WO2022152049A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2022152049A1
WO2022152049A1 PCT/CN2022/070681 CN2022070681W WO2022152049A1 WO 2022152049 A1 WO2022152049 A1 WO 2022152049A1 CN 2022070681 W CN2022070681 W CN 2022070681W WO 2022152049 A1 WO2022152049 A1 WO 2022152049A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
downlink control
harq
electronic device
user equipment
Prior art date
Application number
PCT/CN2022/070681
Other languages
English (en)
French (fr)
Inventor
徐瑨
王鑫丽
彭彧嫣
曹建飞
刘敏
Original Assignee
索尼集团公司
徐瑨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 徐瑨 filed Critical 索尼集团公司
Priority to CN202280009302.8A priority Critical patent/CN116848918A/zh
Priority to EP22738930.1A priority patent/EP4266792A4/en
Priority to JP2023542656A priority patent/JP2024503679A/ja
Priority to US18/268,631 priority patent/US20240040556A1/en
Publication of WO2022152049A1 publication Critical patent/WO2022152049A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to beam management technologies in wireless communication systems. More particularly, it relates to an electronic device and method for wireless communication and a computer-readable storage medium.
  • upstream and downstream beam indication is an important aspect of beam management.
  • QCL Quasi CoLocation
  • TCI Transmission Configuration Indication
  • DCI Downlink Control Information
  • MAC CE Media Access Control Control Element
  • the concept of unified TCI status was proposed in the 3GPP RAN1 conference, which supports the unified TCI status indication of uplink and downlink combined and the separate unified TCI status indication of uplink and downlink, while the existing TCI status indication mechanism is suitable for downlink.
  • an electronic device for wireless communication comprising: a processing circuit configured to: generate a DCI for unified indication of TCI status, the DCI including a DCI for uplink scheduling and at least one of the newly defined DCIs, wherein the unified TCI state is used to indicate both the downlink beam and the uplink beam; and the DCI is sent to a user equipment (User Equipment, UE).
  • a processing circuit configured to: generate a DCI for unified indication of TCI status, the DCI including a DCI for uplink scheduling and at least one of the newly defined DCIs, wherein the unified TCI state is used to indicate both the downlink beam and the uplink beam; and the DCI is sent to a user equipment (User Equipment, UE).
  • UE User Equipment
  • a method for wireless communication comprising: generating a DCI for a unified indication of TCI status, the DCI including at least a DCI for uplink scheduling and a newly defined DCI One, where the unified TCI state is used to indicate both the downlink beam and the uplink beam; and the DCI is sent to the UE.
  • an electronic device for wireless communication comprising: a processing circuit configured to receive, from a base station, a DCI for unified TCI status indication, the DCI including for uplink scheduling At least one of the DCI of the DCI and the newly defined DCI, wherein the unified TCI state is used to indicate both the downlink beam and the uplink beam; and the unified TCI state is determined based on the DCI.
  • a method for wireless communication comprising: receiving, from a base station, a DCI for a unified TCI status indication, the DCI including a DCI for uplink scheduling and a newly defined DCI at least one of, wherein the unified TCI state is used to indicate both the downlink beam and the uplink beam; and the unified TCI state is determined based on the DCI.
  • the electronic device and method according to the embodiments of the present application can perform unified TCI state indication through DCI, which reduces the time delay.
  • FIG. 1 shows a functional module block diagram of an electronic device for wireless communication according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of an example of a hybrid automatic retransmission mechanism according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an example of a hybrid automatic retransmission mechanism according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of an example of a hybrid automatic retransmission mechanism according to an embodiment of the present application
  • FIG. 5 shows a schematic diagram of an example of a hybrid automatic retransmission mechanism according to an embodiment of the present application
  • FIG. 6 shows a functional module block diagram of an electronic device for wireless communication according to another embodiment of the present application.
  • FIG. 7 shows a flowchart of a method for wireless communication according to an embodiment of the present application.
