WO2020143562A1 - 电子装置、无线通信方法和计算机可读介质 - Google Patents

电子装置、无线通信方法和计算机可读介质 Download PDF

Info

Publication number
WO2020143562A1
WO2020143562A1 PCT/CN2020/070370 CN2020070370W WO2020143562A1 WO 2020143562 A1 WO2020143562 A1 WO 2020143562A1 CN 2020070370 W CN2020070370 W CN 2020070370W WO 2020143562 A1 WO2020143562 A1 WO 2020143562A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
electronic device
block
bandwidth block
target bandwidth
Prior art date
Application number
PCT/CN2020/070370
Other languages
English (en)
French (fr)
Inventor
崔焘
Original Assignee
索尼公司
崔焘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 崔焘 filed Critical 索尼公司
Priority to CN202080008376.0A priority Critical patent/CN113273126A/zh
Priority to US17/298,953 priority patent/US20220061054A1/en
Publication of WO2020143562A1 publication Critical patent/WO2020143562A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure generally relates to the field of wireless communication, and more particularly, to an electronic device for wireless communication, a wireless communication method, and a computer-readable medium.
  • a bandwidth block refers to a collection of continuous resource blocks on a carrier.
  • BWP-based operations can be performed on carriers greater than 20MHz, such as configuring multiple BWPs, activating single or multiple BWPs, and sending, for example, physical downlink shared channels (PDSCH) on one or more BWPs based on clear channel assessment (CCA) Or physical uplink shared channel (PUSCH).
  • PDSCH physical downlink shared channels
  • CCA clear channel assessment
  • PUSCH physical uplink shared channel
  • an electronic device for wireless communication includes a processing circuit.
  • the processing circuit is configured to control to receive indication information about a set of bandwidth blocks from the base station, the set of bandwidth blocks including one or more bandwidth blocks.
  • the processing circuit is also configured to control to communicate with the base station using at least one bandwidth block in the set of bandwidth blocks.
  • a wireless communication method includes the step of receiving indication information about a set of bandwidth blocks from a base station, the set of bandwidth blocks including one or more bandwidth blocks. The method also includes the step of using at least one bandwidth block in the set of bandwidth blocks to communicate with the base station.
  • an electronic device for wireless communication includes a processing circuit.
  • the processing circuit is configured to control to send indication information about a set of bandwidth blocks to the user equipment, the set of bandwidth blocks including one or more bandwidth blocks.
  • the processing circuit is also configured to control to communicate with the user equipment using at least one bandwidth block in the set of bandwidth blocks.
  • a wireless communication method includes the step of sending indication information about a set of bandwidth blocks to a user equipment, the set of bandwidth blocks including one or more bandwidth blocks. The method further includes the step of using at least one bandwidth block in the set of bandwidth blocks to communicate with the user equipment.
  • an electronic device for wireless communication includes a processing circuit.
  • the processing circuit is configured to control to detect a preamble signal or channel on the target bandwidth block, the preamble signal or channel containing information about the future occupation time of the target bandwidth block.
  • the processing circuit is also configured to control to inform the base station of information about the future occupation time.
  • a wireless communication method includes the step of detecting a preamble signal or channel on a target bandwidth block, the preamble signal or channel containing information about the future occupation time of the target bandwidth block. The method also includes the step of notifying the base station of information about the future occupation time.
  • an electronic device for wireless communication includes a processing circuit.
  • the processing circuit is configured to control to receive information about the future occupancy time of the target bandwidth block from the user equipment, wherein the information about the future occupancy time is the user equipment's detection of the preamble signal or channel on the target bandwidth block. acquired.
  • the processing circuit is also configured and based on the future occupancy time, to control to send a downlink transmission to the user equipment.
  • a wireless communication method includes the step of receiving information about the future occupation time of a target bandwidth block from a user equipment, wherein the information about the future occupation time is a preamble signal on the target bandwidth block by the user equipment Or the channel is obtained by detection.
  • the method further includes the step of sending a downlink transmission to the user equipment based on the future occupation time.
  • a computer-readable medium includes executable instructions, which when executed by an information processing device, cause the information processing device to perform the above method.
  • FIG. 1 is a block diagram showing a configuration example of an electronic device for wireless communication according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart illustrating an example of a process of a wireless communication method according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart showing an example of a process of a wireless communication method according to another embodiment of the present disclosure
  • FIG. 4 is a flowchart illustrating an example of a process of a wireless communication method according to still another embodiment of the present disclosure
  • FIG. 5 is a flowchart illustrating an example of a process of a wireless communication method according to yet another embodiment of the present disclosure
  • FIG. 6 is a block diagram showing an exemplary structure of a computer that implements the method and apparatus of the present disclosure
  • FIG. 7 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied;
  • FIG. 8 is a block diagram showing an example of a schematic configuration of gNB to which the technology of the present disclosure can be applied;
  • 9A and 9B are schematic diagrams for explaining an example transmission process performed within the shared channel occupation time of the user equipment and the base station.
  • 10A and 10B are schematic diagrams for explaining another example transmission process performed within the shared channel occupied time of the user equipment and the base station.
  • the electronic device 100 for wireless communication includes a processing circuit 110.
  • the processing circuit 110 may be implemented as a specific chip, a chipset, a central processing unit (CPU), or the like, for example.
  • the electronic device according to this embodiment may be implemented on the user equipment (UE) side, for example.
  • UE user equipment
  • the processing circuit 110 includes a first control unit 111 and a second control unit 113. It should be noted that although the first control unit 111 and the second control unit 113 are shown in the form of functional blocks in the drawings, it should be understood that the functions of each unit can also be implemented by the processing circuit as a whole, and not necessarily This is achieved by processing discrete actual components in the circuit. In addition, although the processing circuit is shown in a block in the figure, the electronic device may include a plurality of processing circuits, and the functions of each unit may be distributed into the plurality of processing circuits so that the plurality of processing circuits cooperate to perform these functions.
  • the first control unit 111 is configured to control to receive indication information about a set of bandwidth blocks from the base station, the set of bandwidth blocks including one or more bandwidth blocks.
  • the second control unit 113 is configured to control to communicate with the base station using at least one bandwidth block in the set of bandwidth blocks.
  • the indication information may be included in radio resource control (RRC) signaling, and the indication information may indicate the set of configured bandwidth blocks.
  • RRC radio resource control
  • the UE may select a bandwidth block for uplink transmission from a plurality of configured bandwidth blocks in a grant-free manner, for example.
  • the indication information may be included in downlink control information (DCI), and the indication information may indicate the set of activated bandwidth blocks.
  • DCI downlink control information
  • the base station side determines one or more activated bandwidth blocks among the configured multiple bandwidth blocks, and notifies the UE of the set of activated bandwidth blocks.
  • the activated bandwidth blocks are a subset of the configured bandwidth blocks, and the number of activated bandwidth blocks depends on the number of configured bandwidth blocks. Accordingly, the bit width of the indication information may be determined based on the number of configured bandwidth blocks.
  • the manner of determining the bit width of the indication information for indicating BWP in DCI is first described.
  • the bit width of the indication information used to indicate BWP can be determined as among them Rounded up.
  • n BWP RRC ⁇ 3
  • the BWP indication is equivalent to the high-level parameter BWP-ID.
  • BWP indicator field value (2 bits) BWP 00
  • the first BWP configured by the upper layer 01
  • Second BWP configured by high-level 10
  • Third BWP configured by high-level 11
  • Fourth BWP configured by high-level
  • the indication information according to this embodiment indicates a set of BWPs, where each set may include one or more BWPs.
  • the bit width of the indication information can be set to 4, and the BWP set indication can be defined as in Table 2 below, for example.
  • BWP collection 0000 The first BWP configured by the upper layer 0001 Second BWP configured by high-level 0010 Third BWP configured by high-level 0011 Fourth BWP configured by high-level 0100 First and second BWP 0101 First and third BWP
  • the setting of the indication information of the BWP set is not limited to the above example, but can be set according to various ways.
  • the BWP set indication can also be defined in a manner similar to a bitmap, where each bit corresponds to a configured BWP. When a bit value is 1, it indicates that the corresponding BWP is activated, as shown in Table 3 below Show.
  • BWP collection 1000 First BWP 0100 Second BWP 0010 Third BWP 0001 Fourth BWP 1100 First and second BWP 1010 First and third BWP 1001 First and fourth BWP 0110 Second and third BWP 0101 Second and fourth BWP
  • the first control unit 111 may be configured to control to detect a preamble signal or channel on the target bandwidth block, the preamble signal or channel containing information about the future occupation time of the target bandwidth block.
  • the second control unit 113 may be configured to control to notify the base station of information about the future occupation time. In addition to the information related to the future occupancy time, the base station may also be informed about the congestion level of the target bandwidth block.
  • the second control unit 113 may also be configured to control to receive a downlink transmission that is sent by the base station based on the future occupation time of the target bandwidth block.
  • the UE can play a role of reporting channel availability by detecting a preamble signal or a channel, for example, it can help the base station to select a BWP and a corresponding CCA timing. By doing so, for example, in the case where it is determined that the same or different channel access technology (RAT) occupies a specific channel for a long time, the base station can omit unnecessary channel detection, thereby improving processing efficiency.
  • RAT channel access technology
  • This process can be viewed as an enhanced preamble detection with channel occupation time indication.
  • the preamble detection can be performed only at the BWP where the downlink transmission fails due to the failure of LBT (Listening before Transmission), and the energy detection can be applied to all BWPs that are attempted to be accessed.
  • LBT Listening before Transmission
  • channel occupancy information may vary according to the type of preamble.
  • an enhanced new radio (NR) channel or signal may be defined, which indicates, for example, the channel occupancy time and the congestion level of the intra-RAT device occupying the channel.
  • the type of preamble may also include, for example, an 802.11a/802.11ax preamble, where the channel occupancy duration and congestion level of the intra-RAT device occupying the channel may also be indicated.
  • the downlink transmission may be performed on the target bandwidth block through partial slot transmission. If the occupancy end time of the target bandwidth block is more than one time slot later than the planned start time of the downlink transmission, the downlink transmission is not performed through the target bandwidth block, that is, the use of the target bandwidth block can be abandoned.
  • FIG. 9A shows an example of transmission in the case where the user does not provide channel occupation information
  • FIG. 9B shows an example of transmission in the case where the user provides channel occupation information.
  • the UE when the user does not provide channel occupancy information, before uplink transmission, the UE performs LBT on each bandwidth block, where the BWP#1 part and the LBT of BWP#2 fail, so it is not in BWP#1 and Upstream transmission on BWP#2.
  • the base station before the downlink transmission, the base station performs LBT on each bandwidth block, where the LBT of BWP#2 fails, so the downlink transmission is not performed on BWP#2.
  • the UE performs LBT on each bandwidth block, of which the part of BWP#1 and the LBT of BWP#2 fail, so it is not in BWP#1 and BWP# 2 uplink transmission.
  • the UE sends channel occupancy information to the base station through BWP#0, which indicates the channel occupancy time of BWP#1, and the UE sends the channel occupancy information to the base station through BWP#3, which indicates the channel occupancy time of BWP#2.
  • the base station can determine the channel occupation stop time of BWP#1 and BWP#2.
  • the base station can perform downlink transmission on BWP#1 without LBT.
  • downlink transmission may be performed on BWP#1 through partial time slot transmission.
  • the base station since its occupancy end time is more than one time slot later than the scheduled start time of downlink transmission, the base station does not perform downlink transmission through BWP#2.
  • the base station may determine whether to perform the downlink transmission for the target bandwidth block based on the interval between the occupancy end time of the target bandwidth block and the planned start time of the downlink transmission Channel detection.
  • the base station may directly use the target bandwidth block to continue downlink transmission without performing channel detection.
  • the base station may determine the type of channel detection to be performed based on the interval between the occupation end time of the target bandwidth block and the planned start time of downlink transmission.
  • LBT types there are the following LBT types: CAT1LBT, that is, LBT is not executed; CAT2LBT, that is, LBT is not executed, and random rollback is not performed; CAT3LBT, that is, LBT is executed, and the size of the rollback competition window is fixed; CAT4LBT, that is, execute LBT, and the rollback competition window Variable in size.
  • the following interval may be defined: the interval between the occupancy end time of the target bandwidth block determined according to the preamble signal detected by the UE and the specified start time of downlink transmission. For example, if the interval is less than 16 ⁇ m, downlink transmission can be performed immediately without LBT; if the interval is less than 16 ⁇ m and 25 ⁇ m, a single shot LBT can be performed; if the interval is >25 ⁇ m , You can do CAT4LBT. It should be noted that the above examples are only illustrative and not restrictive.
