WO2021147713A1 - 电子设备、无线通信方法和计算机可读存储介质 - Google Patents

电子设备、无线通信方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2021147713A1
WO2021147713A1 PCT/CN2021/071345 CN2021071345W WO2021147713A1 WO 2021147713 A1 WO2021147713 A1 WO 2021147713A1 CN 2021071345 W CN2021071345 W CN 2021071345W WO 2021147713 A1 WO2021147713 A1 WO 2021147713A1
Authority
WO
WIPO (PCT)
Prior art keywords
lbt process
receiving
receiving direction
electronic device
user equipment
Prior art date
Application number
PCT/CN2021/071345
Other languages
English (en)
French (fr)
Inventor
崔琪楣
李�浩
贾靖
崔焘
Original Assignee
索尼集团公司
崔琪楣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 崔琪楣 filed Critical 索尼集团公司
Priority to CN202180006730.0A priority Critical patent/CN114747247A/zh
Publication of WO2021147713A1 publication Critical patent/WO2021147713A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the embodiments of the present disclosure generally relate to the field of wireless communication, and specifically relate to electronic devices, wireless communication methods, and computer-readable storage media. More specifically, the present disclosure relates to an electronic device that is a network-side device in a wireless communication system, an electronic device that is a user equipment in a wireless communication system, and a wireless communication system performed by a network-side device in a wireless communication system. A communication method, a wireless communication method executed by a user equipment in a wireless communication system, and a computer-readable storage medium.
  • channel detection can reduce the interference and waste of frequency band usage.
  • Channel detection can be achieved through LBT (Listen Before Talk).
  • LBT is used to check whether the channel is idle through Clear Channel Assessment (CCA) before using the channel or carrier.
  • CCA Clear Channel Assessment
  • the network side device can use beamforming to send information to the user side device directionally during downlink transmission.
  • the network side device may determine whether the channel in the transmission direction is idle through channel detection before determining the transmission direction.
  • this kind of directional channel detection will bring more hidden nodes, which will affect the reception of user-side equipment.
  • the purpose of the present disclosure is to provide an electronic device, a wireless communication method, and a computer-readable storage medium to improve the detection mechanism of hidden nodes in the LAA communication system, thereby improving channel quality.
  • an electronic device including a processing circuit configured to perform listen-before-speak LBT in a transmission direction from the electronic device to a user equipment and a direction opposite to the transmission direction Process; in the case that the transmission direction and the LBT process in the direction opposite to the transmission direction are both successful, send indication information to the user equipment to indicate that the user equipment is moving from the user equipment to the The LBT process is performed in the receiving direction of the electronic device and the direction opposite to the receiving direction; and when the LBT process in the receiving direction and the direction opposite to the receiving direction are both successful, the transmitting direction is used to perform Data transmission process with the user equipment.
  • an electronic device including a processing circuit, configured to: perform listening-before-listening in a receiving direction from the electronic device to a network-side device and a direction opposite to the receiving direction. Say the LBT process; and send the result of the LBT process in the receiving direction and the direction opposite to the receiving direction to the network side device.
  • a wireless communication method performed by an electronic device, including: listening before speaking in a transmission direction from the electronic device to a user equipment and a direction opposite to the transmission direction LBT process; in the case that the transmission direction and the LBT process in the direction opposite to the transmission direction are both successful, send indication information to the user equipment to indicate that the user equipment is moving from the user equipment to the
  • the LBT process is performed in the receiving direction of the electronic device and the direction opposite to the receiving direction; and in the case where the LBT process in the receiving direction and the direction opposite to the receiving direction are both successful, the transmitting direction is used Perform a data transmission process with the user equipment.
  • a wireless communication method performed by an electronic device, including: performing listen-before-listening in a receiving direction from the electronic device to a network-side device and a direction opposite to the receiving direction. Say the LBT process; and send the result of the LBT process in the receiving direction and the direction opposite to the receiving direction to the network side device.
  • a computer-readable storage medium including executable computer instructions that, when executed by a computer, cause the computer to execute the wireless communication method according to the present disclosure.
  • the electronic device as the network-side device can perform the LBT process in the emission direction and the direction opposite to the emission direction, and the electronic device as the user-side device can The LBT process is executed in the receiving direction and the direction opposite to the receiving direction. Only when the four LBT processes are successful, the electronic device as the network-side device will send downlink to the electronic device as the user-side device in the transmitting direction data. In this way, through the above four LBT processes, the existence of hidden nodes can be prevented, so that the quality of the channel between the electronic device as the network-side device and the electronic device as the user-side device is improved.
  • FIG. 1 is a schematic diagram showing a scene of directed LBT
  • Figure 2(a) is a schematic diagram showing a scenario where there are hidden nodes in the case of directional LBT;
  • Figure 2(b) is a schematic diagram showing a scenario where there are hidden nodes in the case of directional LBT
  • Figure 3(a) is a schematic diagram showing a scenario where there are hidden nodes in the case of directional LBT
  • Figure 3(b) is a schematic diagram showing a scenario where there are hidden nodes in the case of directional LBT
  • Figure 4(a) is a schematic diagram showing a scenario where there are hidden nodes in the case of directional LBT
  • Figure 4(b) is a schematic diagram showing a scenario where there are hidden nodes in the case of directional LBT
  • FIG. 5 is a block diagram showing an example of the configuration of an electronic device for a network side according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram showing a scenario in which a gNB and a UE perform forward and reverse LBT according to an embodiment of the present disclosure
  • FIG. 7 is a signaling flowchart showing a process of data transmission after the gNB and the UE perform forward and reverse LBT according to an embodiment of the present disclosure
  • FIG. 8 is a signaling flowchart showing a process of determining whether to allow UE access by directional measurement of channel quality in a cell access phase according to an embodiment of the present disclosure
  • FIG. 9 is a block diagram showing an example of the configuration of an electronic device for a user side according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart illustrating a wireless communication method performed by an electronic device for a network side according to an embodiment of the present disclosure
  • FIG. 11 is a flowchart showing a wireless communication method executed by an electronic device for a user side according to an embodiment of the present disclosure
  • Fig. 12 is a block diagram showing a first example of a schematic configuration of an eNB (Evolved Node B);
  • FIG. 13 is a block diagram showing a second example of the schematic configuration of an eNB
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smart phone.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a car navigation device.
  • Example embodiments are provided so that this disclosure will be thorough and will fully convey its scope to those skilled in the art. Numerous specific details such as examples of specific components, devices, and methods are described to provide a detailed understanding of the embodiments of the present disclosure. It will be obvious to those skilled in the art that specific details need not be used, and the example embodiments can be implemented in many different forms, and none of them should be construed as limiting the scope of the present disclosure. In some example embodiments, well-known processes, well-known structures, and well-known technologies are not described in detail.
  • FIG. 1 is a schematic diagram showing a scene of directional LBT.
  • the gNB expects to send downlink information to UEs (User Equipment) within its coverage.
  • UEs User Equipment
  • AP Access Point
  • STA station, terminal station
  • STA station, terminal station
  • the gNB can perform the LBT process in the transmission direction to sense whether other devices are sending in the transmission direction. information.
  • the dashed ellipse in FIG. 1 shows the expected emission direction of the gNB, and the size of the ellipse depends on the sensing range of the gNB.
  • the gNB performs the LBT process in the transmission direction means that the gNB can detect signals from other devices in the transmission direction (ie, the right side of the gNB in FIG. 1) within the sensing range. In other words, the gNB receives signals in the direction of transmission to determine whether there are signals from other devices.
  • the LBT process performed by the gNB in a fixed direction is also referred to as a directional LBT process.
  • the AP is within the sensing range of the gNB, and the signal emitted by the AP points in the direction of the gNB. Therefore, the gNB can sense the presence of the AP by performing the directional LBT process in the transmitting direction, so that the directional LBT is considered unsuccessful , GNB will not use this transmission direction to send downlink information to the UE.
  • Figure 2(a) is a schematic diagram showing a scenario where there are hidden nodes in the case of directional LBT.
  • the AP is on the left side of the gNB, and the UE and STA are on the right side of the gNB.
  • the gNB expects to send downlink information to UEs within its coverage area, and the AP is sending information to STAs within its coverage area.
  • the information from the AP may be able to reach the UE, thus causing interference to the UE.
  • the AP since the AP is located on the left side of the gNB, and the gNB only performs directional LBT in the transmission direction with the UE, the signal from the AP cannot be sensed, and the AP is called a hidden node at this time. Since the gNB cannot sense the signal from the AP, it considers that the directional LBT process is successful and uses the transmission direction to send downlink information to the UE, thereby causing the UE to be interfered.
  • Figure 2(b) is a schematic diagram showing a scenario where there are hidden nodes in the case of directional LBT.
  • AP and STA are located on the left side of gNB
  • UE is located on the right side of gNB
  • gNB expects to send downlink information to UEs within its coverage area
  • AP is sending information to STAs within its coverage area.
  • the information from the AP may be able to reach the UE, thus causing interference to the UE.
  • the AP since the AP is located on the left side of the gNB, and the gNB only performs directional LBT in the transmission direction with the UE, the signal from the AP cannot be sensed, and the AP is called a hidden node at this time. Since the gNB cannot sense the signal from the AP, it considers that the directional LBT process is successful and uses the transmission direction to send downlink information to the UE, thereby causing the UE to be interfered.
  • AP, UE, and STA are located on the right side of gNB.
  • gNB expects to send downlink information to UEs within its coverage area.
  • AP is sending information to STAs within its coverage area.
  • the information from the AP is: It may be able to reach the UE, thus causing interference to the UE.
  • the signal of the AP faces the right side, and the gNB only performs directional LBT in the transmission direction with the UE, the signal from the AP cannot be sensed, and the AP is called a hidden node at this time. Since the gNB cannot sense the signal from the AP, it considers that the directional LBT process is successful and uses the transmission direction to send downlink information to the UE, thereby causing the UE to be interfered.
  • AP, UE, and STA are located on the right side of gNB.
  • gNB expects to send downlink information to UEs within its coverage area.
  • AP is sending information to STAs within its coverage area.
  • the information from the AP is: It may be able to reach the UE, thus causing interference to the UE.
  • the signal of the AP faces the right side, and the gNB only performs directional LBT in the transmission direction with the UE, the signal from the AP cannot be sensed, and the AP is called a hidden node at this time. Since the gNB cannot sense the signal from the AP, it considers that the directional LBT process is successful and uses the transmission direction to send downlink information to the UE, thereby causing the UE to be interfered.
  • AP, UE, and STA are located on the right side of gNB.
  • gNB expects to send downlink information to UEs within its coverage area.
  • AP is sending information to STAs within its coverage area.
  • the information from the AP is: It may be able to reach the UE, thus causing interference to the UE.
  • the gNB cannot sense the signal from the AP. It is called a hidden node. Since the gNB cannot sense the signal from the AP, it considers that the directional LBT process is successful and uses the transmission direction to send downlink information to the UE, which causes the UE to be interfered.
  • AP, UE, and STA are located on the right side of gNB.
  • gNB expects to send downlink information to UEs within its coverage area.
  • AP is sending information to STAs within its coverage area.
  • the information from the AP is: It may be able to reach the UE, thus causing interference to the UE.
  • the gNB cannot sense the signal from the AP. It is called a hidden node. Since the gNB cannot sense the signal from the AP, it considers that the directional LBT process is successful and uses the transmission direction to send downlink information to the UE, thereby causing the UE to be interfered.
  • the gNB may not be able to sense the existence of some nodes that are sending information. For example, in a case where the UE is located on the right side of the gNB, the gNB can only sense the presence of other nodes located on the right side of the gNB, with the transmission direction toward the left side, and within the sensing range of the gNB. For the cases of Figure 2(a)- Figure 4(b), gNB cannot detect the presence of AP. It is worth noting that although Figures 2(a) to 4(b) show some examples of hidden nodes, this is not restrictive but merely exemplary.
  • gNB, AP, UE and STA are located on the same straight line.
  • the direction of the best receiving beam has a certain offset, so the gNB, AP, UE, and STA are not necessarily located on the same straight line, and may have a certain offset.
  • the present disclosure proposes an electronic device in a wireless communication system, a wireless communication method executed by the electronic device in the wireless communication system, and a computer-readable storage medium for such a scenario, so as to improve the detection mechanism of hidden nodes in the LAA communication system , Thereby improving the channel quality.
  • the wireless communication system according to the present disclosure may be a LAA communication system, and particularly may be a 60 GHz LAA communication system.
  • the network-side equipment may be any type of base station equipment, for example, it may be an eNB or a gNB (base station in the 5th generation communication system).
  • the user equipment may be a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device) ).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the above-mentioned terminals.
  • FIG. 5 is a block diagram showing an example of the configuration of an electronic device 500 according to an embodiment of the present disclosure.
  • the electronic device 500 here may be used as a network side device in a wireless communication system, and specifically may be used as a base station device in a wireless communication system.
  • the electronic device 500 may include a sensing unit 510, a processing unit 520, a generating unit 530, and a communication unit 540.
  • each unit of the electronic device 500 may be included in the processing circuit.
  • the electronic device 500 may include one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different titles may be implemented by the same physical entity.
  • the sensing unit 510 may perform an LBT process, including sensing energy or power of signals from other electronic devices around.
  • Other electronic devices here include, but are not limited to, APs in the Wifi system.
  • the sensing unit 510 can perform the omnidirectional LBT process according to any known manner in the art.
  • the sensing unit 510 may perform a directional LBT process, that is, the sensing unit 510 may perform the LBT process in the emission direction from the electronic device 500 to the user equipment and the direction opposite to the emission direction.
  • the processing unit 520 may process the sensing result of the sensing unit 510 to determine whether the LBT process is successful to determine whether the channel is idle. Further, the processing unit 520 may also determine the beam direction used to send downlink information to the user equipment.
  • the processing unit 520 determines that the LBT process in the transmitting direction and the direction opposite to the transmitting direction are successful
  • the generating unit 530 may generate indication information, which is used to indicate that the user equipment is The LBT process is performed in the receiving direction from the user equipment to the electronic device 500 and in the direction opposite to the receiving direction.
  • the electronic device 500 may transmit the instruction information generated by the generating unit 530 to the user equipment through the communication unit 540.
  • the processing unit 520 may determine to use the transmitting direction to perform the data transmission process with the user equipment.
  • the LBT process can be performed in the transmitting direction and the direction opposite to the transmitting direction, and the user equipment can perform the LBT process in the receiving direction and the direction opposite to the receiving direction, Only when all four LBT processes are successful, the electronic device 500 will send downlink data to the user equipment in the transmitting direction. In this way, through the above four LBT processes, the existence of hidden nodes can be prevented, and the channel quality between the electronic device 500 and the user equipment can be improved.
  • the sensing unit 510 performs the LBT process in the emission direction (also referred to as the forward LBT process of the electronic device 500 in the present disclosure) means that the sensing unit 510 can sense the emission from the The direction of the energy or power of the signal of other electronic devices. That is to say, the sensing unit 510 can only sense when the other electronic device emitting signals is in the emitting direction, the direction in which other electronic devices emit signals is facing the electronic device 500, and the other electronic devices are within the sensing range of the electronic device 500 The energy or power of the signal to this other electronic device.
  • the sensing unit 510 performs the LBT process (also referred to as the reverse LBT process of the electronic device 500 in the present disclosure) in the direction opposite to the emission direction, which means that the sensing unit 510 can sense the transmission The energy or power of signals from other electronic devices in the opposite direction. That is to say, only other electronic devices that transmit signals are in the opposite direction to the direction of emission, the direction in which other electronic devices transmit signals faces the electronic device 500, and the other electronic devices are within the sensing range of the electronic device 500, the sensing unit 510 Only the energy or power of the signal of the other electronic device can be sensed.
  • the LBT process also referred to as the reverse LBT process of the electronic device 500 in the present disclosure
  • the user equipment performs the LBT process in the receiving direction means that the user equipment can sense other information from the receiving direction.
  • the energy or power of the signal of an electronic device In other words, only when other electronic devices that transmit signals are in the receiving direction, the direction in which other electronic devices transmit signals faces the user equipment, and other electronic devices are within the sensing range of the user equipment, can the user equipment sense the other electronic devices. The energy or power of the device's signal.
  • the user equipment performing the LBT process in the direction opposite to the receiving direction means that the user equipment can sense data from the direction opposite to the receiving direction.
  • the energy or power of signals from other electronic devices In other words, only when other electronic devices that transmit signals are in the opposite direction to the receiving direction, the direction in which other electronic devices transmit signals is facing the user equipment, and the other electronic devices are within the sensing range of the user equipment, can the user equipment sense The energy or power of the signal of the other electronic device.