  • FIG. 8 shows a flowchart of a method for wireless communication according to an embodiment of the present application
  • FIG. 9 is a block diagram illustrating a first example of a schematic configuration of an eNB or gNB to which the techniques of this disclosure may be applied;
  • FIG. 10 is a block diagram illustrating a second example of a schematic configuration of an eNB or gNB to which the techniques of this disclosure may be applied;
  • FIG. 11 is a block diagram showing an example of a schematic configuration of a smartphone to which the techniques of the present disclosure may be applied;
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure may be applied.
  • FIG. 13 is a block diagram of an exemplary structure of a general-purpose personal computer in which methods and/or apparatuses and/or systems according to embodiments of the present disclosure may be implemented.
  • FIG. 1 shows a block diagram of functional modules of an electronic device 100 for wireless communication according to an embodiment of the present application.
  • the electronic device 100 includes: a generating unit 101 configured to generate a unified TCI state The indicated DCI, the DCI includes at least one of the DCI used for uplink scheduling and the newly defined DCI, wherein the unified TCI state is used to indicate both the downlink beam and the uplink beam; and the communication unit 102 is configured to The DCI is sent to the UE.
  • the generating unit 101 and the communication unit 102 may be implemented by one or more processing circuits, and the processing circuits may be implemented as chips or processors, for example. Moreover, it should be understood that each functional unit in the electronic device shown in FIG. 1 is only a logical module divided according to the specific functions implemented by the functional units, and is not used to limit the specific implementation manner.
  • the electronic device 100 may be provided at the base station side or communicatively connected to the base station, for example.
  • the base station described in this application may also be a Transmit Receive Point (TRP) or an Access Point (Access Point, AP).
  • TRP Transmit Receive Point
  • AP Access Point
  • the electronic device 100 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 100 may function as the base station itself, and may also include external devices such as memory, transceivers (not shown).
  • the memory can be used to store programs and related data information that the base station needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (eg, UE, other base stations, etc.), and the implementation form of the transceiver is not particularly limited here.
  • unified TCI status is used to indicate both the upstream and downstream beams.
  • UL DCI downlink control information
  • the DCI used for the indication of the unified TCI state includes UL DCI
  • the UL DCI includes a sounding reference signal resource indicator (Sounding Reference Signal Resource Indicator, SRI) and a unified TCI state identifier.
  • SRI Sounding Reference Signal Resource Indicator
  • the UL DCI here is obtained by extending the existing UL DCI format. Specifically, the UL DCI of this example can be obtained by extending DCI Format 0_1/0_2.
  • the SRI contained in the existing DCI Format 0_1/0_2 plays an important role. It is used to indicate the spatial relationship of the Sounding Reference Signal (SRS) followed by the Physical Uplink Shared Channel (PUSCH), and is also used for the PUSCH uplink power Control and transmit antenna port selection, etc.
  • SRS Sounding Reference Signal
  • PUSCH Physical Uplink Shared Channel
  • a unified TCI state identifier is also included, wherein the unified TCI state identifier is used to indicate the beam of the PUSCH, and the SRI is at least used to indicate the uplink power control and transmit antenna port selection of the PUSCH.
  • the extended mode may be referred to as the extended mode.
  • the communication unit 102 is further configured to apply a Hybrid Automatic Retransmission request (HARQ) mechanism.
  • HARQ Hybrid Automatic Retransmission request
  • the communication unit 102 feeds back a hybrid automatic repeat request acknowledgment (HARQ-ACK) to the UE.
  • HARQ-ACK hybrid automatic repeat request acknowledgment
  • Figure 2 shows a schematic diagram of the HARQ mechanism in this case.
  • the base station sends a UL DCI containing a unified TCI state identifier to the UE, the UE correctly receives the UL DCI and transmits data on the scheduled PUSCH, and the gNB correctly receives the PUSCH and performs an implicit ACK in the next DCI Feedback, eg, an ACK is represented by an inverted New Data Indicator (NDI), which has the same HARQ process ID as the scheduled PUSCH.