  • the above-mentioned downlink transmission may be performed within the shared occupation time (shared COT) of the bandwidth block set by the user equipment and the base station.
  • shared COT shared occupation time
  • the shared occupation time may be obtained by the user equipment and shared with the base station.
  • the channel occupancy time is acquired by the UE and shared with the base station for downlink transmission.
  • the shared occupancy time can also be obtained by the base station and shared with the user equipment.
  • FIG. 10A shows an example of transmission in the case where the user does not provide channel occupancy information
  • FIG. 10B shows an example of transmission in the case where the user provides channel occupancy information.
  • the channel occupation time is acquired by the base station for downlink transmission and shared with the UE for uplink transmission.
  • the base station before downlink transmission, the base station performs LBT on each bandwidth block, and the BWP#1 part and the LBT of BWP#2 fail, so the BWP#1 and BWP#2 are not used for downlink transmission.
  • the UE before uplink transmission, the UE performs LBT on each bandwidth block and performs uplink transmission.
  • the base station before performing downlink transmission again within the channel occupation time, the base station performs LBT on each bandwidth block, where the BWP#1 part and the LBT of BWP#2 fail, so the downlink transmission is not performed on BWP#1 and BWP#2 .
  • the base station performs LBT on each bandwidth block, where the BWP#1 part and the LBT of BWP#2 fail, so they are not in BWP#1 and BWP# 2 Downstream transmission.
  • the UE performs LBT on each bandwidth block and performs uplink transmission.
  • the UE sends channel occupancy information to the base station through BWP#1, which indicates the channel occupancy time of BWP#1, and the UE sends the channel occupancy information to the base station through BWP#2, which indicates the channel occupancy time of BWP#2.
  • the base station can determine the channel occupation stop time of BWP#1 and BWP#2.
  • the base station since its occupied end time is more than one time slot later than the scheduled start time of downlink transmission, the base station does not perform downlink transmission through BWP#2.
  • the second control unit 113 may be configured to control to transmit information related to the future occupancy time through another bandwidth block other than the target bandwidth block.
  • the other bandwidth block includes a bandwidth block having a preset correspondence relationship with the target bandwidth block, so that the base station can determine the target bandwidth block based on the predetermined correspondence relationship.
  • the preset correspondence relationship may include an adjacent relationship.
  • the UE sends channel occupancy information to the base station through BWP#0, which indicates the channel occupancy time of BWP#1 adjacent to BWP#0, and the UE sends the channel occupancy information to the base station through BWP#3, which indicates BWP #3 Adjacent channel occupancy time of BWP#2.
  • the indication information sent by the UE may include, for example, an indication bit to indicate the adjacent direction of the BWP.
  • the preset correspondence relationship is not limited to the above example, but may include any preset correspondence relationship, as long as it enables the base station to determine the target BWP according to the BWP that sends the indication information.
  • the second control unit 113 may be further configured to control to send a preamble signal or channel in the case of uplink transmission using the target bandwidth block, the preamble signal or channel containing Information about the future occupancy time. Therefore, other devices can determine the occupancy of the target bandwidth block by the current device.
  • the base station may determine the future occupancy time of the target bandwidth block, and send indication information about the future occupancy time of the target bandwidth block to the user equipment, for example, through DCI and/or RRC signaling to the user equipment Send indication information about the future occupancy time, so that the user equipment can perform corresponding data transmission.
  • the base station configures multiple bandwidth blocks for the user equipment by sending high-level signaling such as RRC signaling to the user equipment, includes the indication information of the activated bandwidth blocks in the downlink control information, and notifies the user equipment, and Determine the future occupation duration of the activated target bandwidth block, and send the indication information of the future occupation duration to the user equipment in the downlink control information, where the future occupation duration corresponds to a certain number of time slots.
  • the wireless communication method includes the step S210 of receiving indication information about a set of bandwidth blocks from a base station, where the set of bandwidth blocks includes one or more bandwidth blocks.
  • the method further includes the step S220 of communicating with the base station by using at least one bandwidth block in the bandwidth block set.
  • the embodiments described above can be implemented on the user equipment side.
  • the embodiments of the present disclosure also include an apparatus and method that can be implemented on the base station side.
  • an explanation will be given of embodiments of the apparatus and method corresponding to the base station side according to the embodiments of the present disclosure.
  • the electronic device 100 for wireless communication includes a processing circuit 110.
  • the processing circuit 110 includes a first control unit 111 and a second control unit 113.
  • the first control unit 111 is configured to control to send indication information about a set of bandwidth blocks to the user equipment, the set of bandwidth blocks including one or more bandwidth blocks.
  • the second control unit 113 is configured to control to communicate with the user equipment using at least one bandwidth block in the set of bandwidth blocks.
  • the second control unit 113 may also be configured to control to receive information about the future occupation time of the target bandwidth block from the user equipment.
  • the information about the future occupancy duration may be obtained by the user equipment by detecting the preamble signal or channel on the target bandwidth block.
  • the second control unit 113 may be further configured to control based on the future occupation time of the target bandwidth block to send downlink transmission to the user equipment.
  • the downlink transmission may be performed within the shared occupation time of the bandwidth block set by the user equipment and the base station.
  • the shared occupation time may be obtained by the user equipment or may be obtained by the base station.
  • the downlink transmission can be performed on the target bandwidth block through partial time slot transmission. If the occupancy end time of the target bandwidth block is more than one time slot later than the planned start time of the downlink transmission, the downlink transmission is not performed through the target bandwidth block.
  • the second control unit 113 may be further configured to determine whether to perform channel detection for the downlink transmission for the target bandwidth block based on the interval between the occupied end time of the target bandwidth block and the planned start time of the downlink transmission, And/or determine the type of channel detection.
  • the second control unit 113 may also be configured to control to receive information related to the future occupation time through another bandwidth block other than the target bandwidth block.
  • the another bandwidth block may include a bandwidth block having a preset correspondence relationship with the target bandwidth block, so that the target bandwidth block may be determined based on the predetermined correspondence relationship.
  • FIG. 3 shows a process example of the corresponding wireless communication method.
  • indication information about a set of bandwidth blocks is sent to the user equipment, and the set of bandwidth blocks includes one or more bandwidth blocks.
  • the set of bandwidth blocks includes one or more bandwidth blocks.
  • at S320 at least one bandwidth block in the bandwidth block set is used to communicate with the user equipment.
  • an embodiment explaining the apparatus and method of another aspect of the present disclosure is an embodiment, which includes the apparatus and method corresponding to the user equipment side and the apparatus and method corresponding to the base station side. Since part of the content of this aspect has been described above in conjunction with the embodiment of the first aspect, repeated description of certain details will be omitted below.
  • the electronic device 100 for wireless communication includes a processing circuit 110.
  • the processing circuit 110 includes a first control unit 111 and a second control unit 113.
  • the first control unit 111 is configured to perform control to detect a preamble signal or channel on the target bandwidth block, the preamble signal or channel containing information about the future occupation length of the target bandwidth block.
  • the second control unit 113 is configured to perform control to notify the base station of information about the future occupation time.
  • the base station may be notified of the information about the congestion degree of the target bandwidth block.
  • the second control unit 113 may also be configured to control to receive a downlink transmission that is sent by the base station based on the future occupation time of the target bandwidth block.
  • the downlink transmission may be performed within the shared occupation time of the configured bandwidth block set by the user equipment and the base station.
  • the shared occupation time may be obtained by the user equipment or obtained by the base station.
  • the downlink transmission may be performed on the target bandwidth block through partial time slot transmission. If the occupancy end time of the target bandwidth block is more than one time slot later than the planned start time of the downlink transmission, the downlink transmission is not performed through the target bandwidth block.
  • the base station may also determine whether to perform channel detection for the downlink transmission for the target bandwidth block based on the interval between the occupied end time of the target bandwidth block and the planned start time of the downlink transmission, and/or may determine the type of channel detection.
  • the second control unit 113 may also be configured to control to send information related to the future occupation time through another bandwidth block in addition to the target bandwidth block.
  • the another bandwidth block may include a bandwidth block having a preset correspondence relationship with the target bandwidth block, so that the base station can determine the target bandwidth block based on the predetermined correspondence relationship.
  • the second control unit 113 may also be configured to control to send a preamble signal or channel, the preamble signal or channel containing information about the future occupation duration of the used bandwidth block.
  • the second control unit 113 may also be configured to control to receive indication information about the set of bandwidth blocks from the base station, the set of bandwidth blocks including one or more bandwidth blocks.
  • the indication information may be included in the radio resource control signaling, and indicates the set of configured bandwidth blocks.
  • the indication information may be included in the downlink control indication and indicate the set of activated bandwidth blocks.
  • the bit width of the indication information may be based on the number of configured bandwidth blocks.
  • FIG. 4 shows a process example of the corresponding wireless communication method.
  • the method includes the step S410 of detecting the preamble signal or channel on the target bandwidth block.
  • the preamble or channel contains information about the future occupation time of the target bandwidth block.
  • the method further includes the step S420 of notifying the base station of information about the future occupation time.
  • the electronic device 100 for wireless communication includes the processing circuit 110.
  • the processing circuit 110 includes a first control unit 111 and a second control unit 113.
  • the first control unit 111 is configured to control to receive information about the future occupation time of the target bandwidth block from the user equipment.
  • the information about the future occupancy duration may be obtained by the user equipment by detecting the preamble signal or channel on the target bandwidth block.
  • the second control unit 113 is configured to control based on the future occupation duration to send downlink transmission to the user equipment.
  • the downlink transmission may be performed within the shared occupation time of the bandwidth block set by the user equipment and the base station.
  • the shared occupation time may be obtained by the user equipment or obtained by the base station.
  • the downlink transmission can be performed on the target bandwidth block through partial time slot transmission. If the occupancy end time of the target bandwidth block is more than one time slot later than the planned start time of the downlink transmission, the downlink transmission is not performed through the target bandwidth block.
  • the second control unit 113 may be further configured to determine whether to perform channel detection for the downlink transmission for the target bandwidth block based on the interval between the occupied end time of the target bandwidth block and the planned start time of the downlink transmission, And/or the type of channel detection can be determined.
  • the first control unit 111 may also be configured to control to receive information related to the future occupation time through another bandwidth block in addition to the target bandwidth block.
  • the another bandwidth block may include a bandwidth block having a preset correspondence relationship with the target bandwidth block, and the target bandwidth block may be determined based on the predetermined correspondence relationship.
  • the second control unit 113 may also be configured to control to send indication information about the set of bandwidth blocks to the user equipment, the set of bandwidth blocks including one or more bandwidth blocks.
  • FIG. 5 shows a process example of the corresponding wireless communication method.
  • the method includes the step S510 of receiving information about the future occupation length of the target bandwidth block from the user equipment.
  • the information about the future occupancy duration may be obtained by the user equipment by detecting the preamble signal or channel on the target bandwidth block.
  • the method further includes the step S520 of sending downlink transmission to the user equipment based on the future occupation time.
  • the electronic device for wireless communication includes a processing circuit that includes a control unit configured to: configure multiple bandwidth blocks for user equipment through radio resource control signaling; and provide user equipment with downlink control information Activate one or more configured bandwidth blocks; determine the future occupation time of the target bandwidth block; and send indication information of the future occupation time of the target bandwidth block to the user equipment.
  • a control unit configured to: configure multiple bandwidth blocks for user equipment through radio resource control signaling; and provide user equipment with downlink control information Activate one or more configured bandwidth blocks; determine the future occupation time of the target bandwidth block; and send indication information of the future occupation time of the target bandwidth block to the user equipment.
  • control unit may be further configured to generate downlink control information and/or radio resource control signaling containing indication information of future occupation time; and send indication information of future occupation time to the user equipment.