  • Fig. 6 is a schematic diagram showing a scenario where a gNB and a UE perform forward and reverse LBT according to an embodiment of the present disclosure.
  • the transmission direction of the gNB is the direction from the gNB to the UE, that is, the right direction of the gNB, and the direction opposite to the transmission direction is the right left direction of the gNB.
  • the receiving direction of the UE is the direction from the UE to the gNB, that is, the direction on the right side of the UE, and the direction opposite to the receiving direction is the direction on the right side of the UE. As shown in FIG.
  • area A shows the sensing range of the gNB performing the LBT process in the emission direction
  • area B shows the sensing range of the gNB performing the LBT process in the direction opposite to the emission direction
  • area C shows the sensing range of the UE performing the LBT process in the receiving direction
  • area D shows the sensing range of the UE performing the LBT process in the direction opposite to the receiving direction.
  • the gNB since the AP is located on the left side of the gNB, the gNB cannot sense the signal from the AP through the forward LBT process.
  • the reverse LBT process is performed by gNB, that is, the gNB performs the LBT process in the direction opposite to the transmitting direction.
  • the gNB can sense the signal from the AP, thereby being able to discover the hidden node AP, which is considered reverse.
  • the LBT process is unsuccessful, and the transmission direction in the figure is not used to send downlink signals to the UE, which prevents the UE from being interfered.
  • the gNB since the signal from the AP is not towards the gNB, the gNB cannot sense the signal from the AP through the forward LBT process and the reverse LBT process.
  • the UE when the UE performs the forward LBT process, that is, the UE performs the LBT process in the receiving direction, the UE can sense the signal from the AP, and thus can discover the hidden node AP, so that the gNB considers the forward direction of the UE
  • the LBT process is unsuccessful, and the transmission direction in the figure is not used to send downlink signals to the UE, which prevents the UE from being interfered.
  • the gNB since the AP is outside the sensing range of the gNB, the gNB cannot sense the signal from the AP through the forward LBT process and the reverse LBT process.
  • the UE when the UE performs the reverse LBT process, that is, the UE performs the LBT process in the direction opposite to the receiving direction, the UE can sense the signal from the AP, thereby being able to discover the hidden node AP, so that the gNB thinks
  • the reverse LBT process of the UE is unsuccessful, and the transmission direction in the figure is not used to send a downlink signal to the UE, which prevents the UE from being interfered.
  • the existence of hidden nodes can be prevented through the forward LBT process and the reverse LBT process of the electronic device 500 and the user equipment, so that the channel quality between the electronic device 500 and the user equipment is improved.
  • the LBT process may include: an LBT process (Cat 2 LBT process) that does not include a random back-off process, an LBT process including a random back-off process and a constant contention window (Cat 3 LBT process), and a random back-off process (Cat 3 LBT process) LBT process with variable competition window (Cat 4 LBT process).
  • the sensing unit 510 can choose an LBT process from the aforementioned LBT processes, and the user equipment can also choose an LBT process from the aforementioned LBT processes.
  • the sensing unit 510 may select one of the above LBT processes when performing the forward LBT process, and when performing the reverse LBT process Use the LBT process that does not include the random backoff process.
  • the user equipment also adopts the LBT process that does not include the random back-off process when performing the forward LBT process and the reverse LBT process.
  • the LBT process that does not include the random backoff process may be a channel detection process that includes only the CCA process.
  • the processing unit 520 may determine whether the LBT process is successful according to the sensing result of the sensing unit 510. For example, the processing unit 520 may determine whether the LBT process is successful according to the received power sensed by the sensing unit 510.
  • the processing unit 520 may determine that there is no other electronic device transmitting a signal in the transmitting direction, or there is another electronic device transmitting However, the interference caused by the signal to the user equipment is within the receivable range, so that it can be determined that the LBT process in the transmitting direction is successful. Conversely, if the power received by the sensing unit 510 in the transmitting direction is not less than the aforementioned predetermined threshold, the processing unit 520 may determine that the LBT process in the transmitting direction is unsuccessful.
  • the processing unit 520 may determine that the LBT process in the direction opposite to the transmitting direction is successful; if the sensing unit 510 is in If the power received in the direction opposite to the transmission direction is not less than the predetermined threshold, the processing unit 520 may determine that the LBT process in the direction opposite to the transmission direction is unsuccessful.
  • the electronic device 500 may determine the foregoing predetermined threshold value according to actual conditions, and the predetermined threshold value for the received power in the transmitting direction and the predetermined threshold value for the received power in the direction opposite to the transmitting direction may be the same or different.
  • the electronic device 500 may receive the result of the LBT process in the receiving direction and the direction opposite to the receiving direction from the user equipment through the communication unit 540. Further, the processing unit 520 may determine whether the LBT process of the user equipment in the receiving direction and the direction opposite to the receiving direction is successful according to the result.
  • the result of the LBT process in the receiving direction received by the electronic device 500 includes the received power in the receiving direction
  • the result of the LBT process in the direction opposite to the receiving direction includes the result of the LBT process in the direction opposite to the receiving direction.
  • the processing unit 520 may determine whether the LBT process is successful according to the received power in the direction of the received power.
  • the processing unit 520 may determine that the LBT process in the receiving direction is successful; if the received power in the receiving direction is not less than the predetermined threshold, the processing unit 520 may determine that the LBT process in the receiving direction is unsuccessful. Similarly, if the received power in the direction opposite to the receiving direction is less than the predetermined threshold, the processing unit 520 may determine that the LBT process in the direction opposite to the receiving direction is successful; if the received power in the direction opposite to the receiving direction is successful Not less than the predetermined threshold, the processing unit 520 may determine that the LBT process in the direction opposite to the receiving direction is unsuccessful.
  • the electronic device 500 may determine the above-mentioned predetermined threshold according to the actual situation.
  • the predetermined threshold of the received power in the transmitting direction, the predetermined threshold of the received power in the direction opposite to the transmitting direction, the predetermined threshold of the received power in the receiving direction and the The four predetermined thresholds of the received power in the direction opposite to the receiving direction may be the same or different from each other.
  • the processing unit 520 may determine not to use the The transmitting direction executes the data transmission process with the user equipment, that is, there is no need to send instruction information to the user equipment.
  • the processing unit 520 may determine to use the transmitting direction to perform data communication with the user equipment. Transmission process. Further, in the case that the LBT process in the receiving direction and/or the LBT process in the direction opposite to the receiving direction is unsuccessful (failed), the processing unit 520 may determine not to use the transmitting direction to perform data communication with the user equipment. Transmission process.
  • the processing unit 520 may Determine the use of the transmitting direction to perform the data transmission process with the user equipment. In the event that at least one of the LBT process in the transmitting direction, the LBT process in the direction opposite to the transmitting direction, the LBT process in the receiving direction, and the LBT process in the direction opposite to the receiving direction fails, the processing unit 520 may determine The transmission direction is not used to perform the data transmission process with the user equipment.
  • the electronic device 500 may further include a timing unit 550 for setting a timer.
  • the timing unit 550 may start a timer (first timer) and perform the LBT process in the direction opposite to the transmission direction. Further, if the result of the LBT process in the receiving direction and the direction opposite to the receiving direction is received from the user equipment before the timer expires, the processing unit 520 determines in the receiving direction and according to the result based on the above-mentioned method. Whether the LBT process in the direction opposite to the receiving direction is successful.
  • the processing unit 520 may determine not to use the transmitting direction to execute Data transmission process with user equipment.
  • the processing unit 520 considers that there is a hidden node and does not use the transmission direction to perform data transmission with the user equipment.
  • the processing unit 520 considers that the remaining time is not enough to perform data transmission, so that the transmission direction is not used to perform data transmission with the user equipment.
  • the timing unit 550 may set the duration of the timer to be less than or equal to the length of MCOT (Maximum Channel Occupy Time).
  • the electronic device 500 may further include a determining unit 560 for determining whether to perform the LBT process in the direction opposite to the transmitting direction and determining whether to send instruction information to the user equipment to instruct the user
  • the device performs the forward and reverse LBT process.
  • the electronic device 500 when the electronic device 500 sends downlink information to the user equipment in a beamforming manner so that the electronic device 500 performs a directional LBT process, the problem of hidden nodes not being discovered will occur. Therefore, if the electronic device 500 performs the LBT process in an omnidirectional manner, the electronic device 500 does not need to perform the LBT process in the direction opposite to the emission direction, and the user equipment does not need to perform the LBT process. In this case, the determining unit 560 may determine that there is no need to send the instruction information to the user equipment.
  • the determining unit 560 may also determine whether to perform the LBT process in the direction opposite to the transmission direction and whether to send instruction information to the user equipment according to the service type of the data with the user equipment.
  • the determining unit 560 may determine whether to perform the LBT process in the direction opposite to the transmitting direction and whether to send instruction information to the user equipment according to the tolerance of the service to packet loss. For example, if the service type of the data between the electronic device 500 and the user equipment indicates that the service has a relatively high tolerance for packet loss (for example, video service and audio service, etc.), the determining unit 560 may determine that there is no need to operate in the opposite direction to the transmission direction.
  • the LBT process is executed in the direction without sending instructions to the user equipment.
  • the determining unit 560 may determine that LBT needs to be performed in the direction opposite to the transmission direction. During the process, it is also necessary to send instruction information to the user equipment.
  • FIG. 7 is a signaling flowchart illustrating a process of data transmission after the gNB and the UE perform forward and reverse LBT according to an embodiment of the present disclosure.
  • the gNB can be implemented by the electronic device 500.
  • step S701 the gNB performs the LBT process in the transmitting direction.
  • step S702 in the case that the LBT process in the transmitting direction is successful, the gNB starts a timer. Meanwhile, in step S703, the gNB performs the LBT process in the direction opposite to the transmission direction.
  • step S704 the gNB sends indication information to the UE to instruct the UE to perform the forward LBT process and the reverse LBT process.
  • step S705 the UE performs the LBT process in the receiving direction and the direction opposite to the receiving direction.
  • step S706 the UE sends the result of the LBT process to the gNB.
  • step S707 if the gNB receives the result of the LBT process from the UE before the timer expires, the gNB determines whether to use the transmit beam according to the result.
  • step S708 the gNB uses the transmit beam to send downlink data to the UE. Further, in the case that the LBT process in step S701 fails, the process ends directly, and the transmit beam is not used. In the case that the LBT process in step S703 fails, the process is a direct result, and the transmit beam is not used. If the result from the UE is not received before the timer expires, the transmit beam is not used. Thus, through the forward LBT process and the reverse LBT process of the gNB and the UE, the gNB can avoid the interference to the UE caused by the existence of hidden nodes.
  • the implementations described in the foregoing may be used in a situation where the user equipment has been connected to the electronic device 500.
  • the situation before the user equipment accesses the electronic device 500 will be described below.
  • the electronic device 500 may receive channel quality measurement information from the user equipment through the communication unit 540.
  • the channel quality measurement information represents the channel quality measured in the receiving direction from the user equipment to the electronic device 500 and the direction opposite to the receiving direction.
  • the electronic device 500 may further include an access determining unit 570, configured to determine whether the user equipment is allowed to access the electronic device 500.
  • the access determination unit 570 may determine whether to allow the user equipment to access the electronic device 500 according to the received channel quality measurement information.
  • the electronic device 500 since the electronic device 500 expects to send downlink information to the user equipment in a beamforming manner, it is obviously no longer reasonable to use the channel quality measured by the user equipment omnidirectionally as a criterion for judging whether the user equipment is allowed to access.
  • the user equipment can measure channel quality only in the receiving direction and the direction opposite to the receiving direction, so that the access determination unit 570 can determine whether to determine whether or not according to the channel quality in the receiving direction and the direction opposite to the receiving direction. Allow user device access. In this way, it is possible to more reasonably determine whether the user equipment is allowed to access the electronic device 500, so as to avoid the access of the interfered user equipment as much as possible, and increase the probability of the user equipment accessing the electronic device 500.
  • the channel quality measurement information received from the user equipment may include RSRP (Reference Signal Receiving Power) or RSRQ (Reference Signal Receiving Quality).
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • RSRP represents the reference signal received power measured in the receiving direction and the direction opposite to the receiving direction.
  • the electronic device 500 may send a synchronization signal (a primary synchronization signal and a secondary synchronization signal) to the user equipment through the communication unit 540.
  • the user equipment obtains the RSRP value by calculating the linear average of the received power on the RE (Resource Element, resource element) carrying the synchronization signal in the receiving direction and the direction opposite to the receiving direction.
  • RSRQ is obtained according to RSRP and RSSI (Received Signal Strength Indication).
  • RSRP represents the received power of the reference signal in the receiving direction and the direction opposite to the receiving direction, that is, the user equipment calculates the linear average of the received power on the RE carrying the synchronization signal in the receiving direction and the direction opposite to the receiving direction. Get the value of RSRP.
  • RSSI represents an indication of received signal strength in the receiving direction and the direction opposite to the receiving direction.
  • the user equipment calculates the linear average of the power of all signals (including interference signals, noise signals, etc.) received in the measurement bandwidth of N RBs (Resource Block) in the receiving direction and the direction opposite to the receiving direction. Get the value of RSSI.
  • the access determination unit 570 may determine whether to allow the user equipment to access the electronic device 500 according to the comparison of the channel quality with a predetermined threshold. Specifically, when the channel quality is not greater than the predetermined threshold, the access determination unit 570 may determine that the channel quality between the user equipment and the electronic device 500 in the receiving direction and the direction opposite to the receiving direction is not good, and there is a high possibility that other channels exist.
  • the electronic device is transmitting a signal, so it can be determined that the user equipment is not allowed to access the electronic device 500; when the channel quality is greater than a predetermined threshold, the access determination unit 570 can determine that the user equipment is allowed to access the electronic device 500.
  • the electronic device 500 may set the same or different predetermined thresholds.
  • the timing unit 550 may also set a second timer. Similarly, the timing unit 550 may set the duration of the second timer to be less than or equal to the length of MCOT.
  • the sensing unit 510 may perform the LBT process in the emission direction from the electronic device 500 to the user equipment.
  • the LBT process here may be any one of an LBT process that does not include a random backoff process, an LBT process that includes a random backoff process and a constant contention window, and an LBT process that includes a random backoff process and a variable contention window.
  • the timing unit 550 may start the second timer.
  • the electronic device 500 may send a synchronization signal, such as a primary synchronization signal and a secondary synchronization signal, to the user equipment through the communication unit 540.
  • the access determination unit 570 determines whether to allow the user equipment to access the electronic device 500 according to the channel quality measurement information based on the foregoing embodiment. .
  • the processing unit 520 may determine that the user equipment is not allowed to access the electronic device 500.
  • the processing unit 520 considers that the channel quality is too poor and does not allow the user equipment to access.
  • FIG. 8 is a signaling flowchart illustrating a process of determining whether to allow UE access by directional measurement of channel quality in a cell access phase according to an embodiment of the present disclosure.
  • the gNB can be implemented by the electronic device 500.
  • the gNB performs the LBT process in the transmission direction.
  • the gNB starts a second timer.
  • the gNB sends a synchronization signal to the UE.
  • step S804 by measuring the synchronization signal, the UE determines the RSRP or RSRQ in the receiving direction and the direction opposite to the receiving direction.
  • step S805 the UE sends RSRQ or RSRQ to the gNB.
  • step S806 the gNB determines whether to allow the UE to access the gNB according to the received RSRP or RSRQ.
  • step S807 the gNB sends to the UE access permission or rejection information.
  • the LBT process in S801 is unsuccessful, the gNB directly determines that the UE is not allowed to access the gNB.
  • the RSRP or RSRQ from the UE is not received before the timer expires, the gNB does not allow the UE to access the gNB.
  • the gNB determines whether to allow the UE to access according to the channel quality in the receiving direction and the direction opposite to the receiving direction.
  • the LBT process can be performed in the transmitting direction and the direction opposite to the transmitting direction, and the user equipment can perform the LBT process in the receiving direction and the direction opposite to the receiving direction.
  • the LBT process is executed in the direction, and only when the four LBT processes are successful, the electronic device 500 will send downlink data to the user equipment in the transmitting direction. In this way, through the above four LBT processes, the existence of hidden nodes can be prevented, and the channel quality between the electronic device 500 and the user equipment can be improved.
  • the user equipment can only measure the channel quality in the receiving direction and the direction opposite to the receiving direction, so that the electronic device 500 can more reasonably determine whether the user equipment is allowed to access the electronic device 500. In this way, the access of the interfered user equipment is avoided as much as possible, and the probability of the user equipment accessing the electronic device 500 is improved.
  • FIG. 9 is a block diagram showing the structure of an electronic device 900 serving as a user equipment in a wireless communication system according to an embodiment of the present disclosure.
  • the electronic device 900 may include a sensing unit 910, a generating unit 920, and a communication unit 930.
