WO2021190386A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2021190386A1
WO2021190386A1 PCT/CN2021/081450 CN2021081450W WO2021190386A1 WO 2021190386 A1 WO2021190386 A1 WO 2021190386A1 CN 2021081450 W CN2021081450 W CN 2021081450W WO 2021190386 A1 WO2021190386 A1 WO 2021190386A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
csi
configuration
electronic device
reference signal
Prior art date
Application number
PCT/CN2021/081450
Other languages
English (en)
French (fr)
Inventor
刘敏
孙晨
Original Assignee
索尼集团公司
刘敏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 刘敏 filed Critical 索尼集团公司
Priority to CN202180021739.9A priority Critical patent/CN115298970A/zh
Priority to JP2022557850A priority patent/JP2023518857A/ja
Priority to US17/796,878 priority patent/US20230070011A1/en
Priority to EP21775612.1A priority patent/EP4120582A4/en
Publication of WO2021190386A1 publication Critical patent/WO2021190386A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands

Definitions

  • This application relates to the field of wireless communication technology, and specifically to beam management technology on multiple bandwidth parts. More specifically, it relates to an electronic device and method for wireless communication and a computer-readable storage medium.
  • the channel state information resource (CSI resource) used for beam measurement such as channel state information reference signal (Channel State Information Reference Signal, CSI-RS), synchronization signal block (synchronizing signal block, SSB) can be For transmission on any BWP, user equipment (User Equipment, UE) does not need to perform frequency conversion when performing beam measurement.
  • CSI resource channel state information reference signal
  • CSI-RS Channel State Information Reference Signal
  • SSB synchronization signal block
  • the UE can only activate one BWP at a time, that is, the UE can only activate one uplink BWP and one downlink BWP at a time. Therefore, only the downlink BWP is fed back when the beam measurement result is reported, and the UE does not want to receive aperiodic triggers for measuring channel state information (CSI) on other BWPs.
  • CSI channel state information
  • each satellite can generate multiple beams.
  • the current non-terrestrial network (Non-terrestrial network, NTN) has two physical cell identifier (Physical Cell Identifier, PCI) and beam correspondence methods.
  • PCI Physical Cell Identifier
  • each PCI corresponds to multiple beams, and each beam corresponds to a specific synchronization signal block (Synchronization Signal Block, SSB).
  • SSB Synchronization Signal Block
  • each PCI corresponds to one beam, that is, each satellite cell corresponds to only one beam.
  • the beam management mechanism in NR Rel. 15 is not applicable to this situation.
  • beam-specific SSB and beam-specific CSI RS can be Used for beam management to avoid data transmission interruption and signaling overhead caused by cell handover.
  • the frequency reuse factor (FRF) when the frequency reuse factor (FRF) is equal to 1, the available bandwidth allocated to each beam is very large, but the UE may suffer severe co-channel interference from adjacent beams. Therefore, the use of frequency deployment with FRF>1 can effectively reduce the interference of adjacent beams and improve the signal to interference and noise ratio (Signal to Interference and Noise Ratio, SINR).
  • different beams may be located on different BWPs, and it is desirable to provide a beam management solution suitable for this scenario.
  • an electronic device for wireless communication including: a processing circuit configured to: obtain a CSI resource configuration and a CSI report configuration from a base station, wherein the CSI report configuration is related to one or more CSI
  • the CSI resource configuration includes the resource configuration for one or more reference signals on the BWP; and based on the CSI report configuration, the base station sends the reference signal obtained by measuring the reference signal specified in the associated CSI resource configuration to the base station.
  • the beam measurement result of the corresponding beam including: a processing circuit configured to: obtain a CSI resource configuration and a CSI report configuration from a base station, wherein the CSI report configuration is related to one or more CSI
  • the CSI resource configuration includes the resource configuration for one or more reference signals on the BWP; and based on the CSI report configuration, the base station sends the reference signal obtained by measuring the reference signal specified in the associated CSI resource configuration to the base station.
  • the beam measurement result of the corresponding beam including: a processing circuit configured to: obtain a CSI resource configuration and
  • a method for wireless communication including: acquiring a CSI resource configuration and a CSI report configuration from a base station, wherein the CSI report configuration is associated with one or more CSI resource configurations, and the CSI resource
  • the configuration includes resource configuration for one or more reference signals on the BWP; and based on the CSI report configuration, sending to the base station the beam measurement result of the beam corresponding to the reference signal obtained by measuring the reference signal specified in the associated CSI resource configuration .
  • an electronic device for wireless communication including: a processing circuit configured to: provide a CSI resource configuration and a CSI report configuration to the UE, wherein the CSI report configuration is associated with one or more CSI
  • the CSI resource configuration includes resource configuration for one or more reference signals on the BWP; and based on the CSI report configuration, the UE obtains the reference signal and the reference signal obtained by measuring the reference signal specified in the associated CSI resource configuration. The beam measurement result of the corresponding beam.
  • a method for wireless communication including: providing a CSI resource configuration and a CSI report configuration to a UE, wherein the CSI report configuration is associated with one or more CSI resource configurations, and the CSI resource configuration It includes the resource configuration for the reference signal on one or more BWPs; and obtaining the beam measurement result of the beam corresponding to the reference signal obtained by measuring the reference signal specified in the associated CSI resource configuration from the UE based on the CSI report configuration.
  • the electronic device and method according to the present application can implement measurement and reporting of beams on multiple BWPs without increasing the complexity of the UE.
  • Fig. 1 shows a block diagram of functional modules of an electronic device for wireless communication according to an embodiment of the present application
  • Figure 2 shows an example of a CSI framework in a non-periodic or semi-static trigger mode
  • Figure 3 shows another example of a CSI framework in a non-periodic trigger or semi-static trigger mode
  • Figure 4 shows another example of a CSI framework in a non-periodic trigger or semi-static trigger mode
  • Figure 5 shows another example of a CSI framework in a non-periodic or semi-static trigger mode
  • Figure 6 shows an example of only specific beam transmission on each BWP
  • Fig. 7 shows a block diagram of functional modules of an electronic device for wireless communication according to an embodiment of the present application
  • Fig. 8 shows a block diagram of functional modules of an electronic device for wireless communication according to another embodiment of the present application.
  • Fig. 9 shows a flowchart of a method for wireless communication according to an embodiment of the present application.
  • Fig. 10 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • FIG. 11 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • FIG. 12 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a smart phone to which the technology of the present disclosure can be applied;
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 15 is a block diagram of an exemplary structure of a general personal computer in which the method and/or apparatus and/or system according to the embodiments of the present invention can be implemented.
  • FIG. 1 shows a block diagram of functional modules of an electronic device 100 for wireless communication according to an embodiment of the present application.
  • the electronic device 100 includes: an acquiring unit 101 configured to acquire a CSI resource configuration from a base station And CSI report configuration, where the CSI report configuration is associated with one or more CSI resource configurations, and the CSI resource configuration includes resource configurations for reference signals on one or more BWPs; and the sending unit 102 is configured to be based on the CSI report It is configured to send the beam measurement result of the beam corresponding to the reference signal obtained by measuring the reference signal specified in the associated CSI resource configuration to the base station.
  • the acquiring unit 101 and the sending unit 102 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip, for example.
  • the processing circuit may be implemented as a chip, for example.
  • each functional unit in the apparatus shown in FIG. 1 is only a logical module divided according to the specific function implemented by it, and is not used to limit the specific implementation manner.
  • the electronic device 100 may, for example, be provided on the UE side or be communicably connected to the UE.
  • the electronic device 100 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 100 may work as a UE itself, and may also include external devices such as a memory and a transceiver (not shown in the figure).
  • the memory can be used to store programs and related data information that the UE needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (e.g., base stations, other UEs, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the acquiring unit 101 may acquire the CSI resource configuration and the CSI report configuration via Radio Resource Control (RRC) signaling.
  • the CSI resource configuration is used to configure which reference signals are measured, and the CSI report configuration is used to configure the reporting method of beam measurement results.
  • the CSI resource type can be periodic, semi-static or aperiodic.
  • the CSI report can be periodic, semi-static or aperiodic.
  • the reference signals described herein include but are not limited to CSI-RS or SSB.
  • CSI-RS will be used as an example, but it should be understood that these descriptions are also applicable to other downlink reference signals and are not restrictive.
  • the UE performs periodic measurement on the reference signal (corresponding to the beam) configured in the CSI resource configuration, and the sending unit 102 sends the beam measurement result to the base station according to the CSI report configuration.
  • the acquiring unit 101 is further configured to acquire an aperiodic trigger or a semi-static trigger for the CSI report configuration from the base station, and the sending unit 102 is configured to be based on the CSI report configuration indicated in the aperiodic trigger or the semi-static trigger Perform beam measurement and transmission of beam measurement results.
  • aperiodic triggering or semi-static triggering indicates beam measurement and measurement result reporting on at least a part of the reference signal configured by the CSI resource configuration.
  • the CSI report configuration needs to indicate the CSI resource configuration associated with it.
  • FIG. 2 shows an example of a CSI framework in a non-periodic trigger or semi-static trigger mode.
  • the acquiring unit 101 acquires a list of CSI aperiodic triggering states from the base station, for example, through Downlink Control Information (DCI), where each state includes an associated CSI report configuration (CSI-ReportConfig )list of.
  • DCI Downlink Control Information
  • CSI-ReportConfig CSI report configuration
  • the acquiring unit 101 acquires a CSI semi-static trigger state list from the base station, for example, through MAC CE, where each state includes an associated CSI-ReportConfig.
  • a CSI-ReportConfig is associated with a CSI resource configuration (CSI-ResourceConfig), and the CSI-ResourceConfig includes NZP-CSI-RS resource set, CSI-SSB resource set and CSI-IM resource set, and Including the indication of the resource type (that is, periodic, aperiodic or semi-static), the CSI-ReportConfig also includes an indication of the uplink BWP identifier (UL-BWP-ID, not shown in Figure 2) used for reporting the measurement results information.
  • the CSI-ResourceConfig in FIG. 2 includes the identification (ID) of the BWP where the resource of the downlink reference signal is located.
  • ID the identification
  • this embodiment improves the CSI framework of FIG. 2 as follows: one CSI-ReportConfig can be associated with one or more CSI-ResourceConfig, and the CSI-ResourceConfig includes one or more CSI-ResourceConfig. Resource configuration of reference signals on multiple BWPs. Note that in this article, the BWP that is measured and reported refers to the downlink BWP, and there are no restrictions on the uplink BWP.
  • the CSI report configuration is associated with multiple CSI resource configurations, and each CSI resource configuration is a configuration for one BWP.
  • Fig. 3 shows an example of the CSI framework in this case. It can be seen that the resources of the reference signals configured in each CSI resource configuration are on one BWP (with the same DL-BWP-ID).
  • the CSI report The configuration may be associated with the resource configuration of the reference signals on the multiple BWPs, so as to report the beam measurement results on the multiple BWPs.
  • the UE is configured to report CSI on UL BWP#1, the BWP corresponding to CSI-ResourceConfig#1 associated with this CSI-ReportConfig#1 is DLBWP#1, and the BWP corresponding to CSI-ResourceConfig#2 associated with this CSI-ReportConfig# is DL BWP#2, the BWP corresponding to the associated CSI-ResourceConfig#3 is DLBWP#3.
  • the UE receives an aperiodic or semi-static trigger for CSI-ReportConfig#1, it can measure and report beams on DLBWP#1, DLBWP#2, and DLBWP#3.
  • the reference signal identifiers (RS-IDs) on different BWPs may be different.
  • the BWP corresponding to CSI-ResourceConfig#1 is DLBWP#1, including NZP-CSI-RS-resource#1, #2, #3
  • the BWP corresponding to CSI-ResourceConfig#2 is DLBWP#2, including NZP-CSI -RS-resource#4, #5, #6, according to the measurement results
  • the UE can find the best quality beam to report its ID and L1-RSRP, assuming the best beam is CRI (CSI-RS resource identifier) #4 ,
  • the reported content is ⁇ CRI#4, L1-RSRP#4 ⁇ .
  • CSI-ResourceConfig #1 and #2 contain NZP-CSI-RS resource#1, #2, #3, and the reported content can be ⁇ CSI-ResourceConfig #2, CRI#1, L1-RSRP#1 ⁇ .
  • the pseudo code for RRC parameters in 38.331 can be modified as follows (the underlined part shows the modification):
  • the CSI report configuration is associated with one CSI resource configuration, each CSI resource configuration includes multiple CSI resource sets, and each CSI resource set corresponds to one BWP.
  • Fig. 4 shows an example of the CSI framework in this case. It can be seen that each CSI resource set in the CSI resource configuration includes a DL-BWP-ID field, which indicates that the resource of the reference signal in the resource set is on the BWP corresponding to the ID. When the DL-BWP-IDs in each CSI resource set are different, the CSI report configuration can be associated with the resource configuration of the reference signal on the multiple BWPs, thereby reporting the beam measurement results on the multiple BWPs.
  • the NZP-CSI-RS resource set is shown as an example in Figure 4, but this is not restrictive, and this solution can also be applied to other reference signal resource sets.
  • the UE is configured to report CSI on UL BWP#1, the BWP corresponding to NZP-CSI-RS-ResourceSet#1 in the CSI-ResourceConfig#1 associated with this CSI-ReportConfig#1 is DLBWP#1, NZP- The BWP corresponding to CSI-RS-ResourceSet#2 is DLBWP#2, and the BWP corresponding to NZP-CSI-RS-ResourceSet#3 is DLBWP#3.
  • the UE receives an aperiodic or semi-static CSI-ReportConfig#1 trigger, it can measure and report the beams on DLBWP#1, DLBWP#2, and DLBWP#3.
  • the RS-IDs on different BWPs may be different.
  • the BWP corresponding to NZP-CSI-RS-ResourceSet #1 is DL BWP#1, including NZP-CSI-RS-resource #1, #2, #3
  • the BWP corresponding to NZP-CSI-RS-ResourceSet #2 is DL BWP#2, including NZP-CSI-RS-resource#4, #5, #6, UE can find the best quality beam to report its ID and L1-RSRP according to the measurement results, assuming the best beam is CRI( CSI-RS resource identifier) #4, the reported content is ⁇ CRI#4, L1-RSRP#4 ⁇ .
  • NZP-CSI-RS-ResourceSet #1 and #2 both contain NZP-CSI-RS-resource#1, #2, #3, and the reported content can be ⁇ NZP-CSI-RS-ResourceSet #2, CRI#1 , L1-RSRP#1 ⁇ .
  • the pseudo code for RRC parameters in 38.331 can be modified as follows (the underlined part shows the modification):
  • the CSI report configuration is associated with one CSI resource configuration, each CSI resource configuration includes multiple CSI resource sets, and each CSI resource in each CSI resource set corresponds to a BWP.
  • Fig. 5 shows an example of the CSI framework in this case. It can be seen that each CSI resource in each CSI resource set in the CSI resource configuration includes a DL-BWP-ID field, indicating that the resource of the corresponding reference signal is on the BWP corresponding to the ID.
  • the CSI report configuration may be associated with the resource configuration of the reference signal on the multiple BWPs, thereby reporting the beam measurement results on the multiple BWPs.
  • the NZP-CSI-RS resource is shown as an example in FIG. 5, this is not restrictive, and this solution can also be applied to other reference signal resources.
  • the UE is configured to report CSI on UL BWP#1, and the CSI-ResourceConfig#1 associated with CSI-ReportConfig#1 includes NZP-CSI-RS-ResourceSet#1 including NZP-CSI-RS-Resource#1 , NZP-CSI-RS-Resource #2 and NZP-CSI-RS-Resource #3, corresponding to DL BWP #1, DL BWP #2 and DL BWP #3, respectively.
  • the UE receives an aperiodic or semi-static CSI-ReportConfig#1 trigger, it can measure and report the beams on DLBWP#1, DLBWP#2, and DLBWP#3.
  • the pseudo code for RRC parameters in 38.331 can be modified as follows (the underlined part shows the modification):
  • FIGS. 3 to 5 and the pseudo code are all examples and not restrictive.
  • the electronic device 100 improves the CSI framework to achieve measurement and reporting of beams on multiple BWPs without increasing the complexity of the UE.
  • the UE will specifically describe an example in which the UE measures beams on multiple BWPs or beams on BWPs that are not currently activated and reports them. .
  • the UE can only activate one BWP and needs to feed back the CSI on the non-currently activated BWP, the UE needs to switch to the non-currently activated BWP to perform PDCCH monitoring, PDSCH reception, etc. on the BWP.
  • the beam is bound to the BWP except for the initial BWP.
  • every time a beam is measured it is necessary to perform a BWP handover and report the measurement result, which increases delay and overhead, and the measurement result is inaccurate due to aging.
  • this embodiment provides an electronic device 100.
  • the configuration determines to measure the beam on the currently inactive BWP, switch to the inactive BWP to perform beam measurement on the inactive BWP, and switch back to the currently active BWP after the measurement is completed.
  • the execution unit 103 may sequentially switch to the multiple non-currently activated BWPs to perform beam measurement, and measure all beams. After the end, the beam measurement result is sent to the base station on the uplink BWP indicated in the CSI report configuration. For example, suppose the currently activated DL BWP of the UE is BWP#3, and the UE receives an aperiodic CSI trigger, and its corresponding reference signals are located on BWP#1 and BWP#2 respectively, the UE will perform the following operations: switch to BWP# 1.
  • aperiodic CSI triggering can adopt various CSI frameworks described in the first embodiment, which will not be repeated here.
  • the measurement result can be reported once after the measurement is performed multiple times, which reduces the signaling overhead and time delay.
  • the beam measurement result may include only the beam ID, or may include the beam ID and the corresponding reference signal received power (RSRP).
  • RSRP reference signal received power
  • the beam ID and its corresponding RSRP the absolute value of the RSRP of the beam with the largest RSRP and the relative value of the RSRP of other beams can be reported.
  • the execution unit 103 may switch to the initial BWP to perform corresponding beam measurement when it is determined to measure beams on multiple BWPs that are not currently activated. This is because all beams are transmitted on the initial BWP.
  • the CSI report configuration is associated with the CSI resource configuration for the resource configuration of the reference signal on the initial BWP, and the execution unit 103 is configured to switch to the initial BWP for beam measurement, and report on the initial BWP .
  • the operations such as measurement and handover (and activation described later) in this article are for the downlink BWP, and do not impose any restriction on the uplink BWP used to report the measurement result.
  • the CSI report configuration may also indicate that the beam measurement result is reported on the initial BWP. In other words, the base station instructs to perform beam measurement on the initial BWP.
  • the UE switches to the initial BWP to measure all the indicated beams, and then switches back to the currently active BWP. For example, the UE can switch back to the currently activated BWP after the measurement is completed, or switch back to the currently activated BWP after the measurement result is reported, or switch back to the currently activated BWP at any point in time. This is not a limitation. Sexual.
  • the UE is configured to report CSI on UL BWP #1 in CSI report configuration #1, and the BWP corresponding to this CSI report configuration #1 is DL BWP#0 (that is, the initial BWP).
  • the UE performs BWP handover to switch to the initial BWP.
  • the UE completes the measurement on the initial BWP, it completes the report on UL BWP#1. And switch back to DL BWP #1.
  • the reference signal on the initial BWP may be pre-configured by the base station, for example, the base station may be configured through RRC signaling.
  • the reference signal on the initial BWP may be a part or all of the reference signal of the candidate beam configured in beam failure recovery. If the CSI report is periodic, the UE measures and reports based on all the configured reference signals; if the CSI report is semi-static, the base station can indicate part of the reference signal through MAC CE, and the UE is based on the indicated part The reference signal is measured and reported; if the CSI report is triggered aperiodically, the base station can indicate a part of the reference signal through the DCI, and the UE performs measurement and report based on the indicated part of the reference signal.