  • control unit may activate multiple configured bandwidth blocks for the user equipment through the downlink control information.
  • the electronic device is a base station.
  • the method for wireless communication includes: configuring multiple bandwidth blocks for user equipment through radio resource control signaling; activating one or more configured bandwidth blocks for user equipment through downlink control information; and determining a target bandwidth block The future occupancy time; and sending indication information of the future occupancy time of the target bandwidth block to the user equipment.
  • the electronic device for wireless communication includes a processing circuit that includes a processing unit configured to: perform corresponding bandwidth block configuration according to radio resource control signaling that includes configuration information of multiple bandwidth blocks;
  • the downlink control information activates one or more configured bandwidth blocks;
  • the base station receives indication information including the future occupation time of the target bandwidth block; and performs data transmission with the base station according to the indication information of the future occupation time of the target bandwidth block.
  • the processing unit may be configured to activate multiple configured bandwidth blocks according to the downlink control information.
  • the electronic device is user equipment.
  • the method for wireless communication includes: performing corresponding bandwidth block configuration according to wireless resource control signaling that includes configuration information of multiple bandwidth blocks; activating one or more configured bandwidth blocks according to downlink control information;
  • the base station receives indication information including the future occupation time of the target bandwidth block; and performs data transmission with the base station according to the indication information of the future occupation time of the target bandwidth block.
  • embodiments of the present disclosure also include computer-readable media, which include executable instructions, which when executed by the information processing device, cause the information processing device to perform the above method.
  • each step of the above method and each constituent module and/or unit of the above device may be implemented as software, firmware, hardware, or a combination thereof.
  • a program that constitutes software for implementing the above method may be installed from a storage medium or a network to a computer with a dedicated hardware structure (such as the general-purpose computer 1400 shown in FIG. 7).
  • a dedicated hardware structure such as the general-purpose computer 1400 shown in FIG. 7.
  • a central processing unit (ie, CPU) 1401 performs various processes according to a program stored in a read-only memory (ROM) 1402 or a program loaded from a storage section 1408 into a random access memory (RAM) 1403.
  • ROM read-only memory
  • RAM random access memory
  • data required when the CPU 1401 performs various processes and the like are also stored as necessary.
  • the CPU 1401, ROM 1402, and RAM 1403 are linked to each other via a bus 1404.
  • the input/output interface 1405 is also linked to the bus 1404.
  • input section 1406 including keyboard, mouse, etc.
  • output section 1407 including display, such as cathode ray tube (CRT), liquid crystal display (LCD), etc., and speakers, etc.
  • a storage section 1408 including a hard disk, etc.
  • a communication section 1409 including a network interface card such as a LAN card, a modem, etc.
  • the communication section 1409 performs communication processing via a network such as the Internet.
  • the driver 1410 may also be linked to the input/output interface 1405 as needed.
  • a removable medium 1411 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or the like is installed on the drive 1410 as necessary, so that the computer program read out therefrom is installed in the storage portion 1408 as necessary.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 1411.
  • a storage medium is not limited to the removable medium 1411 shown in FIG. 6 in which the program is stored and distributed separately from the device to provide the program to the user.
  • removable media 1411 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read-only memory (CD-ROM) and digital versatile disks (DVD)), and magneto-optical disks (including mini disks (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be a ROM 1402, a hard disk included in the storage section 1408, or the like, in which programs are stored, and distributed to users together with devices containing them.
  • Embodiments of the present disclosure also relate to a program product that stores machine-readable instruction codes.
  • the instruction code When the instruction code is read and executed by a machine, the above method according to an embodiment of the present disclosure may be executed.
  • a storage medium for carrying the above-mentioned program product storing machine-readable instruction codes is also included in the disclosure of the present disclosure.
  • the storage medium includes but is not limited to a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and so on.
  • the electronic device may be implemented as any type of gNB, evolved Node B (eNB), such as a macro eNB and a small eNB.
  • eNB evolved Node B
  • the small eNB may be an eNB covering a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the electronic device may be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • BTS base transceiver station
  • the electronic device may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless head ends (RRHs) provided at different places from the main body.
  • a main body also referred to as a base station device
  • RRHs remote wireless head ends
  • various types of terminals that will be described below can all operate as a base station by temporarily or semi-permanently performing base station functions.
  • the electronic device When the electronic device is used on the user equipment side, it can be implemented as a mobile terminal (such as a smart phone, tablet personal computer (PC), notebook PC, portable game terminal, portable/dongle-type mobile router, and digital camera) or Vehicle-mounted terminals (such as car navigation equipment).
  • the electronic device may be a wireless communication module (such as an integrated circuit module including a single or multiple wafers) mounted on each of the above terminals.
  • the smartphone 2500 includes a processor 2501, a memory 2502, a storage device 2503, an external connection interface 2504, a camera device 2506, a sensor 2507, a microphone 2508, an input device 2509, a display device 2510, a speaker 2511, a wireless communication interface 2512, one or more Antenna switch 2515, one or more antennas 2516, bus 2517, battery 2518, and auxiliary controller 2519.
  • the processor 2501 may be, for example, a CPU or a system on chip (SoC), and controls functions of the application layer and other layers of the smartphone 2500.
  • the memory 2502 includes RAM and ROM, and stores data and programs executed by the processor 2501.
  • the storage device 2503 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2504 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 2500.
  • USB universal serial bus
  • the imaging device 2506 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 2507 may include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 2508 converts the sound input to the smartphone 2500 into an audio signal.
  • the input device 2509 includes, for example, a touch sensor configured to detect a touch on the screen of the display device 2510, a keypad, a keyboard, a button, or a switch, and receives operation or information input from the user.
  • the display device 2510 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2500.
  • the speaker 2511 converts the audio signal output from the smartphone 2500 into sound.
  • the wireless communication interface 2512 supports any cellular communication scheme (such as LTE and LTE-advanced), and performs wireless communication.
  • the wireless communication interface 2512 may generally include, for example, a baseband (BB) processor 2513 and a radio frequency (RF) circuit 2514.
  • the BB processor 2513 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2514 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 2516.
  • the wireless communication interface 2512 may be a chip module on which the BB processor 2513 and the RF circuit 2514 are integrated. As shown in FIG.
  • the wireless communication interface 2512 may include multiple BB processors 2513 and multiple RF circuits 2514.
  • FIG. 7 shows an example in which the wireless communication interface 2512 includes a plurality of BB processors 2513 and a plurality of RF circuits 2514, the wireless communication interface 2512 may also include a single BB processor 2513 or a single RF circuit 2514.
  • the wireless communication interface 2512 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 2512 may include a BB processor 2513 and an RF circuit 2514 for each wireless communication scheme.
  • Each of the antenna switches 2515 switches the connection destination of the antenna 2516 between a plurality of circuits included in the wireless communication interface 2512 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 2516 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 2512 to transmit and receive wireless signals.
  • the smartphone 2500 may include multiple antennas 2516.
  • FIG. 7 shows an example in which the smartphone 2500 includes multiple antennas 2516, the smartphone 2500 may also include a single antenna 2516.
  • the smartphone 2500 may include an antenna 2516 for each wireless communication scheme.
  • the antenna switch 2515 may be omitted from the configuration of the smartphone 2500.
  • the bus 2517 connects the processor 2501, memory 2502, storage device 2503, external connection interface 2504, camera device 2506, sensor 2507, microphone 2508, input device 2509, display device 2510, speaker 2511, wireless communication interface 2512, and auxiliary controller 2519 to each other connection.
  • the battery 2518 supplies power to each block of the smartphone 2500 shown in FIG. 7 via a feeder, which is partially shown as a dotted line in the figure.
  • the auxiliary controller 2519 operates the minimum necessary functions of the smartphone 2500 in the sleep mode, for example.
  • the transceiver device of the wireless communication device on the user equipment side may be implemented by the wireless communication interface 2512.
  • At least a part of the processing circuit and/or the function of each unit of the electronic device on the user equipment side or the wireless communication device according to an embodiment of the present disclosure may also be implemented by the processor 2501 or the auxiliary controller 2519.
  • the power consumption of the battery 2518 may be reduced by the auxiliary controller 2519 performing part of the functions of the processor 2501.
  • the processor 2501 or the auxiliary controller 2519 may execute the processing circuit and/or each unit of the electronic device or wireless communication device of the user equipment side according to an embodiment of the present disclosure by executing the program stored in the memory 2502 or the storage device 2503 At least part of the function.
  • the gNB 2300 includes one or more antennas 2310 and base station equipment 2320.
  • the base station device 2320 and each antenna 2310 may be connected to each other via a radio frequency (RF) cable.
  • RF radio frequency
  • Each of the antennas 2310 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 2320 to transmit and receive wireless signals.
  • gNB 2300 may include multiple antennas 2310.
  • multiple antennas 2310 may be compatible with multiple frequency bands used by gNB 2300.
  • FIG. 8 shows an example in which gNB 2300 includes multiple antennas 2310, gNB 2300 may also include a single antenna 2310.
  • the base station device 2320 includes a controller 2321, a memory 2322, a network interface 2323, and a wireless communication interface 2325.
  • the controller 2321 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 2320. For example, the controller 2321 generates a data packet based on the data in the signal processed by the wireless communication interface 2325, and transfers the generated packet via the network interface 2323. The controller 2321 may bundle data from multiple baseband processors to generate bundle packets, and deliver the generated bundle packets. The controller 2321 may have a logical function of performing control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 2322 includes RAM and ROM, and stores programs executed by the controller 2321 and various types of control data (such as terminal lists, transmission power data, and scheduling data).
  • the network interface 2323 is a communication interface for connecting the base station device 2320 to the core network 2324.
  • the controller 2321 may communicate with the core network node or another gNB via the network interface 2323.
  • gNB 2300 and the core network node or other gNB may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 2323 can also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 2323 is a wireless communication interface, the network interface 2323 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 2325.
  • the wireless communication interface 2325 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to terminals located in the cell of the gNB 2300 via the antenna 2310.
  • the wireless communication interface 2325 may generally include, for example, a BB processor 2326 and an RF circuit 2327.
  • the BB processor 2326 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, media access control (MAC), radio link control (RLC), and packet data aggregation protocol (PDCP)) various types of signal processing.
  • the BB processor 2326 may have some or all of the above-mentioned logic functions.
  • the BB processor 2326 may be a memory storing a communication control program, or a module including a processor configured to execute the program and related circuits.
  • the update program can change the function of the BB processor 2326.
  • the module may be a card or blade inserted into the slot of the base station device 2320. Alternatively, the module may also be a chip mounted on a card or blade.
  • the RF circuit 2327 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 2310.
  • the wireless communication interface 2325 may include multiple BB processors 2326.
  • multiple BB processors 2326 may be compatible with multiple frequency bands used by gNB 2300.
  • the wireless communication interface 2325 may include a plurality of RF circuits 2327.
  • multiple RF circuits 2327 may be compatible with multiple antenna elements.
  • FIG. 8 shows an example in which the wireless communication interface 2325 includes multiple BB processors 2326 and multiple RF circuits 2327, the wireless communication interface 2325 may also include a single BB processor 2326 or a single RF circuit 2327.
  • the transceiver device of the wireless communication device on the base station side may be implemented by the wireless communication interface 2325.
  • At least a part of the functions of the processing circuit of the electronic device on the base station side or the wireless communication device and/or the units according to the embodiments of the present disclosure may also be implemented by the controller 2321.
  • the controller 2321 may execute at least a part of the functions of the processing circuit and/or each unit of the electronic device on the base station side or the wireless communication device according to the embodiment of the present disclosure by executing the program stored in the memory 2322.
  • the method of the present disclosure is not limited to being executed in the chronological order described in the specification, but may be executed in other chronological order, in parallel, or independently. Therefore, the execution order of the methods described in this specification does not limit the technical scope of the present disclosure.