  • each unit of the electronic device 900 may be included in the processing circuit.
  • the electronic device 900 may include one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different titles may be implemented by the same physical entity.
  • the sensing unit 910 may perform an LBT process. Specifically, the sensing unit 910 may perform the LBT process in the receiving direction from the electronic device 900 to the network side device and the direction opposite to the receiving direction.
  • the generating unit 920 may generate the result of the LBT process according to the sensing result of the sensing unit 910, including the result of the LBT process in the receiving direction and the result of the LBT process in the direction opposite to the receiving direction .
  • the electronic device 900 may send the result of the LBT process in the receiving direction and the direction opposite to the receiving direction generated by the generating unit 920 to the network-side device through the communication unit 930 for the network-side device according to
  • the result of the LBT process of the electronic device 900 in the receiving direction and the direction opposite to the receiving direction determines whether to use the transmitting direction corresponding to the receiving direction to send data to the electronic device 900.
  • the electronic device 900 may receive instruction information from the network side device through the communication unit 930, thereby performing the LBT process in the receiving direction and the direction opposite to the receiving direction in response to the instruction information.
  • the sensing unit 910 performs the LBT process in the receiving direction (also referred to as the forward LBT process of the electronic device 900 in the present disclosure), which means that the sensing unit 910 can sense from the receiving direction.
  • the direction of the energy or power of the signal of other electronic devices That is, the electronic device 900 can only sense when the other electronic device that transmits signals is in the receiving direction, the direction in which other electronic devices transmit signals is facing the electronic device 900, and the other electronic devices are within the sensing range of the electronic device 900 The energy or power of the signal of the other electronic device.
  • the sensing unit 910 performs the LBT process (also referred to as the reverse LBT process of the electronic device 900 in the present disclosure) in the direction opposite to the receiving direction, which means that the sensing unit 910 can sense data from and receiving The energy or power of signals from other electronic devices in the opposite direction. That is, the electronic device 900 can only transmit signals in the direction opposite to the receiving direction, the direction in which other electronic devices transmit signals is facing the electronic device 900, and the other electronic devices are within the sensing range of the electronic device 900. The energy or power of the signal of the other electronic device is sensed.
  • the LBT process also referred to as the reverse LBT process of the electronic device 900 in the present disclosure
  • the LBT process may include: an LBT process (Cat 2 LBT process) that does not include a random back-off process, an LBT process including a random back-off process and a constant contention window (Cat 3 LBT process), and a random back-off process (Cat 3 LBT process) LBT process with variable competition window (Cat 4 LBT process).
  • the sensing unit 910 can select an LBT process from the aforementioned LBT processes.
  • the sensing unit 910 may adopt an LBT process that does not include a random back-off process when performing a forward LBT process and a reverse LBT process.
  • the result of the LBT process in the receiving direction generated by the generating unit 920 may include the received power in the receiving direction
  • the result of the LBT process in the direction opposite to the receiving direction may include the result of the LBT process in the receiving direction.
  • the received power in the opposite direction may include the received power in the opposite direction.
  • the electronic device 900 can execute the forward LBT process and the reverse LBT process, and send the result of the LBT process to the network-side device, thereby Assist the network side device to determine the hidden node, so that the quality of the channel between the electronic device 900 and the network side device is improved.
  • the electronic device 900 may further include a measuring unit 940 for measuring the channel quality between the network-side device and the electronic device 900.
  • the measuring unit 940 may measure the channel quality in the receiving direction from the electronic device 900 to the network-side device and the direction opposite to the receiving direction.
  • the channel quality here can be represented by RSRP or RSRQ.
  • the electronic device 900 may further include a generating unit 950 for generating channel quality measurement information according to the measurement result of the measuring unit 940. Further, the electronic device 900 may send the channel quality measurement information to the network side device through the communication unit 930 for the network side device to determine whether to allow the electronic device 900 to access the network side device according to the channel quality measurement information.
  • the generating unit 950 may determine the RSRP according to the reference signal received power in the receiving direction and the direction opposite to the receiving direction.
  • the electronic device 900 may receive synchronization signals (primary synchronization signal and secondary synchronization signal) from the network side device through the communication unit 930, and then the generating unit 950 calculates the REs carrying the synchronization signal in the receiving direction and the direction opposite to the receiving direction. The received power on the linear average to obtain the value of RSRP.
  • the generating unit 950 may determine RSRP according to the reference signal reception power in the receiving direction and the direction opposite to the receiving direction, and according to the receiving power in the receiving direction and opposite to the receiving direction.
  • the received signal strength indication in the direction of determines the RSSI, and determines the RSRQ according to the RSRP and RSSI.
  • the generating unit 950 obtains the RSRP value by calculating the linear average of the received power on the RE carrying the synchronization signal in the receiving direction and the direction opposite to the receiving direction.
  • the generating unit 950 obtains the value of RSSI by calculating the linear average of the total power received in the measurement bandwidth of N RBs in the receiving direction and the direction opposite to the receiving direction.
  • the electronic device 900 may receive the information of allowing or denying access from the network side device through the communication unit 930.
  • the electronic device 900 before the electronic device 900 accesses the network side device, the electronic device 900 can measure the channel quality in the receiving direction and the direction opposite to the receiving direction and send the measurement result of the channel quality to the network Side device, so that the network side device can determine whether to allow the electronic device 900 to access according to the measurement result. Since the channel quality measurement result only reflects the channel quality in the receiving direction and the direction opposite to the receiving direction, it is more accurate, making the judgment of the network side device more reasonable, and increasing the probability of the electronic device 900 accessing the network side device.
  • the electronic device 500 according to the embodiments of the present disclosure can be used as a network side device, and the electronic device 900 can be used as a user equipment, that is, the electronic device 500 can provide services for the electronic device 900. Therefore, all the embodiments of the electronic device 500 described in the foregoing All apply here.
  • FIG. 10 is a flowchart illustrating a wireless communication method performed by an electronic device 500 as a network side device in a wireless communication system according to an embodiment of the present disclosure.
  • step S1010 the LBT process is performed in the emission direction from the electronic device 500 to the user equipment and the direction opposite to the emission direction.
  • step S1020 in the case that the LBT process in the transmitting direction and the direction opposite to the transmitting direction is successful, the instruction information is sent to the user equipment to instruct the user equipment in the receiving direction from the user equipment to the electronic device 500 And perform the LBT process in the direction opposite to the receiving direction.
  • step S1030 in the case where the LBT process in the receiving direction and the direction opposite to the receiving direction are both successful, the transmitting direction is used to perform the data transmission process with the user equipment.
  • the wireless communication method further includes: receiving a result of the LBT process in the receiving direction and the direction opposite to the receiving direction from the user equipment; and determining whether the LBT process in the receiving direction and the direction opposite to the receiving direction is successful according to the result .
  • the result of the LBT process in the receiving direction includes the received power in the receiving direction
  • the result of the LBT process in the direction opposite to the receiving direction includes the received power in the direction opposite to the receiving direction
  • Determining whether the LBT process in the receiving direction is successful includes: if the received power in the receiving direction is less than a predetermined threshold, determining that the LBT process in the receiving direction is successful; and determining whether the LBT process in the direction opposite to the receiving direction is successful Including: if the received power in the direction opposite to the receiving direction is less than a predetermined threshold, determining that the LBT process in the direction opposite to the receiving direction is successful.
  • the wireless communication method further includes: after the LBT process in the transmitting direction is successful, starting a timer and executing the LBT process in the direction opposite to the transmitting direction; if the receiving message from the user equipment is received before the timer expires Direction and the result of the LBT process in the direction opposite to the receiving direction, based on the result, determine whether the LBT process in the receiving direction and the direction opposite to the receiving direction is successful; and if the user equipment is not received before the timer expires As a result of the LBT process in the receiving direction and the direction opposite to the receiving direction, the transmitting direction is not used to perform the data transmission process with the user equipment.
  • the duration of the timer is less than or equal to the length of MCOT.
  • the wireless communication method further includes: failure of at least one of the LBT process in the transmitting direction, the LBT process in the direction opposite to the transmitting direction, the LBT process in the receiving direction, and the LBT process in the direction opposite to the receiving direction.
  • the transmitting direction is not used to perform the data transmission process with the user equipment.
  • the LBT process in the direction opposite to the transmitting direction, the LBT process in the receiving direction, and the LBT process in the direction opposite to the receiving direction are LBT processes that do not include a random back-off process, and wherein the LBT process in the transmitting direction It is any one of the LBT process that does not include the random backoff process, the LBT process that includes the random backoff process and the contention window is constant, and the LBT process that includes the random backoff process and the contention window is variable.
  • the wireless communication method further includes: determining whether to perform the LBT process in the direction opposite to the transmitting direction and whether to send instruction information to the user equipment according to the service type of the data with the user equipment.
  • the wireless communication method further includes: receiving channel quality measurement information from the user equipment, where the channel quality measurement information indicates the receiving direction from the user equipment to the electronic device 500 and the direction opposite to the receiving direction. Channel quality measured in the direction; and determining whether to allow the user equipment to access the electronic device 500 according to the channel quality measurement information.
  • the channel quality measurement information includes RSRP or RSRQ
  • RSRP represents the reference signal received power in the receiving direction and the direction opposite to the receiving direction
  • RSRQ is obtained from RSRP and RSSI
  • RSRP represents the receiving power in the receiving direction and the opposite direction to the receiving direction.
  • Reference signal received power in the direction, RSSI represents the received signal strength indication in the receiving direction and the direction opposite to the receiving direction.
  • the wireless communication method further includes: performing the LBT process in the transmitting direction from the electronic device 500 to the user equipment; starting the second timer after the LBT process in the transmitting direction is successful; Receive the channel quality measurement information from the user equipment before expiration, and determine whether the user equipment is allowed to access the electronic device 500 according to the channel quality measurement information; and if the channel quality measurement information from the user equipment is not received before the second timer expires , The user device is not allowed to access the electronic device 500.
  • determining whether to allow the user equipment to access the electronic device 500 includes: allowing the user equipment to access the electronic device 500 when the channel quality is greater than a predetermined threshold.
  • the subject that executes the above method may be the electronic device 500 according to the embodiment of the present disclosure, so all the foregoing embodiments regarding the electronic device 500 are applicable to this.
  • FIG. 11 is a flowchart illustrating a wireless communication method performed by an electronic device 900 as a user equipment in a wireless communication system according to an embodiment of the present disclosure.
  • step S1110 the LBT process is performed in the receiving direction from the electronic device 900 to the network side device and the direction opposite to the receiving direction.
  • step S1120 the results of the LBT process in the receiving direction and the direction opposite to the receiving direction are sent to the network side device.
  • the wireless communication method further includes: receiving instruction information from the network side device to perform the LBT process in the receiving direction and the direction opposite to the receiving direction.
  • the result of the LBT process in the receiving direction includes the received power in the receiving direction
  • the result of the LBT process in the direction opposite to the receiving direction includes the received power in the direction opposite to the receiving direction.
  • the LBT process in the receiving direction and the LBT process in the direction opposite to the receiving direction are LBT processes that do not include a random back-off process.
  • the wireless communication method further includes: measuring the channel quality in the receiving direction from the electronic device 900 to the network side device and the direction opposite to the receiving direction; and combining the channel quality measurement information It is sent to the network side device for the network side device to determine whether to allow the electronic device 900 to access the network side device according to the channel quality measurement information.
  • the channel quality measurement information includes RSRP
  • the wireless communication method further includes: determining RSRP according to the reference signal received power in the receiving direction and the direction opposite to the receiving direction, or wherein the channel quality measurement information includes RSRQ
  • wireless communication The method further includes: determining the RSRP according to the received power of the reference signal in the receiving direction and the direction opposite to the receiving direction, determining the RSSI according to the received signal strength indication in the receiving direction and the direction opposite to the receiving direction, and determining the RSSI according to the RSRP and the RSSI RSRQ.
  • the subject that executes the above-mentioned method may be the electronic device 900 according to the embodiment of the present disclosure, so all the foregoing embodiments regarding the electronic device 900 are applicable to this.
  • the technology of the present disclosure can be applied to various products.
  • the network side device can be implemented as any type of TRP.
  • the TRP may have sending and receiving functions, for example, it can receive information from user equipment and base station equipment, and can also send information to user equipment and base station equipment.
  • TRP can provide services for user equipment and is controlled by base station equipment.
  • the TRP may have a structure similar to that of the base station device described below, or may only have a structure related to the transmission and reception of information in the base station device.
  • the network side equipment can also be implemented as any type of base station equipment, such as a macro eNB and a small eNB, and can also be implemented as any type of gNB (base station in a 5G system).
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) arranged in a place different from the main body.
  • RRH remote radio heads
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the above-mentioned user equipment.
  • FIG. 12 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1200 includes one or more antennas 1210 and a base station device 1220.
  • the base station device 1220 and each antenna 1210 may be connected to each other via an RF cable.
  • Each of the antennas 1210 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 1220 to transmit and receive wireless signals.
  • the eNB 1200 may include multiple antennas 1210.
  • multiple antennas 1210 may be compatible with multiple frequency bands used by eNB 1200.
  • FIG. 12 shows an example in which the eNB 1200 includes multiple antennas 1210, the eNB 1200 may also include a single antenna 1210.
  • the base station device 1220 includes a controller 1221, a memory 1222, a network interface 1223, and a wireless communication interface 1225.
  • the controller 1221 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1220. For example, the controller 1221 generates a data packet based on the data in the signal processed by the wireless communication interface 1225, and transmits the generated packet via the network interface 1223. The controller 1221 may bundle data from multiple baseband processors to generate a bundled packet, and transfer the generated bundled packet. The controller 1221 may have a logic function for performing control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1222 includes RAM and ROM, and stores programs executed by the controller 1221 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 1223 is a communication interface for connecting the base station device 1220 to the core network 1224.
  • the controller 1221 may communicate with a core network node or another eNB via a network interface 1223.
  • the eNB 1200 and the core network node or other eNBs may be connected to each other through a logical interface (such as an S1 interface and an X2 interface).
  • the network interface 1223 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1223 is a wireless communication interface, the network interface 1223 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1225.
  • the wireless communication interface 1225 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connection to terminals located in the cell of the eNB 1200 via the antenna 1210.
  • the wireless communication interface 1225 may generally include, for example, a baseband (BB) processor 1226 and an RF circuit 1227.
  • the BB processor 1226 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • the BB processor 1226 may have a part or all of the above-mentioned logical functions.
  • the BB processor 1226 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 1226.
  • the module may be a card or a blade inserted into the slot of the base station device 1220. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1227 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1210.
  • the wireless communication interface 1225 may include a plurality of BB processors 1226.
  • multiple BB processors 1226 may be compatible with multiple frequency bands used by the eNB 1200.
  • the wireless communication interface 1225 may include a plurality of RF circuits 1227.
  • multiple RF circuits 1227 may be compatible with multiple antenna elements.
  • FIG. 12 shows an example in which the wireless communication interface 1225 includes a plurality of BB processors 1226 and a plurality of RF circuits 1227, the wireless communication interface 1225 may also include a single BB processor 1226 or a single RF circuit 1227.
  • FIG. 13 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1330 includes one or more antennas 1340, base station equipment 1350, and RRH 1360.
  • the RRH 1360 and each antenna 1340 may be connected to each other via an RF cable.
  • the base station device 1350 and the RRH 1360 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 1340 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for RRH 1360 to transmit and receive wireless signals.
  • the eNB 1330 may include multiple antennas 1340.
  • multiple antennas 1340 may be compatible with multiple frequency bands used by the eNB 1330.
  • FIG. 13 shows an example in which the eNB 1330 includes multiple antennas 1340, the eNB 1330 may also include a single antenna 1340.
  • the base station device 1350 includes a controller 1351, a memory 1352, a network interface 1353, a wireless communication interface 1355, and a connection interface 1357.
  • the controller 1351, the memory 1352, and the network interface 1353 are the same as the controller 1221, the memory 1222, and the network interface 1223 described with reference to FIG. 12.
  • the wireless communication interface 1355 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 1360 via the RRH 1360 and the antenna 1340.
  • the wireless communication interface 1355 may generally include a BB processor 1356, for example. Except that the BB processor 1356 is connected to the RF circuit 1364 of the RRH 1360 via the connection interface 1357, the BB processor 1356 is the same as the BB processor 1226 described with reference to FIG. 12.
  • the wireless communication interface 1355 may include a plurality of BB processors 1356. For example, multiple BB processors 1356 may be compatible with multiple frequency bands used by the eNB 1330.
  • FIG. 13 shows an example in which the wireless communication interface 1355 includes a plurality of BB processors 1356, the wireless communication interface 1355 may also include a single BB processor 1356.