  • the UE may obtain an explicit BWP handover indication from the base station, or it may perform it based on an implicit BWP handover indication.
  • the execution unit 103 is configured to execute the switching between BWPs at a predetermined timing. For example, when the execution unit 103 determines to measure the beam on the currently inactive BWP based on the CSI report configuration indicated in the aperiodic trigger or semi-static trigger, it automatically switches to the currently inactive BWP at a predetermined timing. After the measurement is completed on the inactive BWP, switch back to the currently active BWP.
  • the predetermined timing may be determined based on one or more of the following: specific signaling between the base station and the UE, and a predetermined or designated timing relationship. For example, in the case of aperiodic triggers, the UE may perform BWP switching after X slots after the trigger is received, and perform BWP switching after Y slots after the CSI report is fed back. In the case of semi-static triggering, the UE performs BWP switching after receiving X slots of the PDSCH containing the MAC CE or X slots after feeding back the ACK of the PDSCH, depending on the harq feedback disable in the system.
  • the UE may perform BWP switching after X time slots after the start of a cycle, and perform BWP switching after Y time slots after feeding back the CSI report, and so on.
  • x, X, and Y can be specified by the base station, or agreed in advance by the base station and the UE.
  • the UE receives the BWP switching instruction and the reporting instruction from the base station, performs switching in response to the BWP switching instruction, and reports the measurement result in response to the reporting instruction.
  • the acquiring unit 101 is configured to acquire a first handover instruction from the base station, the first handover instruction instructing to switch from the currently activated BWP to the initial BWP.
  • the UE switches to the initial BWP in response to the first handover instruction.
  • the acquiring unit 101 is also configured to acquire a CSI request from the base station on the initial BWP, and the UE reports the measurement result in response to the CSI request.
  • the acquiring unit 101 is also configured to acquire a second handover instruction from the base station, the second handover instruction indicating to switch from the initial BWP to the currently activated BWP.
  • the UE switches back to the currently activated BWP in response to the second switching instruction.
  • the base station can send the second handover instruction immediately after sending the CSI request, or can send the second handover instruction after receiving the reported measurement result.
  • the obtaining unit 101 is configured to obtain a first BWP switching instruction from the base station for each inactive BWP of a plurality of non-currently activated BWPs, and the first BWP switching instruction indicates Switch from the currently activated BWP to the inactive BWP; obtain a CSI request from the base station on the inactive BWP and an indication indicating whether to report the beam measurement result.
  • the acquiring unit 101 acquires an instruction to report beam measurement results from the base station, and acquires a second BWP switching instruction from the base station.
  • the second BWP switching instruction instructs to switch from inactive BWP switches to the currently active BWP.
  • the UE sequentially switches to each inactive BWP for beam measurement. After all measurements are completed, it sends the beam measurement result to the base station in response to the indication of the measurement result report from the base station, and switches back to the current in response to the second BWP handover instruction. BWP activated.
  • the base station and the UE perform the following operations: the base station sends the first BWP handover instruction to the UE; the UE Switch to BWP#1; the base station sends the CSI request on BWP#1 to the UE and instructs the UE not to report the measurement result; the base station sends the first BWP switching instruction to the UE; the UE switches to BWP#2; the base station sends BWP#2 to the UE And instruct the UE to report the measurement results; the UE performs comprehensive feedback based on the measurement results on BWP#1 and BWP#2.
  • the specific feedback form has been given in the previous article and will not be repeated here.
  • the obtaining unit 101 may also be configured to obtain a first BWP switching instruction from the base station for multiple non-currently activated BWPs, and the first BWP switching instruction indicates to be activated from the current The BWP switches to each of the multiple inactive BWPs in a certain order.
  • the acquiring unit 101 acquires the second BWP switching instruction from the base station, and the second BWP switching instruction instructs to switch from the inactive BWP to the currently active BWP.
  • the base station and the UE perform the following operations: the base station sends the first BWP handover instruction to the UE.
  • the first BWP switching instruction instructs to switch from the currently active BWP to BWP#1 and then to BWP#2; the UE switches to BWP#1 and BWP#2 to perform beam measurement according to the settings on BWP#1 and BWP#2.
  • Comprehensive feedback of measurement results The specific feedback form has been given in the previous article and will not be repeated here.
  • the UE can simultaneously activate multiple BWPs (referred to here as downlink BWPs). In this embodiment, this is achieved by activating multiple BWPs in different ways.
  • the information on the number of BWPs that the UE can activate at the same time may be provided by the UE to the base station. Exemplarily, the number of information may be reported as a separate parameter (for example, as a part of the UE's capability information). Or, the number and the number of component carriers (CC) in the reference signal for mobility management that the UE can support at the same time can be jointly considered as a kind of overall capability information.
  • CC component carriers
  • the number of BWPs that can be activated at the same time increases, the number of BWPs that can be activated at the same time increases accordingly. Reduce the number of CCs in the reference signal used for mobility management, which helps not to increase the complexity of the UE.
  • the execution unit 103 is configured to determine the non-currently activated BWP as the secondary activated BWP in the case of determining that the beam on the non-currently activated BWP is to be measured based on the CSI report configuration, so as to perform the measurement on the secondary activated BWP. Perform beam measurement.
  • the currently activated BWP is referred to as the primary activated BWP.
  • the UE performs operations such as PDCCH monitoring and PDSCH reception on the primary activated BWP, and only performs beam measurement operations on the secondary activated BWP, that is, the UE only reports CSI for this secondary activated BWP.
  • the execution unit 103 is configured to activate the non-currently activated BWP as the secondary activated BWP, so that beam measurement can be performed on the secondary activated BWP, and after the measurement is completed, deactivate the secondary activated BWP.
  • the execution unit 103 determines to measure beams on multiple non-currently activated BWPs, after the beam measurements on all activated BWPs are completed, the execution unit 103 sends the beam measurements to the base station on the uplink BWP indicated in the CSI report configuration. result.
  • the UE needs to measure and report the two non-currently activated BWP#2 and BWP#3, then the UE activates BWP#2 to the next time. Active state, and perform beam measurement on BWP #2. After the measurement is completed, deactivate BWP #2 to the inactive state. Similarly, the UE performs the same operation on BWP #3. After the measurement of BWP#2 and BWP#3 is completed, the UE performs reporting based on all the measurement results.
  • the resource ID of the RS to be measured on the activated BWP for different times may be different.
  • the beam measurement result includes the resource ID of the RS.
  • the beam measurement result in addition to the resource ID of the RS, also includes information indicating the ID of the corresponding BWP, such as the ID of the aforementioned CSI-ResourceConfig or NZP- The ID of the CSI-RS-Resourceset, etc., so that the base station can identify which BWP the corresponding beam is.
  • the relevant description has been given in the first embodiment, and will not be described in detail here.
  • the base station may also configure the reference signal on the initial BWP for the UE, so that the UE performs beam measurement on the initial BWP.
  • the CSI report configuration (in semi-static or aperiodic triggering, the triggered CSI report configuration) is associated with the CSI resource configuration including the resource configuration for the reference signal on the initial BWP, then the initial BWP is Once the BWP is activated, the execution unit 103 performs beam measurement on the initial BWP, and sends the beam measurement result on the uplink BWP indicated in the CSI report configuration.
  • the BWP currently activated by the UE is BWP#1, and the UE receives an aperiodic trigger for CSI-ReportConfig#1 on this BWP, and CSI-ReportConfig#1 indicates to report CSI on ULBWP#1, and the associated
  • the BWP corresponding to the CSI-ResourceConfig is the initial BWP (DL BWP #0), and the UE activates the initial BWP as the secondary BWP, performs beam measurement on the initial BWP, and reports the measurement result on UL BWP #1 after completion.
  • the reference signal on the initial BWP may be all or part of the reference signal of the candidate beam configured in beam failure recovery.
  • the base station configures the reference signal on the initial BWP for the UE through RRC signaling, it can select part of the reference signal through MAC CE activation and/or through DCI indication for the UE to measure and report.
  • the UE can measure and report all configured reference signals.
  • the activation and deactivation of BWP can be performed in an explicit way or in an implicit way.
  • the execution unit 103 is configured to automatically activate and deactivate the non-currently activated BWP indicated in the CSI report configuration. For example, when it is determined to measure a beam on a certain non-currently activated BWP, the non-currently activated BWP is activated as the secondary activated BWP by default, and is automatically deactivated to an inactive state after the measurement is completed.
  • the currently activated BWP is BWP#1
  • the UE receives an aperiodic trigger configured for CSI report on BWP#1
  • its corresponding CSI resource is on BWP#2
  • BWP#2 is automatically Activation is the secondary activated BWP.
  • BWP #2 automatically changes from the secondary activated BWP to the inactive BWP.
  • the acquiring unit 101 is configured to acquire activation and deactivation instructions from the base station.
  • the obtaining unit 101 may obtain the activation or deactivation indication through RRC configuration, MAC CE activation, or DCI indication.
  • a maximum of 4 BWPs can be configured through RRC, one of which is the initial BWP (BWP#0), one is the currently used BWP#1, and the other two are BWP#2 and BWP#3 respectively.
  • BWP#0 initial BWP
  • BWP#1 currently used BWP#1
  • BWP#2 and BWP#3 respectively.
  • the base station activates BWP #2 and BWP #3 as secondary BWPs through DCI.
  • the electronic device 100 can implement measurement and reporting of beams on multiple BWPs without increasing the complexity of the UE, while reducing signaling overhead and time delay.
  • FIG. 8 shows a block diagram of functional modules of an electronic device 200 according to another embodiment of the present application.
  • the electronic device 200 includes: a providing unit 201 configured to provide a CSI resource configuration and a CSI report configuration to the UE , Where the CSI report configuration is associated with one or more CSI resource configurations, and the CSI resource configuration includes resource configurations for one or more reference signals on the BWP; and the acquiring unit 202 is configured to acquire from the UE based on the CSI report configuration The beam measurement result of the beam corresponding to the reference signal obtained by measuring the reference signal specified in the associated CSI resource configuration.
  • the providing unit 201 and the acquiring unit 202 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip, for example.
  • the processing circuit may be implemented as a chip, for example.
  • each functional unit in the device shown in FIG. 8 is only a logical module divided according to the specific function implemented by it, and is not used to limit the specific implementation manner.
  • the electronic device 200 may, for example, be provided on the side of the base station or be communicably connected to the base station.
  • the electronic device 200 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 200 may work as a base station itself, and may also include external devices such as a memory, a transceiver (not shown), and the like.
  • the memory can be used to store programs and related data information that the base station needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, user equipment, other base stations, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the providing unit 201 may provide CSI resource configuration and CSI report configuration via RRC signaling.
  • the CSI resource configuration is used to configure which reference signals are measured, and the CSI report configuration is used to configure the reporting method of beam measurement results.
  • the CSI resource type can be periodic, semi-static or aperiodic.
  • the CSI report can be periodic, semi-static or aperiodic.
  • the reference signal mentioned here includes but is not limited to CSI-RS or SSB.
  • CSI-RS will be used as an example, but it should be understood that these descriptions are also applicable to other downlink reference signals and are not restrictive.
  • the UE performs periodic measurement on the reference signal (corresponding to the beam) configured in the CSI resource configuration, and the obtaining unit 202 obtains the beam measurement result from the UE according to the CSI report configuration.
  • the providing unit 201 is further configured to send an aperiodic trigger or a semi-static trigger for the CSI report configuration to the UE, so that the UE performs beam measurement and measurement based on the CSI report configuration indicated in the aperiodic trigger or semi-static trigger.
  • Transmission of beam measurement results For example, aperiodic triggering or semi-static triggering indicates beam measurement and measurement result reporting on at least a part of the reference signal configured by the CSI resource configuration.
  • the CSI report configuration needs to indicate the CSI resource configuration associated with it.
  • the providing unit 201 sends a list of CSI aperiodic triggering states to the UE, for example, through DCI, where each state includes a list of associated CSI report configurations (CSI-ReportConfig).
  • the providing unit 201 sends a CSI semi-static trigger state list to the UE, for example, through MAC CE, where each state includes an associated CSI-ReportConfig.
  • this embodiment improves the CSI framework of FIG. 2 as follows: one CSI-ReportConfig can be associated with one or more CSI-ResourceConfig, and the CSI-ResourceConfig includes Or resource configuration of reference signals on multiple BWPs.
  • the CSI report configuration is associated with multiple CSI resource configurations, and each CSI resource configuration is a configuration for one BWP.
  • Fig. 3 shows an example of the CSI framework in this case. It can be seen that the resources of the reference signals configured in each CSI resource configuration are on one BWP (with the same DL-BWP-ID).
  • the CSI report The configuration may be associated with the resource configuration of the reference signals on the multiple BWPs, so as to report the beam measurement results on the multiple BWPs.
  • the CSI report configuration is associated with one CSI resource configuration, each CSI resource configuration includes multiple CSI resource sets, and each CSI resource set corresponds to one BWP.
  • Fig. 4 shows an example of the CSI framework in this case. It can be seen that each CSI resource set in the CSI resource configuration includes a DL-BWP-ID field, which indicates that the resource of the reference signal in the resource set is on the BWP corresponding to the ID. When the DL-BWP-IDs in each CSI resource set are different, the CSI report configuration can be associated with the resource configuration of the reference signal on the multiple BWPs, thereby reporting the beam measurement results on the multiple BWPs.
  • the NZP-CSI-RS resource set is shown as an example in FIG. 4, but this is not restrictive, and this solution can also be applied to other reference signal resource sets.
  • the CSI report configuration is associated with one CSI resource configuration, each CSI resource configuration includes multiple CSI resource sets, and each CSI resource in each CSI resource set corresponds to a BWP.
  • Fig. 5 shows an example of the CSI framework in this case. It can be seen that each CSI resource in each CSI resource set in the CSI resource configuration includes a DL-BWP-ID field, indicating that the resource of the corresponding reference signal is on the BWP corresponding to the ID.
  • the CSI report configuration may be associated with the resource configuration of the reference signal on the multiple BWPs, thereby reporting the beam measurement results on the multiple BWPs.
  • the NZP-CSI-RS resource is shown as an example in FIG. 5, this is not restrictive, and this solution can also be applied to other reference signal resources.
  • the UE can only activate one BWP and the UE can activate multiple BWPs, an example in which the base station obtains the beam measurement result from the UE will be described in detail.
  • the UE can only activate one BWP and needs to feed back the CSI on the non-currently activated BWP, the UE needs to switch to the non-currently activated BWP to perform PDCCH monitoring, PDSCH reception, etc. on the BWP.
  • this embodiment provides an electronic device 100 for instructing the UE to switch between multiple BWPs to perform beam measurement, and report the measurement result only once. Note that although an example of a scenario where BWP and beam are bound is given above, the solution of this embodiment is not limited to this, and it can also be applied to a scenario where BWP and beam are not bound.
  • the providing unit 201 It is configured to: send a first handover instruction to the UE, the first handover instruction instructs the UE to switch from the currently activated BWP to the inactive BWP; send the CSI request on the inactive BWP to the UE and indicate whether to report the beam measurement result instruct. Wherein, for the last inactive BWP among the one or more inactive BWPs, the providing unit 201 sends an indication to the UE to report the beam measurement result. In addition, the providing unit 201 also sends a second handover instruction to the UE, the second handover instruction instructing the UE to switch from the inactive BWP to the currently activated BWP.
  • the UE will perform BWP switching, reporting beam measurement results, and switching back to the currently activated BWP in response to the above-mentioned first handover instruction, CSI request, indication of whether to report beam measurement results, and second handover instruction. It can be seen that in the case of multiple non-currently activated BWPs, except for the last inactive BWP, the other inactive BWPs that indicate whether to report the beam measurement results are all indications of no, so that The UE can report uniformly after all measurements are completed.
  • the providing unit 201 may also be configured to send a first BWP switching instruction to the UE for multiple non-currently activated BWPs.
  • the first BWP switching instruction instructs the UE to switch from the currently activated BWP to each of the multiple inactive BWPs in a certain order.
  • the UE reports after the measurement on all BWPs is completed.
  • the providing unit 201 is further configured to send a second BWP switching instruction to the UE, the second BWP switching instruction instructing the UE to switch from the inactive BWP to the currently activated BWP.
  • the UE reports the measurement result once after performing the measurement multiple times, which reduces the signaling overhead and time delay.
  • the measurement result is reported once, flexible and diverse reporting forms can be adopted, thereby further reducing signaling overhead.
  • the related detailed description has been given in the second embodiment and will not be repeated here.
  • the CSI report configuration is associated with the CSI resource configuration for the resource configuration of the reference signal on the initial BWP.
  • the base station configures, activates, or instructs the UE corresponding to the CSI resource configuration related to the initial BWP CSI report configuration.
  • the CSI report configuration may also indicate that the beam measurement result is reported on the initial BWP.
  • this article does not limit the uplink BWP used to report the measurement results.
  • the UE will switch to the initial BWP to measure all the indicated beams and report the measurement results. In addition, the UE needs to switch back to the currently active BWP.
  • the providing unit 201 is configured to send a first handover instruction to the UE, the first handover instruction instructing the UE to switch from the currently activated BWP to the initial BWP; send a CSI request on the initial BWP to the UE; and send a second handover instruction to the UE A handover instruction, the second handover instruction instructs the UE to switch from the initial BWP to the currently activated BWP. It can be seen that since all the measurements are performed on the initial BWP, the UE only needs to perform a BWP handover, and it can be reported after the measurement is completed.
  • the reference signal on the initial BWP may be pre-configured by the base station, for example, the base station may be configured through RRC signaling.
  • the reference signal on the initial BWP may be a part or all of the reference signal of the candidate beam configured in beam failure recovery.
  • the UE can simultaneously activate multiple BWPs (referred to here as downlink BWPs). In this embodiment, this is achieved by activating multiple BWPs in different ways.
  • the base station may obtain information about the number of BWPs that the UE can activate at the same time from the UE. As mentioned earlier, this number of information can be reported as a separate parameter. Alternatively, the number can also be considered jointly with the number of CCs in the reference signal used for mobility management that the UE can support at the same time, as a kind of overall capability information.
  • the providing unit 201 is configured to send an activation or deactivation indication to the UE when the CSI report configuration indicates that the beam on the BWP that is not currently activated is to be measured, so as to activate the corresponding non-currently activated BWP as the second time. Activate BWP or deactivate.
  • the currently activated BWP is referred to as the main activated BWP.