  • NDI New Data Indicator
  • FIG. 3 shows a schematic diagram of the HARQ mechanism in this case.
  • the gNB sends the UL DCI containing the unified TCI status identifier to the UE, but the UE does not receive the UL DCI correctly, so that the PUSCH cannot be sent to the gNB.
  • the gNB performs implicit NACK feedback in the next DCI, for example, the NACK is represented by an uninverted NDI, and the NACK has the same HARQ process ID as the scheduled PUSCH.
  • the communication unit 102 feeds back the HARQ-ACK for the UL DCI and the HARQ-NACK for the PUSCH to the UE.
  • Figure 4 shows a schematic diagram of the HARQ mechanism in this case.
  • the gNB sends the UL DCI containing the unified TCI status identifier to the UE, and the UE correctly receives the UL DCI and transmits data on the scheduled PUSCH, but the gNB cannot correctly decode the PUSCH.
  • the gNB considers that the UE has correctly received the unified TCI containing The state identifies the UL DCI and the corresponding PUSCH is sent, so the gNB sends an ACK for the UL DCI and a NACK for the PUSCH.
  • the ACK is represented by an inverted NDI and the NACK is represented by an uninverted NDI, and the ACK and NACK have the same HARQ process ID as the scheduled PUSCH.
  • HARQ-ACK and HARQ-NACK are included in other DCIs following the UL DCI.
  • the transmission reliability of DCI can be effectively improved.
  • the UE receives implicit HARQ feedback the unified TCI state indicated by the UL DCI will be applied after a certain period of time, which depends on the capabilities of the UE.
  • the DCI used for the indication of the unified TCI state includes UL DCI including the SRI, where the SRI is associated with the unified TCI state.
  • the format of the existing UL DCI is not changed, but the SRI is associated with the unified TCI state, that is, the SRS resource indicated by the SRI is associated with the unified TCI state, so that the corresponding unified TCI state is indicated while the corresponding SRS resources.
  • the communication unit 102 may associate the SRI with the unified TCI state through higher layer signaling such as radio resource control (Radio Resouce Control, RRC) signaling or MAC CE.
  • RRC Radio Resouce Control
  • the HARQ mechanism described above with reference to FIG. 2 to FIG. 4 can also be applied to this second example, and will not be repeated here.
  • the DCI used for the indication of the unified TCI state includes a newly defined DCI, and the newly defined DCI is dedicated to indicating the unified TCI state and is not used for scheduling of uplink and downlink data transmission.
  • the communication unit 102 may scramble the newly defined DCI by using a radio network temporary identifier (Radio network temporary indicator, RNTI).
  • RNTI Radio network temporary indicator
  • the DCI can be used for a variety of TCI status indications, for example, it can be used for a unified TCI status indication for uplink and downlink combined or a separate unified TCI status indication for uplink and downlink, or a common unified TCI status indication for multiple signals/channels, Or perform unified TCI status indication for a single signal/channel.
  • the newly defined DCI at least includes a unified TCI state identifier.
  • the newly defined DCI may also include one or more of the following: channel/signal application, used to indicate the uplink and downlink channels/signals and their component carriers (Component carrier, CC) or partial bandwidth ( Bandwidth Part, BWP); physical uplink control channel (Physical Uplink Control Channel, PUCCH) resource identifier, used to indicate the PUCCH resource used by the UE for HARQ-ACK feedback; physical downlink control channel (Physical Downplink Control Channel, PDCCH) to PUCCH timing (PDCCH_to_PUCCH_timing), used to indicate the time from when the newly defined DCI is sent to when the UE sends PUCCH for feedback of HARQ-ACK; the channel status information (Channel Status Information, CSI) request field is used for aperiodic triggering Downlink CSI feedback.