Abstract

本公开涉及电子装置、无线通信方法和计算机可读介质。根据一个实施例的用于无线通信的电子装置包括处理电路。处理电路被配置为进行控制以从基站接收关于带宽块集合的指示信息,带宽块集合包括一个或更多个带宽块。处理电路还被配置为进行控制以利用带宽块集合中的至少一个带宽块与基站通信。

Description

电子装置、无线通信方法和计算机可读介质
本申请要求于2019年1月10日提交中国专利局、申请号为201910024027.7、发明名称为“电子装置、无线通信方法和计算机可读介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开一般涉及无线通信领域,更具体地,涉及用于无线通信的电子装置、无线通信方法以及计算机可读介质。
背景技术
带宽块(bandwidth part,BWP)是指载波上的连续资源块的集合。在大于20MHz的载波内可以进行基于BWP的操作,例如配置多个BWP,激活单个或多个BWP,以及基于空闲信道评估(CCA)在一个或多个BWP上发送例如物理下行共享信道(PDSCH)或物理上行共享信道(PUSCH)。
发明内容
在下文中给出了关于本公开实施例的简要概述,以便提供关于本公开的某些方面的基本理解。应当理解,以下概述并不是关于本公开的穷举性概述。它并不是意图确定本公开的关键或重要部分,也不是意图限定本公开的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据一个实施例,提供一种用于无线通信的电子装置,其包括处理电路。处理电路被配置为进行控制以从基站接收关于带宽块集合的指示信息,带宽块集合包括一个或更多个带宽块。处理电路还被配置为进行控制以利用带宽块集合中的至少一个带宽块与基站通信。
根据一个实施例,一种无线通信方法包括从基站接收关于带宽块集合的指示信息的步骤,带宽块集合包括一个或更多个带宽块。该方法还包括利用带宽块集合中的至少一个带宽块与基站通信的步骤。
根据一个实施例,提供一种用于无线通信的电子装置,其包括处理电路。处理电路被配置为进行控制以向用户设备发送关于带宽块集合的指示信息,带宽块集合包括一个或更多个带宽块。处理电路还被配置为进行控制以利用带宽块集合中的至少一个带宽块与用户设备通信。
根据一个实施例,一种无线通信方法包括向用户设备发送关于带宽块集合的指示信息的步骤,带宽块集合包括一个或更多个带宽块。该方法还包括利用带宽块集合中的至少一个带宽块与用户设备通信的步骤。
根据一个实施例,提供一种用于无线通信的电子装置,其包括处理电路。处理电路被配置为进行控制以检测目标带宽块上的前导信号或信道,该前导信号或信道包含与目标带宽块的未来占用时长有关的信息。处理电路还被配置为进行控制以将与未来占用时长有关的信息通知给基站。
根据一个实施例,一种无线通信方法包括检测目标带宽块上的前导信号或信道的步骤,该前导信号或信道包含与目标带宽块的未来占用时长有关的信息。该方法还包括将与未来占用时长有关的信息通知给基站的步骤。
根据一个实施例,提供一种用于无线通信的电子装置,其包括处理电路。处理电路被配置为进行控制以从用户设备接收与目标带宽块的未来占用时长有关的信息,其中,与未来占用时长有关的信息是用户设备通过对目标带宽块上的前导信号或信道进行检测而获得的。处理电路还被配置为以及基于未来占用时长,进行控制以向用户设备发送下行传输。
根据一个实施例,一种无线通信方法包括从用户设备接收与目标带宽块的未来占用时长有关的信息的步骤,其中,与未来占用时长有关的信息是用户设备通过对目标带宽块上的前导信号或信道进行检测而获得的。该方法还包括基于未来占用时长向用户设备发送下行传输的步骤。
根据另一个实施例,提供一种计算机可读介质,其包括可执行指令,当可执行指令被信息处理设备执行时,使得信息处理设备执行上述方法。
通过本公开实施例,例如能够便于进行带宽块的配置和/或利用带宽块进行传输。
附图说明
本公开可以通过参考下文中结合附图所给出的描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分,而且用来进一步举例说明本公开的优选实施例和解释本公开的原理和优点。在附图中:
图1是示出根据本公开一个实施例的用于无线通信的电子装置的配置示例的框图;
图2是示出根据本公开的一个实施例的无线通信方法的过程示例的流程图;
图3是示出根据本公开的另一个实施例的无线通信方法的过程示例的流程图;
图4是示出根据本公开的再一个实施例的无线通信方法的过程示例的流程图;
图5是示出根据本公开的又一个实施例的无线通信方法的过程示例的流程图;
图6是示出实现本公开的方法和设备的计算机的示例性结构的框图;
图7是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图8是示出可以应用本公开内容的技术的gNB的示意性配置的示例的框图;
图9A和图9B是用于说明在用户设备与基站的共享信道占用时间内进行的示例传输过程的示意图;以及
图10A和图10B是用于说明在用户设备与基站的共享信道占用时间内进行的另一示例传输过程的示意图。
具体实施方式
下面将参照附图来说明本公开的实施例。在本公开的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。应当注意,为了清楚的目的,附图和说明 中省略了与本公开无关的、本领域普通技术人员已知的部件和处理的表示和描述。
下面参照图1说明根据本公开的一个实施例的用于无线通信的电子装置的配置示例。如图1所示,根据本实施例的用于无线通信的电子装置100包括处理电路110。处理电路110例如可以实现为特定芯片、芯片组或者中央处理单元(CPU)等。
根据本实施例的电子装置例如可以实现在用户设备(UE)侧。
处理电路110包括第一控制单元111和第二控制单元113。需要指出,虽然附图中以功能块的形式示出了第一控制单元111和第二控制单元113,然而应理解,各单元的功能也可以由处理电路作为一个整体来实现,而并不一定是通过处理电路中分立的实际部件来实现。另外,虽然图中以一个框示出处理电路,然而电子装置可以包括多个处理电路,并且可以各单元的功能分布到多个处理电路中,从而由多个处理电路协同操作来执行这些功能。
第一控制单元111被配置为进行控制以从基站接收关于带宽块集合的指示信息,该带宽块集合包括一个或更多个带宽块。
第二控制单元113被配置为进行控制以利用带宽块集合中的至少一个带宽块与基站通信。
例如,指示信息可以被包含在无线资源控制(RRC)信令中,并且指示信息可以指示被配置的带宽块的集合。在这种情况下,UE例如可以以免授权(grant-free)的方式通过所配置的多个带宽块中选择用于进行上行传输的带宽块。
或者,指示信息可以被包含在下行控制信息(DCI)中,并且指示信息可以指示被激活的带宽块的集合。在这种情况下,由基站侧在所配置的多个带宽块中确定被激活的一个或多个带宽块,并将被激活的带宽块的集合通知给UE。
被激活的带宽块为被配置的带宽块的子集,被激活的带宽块的集合数量取决于被配置的带宽块的数量。相应地,指示信息的位宽度可以是基于被配置的带宽块的数量确定的。
在描述根据本公开实施例的针对BWP集合的指示信息之前,作为比 较示例,首先描述DCI中用于指示BWP的指示信息的位宽度的确定方式。
用于指示BWP的指示信息的位宽度可以被确定为
Figure PCTCN2020070370-appb-000001
其中
Figure PCTCN2020070370-appb-000002
表示上取整。在n BWP,RRC≤3的情况下可以设置n BWP=n BWP,RRC+1,在这种情况下,BWP指示相当于高层参数BWP-ID。或者,可以设置n BWP=n BWP,RRC,假设所配置的BWP的数量为4,可以如下面的表1定义BWP指示。
表1
BWP指示字段的值(2比特) BWP
00 由高层配置的第一BWP
01 由高层配置的第二BWP
10 由高层配置的第三BWP
11 由高层配置的第四BWP
与上面描述的针对BWP的指示信息不同,根据本实施例的指示信息所指示的是BWP的集合,其中每个集合可以包括一个或多个BWP。
同样假设所配置的BWP的数量为4,则BWP集合的数量为15。相应地,可以将指示信息的位宽度设置为4,并且例如可以如下面的表2定义BWP集合指示。
表2
指示字段的值(4比特) BWP集合
0000 由高层配置的第一BWP
0001 由高层配置的第二BWP
0010 由高层配置的第三BWP
0011 由高层配置的第四BWP
0100 第一和第二BWP
0101 第一和第三BWP
0110 第一和第四BWP
0111 第二和第三BWP
1000 第二和第四BWP
1001 第三和第四BWP
1010 第一和第二和第三BWP
1011 第一和第二和第四BWP
1100 第一和第三和第四BWP
1101 第二和第三和第四BWP
1110 第一和第二和第三和第四BWP
1111 保留
需要指出,BWP集合的指示信息的设置不限于上述示例,而是可以根据多种方式设置。例如,也可以以类似于位图的方式定义BWP集合指示,其中每个位对应于所配置的一个BWP,当某个位的值为1时表示相应的BWP被激活,如下面的表3所示。
表3
指示字段的值(4比特) BWP集合
1000 第一BWP
0100 第二BWP
0010 第三BWP
0001 第四BWP
1100 第一和第二BWP
1010 第一和第三BWP
1001 第一和第四BWP
0110 第二和第三BWP
0101 第二和第四BWP
0011 第三和第四BWP
1110 第一和第二和第三BWP
1101 第一和第二和第四BWP
1011 第一和第三和第四BWP
0111 第二和第三和第四BWP
1111 第一和第二和第三和第四BWP
0000 保留
上面说明了实施例中与多BWP的配置和激活有关的内容,接下来说明与利用多个BWP进行传输有关的内容。
根据一个实施例,第一控制单元111可以被配置为进行控制以检测目标带宽块上的前导信号或信道,该前导信号或信道包含与目标带宽块的未来占用时长有关的信息。
第二控制单元113可以被配置为进行控制以将与未来占用时长有关的信息通知给基站。除了与未来占用时长有关的信息之外,还可以将与目标带宽块的拥堵程度有关的信息通知给基站。
进一步地,第二控制单元113还可以被配置为进行控制以接收下行传输,该下行传输是基站基于目标带宽块的未来占用时长而发送的。
也就是说,UE可以通过检测前导信号或信道来起到报告信道可用性的作用,从而例如可以帮助基站进行BWP的选择以及相应CCA定时的选择等。通过这样做,例如在确定相同的或不同的信道接入技术(RAT)长期占用特定信道的情况下,基站可以省略进行不必要的信道检测,从而提高处理效率。
该过程可以被看作一种具有信道占用时长指示的增强的前导检测。顺带提及,可以只在由于LBT(先侦听后传输)失败而未能进行下行传输的BWP处进行前导检测,而能量检测可以应用于所试图接入的全部BWP。
信道占用信息的具体形式可以根据前导的类型而不同。例如,可以定义增强的新无线(NR)信道或信号,其指示占据信道的RAT内装置的例 如信道占用时长和拥堵水平。此外,前导的类型还可以包括例如802.11a/802.11ax前导,其中也可以指示占据信道的RAT内装置的信道占用时长和拥堵水平。
接下来更具体地说明根据信道占用信息进行下行传输的示例方式。
根据一个实施例,如果目标带宽块的占用结束时间比下行传输的计划开始时间晚一个时隙以内,则可以通过部分时隙传输(partial slot transmission)在目标带宽块上进行下行传输。如果目标带宽块的占用结束时间比下行传输的计划开始时间晚超过一个时隙,则不通过目标带宽块进行下行传输,即,可以舍弃对该目标带宽块的使用。
参照图9A和图9B的示例,其中图9A示出了在用户没有提供信道占用信息的情况下的传输示例,图9B示出了在用户提供信道占用信息的情况下的传输示例。
如图9A所示,在用户没有提供信道占用信息的情况下,在上行传输前,UE对各带宽块进行LBT,其中BWP#1的部分以及BWP#2的LBT失败,因此不在BWP#1和BWP#2上进行上行传输。类似地,在下行传输前,基站对各带宽块进行LBT,其中BWP#2的LBT失败,因此不在BWP#2上进行下行传输。
对于用户提供信道占用信息的情况,如图9B所示,在上行传输前,UE对各带宽块进行LBT,其中BWP#1的部分以及BWP#2的LBT失败,因此不在BWP#1和BWP#2上进行上行传输。然而,UE通过BWP#0向基站发送信道占用信息,其中指示BWP#1的信道占用时间,并且UE通过BWP#3向基站发送信道占用信息,其中指示BWP#2的信道占用时间。根据信道占用信息,基站可以确定BWP#1和BWP#2的信道占用停止时间。
由于BWP#1的占用结束时间比下行传输的计划开始时间早,因此基站可以在不进行LBT的情况下在BWP#1上进行下行传输。
另外,尽管图中未示出,如果BWP#1的占用结束时间比下行传输的计划开始时晚一个时隙以内,则可以通过部分时隙传输在BWP#1上进行下行传输。
对于BWP#2,由于其占用结束时间比下行传输的计划开始时间晚超过 一个时隙,因此基站不通过BWP#2进行下行传输。
此外,在获得了与未来占用时长有关的信息的情况下,基站可以基于目标带宽块的占用结束时间与下行传输的计划开始时间之间的间隔来确定是否针对目标带宽块进行用于下行传输的信道检测。
例如,如果UE的检测结果指示没有其他设备在占据目标带宽块,则基站可以不进行信道检测而直接使用目标带宽块继续下行传输。
此外,基站可以基于目标带宽块的占用结束时间与下行传输的计划开始时间之间的间隔来确定所要进行的信道检测的类型。作为示例,存在以下LBT类型:CAT1LBT,即不执行LBT;CAT2LBT,即执行LBT,不执行随机回退;CAT3LBT,即执行LBT,回退竞争窗大小固定;CAT4LBT,即执行LBT,回退竞争窗大小可变。