  • the UE performs operations such as PDCCH monitoring and PDSCH reception on the primary activated BWP, and only performs beam measurement operations on the secondary activated BWP, that is, the UE only reports CSI for this secondary activated BWP.
  • the UE When the CSI report configuration indicates that the beams on multiple non-currently activated BWPs are to be measured, the UE shall activate multiple non-currently activated BWPs as secondary BWPs and perform beam measurement, and then deactivate the secondary activation BWP, and report the beam measurement result to the base station after all measurements are completed.
  • the providing unit 201 can activate and deactivate the multiple non-currently activated BWPs in sequence.
  • the base station may also configure the reference signal on the initial BWP for the UE, so that the UE performs beam measurement on the initial BWP.
  • the initial BWP is the second activated BWP.
  • the reference signal on the initial BWP may be all or part of the reference signal of the candidate beam configured in beam failure recovery.
  • the base station configures the reference signal on the initial BWP for the UE through RRC signaling, it can select part of the reference signal through MAC CE activation and/or through DCI indication for the UE to measure and report.
  • the UE can measure and report all configured reference signals.
  • the providing unit 201 may send an activation or deactivation indication through RRC configuration, MAC CE activation, or DCI indication.
  • the base station can configure up to 4 BWPs through RRC, one of which is the initial BWP (BWP#0), one is the currently used BWP#1, and the other two are BWP#2 and BWP#3, respectively.
  • BWP#0 initial BWP
  • BWP#1 currently used BWP#1
  • the base station can send activation and deactivation instructions for BWP #2 and BWP #3 through DCI.
  • the electronic device 200 can improve the CSI framework without increasing the complexity of the UE to achieve measurement and reporting of beams on multiple BWPs, while reducing signaling overhead and time. Extension.
  • FIG. 9 shows a flowchart of a method for wireless communication according to an embodiment of the present application.
  • the method includes: acquiring a CSI resource configuration and a CSI report configuration from a base station (S11), wherein the CSI report configuration is associated with one or more CSI resource configuration is associated with each other, and the CSI resource configuration includes resource configuration for one or more reference signals on the BWP; and based on the CSI report configuration, the base station sends the reference signal obtained by measuring the reference signal specified in the associated CSI resource configuration to the base station.
  • the beam measurement result of the beam corresponding to the reference signal (S14). This method can be executed on the UE side, for example.
  • the reference signal may be a channel state information reference signal or a synchronization signal block.
  • the above method may further include step S13: Obtain an aperiodic trigger or semi-static trigger for the CSI report configuration from the base station, and perform based on the CSI report configuration indicated in the aperiodic trigger or semi-static trigger Beam measurement and transmission of beam measurement results.
  • aperiodic triggering or semi-static triggering may indicate beam measurement and measurement result reporting on at least a part of the reference signal configured by the CSI resource configuration.
  • the CSI report configuration is associated with multiple CSI resource configurations, and each CSI resource configuration is a configuration for one BWP.
  • the CSI report configuration is associated with one CSI resource configuration, each CSI resource configuration includes multiple CSI resource sets, and each CSI resource set corresponds to one BWP.
  • the CSI report configuration is associated with one CSI resource configuration, each CSI resource configuration includes multiple CSI resource sets, and each CSI resource in each CSI resource set corresponds to a BWP.
  • this method can be applied to NTN.
  • BWPs other than the initial BWP only specific beams are transmitted on each BWP, and all beams are transmitted on the initial BWP.
  • the above method may further include step S13: performing beam measurement.
  • step S13 when it is determined that the beam on the non-currently activated BWP is to be measured based on the CSI report configuration, the non-currently activated BWP is determined as the secondary activated BWP, so as to perform the measurement on the secondary activated BWP.
  • Perform beam measurement For example, a BWP that is not currently activated can be activated as a secondary activated BWP, so that beam measurement can be performed on the secondary activated BWP, and after the measurement is completed, the secondary activated BWP is deactivated.
  • the BWP that is not currently activated as indicated in the CSI report configuration can be automatically activated and deactivated; the activation and deactivation instructions can also be obtained from the base station.
  • the activation or deactivation indication can be obtained through RRC configuration, MAC CE activation, or DCI indication.
  • step S14 in the case where it is determined to measure beams on multiple non-currently activated BWPs, after the beam measurement on all secondary activated BWPs ends, send to the base station on the uplink BWP indicated in the CSI report configuration Beam measurement results.
  • the resource identifier of the reference signal to be measured on the activated BWP for different times is different, and the beam measurement result includes the resource identifier of the reference signal. If the resource identifiers of the reference signals to be measured on different activated BWPs are the same, the beam measurement result includes the resource identifier of the reference signal and information indicating the identifier of the corresponding BWP.
  • the initial BWP is the secondary active BWP
  • the beam measurement is performed on the initial BWP in step S13
  • the beam measurement result is sent on the uplink BWP indicated in the CSI report configuration.
  • the reference signal on the initial BWP may be all or part of the reference signal of the candidate beam configured in beam failure recovery.
  • step S13 when it is determined based on the CSI report configuration that the beam on the non-currently activated BWP is to be measured, switch to the non-currently activated BWP to perform beaming on the non-currently activated BWP. Measure and switch back to the currently active BWP after the measurement is completed. For example, switching between BWPs can be performed at a predetermined timing.
  • the above method also includes the following steps: acquiring a first BWP switching instruction from the base station, the first BWP switching instruction instructing to switch from the currently activated BWP to the initial BWP; acquiring the CSI request from the base station on the initial BWP; acquiring from the base station A second BWP switching instruction, the second BWP switching instruction instructing to switch from the initial BWP to the currently activated BWP.
  • the beam measurement result is sent to the base station.
  • the reference signal on the initial BWP may be all or part of the reference signal of the candidate beam configured in beam failure recovery.
  • the above method further includes: for each inactive BWP of the plurality of inactive BWPs: acquiring a first BWP switching instruction from the base station, the first BWP switching instruction instructing to switch from the currently active BWP to the inactive BWP;
  • the inactive BWP obtains a CSI request from the base station and an indication indicating whether to report the beam measurement result, wherein, when the measurement on multiple inactive BWPs is completed, obtain the report of the beam measurement result from the base station Instruct, and obtain a second BWP switching instruction from the base station, the second BWP switching instruction instructing to switch from the inactive BWP to the currently active BWP.
  • FIG. 10 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • the method includes: providing a CSI resource configuration and a CSI report configuration to the UE (S21), wherein the CSI report configuration is associated with one or Multiple CSI resource configurations are associated, and the CSI resource configuration includes resource configurations for one or more reference signals on the BWP; and based on the CSI report configuration, it is obtained by measuring the reference signal specified in the associated CSI resource configuration from the UE.
  • the beam measurement result of the beam corresponding to the reference signal (S23).
  • This method can be executed on the base station side, for example.
  • the above method may further include step S22: sending an aperiodic trigger or semi-static trigger configured for the CSI report to the UE, so that the UE is based on the CSI report indicated in the aperiodic trigger or semi-static trigger Configure beam measurement and beam measurement result transmission.
  • aperiodic triggering or semi-static triggering may indicate beam measurement and measurement result reporting on at least a part of the reference signal configured by the CSI resource configuration.
  • the CSI report configuration is associated with multiple CSI resource configurations, and each CSI resource configuration is a configuration for one BWP.
  • the CSI report configuration is associated with one CSI resource configuration, each CSI resource configuration includes multiple CSI resource sets, and each CSI resource set corresponds to one BWP.
  • the CSI report configuration is associated with one CSI resource configuration, each CSI resource configuration includes multiple CSI resource sets, and each CSI resource in each CSI resource set corresponds to a BWP.
  • this method can be applied to NTN.
  • BWPs other than the initial BWP only specific beams are transmitted on each BWP, and all beams are transmitted on the initial BWP.
  • the above method further includes: in the case that the CSI report configuration indicates that the beam on the BWP that is not currently activated is to be measured, sending activation and deactivation instructions to the UE to change the corresponding The activation of the BWP that is not currently activated is the second activated BWP or deactivated.
  • the activation or deactivation indication can be sent through RRC configuration, MAC CE activation, or DCI indication.
  • the above method further includes: sending to the UE The first BWP switching instruction, the first BWP switching instruction instructs the UE to switch from the currently active BWP to the initial BWP; sending the CSI request on the initial BWP to the UE; sending the second BWP switching instruction to the UE, the second BWP switching instruction instructing The UE switches from the initial BWP to the currently activated BWP.
  • the reference signal on the initial BWP is all or part of the reference signal of the candidate beam configured in beam failure recovery.
  • the CSI report configuration indicates that the beams on one or more non-currently activated BWPs are to be measured.
  • the above method includes: for each non-activated BWP of the one or more non-currently activated BWPs: The UE sends the first BWP switching instruction, the first BWP switching instruction instructs the UE to switch from the currently activated BWP to the inactive BWP; sends the CSI request on the inactive BWP to the UE and an indication indicating whether to report the beam measurement result , Where, for the last inactive BWP in one or more inactive BWPs, an instruction to report beam measurement results is sent to the UE, and a second BWP switching instruction is sent to the UE, the second BWP switching instruction Instruct the UE to switch from the inactive BWP to the currently active BWP.
  • the technology of the present disclosure can be applied to various products.
  • the electronic device 100 may be implemented as various user equipment.
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • the electronic device 200 may be implemented as various base stations.
  • the base station can be implemented as any type of evolved Node B (eNB) or gNB (5G base station).
  • eNBs include, for example, macro eNBs and small eNBs.
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • a similar situation can also be used for gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • BTS base transceiver station
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) arranged in a place different from the main body.
  • a main body also referred to as a base station device
  • RRH remote radio heads
  • various types of user equipment can work as a base station by temporarily or semi-persistently performing base station functions.
  • FIG. 11 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 820 to transmit and receive wireless signals.
  • the eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 11 shows an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station device 820. For example, the controller 821 generates a data packet based on the data in the signal processed by the wireless communication interface 825, and transmits the generated packet via the network interface 823. The controller 821 may bundle data from multiple baseband processors to generate a bundled packet, and deliver the generated bundled packet. The controller 821 may have a logic function to perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or another eNB via the network interface 823.
  • the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface (such as an S1 interface and an X2 interface).
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 823 is a wireless communication interface, the network interface 823 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and an RF circuit 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • layers such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)
  • the BB processor 826 may have a part or all of the above-mentioned logical functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 826.
  • the module may be a card or a blade inserted into the slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810.
  • the wireless communication interface 825 may include a plurality of BB processors 826.
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827.
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 11 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the providing unit 201, the acquiring unit 202, and the transceiver of the electronic device 200 may be implemented by a wireless communication interface 825. At least part of the functions may also be implemented by the controller 821.
  • the controller 821 may implement the beam measurement and reporting of the UE on multiple BWPs by executing the functions of the providing unit 201 and the acquiring unit 202.
  • FIG. 12 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that similarly, the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 830 includes one or more antennas 840, base station equipment 850, and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 12 shows an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station equipment 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG. 11.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may generally include, for example, a BB processor 856.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 11 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include a plurality of BB processors 856.
  • multiple BB processors 856 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 12 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module used to connect the base station device 850 (wireless communication interface 855) to the communication in the above-mentioned high-speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may generally include, for example, an RF circuit 864.
  • the RF circuit 864 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 840.
  • the wireless communication interface 863 may include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 12 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the providing unit 201, the acquiring unit 202, and the transceiver of the electronic device 200 may be implemented by a wireless communication interface 855 and/or a wireless communication interface 863. At least a part of the functions may also be implemented by the controller 851.
  • the controller 851 may implement the beam measurement and reporting of the UE on multiple BWPs by executing the functions of the providing unit 201 and the acquiring unit 202.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a smart phone 900 to which the technology of the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the smart phone 900.
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the imaging device 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 907 may include a group of sensors, such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts the sound input to the smart phone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from the user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced), and performs wireless communication.
  • the wireless communication interface 912 may generally include, for example, a BB processor 913 and an RF circuit 914.
  • the BB processor 913 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 916.
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG. 13, the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914. Although FIG. 13 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • the wireless communication interface 912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • the smart phone 900 may include a plurality of antennas 916.
  • FIG. 13 shows an example in which the smart phone 900 includes a plurality of antennas 916, the smart phone 900 may also include a single antenna 916.
  • the smart phone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connect.
  • the battery 918 supplies power to each block of the smart phone 900 shown in FIG. 13 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode, for example.
  • the acquiring unit 101, the sending unit 102, and the transceiver of the electronic device 100 may be implemented by a wireless communication interface 912. At least part of the function may also be implemented by the processor 901 or the auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 may implement the beam measurement and reporting of the UE on multiple BWPs by executing the functions of the acquiring unit 101, the sending unit 102, and the executing unit 103.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, wireless
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or SoC, and controls the navigation function of the car navigation device 920 and other functions.
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 uses GPS signals received from GPS satellites to measure the position of the car navigation device 920 (such as latitude, longitude, and altitude).
  • the sensor 925 may include a group of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, an in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may generally include, for example, a BB processor 934 and an RF circuit 935.
  • the BB processor 934 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 937.
  • the wireless communication interface 933 may also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 14 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937.
  • FIG. 14 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 14 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the battery 938 accumulates electric power supplied from the vehicle.
  • the acquiring unit 101, the sending unit 102, and the transceiver of the electronic device 100 may be implemented by a wireless communication interface 933. At least part of the functions may also be implemented by the processor 921.
  • the processor 921 may implement the beam measurement and reporting of the UE on multiple BWPs by executing the functions of the acquiring unit 101, the sending unit 102, and the executing unit 103.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 940 including one or more blocks in the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data (such as vehicle speed, engine speed, and failure information), and outputs the generated data to the in-vehicle network 941.
  • the present invention also proposes a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by a machine, the above-mentioned method according to the embodiment of the present invention can be executed.
  • a storage medium for carrying the above-mentioned program product storing machine-readable instruction codes is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and so on.
  • a computer with a dedicated hardware structure (such as the general-purpose computer 1500 shown in FIG. 15) is installed from a storage medium or a network to the program constituting the software, and the computer is installed with various programs. When, it can perform various functions and so on.
  • a central processing unit (CPU) 1501 performs various processes in accordance with a program stored in a read only memory (ROM) 1502 or a program loaded from a storage part 1508 to a random access memory (RAM) 1503.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1501 executes various processing and the like is also stored as needed.
  • the CPU 1501, ROM 1502, and RAM 1503 are connected to each other via a bus 1504.
  • the input/output interface 1505 is also connected to the bus 1504.
  • the following components are connected to the input/output interface 1505: input part 1506 (including keyboard, mouse, etc.), output part 1507 (including display, such as cathode ray tube (CRT), liquid crystal display (LCD), etc., and speakers, etc.), Storage part 1508 (including hard disk, etc.), communication part 1509 (including network interface card such as LAN card, modem, etc.).
  • the communication section 1509 performs communication processing via a network such as the Internet.
  • the driver 1510 can also be connected to the input/output interface 1505 according to needs.
  • Removable media 1511 such as magnetic disks, optical disks, magneto-optical disks, semiconductor memory, etc. are installed on the drive 1510 as needed, so that the computer programs read out therefrom are installed into the storage portion 1508 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 1511.
  • this storage medium is not limited to the removable medium 1511 shown in FIG. 15 in which the program is stored and distributed separately from the device to provide the program to the user.
  • removable media 1511 include magnetic disks (including floppy disks (registered trademarks)), optical disks (including compact disk read-only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including mini disks (MD) (registered Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 1502, a hard disk included in the storage portion 1508, etc., in which programs are stored and distributed to users together with the devices containing them.
  • each component or each step can be decomposed and/or recombined.
  • decomposition and/or recombination should be regarded as equivalent solutions of the present invention.
  • the steps of performing the above-mentioned series of processing can naturally be performed in chronological order in the order of description, but do not necessarily need to be performed in chronological order. Some steps can be performed in parallel or independently of each other.