  • channel/signal application used to indicate the uplink and downlink channels/signals and their component carriers (Component
  • the base station informs the UE of one or more channels/signals to be applied in the unified TCI state indicated by the channel/signal application and the CC or BWP where they are respectively located; and informs the UE which PUCCH resources can be used to feed back HARQ- ACK, the HARQ-ACK is used to confirm that the UE has correctly received the newly defined DCI; the timing relationship between the feedback of the newly defined DCI sent to the HARQ-ACK is notified to the UE through the PDCCH to PUCCH timing.
  • the base station can also trigger aperiodic downlink CSI reporting through the CSI request field.
  • the newly defined DCI can trigger the transmission of aperiodic CSI-RS, and the UE measures the aperiodic CSI-RS and reports the measurement result to the base station, that is, performs aperiodic CSI reporting .
  • aperiodic CSI reporting and related parameters are pre-configured, for example, through RRC signaling.
  • RRC signaling configures 3 aperiodic CSI reports, each of which includes aperiodic CSI measurement resources, where the CSI request field can be 2 bits, for example, 01, 10, and 11 correspond to 1 aperiodic CSI report respectively , 00 is reserved to indicate that there is no aperiodic CSI reporting, that is, none of the three aperiodic CSI reporting is triggered.
  • FIG. 5 shows a schematic diagram of the HARQ mechanism applied to the third example. 5 shows that the communication unit 102 receives the HARQ-ACK sent using the PUCCH from the UE when the UE correctly receives the newly defined DCI. Furthermore, in the case where the UE does not correctly receive the newly defined DCI, the communication unit 102 does not receive feedback of HARQ from the UE.
  • a HARQ-NACK for the newly defined DCI is received from the UE, that is, for the new DCI
  • the HARQ-NACK for the defined DCI is sent in addition to the HARQ-ACK for other DCIs used for downlink scheduling.
  • the communication unit 102 may also receive a beam application timing parameter (BeamApplicationTiming) from the UE, and the beam application timing parameter indicates the time required for the unified TCI state indicated by the newly defined DCI to be applied after the UE sends the HARQ-ACK, as shown in FIG. 5 . shown in the example.
  • BeamApplicationTiming a beam application timing parameter
  • the beam application timing parameter indicates the time required for the unified TCI state indicated by the newly defined DCI to be applied after the UE sends the HARQ-ACK, as shown in FIG. 5 . shown in the example.
  • BeamApplicationTiming The length of BeamApplicationTiming depends on the capabilities of the UE.
  • the DCI used for the indication of the unified TCI state also includes UL DCI
  • the UL DCI includes the SRI used to indicate the SRS resource
  • the unified TCI state identifier is used to indicate the SRS resource. Spatial relation.
  • the SRS resources are indicated using the UL DCI, and the spatial relationship of the SRS resources is dynamically updated using the newly defined DCI, thereby realizing the desired beam indication.
  • the way this example is indicated can be referred to as indirect mode.
  • Both or one of the HARQ mechanisms in the first and second examples and the HARQ mechanism in the third example may be applied to this example.
  • QCL Type X which is used to define that the time advance (Time Advance, TA) of the two reference signals is the same
  • QCL Type Y which is used to define the path loss ( Path Loss, PL) is the same
  • QCL Type Z used to define the direction of the uplink transmit beam.
  • the DCI according to this embodiment may include one or more QCL types for uplink, for example, to indicate the same attribute between two uplink reference signals.
  • the electronic device 100 can perform unified TCI state indication through DCI, which reduces the time delay, and can also improve the reliability of DCI transmission by applying the HARQ mechanism.
  • this embodiment also defines a QCL type for uplink.
  • FIG. 6 shows a block diagram of functional modules of an electronic device 200 according to another embodiment of the present application.