  • connection interface 1357 is an interface for connecting the base station device 1350 (wireless communication interface 1355) to the RRH 1360.
  • the connection interface 1357 may also be a communication module for connecting the base station device 1350 (wireless communication interface 1355) to the communication in the above-mentioned high-speed line of the RRH 1360.
  • the RRH 1360 includes a connection interface 1361 and a wireless communication interface 1363.
  • connection interface 1361 is an interface for connecting the RRH 1360 (wireless communication interface 1363) to the base station device 1350.
  • the connection interface 1361 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1363 transmits and receives wireless signals via the antenna 1340.
  • the wireless communication interface 1363 may generally include, for example, an RF circuit 1364.
  • the RF circuit 1364 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1340.
  • the wireless communication interface 1363 may include a plurality of RF circuits 1364.
  • multiple RF circuits 1364 may support multiple antenna elements.
  • FIG. 13 shows an example in which the wireless communication interface 1363 includes a plurality of RF circuits 1364, the wireless communication interface 1363 may also include a single RF circuit 1364.
  • the controller 1221 and/or the controller 1351 may execute the instructions stored in the corresponding memory to perform sensing energy, determine whether the transmission direction is idle, generate instruction information instructing the user equipment to perform LBT, start a timer, and determine whether it is needed. The function of performing reverse LBT and the user equipment performing the LBT process and determining whether to allow the UE to access.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smart phone 1400 to which the technology of the present disclosure can be applied.
  • the smart phone 1400 includes a processor 1401, a memory 1402, a storage device 1403, an external connection interface 1404, a camera 1406, a sensor 1407, a microphone 1408, an input device 1409, a display device 1410, a speaker 1411, a wireless communication interface 1412, one or more An antenna switch 1415, one or more antennas 1416, a bus 1417, a battery 1418, and an auxiliary controller 1419.
  • the processor 1401 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the smart phone 1400.
  • the memory 1402 includes RAM and ROM, and stores data and programs executed by the processor 1401.
  • the storage device 1403 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1404 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smart phone 1400.
  • USB universal serial bus
  • the imaging device 1406 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 1407 may include a group of sensors, such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1408 converts the sound input to the smart phone 1400 into an audio signal.
  • the input device 1409 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1410, and receives an operation or information input from the user.
  • the display device 1410 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1400.
  • the speaker 1411 converts the audio signal output from the smart phone 1400 into sound.
  • the wireless communication interface 1412 supports any cellular communication scheme (such as LTE and LTE-Advanced), and performs wireless communication.
  • the wireless communication interface 1412 may generally include, for example, a BB processor 1413 and an RF circuit 1414.
  • the BB processor 1413 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1414 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1416.
  • the wireless communication interface 1412 may be a chip module on which the BB processor 1413 and the RF circuit 1414 are integrated. As shown in FIG.
  • the wireless communication interface 1412 may include a plurality of BB processors 1413 and a plurality of RF circuits 1414.
  • FIG. 14 shows an example in which the wireless communication interface 1412 includes a plurality of BB processors 1413 and a plurality of RF circuits 1414, the wireless communication interface 1412 may also include a single BB processor 1413 or a single RF circuit 1414.
  • the wireless communication interface 1412 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 1412 may include a BB processor 1413 and an RF circuit 1414 for each wireless communication scheme.
  • Each of the antenna switches 1415 switches the connection destination of the antenna 1416 among a plurality of circuits included in the wireless communication interface 1412 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 1416 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1412 to transmit and receive wireless signals.
  • the smart phone 1400 may include a plurality of antennas 1416.
  • FIG. 14 shows an example in which the smart phone 1400 includes a plurality of antennas 1416, the smart phone 1400 may also include a single antenna 1416.
  • the smart phone 1400 may include an antenna 1416 for each wireless communication scheme.
  • the antenna switch 1415 may be omitted from the configuration of the smart phone 1400.
  • the bus 1417 connects the processor 1401, the memory 1402, the storage device 1403, the external connection interface 1404, the camera device 1406, the sensor 1407, the microphone 1408, the input device 1409, the display device 1410, the speaker 1411, the wireless communication interface 1412, and the auxiliary controller 1419 to each other. connect.
  • the battery 1418 supplies power to each block of the smart phone 1400 shown in FIG. 14 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the auxiliary controller 1419 operates the minimum necessary functions of the smartphone 1400 in the sleep mode, for example.
  • the sensing unit 910, the generating unit 920, the measuring unit 940, and the generating unit 950 described in FIG. 9 may be implemented by the processor 1401 or the auxiliary controller 1419. At least part of the function may also be implemented by the processor 1401 or the auxiliary controller 1419.
  • the processor 1401 or the auxiliary controller 1419 may perform the functions of sensing energy, generating the result of the LBT process, measuring the channel quality, and generating the measurement result of the channel quality by executing instructions stored in the memory 1402 or the storage device 1403.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a car navigation device 1520 to which the technology of the present disclosure can be applied.
  • the car navigation device 1520 includes a processor 1521, a memory 1522, a global positioning system (GPS) module 1524, a sensor 1525, a data interface 1526, a content player 1527, a storage medium interface 1528, an input device 1529, a display device 1530, a speaker 1531, a wireless A communication interface 1533, one or more antenna switches 1536, one or more antennas 1537, and a battery 1538.
  • GPS global positioning system
  • the processor 1521 may be, for example, a CPU or SoC, and controls the navigation function and other functions of the car navigation device 1520.
  • the memory 1522 includes RAM and ROM, and stores data and programs executed by the processor 1521.
  • the GPS module 1524 uses GPS signals received from GPS satellites to measure the position (such as latitude, longitude, and altitude) of the car navigation device 1520.
  • the sensor 1525 may include a group of sensors, such as a gyroscope sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 1526 is connected to, for example, an in-vehicle network 1541 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 1527 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 1528.
  • the input device 1529 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1530, and receives an operation or information input from the user.
  • the display device 1530 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 1531 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1533 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 1533 may generally include, for example, a BB processor 1534 and an RF circuit 1535.
  • the BB processor 1534 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1535 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1537.
  • the wireless communication interface 1533 may also be a chip module on which the BB processor 1534 and the RF circuit 1535 are integrated. As shown in FIG.
  • the wireless communication interface 1533 may include a plurality of BB processors 1534 and a plurality of RF circuits 1535.
  • FIG. 15 shows an example in which the wireless communication interface 1533 includes a plurality of BB processors 1534 and a plurality of RF circuits 1535, the wireless communication interface 1533 may also include a single BB processor 1534 or a single RF circuit 1535.
  • the wireless communication interface 1533 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1533 may include a BB processor 1534 and an RF circuit 1535 for each wireless communication scheme.
  • Each of the antenna switches 1536 switches the connection destination of the antenna 1537 among a plurality of circuits included in the wireless communication interface 1533, such as circuits for different wireless communication schemes.
  • Each of the antennas 1537 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1533 to transmit and receive wireless signals.
  • the car navigation device 1520 may include a plurality of antennas 1537.
  • FIG. 15 shows an example in which the car navigation device 1520 includes a plurality of antennas 1537, the car navigation device 1520 may also include a single antenna 1537.
