
  • FIG. 18 is a block diagram showing a second example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied;
  • FIG. 19 is a block diagram showing an example of a schematic configuration of a smart phone to which the technology of the present disclosure can be applied.
  • FIG. 20 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • a wireless communication system includes at least a control device and a terminal device, and the control device can provide communication services for one or more terminal devices.
  • the term "base station” or “control device” has the full breadth of its usual meaning, and includes at least a wireless communication station that is a wireless communication system or a part of a radio system to facilitate communication.
  • the base station may be a 4G communication standard eNB, a 5G communication standard gNB, a remote radio head, a wireless access point, a drone control tower, or a communication device that performs similar functions.
  • “base station” and “control device” can be used interchangeably, or “control device” can be implemented as a part of “base station”.
  • an application example of the base station/control device will be described in detail by taking the base station as an example in conjunction with the drawings.
  • terminal equipment or “user equipment (UE)” has the full breadth of its usual meaning, and includes at least terminal equipment that is a part of a wireless communication system or a radio system to facilitate communication.
  • the terminal device may be a terminal device such as a mobile phone, a laptop computer, a tablet computer, an in-vehicle communication device, etc., or an element thereof.
  • terminal device and “user device” (hereinafter may be referred to as “user”) may be used interchangeably, or “terminal device” may be implemented as a part of “user device”.
  • the following chapters will use terminal equipment as an example to describe in detail terminal equipment/UE application examples.
  • control device side /"base station side
  • terminal equipment side /"user equipment side
  • terminal equipment side has the full breadth of its usual meaning, and accordingly can indicate the side of the communication system that receives data in the downlink.
  • the term “beam” refers to a directional beam formed by beamforming to concentrate the transmitted signal in certain specific spatial directions. And generally, the term “beam” can be equivalent to the term “spatial domain filter”. More specifically, the transmit beam (Tx beam) is equivalent to the transmit spatial filter (Spatial domain transmission filter), and the receive beam (Rx beam) is equivalent to the receive spatial filter (Spatial domain reception filter).
  • the directional carrier sensing is generally performed by the device on the transmitting side, and whether it is performed on the control device side or the terminal device side, the operation of this directional carrier sensing is similar. Therefore, in the following description, unless otherwise specified, the operation of directional carrier sensing can be performed either on the control device side or on the terminal device side.
  • control device side may correspond to the operation of the base station
  • terminal device side may correspond to the operation of the terminal device accordingly.
  • FIGs 1 and 2 show the existing carrier monitoring mechanism called "Listen Before Talk (LBT)".
  • this carrier monitoring mechanism called LBT is also called Clear Channel Assessment (CCA).
  • CCA Clear Channel Assessment
  • this LBT mechanism is defined.
  • the simpler type (Type 2) of LBT (Cat. 2 LBT) and the more The complicated type (Type 4) of LBT (Cat. 4 LBT) is taken as an example to briefly explain this listen-to-speak carrier sensing mechanism.
  • FIG. 1 schematically shows the Carrier Sense mechanism of Cat. 2 LBT.
  • the transmitter when there is no data to send, the transmitter is in an idle state.
  • the transmitting end performs idle channel assessment on a beam with a wider spatial coverage (for example, an omnidirectional beam), that is, the transmitting end monitors what to be used in the wider space within a predetermined period of time (for example, 34 ⁇ s) If the energy on the frequency band exceeds a predetermined threshold, it is considered that the channel of the frequency band is being used, so the transmitter needs to remain silent and cannot use the spectrum resource for transmission (this situation is also called LBT failure) , Namely LBT Failure), otherwise, if the energy is lower than the predetermined threshold, the channel is considered to be idle and transmission can be performed.
  • a predetermined period of time for example, 34 ⁇ s
  • FIG. 2 schematically shows a more complicated Cat.4 LBT carrier sensing mechanism.
  • the operation of Cat.4 LBT can be divided into two parts: initial CCA and extended CCA.
  • the initial CCA is similar to the Cat.2 LBT. If it is detected that the channel is idle within a predetermined period (for example, the initial CCA period B iCCA as shown in FIG. 2 ), the transmission can be performed, otherwise the extended CCA will be performed.
  • the extended CCA first, it will be based on a contention window (for example, [0,q-1] as shown in Figure 2) (the contention window can be updated based on positive acknowledgement (ACK) or negative acknowledgement (NACK),
  • ACK positive acknowledgement
  • NACK negative acknowledgement
  • the specific update method has a low degree of relevance to the present disclosure and will not be introduced here
  • the transmitter will enter a back-off period DeCCA , such as 34us, if the channel is idle during the back-off period and N is not zero , Then detect whether the channel is idle within a predetermined period of time T (for example, 9 or 10 ⁇ s), if the channel is idle within T, subtract 1 from the value of N and continue to detect whether the channel is idle within T until N is equal to zero.
  • T for example, 9 or 10 ⁇ s
  • the transmitter can transmit. If the channel is detected to be busy during the backoff period or within T, then a further backoff is entered, where the purpose of the backoff period is to provide other systems competing to use the unlicensed frequency band with an opportunity to use the spectrum resource for transmission.
  • an existing carrier sensing mechanism evaluates whether the channel is idle on a beam with a wider spatial coverage, for example, to evaluate whether the channel is idle in all directions.
  • directional beams can be used for directional transmission. In this case, it is expected that even if the channel energy in a certain direction is strong (that is, the channel in that direction is occupied), another directional beam whose channel is idle can be used for transmission. In the case of using directional beams for transmission, the existing carrier sensing mechanism may cause the transmitter to be unable to determine which direction the energy on the channel comes from. Therefore, the opportunity to use specific beams for communication in certain directions may be wasted. In view of this, the present disclosure provides a directional carrier monitoring mechanism for an unlicensed frequency band in a wireless communication system, so that the directional beam can be used for transmission more effectively.
  • Fig. 3 schematically shows a communication system according to the present disclosure.
  • a directional beam (hereinafter referred to as a beam) is used for communication between a base station and a terminal device.
  • Fig. 3 schematically shows 4 beams between the base station 10 and the terminal device 20A, however, the number of beams between the base station and the terminal device is not limited to this, and there may be those that can be used for communication between them. More than 4 beams (e.g. 8) or less than 4 beams.
  • FIG. 3 only shows a schematic beam between the base station 10 and the terminal device 20A, similar directional beams also exist between the base station and other terminal devices (for example, the terminal devices 20B, 20C).
  • the electronic device (base station or terminal device) to transmit can use an unlicensed frequency band to communicate, and perform directional clear channel assessment (CCA) on multiple beams, and select beams for transmission based on the results of the directional CCA .
  • CCA clear channel assessment
  • the transmitting beam of the transmitting end can be equivalent to the receiving beam, that is, beam correspondence exists.
  • the transmitting end performs the directional CCA on the receiving beam corresponding to the direction of the transmitting beam.
  • directional CCA may be performed by performing the following operations: performing initial CCA on one of the multiple beams; in the case where the initial CCA passes, selecting the beam through the initial CCA for transmission; And in the case that the initial CCA fails, further CCA is performed on one or more of the multiple beams.
  • directional CCA may also be performed by performing the following operations: sequentially perform CCA on the directions of the multiple beams, and when the CCA of a predetermined threshold number of beams passes, no longer perform CCA on the multiple beams. The remaining beams in the beam undergo CCA.
  • the multiple beams for which CCA is performed are pre-configured through radio resource control (RRC) signaling, or alternatively, the multiple beams for which CCA is performed are through radio resource control (RRC)
  • RRC radio resource control
  • the signaling is pre-configured and activated through the control element MAC CE of the media access control layer.
  • multiple beams may be preset for one or more channels between the base station and the terminal device, where the one or more channels include one or more of the following: physical downlink control channel ( PDCCH), physical downlink shared channel (PDSCH), physical uplink control channel (PUCCH) and physical uplink shared channel (PUSCH).
  • an electronic device that has performed directional CCA can notify the electronic device at the other end of the communication (i.e., the information related to the directional CCA of the beam) The base station or terminal device as the receiver). Additionally, the electronic device that has performed directional CCA can, for example, notify the electronic device at the other end of the communication of the beams that can be transmitted and the beams that cannot be transmitted determined based on the results of the directional CCA, so that both parties can prepare and/or Negotiate beams for transmission and reception.
  • the communication system according to the present disclosure has been briefly introduced above, and the configuration and operation of the electronic device in the communication system of the present disclosure will be described in detail below.
  • the electronic device can be implemented as a device to perform directional CCA, and therefore, it can be a device or terminal device on the base station side that is to perform transmission.
  • the electronic device can be implemented as a base station (BS), small base station, Node B, e-NodeB, g-NodeB, relay, etc., in a cellular communication system, machine type communication
  • BS base station
  • Node B Node B
  • e-NodeB e-NodeB
  • g-NodeB g-NodeB
  • relay etc.
  • the terminal equipment in the system the sensor nodes in the self-organizing network, the Coexistence Managers (CM) in the cognitive radio system, SAS, etc.
  • CM Coexistence Managers
  • the electronic device may be implemented as any type of evolved Node B (eNB), such as a macro eNB (associated with a macro cell) and a small eNB (associated with a small cell).
  • eNB evolved Node B
  • a small eNB may be an eNB covering a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the electronic device may be implemented as any other type of base station, such as network nodes in next-generation networks such as gNB, NodeB, and base transceiver station (BTS).
  • gNB next-generation networks
  • NodeB NodeB
  • BTS base transceiver station
  • the electronic device may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRH) arranged in a place different from the main body.
  • a main body also referred to as a base station device
  • RRH remote wireless headends
  • various types of devices to be described later can all work as the electronic device by temporarily or semi-permanently performing base station functions.
  • the electronic device may be included in the base station as a component of the base station, or separate from the base station and used to control the base station.
  • the electronic device may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) ) Or in-vehicle terminals (such as car navigation equipment).
  • the electronic device may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the electronic device may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • the electronic device can also be implemented as a smart meter, a smart home appliance, or a geolocation capability object (GCO) in a cognitive radio system, or a citizen broadband wireless service user (Citizens Broadband Radio Service Device, CBSD).
  • GCO geolocation capability object
  • the electronic device may include a processing circuit 400.
  • the processing circuit 400 may be configured to use an unlicensed frequency band for communication; and perform directional idle channel assessment CCA on multiple beams, and select beams for transmission based on the result of the directional CCA, wherein the multiple beams are transmitted by the following operations.
  • Directional CCA for two beams perform initial CCA on one of the multiple beams; if the initial CCA passes, select the beam that passes the initial CCA for transmission; and if the initial CCA fails, One or more of the multiple beams undergoes further CCA.
  • the processing circuit 400 may be in the form of a general-purpose processor, or a dedicated processing circuit, such as an ASIC.
  • the processing circuit 400 can be configured by a circuit (hardware) or a central processing device (such as a central processing unit (CPU)).
  • the processing circuit 400 may carry a program (software) for operating the circuit (hardware) or the central processing device.
  • the program can be stored in a memory (such as arranged in the memory 401) or an external storage medium connected from the outside, and downloaded via a network (such as the Internet).
  • the processing circuit of the electronic device may include various units to implement various embodiments according to the present disclosure.
  • the processing circuit 400 may include a CCA unit 4001 that performs directional clear channel assessment (CCA) on multiple beams.
  • the CCA unit may include various modules/subunits to implement various operations in the CCA operation described in the text.
  • the CCA unit may include an initial beam determination module configured to determine one beam to be subjected to the initial CCA from a plurality of beams.
  • the CCA unit may also include a calculation module configured to execute the directional CCA operation procedure described in detail below.
  • the CCA unit 4001 may also include more or fewer modules.
  • the initial beam determination module may not be included in the CCA unit 4001 or even may not be included in the processing circuit 400, and may be combined after the beam is determined. It is sent to the CCA unit 4001 of the processing circuit 400.
  • the calculation module can be further divided into more detailed sub-modules to process the corresponding determination/calculation operations respectively. The detailed operation of the CCA unit 4001 will be described below with reference to Figs. 5-8.
  • the processing circuit 400 may include a CCA result processing unit 4002 that processes the result of the directional CCA.
  • the CCA result processing unit may include various modules/subunits to implement the various operations described in the text related to processing the results of the directional CCA.
  • the CCA result processing unit may include a transmission beam determination module configured to determine which beam or beams can be used for transmission based on the result of the directional CCA.
  • the CCA result processing unit may further include a CCA result indicating module configured to perform operations related to indicating information related to the directional CCA, so that the communication unit 402 of the electronic device 40 can communicate with all users based on this indication. Another electronic device communicating with the electronic device 40 notifies information related to the directivity CCA of the beam.
  • the CCA result processing unit 4002 may also include more or fewer modules. The detailed operation of the CCA result processing unit 4002 will be described below.
  • the processing circuit 400 may further include a channel occupation time (Channel Occupy Time, COT) configuration unit 4003.
  • the COT configuration unit 4003 may be configured to configure (ie initialize) the directional channel occupation time in the direction of the beam based on the beam to be transmitted determined by the transmission beam determination unit 4002.
  • the channel occupancy time for example, means that the transmitter will occupy the channel for a period of time, and during this period of time, the transmitter can perform transmission without performing idle channel assessment.
  • the channel occupancy time is not declared for a certain beam direction, which results in that when the directional beam is used for transmission, the channel occupancy time may be initialized and the transmission opportunity in certain beam directions may be missed.
  • the channel occupancy time is not initialized for a specific direction, a shorter channel occupancy time is generally initialized to prevent the channels in various directions (for example, omnidirectional) from being occupied for too long.
  • the directional COT is initialized based on the result of the directional CCA, thereby being able to prevent occupation of channel resources on other beams.
  • the directional COT is initialized for the beam to be transmitted determined based on the result of the directional CCA, it is possible to appropriately initialize the COT longer than the conventional COT, thereby avoiding continuous transmission (eg For the base station, the PDSCH is sent after the PDCCH is sent, or for the terminal equipment, the PUSCH is sent after the PUCCH is sent). This is particularly advantageous when the receiver device needs a long time to understand the received content to prepare to receive the next information.
  • the terminal device needs a maximum of 2 time slots to understand the content of the PDCCH and be ready to accept the PDSCH, because the traditional non-directional COT is likely to be shorter than the transmission time of the PDCCH.
  • the terminal device understands the sum of the duration of the content of the PDCCU, so this is likely to result in the need to perform CCA again when transmitting the PDSCH following the PDCCH or to perform the CCA with a longer waiting time. This can be effectively avoided by using a directional COT that is longer than the traditional non-directional COT.
  • processing circuit 400 may further include an interface circuit (not shown) for interfacing between the units.
  • each of the aforementioned units may be implemented as an independent physical entity, or may also be implemented by a single entity (for example, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • the above-mentioned respective units are shown with dashed lines in the drawings to indicate that these units may not actually exist, and the operations/functions implemented by them may be implemented by the processing circuit itself.
  • the units/modules and their operations/functions shown in dashed lines in the drawings can be selectively applied according to actual conditions, that is, the processing circuit does not necessarily include all the units/modules and their operations/ Function, but can selectively implement some of these units/modules and their operations/functions.
  • the electronic device 40 may further include a memory 401 and a communication unit 402.
  • the electronic device 40 may also include other components not shown, such as a radio frequency link, a baseband processing unit, a network interface, a processor, a controller, and the like.
  • the processing circuit 400 may be associated with the memory 401 and/or the communication unit 402.
  • the processing circuit 400 may be directly or indirectly (for example, other components may be connected in between) connected to the memory 401 to access data.
  • the processing circuit 400 may be directly or indirectly connected to the communication unit 402 to transmit radio signals via the communication unit 402 and receive radio signals via the communication unit 402.
  • the memory 401 can store various information to be used by the processing circuit 400 or generated by the processing circuit 400 (for example, information related to directional CCA, statistical information of the CCA results of each beam during the execution of directional CCA, etc.), for electronic Programs and data operated by the device 40, data to be transmitted by the communication unit 402, and the like.
  • the memory 41 is drawn with a dashed line because it can also be located inside the processing circuit 400 or outside the electronic device 40.
  • the memory 401 may be a volatile memory and/or a non-volatile memory.
  • the memory 401 may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), flash memory.
  • the communication unit 402 may be configured to communicate with an electronic device at the other end of the communication (for example, a recipient electronic device) under the control of the processing circuit 400.
  • the communication unit 402 may be implemented as a transmitter or transceiver, including communication components such as an antenna array and/or a radio frequency link.
  • the communication unit 402 may transmit on the beam determined based on the result of the directional CCA.
  • the communication unit 402 may send the information of the beam that can be used for transmission to the receiving electronic device.
  • the processing circuit 400 may also be implemented to include the communication unit 402.
  • the processing circuit 400 may also be implemented to include one or more other components in the electronic device 40, or the processing circuit 400 may be implemented as the electronic device 40 itself.
  • the processing circuit 400 may be implemented as a chip (such as an integrated circuit module including a single wafer), a hardware component, or a complete product.
  • the operation flow 50 starts at S500.
  • the electronic device is in an idle state, that is, there is no data to be sent.
  • the operation flow proceeds to S504.
  • the CCA unit 4001 performs initial CCA on one of the multiple beams.
  • the initial beam determination module may determine one beam for which the initial CCA is to be performed from the multiple beams.
  • the beam for performing initial CCA may be the most suitable beam or a predetermined beam.
  • the predetermined beam may refer to a beam configured through RRC or a beam activated through MAC CE during an RRC connection establishment process.
  • the most suitable beam may be a beam with better channel quality in the beam direction. For example, the beam direction with better channel quality can be determined according to the reference signal sent between the base station and the terminal device.
  • the beam direction with better channel quality can be determined according to the channel sounding reference signal (SRS) of the terminal device, that is, for the uplink, the beam for initial CCA can be determined according to the SRS.
  • the beam direction with better channel quality can be determined according to the synchronization signal block (SSB) or the channel state information reference information (CSI-RS) of the base station. That is, for the downlink, the beam direction can be determined according to SSB or CSI.
  • SSB synchronization signal block
  • CSI-RS channel state information reference information
  • -RS to determine the beam for initial CCA.
  • the initial CCA is performed for the beam with better channel quality in the beam direction, so that when the initial CCA passes, the beam with better channel quality can be used for transmission.
  • the beams for initial CCA can also be randomly determined.
  • the CCA unit 4001 may determine whether the energy on the channel is strong (for example, greater than a predetermined threshold) in the direction of the beam during a predetermined period of time (for example, 34 ⁇ s). If in the direction of the beam, the energy on the channel is weak (for example, lower than a predetermined threshold), it is considered that the initial CCA in the direction of the beam has been passed (S506: Yes), and the electronic device can use the beam to transmit ( S510). It can be understood that by directly performing transmission after the initial CCA without performing subsequent further CCA, the time waiting for transmission can be advantageously reduced. If the energy on the channel is strong in the direction of the beam where the initial CCA is performed, it is considered that the initial CCA in the beam direction has failed (S506: No), and the CCA unit 4001 may perform further CCA (S508).
  • the calculation module of the CCA unit 4001 can perform further CCA according to the following operations: determine the number T within a predetermined range; perform CCA iteratively in the following manner: when the current CCA passes, Decrease T by 1, otherwise, continue to perform CCA without changing T until T is equal to 0, where CCA is performed for one or more of the multiple beams in each iteration.
  • the term "CCA" indicates that the directional idle channel assessment is performed for a specific beam direction. In order to make the description more concise, in the following detailed description of the further CCA, it is no longer specified that each CCA performed is directional.
  • CCA pass is intended to indicate that the channel is idle in a specific beam direction, that is, to indicate that the energy on the channel in the direction of the beam for which CCA is performed is less than a predetermined threshold within a predetermined period (for example, 34 ⁇ s).
  • a predetermined threshold for example, 34 ⁇ s.
  • the electronic device may select a beam for transmission based on the result of the directional CCA (S510).
  • the conceptual operation flow 50 of the directional CCA performed by the CCA unit 4001 has been briefly introduced with reference to FIG. 5.
  • three implementation examples of directional CCA will be described in detail with reference to Figs. 6-8.
  • the operation on the initial CCA is similar to the operation described with reference to FIG. 5, so it will not be repeated in the following.
  • operations S600, S602, S604, and S610 correspond to operations S500, S502, S504, and S510 in FIG. 5, and have processing procedures similar to the corresponding operations in FIG. 5, and the details of these operations are omitted here.
  • the number T can be determined within a predetermined range.
  • the T value may be randomly selected within the range.
  • the range may be similar to the competition window described above with reference to Cat. 4 LBT, for example. This range is determined to give a value interval for the number T.
  • the range is not limited to the size of the Cat. 4 LBT competition window, and any range that can define a suitable value interval for the number T is applicable.
  • CCA is performed on a randomly selected one of the multiple beams for directional CCA, and the CCA result of the beam is taken as CCA result of this iteration.
  • a beam is randomly selected from the multiple beams for CCA, and if this CCA passes, the value of T is reduced by 1 and the next iteration is performed if the value of T is not 0 (That is, again randomly select a beam from the multiple beams to perform CCA), otherwise, directly proceed to the next iteration without decrementing the value of T.
  • the beam is selected for transmission based on the result of the directional CCA.
  • T times of CCA are successfully performed, where each CCA is for one beam randomly selected from the multiple beams.
  • the CCA unit 4001 may control the processing circuit 400 to select beam transmission data based on the result of the directional CCA.
  • each beam can be considered fairly, and the total number of CCA can be more effectively limited (CCA is performed for only one beam in each iteration), thereby avoiding excessive length The waiting time to send.
  • operations S700, S702, S704, and S710 correspond to operations S500, S502, S504, and S510 in FIG. 5, and have processing procedures similar to the corresponding operations in FIG. 5, and the details of these operations are omitted here.
  • the number T can be determined within a predetermined range.
  • the T value may be determined as the product of the number of the plurality of beams and a value randomly selected from a predetermined range.
  • the range may be similar to the range in the first example explained with reference to FIG. 6.
  • the beam is selected for transmission based on the result of the directional CCA.