  • the electronic device 200 includes: a communication unit 201 configured to receive an indication for unifying TCI status from a base station the DCI, the DCI includes at least one of the DCI for uplink scheduling (UL DCI) and the newly defined DCI, wherein the unified TCI state is used to indicate both the downlink beam and the uplink beam; and the determination unit 202, which is Configured to determine the unified TCI state based on the DCI.
  • a communication unit 201 configured to receive an indication for unifying TCI status from a base station the DCI, the DCI includes at least one of the DCI for uplink scheduling (UL DCI) and the newly defined DCI, wherein the unified TCI state is used to indicate both the downlink beam and the uplink beam
  • the determination unit 202 which is Configured to determine the unified TCI state based on the DCI.
  • the communication unit 201 and the determination unit 202 may be implemented by one or more processing circuits, and the processing circuits may be implemented as a chip or a processor, for example. Moreover, it should be understood that each functional unit in the electronic device shown in FIG. 6 is only a logical module divided according to the specific functions implemented by the functional units, and is not used to limit the specific implementation manner.
  • the electronic device 200 may be provided on the UE side or communicatively connected to the UE, for example.
  • the electronic device 200 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 200 may function as the UE itself, and may also include external devices such as a memory, a transceiver (not shown in the figure), and the like.
  • the memory can be used to store programs and related data information that the user equipment needs to execute to achieve various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (eg, base stations, other user equipment, etc.), and the implementation form of the transceiver is not particularly limited here.
  • the DCI used to unify the indication of the TCI state may have various forms.
  • the UL DCL may include SRI and unified TCI state identification.
  • the unified TCI state identifier is used to indicate the beam of the PUSCH
  • the SRI is at least used to indicate the uplink power control and transmission antenna port selection of the PUSCH.
  • the UL DCI can be obtained by extending DCI Format 0_1/0_2.
  • the indicated form of this DCI may be referred to as an extended mode.
  • the UL DCL may also be configured to include an SRI associated with the unified TCI state. That is, when the UE obtains the SRI, for example, the determining unit 202 may simultaneously determine the SRS resource and the corresponding unified TCI state.
  • the communication unit 201 may also receive high-level signaling that associates the SRI with the unified TCI state, where the high-level signaling includes, for example, RRC signaling or MAC CE.
  • the indication form of this DCI may be referred to as an association mode.
  • the newly defined DCI is dedicated to indicating the unified TCI state, and is not used for scheduling of uplink and downlink data transmission.
  • the newly defined DCI at least includes a unified TCI state identifier.
  • the newly defined DCI may also include one or more of the following: channel/signal application, used to indicate uplink and downlink channels/signals and the component carrier or BWP where they are located; PUCCH resource identifier, used for Indicates the PUCCH resource used by the UE for HARQ-ACK feedback; PDCCH to PUCCH timing is used to indicate the time from sending the newly defined DCI to when the UE sends PUCCH for HARQ-ACK feedback; CSI request field, used for Downlink CSI feedback is triggered aperiodically.
  • channel/signal application used to indicate uplink and downlink channels/signals and the component carrier or BWP where they are located
  • PUCCH resource identifier used for Indicates the PUCCH resource used by the UE for HARQ-ACK feedback
  • PDCCH to PUCCH timing is used to indicate the time from sending the newly defined DCI to when the UE sends PUCCH for HARQ-ACK feedback
  • CSI request field used for Downlink CSI feedback is
  • the determining unit 202 may determine, according to the channel/signal application, one or more channels/signals to which the indicated unified TCI state is to be applied and the CCs or BWPs where they are located respectively; and may determine which PUCCH resources to use for feedback according to the PUCCH resource identifiers HARQ-ACK, the HARQ-ACK is used to confirm that the UE has correctly received the newly defined DCI; the timing relationship between the feedback of the newly defined DCI sent to the HARQ-ACK can be determined according to the PDCCH to PUCCH timing.
  • the determining unit 202 may also determine whether and how to report aperiodic downlink CSI according to the CSI request field.