可以定义以下间隔:根据UE检测的前导信号而确定的目标带宽块的占用结束时间与所指定的下行传输的开始时间之间的间隔。例如,如果该间隔小于16μm,则可以在不进行LBT的情况下立即进行下行传输;如果该间隔小于在16μm与25μm之间,则可以进行单次的(one shot)LBT;如果该间隔>25μm,则可以进行CAT4LBT。需要指出,上述示例仅仅是说明性的而非限制性的。
上面描述的下行传输可以是在用户设备与基站对带宽块集合的共享占用时间(shared COT)内进行的。
该共享占用时间可以是由用户设备获得并共享给基站的。例如,在图9A和图9B所示的示例中,信道占用时间由UE获取,并且被分享给基站用于下行传输。
此外,共享占用时间也可以是由基站获得并共享给用户设备的。
参见图10A和图10B,其中图10A示出了在用户没有提供信道占用信息的情况下的传输示例,图10B示出了在用户提供信道占用信息的情况下的传输示例。
如图10A所示,信道占用时间由基站获取用于下行传输,并且分享给UE进行上行传输。在用户没有提供信道占用信息的情况下,在下行传输前,基站对各带宽块进行LBT,其中BWP#1的部分以及BWP#2的LBT失败,因此不在BWP#1和BWP#2上进行下行传输。接下来,在上行传 输前,UE对各带宽块进行LBT,并进行上行传输。然后,当在该信道占用时间内再次进行下行传输前,基站对各带宽块进行LBT,其中BWP#1的部分以及BWP#2的LBT失败,因此不在BWP#1和BWP#2上进行下行传输。
对于用户提供信道占用信息的情况,如图10B所示,在下行传输前,基站对各带宽块进行LBT,其中BWP#1的部分以及BWP#2的LBT失败,因此不在BWP#1和BWP#2上进行下行传输。接下来,在上行传输前,UE对各带宽块进行LBT,并进行上行传输。在该过程中,UE通过BWP#1向基站发送信道占用信息,其中指示BWP#1的信道占用时间,并且UE通过BWP#2向基站发送信道占用信息,其中指示BWP#2的信道占用时间。根据信道占用信息,基站可以确定BWP#1和BWP#2的信道占用停止时间。
当在该信道占用时间内再次进行下行传输时,由于BWP#1的占用结束时间比下行传输的计划开始时晚一个时隙以内,因此可以通过部分时隙传输在BWP#1上进行下行传输。
对于BWP#2,由于其占用结束时间比下行传输的计划开始时间晚超过一个时隙,因此基站不通过BWP#2进行下行传输。
需要指出,上述示例仅仅是说明性的而非限制性的。
此外,根据一个实施例,第二控制单元113可以被配置为进行控制以通过除目标带宽块之外的另一带宽块发送与未来占用时长有关的信息。
该另一带宽块包括与目标带宽块具有预设对应关系的带宽块,使得基站能够基于预定对应关系确定所述目标带宽块。
例如,该预设对应关系可以包括相邻关系。再次参照图9B,UE通过BWP#0向基站发送信道占用信息,其中指示与BWP#0相邻的BWP#1的信道占用时间,并且UE通过BWP#3向基站发送信道占用信息,其中指示BWP#3相邻的BWP#2的信道占用时间。此外,UE发送的指示信息中例如可以包括指示位以表明所BWP的邻接方向。或者,可以设置轮转的对应关系,例如通过BWP#0指示BWP#1的占用信息,通过BWP#1指示BWP#2的占用信息,通过BWP#2指示BWP#3的占用信息,通过BWP#3指示BWP#0的占用信息。
需要指出,预设对应关系不限于上述示例,而是可以包括任意预先设定的对应关系,只要其使得基站能够根据发送指示信息的BWP确定目标BWP即可。
此外,根据一个实施例,第二控制单元113还可以被配置为在利用目标带宽块进行上行传输的情况下,进行控制以发送前导信号或信道,该前导信号或信道包含与对目标带宽块的未来占用时长有关的信息。从而,其他装置能够确定当前装置对目标带宽块的占用情况。
此外,根据一个实施例,可以由基站确定目标带宽块的未来占用时长,并将目标带宽块的未来占用时长有关的指示信息发送至用户设备,例如,通过DCI以及/或者RRC信令向用户设备发送未来占用时长有关的指示信息,以便用户设备进行相应的数据传输。具体地,例如,基站通过向用户设备发送如RRC信令的高层信令以为用户设备配置多个带宽块,将被激活的带宽块的指示信息包含于下行控制信息中并通知给用户设备,以及确定被激活的目标带宽块的未来占用时长,并将未来占用时长的指示信息包含于下行控制信息中发送至用户设备,其中,未来占用时长对应于一定数量的时隙。
在前面对根据本公开实施例的装置的说明中,显然也公开了一些方法和过程。接下来,在不重复前面描述过的细节的情况下,给出对根据本公开实施例的无线通信方法的说明。
如图2所示,根据本实施例的无线通信方法包括从基站接收关于带宽块集合的指示信息的步骤S210,其中带宽块集合包括一个或更多个带宽块。
此外,该方法还包括利用带宽块集合中的至少一个带宽块与基站通信的步骤S220。
上面描述了可以实现在用户设备侧的实施例。此外,本公开实施例还包括可以实现在基站侧的装置和方法。接下来,在不重复与前面描述过的细节相应的细节的情况下,给出对根据本公开实施例的对应于基站侧的装置和方法的实施例的说明。
同样参照图1,根据本实施例的用于无线通信的电子装置100包括处理电路110。处理电路110包括第一控制单元111和第二控制单元113。
第一控制单元111被配置为进行控制以向用户设备发送关于带宽块集合的指示信息,该带宽块集合包括一个或更多个带宽块。
第二控制单元113被配置为进行控制以利用带宽块集合中的至少一个带宽块与用户设备通信。
根据一个实施例,第二控制单元113还可以被配置为进行控制以从用户设备接收与目标带宽块的未来占用时长有关的信息。与未来占用时长有关的信息可以是用户设备通过对目标带宽块上的前导信号或信道进行检测而获得的。
根据一个实施例,第二控制单元113还可以被配置为基于目标带宽块的未来占用时长,进行控制以向用户设备发送下行传输。
该下行传输可以是在用户设备与基站对带宽块集合的共享占用时间内进行的。该共享占用时间可以是由用户设备获得的或者可以是由基站获得的。
如果目标带宽块的占用结束时间比下行传输的计划开始时间晚一个时隙以内,则可以通过部分时隙传输在目标带宽块上进行下行传输。如果目标带宽块的占用结束时间比下行传输的计划开始时间晚超过一个时隙,则不通过目标带宽块进行下行传输。
根据一个实施例,第二控制单元113还可以被配置为基于目标带宽块的占用结束时间与下行传输的计划开始时间之间的间隔来确定是否针对目标带宽块进行用于下行传输的信道检测,并且/或者确定信道检测的类型。
根据一个实施例,第二控制单元113还可以被配置为进行控制以通过除目标带宽块之外的另一带宽块接收与未来占用时长有关的信息。该另一带宽块可以包括与目标带宽块具有预设对应关系的带宽块,从而可以基于预定对应关系确定目标带宽块。
图3示出了相应无线通信方法的过程示例。如图3所示,在S310,向用户设备发送关于带宽块集合的指示信息,该带宽块集合包括一个或更多个带宽块。在S320,利用带宽块集合中的至少一个带宽块与用户设备通信。
上面说明了与多BWP的配置和激活有关的方面的实施例,尽管其中 涉及了与利用多个BWP进行传输的方面,然而这两个方面的实施例可以彼此独立地实施。
接下来,说明本公开另一方面的装置和方法的是实施例,其中包括对应于用户设备侧的装置和方法以及对应于基站侧的装置和方法。由于该方面的部分内容已经在前面结合第一方面的实施例进行了说明,因此下面会省略对某些细节的重复说明。
同样参照图1,根据本实施例的用于无线通信的电子装置100包括处理电路110。处理电路110包括第一控制单元111和第二控制单元113。
第一控制单元111被配置为进行控制以检测目标带宽块上的前导信号或信道,该前导信号或信道包含与目标带宽块的未来占用时长有关的信息。
第二控制单元113被配置为进行控制以将与未来占用时长有关的信息通知给基站。此外,还可以将与目标带宽块的拥堵程度有关的信息通知给基站。
根据一个实施例,第二控制单元113还可以被配置为进行控制以接收下行传输,该下行传输是基站基于目标带宽块的未来占用时长而发送的。
该下行传输可以是在用户设备与基站对被配置的带宽块集合的共享占用时间内进行的。共享占用时间可以是由用户设备获得的或者是由基站获得的。
如果目标带宽块的占用结束时间比所述下行传输的计划开始时间晚一个时隙以内,则可以通过部分时隙传输在目标带宽块上进行下行传输。如果目标带宽块的占用结束时间比下行传输的计划开始时间晚超过一个时隙,则不通过目标带宽块进行下行传输。
此外,基站还可以基于目标带宽块的占用结束时间与下行传输的计划开始时间之间的间隔来确定是否针对目标带宽块进行用于下行传输的信道检测,并且/或者可以确定信道检测的类型。
根据一个实施例,第二控制单元113还可以被配置为进行控制以通过除目标带宽块之外的另一带宽块发送与未来占用时长有关的信息。
该另一带宽块可以包括与目标带宽块具有预设对应关系的带宽块,使得基站能够基于预定对应关系确定目标带宽块。
根据一个实施例,第二控制单元113还可以被配置为进行控制以发送前导信号或信道,该前导信号或信道包含与所使用的带宽块的未来占用时长有关的信息。
根据一个实施例,第二控制单元113还可以被配置为进行控制以从基站接收关于带宽块集合的指示信息,带宽块集合包括一个或更多个带宽块。
该指示信息可以被包含在无线资源控制信令中,并且指示被配置的带宽块的集合。或者,该指示信息可以被包含在下行控制指示中,并且指示被激活的带宽块的集合。
该指示信息的位宽度可以基于被配置的带宽块的数量。
图4示出了相应的无线通信方法的过程示例。如图4所示,该方法包括检测目标带宽块上的前导信号或信道的步骤S410。该前导信号或信道包含与目标带宽块的未来占用时长有关的信息。该方法还包括将与未来占用时长有关的信息通知给基站的步骤S420。
再次参照图1说明本方面中实现在基站侧的实施例。
根据本实施例的用于无线通信的电子装置100包括处理电路110。处理电路110包括第一控制单元111和第二控制单元113。
第一控制单元111被配置为进行控制以从用户设备接收与目标带宽块的未来占用时长有关的信息。与未来占用时长有关的信息可以是用户设备通过对目标带宽块上的前导信号或信道进行检测而获得的。
第二控制单元113被配置为基于未来占用时长进行控制以向用户设备发送下行传输。
该下行传输可以是在所述用户设备与基站对带宽块集合的共享占用时间内进行的。该共享占用时间可以是由用户设备获得的或者是由基站获得的。
如果目标带宽块的占用结束时间比下行传输的计划开始时间晚一个时隙以内,则可以通过部分时隙传输在目标带宽块上进行下行传输。如果目标带宽块的占用结束时间比下行传输的计划开始时间晚超过一个时隙,则不通过目标带宽块进行下行传输。
根据一个实施例,第二控制单元113还可以被配置为基于目标带宽块 的占用结束时间与下行传输的计划开始时间之间的间隔来确定是否针对目标带宽块进行用于下行传输的信道检测,并且/或者可以确定信道检测的类型。
根据一个实施例,第一控制单元111还可以被配置为进行控制以通过除目标带宽块之外的另一带宽块接收与未来占用时长有关的信息。
该另一带宽块可以包括与目标带宽块具有预设对应关系的带宽块,并且可以基于预定对应关系确定目标带宽块。
根据一个实施例,第二控制单元113还可以被配置为进行控制以向用户设备发送关于带宽块集合的指示信息,该带宽块集合包括一个或更多个带宽块。
图5示出了相应的无线通信方法的过程示例。如图5所示,该方法包括从用户设备接收与目标带宽块的未来占用时长有关的信息的步骤S510。与未来占用时长有关的信息可以是用户设备通过对目标带宽块上的前导信号或信道进行检测而获得的。
该方法还包括基于未来占用时长向用户设备发送下行传输的步骤S520。
接下来,说明本公开又一方面的装置和方法的实施例,其中包括对应于基站侧的装置和方法以及对应于用户设备侧的装置和方法。由于该方面的部分内容已经在前面结合第一方面的实施例进行了说明,因此下面会省略对某些细节的重复说明。
首先说明本方面中实现在基站侧的实施例。
根据本实施例的用于无线通信的电子装置包括处理电路,处理电路包括控制单元,控制单元被配置为:通过无线资源控制信令为用户设备配置多个带宽块;通过下行控制信息为用户设备激活一个或多个已配置的带宽块;确定目标带宽块的未来占用时长;以及向用户设备发送目标带宽块的未来占用时长的指示信息。
作为示例,控制单元还可以被配置为生成包含未来占用时长的指示信息的下行控制信息以及/或者无线资源控制信令;向用户设备发送未来占用时长的指示信息。
作为示例,控制单元可以通过下行控制信息为用户设备激活多个已配 置的带宽块。
作为示例,该电子装置为基站。
根据本实施例的用于无线通信的方法包括:通过无线资源控制信令为用户设备配置多个带宽块;通过下行控制信息为用户设备激活一个或多个已配置的带宽块;确定目标带宽块的未来占用时长;以及向用户设备发送所述目标带宽块的未来占用时长的指示信息。
下面说明本方面中实现在用户设备侧的实施例。
根据本实施例的用于无线通信的电子装置包括处理电路,处理电路包括处理单元,处理单元被配置为:根据包含多个带宽块的配置信息的无线资源控制信令进行相应带宽块配置;根据下行控制信息激活一个或多个已配置的带宽块;基站接收包含目标带宽块的未来占用时长的指示信息;以及根据目标带宽块的未来占用时长的指示信息执行与基站间的数据传输。
作为示例,处理单元可以被配置为根据下行控制信息激活多个已配置的带宽块。
作为示例,该电子装置为用户设备。
根据本实施例的用于无线通信的方法包括:根据包含多个带宽块的配置信息的无线资源控制信令进行相应带宽块配置;根据下行控制信息激活一个或多个已配置的带宽块;从基站接收包含目标带宽块的未来占用时长的指示信息;以及根据目标带宽块的未来占用时长的指示信息执行与基站间的数据传输。