  • the car navigation device 1520 may include an antenna 1537 for each wireless communication scheme.
  • the antenna switch 1536 may be omitted from the configuration of the car navigation device 1520.
  • the battery 1538 supplies power to each block of the car navigation device 1520 shown in FIG. 15 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the battery 1538 accumulates electric power supplied from the vehicle.
  • the sensing unit 910, the generating unit 920, the measuring unit 940, and the generating unit 950 described in FIG. 9 may be implemented by the processor 1521. At least part of the functions may also be implemented by the processor 1521.
  • the processor 1521 may perform the functions of sensing energy, generating the result of the LBT process, measuring the channel quality, and generating the measurement result of the channel quality by executing instructions stored in the memory 1522.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1540 including one or more blocks in a car navigation device 1520, an in-vehicle network 1541, and a vehicle module 1542.
  • vehicle module 1542 generates vehicle data (such as vehicle speed, engine speed, and failure information), and outputs the generated data to the in-vehicle network 1541.
  • the units shown in dashed boxes in the functional block diagram shown in the drawings all indicate that the functional unit is optional in the corresponding device, and each optional functional unit can be combined in an appropriate manner to achieve the required function .
  • a plurality of functions included in one unit in the above embodiments may be realized by separate devices.
  • the multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions can be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only processing performed in time series in the described order, but also processing performed in parallel or individually rather than necessarily in time series.
  • the order can be changed appropriately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种电子设备、无线通信方法和计算机可读存储介质。所述电子设备包括处理电路,被配置为:在从电子设备至用户设备的发射方向以及与发射方向相反的方向上执行LBT过程;在发射方向以及与发射方向相反的方向上的LBT过程均成功的情况下,向用户设备发送指示信息,以指示用户设备在从用户设备至电子设备的接收方向以及与接收方向相反的方向上执行LBT过程;以及在接收方向以及与接收方向相反的方向上的LBT过程均成功的情况下,使用发射方向执行与用户设备之间的数据传输过程。

Description

电子设备、无线通信方法和计算机可读存储介质
本申请要求于2020年1月20日提交中国专利局、申请号为202010064639.1、发明名称为“电子设备、无线通信方法和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开的实施例总体上涉及无线通信领域,具体地涉及电子设备、无线通信方法和计算机可读存储介质。更具体地,本公开涉及一种作为无线通信系统中的网络侧设备的电子设备、一种作为无线通信系统中的用户设备的电子设备、一种由无线通信系统中的网络侧设备执行的无线通信方法、一种由无线通信系统中的用户设备执行的无线通信方法以及一种计算机可读存储介质。
背景技术
随着无线网络的发展演进,其承载的服务越来越多,因此需要额外的频谱资源来支持大量的数据传输。在无线通信网络中的LAA(Licensed Assisted Access,授权辅助接入)通信方式中,信道检测可以减少频段使用的干扰与浪费。信道检测可以通过LBT(Listen before talk)的方式实现,LBT是在使用信道或载波之前通过空闲信道评估(Clear Channel Assessment,CCA)的方式来核查信道是否空闲,当信道空闲时可以接入该信道,当信道被占用时不能接入该信道。
此外,网络侧设备在下行传输时可以利用波束赋形向用户侧设备定向发送信息。在这种情况下,网络侧设备在确定发射方向之前可以通过信道检测来确定在发射方向上的信道是否空闲。但是这种定向的信道检测会带来更多的隐藏节点,从而对用户侧设备的接收造成影响。
因此,有必要提出一种技术方案,以在LAA通信系统中改进隐藏节点的检测机制,从而提高信道质量。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种电子设备、无线通信方法和计算机可读存储介质,以在LAA通信系统中改进隐藏节点的检测机制,从而提高信道质量。
根据本公开的一方面,提供了一种电子设备,包括处理电路,被配置为:在从所述电子设备至用户设备的发射方向以及与所述发射方向相反的方向上执行先听后说LBT过程;在所述发射方向以及与所述发射方向相反的方向上的LBT过程均成功的情况下,向所述用户设备发送指示信息,以指示所述用户设备在从所述用户设备至所述电子设备的接收方向以及与所述接收方向相反的方向上执行LBT过程;以及在所述接收方向以及与所述接收方向相反的方向上的LBT过程均成功的情况下,使用所述发射方向执行与所述用户设备之间的数据传输过程。
根据本公开的另一方面,提供了一种电子设备,包括处理电路,被配置为:在从所述电子设备至网络侧设备的接收方向以及与所述接收方向相反的方向上执行先听后说LBT过程;以及将在所述接收方向以及与所述接收方向相反的方向上的LBT过程的结果发送至所述网络侧设备。
根据本公开的另一方面,提供了一种由电子设备执行的无线通信方法,包括:在从所述电子设备至用户设备的发射方向以及与所述发射方向相反的方向上执行先听后说LBT过程;在所述发射方向以及与所述发射方向相反的方向上的LBT过程均成功的情况下,向所述用户设备发送指示信息,以指示所述用户设备在从所述用户设备至所述电子设备的接收方向以及与所述接收方向相反的方向上执行LBT过程;以及在所述接收方向以及与所述接收方向相反的方向上的LBT过程均成功的情况下,使用所述发射方向执行与所述用户设备之间的数据传输过程。
根据本公开的另一方面,提供了一种由电子设备执行的无线通信方法,包括:在从所述电子设备至网络侧设备的接收方向以及与所述接收方向相反的方向上执行先听后说LBT过程;以及将在所述接收方向以及与所述接收方向相反的方向上的LBT过程的结果发送至所述网络侧设备。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
使用根据本公开的电子设备、无线通信方法和计算机可读存储介质,作为网络侧设备的电子设备可以在发射方向以及与发射方向相反的方向上执行LBT过程,并且作为用户侧设备的电子设备可以在接收方向以及与接收方向相反的方向上执行LBT过程,只有在四个LBT过程都成功的情况下作为网络侧设备的电子设备才会在该发射方向上向作为用户侧设备的电子设备发送下行数据。这样一来,通过上述四个LBT过程,可以防止隐藏节点的存在,使得作为网络侧设备的电子设备与作为用户侧设备的电子设备之间的信道质量得到提高。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出定向LBT的场景的示意图;
图2(a)是示出在进行定向LBT的情况下存在隐藏节点的场景的示意图;
图2(b)是示出在进行定向LBT的情况下存在隐藏节点的场景的示意图;
图3(a)是示出在进行定向LBT的情况下存在隐藏节点的场景的示意图;
图3(b)是示出在进行定向LBT的情况下存在隐藏节点的场景的示意图;
图4(a)是示出在进行定向LBT的情况下存在隐藏节点的场景的示意图;
图4(b)是示出在进行定向LBT的情况下存在隐藏节点的场景的示意图;
图5是示出根据本公开的实施例的用于网络侧的电子设备的配置的示例的框图;
图6是示出根据本公开的实施例的gNB和UE进行正向和反向LBT的场景的示意图;
图7是示出根据本公开的实施例的gNB和UE进行正向和反向LBT之后进行数据传输的过程的信令流程图;
图8是示出根据本公开的实施例的在小区接入阶段通过定向测量信道质量确定是否允许UE接入的过程的信令流程图;
图9是示出根据本公开的实施例的用于用户侧的电子设备的配置的示例的框图;
图10是示出根据本公开的实施例的由用于网络侧的电子设备执行的无线通信方法的流程图;
图11是示出根据本公开的实施例的由用于用户侧的电子设备执行的无线通信方法的流程图;
图12是示出eNB(Evolved Node B,演进型节点B)的示意性配置的第一示例的框图;
图13是示出eNB的示意性配置的第二示例的框图;
图14是示出智能电话的示意性配置的示例的框图;以及
图15是示出汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同 的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.场景的描述;
2.网络侧设备的配置示例;
3.用户设备的配置示例;
4.方法实施例;
5.应用示例。
<1.场景的描述>
图1是示出定向LBT的场景的示意图。如图1所示,如标号为(1)的箭头所示,gNB期望向其覆盖范围内的UE(User Equipment,用户设备)发送下行信息。如标号为(2)的箭头所示,AP(Access Point,接入点)正在向其覆盖范围内的STA(station,终端站点)发送信息。如标号为(3)的箭头所示,如果gNB采用箭头(1)的方向向UE发送下行信息,则来自AP的信息能够到达UE,因此对UE造成干扰。
如前文所述,在gNB采用箭头(1)的方向(即发射方向)向UE发送下行信息之前,gNB可以在该发射方向上执行LBT过程以感测在该发射方向上是否有其他设备正在发送信息。图1中的虚线椭圆形示出了gNB的期望发射方向,椭圆形的大小取决于gNB的感测范围。这里,gNB在该发射方向上执行LBT过程意味着gNB可以检测到在感测范围内的、来自该发射方向(即图1中的gNB右侧)的其他设备的信号。也就是说,gNB在该发射方向上定向接收信号,以确定是否有来自其他设备的信号。在本公开中,gNB在固定的方向上执行的LBT过程也被称为定向LBT过程。如图1所示,AP在gNB的感测范围内,并且AP发射的信号指向gNB的方向,因此gNB通过在发射方向上执行定向LBT过程能够感测到AP的存在,从而认为定向LBT不成功,gNB不会使用该发射方向向UE发送下行信息。
图2(a)是示出在进行定向LBT的情况下存在隐藏节点的场景的示意图。如图2(a)所示,AP位于gNB的左侧,UE和STA位于gNB的右侧,gNB期望向其覆盖范围内的UE发送下行信息,AP正在向其覆盖 范围内的STA发送信息,来自AP的信息有可能能够到达UE,因此对UE造成干扰。此时由于AP位于gNB的左侧,而gNB仅在与UE的发射方向上执行定向LBT,因此感测不到来自AP的信号,AP此时被称为隐藏节点。由于gNB感测不到来自AP的信号因此认为定向LBT过程成功而使用该发射方向向UE发送下行信息,从而造成UE受到干扰。
图2(b)是示出在进行定向LBT的情况下存在隐藏节点的场景的示意图。如图2(b)所示,AP和STA位于gNB的左侧,UE位于gNB的右侧,gNB期望向其覆盖范围内的UE发送下行信息,AP正在向其覆盖范围内的STA发送信息,来自AP的信息有可能能够到达UE,因此对UE造成干扰。此时由于AP位于gNB的左侧,而gNB仅在与UE的发射方向上执行定向LBT,因此感测不到来自AP的信号,AP此时被称为隐藏节点。由于gNB感测不到来自AP的信号因此认为定向LBT过程成功而使用该发射方向向UE发送下行信息,从而造成UE受到干扰。
如图3(a)所示,AP、UE和STA位于gNB的右侧,gNB期望向其覆盖范围内的UE发送下行信息,AP正在向其覆盖范围内的STA发送信息,来自AP的信息有可能能够到达UE,因此对UE造成干扰。此时由于AP的信号朝向右侧,而gNB仅在与UE的发射方向上执行定向LBT,因此感测不到来自AP的信号,AP此时被称为隐藏节点。由于gNB感测不到来自AP的信号因此认为定向LBT过程成功而使用该发射方向向UE发送下行信息,从而造成UE受到干扰。
如图3(b)所示,AP、UE和STA位于gNB的右侧,gNB期望向其覆盖范围内的UE发送下行信息,AP正在向其覆盖范围内的STA发送信息,来自AP的信息有可能能够到达UE,因此对UE造成干扰。此时由于AP的信号朝向右侧,而gNB仅在与UE的发射方向上执行定向LBT,因此感测不到来自AP的信号,AP此时被称为隐藏节点。由于gNB感测不到来自AP的信号因此认为定向LBT过程成功而使用该发射方向向UE发送下行信息,从而造成UE受到干扰。
如图4(a)所示,AP、UE和STA位于gNB的右侧,gNB期望向其覆盖范围内的UE发送下行信息,AP正在向其覆盖范围内的STA发送信息,来自AP的信息有可能能够到达UE,因此对UE造成干扰。此时虽然AP在gNB的右侧并且来自AP的信号朝向左侧,但是由于AP距离gNB太远而处于gNB的感测范围之外,因此gNB感测不到来自AP的信号,AP此时被称为隐藏节点。由于gNB感测不到来自AP的信号因此认为定 向LBT过程成功而使用该发射方向向UE发送下行信息,从而造成UE受到干扰。
如图4(b)所示,AP、UE和STA位于gNB的右侧,gNB期望向其覆盖范围内的UE发送下行信息,AP正在向其覆盖范围内的STA发送信息,来自AP的信息有可能能够到达UE,因此对UE造成干扰。此时虽然AP在gNB的右侧并且来自AP的信号朝向左侧,但是由于AP距离gNB太远而处于gNB的感测范围之外,因此gNB感测不到来自AP的信号,AP此时被称为隐藏节点。由于gNB感测不到来自AP的信号因此认为定向LBT过程成功而使用该发射方向向UE发送下行信息,从而造成UE受到干扰。
如上所述,在gNB执行定向LBT过程的情况下,gNB很可能感测不到一些正在发送信息的节点的存在。例如,在UE位于gNB右侧的情况下,gNB仅能够感测到位于gNB右侧、发射方向为朝向左侧、并且位于gNB的感测范围内的其他节点的存在。而对于图2(a)-图4(b)的情形,gNB检测不到AP的存在。值得注意的是,虽然图2(a)-图4(b)示出了一些隐藏节点的示例,但是这并不是限制性的而仅仅是示例性的。此外,为了便于说明,在图2(a)-图4(b)中,gNB、AP、UE和STA位于同一条直线上,在实际场景中由于在波束赋形技术中最佳发射波束和最佳接收波束的方向具有一定的偏移,因此gNB、AP、UE和STA不一定位于同一条直线上,可以具有一定的偏移。
本公开针对这样的场景提出了一种无线通信系统中的电子设备、由无线通信系统中的电子设备执行的无线通信方法以及计算机可读存储介质,以在LAA通信系统中改进隐藏节点的检测机制,从而提高信道质量。
根据本公开的无线通信系统可以是LAA通信系统,特别地可以为60GHz的LAA通信系统。
根据本公开的网络侧设备可以是任何类型的基站设备,例如可以是eNB,也可以是gNB(第5代通信系统中的基站)。
根据本公开的用户设备可以是移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端 上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<2.网络侧设备的配置示例>
图5是示出根据本公开的实施例的电子设备500的配置的示例的框图。这里的电子设备500可以作为无线通信系统中的网络侧设备,具体地可以作为无线通信系统中的基站设备。
如图5所示,电子设备500可以包括感测单元510、处理单元520、生成单元530和通信单元540。
这里,电子设备500的各个单元都可以包括在处理电路中。需要说明的是,电子设备500既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,感测单元510可以执行LBT过程,包括感测来自周围的其他电子设备的信号的能量或功率。这里的其他电子设备包括但不限于Wifi系统中的AP。进一步,感测单元510可以根据本领域中任何已知的方式来执行全向LBT过程。此外,根据本公开的实施例,感测单元510可以执行定向LBT过程,即,感测单元510可以在从电子设备500至用户设备的发射方向以及与发射方向相反的方向上执行LBT过程。
根据本公开的实施例,处理单元520可以对感测单元510的感测结果进行处理以确定LBT过程是否成功从而确定信道是否空闲。进一步,处理单元520还可以确定用于向用户设备发送下行信息的波束方向。
根据本公开的实施例,在处理单元520确定在发射方向以及与发射方向相反的方向上的LBT过程均成功的情况下,生成单元530可以生成指示信息,该指示信息用于指示用户设备在从用户设备至电子设备500的接收方向以及与接收方向相反的方向上执行LBT过程。
根据本公开的实施例,电子设备500可以通过通信单元540向用户设备发送生成单元530生成的指示信息。
根据本公开的实施例,在用户设备在接收方向以及与接收方向相反的方向上的LBT过程均成功的情况下,处理单元520可以确定使用该发射方向执行与用户设备之间的数据传输过程。
如上所述,根据本公开的实施例的电子设备500,可以在发射方向以 及与发射方向相反的方向上执行LBT过程,并且用户设备可以在接收方向以及与接收方向相反的方向上执行LBT过程,只有在四个LBT过程都成功的情况下电子设备500才会在该发射方向上向用户设备发送下行数据。这样一来,通过上述四个LBT过程,可以防止隐藏节点的存在,使得电子设备500与用户设备之间的信道质量得到提高。
根据本公开的实施例,感测单元510在发射方向上执行LBT过程(在本公开中也被称为电子设备500的正向LBT过程)指的是感测单元510可以感测到来自该发射方向的其他电子设备的信号的能量或功率。也就是说,只有发射信号的其他电子设备在该发射方向上、其他电子设备发射信号的方向朝向电子设备500、并且其他电子设备在电子设备500的感测范围内,感测单元510才能感测到该其他电子设备的信号的能量或功率。类似地,感测单元510在与发射方向相反的方向上执行LBT过程(在本公开中也被称为电子设备500的反向LBT过程)指的是感测单元510可以感测到来自与发射方向相反的方向的其他电子设备的信号的能量或功率。也就是说,只有发射信号的其他电子设备在与发射方向相反的方向上、其他电子设备发射信号的方向朝向电子设备500、并且其他电子设备在电子设备500的感测范围内,感测单元510才能感测到该其他电子设备的信号的能量或功率。
进一步,根据本公开的实施例,用户设备在接收方向上执行LBT过程(在本公开中也被称为用户设备的正向LBT过程)指的是用户设备可以感测到来自该接收方向的其他电子设备的信号的能量或功率。也就是说,只有发射信号的其他电子设备在该接收方向上、其他电子设备发射信号的方向朝向用户设备、并且其他电子设备在用户设备的感测范围内,用户设备才能感测到该其他电子设备的信号的能量或功率。类似地,用户设备在与接收方向相反的方向上执行LBT过程(在本公开中也被称为用户设备的反向LBT过程)指的是用户设备可以感测到来自与接收方向相反的方向的其他电子设备的信号的能量或功率。也就是说,只有发射信号的其他电子设备在与接收方向相反的方向上、其他电子设备发射信号的方向朝向用户设备、并且其他电子设备在用户设备的感测范围内,用户设备才能感测到该其他电子设备的信号的能量或功率。
图6是示出根据本公开的实施例的gNB和UE进行正向和反向LBT的场景的示意图。在图6中,gNB的发射方向为从gNB指向UE的方向,即gNB的正右侧方向,与发射方向相反的方向为gNB的正左侧方向。UE 的接收方向为从UE指向gNB的方向,即UE的正左侧方向,与接收方向相反的方向为UE的正右侧方向。如图6所示,区域A示出了gNB在发射方向上执行LBT过程的感测范围,区域B示出了gNB在与发射方向相反的方向上执行LBT过程的感测范围。类似地,区域C示出了UE在接收方向上执行LBT过程的感测范围,区域D示出了UE在与接收方向相反的方向上执行LBT过程的感测范围。
在图2(a)和图2(b)所示的示例中,由于AP位于gNB的左侧,因此gNB通过正向LBT过程无法感测到来自AP的信号。根据本公开的实施例,通过gNB执行反向LBT过程,即gNB在与发射方向相反的方向上执行LBT过程,gNB能够感测到来自AP的信号,由此能够发现隐藏节点AP,从而认为反向LBT过程不成功,不利用图中的发射方向向UE发送下行信号,避免了UE受到干扰。