  • aperiodic CSI reporting and related parameters are pre-configured, for example, through RRC signaling.
  • RRC signaling configures 3 aperiodic CSI reports, each of which includes aperiodic CSI measurement resources, where the CSI request field can be 2 bits, for example, 01, 10, and 11 correspond to 1 aperiodic CSI report respectively , 00 is reserved to indicate that there is no aperiodic CSI reporting, that is, none of the three aperiodic CSI reporting is triggered.
  • the UE determines to perform a certain aperiodic CSI report according to the value, and determines the aperiodic CSI report based on the configuration of the aperiodic CSI report previously received through RRC signaling
  • the measurement resource is measured, and the aperiodic CSI-RS is measured on the measurement resource and the measurement result is reported to the base station.
  • the communication unit 201 is further configured to send a beam application timing parameter (BeamApplicationTiming) to the base station, where the beam application timing parameter indicates the time required for the unified TCI state indicated by the newly defined DCI to be applied after the UE sends the HARQ-ACK.
  • BeamApplicationTiming a beam application timing parameter
  • the beam application timing parameters depend on the capabilities of the UE. After the UE sends the HARQ-ACK to the base station, the unified TCI state indicated by the newly defined DCI will be applied during the BeamApplicationTiming time.
  • the DCI used for the indication of the unified TCI state may also include the UL DCI, wherein,
  • the UL DCI includes an SRI used to indicate SRS resources, and the unified TCI state identifier in the newly defined DCI is used to indicate the spatial relationship of the SRS resources. Specifically, the UE determines the SRS resources according to the UL DCI, determines the unified TCI state according to the newly defined DCI, and then updates the spatial relationship of the SRS resources according to the unified TCI state, thereby realizing the desired beam indication.
  • the indicated form of DCI may be referred to as indirect mode.
  • the HARQ mechanism in order to improve the transmission reliability of DCI, the HARQ mechanism can be applied.
  • the specific description has been given with reference to FIG. 2 to FIG. 5 in the first embodiment, and only the corresponding operation of the UE-side communication unit 201 is briefly described here.
  • the communication unit 201 may perform the following operations: send the PUSCH to the base station when the UL DCI is correctly received, and send the PUSCH from the base station to the base station when the base station correctly receives the PUSCH sent by the UE.
  • HARQ-ACK for UL DCI and HARQ-NACK for PUSCH are received from the base station.
  • the above-mentioned HARQ-ACK and HARQ-NACK may be included in other DCIs following the UL DCI.
  • the communication unit 201 may perform the following operations: if the newly defined DCI is correctly received, send a HARQ-ACK to the base station; if the newly defined DCI is not correctly received In the case of defined DCI, no feedback of HARQ is sent to the base station; and if the newly defined DCI is not correctly received but other DCIs for downlink scheduling are correctly received, HARQ-for other DCIs is sent to the base station. ACK simultaneously sends a HARQ-NACK for this newly defined DCI.
  • the communication unit 201 can implement the HARQ mechanism by performing two or one of the above two sets of operations.
  • a new QCL type needs to be defined, that is, the QCL type for the uplink.
  • the following three QCL types can be defined: QCL Type X, used to define the same TA of two reference signals; QCL Type Y, used to define the same PL between two reference signals; QCL Type Z, used to define the uplink The direction of the transmit beam.
  • QCL Type X used to define the same TA of two reference signals
  • QCL Type Y used to define the same PL between two reference signals
  • QCL Type Z used to define the uplink The direction of the transmit beam.
  • the DCI according to this embodiment may include one or more QCL types for uplink, and the determining unit 202 may, for example, determine the same attribute between two uplink reference signals according to the QCL type.
  • the electronic device 200 can perform unified TCI state indication through DCI, which reduces the time delay, and can also improve the reliability of DCI transmission by applying the HARQ mechanism.