此外,本公开实施例还包括计算机可读介质,其包括可执行指令,当可执行指令被信息处理设备执行时,使得信息处理设备执行上述方法。
作为示例,上述方法的各个步骤以及上述装置的各个组成模块和/或单元可以实施为软件、固件、硬件或其组合。在通过软件或固件实现的情况下,可以从存储介质或网络向具有专用硬件结构的计算机(例如图7所示的通用计算机1400)安装构成用于实施上述方法的软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图6中,中央处理单元(即CPU)1401根据只读存储器(ROM) 1402中存储的程序或从存储部分1408加载到随机存取存储器(RAM)1403的程序执行各种处理。在RAM 1403中,也根据需要存储当CPU 1401执行各种处理等等时所需的数据。CPU 1401、ROM 1402和RAM 1403经由总线1404彼此链路。输入/输出接口1405也链路到总线1404。
下述部件链路到输入/输出接口1405:输入部分1406(包括键盘、鼠标等等)、输出部分1407(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1408(包括硬盘等)、通信部分1409(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1409经由网络比如因特网执行通信处理。根据需要,驱动器1410也可链路到输入/输出接口1405。可拆卸介质1411比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1410上,使得从中读出的计算机程序根据需要被安装到存储部分1408中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1411安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图6所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1411。可拆卸介质1411的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1402、存储部分1408中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本公开的实施例还涉及一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本公开实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本公开的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
本申请的实施例还涉及以下电子设备。在电子设备用于基站侧的情况下,电子设备可以被实现为任何类型的gNB、演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,电子设备可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。电子设备 可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
电子设备用于用户设备侧的情况下,可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。此外,电子设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个或多个晶片的集成电路模块)。
[关于终端设备的应用示例]
图7是示出可以应用本公开内容的技术的智能电话2500的示意性配置的示例的框图。智能电话2500包括处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512、一个或多个天线开关2515、一个或多个天线2516、总线2517、电池2518以及辅助控制器2519。
处理器2501可以为例如CPU或片上系统(SoC),并且控制智能电话2500的应用层和另外层的功能。存储器2502包括RAM和ROM,并且存储数据和由处理器2501执行的程序。存储装置2503可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2504为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2500的接口。
摄像装置2506包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2507可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2508将输入到智能电话2500的声音转换为音频信号。输入装置2509包括例如被配置为检测显示装置2510的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2510包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2500的输出图像。扬声器2511将从智能电话2500输出的音频信号转换为声音。
无线通信接口2512支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2512通常可以包括例如基带(BB)处理器2513和射频(RF)电路2514。BB处理器2513可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2514可以包括例如混频器、滤波器和放大器,并且经由天线2516来传送和接收无线信号。无线通信接口2512可以为其上集成有BB处理器2513和RF电路2514的一个芯片模块。如图7所示,无线通信接口2512可以包括多个BB处理器2513和多个RF电路2514。虽然图7示出其中无线通信接口2512包括多个BB处理器2513和多个RF电路2514的示例,但是无线通信接口2512也可以包括单个BB处理器2513或单个RF电路2514。
此外,除了蜂窝通信方案之外,无线通信接口2512可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2512可以包括针对每种无线通信方案的BB处理器2513和RF电路2514。
天线开关2515中的每一个在包括在无线通信接口2512中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线2516的连接目的地。
天线2516中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2512传送和接收无线信号。如图7所示,智能电话2500可以包括多个天线2516。虽然图7示出其中智能电话2500包括多个天线2516的示例,但是智能电话2500也可以包括单个天线2516。
此外,智能电话2500可以包括针对每种无线通信方案的天线2516。在此情况下,天线开关2515可以从智能电话2500的配置中省略。
总线2517将处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512以及辅助控制器2519彼此连接。电池2518经由馈线向图7所示的智能电话2500的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2519例如在睡眠模式下操作智能电话2500的最小必需功能。
在图7所示的智能电话2500中,根据本公开实施例的用户设备侧无线通信设备的收发装置可以由无线通信接口2512实现。根据本公开实施例的用户设备侧的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分也可以由处理器2501或辅助控制器2519实现。例如,可以通过由辅助控制器2519执行处理器2501的部分功能而减少电池2518的电力消耗。此外,处理器2501或辅助控制器2519可以通过执行存储器2502或存储装置2503中存储的程序而执行根据本公开实施例的用户设备侧的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分。
[关于基站的应用示例]
图8是示出可以应用本公开内容的技术的gNB的示意性配置的示例的框图。gNB 2300包括一个或多个天线2310以及基站设备2320。基站设备2320和每个天线2310可以经由射频(RF)线缆彼此连接。
天线2310中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备2320发送和接收无线信号。如图8所示,gNB 2300可以包括多个天线2310。例如,多个天线2310可以与gNB 2300使用的多个频带兼容。虽然图8示出其中gNB 2300包括多个天线2310的示例,但是gNB 2300也可以包括单个天线2310。
基站设备2320包括控制器2321、存储器2322、网络接口2323以及无线通信接口2325。
控制器2321可以为例如CPU或DSP,并且操作基站设备2320的较高层的各种功能。例如,控制器2321根据由无线通信接口2325处理的信号中的数据来生成数据分组,并经由网络接口2323来传递所生成的分组。控制器2321可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器2321可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器2322包括RAM和ROM,并且存储由控制器2321执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口2323为用于将基站设备2320连接至核心网2324的通信接口。控制器2321可以经由网络接口2323而与核心网节点或另外的gNB进行通信。在此情况下,gNB 2300与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口2323还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口2323为无线通信接口,则与由无线通信接口2325使用的频带相比,网络接口2323可以使用较高频带用于无线通信。
无线通信接口2325支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线2310来提供到位于gNB 2300的小区中的终端的无线连接。无线通信接口2325通常可以包括例如BB处理器2326和RF电路2327。BB处理器2326可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器2321,BB处理器2326可以具有上述逻辑功能的一部分或全部。BB处理器2326可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器2326的功能改变。该模块可以为插入到基站设备2320的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路2327可以包括例如混频器、滤波器和放大器,并且经由天线2310来传送和接收无线信号。
如图8所示,无线通信接口2325可以包括多个BB处理器2326。例如,多个BB处理器2326可以与gNB 2300使用的多个频带兼容。如图8所示,无线通信接口2325可以包括多个RF电路2327。例如,多个RF电路2327可以与多个天线元件兼容。虽然图8示出其中无线通信接口2325包括多个BB处理器2326和多个RF电路2327的示例,但是无线通信接口2325也可以包括单个BB处理器2326或单个RF电路2327。
在图8所示的gNB 2300中,根据本公开实施例的基站侧的无线通信设备的收发装置可以由无线通信接口2325实现。根据本公开实施例的基站侧的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分也可以由控制器2321实现。例如,控制器2321可以通过执行存储在存储器2322中的程序而执行根据本公开实施例的基站侧的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分。
在上面对本公开具体实施例的描述中,针对一种实施方式描述和/或示出的特征可以用相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、要素、步骤或组件的存在,但并不排除一个或更多个其它特征、要素、步骤或组件的存在或附加。
在上述实施例和示例中,采用了数字组成的附图标记来表示各个步骤和/或单元。本领域的普通技术人员应理解,这些附图标记只是为了便于叙述和绘图,而并非表示其顺序或任何其他限定。
此外,本公开的方法不限于按照说明书中描述的时间顺序来执行,也可以按照其他的时间顺序地、并行地或独立地执行。因此,本说明书中描述的方法的执行顺序不对本公开的技术范围构成限制。
尽管上面已经通过对本公开的具体实施例的描述对本公开进行了披露,但是,应该理解,上述的所有实施例和示例均是示例性的,而非限制性的。本领域的技术人员可在所附权利要求的精神和范围内设计对本公开的各种修改、改进或者等同物。这些修改、改进或者等同物也应当被认为包括在本公开的保护范围内。