在图3(a)和图3(b)所示的示例中,由于来自AP的信号没有朝向gNB,因此gNB通过正向LBT过程和反向LBT过程无法感测到来自AP的信号。根据本公开的实施例,通过UE执行正向LBT过程,即UE在接收方向上执行LBT过程,UE能够感测到来自AP的信号,由此能够发现隐藏节点AP,从而gNB认为UE的正向LBT过程不成功,不利用图中的发射方向向UE发送下行信号,避免了UE受到干扰。
在图4(a)和图4(b)所示的示例中,由于AP位于gNB的感测范围之外,因此gNB通过正向LBT过程和反向LBT过程无法感测到来自AP的信号。根据本公开的实施例,通过UE执行反向LBT过程,即UE在与接收方向相反的方向上执行LBT过程,UE能够感测到来自AP的信号,由此能够发现隐藏节点AP,从而gNB认为UE的反向LBT过程不成功,不利用图中的发射方向向UE发送下行信号,避免了UE受到干扰。
综上,根据本公开的实施例,通过电子设备500和用户设备的正向LBT过程和反向LBT过程可以防止隐藏节点的存在,使得电子设备500与用户设备之间的信道质量得到提高。
根据本公开的实施例,LBT过程可以包括:不包括随机退避过程的LBT过程(Cat 2 LBT过程)、包括随机退避过程且竞争窗口不变的LBT过程(Cat 3 LBT过程)、以及包括随机退避过程且竞争窗口可变的LBT过程(Cat 4 LBT过程)。感测单元510可以从上述LBT过程中任选一种LBT过程,用户设备也可以从上述LBT过程中任选一种LBT过程。
可选地,根据本公开的实施例,为了减少LBT过程的执行时间,感测单元510可以在执行正向LBT过程时从上述LBT过程中任选一种LBT过程,在执行反向LBT过程时采用不包括随机退避过程的LBT过程。类似地,用户设备在执行正向LBT过程和反向LBT过程时也采用不包括随机退避过程的LBT过程。这里,不包括随机退避过程的LBT过程可以是仅包括CCA过程的信道检测过程。
根据本公开的实施例,处理单元520可以根据感测单元510的感测结果来确定LBT过程是否成功。例如,处理单元520可以根据感测单元510感测到的接收功率来确定LBT过程是否成功。
根据本公开的实施例,如果感测单元510在发射方向上接收到的功率小于预定阈值,则处理单元520可以确定在发射方向上不存在其他电子设备正在发射信号,或者存在其他电子设备正在发射信号但是对用户设备造成的干扰在可接收范围内,从而可以确定在该发射方向上的LBT过程成功。相反地,如果感测单元510在发射方向上接收到的功率不小于上述预定阈值,则处理单元520可以确定在该发射方向上的LBT过程不成功。类似地,如果感测单元510在与发射方向相反的方向上接收到的功率小于预定阈值,则处理单元520可以确定在该与发射方向相反的方向上的LBT过程成功;如果感测单元510在与发射方向相反的方向上接收到的功率不小于上述预定阈值,则处理单元520可以确定在该与发射方向相反的方向上的LBT过程不成功。这里,电子设备500可以根据实际情况确定上述预定阈值,针对发射方向的接收功率的预定阈值与针对与发射方向相反的方向的接收功率的预定阈值可以相同,也可以不相同。
根据本公开的实施例,电子设备500可以通过通信单元540从用户设备接收在接收方向以及与接收方向相反的方向上的LBT过程的结果。进一步,处理单元520可以根据该结果确定用户设备在接收方向以及与接收方向相反的方向上的LBT过程是否成功。
根据本公开的实施例,电子设备500接收到的在接收方向上的LBT过程的结果包括在接收方向上的接收功率,在与接收方向相反的方向上的LBT过程的结果包括在与接收方向相反的方向上的接收功率,处理单元520可以根据接收功率来确定LBT过程是否成功。
根据本公开的实施例,如果在接收方向上的接收功率小于预定阈值,则处理单元520可以确定在接收方向上的LBT过程成功;如果在接收方向上的接收功率不小于预定阈值,则处理单元520可以确定在接收方向上 的LBT过程不成功。类似地,如果在与接收方向相反的方向上的接收功率小于预定阈值,则处理单元520可以确定在与接收方向相反的方向上的LBT过程成功;如果在与接收方向相反的方向上的接收功率不小于预定阈值,则处理单元520可以确定在与接收方向相反的方向上的LBT过程不成功。这里,电子设备500可以根据实际情况确定上述预定阈值,针对发射方向的接收功率的预定阈值、针对与发射方向相反的方向的接收功率的预定阈值、针对接收方向的接收功率的预定阈值与针对与接收方向相反的方向的接收功率的预定阈值这四者可以相同,也可以各不相同。
根据本公开的实施例,在处理单元520确定在发射方向上的LBT过程、和/或与发射方向相反的方向上的LBT过程不成功(失败)的情况下,处理单元520可以确定不使用该发射方向执行与用户设备之间的数据传输过程,即无需向用户设备发送指示信息。
根据本公开的实施例,在接收方向上的LBT过程、与接收方向相反的方向上的LBT过程两者均成功的情况下,处理单元520可以确定使用该发射方向执行与用户设备之间的数据传输过程。进一步,在接收方向上的LBT过程、和/或与接收方向相反的方向上的LBT过程不成功(失败)的情况下,处理单元520可以确定不使用该发射方向执行与用户设备之间的数据传输过程。
也就是说,在发射方向上的LBT过程、与发射方向相反的方向上的LBT过程、接收方向上的LBT过程、与接收方向相反的方向上的LBT过程均成功的情况下,处理单元520可以确定使用发射方向执行与用户设备之间的数据传输过程。在发射方向上的LBT过程、与发射方向相反的方向上的LBT过程、接收方向上的LBT过程、与接收方向相反的方向上的LBT过程中的至少一个失败的情况下,处理单元520可以确定不使用发射方向执行与用户设备之间的数据传输过程。
根据本公开的实施例,如图5所示,电子设备500还可以包括定时单元550,用于设置定时器。
根据本公开的实施例,在发射方向上的LBT过程成功之后,定时单元550可以启动定时器(第一定时器)并在与发射方向相反的方向上执行LBT过程。进一步,如果在定时器期满前收到来自用户设备的在接收方向以及与接收方向相反的方向上的LBT过程的结果,则处理单元520基于如上所述的方式根据该结果确定在接收方向以及与接收方向相反的方向上的LBT过程是否成功。
根据本公开的实施例,如果在定时器期满前未收到来自用户设备的在接收方向以及与接收方向相反的方向上的LBT过程的结果,则处理单元520可以确定不使用该发射方向执行与用户设备之间的数据传输过程。这里,如果在定时器期满前未收到来自用户设备的结果,则可能存在隐藏节点正在发射信号从而对用户设备造成了干扰,导致用户设备的结果无法传输至电子设备500。在这种情况下,处理单元520认为存在隐藏节点从而不使用该发射方向执行与用户设备之间的数据传输。另一方面,由于定时器期满尚未收到来自用户设备的结果,即便不存在隐藏节点,而是由于其它原因导致来自用户设备的结果的延迟,由于在执行数据传输之前占用了较长时间可能导致电子设备500用于执行数据传输的时间严重缩短从而影响数据传输。在这种情况下,处理单元520认为剩下的时间不够执行数据传输从而不使用该发射方向执行与用户设备之间的数据传输。
根据本公开的实施例,定时单元550可以将定时器的时长设置为小于或等于MCOT(Maximum Channel Occupy Time,最大信道占用时间)的长度。
如上所述,根据本公开的实施例,通过设置定时器,在更加有效地确定隐藏节点的同时,可以防止由于隐藏节点的存在而导致无法接收到来自用户设备的LBT过程的结果,同时也保证为数据传输过程预留足够的时间。
根据本公开的实施例,如图5所示,电子设备500还可以包括确定单元560,用于确定是否在与发射方向相反的方向上执行LBT过程以及确定是否向用户设备发送指示信息以指示用户设备执行正向和反向的LBT过程。
根据本公开的实施例,在电子设备500通过波束赋形的方式向用户设备发送下行信息从而电子设备500执行定向LBT过程的情况下,才会出现隐藏节点不被发现的问题。因此,如果电子设备500通过全向的方式执行LBT过程,则电子设备500无需在与发射方向相反的方向上执行LBT过程,用户设备也无需执行LBT过程。在这种情况下,确定单元560可以确定无需向用户设备发送指示信息。
根据本公开的实施例,确定单元560还可以根据与用户设备之间的数据的业务类型确定是否在与发射方向相反的方向上执行LBT过程以及是否向用户设备发送指示信息。这里,确定单元560可以根据业务对丢包的容忍度来确定是否在与发射方向相反的方向上执行LBT过程以及是否 向用户设备发送指示信息。例如,如果电子设备500与用户设备之间的数据的业务类型表示该业务对丢包的容忍度比较高(例如视频业务和音频业务等),则确定单元560可以确定无需在与发射方向相反的方向上执行LBT过程,也无需向用户设备发送指示信息。如果电子设备500与用户设备之间的数据的业务类型表示该业务对丢包的容忍度比较低(例如纯数据业务等),则确定单元560可以确定需要在与发射方向相反的方向上执行LBT过程,也需要向用户设备发送指示信息。
图7是示出根据本公开的实施例的gNB和UE进行正向和反向LBT之后进行数据传输的过程的信令流程图。在图7中,gNB可以用电子设备500来实现。如图7所示,在步骤S701中,gNB在发射方向上执行LBT过程。接下来,在步骤S702中,在发射方向上的LBT过程成功的情况下,gNB启动定时器。同时,在步骤S703中,gNB在与发射方向相反的方向上执行LBT过程。接下来,如果在步骤S703中的反向LBT过程成功,则在步骤S704中,gNB向UE发送指示信息以指示UE执行正向LBT过程和反向LBT过程。接下来,在步骤S705中,UE在接收方向和与接收方向相反的方向上执行LBT过程。接下来,在步骤S706中,UE向gNB发送LBT过程的结果。接下来,在步骤S707中,如果在定时器期满前gNB收到了来自UE的LBT过程的结果,则gNB根据该结果确定是否使用该发射波束。在gNB确定使用该发射波束的情况下,在步骤S708中,gNB使用该发射波束向UE发送下行数据。进一步,在步骤S701的LBT过程失败的情况下,流程直接结束,不使用该发射波束。在步骤S703的LBT过程失败的情况下,流程直接结果,不使用该发射波束。在定时器期满前未收到来自UE的结果的情况下,也不使用该发射波束。由此,通过gNB和UE的正向LBT过程和反向LBT过程,gNB可以避免隐藏节点的存在导致对UE的干扰。
根据本公开的实施例,前文中描述的实施方式可以用于用户设备已经接入电子设备500中的情形。下面将描述用户设备接入电子设备500之前的情形。
根据本公开的实施例,在用户设备接入电子设备500之前,电子设备500可以通过通信单元540从用户设备接收信道质量测量信息。这里,信道质量测量信息表示在从用户设备至电子设备500的接收方向以及与接收方向相反的方向上测量的信道质量。
根据本公开的实施例,如图5所示,电子设备500还可以包括接入 确定单元570,用于确定是否允许用户设备接入电子设备500。这里,接入确定单元570可以根据接收到的信道质量测量信息确定是否允许用户设备接入电子设备500。
在本领域中,由于电子设备500期望以波束赋形的方式定向向用户设备发送下行信息,因此将用户设备全向测量的信道质量作为判断是否允许用户设备接入的标准显然不再合理。根据本公开的实施例,用户设备可以仅在接收方向以及与接收方向相反的方向上测量信道质量,从而接入确定单元570可以根据在接收方向以及与接收方向相反的方向上的信道质量确定是否允许用户设备接入。这样一来,可以更加合理地判断是否允许用户设备接入电子设备500,从而尽量避免被干扰的用户设备接入,提高用户设备接入电子设备500的几率。
根据本公开的实施例,从用户设备接收的信道质量测量信息可以包括RSRP(Reference Signal Receiving Power,参考信号接收功率)或RSRQ(Reference Signal Receiving Quality,参考信号接收质量)。下面将针对这两种信息分别进行说明。
在信道质量测量信息包括RSRP的情况下,RSRP表示在接收方向以及与接收方向相反的方向上测量的参考信号接收功率。进一步,电子设备500可以通过通信单元540向用户设备发送同步信号(主同步信号和辅同步信号)。用户设备通过计算在接收方向以及与接收方向相反的方向上、承载同步信号的RE(Resource Element,资源元素)上的接收功率的线性平均来获得RSRP的值。
在信道质量测量信息包括RSRQ的情况下,RSRQ根据RSRP和RSSI(Received Signal Strength Indication,接收信号强度指示)得到。RSRP表示在接收方向以及与接收方向相反的方向上的参考信号接收功率,即用户设备通过计算在接收方向以及与接收方向相反的方向上、承载同步信号的RE上的接收的功率的线性平均来获得RSRP的值。进一步,RSSI表示在接收方向以及与接收方向相反的方向上的接收信号强度指示。用户设备通过计算在接收方向以及与接收方向相反的方向上、在N个RB(Resource Block,资源块)的测量带宽中接收的所有信号(包括干扰信号、噪声信号等)的功率的线性平均来获得RSSI的值。进一步,用户设备可以通过公式RSRQ=N×RSRP/RSSI来获得RSRQ的值,其中N为在RSSI的测量带宽中的RB的数目。
根据本公开的实施例,接入确定单元570可以根据信道质量与预定 阈值的比较来确定是否允许用户设备接入电子设备500。具体地,在信道质量不大于预定阈值时,接入确定单元570可以确定用户设备与电子设备500之间的在接收方向和与接收方向相反的方向上的信道质量不好,很有可能存在其他电子设备正在发射信号,因此可以确定不允许用户设备接入电子设备500;在信道质量大于预定阈值时,接入确定单元570可以确定允许用户设备接入电子设备500。这里,针对RSRP和RSRQ,电子设备500可以设置相同或不同的预定阈值。
根据本公开的实施例,定时单元550还可以设置第二定时器。同样地,定时单元550可以将第二定时器的时长设置为小于或等于MCOT的长度。
根据本公开的实施例,感测单元510可以在从电子设备500至用户设备的发射方向上执行LBT过程。这里的LBT过程可以是不包括随机退避过程的LBT过程、包括随机退避过程且竞争窗口不变的LBT过程、以及包括随机退避过程且竞争窗口可变的LBT过程中的任意一种。
并且在处理单元520确定在发射方向上的LBT过程成功之后,定时单元550可以启动第二定时器。此外,电子设备500可以通过通信单元540向用户设备发送同步信号,例如主同步信号和辅同步信号。
进一步,如果在第二定时器期满前收到来自用户设备的信道质量测量信息,则接入确定单元570基于如上所述的实施方式根据信道质量测量信息确定是否允许用户设备接入电子设备500。
进一步,如果在第二定时器期满前未收到来自用户设备的信道质量测量信息,则处理单元520可以确定不允许用户设备接入电子设备500。这里,如果在定时器期满前未收到来自用户设备的信道质量测量信息,则可能存在其他电子设备正在发射信号从而对用户设备造成了干扰,导致用户设备的信道质量测量信息无法传输至电子设备500。在这种情况下,处理单元520认为信道质量太差从而不允许用户设备接入。
如上所述,根据本公开的实施例,通过设置定时器,可以防止由于信道质量太差而导致无法接收到来自用户设备的信道质量测量信息。
图8是示出根据本公开的实施例的在小区接入阶段通过定向测量信道质量确定是否允许UE接入的过程的信令流程图。在图8中,gNB可以由电子设备500来实现。在步骤S801中,gNB在发射方向上执行LBT过程。在步骤S802中,如果在发射方向上的LBT过程成功,则gNB启动 第二定时器。同时,在步骤S803中,gNB向UE发送同步信号。接下来,在步骤S804中,通过对同步信号的测量,UE确定在接收方向以及与接收方向相反的方向上的RSRP或RSRQ。接下来,在步骤S805中,UE向gNB发送RSRQ或RSRQ。接下来,在步骤S806中,gNB根据接收到的RSRP或RSRQ确定是否允许UE接入gNB。接下来,在步骤S807中,gNB向UE发送允许接入或拒绝接入的信息。这里,如果在S801中的LBT过程不成功,则gNB直接确定不允许UE接入gNB。此外,如果在定时器期满前没有收到来自UE的RSRP或RSRQ,则gNB也不允许UE接入gNB。如上所述,gNB根据在接收方向和与接收方向相反的方向上的信道质量确定是否允许UE接入。
由此可见,根据本公开的实施例,在用户设备接入电子设备500之后,可以在发射方向以及与发射方向相反的方向上执行LBT过程,并且用户设备可以在接收方向以及与接收方向相反的方向上执行LBT过程,只有在四个LBT过程都成功的情况下电子设备500才会在该发射方向上向用户设备发送下行数据。这样一来,通过上述四个LBT过程,可以防止隐藏节点的存在,使得电子设备500与用户设备之间的信道质量得到提高。进一步,在用户设备接入电子设备500之前,用户设备可以仅在接收方向以及与接收方向相反的方向上测量信道质量,从而电子设备500可以更加合理地判断是否允许用户设备接入电子设备500,从而尽量避免被干扰的用户设备接入,提高用户设备接入电子设备500的几率。
<3.用户设备的配置示例>
图9是示出根据本公开的实施例的无线通信系统中的用作用户设备的电子设备900的结构的框图。如图9所示,电子设备900可以包括感测单元910、生成单元920和通信单元930。
这里,电子设备900的各个单元都可以包括在处理电路中。需要说明的是,电子设备900既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,感测单元910可以执行LBT过程。具体地,感测单元910可以在从电子设备900至网络侧设备的接收方向以及与接收方向相反的方向上执行LBT过程。
根据本公开的实施例,生成单元920可以根据感测单元910的感测结果生成LBT过程的结果,包括在接收方向上的LBT过程的结果和在与接收方向相反的方向上的LBT过程的结果。
根据本公开的实施例,电子设备900可以通过通信单元930将生成单元920生成的在接收方向以及与接收方向相反的方向上的LBT过程的结果发送至网络侧设备,以用于网络侧设备根据电子设备900在接收方向以及与接收方向相反的方向上的LBT过程的结果确定是否采用与该接收方向相对应的发射方向向电子设备900发送数据。
根据本公开的实施例,电子设备900可以通过通信单元930从网络侧设备接收指示信息,从而响应于该指示信息在接收方向以及与接收方向相反的方向上执行LBT过程。
根据本公开的实施例,感测单元910在接收方向上执行LBT过程(在本公开中也被称为电子设备900的正向LBT过程)指的是感测单元910可以感测到来自该接收方向的其他电子设备的信号的能量或功率。也就是说,只有发射信号的其他电子设备在该接收方向上、其他电子设备发射信号的方向朝向电子设备900、并且其他电子设备在电子设备900的感测范围内,电子设备900才能感测到该其他电子设备的信号的能量或功率。类似地,感测单元910在与接收方向相反的方向上执行LBT过程(在本公开中也被称为电子设备900的反向LBT过程)指的是感测单元910可以感测到来自与接收方向相反的方向的其他电子设备的信号的能量或功率。也就是说,只有发射信号的其他电子设备在与接收方向相反的方向上、其他电子设备发射信号的方向朝向电子设备900、并且其他电子设备在电子设备900的感测范围内,电子设备900才能感测到该其他电子设备的信号的能量或功率。
根据本公开的实施例,LBT过程可以包括:不包括随机退避过程的LBT过程(Cat 2 LBT过程)、包括随机退避过程且竞争窗口不变的LBT过程(Cat 3 LBT过程)、以及包括随机退避过程且竞争窗口可变的LBT过程(Cat 4 LBT过程)。感测单元910可以从上述LBT过程中任选一种LBT过程。可选地,根据本公开的实施例,为了减少LBT过程的执行时间,感测单元910在执行正向LBT过程和反向LBT过程时可以采用不包括随机退避过程的LBT过程。
根据本公开的实施例,生成单元920生成的在接收方向上的LBT过程的结果可以包括在接收方向上的接收功率,在与接收方向相反的方向上 的LBT过程的结果可以包括在与接收方向相反的方向上的接收功率。
如上所述,根据本公开的实施例,在电子设备900接入网络侧设备之后,电子设备900可以执行正向LBT过程和反向LBT过程,并将LBT过程的结果发送至网络侧设备,从而协助网络侧设备确定隐藏节点,使得电子设备900与网络侧设备之间的信道质量得到提高。
根据本公开的实施例,如图9所示,电子设备900还可以包括测量单元940,用于测量网络侧设备与电子设备900之间的信道质量。
根据本公开的实施例,在电子设备900接入网络侧设备之前,测量单元940可以在从电子设备900至网络侧设备的接收方向以及与接收方向相反的方向上测量信道质量。这里的信道质量可以由RSRP或RSRQ表示。
根据本公开的实施例,如图9所示,电子设备900还可以包括生成单元950,用于根据测量单元940的测量结果生成信道质量测量信息。进一步,电子设备900可以通过通信单元930将信道质量测量信息发送至网络侧设备,以用于网络侧设备根据信道质量测量信息确定是否允许电子设备900接入网络侧设备。
根据本公开的实施例,在信道质量由RSRP表示的情况下,生成单元950可以根据在接收方向以及与接收方向相反的方向上的参考信号接收功率确定RSRP。这里,电子设备900可以通过通信单元930从网络侧设备接收同步信号(主同步信号和辅同步信号),然后生成单元950通过计算在接收方向以及与接收方向相反的方向上、承载同步信号的RE上的接收功率的线性平均来获得RSRP的值。
根据本公开的实施例,在信道质量由RSRQ表示的情况下,生成单元950可以根据在接收方向以及与接收方向相反的方向上的参考信号接收功率确定RSRP,根据在接收方向以及与接收方向相反的方向上的接收信号强度指示确定RSSI,并且根据RSRP和RSSI确定RSRQ。
具体地,生成单元950通过计算在接收方向以及与接收方向相反的方向上、承载同步信号的RE上的接收功率的线性平均来获得RSRP的值。生成单元950通过计算在接收方向以及与接收方向相反的方向上、在N个RB的测量带宽中接收的总功率的线性平均来获得RSSI的值。进一步,生成单元950可以通过公式RSRQ=N×RSRP/RSSI来获得RSRQ的值,其中N为在RSSI的测量带宽中的RB的数目。
根据本公开的实施例,电子设备900可以通过通信单元930从网络 侧设备接收允许接入或拒绝接入的信息。
如上所述,根据本公开的实施例,在电子设备900接入网络侧设备之前,电子设备900可以在接收方向以及与接收方向相反的方向上测量信道质量并将信道质量的测量结果发送至网络侧设备,从而网络侧设备可以根据该测量结果确定是否允许电子设备900接入。由于信道质量的测量结果仅仅反映了接收方向以及与接收方向相反的方向上的信道质量,因此更加准确,使得网络侧设备的判断更加合理,提高了电子设备900接入网络侧设备的几率。