  • the CCA unit 4001 sequentially performs CCA iterations on each beam in a predetermined order, which enables CCA to be cyclically performed on the 4 beams in this example.
  • the predetermined order may be B1, B2, B3, B4, but the order is not restrictive, and it may also be any order that cycles through the four beams, such as B2, B3, B1, B4 or B4, B2 , B1, B3, etc.
  • the CCA unit 4001 first performs the first CCA iteration on the beam B1. Assuming that the CCA passes, the T value is decremented to 7, and the CCA unit 4001 Perform the next CCA iteration on the next beam B2.
  • the CCA unit 4001 can control the processing circuit 400 to select beam transmission data based on the result of the directional CCA.
  • each beam can be considered fairly, and the statistical information of the idle status of each beam can be comprehensively collected during the further CCA period. To facilitate subsequent selection of beams for transmission.
  • operations S800, S802, S804, and S810 correspond to operations S500, S502, S504, and S510 in FIG. 5, and have processing procedures similar to the corresponding operations in FIG. 5, and the details of these operations are omitted here.
  • step S806 When it is determined in step S806 that the initial CCA is not passed, further CCA is performed according to the operation in S808. Specifically, first, the number T can be determined within a predetermined range. Similar to the first example, the T value may be randomly selected within the range.
  • CCA is sequentially performed on all or part of the multiple beams for directional CCA, and when the number of beams exceeds a predetermined threshold When the CCA is passed, it is deemed to have passed the current CCA.
  • CCA iteration is performed in units of a group including multiple beams to be subjected to directional CCA.
  • CCA is performed on one or more of the multiple beams respectively, and if during the current CCA, the CCA of the beam exceeding the predetermined threshold number passes, it is considered that the current CCA has passed.
  • the predetermined threshold number may be any one of the following values: one, one-half of the number of beams performing CCA in one iteration, and the number of beams performing CCA in one iteration.
  • S beams S less than or equal to the number of the plurality of beams
  • the predetermined threshold number of beams may be randomly selected to perform CCA sequentially.
  • it is determined that a predetermined threshold number of beams have passed the CCA and there are still beams for which CCA has not been performed among the selected S beams then it can be directly performed The next CCA iteration in units of groups, without CCA on the remaining beams.
  • the T value is reduced by 1 and the T value is not 0.
  • the next iteration in the unit of group otherwise, the next iteration is directly carried out without decrementing the value of T.
  • the T value is 0 (that is, CCA in units of groups is successfully performed T times)
  • the beam is selected for transmission based on the result of the directional CCA.
  • the CCA unit 4001 performs CCA iteration in units of groups including these 4 beams. For example, in each iteration, the CCA unit 4001 randomly selects two beams of the multiple beams to perform CCA at one time, and assumes that when the CCA of more than one beam passes, it is considered to pass the current CCA iteration (ie, The above-mentioned predetermined threshold number is one). For example, in the first iteration, the CCA unit 4001 randomly selects beams B1 and B4 to perform CCA.
  • each beam can be considered fairly, and statistical information on the idle status of each beam can be collected more comprehensively to facilitate subsequent selection of beams for transmission.
  • the strictness of CCA can be flexibly controlled. For example, the higher the predetermined threshold number, the stricter the CCA, which may make the waiting time longer.
  • the strictness of the CCA can be flexibly adjusted based on the intensity of competition in the unlicensed frequency band or the importance of the content to be transmitted, so as to appropriately adjust the transmission waiting time.
  • the CCA result processing unit 4002 is configured to perform some processing on the result of the directional CCA, for example, determining beams that can be used for transmission and controlling the communication unit to notify beams that can be used for transmission.
  • the transmission beam determination module of the CCA result processing unit 4002 may be configured to determine the beam passing the initial CCA as the beam to be transmitted.
  • the transmit beam determination module of the CCA result processing unit 4002 may also be configured to calculate the performance of the channel occupancy of each beam during a further CCA period, and determine the transmittable performance based on the statistical result. Beam.
  • the transmitting beam determining unit may be configured to count the total number of CCA successes or CCA failures of each beam during a further CCA, and determine a beam with a relatively idle channel statistically as a beam to be transmitted. In other words, during the further CCA period, the beam with the largest total number of passes through the CCA or the smallest total number of failed CCA may be determined as the beam to be transmitted.
  • the total number of passes through CCA or the total number of failed CCA may indicate that there are fewer users or less traffic in the beam direction. Therefore, based on the statistical results, it is possible to infer the beam direction in which the channel is relatively idle, and thus use the beam in that direction for transmission. Alternatively, based on the statistical results of the directional CCA, a number of statistically idle beams that can be used for transmission may be determined, so that the sender and the receiver can select the beams to be transmitted through subsequent negotiation.
  • the transmit beam determination module may also be configured to directly determine the beam that passed the CCA last (that is, the beam whose T is decremented to 0) as the beam to be transmitted when the further CCA ends. Beam. This configuration can simplify calculations at the electronic device and ensure that the channel on the beam to be transmitted is free with a greater probability.
  • the transmission beam determination module may also be configured to simply determine a beam with a better channel quality in the direction as a beam that can be transmitted. For example, in the RRC connection establishment process, a beam with better channel quality determined based on reference information (such as SRS, SSB, or CSI-RS) exchanged between the base station and the terminal device may be selected for transmission. Alternatively, a plurality of beams that can be used for transmission may be determined based on the channel quality, so that the sender and the receiver can select the beam to be transmitted through subsequent negotiation. This configuration can better guarantee the channel quality of the transmit beam, thereby facilitating successful reception at the receiving end.
  • reference information such as SRS, SSB, or CSI-RS
  • the transmitting beam determining module may also be configured to determine the beam to be transmitted in combination with the statistical result of the channel occupancy of each beam and the channel quality in each beam direction. For example, based on the statistical results of the directional CCA, a number of statistically idle beams that can be used for transmission can be determined, and the beam with the best channel quality can be selected as the beam to be transmitted. Alternatively, multiple beams with better channel quality may be determined, and the beam with the largest total number of passes through CCA or the smallest total number of failed CCA is selected as the beam to be transmitted. This configuration can comprehensively consider the channel quality and the degree of idleness of the channel to select the most suitable beam for transmission.
  • the CCA result indicating module of the CCA result processing unit 4002 may be configured to determine information related to the directivity CCA of the beam, and control the communication unit to notify the information related to the directivity CCA of the beam to Recipient's electronic equipment.
  • the information related to the directivity CCA of the beam may include an indication of the beam that can be transmitted and the beam that cannot be transmitted.
  • notifying the information related to the CCA of the directivity of the beam to the receiver electronic device may include The electronic device notifies the beams that can be transmitted and the beams that cannot be transmitted that are determined based on the result of the directional CCA.
  • the CCA result indicating module may be configured to indicate the beams that can be transmitted and the beams that cannot be transmitted in the form of a bitmap. For example, referring to the beams that can be used for transmission determined by the transmission beam determination module, the CCA result indicating module can generate the beams that can be used for transmission (that is, the beams that pass the directional CCA) and the beams that cannot be used for transmission (that is, , The bitmap of the beam not passing the directional CCA).
  • directional CCA can be performed on 8 beams, and the transmit beam determination module determines the second beam from the left as the beam that can be used for transmission (shown by the solid line, and other beams, that is, not The beams determined to be available for transmission by the transmission beam determination module are shown by dashed lines).
  • an 8-bit bitmap can be generated, where 0 represents a beam not available for transmission, 1 represents a beam available for transmission, and for this example, the generated bitmap may be "01000000".
  • FIG. 9 shows a case where directional CCA is performed on 8 beams
  • the number of beams is not limited to this.
  • directional CCA can be performed on less than 8 beams, and an 8-bit bitmap can be generated based on the result of CCA.
  • 1 represents a beam that can be used for transmission
  • 0 represents a beam that cannot be used for transmission
  • a reserved bit (R) represents a beam that is not involved.
  • R can also be used to replace the reserved bit (R).
  • 0 can either indicate a beam that is determined to be unusable for transmission or a beam that is not involved.
  • Using a fixed-length bitmap regardless of the number of beams for directional CCA can facilitate the receiver to interpret the received bitmap, thereby simplifying the receiver's calculation.
  • the generated bitmap may include multiple bits with a value of 1, such as "01011000".
  • the CCA result indication module can control the communication unit to notify the receiver device of the beams that can be used for transmission based on the generated bitmap, so that the receiver prepares the beam for reception (in the case that only one beam that can be used for transmission is indicated), Or so that both parties can conduct subsequent negotiations to determine the beam to be transmitted (in the case where multiple beams that can be used for transmission are indicated).
  • the CCA result indicating module of the CCA result processing unit 4002 may be configured to control the relevant unit (for example, the communication unit) in the electronic device 40 to dynamically or semi-statically compare the directivity CCA of the beam.
  • the relevant information is notified to the recipient electronic device.
  • the communication unit may be controlled based on the generated bitmap to dynamically or semi-statically notify the receiving electronic device of beams that can be used for transmission and beams that cannot be used for transmission and/or beams that are not involved.
  • the dynamic manner may include using control information to dynamically specify beams that pass the directional CCA and beams that do not pass the directional CCA.
  • the control information may be physical layer control information, such as uplink control information (UCI) for the uplink and downlink control information (DCI) for the downlink.
  • the CCA result indication module may be configured to control the communication unit to use this control information to send the generated bitmap to the receiving electronic device to indicate beams that can be used for transmission and beams that cannot be used for transmission and/or are not involved. Beam.
  • the static way may include using MAC CE to activate the beam passing through the CCA.
  • the CCA result indication module may be configured to control to activate the transmission configuration indication (TCI) state (TCI state) corresponding to the beam that can be used for transmission by using the MAC CE based on the generated bitmap.
  • the CCA result indication module may be configured to control to use the MAC CE to activate the spatial relation information (SpatialRelationInfo) corresponding to the beam that can be used for transmission based on the generated bitmap.
  • TCI transmission configuration indication
  • TCI state transmission configuration indication
  • SpatialRelationInfo spatial relation information
  • the terminal device may first send the generated bitmap indicating the beams that can be used for transmission and the beams that cannot be used for transmission and/or the beams that are not involved to the base station. , And then activated by the base station according to the received bitmap.
  • the multiple beams may also be preset. According to the present disclosure, it is considered that the directional CCA is performed after the terminal device enters the RRC connected state. Accordingly, the multiple beams for which the directional CCA is performed may be pre-configured through RRC signaling, or may be pre-configured through RRC signaling And activated by MAC CE.
  • this process of pre-setting the beam is implemented by the base station.
  • the base station performs beam setting for one or more channels between the base station and the terminal device through RRC signaling to pre-configure multiple beams for directional CCA.
  • the terminal device wants to transmit for directional CCA, there is also a pre-setting process for multiple beams, and this pre-setting process is based on the signaling interaction between the base station and the terminal device Realized by the base station side.
  • CSI-RS channel state information reference signal
  • SSB synchronization signal block
  • the terminal device may have measured some downlink reference signals with spatial directivity, and may use the receiving beam that received the downlink reference signal before to receive a new channel or signal.
  • multiple beams to be subjected to directional CCA can be preset based on these beam directions that have been measured during the RRC connection process.
  • the beam setting can be performed by using the transmission configuration indication state (TCI state).
  • the TCI state is an RRC parameter, which may include an index of a downlink reference signal, such as a CSI-RS resource index or an SSB index.
  • TCI state information element TCI state information element
  • one or more downlink reference signals can be associated with the corresponding quasi co-location (QCL) type, where the quasi co-location type D (Type D) can indicate the spatial direction Quasi co-location. That is to say, when using the TCI status information element to associate a certain downlink reference signal with Type D quasi co-location, the index of the downlink reference signal contained in the TCI status information element can be used to indicate that the index represented by the index can be used.
  • the beam direction of the reference signal receives a new channel or signal. In other words, each TCI state can correspond to a beam direction.
  • Multiple TCI states can be configured through RRC signaling to preset multiple beams to perform directional CCA.
  • FIG 10 is a schematic diagram of TCI status information elements. As shown in Figure 10, "CHOICE” and “ENUMBERATED” can be used to associate the reference signal index with the quasi co-location type, thereby setting the beam by configuring the TCI state.
  • multiple TCI states can be configured for the channel or signal between the base station and the terminal device.
  • the MAC CE can be further used to activate 8 TCI states.
  • directional CCA will be performed for the 8 beams activated by MAC CE.
  • the beam setting can be performed for multiple channels between the base station and the terminal device.
  • the multiple channels may include a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • multiple TCI states can be configured. This configuration is particularly advantageous for PDCCH.
  • the base station needs to notify the terminal equipment of CORESET indicating the time-frequency resources occupied by the PDCCH. Traditionally, only one beam is activated for a CORESET. Therefore, in the case of clear channel assessment for only this beam, it is likely that the CORESET cannot be transmitted in this direction because the clear channel assessment is not passed.
  • multiple beams can be configured and activated for CORESET in advance, so that directional CCA can be performed for multiple beams, and CORESET is selected to be transmitted through the directional CCA beam. Therefore, the chance of successful launch of CORESET is increased to facilitate subsequent communication.
  • the base station may have measured some uplink reference signals with spatial directivity, and may use the receiving beams that received the uplink reference signals before to receive new channels or signals.
  • multiple beams to be subjected to directional CCA can be preset based on these beam directions that have been measured during the RRC connection process.
  • the beam setting can be performed by sending spatial relationship information (SpatialRelationInfo). Similar to the TCI state for the downlink, the beam for the uplink can be configured by configuring SpatialRelationInfo as an RRC parameter. In other words, each SpatialRelationInfo state can correspond to a beam direction. Multiple SpatialRelationInfo can be configured through RRC signaling to preset multiple beams for directional CCA.
  • spatialRelationInfo Similar to the TCI state for the downlink, the beam for the uplink can be configured by configuring SpatialRelationInfo as an RRC parameter.
  • each SpatialRelationInfo state can correspond to a beam direction.
  • Multiple SpatialRelationInfo can be configured through RRC signaling to preset multiple beams for directional CCA.
  • the PUCCH-SpatialRelationInfo information element shown in Figure 11a can be used to configure the beam
  • the SRS-SpatialRelationInfo information element shown in Figure 11b can be used to configure the beam
  • the beam can be the same as the beam configured for the SRS, that is, the SRS-SpatialRelationInfo information element is used indirectly to configure the beam.
  • multiple SpatialRelationInfo can be configured for the channel or signal between the terminal device and the base station.
  • directional CCA will be performed for the 8 beams activated by MAC CE.
  • the beam setting can be performed for multiple channels between the base station and the terminal device.
  • the multiple channels may include (PUCCH) and a physical uplink shared channel PUSCH.
  • step S1202 the electronic device presets a plurality of beams to perform directional CCA.
  • the multiple beams are pre-configured through RRC signaling or pre-configured through RRC signaling and activated through MAC CE.
  • the configuration of the uplink and the downlink has been described above, and will not be repeated here.
  • the electronic device starts to perform directional CCA on the configured multiple beams.
  • the electronic device first performs initial CCA on one of the multiple beams.
  • the beam for initial CCA can be the most suitable beam, that is, the beam with better channel quality in this direction, or it can be a beam randomly selected from the multiple beams, or it can be the beam as described above A predetermined beam.
  • step S1206 it is determined whether the initial CCA is passed. If the initial CCA passes, the operation at step S1210 is directly entered. Otherwise, the electronic device performs further steps on one or more of the multiple beams at step S1208.
  • CCA For example, any one of the three examples described above can be used for further CCA.
  • the electronic device can process the result of the CCA. For example, as described above, the electronic device may determine one or more beams that can be used for transmission and notify the one or more beams to the receiving electronic device via a bitmap. For example, as described above, the electronic device may determine the beams that can be used for transmission according to further statistical results during CCA and/or channel quality in each beam direction. In the case that multiple beams that can be used for transmission are determined, the operation flow 120 may further include an optional step (not shown) of negotiating with the receiving electronic device to determine the beam to be transmitted. Alternatively, the electronic device may also determine the beam that passed the initial CCA or the beam that passed the CCA last during the further CCA as the beam to be transmitted at S1210.
  • the electronic device to be transmitted initializes the directivity channel occupation time in the determined beam direction to be transmitted. Subsequently, at S1214, the electronic device may transmit in the determined beam direction. The process ends at S1216.
  • the electronic device may first initialize the directional channel occupation time and then notify the receiving electronic device of the beam to be transmitted.
  • the electronic device can be implemented as a device to perform directional CCA, and therefore, it can be a device on the base station side or a terminal device to perform transmission.
  • the specific implementation manner of the electronic device is the same as that of the first embodiment, and will not be repeated here.
  • the electronic device may include a processing circuit 1300.
  • the processing circuit 1300 may be configured to use an unlicensed frequency band for communication; and perform directional idle channel assessment CCA on multiple beams, and select beams for transmission based on the results of the directional CCA, wherein the multiple beams are transmitted by the following operations.
  • Performing directional CCA on the multiple beams sequentially perform CCA on the directions of the multiple beams, and when the CCA of a predetermined threshold number of beams passes, no CCA is performed on the remaining beams of the multiple beams.
  • the processing circuit 1300 may be in the form of a general-purpose processor, or a dedicated processing circuit, such as an ASIC.
  • the processing circuit 1300 can be constructed by a circuit (hardware) or a central processing device (such as a central processing unit (CPU)).
  • the processing circuit 1300 may carry a program (software) for operating the circuit (hardware) or the central processing device.
  • the program can be stored in a memory (such as arranged in the memory 1301) or an external storage medium connected from the outside, and downloaded via a network (such as the Internet).
  • the processing circuit of the electronic device may include various units to implement various embodiments according to the present disclosure.
  • the processing circuit 1300 may include a CCA unit 13001 that performs directional clear channel assessment (CCA) on multiple beams.
  • CCA directional clear channel assessment
  • FIG. 13 does not show the sub-modules/sub-units of the CCA unit, in implementation, the CCA unit may include various modules/sub-units to implement corresponding operations.
  • the CCA unit may include a CCA sequence determination module that determines in which sequence the CCA is performed on each beam, and a calculation module that executes the operation flow of the CCA. The detailed operation of the CCA unit 13001 will be described below with reference to FIG. 14.
  • the processing circuit 1300 may include a CCA result processing unit 13002 that processes the result of the directional CCA.
  • the CCA result processing unit may include various modules/sub-units to implement various operations related to the processing of the directional CCA result described in the text.
  • the CCA result processing unit may include a transmission beam determination module configured to determine which beam can be used for transmission based on the result of the directional CCA.
  • the CCA result processing unit may further include a CCA result indicating module configured to perform operations related to indicating information related to the directional CCA, so that the communication unit 1302 of the electronic device 130 communicates with all users based on this indication. Another electronic device communicating with the electronic device 130 notifies information related to the directivity CCA of the beam.
  • the CCA result processing unit 13002 may also include more or fewer modules. The detailed operation of the CCA result processing unit 13002 will be described below.
  • the processing circuit 1300 may further include a channel occupation time (Channel Occupy Time, COT) configuration unit 13003 similar to the first embodiment.
  • the COT configuration unit 13003 may be configured to configure (ie initialize) the directional channel occupation time in the direction of the beam based on the beam to be transmitted determined by the transmission beam determination unit 13002.
  • the directional COT is initialized based on the result of the directional CCA, which can prevent channel resources on other beams from being occupied.
  • the COT longer than the conventional COT can be appropriately initialized, so that continuous transmission is required (for example, for a base station, when transmitting PDCCH When PDSCH is sent afterwards, or PUSCH is sent after PUCCH is sent for the terminal device), the CCA is prevented from being repeated due to the short COT time between two transmissions, thereby avoiding inappropriate waiting time between consecutive transmissions.
  • processing circuit 1300 may further include an interface circuit (not shown) for interface connection between the units.
  • each of the aforementioned units may be implemented as an independent physical entity, or may also be implemented by a single entity (for example, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • the above-mentioned respective units are shown with dashed lines in the drawings to indicate that these units may not actually exist, and the operations/functions implemented by them may be implemented by the processing circuit itself.
  • the units/modules and their operations/functions shown in dashed lines in the drawings can be selectively applied according to actual conditions, that is, the processing circuit does not necessarily include all the units/modules and their operations/ Function, but can selectively implement some of these units/modules and their operations/functions.
  • the electronic device 130 may further include a memory 1301 and a communication unit 1302.
  • the electronic device 130 may also include other components not shown, such as a radio frequency link, a baseband processing unit, a network interface, a processor, a controller, and so on.
  • the processing circuit 1300 may be associated with the memory 1301 and/or the communication unit 1302.
  • the processing circuit 1300 may be connected to the memory 1301 directly or indirectly (for example, other components may be connected therebetween) to perform data access.
  • the processing circuit 1300 may be directly or indirectly connected to the communication unit 1302 to transmit radio signals via the communication unit 1302 and receive radio signals via the communication unit 4132.
  • the memory 1301 may store various information to be used by the processing circuit 1300 or generated by the processing circuit 1300 (for example, information related to directional CCA, thresholds to be used during the execution of directional CCA, etc.), and information used for the operation of the electronic device 130 Programs and data, data to be sent by the communication unit 1302, etc.
  • the memory 1301 is drawn with a dashed line because it can also be located in the processing circuit 1300 or located outside the electronic device 130.
  • the memory 1301 may be a volatile memory and/or a non-volatile memory.
  • the memory 1301 may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), flash memory.
  • the communication unit 1302 may be configured to communicate with an electronic device at the other end of the communication (for example, a recipient electronic device) under the control of the processing circuit 1300.
  • the communication unit 1302 may be implemented as a transmitter or transceiver, including communication components such as an antenna array and/or a radio frequency link.
  • the communication unit 1302 may transmit on the beam determined based on the result of the directional CCA.
  • the communication unit 1302 may send the information of the beam that can be used for transmission to the receiving electronic device.
  • the processing circuit 1300 may also be implemented to include the communication unit 1302.
  • the processing circuit 1300 may also be implemented to include one or more other components in the electronic device 130, or the processing circuit 1300 may be implemented as the electronic device 130 itself.