Claims (59)

  1. 一种用于无线通信的电子装置,其包括处理电路,所述处理电路被配置为:
    进行控制以从基站接收关于带宽块集合的指示信息,所述带宽块集合包括一个或更多个带宽块;以及
    进行控制以利用所述带宽块集合中的至少一个带宽块与所述基站通信。
  2. 根据权利要求1所述的电子装置,其中,所述指示信息被包含在无线资源控制信令中,并且所述指示信息指示被配置的带宽块的集合。
  3. 根据权利要求1所述的电子装置,其中,所述指示信息被包含在下行控制指示中,并且所述指示信息指示被激活的带宽块的集合。
  4. 根据权利要求1所述的电子装置,其中,所述指示信息的位宽度基于被配置的带宽块的数量。
  5. 根据权利要求1至4中任一项所述的电子装置,其中,所述处理电路还被配置为:
    进行控制以检测目标带宽块上的前导信号或信道,所述前导信号或信道包含与所述目标带宽块的未来占用时长有关的信息;以及
    进行控制以将与所述未来占用时长有关的信息通知给所述基站。
  6. 根据权利要求5所述的电子装置,其中,所述处理电路还被配置为将与所述目标带宽块的拥堵程度有关的信息通知给所述基站。
  7. 根据权利要求5所述的电子装置,其中,所述处理电路还被配置为进行控制以接收下行传输,所述下行传输是所述基站基于所述目标带宽块的所述未来占用时长而发送的。
  8. 根据权利要求7所述的电子装置,其中,如果所述目标带宽块的占用结束时间比所述下行传输的计划开始时间晚一个时隙以内,则通过部分时隙传输在所述目标带宽块上进行所述下行传输。
  9. 根据权利要求7所述的电子装置,其中,如果所述目标带宽块的占用结束时间比所述下行传输的计划开始时间晚超过一个时隙,则不通过所述目标带宽块进行所述下行传输。
  10. 根据权利要求7所述的电子装置,其中,所述基站基于所述目标 带宽块的占用结束时间与所述下行传输的计划开始时间之间的间隔来确定:
    是否针对所述目标带宽块进行用于所述下行传输的信道检测;和/或
    所述信道检测的类型。
  11. 根据权利要求7所述的电子装置,其中,所述下行传输是在用户设备与所述基站对所述带宽块集合的共享占用时间内进行的,并且所述共享占用时间是由所述用户设备获得的或者是由所述基站获得的。
  12. 根据权利要求5所述的电子装置,其中,所述处理电路被配置为进行控制以通过除所述目标带宽块之外的另一带宽块发送与所述未来占用时长有关的信息。
  13. 根据权利要求12所述的电子装置,其中,所述另一带宽块包括与所述目标带宽块具有预设对应关系的带宽块,使得所述基站能够基于所述预定对应关系确定所述目标带宽块。
  14. 根据权利要求1至4中任一项所述的电子装置,其中,所述处理电路还被配置为:在利用目标带宽块进行上行传输的情况下,进行控制以发送前导信号或信道,所述前导信号或信道包含与对所述目标带宽块的未来占用时长有关的信息。
  15. 一种无线通信方法,包括:
    从基站接收关于带宽块集合的指示信息,所述带宽块集合包括一个或更多个带宽块;以及
    利用所述带宽块集合中的至少一个带宽块与所述基站通信。
  16. 一种用于无线通信的电子装置,其包括处理电路,所述处理电路被配置为:
    进行控制以向用户设备发送关于带宽块集合的指示信息,所述带宽块集合包括一个或更多个带宽块;以及
    进行控制以利用所述带宽块集合中的至少一个带宽块与所述用户设备通信。
  17. 根据权利要求16所述的电子装置,其中,所述处理电路还被配置为:
    进行控制以从所述用户设备接收与目标带宽块的未来占用时长有关的信息,其中,与所述未来占用时长有关的信息是所述用户设备通过对所述目标带宽块上的前导信号或信道进行检测而获得的。
  18. 根据权利要求17所述的电子装置,其中,所述处理电路还被配置为:基于所述目标带宽块的所述未来占用时长,进行控制以向所述用户设备发送下行传输。
  19. 根据权利要求18所述的电子装置,其中,如果所述目标带宽块的占用结束时间比所述下行传输的计划开始时间晚一个时隙以内,则通过部分时隙传输在所述目标带宽块上进行所述下行传输。
  20. 根据权利要求18所述的电子装置,其中,如果所述目标带宽块的占用结束时间比所述下行传输的计划开始时间晚超过一个时隙,则不通过所述目标带宽块进行所述下行传输。
  21. 根据权利要求18所述的电子装置,其中,所述处理电路还被配置为基于所述目标带宽块的占用结束时间与所述下行传输的计划开始时间之间的间隔来确定:
    是否针对所述目标带宽块进行用于所述下行传输的信道检测;和/或
    所述信道检测的类型。
  22. 根据权利要求18所述的电子装置,其中,所述下行传输是在所述用户设备与基站对所述带宽块集合的共享占用时间内进行的,并且所述共享占用时间是由所述用户设备获得的或者是由所述基站获得的。
  23. 根据权利要求17所述的电子装置,其中,所述处理电路被配置为进行控制以通过除所述目标带宽块之外的另一带宽块接收与所述未来占用时长有关的信息。
  24. 根据权利要求23所述的电子装置,其中,所述另一带宽块包括与所述目标带宽块具有预设对应关系的带宽块,并且所述处理电路还被配置为基于所述预定对应关系确定所述目标带宽块。
  25. 一种无线通信方法,包括:
    向用户设备发送关于带宽块集合的指示信息,所述带宽块集合包括一个或更多个带宽块;以及
    利用所述带宽块集合中的至少一个带宽块与所述用户设备通信。
  26. 一种用于无线通信的电子装置,其包括处理电路,所述处理电路被配置为:
    进行控制以检测目标带宽块上的前导信号或信道,所述前导信号或信道包含与所述目标带宽块的未来占用时长有关的信息;以及
    进行控制以将与所述未来占用时长有关的信息通知给基站。
  27. 根据权利要求26所述的电子装置,其中,所述处理电路还被配置为将与所述目标带宽块的拥堵程度有关的信息通知给所述基站。
  28. 根据权利要求26所述的电子装置,其中,所述处理电路还被配置为进行控制以接收下行传输,所述下行传输是所述基站基于所述目标带宽块的所述未来占用时长而发送的。
  29. 根据权利要求28所述的电子装置,其中,如果所述目标带宽块的占用结束时间比所述下行传输的计划开始时间晚一个时隙以内,则通过部分时隙传输在所述目标带宽块上进行所述下行传输。
  30. 根据权利要求28所述的电子装置,其中,如果所述目标带宽块的占用结束时间比所述下行传输的计划开始时间晚超过一个时隙,则不通过所述目标带宽块进行所述下行传输。
  31. 根据权利要求28所述的电子装置,其中,所述基站基于所述目标带宽块的占用结束时间与所述下行传输的计划开始时间之间的间隔来确定:
    是否针对所述目标带宽块进行用于所述下行传输的信道检测;和/或
    所述信道检测的类型。
  32. 根据权利要求28所述的电子装置,其中,所述下行传输是在用户设备与所述基站对被配置的带宽块集合的共享占用时间内进行的,并且所述共享占用时间是由所述用户设备获得的或者是由所述基站获得的。
  33. 根据权利要求26所述的电子装置,其中,所述处理电路被配置为进行控制以通过除所述目标带宽块之外的另一带宽块发送与所述未来占用时长有关的信息。
  34. 根据权利要求33所述的电子装置,其中,所述另一带宽块包括与所述目标带宽块具有预设对应关系的带宽块,使得所述基站能够基于 所述预定对应关系确定所述目标带宽块。
  35. 根据权利要求26所述的电子装置,其中,所述处理电路还被配置为:进行控制以发送前导信号或信道,所述前导信号或信道包含与所使用的带宽块的未来占用时长有关的信息。
  36. 根据权利要求26至35中任一项所述的电子装置,其中,所述处理电路还被配置为进行控制以从所述基站接收关于带宽块集合的指示信息,所述带宽块集合包括一个或更多个带宽块。
  37. 根据权利要求36所述的电子装置,其中,所述指示信息被包含在无线资源控制信令中,并且所述指示信息指示被配置的带宽块的集合。
  38. 根据权利要求36所述的电子装置,其中,所述指示信息被包含在下行控制指示中,并且所述指示信息指示被激活的带宽块的集合。
  39. 根据权利要求36所述的电子装置,其中,所述指示信息的位宽度基于被配置的带宽块的数量。
  40. 一种无线通信方法,包括:
    检测目标带宽块上的前导信号或信道,所述前导信号或信道包含与所述目标带宽块的未来占用时长有关的信息;以及
    将与所述未来占用时长有关的信息通知给基站。
  41. 一种用于无线通信的电子装置,其包括处理电路,所述处理电路被配置为:
    进行控制以从用户设备接收与目标带宽块的未来占用时长有关的信息,其中,与所述未来占用时长有关的信息是所述用户设备通过对所述目标带宽块上的前导信号或信道进行检测而获得的;以及
    基于所述未来占用时长,进行控制以向所述用户设备发送下行传输。
  42. 根据权利要求41所述的电子装置,其中,如果所述目标带宽块的占用结束时间比所述下行传输的计划开始时间晚一个时隙以内,则通过部分时隙传输在所述目标带宽块上进行所述下行传输。
  43. 根据权利要求41所述的电子装置,其中,如果所述目标带宽块的占用结束时间比所述下行传输的计划开始时间晚超过一个时隙,则不通过所述目标带宽块进行所述下行传输。
  44. 根据权利要求41所述的电子装置,其中,所述处理电路还被配置为基于所述目标带宽块的占用结束时间与所述下行传输的计划开始时间之间的间隔来确定:
    是否针对所述目标带宽块进行用于所述下行传输的信道检测;和/或
    所述信道检测的类型。
  45. 根据权利要求41所述的电子装置,其中,所述下行传输是在所述用户设备与基站对所述带宽块集合的共享占用时间内进行的,并且所述共享占用时间是由所述用户设备获得的或者是由所述基站获得的。
  46. 根据权利要求41所述的电子装置,其中,所述处理电路被配置为进行控制以通过除所述目标带宽块之外的另一带宽块接收与所述未来占用时长有关的信息。
  47. 根据权利要求46所述的电子装置,其中,所述另一带宽块包括与所述目标带宽块具有预设对应关系的带宽块,并且所述处理电路还被配置为基于所述预定对应关系确定所述目标带宽块。
  48. 根据权利要求41至47中任一项所述的电子装置,其中,所述处理电路还被配置为进行控制以向所述用户设备发送关于带宽块集合的指示信息,所述带宽块集合包括一个或更多个带宽块。
  49. 一种无线通信方法,包括:
    从用户设备接收与目标带宽块的未来占用时长有关的信息,其中,与所述未来占用时长有关的信息是所述用户设备通过对所述目标带宽块上的前导信号或信道进行检测而获得的;以及
    基于所述未来占用时长向所述用户设备发送下行传输。
  50. 一种用于无线通信的电子装置,其包括处理电路,所述处理电路被配置为:
    通过无线资源控制信令为用户设备配置多个带宽块;
    通过下行控制信息为所述用户设备激活一个或多个已配置的带宽块;
    确定目标带宽块的未来占用时长;以及
    向所述用户设备发送所述目标带宽块的未来占用时长的指示信息。
  51. 根据权利要求50所述的电子装置,所述处理电路还被配置为生 成包含所述未来占用时长的指示信息的下行控制信息以及/或者无线资源控制信令;
    向用户设备发送所述未来占用时长的指示信息。
  52. 根据权利要求50所述的电子装置,其中,所述处理电路通过下行控制信息为所述用户设备激活多个已配置的带宽块。
  53. 根据权利要求50-52中任一项所述的电子装置,该电子装置为基站。
  54. 一种用于无线通信的电子装置,其包括处理电路,所述处理电路被配置为:
    根据包含多个带宽块的配置信息的无线资源控制信令进行相应带宽块配置;
    根据下行控制信息激活一个或多个已配置的带宽块;
    从基站接收包含目标带宽块的未来占用时长的指示信息;以及
    根据所述目标带宽块的未来占用时长的指示信息执行与所述基站间的数据传输。
  55. 根据权利要求54所述的电子装置,其中,所述处理电路被配置为根据下行控制信息激活多个已配置的带宽块。
  56. 根据权利要求54-55中任一项所述的电子装置,该电子装置为用户设备。
  57. 一种用于无线通信的方法,包括:
    通过无线资源控制信令为用户设备配置多个带宽块;
    通过下行控制信息为所述用户设备激活一个或多个已配置的带宽块;
    确定目标带宽块的未来占用时长;以及
    向所述用户设备发送所述目标带宽块的未来占用时长的指示信息。
  58. 一种用于无线通信的方法,包括:
    根据包含多个带宽块的配置信息的无线资源控制信令进行相应带宽块配置;
    根据下行控制信息激活一个或多个已配置的带宽块;
    从基站接收包含目标带宽块的未来占用时长的指示信息;以及
    根据所述目标带宽块的未来占用时长的指示信息执行与所述基站间的数据传输。
  59. 一种计算机可读介质,其包括可执行指令,当所述可执行指令被信息处理设备执行时,使得所述信息处理设备执行根据权利要求15、25、40、49、57及58中任一项所述的方法。
PCT/CN2020/070370 2019-01-10 2020-01-06 电子装置、无线通信方法和计算机可读介质 WO2020143562A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080008376.0A CN113273126A (zh) 2019-01-10 2020-01-06 电子装置、无线通信方法和计算机可读介质
US17/298,953 US20220061054A1 (en) 2019-01-10 2020-01-06 Electronic device, wireless communication method, and computer readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910024027.7A CN111431683A (zh) 2019-01-10 2019-01-10 电子装置、无线通信方法和计算机可读介质
CN201910024027.7 2019-01-10