  • FIG. 7 shows a flowchart of a method for wireless communication according to an embodiment of the present application, the method comprising: generating a DCI for unifying the indication of TCI status, the DCI including at least UL DCI and a newly defined DCI One, wherein the unified TCI state is used to indicate both the downlink beam and the uplink beam (S11); and the downlink control information is sent to the UE (S12).
  • the method can be performed at the base station side, for example.
  • the DCI used for the indication of the unified TCI state includes the UL DCI including the SRI and the unified TCI state identification.
  • the unified TCI state identifier is used to indicate the beam of the PUSCH
  • the SRI is at least used to indicate the uplink power control and transmission antenna port selection of the PUSCH.
  • the UL DCI can be obtained by extending DCI Format 0_1/0_2.
  • the DCI used for the indication of the unified TCI state includes UL DCI including the SRI, where the SRI is associated with the unified TCI state.
  • the SRI can be associated with the unified TCI state through higher layer signaling such as RRC signaling or MAC CE.
  • the DCI used for the indication of the unified TCI state includes a newly defined DCI that is dedicated to indicating the unified TCI state and includes at least a unified TCI state identifier.
  • the newly defined DCI may also include one or more of the following: channel/signal application, used to indicate the uplink and downlink channels/signals and their component carriers or part of the bandwidth; PUCCH resource identifier, used to instruct the UE to perform PUCCH resource used for HARQ-ACK feedback; PDCCH to PUCCH timing, used to indicate the time from sending the newly defined DCI to when the UE sends PUCCH for HARQ-ACK feedback; CSI request field, used for aperiodic Trigger downlink CSI feedback.
  • the newly defined DCI may be scrambled using RNTI.
  • the above method may further include: receiving a beam application timing parameter from the UE, the beam application timing parameter indicating the time required for the unified TCI state indicated by the newly defined DCI to be applied after the UE sends the HARQ-ACK.
  • the DCI used for the indication of the unified TCI state also includes UL DCI, wherein the UL DCI includes the SRI used to indicate the SRS resource, and the unified TCI state identifier is used to indicate the SRS resource spatial relationship.
  • the above method further includes applying a HARQ mechanism.
  • the above method includes: in the case that the UE correctly receives the UL DCI and the base station correctly receives the PUSCH sent by the UE, feeding back HARQ-ACK to the UE; HARQ-NACK is fed back to the UE when UL DCI is not received correctly so that PUSCH cannot be sent; and HARQ-NACK for UL DCI is fed back to UE when the UL DCI is correctly received by the UE and the PUSCH sent by the UE is not correctly received by the base station and HARQ-NACK for PUSCH.
  • HARQ-ACK and HARQ-NACK may be included in other DCI after UL DCI.
  • the above method includes: if the UE correctly receives the newly defined DCI, receiving a HARQ-ACK from the UE; if the UE does not correctly receive the newly defined DCI In case of DCI, no feedback of HARQ is received from the UE; and if the UE does not correctly receive the newly defined DCI but other UL DCIs are correctly received and HARQ-ACK is fed back, HARQ for the newly defined DCI is received from the UE -NACK.
  • the DCI can also include QCL types for uplink, and the QCL types include one or more of the following: QCL Type X, used to define the same timing advance of two reference signals; QCL Type Y, used to define two The path loss between reference signals is the same; QCL Type Z, used to define the direction of the uplink transmit beam.
  • FIG. 8 shows a flowchart of a method for wireless communication according to an embodiment of the present application, the method comprising: receiving a DCI for a unified TCI state indication from a base station, the DCI including a UL DCI and a newly defined DCI At least one of, wherein the unified TCI state is used to indicate both the downlink beam and the uplink beam (S21); and the unified TCI state is determined based on the DCI (S22).
  • This method can be performed on the UE side, for example.
  • the HARQ mechanism can also be applied.