Abstract

本公开提供了一种用于无线通信的电子设备、方法和计算机可读存储介质,该电子设备包括:处理电路,被配置为:从基站获取信道状态信息CSI资源配置和CSI报告配置,其中,CSI报告配置与一个或多个CSI资源配置相关联,CSI资源配置包括针对一个或多个部分带宽BWP上的参考信号的资源配置;以及基于CSI报告配置向基站发送通过测量相关联的CSI资源配置中指定的参考信号而获得的与参考信号对应的波束的测量结果。

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2020年3月25日提交中国专利局、申请号为202010217738.9、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体地涉及多个部分带宽(Bandwidth part)上的波束管理技术。更具体地,涉及一种用于无线通信的电子设备和方法以及计算机可读存储介质。
背景技术
在NR Rel-15中,用于波束测量的信道状态信息资源(CSI resource),比如信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、同步信号块(synchronizing signal block,SSB)可以在任意BWP上传输,用户设备(User Equipment,UE)在进行波束测量时不需要进行频率转换。
根据现有技术,分别对于上行和下行,UE每次只能激活一个BWP,即UE每次只能激活一个上行BWP和一个下行BWP。因此在进行波束测量结果上报时仅针对该下行BWP进行反馈,且UE不希望收到测量其他BWP上的信道状态信息(Channel State Information,CSI)的非周期触发。
另外,每个卫星都可以产生多个波束。根据38.821,目前非地面网络(Non-terrestrial network,NTN)有两种物理小区标识(Physical Cell Identifier,PCI)与波束的对应方式。第一种,每个PCI对应多个波束,每个波束对应特定的同步信号块(Synchronization Signal Block,SSB)。第二种,每个PCI对应一个波束,即,每个卫星小区仅对应一个波束,NR Rel.15中的波束管理机制对于这种情况不在适用。
在第一种情况下,对于空闲(idle)状态的UE,其只需要检测映射 到同一个PCI的SSB就可以快速简单地重新同步;对于连接状态的UE,波束特定SSB和波束特定CSI RS可以用于波束管理,以避免小区切换造成的数据传输中断和信令开销。
此外,在NTN场景下,当频率复用因子(frequency reuse factor,FRF)等于1时,分配到每个波束上的可用带宽非常大,但是UE可能遭受严重的来自相邻波束的同信道干扰。因此,利用FRF>1的频率部署可以有效降低相邻波束的干扰,提高信干噪比(Signal to Interference and Noise Ratio,SINR)。
因此,不同的波束可能位于不同的BWP上,期望提供一种适合该场景的波束管理方案。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:从基站获取CSI资源配置和CSI报告配置,其中,CSI报告配置与一个或多个CSI资源配置相关联,CSI资源配置包括针对一个或多个BWP上的参考信号的资源配置;以及基于CSI报告配置向基站发送通过测量相关联的CSI资源配置中指定的参考信号而获得的与参考信号对应的波束的波束测量结果。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:从基站获取CSI资源配置和CSI报告配置,其中,CSI报告配置与一个或多个CSI资源配置相关联,CSI资源配置包括针对一个或多个BWP上的参考信号的资源配置;以及基于CSI报告配置向基站发送通过测量相关联的CSI资源配置中指定的参考信号而获得的与参考信号对应的波束的波束测量结果。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包 括:处理电路,被配置为:向UE提供CSI资源配置和CSI报告配置,其中,CSI报告配置与一个或多个CSI资源配置相关联,CSI资源配置包括针对一个或多个BWP上的参考信号的资源配置;以及基于CSI报告配置从UE获取通过测量相关联的CSI资源配置中指定的参考信号而获得的与参考信号对应的波束的波束测量结果。
根据本申请的一个方面,提供了一种用于无线通信的方法,包括:向UE提供CSI资源配置和CSI报告配置,其中,CSI报告配置与一个或多个CSI资源配置相关联,CSI资源配置包括针对一个或多个BWP上的参考信号的资源配置;以及基于CSI报告配置从UE获取通过测量相关联的CSI资源配置中指定的参考信号而获得的与参考信号对应的波束的波束测量结果。
根据本申请的电子设备和方法能够在不增加UE复杂度的情况下实现对多个BWP上的波束的测量和上报。
依据本发明的其它方面,还提供了用于实现上述用于无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图2示出了非周期触发或半静态触发方式下的CSI框架的示例;
图3示出了非周期触发或半静态触发方式下的CSI框架的另一个示例;
图4示出了非周期触发或半静态触发方式下的CSI框架的另一个示例;
图5示出了非周期触发或半静态触发方式下的CSI框架的另一个示例;
图6示出了每个BWP上仅有特定波束传输的示例;
图7示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图8示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图9示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图10示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图11是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图;
图12是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图;
图13是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图14是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图15是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务 相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
如前所述,例如,在NTN中可能存在不同的波束位于不同的BWP上的情形,从而需要对多个BWP上的波束进行测量和测量结果上报,因此,期望提供一种新的波束管理方案来高效地实现该功能。应该理解,虽然以上基于NTN的场景来描述了本申请所针对的问题,但是本申请所能应用的范围并不限于此,而是可以适当地应用于任何具有相似需求的场合。
图1示出了根据本申请的一个实施例的用于无线通信的电子设备100的功能模块框图,如图1所示,电子设备100包括:获取单元101,被配置为从基站获取CSI资源配置和CSI报告配置,其中,CSI报告配置与一个或多个CSI资源配置相关联,CSI资源配置包括针对一个或多个BWP上的参考信号的资源配置;以及发送单元102,被配置为基于CSI报告配置向基站发送通过测量相关联的CSI资源配置中指定的参考信号而获得的与参考信号对应的波束的波束测量结果。
其中,获取单元101和发送单元102可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。并且,应该理解,图1中所示的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备100例如可以设置在UE侧或者可通信地连接到UE。这里,还应指出,电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备100可以工作为UE本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储UE实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或 多个通信接口以支持与不同设备(例如,基站、其他UE等等)间的通信,这里不具体限制收发器的实现形式。
例如,获取单元101可以经由无线资源控制(Radio Resource Control,RRC)信令来获取CSI资源配置和CSI报告配置。CSI资源配置用于配置对哪些参考信号进行测量,CSI报告配置用于配置波束测量结果的上报方式。其中,CSI资源类型可以是周期性的、半静态的或者非周期性的。相应地,CSI报告可以是周期性的、半静态的或者非周期性的。
本文所述的参考信号包括但不限于CSI-RS或SSB。在以下的描述中将以CSI-RS作为示例,但是应该理解,这些描述对其他下行参考信号同样适用,并不是限制性的。
对于周期性的方式,UE对CSI资源配置中配置的参考信号(对应于波束)进行周期性测量,并且发送单元102根据CSI报告配置将波束测量结果发送给基站。
对于后两种形式,获取单元101还被配置为从基站获取对CSI报告配置的非周期触发或半静态触发,并且发送单元102被配置为基于非周期触发或半静态触发中指示的CSI报告配置进行波束测量和波束测量结果的发送。例如,非周期触发或半静态触发指示对CSI资源配置所配置的参考信号的至少一部分进行波束测量和测量结果上报。CSI报告配置中需要指示与其相关联的CSI资源配置。
为了便于理解,图2示出了非周期触发或半静态触发方式下的CSI框架的示例。例如,在非周期触发的情况中,获取单元101例如通过下行控制信息(Downlink Control Information,DCI)从基站获取CSI非周期触发状态列表,其中每个状态包含相关联的CSI报告配置(CSI-ReportConfig)的列表。在半静态触发的情况中,获取单元101例如通过MAC CE从基站获取CSI半静态触发状态列表,其中每个状态包含一个相关联的CSI-ReportConfig。在图2的示例中,一个CSI-ReportConfig与一个CSI资源配置(CSI-ResourceConfig)相关联,CSI-ResourceConfig中包括NZP-CSI-RS资源集、CSI-SSB资源集和CSI-IM资源集,还包括对于资源类型的指示(即,周期、非周期还是半静态),CSI-ReportConfig还包括指示用于进行测量结果上报的上行 BWP的标识(UL-BWP-ID,图2中未示出)的信息。另外,在图2的CSI-ResourceConfig中,包括下行参考信号的资源所在的BWP的标识(ID)。换言之,在图2所示的CSI框架中,一个CSI-ReportConfig对应一个CSI-ResourceConfig,一个CSI-ResourceConfig对应一个BWP。
为了使得能够测量和报告多个BWP上的波束,本实施例对图2的CSI框架进行了如下改进:一个CSI-ReportConfig可以与一个或多个CSI-ResourceConfig相关联,CSI-ResourceConfig包括针对一个或多个BWP上的参考信号的资源配置。注意,在本文中,对其进行测量和上报的BWP指的是下行BWP,对于上行BWP没有任何限制。
在第一示例中,CSI报告配置与多个CSI资源配置相关联,每个CSI资源配置是针对一个BWP的配置。图3示出了该情况下的CSI框架的一个示例。可以看出,各个CSI资源配置中所配置的参考信号的资源是在一个BWP上(具有相同的DL-BWP-ID)的,当各个CSI资源配置中的DL-BWP-ID不同时,CSI报告配置可以与多个BWP上的参考信号的资源配置相关联,从而对多个BWP上的波束测量结果进行上报。
例如,UE被配置为在UL BWP #1上上报CSI,该CSI-ReportConfig #1所关联的CSI-ResourceConfig #1对应的BWP为DL BWP#1,所关联的CSI-ResourceConfig #2对应的BWP为DL BWP#2,所关联的CSI-ResourceConfig #3对应的BWP为DL BWP#3。当UE接收到对CSI-ReportConfig #1的非周期或半静态触发时,可以对DL BWP#1、DL BWP#2和DL BWP#3上的波束进行测量和上报。
另外,为了保证在CSI上报时能够区分不同BWP上的波束ID,不同BWP上的参考信号标识(RS-ID)可以是不同的。比如CSI-ResourceConfig #1对应的BWP为DL BWP#1,包含NZP-CSI-RS-resource#1、#2、#3,CSI-ResourceConfig #2对应的BWP为DL BWP#2,包含NZP-CSI-RS-resource#4、#5、#6,UE可以根据测量结果,找到质量最好的波束来上报其ID和L1-RSRP,假设最好的波束为CRI(CSI-RS资源标识)#4,则上报内容为{CRI#4,L1-RSRP#4}。如果不同BWP上的RS-ID相同,则需要修改波束上报的内容。比如CSI-ResourceConfig #1和#2包含的均为NZP-CSI-RS resource#1、#2、#3,则上报内容可以为{CSI-ResourceConfig #2,CRI#1,L1-RSRP#1}。
例如,38.331中针对RRC参数的伪代码可以修改如下(下划线部分示出了修改):
Figure PCTCN2021081450-appb-000001
在第二示例中,CSI报告配置与一个CSI资源配置相关联,每个CSI资源配置包括多个CSI资源集合,每个CSI资源集合对应一个BWP。图4示出了该情况下的CSI框架的一个示例。可以看出,CSI资源配置中的每个CSI资源集合中包括DL-BWP-ID字段,指示该资源集合中的参考信号的资源是在该ID对应的BWP上的。当各个CSI资源集合中的DL-BWP-ID不同时,CSI报告配置可以与多个BWP上的参考信号的资源配置相关联,从而对多个BWP上的波束测量结果进行上报。注意,在图4中示出了NZP-CSI-RS资源集合作为示例,但是这并不是限制性 的,本方案也可以适用于其他参考信号的资源集合。
例如,UE被配置为在UL BWP #1上上报CSI,该CSI-ReportConfig#1所关联的CSI-ResourceConfig #1中NZP-CSI-RS-ResourceSet #1对应的BWP为DL BWP#1,NZP-CSI-RS-ResourceSet #2对应的BWP为DL BWP #2,NZP-CSI-RS-ResourceSet #3对应的BWP为DL BWP#3。当UE接收到非周期或半静态CSI-ReportConfig #1的触发时,可以对DL BWP#1、DL BWP#2和DL BWP#3上的波束进行测量和上报。
另外,为了保证在CSI上报时能够区分不同BWP上的波束ID,不同BWP上的RS-ID可以是不同的。比如NZP-CSI-RS-ResourceSet #1对应的BWP为DL BWP#1,包含NZP-CSI-RS-resource #1、#2、#3,NZP-CSI-RS-ResourceSet #2对应的BWP为DL BWP#2,包含NZP-CSI-RS-resource#4、#5、#6,UE可以根据测量结果,找到质量最好的波束来上报其ID及L1-RSRP,假设最好的波束为CRI(CSI-RS资源标识)#4,则上报内容为{CRI#4,L1-RSRP#4}。如果不同BWP上的RS-ID相同,则需要修改波束上报的内容。比如NZP-CSI-RS-ResourceSet #1和#2均包含NZP-CSI-RS-resource#1、#2、#3,则上报内容可以为{NZP-CSI-RS-ResourceSet #2,CRI#1,L1-RSRP#1}。
例如,38.331中针对RRC参数的伪代码可以修改如下(下划线部分示出了修改):
Figure PCTCN2021081450-appb-000002
Figure PCTCN2021081450-appb-000003
在第三示例中,CSI报告配置与一个CSI资源配置相关联,每个CSI资源配置包括多个CSI资源集合,每个CSI资源集合中的各个CSI资源分别对应于一个BWP。图5示出了该情况下的CSI框架的一个示例。可以看出,CSI资源配置中的每个CSI资源集合中的每个CSI资源包括DL-BWP-ID字段,指示相应参考信号的资源是在该ID对应的BWP上的。当各个CSI资源的DL-BWP-ID不同时,CSI报告配置可以与多个BWP上的参考信号的资源配置相关联,从而对多个BWP上的波束测量结果进行上报。类似地,虽然图5中示出了NZP-CSI-RS资源作为示例,但是这并不是限制性的,本方案也可以适用于其他参考信号的资源。
例如,UE被配置为在UL BWP #1上上报CSI,该CSI-ReportConfig #1所关联的CSI-ResourceConfig #1中的NZP-CSI-RS-ResourceSet #1包括NZP-CSI-RS-Resource #1、NZP-CSI-RS-Resource #2和NZP-CSI-RS-Resource #3,分别对应于DL BWP #1、DL BWP #2和DL BWP #3。当UE接收到非周期或半静态CSI-ReportConfig #1的触发时,可以对DL BWP#1、DL BWP#2和DL BWP#3上的波束进行测量和上报。
例如,38.331中针对RRC参数的伪代码可以修改如下(下划线部分示出了修改):
Figure PCTCN2021081450-appb-000004
Figure PCTCN2021081450-appb-000005
应该理解,上述图3至图5和伪代码均是示例,并不是限制性的。
综上所述,根据本实施例的电子设备100通过对CSI框架进行改进,能够在不增加UE复杂度的情况下实现对多个BWP上的波束的测量和上报。
<第二实施例>
在本实施例中,将按照UE仅能激活一个BWP和UE能激活多个BWP两种情形,具体描述UE在测量多个BWP上的波束或者非当前激活的BWP上的波束并进行上报的示例。