Publications (1)

Publication Number Publication Date
WO2020143562A1 true WO2020143562A1 (zh) 2020-07-16

Family

ID=71521994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070370 WO2020143562A1 (zh) 2019-01-10 2020-01-06 电子装置、无线通信方法和计算机可读介质

Country Status (3)

Country Link
US (1) US20220061054A1 (zh)
CN (2) CN111431683A (zh)
WO (1) WO2020143562A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114466226A (zh) * 2022-01-28 2022-05-10 杭州灵伴科技有限公司 带宽时长占比确定方法、装置、设备和计算机可读介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889114A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 一种非授权频谱信道占用的方法及设备
CN107926047A (zh) * 2015-08-07 2018-04-17 高通股份有限公司 针对ofdma的带宽依赖性载波侦听
WO2018084571A1 (en) * 2016-11-01 2018-05-11 Lg Electronics Inc. Method and apparatus for configuring subband aggregation in nr carrier in wireless communication system
CN108633105A (zh) * 2017-03-23 2018-10-09 索尼公司 用于无线通信的电子设备和方法
CN108934075A (zh) * 2017-05-26 2018-12-04 株式会社Kt 用于调度新无线电中的数据信道的方法和装置
CN109565717A (zh) * 2018-11-12 2019-04-02 北京小米移动软件有限公司 带宽部分的配置方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113037448B (zh) * 2015-08-07 2023-11-21 纽瑞科姆有限公司 用于wlan系统中的多用户传输的控制信息
CN106686726B (zh) * 2015-11-05 2021-10-01 索尼公司 无线通信设备和无线通信方法
CN109219151A (zh) * 2017-06-29 2019-01-15 索尼公司 电子装置、无线通信设备和无线通信方法
US11622350B2 (en) * 2018-02-13 2023-04-04 Interdigital Patent Holdings, Inc. Methods for unlicensed resource selection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107926047A (zh) * 2015-08-07 2018-04-17 高通股份有限公司 针对ofdma的带宽依赖性载波侦听
CN107889114A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 一种非授权频谱信道占用的方法及设备
WO2018084571A1 (en) * 2016-11-01 2018-05-11 Lg Electronics Inc. Method and apparatus for configuring subband aggregation in nr carrier in wireless communication system
CN108633105A (zh) * 2017-03-23 2018-10-09 索尼公司 用于无线通信的电子设备和方法
CN108934075A (zh) * 2017-05-26 2018-12-04 株式会社Kt 用于调度新无线电中的数据信道的方法和装置
CN109565717A (zh) * 2018-11-12 2019-04-02 北京小米移动软件有限公司 带宽部分的配置方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "R1-1813903: NR Numerology and Frame Structure for Unlicensed Bands", 3GPP TSG RAN WG1 MEETING #95, 16 November 2018 (2018-11-16), XP051480108 *
INTERDIGITAL INC.: "R1-1806968: BWP Operation in Unlicensed Spectrum", 3GPP RAN WG1 MEETING #93, 25 May 2018 (2018-05-25), XP051462103 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114466226A (zh) * 2022-01-28 2022-05-10 杭州灵伴科技有限公司 带宽时长占比确定方法、装置、设备和计算机可读介质
CN114466226B (zh) * 2022-01-28 2023-12-08 杭州灵伴科技有限公司 带宽时长占比确定方法、装置、设备和计算机可读介质

Also Published As

Publication number Publication date
US20220061054A1 (en) 2022-02-24
CN111431683A (zh) 2020-07-17
CN113273126A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
WO2019214544A1 (zh) 电子装置、无线通信方法和计算机可读介质
US11456795B2 (en) Electronic device and method for measuring a beam quality of a currently serving beam based on a prediction window when the detected beam quality is within a particular range
WO2018137492A1 (zh) 无线通信方法和无线通信设备
US20220116147A1 (en) Electronic device, wireless communication method, and computer readable medium
EP3813441A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
KR102460473B1 (ko) 전자 디바이스, 정보 처리 장치, 및 정보 처리 방법
US11849443B2 (en) Electronic device, radio communication method, and computer readable storage medium
EP4221393A1 (en) Electronic device and method for use in radio communication, and computer-readable storage medium
JP7131573B2 (ja) 電子装置及び無線通信方法
WO2017133593A1 (zh) 无线通信设备和无线通信方法
US20220295374A1 (en) Electronic apparatus, wireless communication method and computer-readable medium
WO2019218909A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021190386A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2019019964A1 (zh) 电子装置、信息处理设备和信息处理方法
WO2020143562A1 (zh) 电子装置、无线通信方法和计算机可读介质
WO2017076254A1 (zh) 无线通信设备和无线通信方法
EP3422746A1 (en) User equipment and base station in wireless communications system, and wireless communications method
WO2020140836A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US11343038B2 (en) Electronic device, wireless communication method and computer readable medium
EP4012964A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
WO2019218985A1 (zh) 电子装置、无线通信方法和计算机可读介质
WO2020108370A1 (zh) 电子装置、无线通信方法和计算机可读介质
WO2020143522A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021088776A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20738139

Country of ref document: EP

Kind code of ref document: A1