  • the processing circuit 1300 may be implemented as a chip (such as an integrated circuit module including a single wafer), a hardware component, or a complete product.
  • the operation flow 140 starts at S1400.
  • the electronic device is in an idle state, that is, there is no data to be sent.
  • the operation flow proceeds to S1404.
  • the CCA unit sequentially performs CCA on the directions of the multiple beams, and when the CCA of a predetermined threshold number of beams passes, no CCA is performed on the remaining beams of the multiple beams.
  • CCA means that a clear channel assessment of directivity is performed for a specific beam direction.
  • CCA pass is intended to indicate that the channel is idle in a specific beam direction, that is, it means that the energy on the channel in the direction of the beam for which CCA is performed is less than a predetermined threshold within a predetermined period of time (for example, 34 ⁇ s).
  • a predetermined threshold for example, 34 ⁇ s.
  • the initial CCA and the further CCA are no longer divided, but the CCA is sequentially performed on multiple beams.
  • the CCA unit may sequentially perform CCA on the directions of the multiple beams in a predetermined sequence, and the sequence enables priority to perform CCA on beams with better channel quality in the direction.
  • beams 1, 2...M can be M beams with channel quality from high to low.
  • the beam quality in the beam direction can be determined according to the reference signal sent between the base station and the terminal device, and CCA is performed on each beam in the order of channel quality from high to low.
  • the channel quality of the beam can be determined according to the channel sounding reference signal (SRS) of the terminal device.
  • SRS channel sounding reference signal
  • the channel quality of the beam can be determined according to the synchronization signal block (SSB) or the channel state information reference information (CSI-RS) of the base station.
  • SSB synchronization signal block
  • CSI-RS channel state information reference information
  • the CCA unit may also sequentially perform CCA on multiple beams in a random order. For example, this random sequence can be used when it is difficult for the transmitter to determine the channel quality of each beam, or the channel quality of each beam is similar.
  • the predetermined threshold number may be one. In this way, as long as one beam passes the CCA of the beam direction, the beam can be directly used for transmission. In this way, the waiting time for transmission can be effectively reduced, thereby improving communication efficiency.
  • the CCA result processing unit 13002 is configured to perform some processing on the result of the directional CCA, for example, determining beams that can be used for transmission and controlling the communication unit to notify beams that can be used for transmission.
  • the transmission beam determination module of the CCA result processing unit 13002 may be configured to determine the beam to be used for transmission through the beam of the CCA.
  • the CCA result processing unit 13002 may determine the beam with better channel quality in this direction among the beams passing through the CCA as the beam that can be transmitted. For example, in the RRC connection establishment process, a beam with better channel quality determined based on reference information (such as SRS, SSB, or CSI-RS) exchanged between the base station and the terminal device may be selected for transmission.
  • reference information such as SRS, SSB, or CSI-RS
  • a plurality of beams that can be used for transmission may be determined based on the channel quality, so that the sender and the receiver can select the beam to be transmitted through subsequent negotiation. This configuration can better guarantee the channel quality of the transmit beam, thereby facilitating successful reception at the receiving end.
  • the CCA result indicating module of the CCA result processing unit 13002 may be configured to determine information related to the directivity CCA of the beam and control the communication unit to control the direction of the beam.
  • the information related to sexual CCA is notified to the receiver’s electronic device.
  • the information related to the directivity CCA of the beam may include an indication of the beam that can be transmitted and the beam that cannot be transmitted. Accordingly, notifying the information related to the CCA of the directivity of the beam to the receiver electronic device may include The electronic device notifies the beams that can be transmitted and the beams that cannot be transmitted that are determined based on the result of the directional CCA.
  • the CCA result indicating module can also be configured to indicate the beams that can be transmitted and the beams that cannot be transmitted in the form of a bitmap. For example, referring to the beams that can be used for transmission determined by the transmission beam determination module, the CCA result indicating module can generate the beams that can be used for transmission (that is, the beams that pass the directional CCA) and the beams that cannot be used for transmission (that is, , The 8-bit bitmap of the beam that does not pass the directional CCA), where 1 represents the beam that can be used for transmission, 0 represents the beam that cannot be used for transmission, and the reserved bit (R) represents the beam that is not involved (for example, as above As mentioned above, after CCA is performed on M beams of S beams, when the CCA of the beam with a predetermined threshold has passed, there are SM unrelated beams).
  • 0 can also be used to replace the reserved bit (R).
  • R reserved bit
  • 0 can either indicate a beam that is determined to be unusable for transmission or a beam that is not involved.
  • Using a fixed-length bitmap regardless of the number of beams for directional CCA can facilitate the receiver to interpret the received bitmap, thereby simplifying the receiver's calculation.
  • the CCA result indication module can control the communication unit to notify the receiver device of the beams that can be used for transmission based on the generated bitmap, so that the receiver prepares the beam for reception (only instructs In the case of a beam that can be used for transmission), or so that the two parties can conduct subsequent negotiations to determine the beam to be transmitted (in the case where multiple beams that can be used for transmission are indicated).
  • the CCA result indication module can be configured to control the relevant unit (for example, the communication unit) in the electronic device 130 to dynamically or semi-statically convert the information related to the beam directivity CCA Notify the recipient electronic device.
  • the communication unit may be controlled based on the generated bitmap to dynamically or semi-statically notify the receiving electronic device of beams that can be used for transmission and beams that cannot be used for transmission and/or beams that are not involved.
  • the specific notification methods for dynamic and semi-static are the same as those in the first embodiment, and will not be repeated here.
  • the multiple beams may also be preset.
  • the multiple beams for which directional CCA is performed may be pre-configured through RRC signaling, or may be pre-configured through RRC signaling and activated through MAC CE.
  • this process of pre-setting the beam is implemented by the base station.
  • the base station performs beam setting for one or more channels between the base station and the terminal device through RRC signaling to pre-configure multiple beams for directional CCA.
  • the terminal device wants to transmit for directional CCA
  • this pre-setting process is based on the signaling interaction between the base station and the terminal device Realized by the base station side.
  • the process of presetting multiple beams to be directional CCA is similar to the process described with reference to the first embodiment, and will not be repeated here.
  • the conceptual operation flow starts at step S1500.
  • the electronic device 130 presets a plurality of beams for directional CCA.
  • the multiple beams are pre-configured through RRC signaling or pre-configured through RRC signaling and activated through MAC CE.
  • the configuration of the uplink and the downlink has been described above, and will not be repeated here.
  • the electronic device 130 starts to perform directional CCA on the set multiple beams at step S1504.
  • CCA is performed on the directions of the multiple beams in sequence, and after the CCA of a predetermined threshold number of beams passes, CCA is not performed on the remaining beams of the multiple beams.
  • the electronic device can process the result of the CCA.
  • the electronic device 130 may determine one or more beams that can be used for transmission and notify the one or more beams to the receiving electronic device via a bitmap.
  • the electronic device 130 may determine the beams that can be used for transmission according to the channel quality in each beam direction.
  • the operation flow 150 may further include an optional step (not shown) of negotiating with the receiving electronic device to determine the beam to be transmitted.
  • the electronic device 150 initializes the directivity channel occupation time in the determined beam direction to be transmitted. Subsequently, at S1510, the electronic device 150 may transmit in the determined beam direction. The process ends at S1512.
  • the electronic device 130 may first initialize the directional channel occupation time and then notify the receiving electronic device of the beam to be transmitted.
  • FIG. 16 is a block diagram showing an example structure of a personal computer as an information processing device that can be adopted in the embodiment of the present disclosure.
  • the personal computer may correspond to the aforementioned exemplary terminal device according to the present disclosure.
  • a central processing unit (CPU) 1601 executes various processes according to a program stored in a read only memory (ROM) 1602 or a program loaded from a storage portion 1608 to a random access memory (RAM) 1603.
  • the RAM 1603 also stores data required when the CPU 1601 executes various processes and the like as necessary.
  • the CPU 1601, ROM 1602, and RAM 1603 are connected to each other via a bus 1604.
  • the input/output interface 1605 is also connected to the bus 1604.
  • input part 1606 including keyboard, mouse, etc.
  • output part 1607 including display, such as cathode ray tube (CRT), liquid crystal display (LCD), etc., and speakers, etc.
  • storage part 1608 Including hard disks, etc.
  • communication part 1609 including network interface cards such as LAN cards, modems, etc.
  • the communication section 1609 performs communication processing via a network such as the Internet.
  • the driver 1610 is also connected to the input/output interface 1605 as required.
  • a removable medium 1611 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc. is mounted on the drive 1610 as required, so that the computer program read out therefrom is installed in the storage portion 1608 as required.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 1611.
  • this storage medium is not limited to the removable medium 1611 shown in FIG. 16 in which the program is stored and distributed separately from the device to provide the program to the user.
  • removable media 1611 include magnetic disks (including floppy disks (registered trademarks)), optical disks (including compact disk read-only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including mini disks (MD) (registered trademarks) )) and semiconductor memory.
  • the storage medium may be a ROM 1602, a hard disk included in the storage portion 1608, etc., in which programs are stored and distributed to users together with the devices containing them.
  • the technology of the present disclosure can be applied to various products.
  • the electronic devices (40, 130) according to the embodiments of the present disclosure can be implemented as various control devices/base stations or included in various control devices/base stations, and the method shown in Figures (12, 15) It can also be implemented by various control devices/base stations.
  • the electronic devices (40, 130) according to the embodiments of the present disclosure can also be implemented as various terminal devices/user equipment or included in various terminal devices/user equipment, as shown in Figures (12, 15) The method shown can also be implemented by various control devices/base stations.
  • the control device/base station mentioned in the present disclosure may be implemented as any type of base station, such as evolved node B (gNB), such as macro gNB and small gNB.
  • the small gNB may be a gNB covering a cell smaller than a macro cell, such as pico gNB, micro gNB, and home (femto) gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and Base Transceiver Station (BTS).
  • the base station may include: a main body (also referred to as base station equipment) configured to control wireless communication; and one or more remote radio heads (RRH) arranged in a different place from the main body.
  • RRH remote radio heads
  • various types of terminals to be described below can all operate as base stations by temporarily or semi-persistently performing base station functions.
  • the terminal device mentioned in the present disclosure is also called user equipment in some examples, and can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle Mobile routers and digital cameras) or in-vehicle terminals (such as car navigation equipment).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • the term base station in the present disclosure has the full breadth of its ordinary meaning, and at least includes wireless communication stations used as a wireless communication system or a part of a radio system to facilitate communication.
  • the base station may be, for example, but not limited to the following: the base station may be one or both of a base transceiver station (BTS) and a base station controller (BSC) in a GSM system, and may be a radio network controller in a WCDMA system
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • One or both of (RNC) and Node B can be eNBs in LTE and LTE-Advanced systems, or can be corresponding network nodes in future communication systems (for example, gNB, eLTE that may appear in 5G communication systems) eNB, etc.).
  • RNC radio network controller
  • Part of the functions in the base station of the present disclosure can also be implemented as entities that have control functions for communication in D2D, M2M,
  • FIG. 17 is a block diagram showing a first example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • the gNB 1700 includes multiple antennas 1710 and base station equipment 1720.
  • the base station device 1720 and each antenna 1710 may be connected to each other via an RF cable.
  • the gNB 1700 (or base station device 1720) here may correspond to the aforementioned electronic device (40, 130).
  • Each of the antennas 1710 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 1720 to transmit and receive wireless signals.
  • the gNB 1700 may include multiple antennas 1710.
  • multiple antennas 1710 may be compatible with multiple frequency bands used by gNB 1700.
  • the base station equipment 1720 includes a controller 1721, a memory 1722, a network interface 1723, and a wireless communication interface 1725.
  • the controller 1721 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 1720. For example, the controller 1721 generates a data packet based on data in a signal processed by the wireless communication interface 1725, and transmits the generated packet via the network interface 1723. The controller 1721 may bundle data from a plurality of baseband processors to generate a bundled packet, and transfer the generated bundled packet. The controller 1721 may have a logic function for performing control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 1722 includes RAM and ROM, and stores programs executed by the controller 1721 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 1723 is a communication interface for connecting the base station device 1720 to the core network 1724.
  • the controller 1721 may communicate with the core network node or another gNB via the network interface 1723.
  • the gNB 1700 and the core network node or other gNB can be connected to each other through logical interfaces (such as the S1 interface and the X2 interface).
  • the network interface 1723 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1723 is a wireless communication interface, the network interface 1723 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1725.
  • the wireless communication interface 1725 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connection to terminals located in the cell of the gNB 1700 via the antenna 1710.
  • the wireless communication interface 1725 may generally include, for example, a baseband (BB) processor 1726 and an RF circuit 1727.
  • the BB processor 1726 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • the BB processor 1726 may have a part or all of the above-mentioned logical functions.
  • the BB processor 1726 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 1726.
  • the module may be a card or a blade inserted into the slot of the base station device 1720. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1727 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1710.
  • FIG. 17 shows an example in which one RF circuit 1727 is connected to one antenna 1710, the present disclosure is not limited to this illustration, but one RF circuit 1727 can connect multiple antennas 1710 at the same time.
  • the wireless communication interface 1725 may include a plurality of BB processors 1726.
  • multiple BB processors 1726 may be compatible with multiple frequency bands used by gNB 1700.
  • the wireless communication interface 1725 may include a plurality of RF circuits 1727.
  • multiple RF circuits 1727 may be compatible with multiple antenna elements.
  • FIG. 16 shows an example in which the wireless communication interface 1725 includes a plurality of BB processors 1726 and a plurality of RF circuits 1727, the wireless communication interface 1725 may also include a single BB processor 1726 or a single RF circuit 1727.
  • FIG. 18 is a block diagram showing a second example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • the gNB 1830 includes multiple antennas 1840, base station equipment 1850, and RRH 1860.
  • the RRH 1860 and each antenna 1840 may be connected to each other via an RF cable.
  • the base station equipment 1850 and the RRH 1860 may be connected to each other via a high-speed line such as an optical fiber cable.
  • the gNB 1830 (or base station device 1850) herein may correspond to the above electronic device (40, 130).
  • Each of the antennas 1840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for RRH 1860 to transmit and receive wireless signals.
  • the gNB 1830 may include multiple antennas 1840.
  • multiple antennas 1840 may be compatible with multiple frequency bands used by gNB 1830.
  • the base station equipment 1850 includes a controller 1851, a memory 1852, a network interface 1853, a wireless communication interface 1855, and a connection interface 1857.
  • the controller 1851, the memory 1852, and the network interface 1853 are the same as the controller 1721, the memory 1722, and the network interface 1723 described with reference to FIG.
  • the wireless communication interface 1855 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to terminals located in the sector corresponding to the RRH 1860 via the RRH 1860 and the antenna 1840.
  • the wireless communication interface 1855 may generally include, for example, a BB processor 1856.
  • the BB processor 1856 is the same as the BB processor 1726 described with reference to FIG. 17 except that the BB processor 1856 is connected to the RF circuit 1864 of the RRH 1860 via the connection interface 1857.
  • the wireless communication interface 1855 may include a plurality of BB processors 1856.
  • multiple BB processors 1856 may be compatible with multiple frequency bands used by gNB 1830.
  • FIG. 18 shows an example in which the wireless communication interface 1855 includes a plurality of BB processors 1856, the wireless communication interface 1855 may also include a single BB processor 1856.
  • connection interface 1857 is an interface for connecting the base station equipment 1850 (wireless communication interface 1855) to the RRH 1860.
  • the connection interface 1857 may also be a communication module for connecting the base station device 1850 (wireless communication interface 1855) to the communication in the above-mentioned high-speed line of the RRH 1860.
  • the RRH 1860 includes a connection interface 1861 and a wireless communication interface 1863.
  • connection interface 1861 is an interface for connecting the RRH 1860 (wireless communication interface 1863) to the base station equipment 1850.
  • the connection interface 1861 may also be a communication module used for communication in the aforementioned high-speed line.
  • the wireless communication interface 1863 transmits and receives wireless signals via the antenna 1840.
  • the wireless communication interface 1863 may generally include, for example, an RF circuit 1864.
  • the RF circuit 1864 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1840.
  • FIG. 18 shows an example in which one RF circuit 1864 is connected to one antenna 1840, the present disclosure is not limited to this illustration, but one RF circuit 1864 can connect multiple antennas 1840 at the same time.
  • the wireless communication interface 1863 may include a plurality of RF circuits 1864.
  • multiple RF circuits 1864 can support multiple antenna elements.
  • FIG. 18 shows an example in which the wireless communication interface 1863 includes a plurality of RF circuits 1864, the wireless communication interface 1863 may also include a single RF circuit 1864.
  • FIG. 19 is a block diagram showing an example of a schematic configuration of a smart phone 1900 to which the technology of the present disclosure can be applied.
  • the smart phone 1900 includes a processor 1901, a memory 1902, a storage device 1903, an external connection interface 1904, a camera 1906, a sensor 1907, a microphone 1908, an input device 1909, a display device 1910, a speaker 1911, a wireless communication interface 1912, one or more An antenna switch 1915, one or more antennas 1916, a bus 1917, a battery 1918, and an auxiliary controller 1919.
  • the smart phone 1900 (or the processor 1901) herein may correspond to the aforementioned electronic device (40, 130).
  • the processor 1901 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the smart phone 1900.
  • the memory 1902 includes RAM and ROM, and stores data and programs executed by the processor 1901.
  • the storage device 1903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1904 is an interface for connecting external devices such as a memory card and a universal serial bus (USB) device to the smart phone 1900.
  • the camera 1906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 1907 may include a group of sensors, such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1908 converts the sound input to the smart phone 1900 into an audio signal.
  • the input device 1909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1910, and receives operations or information input from the user.
  • the display device 1910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1900.
  • the speaker 1911 converts the audio signal output from the smart phone 1900 into sound.
  • the wireless communication interface 1912 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 1912 may generally include, for example, a BB processor 1913 and an RF circuit 1914.
  • the BB processor 1913 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1914 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1916.
  • the wireless communication interface 1912 may be a chip module on which a BB processor 1913 and an RF circuit 1914 are integrated. As shown in FIG.
  • the wireless communication interface 1912 may include a plurality of BB processors 1913 and a plurality of RF circuits 1914.
  • FIG. 19 shows an example in which the wireless communication interface 1912 includes a plurality of BB processors 1913 and a plurality of RF circuits 1914, the wireless communication interface 1912 may also include a single BB processor 1913 or a single RF circuit 1914.
  • the wireless communication interface 1912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 1912 may include a BB processor 1913 and an RF circuit 1914 for each wireless communication scheme.
  • Each of the antenna switches 1915 switches the connection destination of the antenna 1916 among a plurality of circuits included in the wireless communication interface 1912 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 1916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1912 to transmit and receive wireless signals.
  • the smart phone 1900 may include multiple antennas 1916.
  • FIG. 19 shows an example in which the smart phone 1900 includes a plurality of antennas 1916, the smart phone 1900 may also include a single antenna 1916.
  • the smart phone 1900 may include an antenna 1916 for each wireless communication scheme.
  • the antenna switch 1915 may be omitted from the configuration of the smart phone 1900.
  • the bus 1917 connects the processor 1901, memory 1902, storage device 1903, external connection interface 1904, camera 1906, sensor 1907, microphone 1908, input device 1909, display device 1910, speaker 1911, wireless communication interface 1912, and auxiliary controller 1919 to each other connection.
  • the battery 1918 supplies power to each block of the smart phone 1900 shown in FIG. 18 via a feeder line, which is partially shown as a dashed line in the figure.
  • the auxiliary controller 1919 operates the minimum necessary functions of the smartphone 1900 in the sleep mode, for example.
  • FIG. 20 is a block diagram showing an example of a schematic configuration of a car navigation device 2020 to which the technology of the present disclosure can be applied.
  • the car navigation device 2020 includes a processor 2021, a memory 2022, a global positioning system (GPS) module 2024, a sensor 2025, a data interface 2026, a content player 2027, a storage medium interface 2028, an input device 2029, a display device 2030, a speaker 2031, a wireless A communication interface 2033, one or more antenna switches 2036, one or more antennas 2037, and a battery 2038.
  • GPS global positioning system
  • the car navigation device 2020 (or the processor 2021) herein may correspond to the aforementioned electronic device (40, 130).
  • the processor 2021 may be, for example, a CPU or SoC, and controls the navigation function and other functions of the car navigation device 2020.
  • the memory 2022 includes RAM and ROM, and stores data and programs executed by the processor 2021.
  • the GPS module 2024 uses GPS signals received from GPS satellites to measure the position (such as latitude, longitude, and altitude) of the car navigation device 2020.
  • the sensor 2025 may include a group of sensors, such as a gyroscope sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 2026 is connected to, for example, an in-vehicle network 2041 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 2027 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 2028.
  • the input device 2029 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 2030, and receives an operation or information input from the user.
  • the display device 2030 includes a screen such as an LCD or OLED display, and displays images of navigation functions or reproduced content.
  • the speaker 2031 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 2033 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 2033 may generally include, for example, a BB processor 2034 and an RF circuit 2035.
  • the BB processor 2034 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2035 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 2037.
  • the wireless communication interface 2033 may also be a chip module on which the BB processor 2034 and the RF circuit 2035 are integrated. As shown in FIG.
  • the wireless communication interface 2033 may include a plurality of BB processors 2034 and a plurality of RF circuits 2035.
  • FIG. 20 shows an example in which the wireless communication interface 2033 includes a plurality of BB processors 2034 and a plurality of RF circuits 2035, the wireless communication interface 2033 may also include a single BB processor 2034 or a single RF circuit 2035.
  • the wireless communication interface 2033 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 2033 may include a BB processor 2034 and an RF circuit 2035 for each wireless communication scheme.
  • Each of the antenna switches 2036 switches the connection destination of the antenna 2037 among a plurality of circuits included in the wireless communication interface 2033, such as circuits for different wireless communication schemes.
  • Each of the antennas 2037 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 2033 to transmit and receive wireless signals.
  • the car navigation device 2020 may include multiple antennas 2037.