可以理解,如果UE仅能激活一个BWP且需要反馈非当前激活BWP上的CSI,则UE需要切换到该非当前激活的BWP上,以在该BWP上执行PDCCH的监听、PDSCH的接收等。
尤其地,例如在NTN中,对于除初始BWP以外的BWP,每个BWP上仅有特定波束传输,并且所有波束均在初始BWP上传输,如图6所示。其中,每个小区有8个波束,频率复用因子FRF=3,不同的波束用不同的图案表示。可以看出,用F1表示的波束仅在BWP 1上传输,用F2表示的波束仅在BWP 2上传输,而所有波束均在初始BWP上进行SSB/SIB的传输,并且可以进行CSI-RS的传输,也可以不进行CSI-RS的传输。
换言之,在某段时间内比如RRC配置完成至下一次RRC配置的时 间内,除了初始BWP之外,波束与BWP是绑定的。在这种情况下,每测量一个波束,需要执行一次BWP切换并进行测量结果上报,增加了延迟和开销,且测量结果由于老化(aging)而不准确。
鉴于此,本实施例提供了一种电子设备100,除了第一实施例所述的各个单元之外,如图7所示,电子设备100还包括:执行单元103,被配置为在基于CSI报告配置确定要对当前非激活的BWP上的波束进行测量的情况下,切换到该非当前激活BWP以在该非当前激活的BWP上进行波束测量,并在测量完成后切换回当前激活的BWP。
注意,以上虽然给出了BWP与波束绑定的场景的示例,但是本实施例的方案并不限于此,同样也可以应用于BWP与波束不绑定的场景。
示例性地,执行单元103在确定要对多个非当前激活的BWP上的波束进行测量的情况下,可以顺次切换到该多个非当前激活的BWP上进行波束测量,并在所有波束测量结束后,在CSI报告配置中指示的上行BWP上向基站发送波束测量结果。例如,假设UE当前激活的DL BWP是BWP#3,UE收到了一个非周期CSI触发,其对应的参考信号分别位于BWP#1和BWP#2上,则UE将执行如下操作:切换到BWP#1,完成BWP#1上的波束测量;然后切换到BWP#2,完成BWP#2上的波束测量;切换回BWP#3继续监听PDCCH以及接收PDSCH,同时在CSI报告配置中指示的UL BWP上根据在DL BWP#1、BWP#2上的测量结果进行上报。其中,非周期CSI触发可以采用第一实施例中所述的各种CSI框架,在此不再重复。
这样,可以在多次执行测量后一次上报测量结果,减小了信令开销和时延。此外,波束测量结果可以仅包括beam ID,也可以包括beam ID和对应的参考信号接收功率(RSRP)。在只上报beam ID时,可以仅上报RSRP最大的beam ID或者RSRP超过一定阈值的beam ID。在上报beam ID与其对应的RSRP时,可以上报最大RSRP的波束的RSRP的绝对值以及其他波束的RSRP的相对值。通过一次上报测量结果,可以采用灵活多样的上报形式,进一步减小信令开销。
或者,执行单元103在确定要对多个非当前激活的BWP上的波束进行测量的情况下,可以切换到初始BWP上进行相应的波束的测量。这是因为,所有波束均在初始BWP上传输。
此外,在另一个示例中,CSI报告配置与针对初始BWP上的参考信号的资源配置的CSI资源配置相关联,执行单元103被配置为切换到初始BWP上进行波束测量,并针对初始BWP进行上报。应该注意,在本文中的测量和切换(以及后文所述的激活)等操作是针对下行BWP的,而不对用于上报测量结果的上行BWP构成任何限制。示例性地,CSI报告配置还可以指示在初始BWP上进行波束测量结果的上报。换言之,基站指示在初始BWP上进行波束测量。在这种情况下,UE切换到初始BWP上对所指示的所有波束进行测量,随后切换回当前激活的BWP。例如,UE可以在测量完成后切换回当前激活的BWP,也可以在测量结果上报完成之后切换切换回当前激活的BWP,或者在其间的任何时间点处切换回当前激活的BWP,这都不是限制性的。
比如,假设UE在CSI报告配置#1中被配置为在UL BWP #1上上报CSI,该CSI报告配置#1所对应的BWP为DL BWP#0(即初始BWP),当UE在当前激活的DL BWP #1上接收到针对该CSI报告配置#1的非周期触发时,UE执行BWP切换,以切换到初始BWP上,UE在初始BWP上完成测量后,在UL BWP#1上完成上报,并切换回DL BWP #1。
例如,初始BWP上的参考信号可以由基站预先配置,例如基站可以通过RRC信令来进行配置。示例性地,初始BWP上的参考信号可以为波束故障恢复中配置的候选波束的参考信号的一部分或全部。如果该CSI上报是周期性的,则UE基于配置的全部参考信号进行测量和上报;如果该CSI上报是半静态的,则基站可以通过MAC CE指示参考信号中的一部分,UE基于指示的那部分参考信号进行测量和上报;如果该CSI上报是非周期触发的,则基站可以通过DCI指示参考信号中的一部分,UE基于指示的那部分参考信号进行测量和上报。
为了执行BWP切换,UE可以从基站获取显性的BWP切换指示,也可以基于隐性的BWP切换指示来进行。
在隐式方式中,执行单元103被配置为以预定定时执行在BWP间的切换。例如,执行单元103在基于非周期触发或半静态触发中指示的CSI报告配置确定要对当前非激活的BWP上的波束进行测量时,以预定定时自动切换到该当前非激活BWP,在该当前非激活BWP上完成测量后,切换回当前激活的BWP。
其中,预定定时可以基于如下中的一个或多个确定:基站和UE之间的具体的信令,预定或指定定时关系。例如,对于非周期触发的情况,UE在可以在收到触发后的X个时隙(slot)后执行BWP切换,以及在反馈CSI报告后的Y个时隙后执行BWP切换。对于半静态触发的情况,UE在收到包含该MAC CE的PDSCH的X个slot之后或者在反馈该PDSCH的ACK之后的x个slot之后执行BWP切换,取决于该系统中harq feedback disable的情况。而对于周期性触发的情况,UE例如可以在一个周期开始后的X个时隙后执行BWP切换,以及在反馈CSI报告后的Y个时隙后执行BWP切换,等等。这里的x、X、Y可以由基站指定,也可以由基站和UE事先约定好。
在显示方式中,UE从基站接收BWP切换指示以及上报指示,并响应于BWP切换指示执行切换,响应于上报指示上报测量结果。
对于切换到初始BWP的情形,获取单元101被配置为从基站获取第一切换指令,该第一切换指令指示从当前激活的BWP切换到初始BWP。UE响应于该第一切换指令切换到初始BWP。获取单元101还被配置为在初始BWP上从基站获取CSI请求,UE响应于该CSI请求进行测量结果的上报。此外,获取单元101还被配置为从基站获取第二切换指令,该第二切换指令指示从初始BWP切换到当前激活的BWP。UE响应于该第二切换指令切换回当前激活的BWP。注意,基站可以在发送CSI请求之后立即发送第二切换指令,也可以在接收到上报测量结果之后发送第二切换指令。
应该注意,本文中的第一、第二、……仅是为了区分的目的,而不存在任何顺序上的含义。
对于切换到其他非当前激活的BWP的情形,获取单元101被配置为针对多个非当前激活的BWP中的每一个非激活BWP:从基站获取第一BWP切换指令,该第一BWP切换指令指示从当前激活的BWP切换到非激活BWP;在该非激活BWP上从基站获取CSI请求以及表示是否进行波束测量结果的上报的指示。在多个非当前激活的BWP上的测量完成时,获取单元101从基站获取要进行波束测量结果的上报的指示,并从基站获取第二BWP切换指令,该第二BWP切换指令指示从非激活BWP切换到当前激活的BWP。
根据该配置,UE顺次切换到各个非激活BWP进行波束测量,在所有测量完成后响应于来自基站的上报测量结果的指示向基站发送波束测量结果,并响应于第二BWP切换指令切换回当前激活的BWP。
示例性地,假设基站想要获得UE对于分别位于非激活的BWP#1和BWP#2上的参考信号的测量结果,则基站和UE执行如下操作:基站向UE发送第一BWP切换指令;UE切换到BWP#1;基站向UE发送BWP#1上的CSI请求,并指示UE不要上报测量结果;基站向UE发送第一BWP切换指令;UE切换到BWP#2;基站向UE发送BWP#2上的CSI请求,并指示UE要上报测量结果;UE根据在BWP#1和BWP#2上的测量结果进行综合反馈。具体的反馈形式在前文中已经给出,在此不再重复。
此外,对于切换到其他非当前激活的BWP的情形,获取单元101也可以被配置为针对多个非当前激活的BWP:从基站获取第一BWP切换指令,该第一BWP切换指令指示从当前激活的BWP按一定顺序切换到多个非激活BWP中的每一个。在多个非当前激活的BWP上的测量完成时,获取单元101从基站获取第二BWP切换指令,该第二BWP切换指令指示从非激活BWP切换到当前激活的BWP。
示例性地,假设基站想要获得UE对于分别位于非激活的BWP#1和BWP#2上的参考信号的测量结果,则基站和UE执行如下操作:基站向UE发送第一BWP切换指令,该第一BWP切换指令指示从当前激活的BWP先切换到BWP#1再切换到BWP#2;UE先后切换到BWP#1,BWP#2进行波束测量,根据在BWP#1和BWP#2上的测量结果进行综合反馈。具体的反馈形式在前文中已经给出,在此不再重复。
在另一种情形下,UE能够同时激活多个BWP(这里指的是下行BWP)。在本实施例中,通过以不同的方式激活多个BWP来实现这一点。UE能够同时激活的BWP的个数的信息可以由UE提供给基站。示例性地,该个数的信息可以作为单独的参数(比如作为UE的能力信息的一部分)上报。或者,可以将该个数与UE能够同时支持的用于移动性管理的参考信号中的成份载波(CC)个数联合考虑,作为一种整体的能力信息。例如,假如UE能够同时支持的用于移动性管理的参考信号中的CC个数和能够同时激活的BWP的个数的总和不变,当能够同时激活的BWP的个数增加时,可以相应的降低用于移动性管理的参考信号中的 CC个数,这有助于不增加UE复杂度。
例如,执行单元103被配置为在基于CSI报告配置确定要对非当前激活的BWP上的波束进行测量的情况下,将该非当前激活的BWP确定为次激活BWP,以在该次激活BWP上进行波束测量。以下为了区分,将当前激活的BWP称为主激活BWP。UE在主激活BWP上执行PDCCH监测和PDSCH的接收等操作,在次激活BWP上仅执行波束测量的操作,即UE仅为该次激活BWP上报CSI。
进一步地,执行单元103被配置为将非当前激活的BWP激活为次激活BWP,以使得能够在次激活BWP上进行波束测量,并在测量完成后,去激活该次激活BWP。
执行单元103在确定要对多个非当前激活的BWP上的波束进行测量的情况下,在所有次激活BWP上的波束测量结束后,在CSI报告配置中指示的上行BWP上向基站发送波束测量结果。示例性地,假设UE当前激活的BWP为BWP #1,根据CSI报告配置,UE要对两个非当前激活的BWP #2和BWP #3进行测量和上报,则UE将BWP #2激活到次激活状态,并在BWP #2上执行波束测量,测量完成后将BWP #2去激活到非激活状态。类似地,UE对BWP #3执行相同的操作。在对BWP#2和BWP #3的测量完成后,UE基于所有的测量结果执行上报。
例如,不同次激活BWP上要测量的RS的资源ID可以不同,在这种情况下,波束测量结果包括RS的资源ID。而在不同次激活BWP上要测量的RS的资源ID相同的情况下,除了RS的资源ID之外,波束测量结果还包括指示相应BWP的ID的信息,例如前述CSI-ResourceConfig的ID或者NZP-CSI-RS-Resourceset的ID,等等,以便于基站识别相应的波束是哪个BWP上的波束。有关描述在第一实施例中已经给出,在此不再详述。
此外,基站还可以为UE配置初始BWP上的参考信号,以使得UE在初始BWP上进行波束测量。在这种情况下,CSI报告配置(在半静态或非周期触发中,为被触发的CSI报告配置)与包括针对初始BWP上的参考信号的资源配置的CSI资源配置相关联,则初始BWP为次激活BWP,执行单元103在初始BWP上进行波束测量,并在CSI报告配置中指示的上行BWP上发送波束测量结果。例如,UE当前激活的BWP 为BWP #1,UE在该BWP上接收到对于CSI-ReportConfig #1的非周期触发,CSI-ReportConfig #1中指示在UL BWP #1上上报CSI,并且相关联的CSI-ResourceConfig对应的BWP为初始BWP(DL BWP #0),则UE将初始BWP激活为次激活BWP,在初始BWP上执行波束测量,并且完成后在UL BWP #1上上报测量结果。
示例性地,初始BWP上的参考信号可以为波束故障恢复中配置的候选波束的参考信号的全部或一部分。在基站通过RRC信令为UE配置了初始BWP上的参考信号后,可以通过MAC CE激活以及/或者通过DCI指示的方式选择部分参考信号让UE进行测量和上报。此外,对于周期性CSI上报,UE可以对所配置的所有参考信号进行测量和上报。
BWP的激活和去激活的执行,可以采用显性方式,也可以采用隐性方式。
在隐性方式中,执行单元103被配置为对CSI报告配置中指示的非当前激活的BWP进行自动激活和去激活。例如,当确定要对某个非当前激活的BWP上的波束进行测量时,该非当前激活的BWP被默认激活为次激活BWP,在测量结束后,自动将其去激活为非激活状态。示例性地,假设当前激活的BWP为BWP #1,UE在BWP #1上收到一个对于CSI报告配置的非周期触发,其对应的CSI资源在BWP #2上,此时BWP#2被自动激活为次激活BWP,在测量结束后,BWP #2由次激活BWP自动变为非激活BWP。
在显性方式中,获取单元101被配置为从基站获取激活和去激活指示。例如,获取单元101可以通过RRC配置、MAC CE激活或DCI指示来获取激活或去激活指示。
示例性地,通过RRC可以最多配置4个BWP,其中1个为初始BWP(BWP #0),1个为当前使用的BWP #1,其他两个分别为BWP #2和BWP #3,在UE收到针对BWP #2和BWP #3上的波束的测量触发时,基站通过DCI将BWP #2和BWP #3激活为次激活BWP。
综上所述,根据本实施例的电子设备100能够在不增加UE复杂度的情况下实现对多个BWP上的波束的测量和上报,同时减小信令开销和时延。
<第三实施例>
图8示出了根据本申请的另一个实施例的电子设备200的功能模块框图,如图8所示,电子设备200包括:提供单元201,被配置为向UE提供CSI资源配置和CSI报告配置,其中,CSI报告配置与一个或多个CSI资源配置相关联,CSI资源配置包括针对一个或多个BWP上的参考信号的资源配置;以及获取单元202,被配置为基于CSI报告配置从UE获取通过测量相关联的CSI资源配置中指定的参考信号而获得的与参考信号对应的波束的波束测量结果。
其中,提供单元201和获取单元202可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。并且,应该理解,图8中所示的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备200例如可以设置在基站侧或者可通信地连接到基站。这里,还应指出,电子设备200可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备200可以工作为基站本身,并且还可以包括诸如存储器、收发器(未示出)等外部设备。存储器可以用于存储基站实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,用户设备、其他基站等等)间的通信,这里不具体限制收发器的实现形式。
例如,提供单元201可以经由RRC信令来提供CSI资源配置和CSI报告配置。CSI资源配置用于配置对哪些参考信号进行测量,CSI报告配置用于配置波束测量结果的上报方式。其中,CSI资源类型可以是周期性的、半静态的或者非周期性的。相应地,CSI报告可以是周期性的、半静态的或者非周期性的。
这里所述的参考信号包括但不限于CSI-RS或SSB。在以下的描述中将以CSI-RS作为示例,但是应该理解,这些描述对其他下行参考信号同样适用,并不是限制性的。
对于周期性的方式,UE对CSI资源配置中配置的参考信号(对应于波束)进行周期性测量,并且获取单元202根据CSI报告配置从UE获取波束测量结果。
对于后两种形式,提供单元201还被配置为向UE发送对CSI报告 配置的非周期触发或半静态触发,以使得UE基于非周期触发或半静态触发中指示的CSI报告配置进行波束测量和波束测量结果的发送。例如,非周期触发或半静态触发指示对CSI资源配置所配置的参考信号的至少一部分进行波束测量和测量结果上报。CSI报告配置中需要指示与其相关联的CSI资源配置。
返回参照图2,例如,在非周期触发的情况中,提供单元201例如通过DCI向UE发送CSI非周期触发状态列表,其中每个状态包含相关联的CSI报告配置(CSI-ReportConfig)的列表。在半静态触发的情况中,提供单元201例如通过MAC CE向UE发送CSI半静态触发状态列表,其中每个状态包含一个相关联的CSI-ReportConfig。
为了使得UE能够测量和报告多个BWP上的波束,本实施例对图2的CSI框架进行了如下改进:一个CSI-ReportConfig可以与一个或多个CSI-ResourceConfig相关联,CSI-ResourceConfig包括针对一个或多个BWP上的参考信号的资源配置。
在第一示例中,CSI报告配置与多个CSI资源配置相关联,每个CSI资源配置是针对一个BWP的配置。图3示出了该情况下的CSI框架的一个示例。可以看出,各个CSI资源配置中所配置的参考信号的资源是在一个BWP上(具有相同的DL-BWP-ID)的,当各个CSI资源配置中的DL-BWP-ID不同时,CSI报告配置可以与多个BWP上的参考信号的资源配置相关联,从而对多个BWP上的波束测量结果进行上报。
在第二示例中,CSI报告配置与一个CSI资源配置相关联,每个CSI资源配置包括多个CSI资源集合,每个CSI资源集合对应一个BWP。图4示出了该情况下的CSI框架的一个示例。可以看出,CSI资源配置中的每个CSI资源集合中包括DL-BWP-ID字段,指示该资源集合中的参考信号的资源是在该ID对应的BWP上的。当各个CSI资源集合中的DL-BWP-ID不同时,CSI报告配置可以与多个BWP上的参考信号的资源配置相关联,从而对多个BWP上的波束测量结果进行上报。注意,在图4中示出了NZP-CSI-RS资源集合作为示例,但是这并不是限制性的,本方案也可以适用于其他参考信号的资源集合。