根据本公开的实施例的电子设备500可以作为网络侧设备,电子设备900可以作为用户设备,即电子设备500可以为电子设备900提供服务,因此在前文中描述的关于电子设备500的全部实施例都适用于此。
<4.方法实施例>
接下来将详细描述根据本公开实施例的由无线通信系统中的作为网络侧设备的电子设备500执行的无线通信方法。
图10是示出根据本公开的实施例的由无线通信系统中的作为网络侧设备的电子设备500执行的无线通信方法的流程图。
如图10所示,在步骤S1010中,在从电子设备500至用户设备的发射方向以及与发射方向相反的方向上执行LBT过程。
接下来,在步骤S1020中,在发射方向以及与发射方向相反的方向上的LBT过程均成功的情况下,向用户设备发送指示信息,以指示用户设备在从用户设备至电子设备500的接收方向以及与接收方向相反的方向上执行LBT过程。
接下来,在步骤S1030中,在接收方向以及与接收方向相反的方向上的LBT过程均成功的情况下,使用发射方向执行与用户设备之间的数据传输过程。
优选地,无线通信方法还包括:从用户设备接收在接收方向以及与接收方向相反的方向上的LBT过程的结果;以及根据结果确定在接收方向以及与接收方向相反的方向上的LBT过程是否成功。
优选地,在接收方向上的LBT过程的结果包括在接收方向上的接收功率,在与接收方向相反的方向上的LBT过程的结果包括在与接收方向相反的方向上的接收功率,并且其中,确定在接收方向上的LBT过程是 否成功包括:如果在接收方向上的接收功率小于预定阈值,则确定在接收方向上的LBT过程成功;以及确定在与接收方向相反的方向上的LBT过程是否成功包括:如果在与接收方向相反的方向上的接收功率小于预定阈值,则确定在与接收方向相反的方向上的LBT过程成功。
优选地,无线通信方法还包括:在发射方向上的LBT过程成功之后,启动定时器并在与发射方向相反的方向上执行LBT过程;如果在定时器期满前收到来自用户设备的在接收方向以及与接收方向相反的方向上的LBT过程的结果,根据结果确定在接收方向以及与接收方向相反的方向上的LBT过程是否成功;以及如果在定时器期满前未收到来自用户设备的在接收方向以及与接收方向相反的方向上的LBT过程的结果,不使用发射方向执行与用户设备之间的数据传输过程。
优选地,定时器的时长小于或等于MCOT的长度。
优选地,无线通信方法还包括:在发射方向上的LBT过程、与发射方向相反的方向上的LBT过程、接收方向上的LBT过程、与接收方向相反的方向上的LBT过程中的至少一个失败的情况下,不使用发射方向执行与用户设备之间的数据传输过程。
优选地,与发射方向相反的方向上的LBT过程、接收方向上的LBT过程以及与接收方向相反的方向上的LBT过程为不包括随机退避过程的LBT过程,并且其中,发射方向上的LBT过程为不包括随机退避过程的LBT过程、包括随机退避过程且竞争窗口不变的LBT过程以及包括随机退避过程且竞争窗口可变的LBT过程中的任意一种。
优选地,无线通信方法还包括:根据与用户设备之间的数据的业务类型确定是否在与发射方向相反的方向上执行LBT过程以及是否向用户设备发送指示信息。
优选地,在用户设备接入电子设备500之前,无线通信方法还包括:从用户设备接收信道质量测量信息,信道质量测量信息表示在从用户设备至电子设备500的接收方向以及与接收方向相反的方向上测量的信道质量;以及根据信道质量测量信息确定是否允许用户设备接入电子设备500。
优选地,信道质量测量信息包括RSRP或RSRQ,RSRP表示在接收方向以及与接收方向相反的方向上的参考信号接收功率,并且RSRQ根据RSRP和RSSI得到,RSRP表示在接收方向以及与接收方向相反的方向上的参考信号接收功率,RSSI表示在接收方向以及与接收方向相反的方向 上的接收信号强度指示。
优选地,无线通信方法还包括:在从电子设备500至用户设备的发射方向上执行LBT过程;在发射方向上的LBT过程成功之后,启动第二定时器;如果在所述第二定时器期满前收到来自用户设备的信道质量测量信息,根据信道质量测量信息确定是否允许用户设备接入电子设备500;以及如果在第二定时器期满前未收到来自用户设备的信道质量测量信息,不允许用户设备接入电子设备500。
优选地,确定是否允许用户设备接入电子设备500包括:在信道质量大于预定阈值时,允许用户设备接入电子设备500。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备500,因此前文中关于电子设备500的全部实施例均适用于此。
接下来将详细描述根据本公开实施例的由无线通信系统中的作为用户设备的电子设备900执行的无线通信方法。
图11是示出根据本公开的实施例的由无线通信系统中的作为用户设备的电子设备900执行的无线通信方法的流程图。
如图11所示,在步骤S1110中,在从电子设备900至网络侧设备的接收方向以及与接收方向相反的方向上执行LBT过程。
接下来,在步骤S1120中,将在接收方向以及与接收方向相反的方向上的LBT过程的结果发送至网络侧设备。
优选地,无线通信方法还包括:从网络侧设备接收指示信息以在接收方向以及与接收方向相反的方向上执行LBT过程。
优选地,在接收方向上的LBT过程的结果包括在接收方向上的接收功率,在与接收方向相反的方向上的LBT过程的结果包括在与接收方向相反的方向上的接收功率。
优选地,接收方向上的LBT过程以及与接收方向相反的方向上的LBT过程为不包括随机退避过程的LBT过程。
优选地,在电子设备900接入网络侧设备之前,无线通信方法还包括:在从电子设备900至网络侧设备的接收方向以及与接收方向相反的方向上测量信道质量;以及将信道质量测量信息发送至网络侧设备,以用于网络侧设备根据信道质量测量信息确定是否允许电子设备900接入网络 侧设备。
优选地,信道质量测量信息包括RSRP,并且无线通信方法还包括:根据在接收方向以及与接收方向相反的方向上的参考信号接收功率确定RSRP,或者其中,信道质量测量信息包括RSRQ,并且无线通信方法还包括:根据在接收方向以及与接收方向相反的方向上的参考信号接收功率确定RSRP,根据在接收方向以及与接收方向相反的方向上的接收信号强度指示确定RSSI,以及根据RSRP和RSSI确定RSRQ。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备900,因此前文中关于电子设备900的全部实施例均适用于此。
<5.应用示例>
本公开内容的技术能够应用于各种产品。
例如,网络侧设备可以被实现为任何类型的TRP。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备和基站设备发送信息。在典型的示例中,TRP可以为用户设备提供服务,并且受基站设备的控制。进一步,TRP可以具备与如下所述的基站设备类似的结构,也可以仅具备基站设备中与发送和接收信息相关的结构。
网络侧设备也可以被实现为任何类型的基站设备,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB(5G系统中的基站)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<关于基站的应用示例>
(第一应用示例)
图12是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 1200包括一个或多个天线1210以及基站设备1220。基站设备1220和每个天线1210可以经由RF线缆彼此连接。
天线1210中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1220发送和接收无线信号。如图12所示,eNB 1200可以包括多个天线1210。例如,多个天线1210可以与eNB 1200使用的多个频带兼容。虽然图12示出其中eNB 1200包括多个天线1210的示例,但是eNB 1200也可以包括单个天线1210。
基站设备1220包括控制器1221、存储器1222、网络接口1223以及无线通信接口1225。
控制器1221可以为例如CPU或DSP,并且操作基站设备1220的较高层的各种功能。例如,控制器1221根据由无线通信接口1225处理的信号中的数据来生成数据分组,并经由网络接口1223来传递所生成的分组。控制器1221可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1221可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1222包括RAM和ROM,并且存储由控制器1221执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1223为用于将基站设备1220连接至核心网1224的通信接口。控制器1221可以经由网络接口1223而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1200与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1223还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1223为无线通信接口,则与由无线通信接口1225使用的频带相比,网络接口1223可以使用较高频带用于无线通信。
无线通信接口1225支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1210来提供到位于eNB 1200的小区中的终端的无线连接。无线通信接口1225通常可以包括例如基带(BB)处理器1226和RF电路1227。BB处理器1226可以执行例如编码/解码、调制/解 调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1221,BB处理器1226可以具有上述逻辑功能的一部分或全部。BB处理器1226可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1226的功能改变。该模块可以为插入到基站设备1220的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1227可以包括例如混频器、滤波器和放大器,并且经由天线1210来传送和接收无线信号。
如图12所示,无线通信接口1225可以包括多个BB处理器1226。例如,多个BB处理器1226可以与eNB 1200使用的多个频带兼容。如图12所示,无线通信接口1225可以包括多个RF电路1227。例如,多个RF电路1227可以与多个天线元件兼容。虽然图12示出其中无线通信接口1225包括多个BB处理器1226和多个RF电路1227的示例,但是无线通信接口1225也可以包括单个BB处理器1226或单个RF电路1227。
(第二应用示例)
图13是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 1330包括一个或多个天线1340、基站设备1350和RRH 1360。RRH 1360和每个天线1340可以经由RF线缆而彼此连接。基站设备1350和RRH 1360可以经由诸如光纤线缆的高速线路而彼此连接。
天线1340中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1360发送和接收无线信号。如图13所示,eNB 1330可以包括多个天线1340。例如,多个天线1340可以与eNB 1330使用的多个频带兼容。虽然图13示出其中eNB 1330包括多个天线1340的示例,但是eNB 1330也可以包括单个天线1340。
基站设备1350包括控制器1351、存储器1352、网络接口1353、无线通信接口1355以及连接接口1357。控制器1351、存储器1352和网络接口1353与参照图12描述的控制器1221、存储器1222和网络接口1223相同。
无线通信接口1355支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1360和天线1340来提供到位于与RRH 1360对应的扇区中的终端的无线通信。无线通信接口1355通常可以包括例如BB处理器 1356。除了BB处理器1356经由连接接口1357连接到RRH 1360的RF电路1364之外,BB处理器1356与参照图12描述的BB处理器1226相同。如图13所示,无线通信接口1355可以包括多个BB处理器1356。例如,多个BB处理器1356可以与eNB 1330使用的多个频带兼容。虽然图13示出其中无线通信接口1355包括多个BB处理器1356的示例,但是无线通信接口1355也可以包括单个BB处理器1356。
连接接口1357为用于将基站设备1350(无线通信接口1355)连接至RRH 1360的接口。连接接口1357还可以为用于将基站设备1350(无线通信接口1355)连接至RRH 1360的上述高速线路中的通信的通信模块。
RRH 1360包括连接接口1361和无线通信接口1363。
连接接口1361为用于将RRH 1360(无线通信接口1363)连接至基站设备1350的接口。连接接口1361还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1363经由天线1340来传送和接收无线信号。无线通信接口1363通常可以包括例如RF电路1364。RF电路1364可以包括例如混频器、滤波器和放大器,并且经由天线1340来传送和接收无线信号。如图13所示,无线通信接口1363可以包括多个RF电路1364。例如,多个RF电路1364可以支持多个天线元件。虽然图13示出其中无线通信接口1363包括多个RF电路1364的示例,但是无线通信接口1363也可以包括单个RF电路1364。
在图12和图13所示的eNB 1200和eNB 1330中,通过使用图5所描述的感测单元510、处理单元520、生成单元530、定时单元550、确定单元560和接入确定单元570可以由控制器1221和/或控制器1351实现。功能的至少一部分也可以由控制器1221和控制器1351实现。例如,控制器1221和/或控制器1351可以通过执行相应的存储器中存储的指令而执行感测能量、确定发射方向是否空闲、生成指示用户设备进行LBT的指示信息、启动定时器、确定是否需要执行反向LBT以及用户设备进行LBT过程以及确定是否允许UE接入的功能。
<关于终端设备的应用示例>
(第一应用示例)
图14是示出可以应用本公开内容的技术的智能电话1400的示意性配置的示例的框图。智能电话1400包括处理器1401、存储器1402、存储 装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412、一个或多个天线开关1415、一个或多个天线1416、总线1417、电池1418以及辅助控制器1419。
处理器1401可以为例如CPU或片上系统(SoC),并且控制智能电话1400的应用层和另外层的功能。存储器1402包括RAM和ROM,并且存储数据和由处理器1401执行的程序。存储装置1403可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1404为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1400的接口。
摄像装置1406包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1407可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1408将输入到智能电话1400的声音转换为音频信号。输入装置1409包括例如被配置为检测显示装置1410的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1410包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1400的输出图像。扬声器1411将从智能电话1400输出的音频信号转换为声音。
无线通信接口1412支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1412通常可以包括例如BB处理器1413和RF电路1414。BB处理器1413可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1414可以包括例如混频器、滤波器和放大器,并且经由天线1416来传送和接收无线信号。无线通信接口1412可以为其上集成有BB处理器1413和RF电路1414的一个芯片模块。如图14所示,无线通信接口1412可以包括多个BB处理器1413和多个RF电路1414。虽然图14示出其中无线通信接口1412包括多个BB处理器1413和多个RF电路1414的示例,但是无线通信接口1412也可以包括单个BB处理器1413或单个RF电路1414。
此外,除了蜂窝通信方案之外,无线通信接口1412可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1412可以包括针对每种无线通信方案的BB处理器1413和RF电路1414。
天线开关1415中的每一个在包括在无线通信接口1412中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1416的连接目的地。
天线1416中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1412传送和接收无线信号。如图14所示,智能电话1400可以包括多个天线1416。虽然图14示出其中智能电话1400包括多个天线1416的示例,但是智能电话1400也可以包括单个天线1416。
此外,智能电话1400可以包括针对每种无线通信方案的天线1416。在此情况下,天线开关1415可以从智能电话1400的配置中省略。
总线1417将处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412以及辅助控制器1419彼此连接。电池1418经由馈线向图14所示的智能电话1400的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1419例如在睡眠模式下操作智能电话1400的最小必需功能。
在图14所示的智能电话1400中,通过使用图9所描述的感测单元910、生成单元920、测量单元940和生成单元950可以由处理器1401或辅助控制器1419实现。功能的至少一部分也可以由处理器1401或辅助控制器1419实现。例如,处理器1401或辅助控制器1419可以通过执行存储器1402或存储装置1403中存储的指令而执行感测能量、生成LBT过程的结果、测量信道质量以及生成信道质量的测量结果的功能。
(第二应用示例)
图15是示出可以应用本公开内容的技术的汽车导航设备1520的示意性配置的示例的框图。汽车导航设备1520包括处理器1521、存储器1522、全球定位系统(GPS)模块1524、传感器1525、数据接口1526、内容播放器1527、存储介质接口1528、输入装置1529、显示装置1530、扬声器1531、无线通信接口1533、一个或多个天线开关1536、一个或多个天线1537以及电池1538。
处理器1521可以为例如CPU或SoC,并且控制汽车导航设备1520的导航功能和另外的功能。存储器1522包括RAM和ROM,并且存储数据和由处理器1521执行的程序。
GPS模块1524使用从GPS卫星接收的GPS信号来测量汽车导航设备1520的位置(诸如纬度、经度和高度)。传感器1525可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1526经由未示出的终端而连接到例如车载网络1541,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1527再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1528中。输入装置1529包括例如被配置为检测显示装置1530的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1530包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1531输出导航功能的声音或再现的内容。
无线通信接口1533支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1533通常可以包括例如BB处理器1534和RF电路1535。BB处理器1534可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1535可以包括例如混频器、滤波器和放大器,并且经由天线1537来传送和接收无线信号。无线通信接口1533还可以为其上集成有BB处理器1534和RF电路1535的一个芯片模块。如图15所示,无线通信接口1533可以包括多个BB处理器1534和多个RF电路1535。虽然图15示出其中无线通信接口1533包括多个BB处理器1534和多个RF电路1535的示例,但是无线通信接口1533也可以包括单个BB处理器1534或单个RF电路1535。
此外,除了蜂窝通信方案之外,无线通信接口1533可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1533可以包括BB处理器1534和RF电路1535。
天线开关1536中的每一个在包括在无线通信接口1533中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1537的连接目的地。
天线1537中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1533传送和接收无线信号。如图15所示,汽车导航设备1520可以包括多个天线1537。虽然图15示出其中汽车导航设备1520包括多个天线1537的示例,但是 汽车导航设备1520也可以包括单个天线1537。
此外,汽车导航设备1520可以包括针对每种无线通信方案的天线1537。在此情况下,天线开关1536可以从汽车导航设备1520的配置中省略。
电池1538经由馈线向图15所示的汽车导航设备1520的各个块提供电力,馈线在图中被部分地示为虚线。电池1538累积从车辆提供的电力。