  • FIG. 20 shows an example in which the car navigation device 2020 includes a plurality of antennas 2037, the car navigation device 2020 may also include a single antenna 2037.
  • the car navigation device 2020 may include an antenna 2037 for each wireless communication scheme.
  • the antenna switch 2036 may be omitted from the configuration of the car navigation device 2020.
  • the battery 2038 supplies power to each block of the car navigation device 2020 shown in FIG. 20 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the battery 2038 accumulates power supplied from the vehicle.
  • the technology of the present disclosure can also be implemented as an in-vehicle system (or vehicle) 2040 including one or more blocks in the car navigation device 2020, the in-vehicle network 2041, and the vehicle module 2042.
  • vehicle module 2042 generates vehicle data (such as vehicle speed, engine speed, and fault information), and outputs the generated data to the vehicle network 2041.
  • machine-readable storage medium or the machine-executable instructions in the program product may be configured to perform operations corresponding to the above-mentioned device and method embodiments.
  • the embodiments of the machine-readable storage medium or program product are clear to those skilled in the art, so the description will not be repeated.
  • Machine-readable storage media and program products for carrying or including the above-mentioned machine-executable instructions also fall within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and so on.
  • the aforementioned series of processing and devices can also be implemented by software and/or firmware.
  • the storage medium of the related device for example, the electronic device 40 shown in FIG. 4 or the memory 1301 of the electronic device 130 shown in FIG. 13
  • the storage medium of the related device stores the corresponding program constituting the corresponding software, When the program is executed, various functions can be executed.
  • a plurality of functions included in one unit in the above embodiments may be realized by separate devices.
  • the multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions can be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only processing performed in time series in the described order, but also processing performed in parallel or individually rather than necessarily in time series. Furthermore, even in the steps processed in time series, needless to say, the order can be changed appropriately.
  • present disclosure may also have the following configuration:
  • An electronic device used in a wireless communication system including:
  • the processing circuit is configured as:
  • directional CCA is performed on the multiple beams through the following operations:
  • a further CCA is performed on one or more of the multiple beams.
  • the beam for initial CCA is the most suitable beam or a predetermined beam.
  • the most suitable beam represents the beam with better channel quality in that direction.
  • the predetermined beam refers to the beam configured through the RRC or the beam activated through the control element MAC CE of the media access control layer during the establishment of the RRC connection of the radio resource control configuration.
  • Further CCA includes:
  • the number T is randomly selected within the predetermined range
  • CCA is performed on a randomly selected beam among the multiple beams, and the CCA result of the beam is used as the CCA result of this iteration.
  • the number T is the product of the number of the plurality of beams and a value randomly selected from the predetermined range
  • CCA is performed on one of the multiple beams selected in a predetermined order, and the result of the CCA of the beam is used as the result of the CCA of the iteration, wherein the predetermined order enables the cyclic
  • the multiple beams sequentially perform CCA.
  • the number T is randomly selected within the predetermined range
  • CCA is sequentially performed on all or part of the multiple beams, and when the CCA of the beam exceeding the predetermined threshold number passes, it is considered that the current CCA has passed.
  • the predetermined threshold number is any one of the following values: one, half of the number of beams for CCA in one iteration, and the number of beams for CCA in one iteration.
  • Passing directional CCA means that the energy in the direction of the beam for which directional CCA is performed is less than a predetermined threshold.
  • any one of the following beams is selected for transmission:
  • the directional CCA is performed on the receiving beam corresponding to the direction of the transmitting beam.
  • the multiple beams are pre-configured through radio resource control signaling, or,
  • the multiple beams are pre-configured through radio resource control signaling and activated through the control element MAC CE of the media access control layer.
  • Pre-configuring the multiple beams through radio resource control signaling includes:
  • -A device serving as a base station among the electronic device and the other electronic device performs beam setting for one or more channels between the electronic device and the other electronic device through radio resource control signaling.
  • performing beam setting includes configuring multiple transmission configurations to indicate TCI status, where each TCI status corresponds to a beam;
  • performing beam setting includes configuring multiple spatial relationship information SpatialRelationInfo, where each SpatialRelationInfo corresponds to one beam.
  • the one or more channels include one or more of the following: physical downlink control channel PDCCH, physical downlink shared channel PDSCH, physical uplink control channel PUCCH, and physical uplink shared channel PUSCH.
  • the processing circuit is further configured to notify another electronic device of information related to the directivity CCA of the beam.
  • Notifying the other electronic device of the information related to the directivity CCA of the beam includes notifying the other electronic device of the beam that can be transmitted and the beam that cannot be transmitted, which is determined based on the result of the directivity CCA.
  • the beams that can be transmitted and the beams that cannot be transmitted are indicated in the form of a bitmap.
  • the dynamic method includes the use of control information to dynamically specify the beams that can be transmitted and the beams that cannot be transmitted;
  • the semi-static approach involves using the control elements of the media access control layer to activate beams capable of transmitting.
  • a method for a wireless communication system including:
  • the processing circuit is configured as:
  • directional CCA is performed on the multiple beams through the following operations:
  • a further CCA is performed on one or more of the multiple beams.
  • An electronic device used in a wireless communication system including:
  • directional CCA is performed on the multiple beams through the following operations:
  • CCA is performed sequentially on the directions of the multiple beams, and when the CCA of a predetermined threshold number of beams passes, CCA is not performed on the remaining beams of the multiple beams.
  • CCA is sequentially performed on the directions of the multiple beams in a predetermined sequence, and the sequence is such that the CCA is performed on beams with good channel quality in the direction first.
  • the predetermined threshold number is one.
  • the predetermined threshold number is greater than 1
  • a beam with a better channel quality is selected from the beams passing through the CCA for transmission.
  • Passing directional CCA means that the energy in the direction of the beam for which directional CCA is performed is less than a predetermined threshold.
  • the directional CCA is performed on the receiving beam corresponding to the direction of the transmitting beam.
  • the multiple beams are pre-configured through radio resource control signaling, or,
  • the multiple beams are pre-configured through radio resource control signaling and activated through the control element MAC CE of the media access control layer.
  • Pre-configuring the multiple beams through radio resource control signaling includes:
  • -A device serving as a base station among the electronic device and the other electronic device performs beam setting for one or more channels between the electronic device and the other electronic device through radio resource control signaling.
  • performing beam setting includes configuring multiple transmission configurations to indicate TCI status, where each TCI status corresponds to a beam;
  • performing beam setting includes configuring multiple spatial relationship information SpatialRelationInfo, where each SpatialRelationInfo corresponds to one beam.
  • the one or more channels include one or more of the following: physical downlink control channel PDCCH, physical downlink shared channel PDSCH, physical uplink control channel PUCCH, and physical uplink shared channel PUSCH.
  • the processing circuit is further configured to notify another electronic device of information related to the directivity CCA of the beam.
  • Notifying the other electronic device of the information related to the directivity CCA of the beam includes notifying the other electronic device of the beam that can be transmitted and the beam that cannot be transmitted, which is determined based on the result of the directivity CCA.
  • the beams that can be transmitted and the beams that cannot be transmitted are indicated in the form of a bitmap.
  • the dynamic method includes the use of control information to dynamically specify the beams that can be transmitted and the beams that cannot be transmitted;
  • the semi-static approach involves using the control elements of the media access control layer to activate beams capable of transmitting.
  • a method for wireless communication system including:
  • directional CCA is performed on the multiple beams through the following operations:
  • CCA is performed sequentially on the directions of the multiple beams, and when the CCA of a predetermined threshold number of beams passes, CCA is not performed on the remaining beams of the multiple beams.
  • a non-transitory computer-readable storage medium storing executable instructions that, when executed, implement the method described in (21) or (37).
  • a device including:
  • the storage device stores executable instructions that, when executed, implement the method described in (21) or (37).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及用于无线通信系统的电子设备、方法和存储介质。本公开提供了一种用于无线通信系统的电子设备,包括:处理电路,被配置为:使用非授权频段进行通信;和对多个波束进行指向性空闲信道评估CCA,基于指向性CCA的结果来选择波束进行发射,其中,通过如下操作来对所述多个波束进行指向性CCA:对所述多个波束中的一个波束来进行初始CCA;在初始CCA通过的情况下,选择通过初始CCA的波束进行发射;和在初始CCA未通过的情况下,针对所述多个波束中的一个或多个波束进行进一步的CCA。

Description

用于无线通信系统的电子设备、方法和存储介质 技术领域
本公开一般地涉及无线通信系统,并且具体地涉及无线通信系统中非授权频段的指向性载波监听机制。
背景技术
在无线通信系统中,可能会使用非授权频段来进行发射。不同类型的系统(诸如NR系统、WiFi系统之类)都可以使用非授权频段来进行数据传输。考虑到不同类型的系统对于频谱都应具有公平的使用权,因此为了避免不必要的干扰,任何系统的发射端在使用非授权频谱以前都需要做载波监听的操作,以判断该频谱在当前时刻是否正在被占用。
然而,在现有的载波监听机制中,仅涉及FR1(低频段)的载波监听,其中仅使用空间覆盖范围较广的接收波束(例如,全向波束)来进行载波监听操作,因此发射端即使接收到很强的接收信号能量,也无法判断该能量是来自于哪个方向。然而,在非授权频段(例如毫米波频段)中,由于存在强烈的路径损耗,因此一般使用经波束赋形的指向性波束进行传输,其中波束赋形技术把发射信号的功率集中在某些特定的空间方向上,从而能够达到更好的信号覆盖效果以对抗路径损耗。鉴于此,如果在非授权频段中仍然像低频段的载波监听那样,使用空间覆盖范围较广的接收波束(例如,全向波束)来进行载波监听操作,则会导致有可能会浪费在某些方向上使用特定波束通信的机会。
因此,需要一种用于无线通信系统中非授权频段的指向性载波监听机制,以便能够针对波束的方向监听信道是否空闲从而能够有效地利用特定方向上的波束来进行通信。
发明内容
针对上述情况,本公开提出了一种指向性的空闲信道评估的方案,以便针对指向性的波束方向进行该方向上的空闲信道评估,从而使得便于利用特定方向上的波束来进行通信。
本公开提供了一种用于无线通信系统的电子设备、方法和存储介质。
本公开的一个方面涉及一种用于无线通信系统的电子设备,包括:处理电路,被配置为:使用非授权频段进行通信;和对多个波束进行指向性空闲信道评估CCA,基于指向性CCA的结果来选择波束进行发射,其中,通过如下操作来对所述多个波束进行指向性CCA:对所述多个波束中的一个波束来进行初始CCA;在初始CCA通过的情况下,选择通过初始CCA的波束进行发射;和在初始CCA未通过的情况下,针对所述多个波束中的一个或多个波束进行进一步的CCA。