在第三示例中,CSI报告配置与一个CSI资源配置相关联,每个CSI资源配置包括多个CSI资源集合,每个CSI资源集合中的各个CSI资源 分别对应于一个BWP。图5示出了该情况下的CSI框架的一个示例。可以看出,CSI资源配置中的每个CSI资源集合中的每个CSI资源包括DL-BWP-ID字段,指示相应参考信号的资源是在该ID对应的BWP上的。当各个CSI资源的DL-BWP-ID不同时,CSI报告配置可以与多个BWP上的参考信号的资源配置相关联,从而对多个BWP上的波束测量结果进行上报。类似地,虽然图5中示出了NZP-CSI-RS资源作为示例,但是这并不是限制性的,本方案也可以适用于其他参考信号的资源。
以上三个示例在第一实施例中已经给出了详细描述,同样适用于本实施例,在此不再重复。
在本实施例中,将按照UE仅能激活一个BWP和UE能激活多个BWP两种情形,具体描述基站从UE获取波束测量结果的示例。
可以理解,如果UE仅能激活一个BWP且需要反馈非当前激活BWP上的CSI,则UE需要切换到该非当前激活的BWP上,以在该BWP上执行PDCCH的监听、PDSCH的接收等。
尤其地,例如在NTN中,对于除初始BWP以外的BWP,每个BWP上仅有特定波束传输,并且所有波束均在初始BWP上传输,如图6所示。即,在某段时间内比如RRC配置完成至下一次RRC配置的时间内,除了初始BWP之外,波束与BWP是绑定的。在这种情况下,每测量一个波束,需要执行一次BWP切换并进行测量结果上报,增加了延迟和开销,且测量结果由于老化(aging)而不准确。
鉴于此,本实施例提供了一种电子设备100,用于指示UE在多个BWP间切换以进行波束测量,并且仅统一上报一次测量结果。注意,以上虽然给出了BWP与波束绑定的场景的示例,但是本实施例的方案并不限于此,同样也可以应用于BWP与波束不绑定的场景。
示例性地,在CSI报告配置指示要对一个或多个非当前激活的BWP上的波束进行测量的情况下,针对一个或多个非当前激活的BWP中的每一个非激活BWP,提供单元201被配置为:向UE发送第一切换指令,该第一切换指令指示UE从当前激活的BWP切换到非激活BWP;向UE发送该非激活BWP上的CSI请求以及表示是否进行波束测量结果上报的指示。其中,针对一个或多个非当前激活的BWP中的最后一个非激活BWP,提供单元201向UE发送要进行波束测量结果的上报的指示。 并且,提供单元201还向UE发送第二切换指令,该第二切换指令指示UE从非激活BWP切换到当前激活的BWP。
UE将响应于上述第一切换指令、CSI请求、是否进行波束测量结果上报的指示、第二切换指令等执行BWP的切换、波束测量结果的上报、切换回当前激活的BWP等操作。可以看出,在多个非当前激活的BWP的情况中,除了针对最后一个非激活BWP之外,针对其他非激活BWP发送的是否进行波束测量结果上报的指示均为代表否的指示,以使得UE可以在所有测量完成后统一进行上报。
此外,在CSI报告配置指示要对多个非当前激活的BWP上的波束进行测量的情况下,提供单元201也可以被配置为针对多个非当前激活的BWP:向UE发送第一BWP切换指令,该第一BWP切换指令指示UE从当前激活的BWP按一定顺序切换到多个非激活BWP中的每一个。类似地,UE在所有BWP上的测量完成后进行上报。此外,提供单元201还被配置为向UE发送第二BWP切换指令,该第二BWP切换指令指示UE从非激活BWP切换到当前激活的BWP。
根据该示例,UE在多次执行测量后一次上报测量结果,减小了信令开销和时延。此外,由于进行一次测量结果上报,可以采用灵活多样的上报形式,从而进一步减小信令开销。相关的详细描述在第二实施例中已经给出,在此不再重复。
此外,在另一个示例中,CSI报告配置与针对初始BWP上的参考信号的资源配置的CSI资源配置相关联,换言之,基站为UE配置、激活或指示与初始BWP相关的CSI资源配置所对应的CSI报告配置。在这种情况下,CSI报告配置还可以指示在初始BWP上进行波束测量结果的上报。当然,本文并不对用于上报测量结果的上行BWP进行限制。
UE将切换到初始BWP上对所指示的所有波束进行测量并上报测量结果。此外,UE还需切换回当前激活的BWP。
相应地,提供单元201被配置为向UE发送第一切换指令,该第一切换指令指示UE从当前激活的BWP切换到初始BWP;向UE发送初始BWP上的CSI请求;以及向UE发送第二切换指令,该第二切换指令指示UE从初始BWP切换到当前激活的BWP。可以看出,由于所有的测量均在初始BWP上执行,因此UE只需要执行一次BWP切换,并 且测量完成后即可上报。
例如,初始BWP上的参考信号可以由基站预先配置,例如基站可以通过RRC信令来进行配置。示例性地,初始BWP上的参考信号可以为波束故障恢复中配置的候选波束的参考信号的一部分或全部。
在另一种情形下,UE能够同时激活多个BWP(这里指的是下行BWP)。在本实施例中,通过以不同的方式激活多个BWP来实现这一点。基站可以从UE获取UE能够同时激活的BWP的个数的信息。如前所述,该个数的信息可以作为单独的参数上报。或者,也可以将该个数与UE能够同时支持的用于移动性管理的参考信号中的CC个数联合考虑,作为一种整体的能力信息。
例如,提供单元201被配置为在CSI报告配置指示要对非当前激活的BWP上的波束进行测量的情况下,向UE发送激活或去激活指示,以将相应的非当前激活的BWP激活为次激活BWP或者去激活。
为了区分,将当前激活的BWP称为主激活BWP。UE在主激活BWP上执行PDCCH监测和PDSCH的接收等操作,在次激活BWP上仅执行波束测量的操作,即UE仅为该次激活BWP上报CSI。
在CSI报告配置指示要对多个非当前激活的BWP上的波束进行测量的情况下,UE要依次将多个非当前激活的BWP激活为次激活BWP并进行波束测量,然后去激活该次激活BWP,并且在所有测量完成后向基站上报波束测量结果。相应地,提供单元201可以依次激活和去激活该多个非当前激活的BWP。
此外,基站还可以为UE配置初始BWP上的参考信号,以使得UE在初始BWP上进行波束测量。在这种情况下,初始BWP为次激活BWP。示例性地,初始BWP上的参考信号可以为波束故障恢复中配置的候选波束的参考信号的全部或一部分。在基站通过RRC信令为UE配置了初始BWP上的参考信号后,可以通过MAC CE激活以及/或者通过DCI指示的方式选择部分参考信号让UE进行测量和上报。此外,对于周期性CSI上报,UE可以对所配置的所有参考信号进行测量和上报。
例如,提供单元201可以通过RRC配置、MAC CE激活或DCI指示来发送激活或去激活指示。示例性地,基站可以通过RRC最多配置4个BWP,其中1个为初始BWP(BWP #0),1个为当前使用的BWP #1, 其他两个分别为BWP #2和BWP #3,在CSI报告配置中指示要对BWP #2和BWP #3上的波束进行测量时,基站可以通过DCI发送针对BWP #2和BWP #3的激活和去激活指示。
综上所述,根据本实施例的电子设备200能够通过改进CSI框架,而在不增加UE复杂度的情况下实现对多个BWP上的波束的测量和上报,同时减小信令开销和时延。
<第四实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图9示出了根据本申请的一个实施例的用于无线通信的方法的流程图,该方法包括:从基站获取CSI资源配置和CSI报告配置(S11),其中,CSI报告配置与一个或多个CSI资源配置相关联,CSI资源配置包括针对一个或多个BWP上的参考信号的资源配置;以及基于CSI报告配置向基站发送通过测量相关联的CSI资源配置中指定的参考信号而获得的与参考信号对应的波束的波束测量结果(S14)。该方法例如可以在UE侧执行。
例如,参考信号可以为信道状态信息参考信号或同步信号块。
如图9中的虚线框所示,上述方法还可以包括步骤S13:从基站获取对CSI报告配置的非周期触发或半静态触发,并基于非周期触发或半静态触发中指示的CSI报告配置进行波束测量和波束测量结果的发送。例如,非周期触发或半静态触发可以指示对CSI资源配置所配置的参考信号的至少一部分进行波束测量和测量结果上报。
在一个示例中,CSI报告配置与多个CSI资源配置相关联,每个CSI 资源配置是针对一个BWP的配置。在另一个示例中,CSI报告配置与一个CSI资源配置相关联,每个CSI资源配置包括多个CSI资源集合,每个CSI资源集合对应一个BWP。在另一个示例中,CSI报告配置与一个CSI资源配置相关联,每个CSI资源配置包括多个CSI资源集合,每个CSI资源集合中的各个CSI资源分别对应于一个BWP。
作为一种应用场景的示例,本方法可以应用于NTN。例如,对于除初始BWP以外的BWP,每个BWP上仅有特定波束传输,并且所有波束均在初始BWP上传输。
如图9中的另一个虚线框所示,上述方法还可以包括步骤S13:执行波束测量。作为一个示例,在步骤S13中,在基于CSI报告配置确定要对非当前激活的BWP上的波束进行测量的情况下,将该非当前激活的BWP确定为次激活BWP,以在次激活BWP上进行波束测量。例如,可以将非当前激活的BWP激活为次激活BWP,以使得能够在次激活BWP上进行波束测量,并在测量完成后,去激活该次激活BWP。
示例性地,可以对CSI报告配置中指示的非当前激活的BWP进行自动激活和去激活;也可以从基站获取激活和去激活指示。例如,可以通过RRC配置、MAC CE激活或DCI指示获取该激活或去激活指示。
针对步骤S14,在确定要对多个非当前激活的BWP上的波束进行测量的情况下,可以在所有次激活BWP上的波束测量结束后,在CSI报告配置中指示的上行BWP上向基站发送波束测量结果。例如,不同次激活BWP上要测量的参考信号的资源标识不同,波束测量结果包括参考信号的资源标识。如果不同次激活BWP上要测量的参考信号的资源标识相同,则波束测量结果包括参考信号的资源标识和指示相应BWP的标识的信息。
此外,在CSI报告配置与包括针对初始BWP上的参考信号的资源配置的CSI资源配置相关联的情况下,初始BWP为次激活BWP,在步骤S13中在初始BWP上进行波束测量,并在步骤S14中在CSI报告配置中指示的上行BWP上发送波束测量结果。例如,初始BWP上的参考信号可以为波束故障恢复中配置的候选波束的参考信号的全部或一部分。
作为另一个示例,在步骤S13中,在基于CSI报告配置确定要对非 当前激活的BWP上的波束进行测量的情况下,切换到非当前激活的BWP以在该非当前激活的BWP上进行波束测量,并在测量完成后切换回当前激活的BWP。例如,可以以预定定时执行在BWP间的切换。
此外,在CSI报告配置与包括针对初始BWP上的参考信号的资源配置的CSI资源配置相关联的情况下,使UE切换到初始BWP进行波束测量,并针对初始BWP进行上报。相应地,上述方法还包括如下步骤:从基站获取第一BWP切换指令,该第一BWP切换指令指示从当前激活的BWP切换到初始BWP;在初始BWP上从该基站获取CSI请求;从基站获取第二BWP切换指令,该第二BWP切换指令指示从初始BWP切换到当前激活的BWP。其中,在从基站获取CSI请求时,向基站发送波束测量结果。初始BWP上的参考信号可以为波束故障恢复中配置的候选波束的参考信号的全部或一部分。
在确定要对多个非当前激活的BWP上的波束进行测量的情况下,可以顺次切换到多个非当前激活的BWP上进行波束测量,并在所有波束测量结束后,在CSI报告配置中指示的上行BWP上向基站发送波束测量结果。上述方法还包括:针对多个非当前激活的BWP中的每一个非激活BWP:从基站获取第一BWP切换指令,该第一BWP切换指令指示从当前激活的BWP切换到该非激活BWP;在该非激活BWP上从该基站获取CSI请求以及表示是否进行波束测量结果的上报的指示,其中,在多个非当前激活的BWP上的测量完成时,从基站获取要进行波束测量结果的上报的指示,并从基站获取第二BWP切换指令,该第二BWP切换指令指示从非激活BWP切换到当前激活的BWP。
图10示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,该方法包括:向UE提供CSI资源配置和CSI报告配置(S21),其中,CSI报告配置与一个或多个CSI资源配置相关联,CSI资源配置包括针对一个或多个BWP上的参考信号的资源配置;以及基于CSI报告配置从UE获取通过测量相关联的CSI资源配置中指定的参考信号而获得的与参考信号对应的波束的波束测量结果(S23)。该方法例如可以在基站侧执行。
如图10中的虚线框所示,上述方法还可以包括步骤S22:向UE发送对CSI报告配置的非周期触发或半静态触发,以使得UE基于非周期触发或半静态触发中指示的CSI报告配置进行波束测量和波束测量结果 的发送。例如,非周期触发或半静态触发可以指示对CSI资源配置所配置的参考信号的至少一部分进行波束测量和测量结果上报。
在一个示例中,CSI报告配置与多个CSI资源配置相关联,每个CSI资源配置是针对一个BWP的配置。在另一个示例中,CSI报告配置与一个CSI资源配置相关联,每个CSI资源配置包括多个CSI资源集合,每个CSI资源集合对应一个BWP。在另一个示例中,CSI报告配置与一个CSI资源配置相关联,每个CSI资源配置包括多个CSI资源集合,每个CSI资源集合中的各个CSI资源分别对应于一个BWP。
作为一种应用场景的示例,本方法可以应用于NTN。例如,对于除初始BWP以外的BWP,每个BWP上仅有特定波束传输,并且所有波束均在初始BWP上传输。
在UE可以激活多个BWP的情形中,上述方法还包括:在CSI报告配置指示要对非当前激活的BWP上的波束进行测量的情况下,向UE发送激活和去激活指示,以将相应的非当前激活的BWP激活为次激活BWP或去激活。例如,可以通过RRC配置、MAC CE激活或DCI指示发送该激活或去激活指示。
在UE只能激活一个BWP的情形中,在一个示例中,在CSI报告配置与包括针对初始BWP上的参考信号的资源配置的CSI资源配置相关联的情况下,上述方法还包括:向UE发送第一BWP切换指令,该第一BWP切换指令指示UE从当前激活的BWP切换到初始BWP;向UE发送初始BWP上的CSI请求;向UE发送第二BWP切换指令,该第二BWP切换指令指示UE从初始BWP切换到当前激活的BWP。例如,初始BWP上的参考信号为波束故障恢复中配置的候选波束的参考信号的全部或一部分。
在另一个示例中,CSI报告配置指示要对一个或多个非当前激活的BWP上的波束进行测量,上述方法包括:针对一个或多个非当前激活的BWP中的每一个非激活BWP:向UE发送第一BWP切换指令,该第一BWP切换指令指示UE从当前激活的BWP切换到该非激活BWP;向UE发送该非激活BWP上的CSI请求以及表示是否进行波束测量结果的上报的指示,其中,针对一个或多个非当前激活的BWP中的最后一个非激活BWP,向UE发送要进行波束测量结果的上报的指示,并向UE 发送第二BWP切换指令,该第二BWP切换指令指示UE从非激活BWP切换到当前激活的BWP。
上述方法分别对应于第一实施例和第二实施例中所描述的装置100以及第三实施例中所描述的装置200,其具体细节可参见以上相应位置的描述,在此不再重复。注意,上述各个方法可以结合或单独使用。
本公开内容的技术能够应用于各种产品。
例如,电子设备100可以被实现为各种用户设备。用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
电子设备200可以被实现为各种基站。基站可以被实现为任何类型的演进型节点B(eNB)或gNB(5G基站)。eNB例如包括宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。对于gNB也可以由类似的情形。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
[关于基站的应用示例]
(第一应用示例)
图11是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图11所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图11示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被 配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图11所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图11所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图11示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图11所示的eNB 800中,电子设备200的提供单元201、获取单元202、收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行提供单元201和获取单元202的功能来实现UE在多个BWP上的波束测量和上报。
(第二应用示例)
图12是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图12所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图12示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图11描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进), 并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图11描述的BB处理器826相同。如图12所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图12示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图12所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图12示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图12所示的eNB 830中,电子设备200的提供单元201、获取单元202、收发器可以由无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以由控制器851实现。例如,控制器851可以通过执行提供单元201和获取单元202的功能来实现UE在多个BWP上的波束测量和上报。