在图15示出的汽车导航设备1520中,通过使用图9所描述的感测单元910、生成单元920、测量单元940和生成单元950可以由处理器1521实现。功能的至少一部分也可以由处理器1521实现。例如,处理器1521可以通过执行存储器1522中存储的指令而执行感测能量、生成LBT过程的结果、测量信道质量以及生成信道质量的测量结果的功能。
本公开内容的技术也可以被实现为包括汽车导航设备1520、车载网络1541以及车辆模块1542中的一个或多个块的车载系统(或车辆)1540。车辆模块1542生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1541。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而 没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (37)

  1. 一种电子设备,包括处理电路,被配置为:
    在从所述电子设备至用户设备的发射方向以及与所述发射方向相反的方向上执行先听后说LBT过程;
    在所述发射方向以及与所述发射方向相反的方向上的LBT过程均成功的情况下,向所述用户设备发送指示信息,以指示所述用户设备在从所述用户设备至所述电子设备的接收方向以及与所述接收方向相反的方向上执行LBT过程;以及
    在所述接收方向以及与所述接收方向相反的方向上的LBT过程均成功的情况下,使用所述发射方向执行与所述用户设备之间的数据传输过程。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    从所述用户设备接收在所述接收方向以及与所述接收方向相反的方向上的LBT过程的结果;以及
    根据所述结果确定在所述接收方向以及与所述接收方向相反的方向上的LBT过程是否成功。
  3. 根据权利要求2所述的电子设备,其中,在所述接收方向上的LBT过程的结果包括在所述接收方向上的接收功率,在与所述接收方向相反的方向上的LBT过程的结果包括在与所述接收方向相反的方向上的接收功率,并且
    其中,所述处理电路还被配置为:如果在所述接收方向上的接收功率小于预定阈值,则确定在所述接收方向上的LBT过程成功;以及如果在与所述接收方向相反的方向上的接收功率小于所述预定阈值,则确定在与所述接收方向相反的方向上的LBT过程成功。
  4. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为:
    在所述发射方向上的LBT过程成功之后,启动定时器并在与所述发射方向相反的方向上执行LBT过程;
    如果在定时器期满前收到来自所述用户设备的在所述接收方向以及与所述接收方向相反的方向上的LBT过程的结果,根据所述结果确定在所述接收方向以及与所述接收方向相反的方向上的LBT过程是否成功;以及
    如果在定时器期满前未收到来自所述用户设备的在所述接收方向以及与所述接收方向相反的方向上的LBT过程的结果,不使用所述发射方向执行与所述用户设备之间的数据传输过程。
  5. 根据权利要求4所述的电子设备,其中,所述定时器的时长小于或等于最大信道占用时间MCOT的长度。
  6. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    在所述发射方向上的LBT过程、与所述发射方向相反的方向上的LBT过程、所述接收方向上的LBT过程、与所述接收方向相反的方向上的LBT过程中的至少一个失败的情况下,不使用所述发射方向执行与所述用户设备之间的数据传输过程。
  7. 根据权利要求1所述的电子设备,其中,与所述发射方向相反的方向上的LBT过程、所述接收方向上的LBT过程以及与所述接收方向相反的方向上的LBT过程为不包括随机退避过程的LBT过程,并且
    其中,所述发射方向上的LBT过程为不包括随机退避过程的LBT过程、包括随机退避过程且竞争窗口不变的LBT过程以及包括随机退避过程且竞争窗口可变的LBT过程中的任意一种。
  8. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    根据与所述用户设备之间的数据的业务类型确定是否在与所述发射方向相反的方向上执行LBT过程以及是否向所述用户设备发送所述指示信息。
  9. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    在所述用户设备接入所述电子设备之前,从所述用户设备接收信道质量测量信息,所述信道质量测量信息表示在从所述用户设备至所述电子设备的接收方向以及与所述接收方向相反的方向上测量的信道质量;以及
    根据所述信道质量测量信息确定是否允许所述用户设备接入所述电子设备。
  10. 根据权利要求9所述的电子设备,其中,
    所述信道质量测量信息包括参考信号接收功率RSRP或参考信号接收质量RSRQ,
    所述RSRP表示在所述接收方向以及与所述接收方向相反的方向上的参考信号接收功率,并且
    所述RSRQ根据RSRP和接收信号强度指示RSSI得到,所述RSRP表示在所述接收方向以及与所述接收方向相反的方向上的参考信号接收功率,所述RSSI表示在所述接收方向以及与所述接收方向相反的方向上的接收信号强度指示。
  11. 根据权利要求9所述的电子设备,其中,所述处理电路还被配置为:
    在从所述电子设备至用户设备的发射方向上执行LBT过程;
    在所述发射方向上的LBT过程成功之后,启动第二定时器;
    如果在所述第二定时器期满前收到来自所述用户设备的信道质量测量信息,根据所述信道质量测量信息确定是否允许所述用户设备接入所述电子设备;以及
    如果在所述第二定时器期满前未收到来自所述用户设备的信道质量测量信息,不允许所述用户设备接入所述电子设备。
  12. 根据权利要求9所述的电子设备,其中,所述处理电路还被配置为:
    在所述信道质量大于预定阈值时,允许所述用户设备接入所述电子设备。
  13. 一种电子设备,包括处理电路,被配置为:
    在从所述电子设备至网络侧设备的接收方向以及与所述接收方向相反的方向上执行先听后说LBT过程;以及
    将在所述接收方向以及与所述接收方向相反的方向上的LBT过程的结果发送至所述网络侧设备。
  14. 根据权利要求13所述的电子设备,其中,所述处理电路还被配 置为:
    从所述网络侧设备接收指示信息以在所述接收方向以及与所述接收方向相反的方向上执行LBT过程。
  15. 根据权利要求13所述的电子设备,其中,在所述接收方向上的LBT过程的结果包括在所述接收方向上的接收功率,在与所述接收方向相反的方向上的LBT过程的结果包括在与所述接收方向相反的方向上的接收功率。
  16. 根据权利要求13所述的电子设备,其中,所述接收方向上的LBT过程以及与所述接收方向相反的方向上的LBT过程为不包括随机退避过程的LBT过程。
  17. 根据权利要求13所述的电子设备,其中,所述处理电路还被配置为:
    在所述电子设备接入所述网络侧设备之前,在从所述电子设备至所述网络侧设备的接收方向以及与所述接收方向相反的方向上测量信道质量;以及
    将信道质量测量信息发送至所述网络侧设备,以用于所述网络侧设备根据所述信道质量测量信息确定是否允许所述电子设备接入所述网络侧设备。
  18. 根据权利要求17所述的电子设备,其中,所述信道质量测量信息包括参考信号接收功率RSRP,并且所述处理电路还被配置为:根据在所述接收方向以及与所述接收方向相反的方向上的参考信号接收功率确定所述RSRP,或者
    其中,所述信道质量测量信息包括参考信号接收质量RSRQ,并且所述处理电路还被配置为:根据在所述接收方向以及与所述接收方向相反的方向上的参考信号接收功率确定RSRP,根据在所述接收方向以及与所述接收方向相反的方向上的接收信号强度指示确定接收信号强度指示RSSI,以及根据RSRP和RSSI确定所述RSRQ。
  19. 一种由电子设备执行的无线通信方法,包括:
    在从所述电子设备至用户设备的发射方向以及与所述发射方向相反的方向上执行先听后说LBT过程;
    在所述发射方向以及与所述发射方向相反的方向上的LBT过程均成 功的情况下,向所述用户设备发送指示信息,以指示所述用户设备在从所述用户设备至所述电子设备的接收方向以及与所述接收方向相反的方向上执行LBT过程;以及
    在所述接收方向以及与所述接收方向相反的方向上的LBT过程均成功的情况下,使用所述发射方向执行与所述用户设备之间的数据传输过程。
  20. 根据权利要求19所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述用户设备接收在所述接收方向以及与所述接收方向相反的方向上的LBT过程的结果;以及
    根据所述结果确定在所述接收方向以及与所述接收方向相反的方向上的LBT过程是否成功。
  21. 根据权利要求20所述的无线通信方法,其中,在所述接收方向上的LBT过程的结果包括在所述接收方向上的接收功率,在与所述接收方向相反的方向上的LBT过程的结果包括在与所述接收方向相反的方向上的接收功率,并且
    其中,确定在所述接收方向上的LBT过程是否成功包括:如果在所述接收方向上的接收功率小于预定阈值,则确定在所述接收方向上的LBT过程成功;以及确定在与所述接收方向相反的方向上的LBT过程是否成功包括:如果在与所述接收方向相反的方向上的接收功率小于所述预定阈值,则确定在与所述接收方向相反的方向上的LBT过程成功。
  22. 根据权利要求20所述的无线通信方法,其中,所述无线通信方法还包括:
    在所述发射方向上的LBT过程成功之后,启动定时器并在与所述发射方向相反的方向上执行LBT过程;
    如果在定时器期满前收到来自所述用户设备的在所述接收方向以及与所述接收方向相反的方向上的LBT过程的结果,根据所述结果确定在所述接收方向以及与所述接收方向相反的方向上的LBT过程是否成功;以及
    如果在定时器期满前未收到来自所述用户设备的在所述接收方向以及与所述接收方向相反的方向上的LBT过程的结果,不使用所述发射方 向执行与所述用户设备之间的数据传输过程。
  23. 根据权利要求22所述的无线通信方法,其中,所述定时器的时长小于或等于最大信道占用时间MCOT的长度。
  24. 根据权利要求19所述的无线通信方法,其中,所述无线通信方法还包括:
    在所述发射方向上的LBT过程、与所述发射方向相反的方向上的LBT过程、所述接收方向上的LBT过程、与所述接收方向相反的方向上的LBT过程中的至少一个失败的情况下,不使用所述发射方向执行与所述用户设备之间的数据传输过程。
  25. 根据权利要求19所述的无线通信方法,其中,与所述发射方向相反的方向上的LBT过程、所述接收方向上的LBT过程以及与所述接收方向相反的方向上的LBT过程为不包括随机退避过程的LBT过程,并且
    其中,所述发射方向上的LBT过程为不包括随机退避过程的LBT过程、包括随机退避过程且竞争窗口不变的LBT过程以及包括随机退避过程且竞争窗口可变的LBT过程中的任意一种。
  26. 根据权利要求19所述的无线通信方法,其中,所述无线通信方法还包括:
    根据与所述用户设备之间的数据的业务类型确定是否在与所述发射方向相反的方向上执行LBT过程以及是否向所述用户设备发送所述指示信息。
  27. 根据权利要求19所述的无线通信方法,其中,在所述用户设备接入所述电子设备之前,所述无线通信方法还包括:
    从所述用户设备接收信道质量测量信息,所述信道质量测量信息表示在从所述用户设备至所述电子设备的接收方向以及与所述接收方向相反的方向上测量的信道质量;以及
    根据所述信道质量测量信息确定是否允许所述用户设备接入所述电子设备。
  28. 根据权利要求27所述的无线通信方法,其中,
    所述信道质量测量信息包括参考信号接收功率RSRP或参考信号接收质量RSRQ,
    所述RSRP表示在所述接收方向以及与所述接收方向相反的方向上的参考信号接收功率,并且
    所述RSRQ根据RSRP和接收信号强度指示RSSI得到,所述RSRP表示在所述接收方向以及与所述接收方向相反的方向上的参考信号接收功率,所述RSSI表示在所述接收方向以及与所述接收方向相反的方向上的接收信号强度指示。
  29. 根据权利要求27所述的无线通信方法,其中,所述无线通信方法还包括:
    在从所述电子设备至用户设备的发射方向上执行LBT过程;
    在所述发射方向上的LBT过程成功之后,启动第二定时器;
    如果在所述第二定时器期满前收到来自所述用户设备的信道质量测量信息,根据所述信道质量测量信息确定是否允许所述用户设备接入所述电子设备;以及
    如果在所述第二定时器期满前未收到来自所述用户设备的信道质量测量信息,不允许所述用户设备接入所述电子设备。
  30. 根据权利要求27所述的无线通信方法,其中,确定是否允许所述用户设备接入所述电子设备包括:
    在所述信道质量大于预定阈值时,允许所述用户设备接入所述电子设备。
  31. 一种由电子设备执行的无线通信方法,包括:
    在从所述电子设备至网络侧设备的接收方向以及与所述接收方向相反的方向上执行先听后说LBT过程;以及
    将在所述接收方向以及与所述接收方向相反的方向上的LBT过程的结果发送至所述网络侧设备。
  32. 根据权利要求31所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述网络侧设备接收指示信息以在所述接收方向以及与所述接收方向相反的方向上执行LBT过程。
  33. 根据权利要求31所述的无线通信方法,其中,在所述接收方向上的LBT过程的结果包括在所述接收方向上的接收功率,在与所述接收 方向相反的方向上的LBT过程的结果包括在与所述接收方向相反的方向上的接收功率。
  34. 根据权利要求31所述的无线通信方法,其中,所述接收方向上的LBT过程以及与所述接收方向相反的方向上的LBT过程为不包括随机退避过程的LBT过程。
  35. 根据权利要求31所述的无线通信方法,其中,在所述电子设备接入所述网络侧设备之前,所述无线通信方法还包括:
    在从所述电子设备至所述网络侧设备的接收方向以及与所述接收方向相反的方向上测量信道质量;以及
    将信道质量测量信息发送至所述网络侧设备,以用于所述网络侧设备根据所述信道质量测量信息确定是否允许所述电子设备接入所述网络侧设备。
  36. 根据权利要求35所述的无线通信方法,其中,所述信道质量测量信息包括参考信号接收功率RSRP,并且所述无线通信方法还包括:根据在所述接收方向以及与所述接收方向相反的方向上的参考信号接收功率确定所述RSRP,或者
    其中,所述信道质量测量信息包括参考信号接收质量RSRQ,并且所述无线通信方法还包括:根据在所述接收方向以及与所述接收方向相反的方向上的参考信号接收功率确定RSRP,根据在所述接收方向以及与所述接收方向相反的方向上的接收信号强度指示确定接收信号强度指示RSSI,以及根据RSRP和RSSI确定所述RSRQ。
  37. 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求19-36中任一项所述的无线通信方法。
PCT/CN2021/071345 2020-01-20 2021-01-13 电子设备、无线通信方法和计算机可读存储介质 WO2021147713A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180006730.0A CN114747247A (zh) 2020-01-20 2021-01-13 电子设备、无线通信方法和计算机可读存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010064639.1A CN113141618A (zh) 2020-01-20 2020-01-20 电子设备、无线通信方法和计算机可读存储介质
CN202010064639.1 2020-01-20

Publications (1)

Publication Number Publication Date
WO2021147713A1 true WO2021147713A1 (zh) 2021-07-29

Family

ID=76809078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071345 WO2021147713A1 (zh) 2020-01-20 2021-01-13 电子设备、无线通信方法和计算机可读存储介质

Country Status (2)

Country Link
CN (2) CN113141618A (zh)
WO (1) WO2021147713A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019079500A1 (en) * 2017-10-19 2019-04-25 Idac Holdings, Inc. CHANNEL ACCESS PROCEDURES FOR DIRECTIONAL SYSTEMS IN BANDS WITHOUT LICENSE
CN110149720A (zh) * 2018-02-13 2019-08-20 展讯通信(上海)有限公司 一种上行lbt的方法以及装置、介质、终端
CN110547029A (zh) * 2019-07-23 2019-12-06 北京小米移动软件有限公司 信息配置及上报方法及装置、基站和用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019079500A1 (en) * 2017-10-19 2019-04-25 Idac Holdings, Inc. CHANNEL ACCESS PROCEDURES FOR DIRECTIONAL SYSTEMS IN BANDS WITHOUT LICENSE
CN110149720A (zh) * 2018-02-13 2019-08-20 展讯通信(上海)有限公司 一种上行lbt的方法以及装置、介质、终端
CN110547029A (zh) * 2019-07-23 2019-12-06 北京小米移动软件有限公司 信息配置及上报方法及装置、基站和用户设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC: "Channel Access Procedures for NR-U", 3GPP DRAFT; R1-1906197_CHANNEL ACCESS PROCEDURES FOR NR-U_FINAL, vol. RAN WG1, 3 May 2019 (2019-05-03), Reno, USA, pages 1 - 4, XP051708236 *
SONY: "Channel access mechanism for 60 GHz unlicensed spectrum", 3GPP DRAFT; R1-2004189, vol. RAN WG1, 16 May 2020 (2020-05-16), pages 1 - 3, XP051885947 *

Also Published As

Publication number Publication date
CN114747247A (zh) 2022-07-12
CN113141618A (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
US11716718B2 (en) Wireless communication device and wireless communication method
US11924878B2 (en) User equipment, network side device, wireless communication method and storage medium for channel occupancy time sharing
US20220173781A1 (en) Electronic device, wireless communication method and computer-readable medium
US11985640B2 (en) Terminal device, base station device, and method
CN110603839B (zh) 用于无线通信的电子设备和方法
US11997716B2 (en) Electronic device for wireless communication system, method and storage medium
US20200037366A1 (en) Electronic device in wireless communication system, and wireless communication method
WO2021169828A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2020182067A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US11019473B2 (en) Communication device and communication method
WO2019001411A1 (zh) 电子装置、无线通信设备和无线通信方法
US10820337B2 (en) Device in wireless communication system, and wireless communication method
WO2021164675A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2021159999A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021027802A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2021147713A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2019214493A1 (zh) 用户设备、电子设备、无线通信方法和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744086

Country of ref document: EP

Kind code of ref document: A1