本公开的另一个方面涉及一种用于无线通信系统的方法,包括:处理电路,被配置为:使用非授权频段进行通信;和对多个波束进行指向性空闲信道评估CCA,基于指向性CCA的结果来选择波束进行发射,其中,通过如下操作来对所述多个波束进行指向性CCA:对所述多个波束中的一个波束来进行初始CCA;在初始CCA通过的情况下,选择通过初始CCA的波束进行发射;和在初始CCA未通过的情况下,针对所述多个波束中的一个或多个波束进行进一步的CCA。
本公开的另一个方面涉及一种用于无线通信系统的电子设备,包括:使用非授权频段进行通信;和对多个波束进行指向性空闲信道评估CCA,基于指向性CCA的结果来选择波束进行发射,其中,通过如下操作来对所述多个波束进行指向性CCA:依次对所述多个波束的方向进行CCA,并且当预定阈值数量的波束的CCA通过后,不再对所述多个波束中剩余的波束进行CCA。
本公开的另一个方面涉及一种用于无线通信系统的方法,包括:使用非授权频段进行通信;和对多个波束进行指向性空闲信道评估CCA,基于指向性CCA的结果来选择波束进行发射,其中,通过如下操作来对所述多个波束进行指向性CCA:依次对所述多个波束的方向进行CCA,并且当预定阈值数量的波束的CCA通过后,不再对所述多个波束中剩余的波束进行CCA。
本公开的另一个方面涉及一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如以上所述的任一方法。
本公开的另一个方面涉及一种设备,包括:处理器和存储有可执行指令的存储装置,所述可执行指令当被执行时实现以上所述的任一方法。
附图说明
当结合附图考虑实施例的以下具体描述时,可以获得对本公开内容更好的理解。 在各附图中使用了相同或相似的附图标记来表示相同或者相似的部件。各附图连同下面的具体描述一起包含在本说明书中并形成说明书的一部分,用来例示说明本公开的实施例和解释本公开的原理和优点。其中:
图1示意性地示出了类型2的“先听后说”载波监听机制;
图2示意性地示出了类型4的“先听后说”载波监听机制;
图3示意性地示出了根据本公开的通信系统;
图4示意性地示出了根据本公开的第一实施例的电子设备的概念性配置;
图5示意性地示出了根据本公开的第一实施例的电子设备的空闲信道评估(CCA)单元的概念性操作流程;
图6示意性地示出了根据本公开的第一实施例的第一示例的指向性CCA的流程图;
图7示意性地示出了根据本公开的第一实施例的第二示例的指向性CCA的流程图;
图8示意性地示出了根据本公开的第一实施例的第三示例的指向性CCA的流程图;
图9示意性地示出了根据本公开的、指示与指向性空闲信道评估相关的信息的示例;
图10示意性地示出了示例性的传输配置指示状态(TCI-State)信息元素;
图11a示意性地示出了示例性的物理上行控制信道(PUCCH)空间关系信息(PUCCH-SpatialRelationInfo)信息元素;
图11b示意性地示出了示例性的信道探测参考信号(SRS)空间关系信息(SRS-SpatialRelationInfo)信息元素;
图12示意性地示出了根据本公开的第一实施例的电子设备的概念性操作流程;
图13示意性地示出了根据本公开的第二实施例的电子设备的概念性配置;
图14示意性地示出了根据本公开的第二实施例的电子设备的空闲信道评估(CCA)单元的概念性操作流程;
图15示意性地示出了根据本公开的第二实施例的电子设备的概念性操作流程;
图16为作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图;
图17为示出可以应用本公开的技术的gNB的示意性配置的第一示例的框图;
图18为示出可以应用本公开的技术的gNB的示意性配置的第二示例的框图;
图19为示出可以应用本公开的技术的智能电话的示意性配置的示例的框图;以及
图20为示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
虽然在本公开内容中所描述的实施例可能易于有各种修改和另选形式,但是其具体实施例在附图中作为例子示出并且在本文中被详细描述。但是,应当理解,附图以及对其的详细描述不是要将实施例限定到所公开的特定形式,而是相反,目的是要涵盖属于权利要求的精神和范围内的所有修改、等同和另选方案。
具体实施方式
以下描述根据本公开的设备和方法等各方面的代表性应用。这些例子的描述仅是为了增加上下文并帮助理解所描述的实施例。因此,对本领域技术人员而言明晰的是,以下所描述的实施例可以在没有具体细节当中的一些或全部的情况下被实施。在其他情况下,众所周知的过程步骤没有详细描述,以避免不必要地模糊所描述的实施例。其他应用也是可能的,本公开的方案并不限制于这些示例。
典型地,无线通信系统至少包括控制设备和终端设备,控制设备可以为一个或多个终端设备提供通信服务。
在本公开中,术语“基站”或“控制设备”具有其通常含义的全部广度,并且至少包括作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。作为例子,基站例如可以是4G通信标准的eNB、5G通信标准的gNB、远程无线电头端、无线接入点、无人机控制塔台或者执行类似功能的通信装置。在本公开中,“基站”和“控制设备”可以互换地使用,或者“控制设备”可以实现为“基站”的一部分。下文将以基站为例结合附图详细描述基站/控制设备的应用示例。
在本公开中,术语“终端设备”或“用户设备(UE)”具有其通常含义的全部广度,并且至少包括作为无线通信系统或无线电系统的一部分以便于通信的终端设备。作为例子,终端设备例如可以是移动电话、膝上型电脑、平板电脑、车载通信设备等之类的终端设备或其元件。在本公开中,“终端设备”和“用户设备”(以下可被简称为“用户”)可以互换地使用,或者“终端设备”可以实现为“用户设备”的一部分。后面的章节将以终端设备为例详细描述终端设备/UE的应用示例。
在本公开中,术语“控制设备侧”/“基站侧”具有其通常含义的全部广度,通常指示通信系统下行链路中发送数据的一侧。类似地,术语“终端设备侧”/“用户设备侧”具有其通常含义的全部广度,并且相应地可以指示通信系统下行链路中接收数据的一侧。
在本公开中,在没有特别指明的情况下,术语“波束(beam)”表示通过波束赋形将发射信号集中在某些特定空间方向而形成的指向性波束。并且通常,术语“波束”可以 与术语“空间滤波器(Spatial domain filter)”等价。更具体地,发射波束(Tx beam)与发射空间滤波器(Spatial domain transmission filter)等价,接收波束(Rx beam)与接收空间滤波器(Spatial domain reception filter)等价。
在本公开中,一般由发送侧的设备进行指向性载波监听,并且无论是在控制设备侧还是在终端设备侧执行,这种指向性载波监听的操作是类似的。因此,在以下的描述中,除非特别指出,指向性载波监听的操作既可以在控制设备侧执行也可以在终端设备侧执行。
应指出,以下虽然主要基于包含基站和终端设备的通信系统对本公开的实施例进行了描述,但是这些描述可以相应地扩展到包含任何其它类型的控制设备侧和终端设备侧的通信系统的情况。例如,对于下行链路的情况,控制设备侧的操作可对应于基站的操作,而终端设备侧的操作可相应地对应于终端设备的操作。
图1和图2示出了现有的称作“先听后说(Listen Before Talk,LBT)”的载波监听机制。在本公开中,这种称为LBT的载波监听机制也被称为空闲信道评估(Clear Channel Assessment,CCA)。在现有的3GPP或者非3GPP的标准(如IEEE的标准)中,对这种LBT机制进行了相关的定义,下面以较简单的类型(类型2)的LBT(即Cat.2 LBT)及较为复杂的类型(类型4)的LBT(即Cat.4 LBT)作为示例来简要说明这种先听后说的载波监听机制。
图1示意性地示出了Cat.2 LBT的载波监听机制。如图1所述,在没有数据要发送时,发射端出于空闲状态。当需要发送数据时,发射端在空间覆盖范围较广的波束(例如,全向波束)上进行空闲信道评估,即发射端在预定时段(例如34μs)内在该较广的空间上监测要使用的频段上的能量,如果该能量超过了某一预定阈值,则认为该频段的信道正在被使用,因此该发射端需要保持静默,不能使用该频谱资源来进行发射(这种情况也称作LBT失败,即LBT Failure),否则,如果该能量低于所述预定阈值,则认为该信道空闲,可以进行发射。
图2示意性地示出了较为复杂的Cat.4 LBT的载波监听机制。如图2所示,Cat.4 LBT的操作可以分为初始CCA和扩展CCA两个部分。初始CCA与Cat.2 LBT类似,如果检测到信道在预定时段(例如,如图2所示的初始CCA时段B iCCA)内空闲,则可以进行发射,否则将进行扩展CCA。在扩展CCA期间,首先,将基于竞争窗口(例如,如图2中所示的[0,q-1])(该竞争窗口可以基于肯定确认(ACK)或否定确认(NACK)而被更新,具体的更新方式与本公开的关联度较低,这里不作介绍)来生成随机数N, 随后发射端会进入一个退避期D eCCA,例如34us,如果在该退避期内信道空闲且N不为零,则检测信道是否在预定时段T(例如9或10μs)内是否空闲,如果信道在T内空闲,则将N值减1并且继续检测信道是否在T内空闲,直到N等于零为止。当N等于零时,发射端可以进行发射。如果在退避期内或者在T内检测到信道忙,则进入进一步的退避,其中,退避期的目的是为竞争使用该非授权频段的其他系统提供使用该频谱资源进行发射的机会。
已经参考图1、图2简要介绍了现有的载波监听机制的示例。但是,如上文解释的,这种现有的机制是在空间覆盖范围较广的波束上评估信道是否空闲,例如,评估信道在全部方向上是否空闲。然而,在无线通信系统中,特别是在非授权频段中,可以利用指向性的波束进行指向性的发射。这种情况下,期望即使某个方向上的信道能量很强(即,该方向上的信道被占用),也可以使用其信道空闲的另一个指向性的波束进行发射。在这种利用指向性的波束进行发射的情况下,现有的载波监听机制可能导致发射端无法判断信道上的能量来自于哪个方向。因此,有可能会浪费在某些方向上使用特定波束进行通信的机会。鉴于此,本公开提供了一种用于无线通信系统中非授权频段的指向性载波监听机制,使得能够更有效地利用指向性波束进行发射。
图3示意性地示出了根据本公开的通信系统。如图3所示,在基站与终端设备之间利用指向性波束(以下简称为波束)进行通信。在图3中示意性地示出了基站10与终端设备20A之间的4个波束,但是,基站与终端设备之间的波束的数量不限于此,可以存在能够用于它们之间的通信的多于4个的波束(例如8个)或少于4个的波束。此外,虽然图3仅仅示出了基站10与终端设备20A之间的示意性波束,但是基站与其他终端设备(例如终端设备20B、20C)之间也存在类似的指向性波束。
根据本公开,要进行发射的电子设备(基站或终端设备)可以使用非授权频段进行通信,并且对多个波束进行指向性空闲信道评估(CCA),基于指向性CCA的结果来选择波束进行发射。在本公开中,一般认为发射端的发射波束可以和接收波束对等,也即存在波束对称性(beam correspondence)。根据本公开,发射端在与发射波束方向对应的接收波束上进行所述指向性CCA。根据本公开的一个实施例,可以通过如下操作来进行指向性CCA:对所述多个波束中的一个波束来进行初始CCA;在初始CCA通过的情况下,选择通过初始CCA的波束进行发射;和在初始CCA未通过的情况下,针对所述多个波束中的一个或多个波束进行进一步的CCA。根据本公开的一个实施例,还可以通过如下操作来进行指向性CCA:依次对所述多个波束的方向进行CCA,并且 当预定阈值数量的波束的CCA通过后,不再对所述多个波束中剩余的波束进行CCA。
根据本公开的一个实施例,针对其进行CCA的多个波束是通过无线资源控制(RRC)信令预先配置的,或者替代地,针对其进行CCA的多个波束是通过无线资源控制(RRC)信令预先配置并通过媒体接入控制层的控制元素MAC CE激活的。根据本公开的一个实施例,可以针对基站与终端设备之间的一个或多个信道预先设置多个波束,其中所述一个或多个信道包括以下中的一个或多个:物理下行控制信道(PDCCH)、物理下行共享信道(PDSCH)、物理上行控制信道(PUCCH)和物理上行共享信道(PUSCH)。
根据本公开的一个实施例,进行了指向性CCA的电子设备(即,要进行发射的基站或终端设备)可以将与波束的指向性CCA相关的信息通知给通信另一端的电子设备(即,作为接收方的基站或终端设备)。附加地,进行了指向性CCA的电子设备可以例如将基于指向性CCA的结果确定的能进行发射的波束和不能进行发射的波束通知给通信另一端的电子设备,以便通信双方后续准备和/或协商波束来进行发射和接收。
上文已经简要介绍了根据本公开的通信系统,以下将对于本公开的通信系统中的电子设备的配置和操作进行详细的描述。
根据第一实施例的电子设备的结构
下面将参考图4说明根据本公开的第一实施例的电子设备的概念性配置。
该电子设备可以被实现为要进行指向性CCA的设备,因此,可以是要进行发射的基站侧的设备或终端设备。在被实现为基站侧的设备的情况下,该电子设备可以被实现为蜂窝通信系统中的基站(BS)、小基站、Node B、e-NodeB、g-NodeB、中继等,机器型通信系统中的终端设备,自组织网络中的传感器节点,认知无线电系统中的共存管理器(Coexistence Managers,CM)、SAS等。例如,该电子设备可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB(与宏小区相关联)和小eNB(与小小区相关联)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,该电子设备可以被实现为任何其他类型的基站,诸如下一代网络中的网络节点如gNB、NodeB和基站收发台(BTS)。该电子设备可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,后面将描述的各种类型的装置均可以通过暂时地或半持久性地执行基站功能而作为该电子设备工作。应指出,电子设备可以是被包含在基站中作为基站的组成部分,或者与基站分离的、用于控制基站的控制设备。
在被实现为终端设备的情况下,该电子设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。该电子设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,该电子设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。该电子设备也可以被实现为智能电表、智能家电,或者认知无线电系统中的地理位置能力对象(Geolocation Capability Object,GCO)、公民宽带无线服务用户(Citizens Broadband Radio Service Device,CBSD)。
如图4所示,电子设备可以包括处理电路400。该处理电路400可以被配置为使用非授权频段进行通信;和对多个波束进行指向性空闲信道评估CCA,基于指向性CCA的结果来选择波束进行发射,其中,通过如下操作来对所述多个波束进行指向性CCA:对所述多个波束中的一个波束来进行初始CCA;在初始CCA通过的情况下,选择通过初始CCA的波束进行发射;和在初始CCA未通过的情况下,针对所述多个波束中的一个或多个波束进行进一步的CCA。
处理电路400可以是通用处理器的形式,也可以是专用处理电路,例如ASIC。例如,处理电路400能够由电路(硬件)或中央处理设备(诸如,中央处理单元(CPU))构造。此外,处理电路400上可以承载用于使电路(硬件)或中央处理设备工作的程序(软件)。该程序能够存储在存储器(诸如,布置在存储器401中)或从外面连接的外部存储介质中,以及经网络(诸如,互联网)下载。
根据一些实施例,该电子设备的处理电路可以包括各种单元以实现根据本公开的各实施例。
根据本公开的第一实施例,处理电路400可以包括对多个波束进行指向性空闲信道评估(CCA)的CCA单元4001。在实现中,CCA单元可以包括各种模块/子单元以实现文中所述的CCA操作中的各种操作。例如,CCA单元可以包括初始波束确定模块,该初始波束确定模块被配置为从多个波束中确定要进行初始CCA的一个波束。CCA单元还可以包括计算模块,该计算模块被配置为执行下文详细描述的指向性CCA操作流程。
作为替代,CCA单元4001还可以包括更多或更少的模块,例如,初始波束确定模块可以不包括在CCA单元4001中甚至可以不包括在处理电路400中,并且可以在确定了波束之后将其传送给该处理电路400的CCA单元4001。作为替代,计算模块还可以被进一步划分为更细的子模块,以分别处理相应的判定/计算操作。CCA单元4001的详细 操作将在下文参考图5-8进行说明。
根据本公开的第一实施例,处理电路400可以包括处理指向性CCA的结果的CCA结果处理单元4002。在实现中,CCA结果处理单元可以包括各种模块/子单元以实现文中所述的与处理指向性CCA的结果相关的各种操作。例如,CCA结果处理单元可以包括发射波束确定模块,该发射波束确定模块被配置为基于指向性CCA的结果来确定可以使用哪个或哪些波束来进行发射。CCA结果处理单元还可以包括CCA结果指示模块,该CCA结果指示模块被配置为进行与指示与指向性CCA相关的信息相关的操作,以便使电子设备40的通信单元402基于这种指示向与所述电子设备40通信的另一电子设备通知与波束的指向性CCA相关的信息。作为替代,CCA结果处理单元4002还可以包括更多或更少的模块。CCA结果处理单元4002的详细操作将在下文进行说明。
根据本公开的第一实施例,处理电路400还可以包括信道占用时间(Channel Occupy Time,COT)配置单元4003。COT配置单元4003可以被配置为基于发射波束确定单元4002确定的要进行发射的波束,在该波束的方向上配置(即初始化)指向性的信道占用时间。信道占用时间例如表示发射方将在一段时间内占用信道,并且在该段时间内,发射方可以进行发射而无需进行空闲信道评估。传统地,信道占用时间并不是针对某个波束方向而声明的,这导致当利用指向性波束进行发射时,可能由于初始化了信道占用时间而导致错过某些波束方向上的发射机会。此外,传统地,由于不针对特定方向来初始化信道占用时间,因此一般初始化较短的信道占用时间以防止在过长的时间内占用各个方向(例如全向)上的信道。鉴于此,根据本公开,基于指向性CCA的结果来初始化指向性的COT,从而能够防止占用其他波束上的信道资源。此外,根据本公开,由于针对基于指向性CCA的结果而确定的要进行发射的波束来初始化指向性的COT,因此,可以适当地初始化比传统的COT更长的COT,从而避免连续发射(例如,对于基站,在发送PDCCH之后发送PDSCH,或者对于终端设备,在发送PUCCH之后发送PUSCH)之间不恰当的等待时间。这对于接收方设备需要较长的时间理解所接收的内容以准备接收下一信息的情况尤其有利。例如,在工作在60kHz子载波间隔的情况下,终端设备最大需要2个时隙来理解PDCCH的内容并做好接受PDSCH的准备,由于传统的非指向性COT很可能短于发送PDCCH的时长与终端设备理解PDCCU的内容的时长之和,因此这很可能导致在发送跟随PDCCH的PDSCH仍需要重新进行CCA或重新进行等待时间更长的类型的CCA。借助比传统的非指向性COT更长的指向性COT能够有效地避免这种情况。
此外,处理电路400还可以包括用于在各单元之间进行接口连接的接口电路(未 示出)。
应注意,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。此外,上述各个单元在附图中用虚线示出指示这些单元可以并不实际存在,而它们所实现的操作/功能可由处理电路本身来实现。此外,附图中以虚线示出的单元/模块及其操作/功能可以根据实际情况来选择性地应用,也就是说,处理电路不一定要包括所有所示出的单元/模块及其操作/功能,而是可以选择性地实现这些单元/模块及其操作/功能中的一部分。
此外,可选地,电子设备40还可以包括存储器401以及通信单元402。此外,电子设备40还可以包括未示出的其它部件,诸如射频链路、基带处理单元、网络接口、处理器、控制器等。处理电路400可以与存储器401和/或通信单元402关联。例如,处理电路400可以直接或间接(例如,中间可能连接有其它部件)连接到存储器401,以进行数据的存取。还例如,处理电路400可以直接或间接连接到通信单元402,以经由通信单元402发送无线电信号以及经由通信单元402接收无线电信号。
存储器401可以存储要由处理电路400使用或由处理电路400产生的各种信息(例如,如指向性CCA相关的信息、执行指向性CCA期间各波束的CCA结果的统计信息等)、用于电子设备40操作的程序和数据、将由通信单元402发送的数据等。存储器41用虚线绘出,因为它还可以位于处理电路400内或者位于电子设备40外。存储器401可以是易失性存储器和/或非易失性存储器。例如,存储器401可以包括但不限于随机存储存储器(RAM)、动态随机存储存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)、闪存存储器。
通信单元402可以被配置为在处理电路400的控制下与通信另一端的电子设备(例如接收方电子设备)进行通信。在一个示例中,通信单元402可以被实现为发射机或收发机,包括天线阵列和/或射频链路等通信部件。在一个实现中,通信单元402可以在基于指向性CCA的结果所确定的波束上进行发射。在一个实现中,通信单元402可以将能够用于发射的波束的信息发送给接收方电子设备。
虽然图4中示出了处理电路400与通信单元402分离,但是处理电路400也可以被实现为包括通信单元402。此外,处理电路400还可以被实现为包括电子设备40中的一个或多个其它部件,或者处理电路400可以被实现为电子设备40本身。在实际实现时, 处理电路400可以被实现为芯片(诸如包括单个晶片的集成电路模块)、硬件部件或完整的产品。
下面将说明电子设备40所实施的各详细操作。
根据第一实施例的电子设备的CCA单元4001的操作
首先,将参考图5说明根据本公开的第一实施例的CCA单元4001的概念性操作流程50。
如图5所示,该操作流程50在S500处开始,此时,电子设备处于空闲状态,即没有数据需要发送。当在S502处判定需要发送数据时,该操作流程进入到S504。在S504中,CCA单元4001对多个波束中的一个波束进行初始CCA。
根据本公开的一个实施例,初始波束确定模块可以从所述多个波束中确定要进行初始CCA的一个波束。根据本公开的一个实施例,进行初始CCA的波束可以是最合适的波束或预先确定的波束。根据本公开的一个实施例,预先确定的波束可以表示在RRC连接建立过程中通过RRC配置的波束或通过MAC CE激活的波束。根据本公开的一个实施例,最合适的波束可以是该波束方向上的信道质量较好的波束。例如,可以根据基站与终端设备之间发送的参考信号来确定信道质量较好的波束方向。例如,对于上行链路,可以根据终端设备的信道探测参考信号(SRS)来确定信道质量较好的波束方向,即对于上行链路,可以根据SRS来确定要进行初始CCA的波束。再例如,对于下行链路,可以根据基站的同步信号块(SSB)或信道状态信息参考信息(CSI-RS)来确定信道质量较好的波束方向,即对于下行链路,可以根据SSB或CSI-RS来确定要进行初始CCA的波束。针对该波束方向上信道质量较好的波束来进行初始CCA使得在初始CCA通过的情况下,可以利用信道质量较好的波束来进行发射。替代地,也可以随机确定要进行初始CCA的波束。
在确定了要进行初始CCA的波束之后,CCA单元4001可以判断在预定时段期间(例如34μs),在该波束的方向上,信道上的能量是否较强(例如,大于预定阈值)。如果在该波束的方向上,信道上的能量较弱(例如,低于预定阈值),则认为通过了该波束方向上的初始CCA(S506:是),电子设备可以利用该波束来进行发送(S510)。可以理解的是,通过初始CCA后直接进行发射而不再进行后续的进一步的CCA,可以有利地减少等待发射的时间。如果在进行了初始CCA的波束的方向上,信道上的能量较强,则认为该波束方向上的初始CCA失败(S506:否),那么CCA单元4001可以进行进一步的CCA(S508)。
在S508处,如图5所示,CCA单元4001的计算模块可以按照以下操作来进行进一 步的CCA:在预先确定的范围内确定数T;按如下方式迭代进行CCA:在当前次CCA通过时,将T减1,否则在不改变T的情况下继续进行CCA,直到T等于0为止,其中,在每次迭代中针对所述多个波束中的一个或多个波束进行CCA。要指出的是,在整个指向性CCA的操作期间(包括初始CCA和进一步的CCA),术语“CCA”均表示针对特定的波束方向进行指向性的空闲信道评估。为了使描述更简洁,在下文中对进一步的CCA的详细描述中不再特别注明所进行的每一次CCA都是指向性的。此外,表述“CCA通过”旨在表示特定波束方向上信道空闲,即,表示在预定时段(例如,例如34μs)内,在针对其执行CCA的波束的方向上信道上的能量小于预定阈值。下文中“CCA通过”或“CCA成功”均表示类似的含义,并且不再对这些术语进行重复解释。
如图5所示,在进行了进一步的CCA的情况下,当T等于0时,电子设备可以基于指向性CCA的结果来选择波束进行发送(S510)。
已经参考图5简要介绍了由CCA单元4001进行的指向性CCA的概念性操作流程50。下面,将结合图6-8详细说明指向性CCA的三种实现示例。在这三种实现示例中,关于初始CCA的操作均与参考图5说明的操作类似,因此在下文中不再赘述。
首先,将参考图6详细说明指向性CCA的第一示例的操作流程60。
图6中,操作S600、S602、S604及S610对应于图5中的操作S500、S502、S504及S510,并且具有类似于图5中相应操作的处理过程,这里省略这些操作的细节。
当在步骤S606中判定未通过初始CCA时,则按照S608中的操作进行进一步的CCA。具体地,首先,可以在预先确定的范围内确定数T。根据该第一示例,T值可以是在所述范围内随机选择的。所述范围例如可以类似于上文参照Cat.4 LBT说明的竞争窗口。该范围的确定旨在为数T给出取值区间,该范围并不限于Cat.4 LBT的竞争窗口的大小,能够为数T限定合适的取值区间的任何范围都是适用的。
随后,在参照图5的操作S508说明的CCA迭代过程期间,在每次迭代时,对进行指向性CCA的多个波束中的随机选择的一个波束进行CCA,并且以该波束的CCA的结果作为该次迭代的CCA结果。换句话说,在每次迭代时,从所述多个波束中随机选择一个波束进行CCA,如果该次CCA通过,则将T值减1并且在T值不为0的情况下进行下一次迭代(也就是说,再次从所述多个波束中随机选择一个波束进行CCA),否则,在不递减T值的情况下直接进行下一次迭代。当T值为0时(也就说,成功进行了T次CCA,其中每次CCA针对从所述多个波束中随机选择的一个波束),基于指向性CCA的结果来选择波束进行发送。基于指向性CCA的结果来选择发送波束的详细过程将 在下文进行阐述。
例如,假设针对4个波束(B1、B2、B3、B4)进行指向性CCA,在初始CCA未通过从而进行进一步的CCA的过程期间,按照如图6所示的第一示例,CCA单元4001首先在预定范围内确定随机数T,例如,T=5。随后,CCA单元4001随机选择一个波束(例如波束B2)进行第一次CCA迭代,假设该次CCA通过,则T值被递减为4,并且CCA单元4001再次随机选择一个波束(随机选择的结果可能是与第一次迭代的波束B2相同或不同的波束)进行下一次CCA迭代,假设该次CCA失败,则T值保持不变(即T=4)并且再次随机选择一个波束进行下一次CCA迭代,以此类推,直到T=0为止。最后,当T=0,即成功进行了T次(在本例中为5次)CCA之后,CCA单元4001可以控制处理电路400基于指向性CCA的结果来选择波束发送数据。
已经参考图6说明了指向性CCA的第一示例的操作流程。通过在每次迭代中随机选择波束来进行空闲信道评估,可以较为公平地考量每个波束,并且较为有效地限制了CCA的总次数(每次迭代仅针对一个波束进行CCA),从而避免过长的等待发送时间。
下面,将参考图7详细说明指向性CCA的第二示例的操作流程70。
图7中,操作S700、S702、S704及S710对应于图5中的操作S500、S502、S504及S510,并且具有类似于图5中相应操作的处理过程,这里省略这些操作的细节。