[关于用户设备的应用示例]
(第一应用示例)
图13是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图13所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图13示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路 914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图13所示,智能电话900可以包括多个天线916。虽然图13示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图13所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图13所示的智能电话900中,电子设备100的获取单元101、发送单元102、收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行获取单元101、发送单元102和执行单元103的功能来实现UE在多个BWP上的波束测量和上报。
(第二应用示例)
图14是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放 器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图14所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图14示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包 括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图14所示,汽车导航设备920可以包括多个天线937。虽然图14示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图14所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图14示出的汽车导航设备920中,电子设备100的获取单元101、发送单元102、收发器可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行获取单元101、发送单元102和执行单元103的功能来实现UE在多个BWP上的波束测量和上报。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产 品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图15所示的通用计算机1500)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图15中,中央处理单元(CPU)1501根据只读存储器(ROM)1502中存储的程序或从存储部分1508加载到随机存取存储器(RAM)1503的程序执行各种处理。在RAM 1503中,也根据需要存储当CPU 1501执行各种处理等等时所需的数据。CPU 1501、ROM 1502和RAM 1503经由总线1504彼此连接。输入/输出接口1505也连接到总线1504。
下述部件连接到输入/输出接口1505:输入部分1506(包括键盘、鼠标等等)、输出部分1507(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1508(包括硬盘等)、通信部分1509(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1509经由网络比如因特网执行通信处理。根据需要,驱动器1510也可连接到输入/输出接口1505。可移除介质1511比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1510上,使得从中读出的计算机程序根据需要被安装到存储部分1508中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质1511安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图15所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1511。可移除介质1511的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1502、存储部分1508中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步 骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (41)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    从基站获取信道状态信息CSI资源配置和CSI报告配置,其中,所述CSI报告配置与一个或多个所述CSI资源配置相关联,所述CSI资源配置包括针对一个或多个部分带宽BWP上的参考信号的资源配置;以及
    基于所述CSI报告配置向所述基站发送通过测量相关联的CSI资源配置中指定的参考信号而获得的与所述参考信号对应的波束的波束测量结果。
  2. 根据权利要求1所述的电子设备,其中,对于除初始BWP以外的BWP,每个BWP上仅有特定波束传输,并且所有波束均在初始BWP上传输。
  3. 根据权利要求1所述的电子设备,其中,所述CSI报告配置与多个CSI资源配置相关联,每个CSI资源配置是针对一个BWP的配置。
  4. 根据权利要求1所述的电子设备,其中,所述CSI报告配置与一个CSI资源配置相关联,每个CSI资源配置包括多个CSI资源集合,每个CSI资源集合对应一个BWP。
  5. 根据权利要求1所述的电子设备,其中,所述CSI报告配置与一个CSI资源配置相关联,每个CSI资源配置包括多个CSI资源集合,每个CSI资源集合中的各个CSI资源分别对应于一个BWP。
  6. 根据权利要求2所述的电子设备,其中,在所述处理电路被配置为基于所述CSI报告配置确定要对非当前激活的BWP上的波束进行测量的情况下,将该非当前激活的BWP确定为次激活BWP,以在所述次激活BWP上进行波束测量。
  7. 根据权利要求6所述的电子设备,其中,所述处理电路被配置为将所述非当前激活的BWP激活为所述次激活BWP,以使得能够在所述次激活BWP上进行波束测量,并在测量完成后,去激活所述次激活BWP。
  8. 根据权利要求7所述的电子设备,其中,所述处理电路被配置为对所述CSI报告配置中指示的非当前激活的BWP进行自动激活和去激活。
  9. 根据权利要求7所述的电子设备,其中,所述处理电路被配置为从所述基站获取激活和去激活指示。
  10. 根据权利要求9所述的电子设备,其中,所述处理电路被配置为通过无线资源控制RRC配置、MAC CE激活或DCI指示获取所述激活或去激活指示。
  11. 根据权利要求6所述的电子设备,其中,在所述处理电路确定要对多个非当前激活的BWP上的波束进行测量的情况下,所述处理电路被配置为在所有次激活BWP上的波束测量结束后,在所述CSI报告配置中指示的上行BWP上向所述基站发送所述波束测量结果。
  12. 根据权利要求11所述的电子设备,其中,不同次激活BWP上要测量的参考信号的资源标识不同,所述波束测量结果包括参考信号的资源标识。
  13. 根据权利要求11所述的电子设备,其中,不同次激活BWP上要测量的参考信号的资源标识相同,所述波束测量结果包括参考信号的资源标识和指示相应BWP的标识的信息。
  14. 根据权利要求6所述的电子设备,其中,所述CSI报告配置与包括针对初始BWP上的参考信号的资源配置的CSI资源配置相关联,所述初始BWP为次激活BWP,所述处理电路被配置为在初始BWP上进行波束测量,并在所述CSI报告配置中指示的上行BWP上发送所述波束测量结果。
  15. 根据权利要求14所述的电子设备,其中,所述初始BWP上的参考信号为波束故障恢复中配置的候选波束的参考信号的全部或一部分。
  16. 根据权利要求2所述的电子设备,其中,在所述处理电路被配置为基于所述CSI报告配置确定要对非当前激活的BWP上的波束进行测量的情况下,切换到所述非当前激活的BWP以在所述非当前激活的BWP上进行波束测量,并在测量完成后切换回当前激活的BWP。
  17. 根据权利要求16所述的电子设备,其中,所述处理电路被配置为以预定定时执行在BWP间的切换。
  18. 根据权利要求16所述的电子设备,其中,所述CSI报告配置与包括针对初始BWP上的参考信号的资源配置的CSI资源配置相关联,所述处理电路被配置为切换到所述初始BWP进行波束测量,并针对所述初始BWP进行上报。
  19. 根据权利要求18所述的电子设备,其中,所述处理电路还被配置为:
    从所述基站获取第一BWP切换指令,该第一BWP切换指令指示从当前激活的BWP切换到所述初始BWP;
    在所述初始BWP上从该基站获取CSI请求;
    从所述基站获取第二BWP切换指令,该第二BWP切换指令指示从所述初始BWP切换到所述当前激活的BWP。
  20. 根据权利要求18所述的电子设备,其中,所述初始BWP上的参考信号为波束故障恢复中配置的候选波束的参考信号的全部或一部分。
  21. 根据权利要求16所述的电子设备,其中,在所述处理电路确定要对多个非当前激活的BWP上的波束进行测量的情况下,所述处理电路被配置为顺次切换到所述多个非当前激活的BWP上进行波束测量,并在所有波束测量结束后,在所述CSI报告配置中指示的上行BWP上向所述基站发送所述波束测量结果。
  22. 根据权利要求21所述的电子设备,其中,所述处理电路还被配置为针对所述多个非当前激活的BWP中的每一个非激活BWP:
    从所述基站获取第一BWP切换指令,该第一BWP切换指令指示从当前激活的BWP切换到该非激活BWP;
    在该非激活BWP上从该基站获取CSI请求以及表示是否进行波束测量结果的上报的指示,
    其中,在所述多个非当前激活的BWP上的测量完成时,所述处理电路从基站获取要进行波束测量结果的上报的指示,并从所述基站获取第二BWP切换指令,该第二BWP切换指令指示从非激活BWP切换到 所述当前激活的BWP。
  23. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为从所述基站获取对所述CSI报告配置的非周期触发或半静态触发,并基于非周期触发或半静态触发中指示的CSI报告配置进行波束测量和波束测量结果的发送。
  24. 根据权利要求23所述的电子设备,其中,所述非周期触发或半静态触发指示对所述CSI资源配置所配置的参考信号的至少一部分进行波束测量和测量结果上报。
  25. 根据权利要求1所述的电子设备,其中,所述参考信号为信道状态信息参考信号或同步信号块。
  26. 根据权利要求1所述的电子设备,其中,所述基站为非地面网络中的基站。
  27. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    向用户设备提供信道状态信息CSI资源配置和CSI报告配置,其中,所述CSI报告配置与一个或多个所述CSI资源配置相关联,所述CSI资源配置包括针对一个或多个部分带宽BWP上的参考信号的资源配置;以及
    基于所述CSI报告配置从所述用户设备获取通过测量相关联的CSI资源配置中指定的参考信号而获得的与所述参考信号对应的波束的波束测量结果。
  28. 根据权利要求27所述的电子设备,其中,对于除初始BWP以外的BWP,每个BWP上仅有特定波束传输,并且所有波束均在初始BWP上传输。
  29. 根据权利要求27所述的电子设备,其中,所述CSI报告配置与多个CSI资源配置相关联,每个CSI资源配置是针对一个BWP的配置。
  30. 根据权利要求27所述的电子设备,其中,所述CSI报告配置与一个CSI资源配置相关联,每个CSI资源配置包括多个CSI资源集合,每个CSI资源集合对应一个BWP。
  31. 根据权利要求27所述的电子设备,其中,所述CSI报告配置与一个CSI资源配置相关联,每个CSI资源配置包括多个CSI资源集合,每个CSI资源集合中的各个CSI资源分别对应于一个BWP。
  32. 根据权利要求28所述的电子设备,其中,在所述CSI报告配置指示要对非当前激活的BWP上的波束进行测量的情况下,向所述用户设备发送激活和去激活指示,以将相应的非当前激活的BWP激活为次激活BWP或去激活。
  33. 根据权利要求32所述的电子设备,其中,所述处理电路被配置为通过无线资源控制RRC配置、MAC CE激活或DCI指示发送所述激活或去激活指示。
  34. 根据权利要求28所述的电子设备,其中,所述CSI报告配置与包括针对初始BWP上的参考信号的资源配置的CSI资源配置相关联,所述处理电路还被配置为:
    向所述用户设备发送第一BWP切换指令,该第一BWP切换指令指示所述用户设备从当前激活的BWP切换到所述初始BWP;
    向所述用户设备发送所述初始BWP上的CSI请求;
    向所述用户设备发送第二BWP切换指令,该第二BWP切换指令指示所述用户设备从所述初始BWP切换到所述当前激活的BWP。
  35. 根据权利要求34所述的电子设备,其中,所述初始BWP上的参考信号为波束故障恢复中配置的候选波束的参考信号的全部或一部分。
  36. 根据权利要求28所述的电子设备,其中,所述CSI报告配置指示要对一个或多个非当前激活的BWP上的波束进行测量,所述处理电路还被配置为针对所述一个或多个非当前激活的BWP中的每一个非激活BWP:
    向所述用户设备发送第一BWP切换指令,该第一BWP切换指令指示所述用户设备从当前激活的BWP切换到该非激活BWP;
    向所述用户设备发送该非激活BWP上的CSI请求以及表示是否进行波束测量结果的上报的指示,
    其中,针对所述一个或多个非当前激活的BWP中的最后一个非激 活BWP,所述处理电路向所述用户设备发送要进行波束测量结果的上报的指示,并向所述用户设备发送第二BWP切换指令,该第二BWP切换指令指示所述用户设备从非激活BWP切换到所述当前激活的BWP。
  37. 根据权利要求27所述的电子设备,其中,所述处理电路还被配置为向所述用户设备发送对所述CSI报告配置的非周期触发或半静态触发,以使得所述用户设备基于非周期触发或半静态触发中指示的CSI报告配置进行波束测量和波束测量结果的发送。
  38. 根据权利要求37所述的电子设备,其中,所述非周期触发或半静态触发指示对所述CSI资源配置所配置的参考信号的至少一部分进行波束测量和测量结果上报。
  39. 一种用于无线通信的方法,包括:
    从基站获取信道状态信息CSI资源配置和CSI报告配置,其中,所述CSI报告配置与一个或多个所述CSI资源配置相关联,所述CSI资源配置包括针对一个或多个部分带宽BWP上的参考信号的资源配置;以及
    基于所述CSI报告配置向所述基站发送通过测量相关联的CSI资源配置中指定的参考信号而获得的与所述参考信号对应的波束的波束测量结果。
  40. 一种用于无线通信的方法,包括:
    向用户设备提供信道状态信息CSI资源配置和CSI报告配置,其中,所述CSI报告配置与一个或多个所述CSI资源配置相关联,所述CSI资源配置包括针对一个或多个部分带宽BWP上的参考信号的资源配置;以及
    基于所述CSI报告配置从所述用户设备获取通过测量相关联的CSI资源配置中指定的参考信号而获得的与所述参考信号对应的波束的波束测量结果。
  41. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据权利要求39或权利要求40所述的用于无线通信的方法。
PCT/CN2021/081450 2020-03-25 2021-03-18 用于无线通信的电子设备和方法、计算机可读存储介质 WO2021190386A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180021739.9A CN115298970A (zh) 2020-03-25 2021-03-18 用于无线通信的电子设备和方法、计算机可读存储介质
JP2022557850A JP2023518857A (ja) 2020-03-25 2021-03-18 無線通信のための電子機器及び方法、コンピュータ読み取り可能な記憶媒体
US17/796,878 US20230070011A1 (en) 2020-03-25 2021-03-18 Electronic device and method for wireless communication, and computer-readable storage medium
EP21775612.1A EP4120582A4 (en) 2020-03-25 2021-03-18 ELECTRONIC DEVICE, WIRELESS COMMUNICATION METHOD AND COMPUTER-READABLE STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010217738.9A CN113453271A (zh) 2020-03-25 2020-03-25 用于无线通信的电子设备和方法、计算机可读存储介质
CN202010217738.9 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021190386A1 true WO2021190386A1 (zh) 2021-09-30