当在步骤S706中判定未通过初始CCA时,则按照S708中的操作进行进一步的CCA。具体地,首先,可以在预先确定的范围内确定数T。根据该第二示例,T值可以被确定为所述多个波束的数量与从预先确定的范围内随机选择的值的乘积。所述范围可以与参照图6说明的第一示例中的范围类似。
随后,在参照图5的操作S508说明的CCA迭代过程期间,在每次迭代时,对进行指向性CCA的多个波束中的按照预定顺序选择的一个波束进行CCA,并且以该波束的CCA的结果作为该次迭代的CCA结果,其中所述预定顺序使得能够循环地对所述多个波束依次进行CCA。换句话说,对进行指向性CCA的多个波束轮流进行CCA迭代。如果当前次CCA通过,则将T值减1并且在T值不为0的情况下进行下一次迭代(对所述多个波束中的下一个波束进行CCA),否则,在不递减T值的情况下直接进行下一次迭代。当T值为0时(也就说,成功进行了T次CCA),基于指向性CCA的结果来选择波束进行发送。
例如,假设针对4个波束(B1、B2、B3、B4)进行指向性CCA,在初始CCA未通过从而进行进一步的CCA的过程期间,按照如图7所示的第二示例,CCA单元4001首先在预 定范围内选择随机数N,例如,N=2,并且将要进行指向性CCA的波束的数量与该随机数N的乘积确定为数T,即T=4*2=8。
随后,CCA单元4001按照预定顺序对各个波束依次进行CCA的迭代,所述预定顺序使得能够对本示例中的4个波束循环地进行CCA。例如,所述预定顺序可以是B1、B2、B3、B4,但是该顺序并不是限制性地,也可以是使得循环通过四个波束的任意顺序,诸如B2、B3、B1、B4或B4、B2、B1、B3之类。在假设所述预定顺序为B1、B2、B3、B4的情况下,CCA单元4001首先对波束B1进行第一次CCA迭代,假设该次CCA通过,则T值被递减为7,并且CCA单元4001对下一个波束B2进行下一次CCA迭代,假设该次CCA失败,则T值保持不变(即T=7)并且按照顺序对下一个波束(即B3)进行下一次CCA迭代,以此类推,直到T=0为止,其中当对波束B4进行了CCA之后,下一次迭代将再次针对波束B1进行CCA,并以此循环。最后,当T=0,即成功进行了T次(在本例中为8次)CCA之后,CCA单元4001可以控制处理电路400基于指向性CCA的结果来选择波束发送数据。
已经参考图7说明了指向性CCA的第二示例的操作流程。通过在进一步的CCA期间循环地对多个波束中的每个波束进行空闲信道评估,可以较为公平地考量每个波束,并且可以在进一步的CCA期间全面地采集各个波束的空闲状况的统计信息,以方便后续选择波束进行发送。
下面,将参考图8详细说明指向性CCA的第三示例的操作流程80。
图8中,操作S800、S802、S804及S810对应于图5中的操作S500、S502、S504及S510,并且具有类似于图5中相应操作的处理过程,这里省略这些操作的细节。
当在步骤S806中判定未通过初始CCA时,则按照S808中的操作进行进一步的CCA。具体地,首先,可以在预先确定的范围内确定数T。类似于第一示例,T值可以是在所述范围内随机选择的。
随后,在参照图5的操作S508说明的CCA迭代过程期间,在每次迭代时,对进行指向性CCA的多个波束中的全部或部分波束依次进行CCA,并且当超过预定阈值数量的波束的CCA通过时,则认为通过当前次CCA。换句话说,以包括要进行指向性CCA的多个波束的组为单位进行CCA迭代。在每次迭代中,对所述多个波束中的一个或多个波束分别进行CCA,如果在当前次CCA期间,超过预定阈值数量的波束的CCA通过,则认为通过当前次CCA。所述预定阈值数量可以为以下值中的任意一个:一个,在一次迭代中进行CCA的波束的数量的二分之一,以及在一次迭代中进行CCA的波束的数量。特别地,在每次以组为单位的CCA迭代期间,可以随机选择所述多个波束中的S 个波束(S小于或等于所述多个波束的数量)来依次进行CCA。特别地,当在一次以组为单位的CCA迭代期间,如果判定已经有预定阈值数量的波束通过CCA并且此时所选择的S个波束中仍存在未针对其进行CCA的波束,那么可以直接进行下一次以组为单位的CCA迭代,而不对剩余波束进行CCA。
如果以组为单位的当前次CCA通过(即,在该次以组为单位的CCA迭代中,预定数量以上的CCA通过),则将T值减1并且在T值不为0的情况下进行以组为单位的下一次迭代,否则,在不递减T值的情况下直接进行下一次迭代。当T值为0时(也就说,成功进行了T次以组为单位的CCA),基于指向性CCA的结果来选择波束进行发送。
例如,假设针对4个波束(B1、B2、B3、B4)进行指向性CCA,在初始CCA未通过从而进行进一步的CCA的过程期间,按照如图8所示的第三示例,CCA单元4001首先在预定范围内选择随机数T,例如,T=3。
随后,CCA单元4001按照包括这4个波束的组为单位进行CCA迭代。例如,在每次迭代中,CCA单元4001随机选择所述多个波束中的两个波束来一次进行CCA,并且假设当一个以上的波束的CCA通过时,则认为通过当前次CCA迭代(即,上述预定阈值数量为一个)。例如,在第一次迭代中,CCA单元4001随机选择了波束B1和B4来进行CCA。假设波束B1的CCA通过,那么可以直接判定通过了该次以组为单位的CCA,并且直接将T值递减为2而不再对波束B4进行CCA。随后,CCA单元4001随机选择了波束B2和B4来进行下一次以组为单位的CCA。假设针对波束B2和B4的波束都未通过,那么T值保持不变(即T=2)并且继续进行下一次以组为单位的CCA迭代,以此类推,直到T=0为止。最后,当T=0,即成功进行了T次(在本例中为3次)以组为单位的CCA之后,CCA单元4001可以控制处理电路400基于指向性CCA的结果来选择波束发送数据。
已经参考图8说明了指向性CCA的第三示例的操作流程。通过以组为单位迭代进行空闲信道评估,可以较为公平地考量每个波束,并且可以较为全面地采集各个波束的空闲状况的统计信息,以方便后续选择波束进行发送。此外,通过调整判断以组为单位的迭代是否成功的预定阈值数量,可以灵活地控制CCA的严格程度,例如,预定阈值数量越高,CCA越严格,从而可能使等待发送的时间更长。例如,可以基于非授权频段的竞争的激烈程度或者要发送的内容的重要性来灵活调整CCA的严格程度,以便适当地调整发送等待时间。
根据第一实施例的电子设备的CCA结果处理单元4002的操作
如上文参考图4简要介绍的,CCA结果处理单元4002被配置为对指向性CCA的结果进行一些处理,例如,确定可以用于发射的波束和控制通信单元通知可以用于发射的波束。
具体地,根据本公开的第一实施例,CCA结果处理单元4002的发射波束确定模块可以被配置为将通过初始CCA的波束确定为要进行发射的波束。
根据本公开的第一实施例,CCA结果处理单元4002的发射波束确定模块还可以被配置为在进一步的CCA期间,统计各个波束的信道占用情况的性能,并根据统计结果来确定可以进行发射的波束。例如,发射波束确定单元可以被配置为在进一步的CCA期间,统计各个波束CCA成功或CCA失败的总次数,并且将统计上信道较为空闲的波束确定为要进行发射的波束。换句话说,可以将在进一步的CCA期间,通过CCA的总次数最多或者CCA失败的总次数最少的波束确定为要进行发射的波束。在这种情况下,通过CCA的总次数最多或者CCA失败的总次数可以表示在该波束方向上用户较少或流量较少。由此,根据统计结果,可以推测出信道较为空闲的波束方向,从而利用该方向的波束进行发射。替代地,可以基于指向性CCA的统计结果,确定统计上信道较为空闲的多个可以用于发射的波束,以便发送方与接收方通过后续的协商来选择要进行发射的波束。
根据本公开的第一实施例,发射波束确定模块还可以被配置为在进一步的CCA结束时,直接将最后通过CCA的波束(即,使得T被递减为0的波束)确定为要进行发射的波束。这种配置可以简化电子设备处的运算,并且以较大的概率确保即将进行发射的波束上信道是空闲的。
根据本公开的第一实施例,发射波束确定模块还可以被配置为简单地将该方向上的信道质量较好的波束确定为可以进行发射的波束。例如,可以选择在RRC连接建立过程中,基于基站与终端设备之间交换的参考信息(诸如SRS、SSB或CSI-RS之类)确定的信道质量较好的波束来进行发射。替代地,可以基于信道质量,确定多个可以用于发射的波束,以便发送方与接收方通过后续的协商来选择要进行发射的波束。这种配置可以较好地保障发射波束的信道质量,从而有利于接收端的成功接收。
根据本公开的第一实施例,发射波束确定模块还可以被配置为结合各个波束的信道占用情况的统计结果和各个波束方向上的信道质量来确定要进行发射的波束。例如,可以基于指向性CCA的统计结果,确定统计上信道较为空闲的多个可以用于发射的波束,并从中选择信道质量最好的波束作为要进行发射的波束。替代地,可以确定信道质量较好的 多个波束,并从中选择通过CCA的总次数最多或者CCA失败的总次数最少的波束来作为要进行发射的波束。这种配置可以在综合考虑信道质量及信道的空闲程度,从而选出最适于发射的波束。
根据本公开的第一实施例,CCA结果处理单元4002的CCA结果指示模块可以被配置为确定与波束的指向性CCA相关的信息,并控制通信单元将与波束的指向性CCA相关的信息通知给接收方电子设备。与波束的指向性CCA相关的信息可以包括对能进行发射的波束和不能进行发射的波束的指示,相应地,将与波束的指向性CCA相关的信息通知给接收方电子设备可以包括向接收方电子设备通知基于指向性CCA的结果确定的能进行发射的波束和不能进行发射的波束。下边将参考图9进行详细说明。
如图9所示出的,CCA结果指示模块可以被配置为以位图的形式指示能进行发射的波束和不能进行发射的波束。例如,参照由发射波束确定模块确定的可以用于发射的波束,CCA结果指示模块可以生成指示可以用于发射的波束(即,通过指向性CCA的波束)和不可以用于发射的波束(即,未通过指向性CCA的波束)的位图。如图9所示,可以对8个波束进行指向性的CCA,并且发射波束确定模块将左起第二个波束确定为可以用于发射的波束(由实线示出,并且其他波束,即未被发射波束确定模块确定为可用于发射的波束由虚线示出)。进一步如图9所示,可以生成8比特的位图,其中0表示不可用于发射的波束,1表示可用于发射的波束,并且对于该示例,所生成的位图可以是“01000000”。
虽然图9示出了对8个波束进行指向性CCA的情况,但是波束的个数不限于此。例如,可以对少于8个波束进行指向性CCA,并且基于CCA的结果来生成8比特的位图。在这种情况下,1表示可用于发射的波束,0表示不可用于发射的波束,并用保留位(R)表示未涉及的波束。替代地,也可以用0代替保留位(R),这种情况下,0既可以表示被确定为不可用于发射的波束也可以表示未涉及的波束。采用固定长度的位图而不考虑进行指向性CCA的波束的个数,可以方便接收方解读接收到的位图,从而简化接收方的计算。
此外,如上文参照发射波束确定模块所解释的,可以确定多个可用于发射的波束,在这种情况下,所生成的位图可以包括多个值为1的位,例如“01011000”。CCA结果指示模块可以控制通信单元向接收方设备基于所生成的位图通知可以用于发射的波束,以便接收方准备波束进行接收(在仅指示了一个可以用于发射的波束的情况下),或者以便双方进行后续的协商以确定要发射的波束(在指示了多个可以用于发射的波束的情况下)。
根据本公开的第一实施例,CCA结果处理单元4002的CCA结果指示模块可以被 配置为控制电子设备40中的相关单元(例如通信单元)以动态或半静态的方式将与波束的指向性CCA相关的信息通知给接收方电子设备。例如,可以基于所生成的位图来控制通信单元以动态或半静态的方式向接收方电子设备通知可以用于发射的波束和不可以用于发射的波束和/或未涉及的波束。
根据本公开,动态方式可以包括利用控制信息来动态指定通过指向性CCA的波束和未通过指向性CCA的波束。例如,所述控制信息可以是物理层的控制信息,比如对于上行链路的上行控制信息(UCI)和对于下行链路的下行控制信息(DCI)之类。例如,CCA结果指示模块可以被配置控制通信单元利用这种控制信息向接收方电子设备发送所生成的位图,以指示可以用于发射的波束和不可以用于发射的波束和/或未涉及的波束。
根据本公开,静态方式可以包括利用MAC CE来激活通过CCA的波束。例如,对于下行链路,CCA结果指示模块可以被配置为进行控制以基于所生成的位图,利用MAC CE激活与可以用于发射的波束对应的传输配置指示(TCI)状态(TCI state)。还例如对于上行链路,CCA结果指示模块可以被配置进行控制以基于所生成的位图,利用MAC CE激活与可以用于发射的波束对应的空间关系信息(SpatialRelationInfo)。下文将进一步对TCI状态及SpatialRelationInfo进行详细介绍。要说明的是,无论对于上行链路还是下行链路,利用MAC CE激活波束的过程都是由基站进行的。因此,在由终端设备进行指向性CCA的情况下,终端设备可以首先将所生成的指示可以用于发射的波束和不可以用于发射的波束和/或未涉及的波束的位图发送到基站,随后再由基站按照接收到的位图来进行激活。
根据第一实施例的配置要进行指向性CCA的多个波束的操作
上文已经参考图4-9说明了针对多个波束进行的指向性CCA的操作以及在完成指向性CCA之后进行的一些操作(例如,确定并通知可以用于发射的波束以及初始化信道占用时间)。根据本公开,在开始针对多个波束的指向性CCA之前,还可以对所述多个波束进行预先设置。根据本公开,考虑在终端设备进入RRC连接态之后进行指向性CCA,相应地,针对其进行指向性CCA的多个波束可以是通过RRC信令预先配置的,或者可以是通过RRC信令预先配置并通过MAC CE激活的。要说明的是,无论对于上行链路还是下行链路,这种对波束预先设置的过程都是由基站实现的。换句话说,无论对于上行链路还是下行链路,由基站通过RRC信令为基站与终端设备之间的一个或多个信道进行波束设置来预 先配置要进行指向性CCA的多个波束。但是,应理解的是,在终端设备想要进行发射而进行指向性CCA的情况下,也存在多个波束的预先设置过程,并且这个预先设置过程是基于基站与终端设备之间的信令交互由基站侧实现的。
下面,首先参考图10对下行链路进行说明。
如上文说明的,在本公开中,考虑在终端设备进入RRC连接态之后进行指向性CCA。基站与终端设备之间会传送一些参考信号,诸如信道状态信息参考信号(CSI-RS)、同步信号块(SSB)之类,并且这些参考信号可以是通过指向性波束发送的。因此,在RRC连接过程中,终端设备可能已经测量了一些带有空间方向性的下行参考信号,并且可以使用之前接收下行参考信号的接收波束来接收新的信道或信号。根据本公开,可以基于在RRC连接过程中已经测量过的这些波束方向来预先设置要进行指向性CCA的多个波束。
具体地,可以借助传输配置指示状态(TCI state)来进行波束设置。TCI状态是一个RRC参数,其可以包含下行参考信号的索引(index),例如CSI-RS资源索引或SSB索引。通过TCI状态信息元素(TCI state information element),可以将一个或多个下行参考信号与对应的准共址(QCL)类型相关联,其中,准共址类型D(Type D)可以表示空间方向上的准共址。也就是说,在利用TCI状态信息元素将某个下行参考信号与Type D的准共址相关联时,可以通过TCI状态信息元素中包含的下行参考信号的索引来指示可以利用由该索引表示的参考信号的波束方向接收新的信道或信号。换句话说,每个TCI状态可以对应于一个波束方向。可以通过RRC信令配置多个TCI状态来预先设置要进行指向性CCA的多个波束。
图10为TCI状态信息元素的示意图。如图10所示,可以利用“CHOICE”和“ENUMBERATED”将参考信号索引与准共址类型相关联,从而通过配置TCI状态来设置波束。
根据本公开,可以针对基站与终端设备之间的信道或信号配置多个TCI状态。在配置了超过8个TCI状态的情况下,可以进一步利用MAC CE激活其中的8个TCI状态。在这种情况下,指向性的CCA将针对利用MAC CE激活的8个波束而进行。
可以针对基站与终端设备之间的多个信道来进行波束设置。对于下行链路而言,所述多个信道可以包括物理下行控制信道(PDCCH)和物理下行共享信道(PDSCH)。特别地,对于PDCCH和PDSCH,均可以配置多个TCI状态。这种配置对于PDCCH是尤其有利的。具体而言,基站需要向终端设备通知指示PDCCH所占用的时频资源的CORESET。传统地,为一个CORESET仅激活一个波束,因此在仅针对这一个波束进行 空闲信道评估的情况下,很可能由于未通过空闲信道评估而无法在该方向上发射CORESET。根据本公开,可以预先为CORESET配置并激活多个波束,从而使得可以针对多个波束进行指向性CCA,并且选择通过指向性CCA的波束来发射CORESET。因此,增大了CORESET发射成功的机会,以促进后续通信的进行。
下面,将参考图11a、图11b对上行链路进行说明。
如上文说明的,在本公开中,考虑在终端设备进入RRC连接态之后进行指向性CCA。类似于下行链路,对于上行链路基站与终端设备之间也会传送一些参考信号,诸如探测参考信号(SRS)之类,并且这些参考信号可以是通过指向性波束发送的。因此,在RRC连接过程中,基站可能已经测量了一些带有空间方向性的上行参考信号,并且可以使用之前接收上行参考信号的接收波束来接收新的信道或信号。根据本公开,可以基于在RRC连接过程中已经测量过的这些波束方向来预先设置要进行指向性CCA的多个波束。
具体地,可以借助发送空间关系信息(SpatialRelationInfo)来进行波束设置。类似于用于下行链路的TCI状态,可以通过配置作为RRC参数的SpatialRelationInfo来配置用于上行链路的波束。换句话说,每个SpatialRelationInfo状态可以对应于一个波束方向。可以通过RRC信令配置多个SpatialRelationInfo来预先设置要进行指向性CCA的多个波束。具体而言,对于物理上行控制信道(PUCCH),可以使用如图11a所示的PUCCH-SpatialRelationInfo信息元素来配置波束;对于SRS,可以使用如图11b所示的SRS-SpatialRelationInfo信息元素来配置波束;以及对于物理上行共享信道(PUSCH),其波束可以与为SRS配置的波束相同,即间接地利用SRS-SpatialRelationInfo信息元素来配置波束。
根据本公开,可以针对终端设备与基站之间的信道或信号配置多个SpatialRelationInfo。在配置了超过8个SpatialRelationInfo的情况下,可以进一步利用MAC CE激活其中的8个SpatialRelationInfo。在这种情况下,指向性的CCA将针对利用MAC CE激活的8个波束而进行。
可以针对基站与终端设备之间的多个信道来进行波束设置。对于上行链路而言,所述多个信道可以包括(PUCCH)和物理上行共享信道PUSCH。
上面已经说明了根据本公开第一实施例的电子设备40的各个单元及其操作。下面,将参考图12说明根据本公开的第一实施例的电子设备的概念性操作流程120。
该概念性操作流程在步骤S1200处开始。首先,在步骤S1202处,电子设备预先设置要进行指向性CCA的多个波束。如上所述,所述多个波束是通过RRC信令预先配置或 者通过RRC信令预先配置并通过MAC CE激活的。对于上行链路和下行链路的配置方式已经在上文说明,这里不再赘述。
随后,电子设备开始对配置好的多个波束进行指向性CCA。在步骤S1204处,电子设备首先对多个波束中的一个波束进行初始CCA。如上文所述,进行初始CCA的波束可以是最合适的波束,即该方向上信道质量较好的波束,或者也可以从所述多个波束中随机选择的波束,或者可以是如上所述的预先确定的波束。
接下来,在S1206处判断初始CCA是否通过,若初始CCA通过,则直接进入到步骤S1210处的操作,否则,电子设备在步骤S1208处对所述多个波束中的一个或多个波束进行进一步的CCA。例如,可以采用如上文所述的三种示例中的任意一种来进行进一步的CCA。
随后,在S1210处,电子设备可以对CCA的结果进行处理。例如,如上文所述,电子设备可以确定可以用于发射的一个或多个波束并将所述一个或多个波束借助位图通知给接收方电子设备。例如,如上文所述,电子设备可以根据进一步的CCA期间的统计结果和/或各波束方向上的信道质量来确定可以用于发射的波束。在确定了多个可以用于发射的波束的情况下,操作流程120还可以包括与接收方电子设备协商确定要进行发射的波束的可选步骤(未示出)。替代地,电子设备也可以在S1210处将通过初始CCA的波束或者在进一步的CCA期间最后通过CCA的波束确定为要进行发射的波束。
接下来可选地,在S1212处,要进行发射的电子设备在所确定的要进行发射的波束方向上初始化指向性的信道占用时间。随后,在S1214处,电子设备可以在所确定的波束方向上进行发射。该流程在S1216处结束。
上述操作流程仅仅是以示例性地方式说明根据本公开的第一实施例的电子设备的操作,所例示的操作可以由根据本公开的电子设备按照不同的顺序或者并行地执行。例如,电子设备可以在确定了要进行发射的波束后,先初始化指向性的信道占用时间再向接收方电子设备通知要进行发射的波束。
上文已经简要介绍了根据本公开第一实施例的电子设备的结构及操作,下面将详细描述根据本公开第二实施例的电子设备的结构及操作。
根据第二实施例的电子设备的结构
下面将参考图13说明根据本公开的第二实施例的电子设备的概念性配置。
类似于第一实施例,该电子设备可以被实现为要进行指向性CCA的设备,因此, 可以是要进行发射的基站侧的设备或终端设备。在被实现为基站侧的设备或终端设备的情况下,该电子设备的具体实现方式与第一实施例相同,这里不再赘述。
如图13所示,电子设备可以包括处理电路1300。该处理电路1300可以被配置为使用非授权频段进行通信;和对多个波束进行指向性空闲信道评估CCA,基于指向性CCA的结果来选择波束进行发射,其中,通过如下操作来对所述多个波束进行指向性CCA:依次对所述多个波束的方向进行CCA,并且当预定阈值数量的波束的CCA通过后,不再对所述多个波束中剩余的波束进行CCA。
处理电路1300可以是通用处理器的形式,也可以是专用处理电路,例如ASIC。例如,处理电路1300能够由电路(硬件)或中央处理设备(诸如,中央处理单元(CPU))构造。此外,处理电路1300上可以承载用于使电路(硬件)或中央处理设备工作的程序(软件)。该程序能够存储在存储器(诸如,布置在存储器1301中)或从外面连接的外部存储介质中,以及经网络(诸如,互联网)下载。
根据一些实施例,该电子设备的处理电路可以包括各种单元以实现根据本公开的各实施例。
根据本公开的第二实施例,处理电路1300可以包括对多个波束进行指向性空闲信道评估(CCA)的CCA单元13001。虽然图13未示出CCA单元的子模块/子单元,但是在实现中,CCA单元可以包括各种模块/子单元以实现相应的操作。例如,CCA单元可以包括确定以何种顺序对各个波束进行CCA的CCA顺序确定模块,以及执行CCA的操作流程的计算模块等。CCA单元13001的详细操作将在下文参考图14进行说明。
根据本公开的第二实施例,处理电路1300可以包括处理指向性CCA的结果的CCA结果处理单元13002。类似于第一实施例,CCA结果处理单元可以包括各种模块/子单元以实现文中所述的与处理指向性CCA的结果相关的各种操作。例如,CCA结果处理单元可以包括发射波束确定模块,该发射波束确定模块被配置为基于指向性CCA的结果来确定可以使用哪个波束来进行发射。CCA结果处理单元还可以包括CCA结果指示模块,该CCA结果指示模块被配置为进行与指示与指向性CCA相关的信息相关的操作,以便使电子设备130的通信单元1302基于这种指示向与所述电子设备130通信的另一电子设备通知与波束的指向性CCA相关的信息。作为替代,CCA结果处理单元13002还可以包括更多或更少的模块。CCA结果处理单元13002的详细操作将在下文进行说明。
根据本公开的第二实施例,处理电路1300还可以包括与第一实施例类似的信道占用时间(Channel Occupy Time,COT)配置单元13003。COT配置单元13003可以被配置 为基于发射波束确定单元13002确定的要进行发射的波束,在该波束的方向上配置(即初始化)指向性的信道占用时间。根据本公开,基于指向性CCA的结果来初始化指向性的COT,能够防止占用其他波束上的信道资源。此外,根据本公开,由于针对通过指向性CCA的波束来初始化指向性的COT,因此,可以适当地初始化比传统的COT更长的COT,使得在需要连续发射(例如,对于基站,在发送PDCCH之后发送PDSCH,或者对于终端设备,在发送PUCCH之后发送PUSCH)的情况下,防止两次发射之间由于COT时间过短而导致需要重新进行CCA,从而避免连续发射之间不恰当的等待时间。
此外,处理电路1300还可以包括用于在各单元之间进行接口连接的接口电路(未示出)。
应注意,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。此外,上述各个单元在附图中用虚线示出指示这些单元可以并不实际存在,而它们所实现的操作/功能可由处理电路本身来实现。此外,附图中以虚线示出的单元/模块及其操作/功能可以根据实际情况来选择性地应用,也就是说,处理电路不一定要包括所有所示出的单元/模块及其操作/功能,而是可以选择性地实现这些单元/模块及其操作/功能中的一部分。
此外,可选地,电子设备130还可以包括存储器1301以及通信单元1302。此外,电子设备130还可以包括未示出的其它部件,诸如射频链路、基带处理单元、网络接口、处理器、控制器等。处理电路1300可以与存储器1301和/或通信单元1302关联。例如,处理电路1300可以直接或间接(例如,中间可能连接有其它部件)连接到存储器1301,以进行数据的存取。还例如,处理电路1300可以直接或间接连接到通信单元1302,以经由通信单元1302发送无线电信号以及经由通信单元4132接收无线电信号。
存储器1301可以存储要由处理电路1300使用或由处理电路1300产生的各种信息(例如,如指向性CCA相关的信息、执行指向性CCA期间要使用的阈值等)、用于电子设备130操作的程序和数据、将由通信单元1302发送的数据等。存储器1301用虚线绘出,因为它还可以位于处理电路1300内或者位于电子设备130外。存储器1301可以是易失性存储器和/或非易失性存储器。例如,存储器1301可以包括但不限于随机存储存储器(RAM)、动态随机存储存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)、闪存存储器。
通信单元1302可以被配置为在处理电路1300的控制下与通信另一端的电子设备(例如接收方电子设备)进行通信。在一个示例中,通信单元1302可以被实现为发射机或收发机,包括天线阵列和/或射频链路等通信部件。在一个实现中,通信单元1302可以在基于指向性CCA的结果所确定的波束上进行发射。在一个实现中,通信单元1302可以将能够用于发射的波束的信息发送给接收方电子设备。
虽然图13中示出了处理电路1300与通信单元1302分离,但是处理电路1300也可以被实现为包括通信单元1302。此外,处理电路1300还可以被实现为包括电子设备130中的一个或多个其它部件,或者处理电路1300可以被实现为电子设备130本身。在实际实现时,处理电路1300可以被实现为芯片(诸如包括单个晶片的集成电路模块)、硬件部件或完整的产品。
下面将说明电子设备130所实施的各详细操作。
首先将参考图14说明根据本公开的第二实施例的电子设备的CCA单元的概念性操作流程。
如图14所示,该操作流程140在S1400处开始,此时,电子设备处于空闲状态,即没有数据需要发送。当在S1402处判定需要发送数据时,该操作流程进入到S1404。在S1404中,CCA单元依次对多个波束的方向进行CCA,并且当预定阈值数量的波束的CCA通过后,不再对所述多个波束中剩余的波束进行CCA。
与第一实施例类似,在第二实施例中,术语“CCA”表示针对特定的波束方向进行指向性的空闲信道评估。此外,表述“CCA通过”旨在表述特定波束方向上信道空闲,即,表示在预定时段内(例如,例如34μs),在针对其执行CCA的波束的方向上信道上的能量小于预定阈值。下文中“CCA通过”或“CCA成功”均表示类似的含义,并且不再对这些术语进行重复解释。
与第一实施例不同,在第二实施例中,不再划分初始CCA和进一步的CCA,而是对多个波束依次进行CCA。根据第二实施例,CCA单元可以按照预先确定的顺序依次对所述多个波束的方向进行CCA,所述顺序使得能够优先对该方向上的信道质量较好的波束进行CCA。如图14所示,波束1、2……M可以是信道质量由高到低的M个波束。例如,可以根据基站与终端设备之间发送的参考信号来确定波束方向的波束质量,并且按照信道质量由高到低的顺序对各个波束进行CCA。例如,对于上行链路,可以根据终端设备的信道探测参考信号(SRS)来确定波束的信道质量。再例如,对于下行链路,可以根据基站的同步信号块(SSB)或信道状态信息参考信息(CSI-RS)来确定波束的信道质量。通过按照与 信道质量相关的顺序进行CCA,CCA单元可以优先对信道质量较好的方向进行CCA,使得在该方向上CCA通过的情况下,可以利用信道质量较好的波束进行发射,从而相应地提高通信质量。
替代地,CCA单元也可以按随机顺序对多个波束依次进行CCA。例如,可以在发射方难以确定各个波束的信道质量,或各个波束的信道质量相似的情况下采用这种随机顺序。
根据第二实施例,CCA单元可以预先确定一个阈值数量,当该预定阈值数量的波束的CCA通过后,不再对剩余的波束进行CCA。假设针对S个波束进行进行指向性CCA,如图14所示,当在对M(M<=S)个波束进行CCA之后,已经有预定阈值数量的波束通过了CCA,那么可以不再对剩余的S-M个波束进行CCA,并且可以从通过了CCA的波束中选择一个波束来进行发射(S1406)。优选地,该预定阈值数量可以是1。这样,只要有一个波束通过了该波束方向的CCA,就可以直接利用该波束来进行发射,这样,可以使有效减少发射的等待时间,从而提高通信效率。
下面将说明根据本公开的第二实施例的电子设备的CCA结果处理单元的操作。
类似于第一实施例,CCA结果处理单元13002被配置为对指向性CCA的结果进行一些处理,例如,确定可以用于发射的波束和控制通信单元通知可以用于发射的波束。
具体地,根据本公开的第二实施例,在上述预定阈值数量等于1的情况下,CCA结果处理单元13002的发射波束确定模块可以被配置为通过CCA的波束确定为要用于发射的波束。在上述预定阈值数量大于1的情况下,CCA结果处理单元13002可以将通过CCA的各波束中,该方向上的信道质量较好的波束确定为可以进行发射的波束。例如,可以选择在RRC连接建立过程中,基于基站与终端设备之间交换的参考信息(诸如SRS、SSB或CSI-RS之类)确定的信道质量较好的波束来进行发射。替代地,可以基于信道质量,确定多个可以用于发射的波束,以便发送方与接收方通过后续的协商来选择要进行发射的波束。这种配置可以较好地保障发射波束的信道质量,从而有利于接收端的成功接收。
类似于第一实施例,根据本公开的第二实施例,CCA结果处理单元13002的CCA结果指示模块可以被配置为确定与波束的指向性CCA相关的信息,并控制通信单元将与波束的指向性CCA相关的信息通知给接收方电子设备。与波束的指向性CCA相关的信息可以包括对能进行发射的波束和不能进行发射的波束的指示,相应地,将与波束的指向性CCA相关的信息通知给接收方电子设备可以包括向接收方电子设备通知基于指向性CCA的结果确定的能进行发射的波束和不能进行发射的波束。
类似于第一实施例,CCA结果指示模块也可以被配置为以位图的形式指示能进行发射的波束和不能进行发射的波束。例如,参照由发射波束确定模块确定的可以用于发射的波束,CCA结果指示模块可以生成指示可以用于发射的波束(即,通过指向性CCA的波束)和不可以用于发射的波束(即,未通过指向性CCA的波束)的8比特位图,其中,1表示可用于发射的波束,0表示不可用于发射的波束,并用保留位(R)表示未涉及的波束(例如,如上所述,当对S个波束中的M个波束进行了CCA之后,已经有预定阈值的波束的CCA通过时,存在S-M个未涉及的波束)。替代地,也可以用0代替保留位(R),这种情况下,0既可以表示被确定为不可用于发射的波束也可以表示未涉及的波束。采用固定长度的位图而不考虑进行指向性CCA的波束的个数,可以方便接收方解读接收到的位图,从而简化接收方的计算。
类似于第一实施例,根据第二实施例的CCA结果指示模块可以控制通信单元向接收方设备基于所生成的位图通知可以用于发射的波束,以便接收方准备波束进行接收(在仅指示了一个可以用于发射的波束的情况下),或者以便双方进行后续的协商以确定要发射的波束(在指示了多个可以用于发射的波束的情况下)。
类似于第一实施例,根据第二实施例的CCA结果指示模块可以被配置控制电子设备130中的相关单元(例如通信单元)以动态或半静态的方式将与波束的指向性CCA相关的信息通知给接收方电子设备。例如,可以基于所生成的位图来控制通信单元以动态或半静态的方式向接收方电子设备通知可以用于发射的波束和不可以用于发射的波束和/或未涉及的波束。动态和半静态的具体通知方式与第一实施例相同,这里不再赘述。
此外,类似于第一实施例,根据第二实施例,在开始针对多个波束的指向性CCA之前,也可以对所述多个波束进行预先设置。根据本公开的第二实施例,针对其进行指向性CCA的多个波束可以是通过RRC信令预先配置的,或者可以是通过RRC信令预先配置并通过MAC CE激活的。在第二实施例中,无论对于上行链路还是下行链路,这种对波束预先设置的过程都是由基站实现的。换句话说,无论对于上行链路还是下行链路,由基站通过RRC信令为基站与终端设备之间的一个或多个信道进行波束设置来预先配置要进行指向性CCA的多个波束。但是,应理解的是,在终端设备想要进行发射而进行指向性CCA的情况下,也存在多个波束的预先设置过程,并且这个预先设置过程是基于基站与终端设备之间的信令交互由基站侧实现的。对要进行指向性CCA的多个波束的预先设置过程与参考第一实施例所描述的过程类似,这里不再赘述。
上面已经说明了根据本公开第二实施例的电子设备130的各个单元即其操作,下面,将参考图15说明根据本公开的第二实施例的电子设备130的概念性操作流程150。
该概念性操作流程在步骤S1500处开始。首先,在步骤S1502处,电子设备130预先设置要进行指向性CCA的多个波束。如上所述,所述多个波束是通过RRC信令预先配置或者通过RRC信令预先配置并通过MAC CE激活的。对于上行链路和下行链路的配置方式已经在上文说明,这里不再赘述。
随后,电子设备130在步骤S1504处开始对设置好的多个波束进行指向性CCA。如上所述,在步骤S1504处,依次对所述多个波束的方向进行CCA,并且当预定阈值数量的波束的CCA通过后,不再对所述多个波束中剩余的波束进行CCA。
随后,在S1506处,电子设备可以对CCA的结果进行处理。例如,如上文所述,电子设备130可以确定可以用于发射的一个或多个波束并将所述一个或多个波束借助位图通知给接收方电子设备。例如,如上文所述,电子设备130可以根据各波束方向上的信道质量来确定可以用于发射的波束。在确定了多个可以用于发射的波束的情况下,操作流程150还可以包括与接收方电子设备协商确定要进行发射的波束的可选步骤(未示出)。
接下来可选地,在S1508处,电子设备150在所确定的要进行发射的波束方向上初始化指向性的信道占用时间。随后,在S1510处,电子设备150可以在所确定的波束方向上进行发射。该流程在S1512处结束。
上述操作流程仅仅是以示例性地方式说明根据本公开的第二实施例的电子设备的操作,所例示的操作可以由根据本公开的电子设备按照不同的顺序或者并行地执行。例如,电子设备130可以在确定了要进行发射的波束后,先初始化指向性的信道占用时间再向接收方电子设备通知要进行发射的波束。
已经通过第一实施例和第二实施例对本公开的方案进行了描述。应指出,上述实施例仅仅是示例性的。本公开的方案还可以按照其他方式来实现,并且仍具有上述实施例所获得的有利效果。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图16所示的通用个人计算机1600安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。图16是示出作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图。在一个例子中,该个人计算机可以对应于根据本公开的上述示例性终端设备。
在图16中,中央处理单元(CPU)1601根据只读存储器(ROM)1602中存储的程序或从存储部分1608加载到随机存取存储器(RAM)1603的程序执行各种处理。在RAM 1603中,也根据需要存储当CPU 1601执行各种处理等时所需的数据。
CPU 1601、ROM 1602和RAM 1603经由总线1604彼此连接。输入/输出接口1605也连接到总线1604。
下述部件连接到输入/输出接口1605:输入部分1606,包括键盘、鼠标等;输出部分1607,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分1608,包括硬盘等;和通信部分1609,包括网络接口卡比如LAN卡、调制解调器等。通信部分1609经由网络比如因特网执行通信处理。
根据需要,驱动器1610也连接到输入/输出接口1605。可拆卸介质1611比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1610上,使得从中读出的计算机程序根据需要被安装到存储部分1608中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1611安装构成软件的程序。
本领域技术人员应当理解,这种存储介质不局限于图16所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1611。可拆卸介质1611的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1602、存储部分1608中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本公开的技术能够应用于各种产品。
例如,根据本公开的实施例的电子设备(40,130)可以被实现为各种控制设备/基站或者被包含在各种控制设备/基站中,而如图(12,15)所示的方法也可由各种控制设备/基站实现。例如,根据本公开的实施例的电子设备(40,130)也可以被实现为各种终端设备/用户设备或者被包含在各种终端设备/用户设备中,而如图(12,15)所示的方法也可由各种控制设备/基站实现。
例如,本公开中提到的控制设备/基站可以被实现为任何类型的基站,例如演进型节点B(gNB),诸如宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控 制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的终端设备在一些示例中也称为用户设备,可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以下将参照图17至图20描述根据本公开的示例。
[关于基站的示例]
应当理解,本公开中的基站一词具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的例子可以例如是但不限于以下:基站可以是GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者,可以是WCDMA系统中的无线电网络控制器(RNC)和Node B中的一者或两者,可以是LTE和LTE-Advanced系统中的eNB,或者可以是未来通信系统中对应的网络节点(例如可能在5G通信系统中出现的gNB,eLTE eNB等等)。本公开的基站中的部分功能也可以实现为在D2D、M2M以及V2V通信场景下对通信具有控制功能的实体,或者实现为在认知无线电通信场景下起频谱协调作用的实体。
第一示例
图17是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 1700包括多个天线1710以及基站设备1720。基站设备1720和每个天线1710可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1700(或基站设备1720)可以对应于上述电子设备(40,130)。
天线1710中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1720发送和接收无线信号。如图17所示,gNB 1700可以包括多个天线1710。例如,多个天线1710可以与gNB 1700使用的多个频段兼容。
基站设备1720包括控制器1721、存储器1722、网络接口1723以及无线通信接口1725。
控制器1721可以为例如CPU或DSP,并且操作基站设备1720的较高层的各种功能。例如,控制器1721根据由无线通信接口1725处理的信号中的数据来生成数据分组,并经由网络接口1723来传递所生成的分组。控制器1721可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1721可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1722包括RAM和ROM,并且存储由控制器1721执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1723为用于将基站设备1720连接至核心网1724的通信接口。控制器1721可以经由网络接口1723而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1700与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1723还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1723为无线通信接口,则与由无线通信接口1725使用的频段相比,网络接口1723可以使用较高频段用于无线通信。
无线通信接口1725支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1710来提供到位于gNB 1700的小区中的终端的无线连接。无线通信接口1725通常可以包括例如基带(BB)处理器1726和RF电路1727。BB处理器1726可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1721,BB处理器1726可以具有上述逻辑功能的一部分或全部。BB处理器1726可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1726的功能改变。该模块可以为插入到基站设备1720的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1727可以包括例如混频器、滤波器和放大器,并且经由天线1710来传送和接收无线信号。虽然图17示出一个RF电路1727与一根天线1710连接的示例,但是本公开并不限于该图示,而是一个RF电路1727可以同时连接多根天线1710。
如图17所示,无线通信接口1725可以包括多个BB处理器1726。例如,多个BB处理器1726可以与gNB 1700使用的多个频段兼容。如图16所示,无线通信接口1725可以包括多个RF电路1727。例如,多个RF电路1727可以与多个天线元件兼容。虽然图16示出其中无线通信接口1725包括多个BB处理器1726和多个RF电路1727的示例,但是无线通信接口1725也可以包括单个BB处理器1726或单个RF电路1727。
第二示例
图18是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 1830包括多个天线1840、基站设备1850和RRH 1860。RRH 1860和每个天线1840可以经由RF线缆而彼此连接。基站设备1850和RRH 1860可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 1830(或基站设备1850)可以对应于上述电子设备(40,130)。
天线1840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1860发送和接收无线信号。如图18所示,gNB 1830可以包括多个天线1840。例如,多个天线1840可以与gNB 1830使用的多个频段兼容。
基站设备1850包括控制器1851、存储器1852、网络接口1853、无线通信接口1855以及连接接口1857。控制器1851、存储器1852和网络接口1853与参照图17描述的控制器1721、存储器1722和网络接口1723相同。
无线通信接口1855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1860和天线1840来提供到位于与RRH 1860对应的扇区中的终端的无线通信。无线通信接口1855通常可以包括例如BB处理器1856。除了BB处理器1856经由连接接口1857连接到RRH 1860的RF电路1864之外,BB处理器1856与参照图17描述的BB处理器1726相同。如图18所示,无线通信接口1855可以包括多个BB处理器1856。例如,多个BB处理器1856可以与gNB 1830使用的多个频段兼容。虽然图18示出其中无线通信接口1855包括多个BB处理器1856的示例,但是无线通信接口1855也可以包括单个BB处理器1856。
连接接口1857为用于将基站设备1850(无线通信接口1855)连接至RRH 1860的接口。连接接口1857还可以为用于将基站设备1850(无线通信接口1855)连接至RRH 1860的上述高速线路中的通信的通信模块。
RRH 1860包括连接接口1861和无线通信接口1863。
连接接口1861为用于将RRH 1860(无线通信接口1863)连接至基站设备1850的接口。连接接口1861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1863经由天线1840来传送和接收无线信号。无线通信接口1863通常可以包括例如RF电路1864。RF电路1864可以包括例如混频器、滤波器和放大器,并且经由天线1840来传送和接收无线信号。虽然图18示出一个RF电路1864与一根天线1840连接的示例,但是本公开并不限于该图示,而是一个RF电路1864可以同时连接多根天线1840。
如图18所示,无线通信接口1863可以包括多个RF电路1864。例如,多个RF电路1864 可以支持多个天线元件。虽然图18示出其中无线通信接口1863包括多个RF电路1864的示例,但是无线通信接口1863也可以包括单个RF电路1864。
[关于用户设备的示例]
第一示例
图19是示出可以应用本公开内容的技术的智能电话1900的示意性配置的示例的框图。智能电话1900包括处理器1901、存储器1902、存储装置1903、外部连接接口1904、摄像装置1906、传感器1907、麦克风1908、输入装置1909、显示装置1910、扬声器1911、无线通信接口1912、一个或多个天线开关1915、一个或多个天线1916、总线1917、电池1918以及辅助控制器1919。在一种实现方式中,此处的智能电话1900(或处理器1901)可以对应于上述电子设备(40,130)。
处理器1901可以为例如CPU或片上系统(SoC),并且控制智能电话1900的应用层和另外层的功能。存储器1902包括RAM和ROM,并且存储数据和由处理器1901执行的程序。存储装置1903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1900的接口。
摄像装置1906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1908将输入到智能电话1900的声音转换为音频信号。输入装置1909包括例如被配置为检测显示装置1910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1900的输出图像。扬声器1911将从智能电话1900输出的音频信号转换为声音。
无线通信接口1912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1912通常可以包括例如BB处理器1913和RF电路1914。BB处理器1913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1914可以包括例如混频器、滤波器和放大器,并且经由天线1916来传送和接收无线信号。无线通信接口1912可以为其上集成有BB处理器1913和RF电路1914的一个芯片模块。如图19所示,无线通信接口1912可以包括多个BB处理器1913和多个RF电路1914。虽然图19示出其中无线通信接口1912包括多个BB处理器1913和多个RF电路1914的示例,但是无线通信接口1912也可以包括单个BB处理器1913或单个RF电路1914。
此外,除了蜂窝通信方案之外,无线通信接口1912可以支持另外类型的无线通信 方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1912可以包括针对每种无线通信方案的BB处理器1913和RF电路1914。
天线开关1915中的每一个在包括在无线通信接口1912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1916的连接目的地。
天线1916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1912传送和接收无线信号。如图19所示,智能电话1900可以包括多个天线1916。虽然图19示出其中智能电话1900包括多个天线1916的示例,但是智能电话1900也可以包括单个天线1916。
此外,智能电话1900可以包括针对每种无线通信方案的天线1916。在此情况下,天线开关1915可以从智能电话1900的配置中省略。
总线1917将处理器1901、存储器1902、存储装置1903、外部连接接口1904、摄像装置1906、传感器1907、麦克风1908、输入装置1909、显示装置1910、扬声器1911、无线通信接口1912以及辅助控制器1919彼此连接。电池1918经由馈线向图18所示的智能电话1900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1919例如在睡眠模式下操作智能电话1900的最小必需功能。
第二示例
图20是示出可以应用本公开内容的技术的汽车导航设备2020的示意性配置的示例的框图。汽车导航设备2020包括处理器2021、存储器2022、全球定位系统(GPS)模块2024、传感器2025、数据接口2026、内容播放器2027、存储介质接口2028、输入装置2029、显示装置2030、扬声器2031、无线通信接口2033、一个或多个天线开关2036、一个或多个天线2037以及电池2038。在一种实现方式中,此处的汽车导航设备2020(或处理器2021)可以对应于上述电子设备(40,130)。
处理器2021可以为例如CPU或SoC,并且控制汽车导航设备2020的导航功能和另外的功能。存储器2022包括RAM和ROM,并且存储数据和由处理器2021执行的程序。
GPS模块2024使用从GPS卫星接收的GPS信号来测量汽车导航设备2020的位置(诸如纬度、经度和高度)。传感器2025可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2026经由未示出的终端而连接到例如车载网络2041,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2027再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口2028中。输入装置2029包括例如被配置为检测显示装置2030的屏幕上的 触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置2030包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器2031输出导航功能的声音或再现的内容。
无线通信接口2033支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2033通常可以包括例如BB处理器2034和RF电路2035。BB处理器2034可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2035可以包括例如混频器、滤波器和放大器,并且经由天线2037来传送和接收无线信号。无线通信接口2033还可以为其上集成有BB处理器2034和RF电路2035的一个芯片模块。如图20所示,无线通信接口2033可以包括多个BB处理器2034和多个RF电路2035。虽然图20示出其中无线通信接口2033包括多个BB处理器2034和多个RF电路2035的示例,但是无线通信接口2033也可以包括单个BB处理器2034或单个RF电路2035。
此外,除了蜂窝通信方案之外,无线通信接口2033可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2033可以包括BB处理器2034和RF电路2035。
天线开关2036中的每一个在包括在无线通信接口2033中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线2037的连接目的地。
天线2037中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2033传送和接收无线信号。如图20所示,汽车导航设备2020可以包括多个天线2037。虽然图20示出其中汽车导航设备2020包括多个天线2037的示例,但是汽车导航设备2020也可以包括单个天线2037。
此外,汽车导航设备2020可以包括针对每种无线通信方案的天线2037。在此情况下,天线开关2036可以从汽车导航设备2020的配置中省略。
电池2038经由馈线向图20所示的汽车导航设备2020的各个块提供电力,馈线在图中被部分地示为虚线。电池2038累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备2020、车载网络2041以及车辆模块2042中的一个或多个块的车载系统(或车辆)2040。车辆模块2042生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2041。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,在相关设备的存储介质(例如图4所示的电子设备40或图13所示的电子设备130的存储器1301中)存储构成相应软件的相应程序,当所述程序被执行时,能够执行各种功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
此外,本公开还可以具有如下配置:
(1)一种用于无线通信系统的电子设备,包括:
处理电路,被配置为:
使用非授权频段进行通信;和
对多个波束进行指向性空闲信道评估CCA,基于指向性CCA的结果来选择波束进行发射,
其中,通过如下操作来对所述多个波束进行指向性CCA:
对所述多个波束中的一个波束来进行初始CCA;
在初始CCA通过的情况下,选择通过初始CCA的波束进行发射;和
在初始CCA未通过的情况下,针对所述多个波束中的一个或多个波束进行进一步的CCA。
(2)如(1)所述的电子设备,其中,