Family

ID=77806893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081450 WO2021190386A1 (zh) 2020-03-25 2021-03-18 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (5)

Country Link
US (1) US20230070011A1 (zh)
EP (1) EP4120582A4 (zh)
JP (1) JP2023518857A (zh)
CN (2) CN113453271A (zh)
WO (1) WO2021190386A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116965098A (zh) * 2023-06-06 2023-10-27 北京小米移动软件有限公司 确定候选小区的参考信号的方法、装置及存储介质
WO2023234838A1 (en) * 2022-05-31 2023-12-07 Telefonaktiebolaget Lm Ericsson (Publ) Reporting measurement of reference signal (rs) ports

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190081679A1 (en) * 2017-09-29 2019-03-14 Intel Corporation Channel state information (csi) reporting for bandwidth parts
CN110431759A (zh) * 2018-01-11 2019-11-08 Lg电子株式会社 用于在无线通信系统中报告信道状态信息的方法及其装置
CN110545562A (zh) * 2018-05-29 2019-12-06 展讯通信(上海)有限公司 Bwp切换方法及装置、存储介质、用户设备、基站
CN110913422A (zh) * 2018-09-18 2020-03-24 华为技术有限公司 用于小区测量的方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3787189A1 (en) * 2017-11-09 2021-03-03 Comcast Cable Communications LLC Csi transmission with multiple bandwidth parts
JP7177833B2 (ja) * 2017-11-16 2022-11-24 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるチャンネル状態情報を送受信する方法及びそのための装置
KR102638708B1 (ko) * 2018-06-21 2024-02-21 삼성전자주식회사 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190081679A1 (en) * 2017-09-29 2019-03-14 Intel Corporation Channel state information (csi) reporting for bandwidth parts
CN110431759A (zh) * 2018-01-11 2019-11-08 Lg电子株式会社 用于在无线通信系统中报告信道状态信息的方法及其装置
CN110545562A (zh) * 2018-05-29 2019-12-06 展讯通信(上海)有限公司 Bwp切换方法及装置、存储介质、用户设备、基站
CN110913422A (zh) * 2018-09-18 2020-03-24 华为技术有限公司 用于小区测量的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Introduction of MIMO enhancements", 3GPP DRAFT; R2-2001896, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. 20200224 - 20200306, 12 March 2020 (2020-03-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051866205 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234838A1 (en) * 2022-05-31 2023-12-07 Telefonaktiebolaget Lm Ericsson (Publ) Reporting measurement of reference signal (rs) ports
CN116965098A (zh) * 2023-06-06 2023-10-27 北京小米移动软件有限公司 确定候选小区的参考信号的方法、装置及存储介质

Also Published As

Publication number Publication date
JP2023518857A (ja) 2023-05-08
CN115298970A (zh) 2022-11-04
US20230070011A1 (en) 2023-03-09
EP4120582A4 (en) 2023-09-13
EP4120582A1 (en) 2023-01-18
CN113453271A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
US20220408298A1 (en) Electronic device and method for wireless communications
WO2021169904A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
KR20200086686A (ko) 무선 통신 시스템에서의 장치 및 방법, 및 컴퓨터-판독가능 저장 매체
US11856427B2 (en) Wireless communication electronic device and method, and computer-readable storage medium
WO2021169828A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US11515915B2 (en) Electronic device, method and storage medium for wireless communication system
US20230102698A1 (en) Network device, user equipment, wireless communication method and storage medium
EP3768026A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
US20230345530A1 (en) Electronic device and method for use in radio communication, and computer-readable storage medium
EP4135449A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2021190386A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2020140836A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022028318A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022194082A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230276452A1 (en) Electronic device, wireless communication method and computer-readable storage medium
US20220167186A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
JP2022543901A (ja) 無線通信システムにおけるユーザー装置、電子装置、方法及び記憶媒体
WO2022083535A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021068880A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022152049A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230388978A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557850

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021775612

Country of ref document: EP

Effective date: 20221014

NENP Non-entry into the national phase

Ref country code: DE