进行初始CCA的该波束是最合适的波束或预先确定的波束。
(3)如(1)或(2)所述的电子设备,
其中,最合适的波束表示该方向上的信道质量较好的波束;和
预先确定的波束表示在无线资源控制配置RRC连接建立过程中通过RRC配置的波束或通过媒体接入控制层的控制元素MAC CE激活的波束。
(4)如(1)所述的电子设备,其中,
进一步的CCA包括:
-在预先确定的范围内确定数T;
-按如下方式迭代进行CCA:在当前次CCA通过时,将T减1,否则在不改变T的情况下继续进行CCA,直到T等于0为止,其中,在每次迭代中针对所述多个波束中的一个或多个波束进行CCA。
(5)如(4)所述的电子设备,其中,
所述数T是在所述预先确定的范围内随机选择的,并且
在每次迭代时,对所述多个波束中的随机选择的一个波束进行CCA,并且以该波束的CCA的结果作为该次迭代的CCA结果。
(6)如(4)所述的电子设备,其中,
所述数T是所述多个波束的数量与从所述预先确定的范围内随机选择的值的乘积,并且
在每次迭代时,对所述多个波束中的按照预定顺序选择的一个波束进行CCA,并且以该波束的CCA的结果作为该次迭代的CCA结果,其中所述预定顺序使得能够循环地对所述多个波束依次进行CCA。
(7)如(4)所述的电子设备,其中,
所述数T是在所述预先确定的范围内随机选择的,并且
在每次迭代时,对所述多个波束中的全部或部分波束依次进行CCA,并且当超过预定阈值数量的波束的CCA通过时,则认为通过当前次CCA。
(8)如(7)所述的电子设备,其中,
所述预定阈值数量为以下值中的任意一个:一个,在一次迭代中进行CCA的波束的数量的二分之一,以及在一次迭代中进行CCA的波束的数量。
(9)如(1)-(8)中任一项所述的电子设备,其中,
通过指向性CCA表示针对其执行指向性CCA的波束的方向上的能量小于预定阈值。
(10)如(4)-(8)中任一项所述的电子设备,其中,所述处理电路还被配置为:
在所述进一步的CCA结束后,选择如下波束中的任意一个波束来进行发射:
在所述进一步的CCA期间,通过CCA的总次数最多或CCA失败的总次数最少的波束;
最后通过CCA的波束;和
该方向上的信道质量较好的波束。
(11)如(1)-(10)中任一项所述的电子设备,其中,
在与发射波束方向对应的接收波束上进行所述指向性CCA。
(12)如(1)所述的电子设备,其中,
所述多个波束是通过无线资源控制信令预先配置,或者,
所述多个波束是通过无线资源控制信令预先配置并通过媒体接入控制层的控制元素MAC CE激活的。
(13)如权利要求(12)所述的电子设备,其中,
通过无线资源控制信令预先配置所述多个波束包括:
-由所述电子设备与所述另一电子设备中充当基站的设备通过无线资源控制信令为所述电子设备与另一电子设备之间的一个或多个信道进行波束设置。
(14)如(13)所述的电子设备,其中,
对于下行链路,进行波束设置包括配置多个传输配置指示TCI状态,其中,每个TCI状态对应一个波束;或者
对于上行链路,进行波束设置包括配置多个空间关系信息SpatialRelationInfo,其中,每个SpatialRelationInfo对应一个波束。
(15)如权利要求(14)所述的电子设备,其中,
所述一个或多个信道包括以下中的一个或多个:物理下行控制信道PDCCH、物理 下行共享信道PDSCH、物理上行控制信道PUCCH和物理上行共享信道PUSCH。
(16)如(1)所述的电子设备,其中,
在基于指向性CCA的结果确定的要进行发射的波束的方向上初始化指向性的信道占用时间。
(17)如(1)所述的电子设备,其中,
所述处理电路被进一步配置为将与波束的指向性CCA相关的信息通知给另一个电子设备。
(18)如(17)所述的电子设备,其中,
将与波束的指向性CCA相关的信息通知给另一个电子设备包括向所述另一个电子设备通知基于指向性CCA的结果确定的能进行发射的波束和不能进行发射的波束。
(19)如(18)所述的电子设备,其中,
以位图的形式指示能进行发射的波束和不能进行发射的波束。
(20)如(18)或(19)所述的电子设备,其中,
以动态或半静态的方式将与波束的指向性CCA相关的信息通知给所述另一个电子设备,其中,
动态方式包括利用控制信息来动态指定能进行发射的波束和不能进行发射的波束;以及
半静态方式包括利用媒体接入控制层的控制元素来激活能进行发射的波束。
(21)一种用于无线通信系统的方法,包括:
处理电路,被配置为:
使用非授权频段进行通信;和
对多个波束进行指向性空闲信道评估CCA,基于指向性CCA的结果来选择波束进行发射,
其中,通过如下操作来对所述多个波束进行指向性CCA:
对所述多个波束中的一个波束来进行初始CCA;
在初始CCA通过的情况下,选择通过初始CCA的波束进行发射;和
在初始CCA未通过的情况下,针对所述多个波束中的一个或多个波束进行进一步的CCA。
(22)一种用于无线通信系统的电子设备,包括:
使用非授权频段进行通信;和
对多个波束进行指向性空闲信道评估CCA,基于指向性CCA的结果来选择波束进行发射,
其中,通过如下操作来对所述多个波束进行指向性CCA:
依次对所述多个波束的方向进行CCA,并且当预定阈值数量的波束的CCA通过后,不再对所述多个波束中剩余的波束进行CCA。
(23)如(22)所述的电子设备,其中
按照预先确定的顺序依次对所述多个波束的方向进行CCA,所述顺序使得优先对该方向上的信道质量好的波束进行CCA。
(24)如(22)或(23)所述的电子设备,其中
所述预定阈值数量为1。
(25)如(22)或(23)所述的电子设备,其中
在预定阈值数量大于1的情况下,从通过CCA的各波束中选择信道质量较好的波束来进行发射。
(26)如(22)-(25)中任一项所述的电子设备,其中,
通过指向性CCA表示针对其执行指向性CCA的波束的方向上的能量小于预定阈值。
(27)如(22)-(26)中任一项所述的电子设备,其中,
在与发射波束方向对应的接收波束上进行所述指向性CCA。
(28)如(22)所述的电子设备,其中,
所述多个波束是通过无线资源控制信令预先配置,或者,
所述多个波束是通过无线资源控制信令预先配置并通过媒体接入控制层的控制元素MAC CE激活的。
(29)如(28)所述的电子设备,其中,
通过无线资源控制信令预先配置所述多个波束包括:
-由所述电子设备与所述另一电子设备中充当基站的设备通过无线资源控制信令为所述电子设备与另一电子设备之间的一个或多个信道进行波束设置。
(30)如(29)所述的电子设备,其中,
对于下行链路,进行波束设置包括配置多个传输配置指示TCI状态,其中,每个TCI状态对应一个波束;或者
对于上行链路,进行波束设置包括配置多个空间关系信息 SpatialRelationInfo,其中,每个SpatialRelationInfo对应一个波束。
(31)如(30)所述的电子设备,其中,
所述一个或多个信道包括以下中的一个或多个:物理下行控制信道PDCCH、物理下行共享信道PDSCH、物理上行控制信道PUCCH和物理上行共享信道PUSCH。
(32)如(22)所述的电子设备,其中,
在基于指向性CCA的结果确定的要进行发射的波束的方向上初始化指向性的信道占用时间。
(33)如(22)所述的电子设备,其中,
所述处理电路被进一步配置为将与波束的指向性CCA相关的信息通知给另一个电子设备。
(34)如(33)所述的电子设备,其中,
将与波束的指向性CCA相关的信息通知给另一个电子设备包括向所述另一个电子设备通知基于指向性CCA的结果确定的能进行发射的波束和不能进行发射的波束。
(35)如(34)所述的电子设备,其中,
以位图的形式指示能进行发射的波束和不能进行发射的波束。
(36)如(34)或(35)所述的电子设备,其中,
以动态或半静态的方式将与波束的指向性CCA相关的信息通知给所述另一个电子设备,其中,
动态方式包括利用控制信息来动态指定能进行发射的波束和不能进行发射的波束;以及
半静态方式包括利用媒体接入控制层的控制元素来激活能进行发射的波束。
(37)一种用于无线通信系统的方法,包括:
使用非授权频段进行通信;和
对多个波束进行指向性空闲信道评估CCA,基于指向性CCA的结果来选择波束进行发射,
其中,通过如下操作来对所述多个波束进行指向性CCA:
依次对所述多个波束的方向进行CCA,并且当预定阈值数量的波束的CCA通过后,不再对所述多个波束中剩余的波束进行CCA。
(38)一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如(21)或(37)所述的方法。
(39)一种设备,包括:
处理器,
存储装置,存储有可执行指令,所述可执行指令当被执行时实现如(21)或(37)所述的方法。

Claims (39)

  1. 一种用于无线通信系统的电子设备,包括:
    处理电路,被配置为:
    使用非授权频段进行通信;和
    对多个波束进行指向性空闲信道评估CCA,基于指向性CCA的结果来选择波束进行发射,
    其中,通过如下操作来对所述多个波束进行指向性CCA:
    对所述多个波束中的一个波束来进行初始CCA;
    在初始CCA通过的情况下,选择通过初始CCA的波束进行发射;和
    在初始CCA未通过的情况下,针对所述多个波束中的一个或多个波束进行进一步的CCA。
  2. 如权利要求1所述的电子设备,其中,
    进行初始CCA的该波束是最合适的波束或预先确定的波束。
  3. 如权利要求1或2所述的电子设备,
    其中,最合适的波束表示该方向上的信道质量较好的波束;和
    预先确定的波束表示在无线资源控制配置RRC连接建立过程中通过RRC配置的波束或通过媒体接入控制层的控制元素MAC CE激活的波束。
  4. 如权利要求1所述的电子设备,其中,
    进一步的CCA包括:
    -在预先确定的范围内确定数T;
    -按如下方式迭代进行CCA:在当前次CCA通过时,将T减1,否则在不改变T的情况下继续进行CCA,直到T等于0为止,其中,在每次迭代中针对所述多个波束中的一个或多个波束进行CCA。
  5. 如权利要求4所述的电子设备,其中,
    所述数T是在所述预先确定的范围内随机选择的,并且
    在每次迭代时,对所述多个波束中的随机选择的一个波束进行CCA,并且以该波束的CCA的结果作为该次迭代的CCA结果。
  6. 如权利要求4所述的电子设备,其中,
    所述数T是所述多个波束的数量与从所述预先确定的范围内随机选择的值的乘积,并且
    在每次迭代时,对所述多个波束中的按照预定顺序选择的一个波束进行CCA,并且以该波束的CCA的结果作为该次迭代的CCA结果,其中所述预定顺序使得能够循环地对所述多个波束依次进行CCA。
  7. 如权利要求4所述的电子设备,其中,
    所述数T是在所述预先确定的范围内随机选择的,并且
    在每次迭代时,对所述多个波束中的全部或部分波束依次进行CCA,并且当超过预定阈值数量的波束的CCA通过时,则认为通过当前次CCA。
  8. 如权利要求7所述的电子设备,其中,
    所述预定阈值数量为以下值中的任意一个:一个,在一次迭代中进行CCA的波束的数量的二分之一,以及在一次迭代中进行CCA的波束的数量。
  9. 如权利要求1-8中任一项所述的电子设备,其中,
    通过指向性CCA表示针对其执行指向性CCA的波束的方向上的能量小于预定阈值。
  10. 如权利要求4-8中任一项所述的电子设备,其中,所述处理电路还被配置为:
    在所述进一步的CCA结束后,选择如下波束中的任意一个波束来进行发射:
    在所述进一步的CCA期间,通过CCA的总次数最多或CCA失败的总次数最少的波束;
    最后通过CCA的波束;和
    该方向上的信道质量较好的波束。
  11. 如权利要求1-10中任一项所述的电子设备,其中,
    在与发射波束方向对应的接收波束上进行所述指向性CCA。
  12. 如权利要求1所述的电子设备,其中,
    所述多个波束是通过无线资源控制信令预先配置,或者,
    所述多个波束是通过无线资源控制信令预先配置并通过媒体接入控制层的控制元素MAC CE激活的。
  13. 如权利要求12所述的电子设备,其中,
    通过无线资源控制信令预先配置所述多个波束包括:
    -由所述电子设备与所述另一电子设备中充当基站的设备通过无线资源控制信令为所述电子设备与另一电子设备之间的一个或多个信道进行波束设置。
  14. 如权利要求13所述的电子设备,其中,
    对于下行链路,进行波束设置包括配置多个传输配置指示TCI状态,其中,每个TCI状态对应一个波束;或者
    对于上行链路,进行波束设置包括配置多个空间关系信息SpatialRelationInfo,其中,每个SpatialRelationInfo对应一个波束。
  15. 如权利要求14所述的电子设备,其中,
    所述一个或多个信道包括以下中的一个或多个:物理下行控制信道PDCCH、物理下行共享信道PDSCH、物理上行控制信道PUCCH和物理上行共享信道PUSCH。
  16. 如权利要求1所述的电子设备,其中,
    在基于指向性CCA的结果确定的要进行发射的波束的方向上初始化指向性的信道占用时间。
  17. 如权利要求1所述的电子设备,其中,
    所述处理电路被进一步配置为将与波束的指向性CCA相关的信息通知给另一个电子设备。
  18. 如权利要求17所述的电子设备,其中,
    将与波束的指向性CCA相关的信息通知给另一个电子设备包括向所述另一个电子设备通知基于指向性CCA的结果确定的能进行发射的波束和不能进行发射的波束。
  19. 如权利要求18所述的电子设备,其中,
    以位图的形式指示能进行发射的波束和不能进行发射的波束。
  20. 如权利要求18或19所述的电子设备,其中,
    以动态或半静态的方式将与波束的指向性CCA相关的信息通知给所述另一个电子设备,其中,
    动态方式包括利用控制信息来动态指定能进行发射的波束和不能进行发射的波束;以及
    半静态方式包括利用媒体接入控制层的控制元素来激活能进行发射的波束。
  21. 一种用于无线通信系统的方法,包括:
    处理电路,被配置为:
    使用非授权频段进行通信;和
    对多个波束进行指向性空闲信道评估CCA,基于指向性CCA的结果来选择波束进行发射,
    其中,通过如下操作来对所述多个波束进行指向性CCA:
    对所述多个波束中的一个波束来进行初始CCA;
    在初始CCA通过的情况下,选择通过初始CCA的波束进行发射;和
    在初始CCA未通过的情况下,针对所述多个波束中的一个或多个波束进行进一步的CCA。
  22. 一种用于无线通信系统的电子设备,包括:
    使用非授权频段进行通信;和
    对多个波束进行指向性空闲信道评估CCA,基于指向性CCA的结果来选择波束进行发射,
    其中,通过如下操作来对所述多个波束进行指向性CCA:
    依次对所述多个波束的方向进行CCA,并且当预定阈值数量的波束的CCA通过后,不再对所述多个波束中剩余的波束进行CCA。
  23. 如权利要求22所述的电子设备,其中
    按照预先确定的顺序依次对所述多个波束的方向进行CCA,所述顺序使得优先对该方向上的信道质量好的波束进行CCA。
  24. 如权利要求22或23所述的电子设备,其中
    所述预定阈值数量为1。
  25. 如权利要求22或23所述的电子设备,其中
    在预定阈值数量大于1的情况下,从通过CCA的各波束中选择信道质量较好的波束来进行发射。
  26. 如权利要求22-25中任一项所述的电子设备,其中,
    通过指向性CCA表示针对其执行指向性CCA的波束的方向上的能量小于预定阈值。
  27. 如权利要求22-26中任一项所述的电子设备,其中,
    在与发射波束方向对应的接收波束上进行所述指向性CCA。
  28. 如权利要求22所述的电子设备,其中,
    所述多个波束是通过无线资源控制信令预先配置,或者,
    所述多个波束是通过无线资源控制信令预先配置并通过媒体接入控制层的控制元素MAC CE激活的。
  29. 如权利要求28所述的电子设备,其中,
    通过无线资源控制信令预先配置所述多个波束包括:
    -由所述电子设备与所述另一电子设备中充当基站的设备通过无线资源控制信 令为所述电子设备与另一电子设备之间的一个或多个信道进行波束设置。
  30. 如权利要求29所述的电子设备,其中,
    对于下行链路,进行波束设置包括配置多个传输配置指示TCI状态,其中,每个TCI状态对应一个波束;或者
    对于上行链路,进行波束设置包括配置多个空间关系信息SpatialRelationInfo,其中,每个SpatialRelationInfo对应一个波束。
  31. 如权利要求30所述的电子设备,其中,
    所述一个或多个信道包括以下中的一个或多个:物理下行控制信道PDCCH、物理下行共享信道PDSCH、物理上行控制信道PUCCH和物理上行共享信道PUSCH。
  32. 如权利要求22所述的电子设备,其中,
    在基于指向性CCA的结果确定的要进行发射的波束的方向上初始化指向性的信道占用时间。
  33. 如权利要求22所述的电子设备,其中,
    所述处理电路被进一步配置为将与波束的指向性CCA相关的信息通知给另一个电子设备。
  34. 如权利要求33所述的电子设备,其中,
    将与波束的指向性CCA相关的信息通知给另一个电子设备包括向所述另一个电子设备通知基于指向性CCA的结果确定的能进行发射的波束和不能进行发射的波束。
  35. 如权利要求34所述的电子设备,其中,
    以位图的形式指示能进行发射的波束和不能进行发射的波束。
  36. 如权利要求34或35所述的电子设备,其中,
    以动态或半静态的方式将与波束的指向性CCA相关的信息通知给所述另一个电子设备,其中,
    动态方式包括利用控制信息来动态指定能进行发射的波束和不能进行发射的波束;以及
    半静态方式包括利用媒体接入控制层的控制元素来激活能进行发射的波束。
  37. 一种用于无线通信系统的方法,包括:
    使用非授权频段进行通信;和
    对多个波束进行指向性空闲信道评估CCA,基于指向性CCA的结果来选择波束进行发射,
    其中,通过如下操作来对所述多个波束进行指向性CCA:
    依次对所述多个波束的方向进行CCA,并且当预定阈值数量的波束的CCA通过后,不再对所述多个波束中剩余的波束进行CCA。
  38. 一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如权利要求21或37所述的方法。
  39. 一种设备,包括:
    处理器,
    存储装置,存储有可执行指令,所述可执行指令当被执行时实现如权利要求21或37所述的方法。
PCT/CN2020/108364 2019-08-15 2020-08-11 用于无线通信系统的电子设备、方法和存储介质 WO2021027802A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080056374.9A CN114208379A (zh) 2019-08-15 2020-08-11 用于无线通信系统的电子设备、方法和存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910751265.8 2019-08-15
CN201910751265.8A CN112398519A (zh) 2019-08-15 2019-08-15 用于无线通信系统的电子设备、方法和存储介质

Publications (1)

Publication Number Publication Date
WO2021027802A1 true WO2021027802A1 (zh) 2021-02-18

Family

ID=74570516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108364 WO2021027802A1 (zh) 2019-08-15 2020-08-11 用于无线通信系统的电子设备、方法和存储介质

Country Status (2)

Country Link
CN (2) CN112398519A (zh)
WO (1) WO2021027802A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022213229A1 (en) * 2021-04-05 2022-10-13 Qualcomm Incorporated Receive assisted listen before talk with multiple candidate beams
CN116195344A (zh) * 2021-09-29 2023-05-30 北京小米移动软件有限公司 一种使用非授权信道的方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074911A1 (en) * 2016-10-21 2018-04-26 Samsung Electronics Co., Ltd. Apparatus and method for channel access framework on the unlicensed spectrum
WO2018085005A1 (en) * 2016-11-07 2018-05-11 Qualcomm Incorporated Solving deafness in directional clear channel assessment (cca)
CN108029041A (zh) * 2015-11-04 2018-05-11 松下知识产权经营株式会社 无线通信装置和无线通信方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110012542B (zh) * 2018-01-05 2020-09-01 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US10764024B2 (en) * 2018-01-11 2020-09-01 At&T Intellectual Property I, L.P. Multi-beam listen before talk
CN110120860B (zh) * 2018-02-06 2020-06-30 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108029041A (zh) * 2015-11-04 2018-05-11 松下知识产权经营株式会社 无线通信装置和无线通信方法
WO2018074911A1 (en) * 2016-10-21 2018-04-26 Samsung Electronics Co., Ltd. Apparatus and method for channel access framework on the unlicensed spectrum
WO2018085005A1 (en) * 2016-11-07 2018-05-11 Qualcomm Incorporated Solving deafness in directional clear channel assessment (cca)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC: "On LBT for Beam-Based Transmission for NR-U", 3GPP DRAFT; R1-1804885 ON LBT FOR BEAM-BASED TRANSMISSION FOR NR-U, vol. RAN WG1, 20 April 2018 (2018-04-20), Sanya, China, pages 1 - 6, XP051414224 *

Also Published As

Publication number Publication date
CN114208379A (zh) 2022-03-18
CN112398519A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
CN113169780B (zh) 电子设备、通信方法和存储介质
US11757510B2 (en) Electronic devices and communication methods
US11997716B2 (en) Electronic device for wireless communication system, method and storage medium
WO2021169828A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
JP2021168498A (ja) 無線通信装置、基地局装置及び通信方法
WO2021139669A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
CN110741571B (zh) 用于无线通信系统的电子设备、方法和存储介质
CA3048935A1 (en) Electronic device, method and storage medium for wireless communication system
WO2019001411A1 (zh) 电子装置、无线通信设备和无线通信方法
WO2018137492A1 (zh) 无线通信方法和无线通信设备
WO2017076250A1 (zh) 无线通信设备和无线通信方法
WO2017167165A1 (zh) 电子装置、信息处理设备和信息处理方法
US12041004B2 (en) Electronic device, wireless communication method and computer readable medium
CN106686745B (zh) 无线通信系统中的电子设备、用户设备和无线通信方法
US20240188128A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2020140836A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021027802A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2022194082A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022083525A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022037467A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2022028318A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2020143562A1 (zh) 电子装置、无线通信方法和计算机可读介质
WO2021147713A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US20240188094A1 (en) Electronic device, communication method, storage medium and computer program product
WO2020108370A1 (zh) 电子装置、无线通信方法和计算机可读介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852738

Country of ref document: EP

Kind code of ref document: A1