  • the method performed by the UE side further includes: sending the PUSCH to the base station when the UL DCI is correctly received; Receive HARQ-ACK; receive HARQ-NACK from the base station when the UL DCI is not correctly received so that the UE cannot transmit the PUSCH;
  • HARQ-ACK for UL DCI and HARQ-NACK for PUSCH are received from the base station.
  • the above-mentioned HARQ-ACK and HARQ-NACK may be included in other DCIs following the UL DCI.
  • the method performed by the UE side further: if the newly defined DCI is correctly received, send a HARQ-ACK to the base station; if the newly defined DCI is not correctly received In the case of the DCI, do not send the HARQ feedback to the base station; and in the case where the newly defined DCI is not correctly received but other DCIs for downlink scheduling are correctly received, send the base station HARQ-ACK for other DCIs A HARQ-NACK for this newly defined DCI is sent at the same time.
  • the electronic device 100 may be implemented as various base stations.
  • a base station may be implemented as any type of evolved Node B (eNB) or gNB (5G base station).
  • eNBs include, for example, macro eNBs and small eNBs. Small eNBs may be eNBs covering cells smaller than macro cells, such as pico eNBs, micro eNBs, and home (femto) eNBs. A similar situation can also be used for gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • BTS base transceiver station
  • a base station may include: a subject (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (RRHs) disposed at a different location than the subject.
  • a subject also referred to as a base station device
  • RRHs remote radio heads
  • various types of user equipment can operate as a base station by temporarily or semi-persistently performing a base station function.
  • the electronic device 200 may be implemented as various user devices.
  • User equipment may be implemented as mobile terminals such as smart phones, tablet personal computers (PCs), notebook PCs, portable game terminals, portable/dongle-type mobile routers, and digital cameras or vehicle-mounted terminals such as car navigation devices.
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module comprising a single die) mounted on each of the aforementioned terminals.
  • eNB 800 includes one or more antennas 810 and base station equipment 820.
  • the base station apparatus 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 9 shows an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station apparatus 820 includes a controller 821 , a memory 822 , a network interface 823 , and a wireless communication interface 825 .
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 820 .
  • the controller 821 generates data packets from data in the signal processed by the wireless communication interface 825 and communicates the generated packets via the network interface 823 .
  • the controller 821 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 821 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, admission control and scheduling. This control may be performed in conjunction with nearby eNB or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 823 is a communication interface for connecting the base station apparatus 820 to the core network 824 .
  • the controller 821 may communicate with core network nodes or further eNBs via the network interface 823 .
  • eNB 800 and core network nodes or other eNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 823 is a wireless communication interface, the network interface 823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825 .
  • Wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of eNB 800 via antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and RF circuitry 827 .
  • the BB processor 826 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) various types of signal processing.
  • the BB processor 826 may have some or all of the above-described logical functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor and associated circuitry configured to execute the program.
  • the update procedure may cause the functionality of the BB processor 826 to change.
  • the module may be a card or blade that is inserted into a slot of the base station device 820 .
  • the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810 .
  • the wireless communication interface 825 may include multiple BB processors 826 .
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827 .
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 9 shows an example in which the wireless communication interface 825 includes multiple BB processors 826 and multiple RF circuits 827 , the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827 .
  • the communication unit 102 and the transceiver of the electronic device 100 may be implemented by the wireless communication interface 825. At least a portion of the functionality may also be implemented by the controller 821 .
  • the controller 821 may perform the unified indication of the TCI state through the DCI by performing the functions of the generation unit 101 and the communication unit 102 .
  • eNB 830 includes one or more antennas 840, base station equipment 850, and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via RF cables.
  • the base station apparatus 850 and the RRH 860 may be connected to each other via high-speed lines such as fiber optic cables.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • 10 shows an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station apparatus 850 includes a controller 851 , a memory 852 , a network interface 853 , a wireless communication interface 855 , and a connection interface 857 .
  • the controller 851 , the memory 852 and the network interface 853 are the same as the controller 821 , the memory 822 and the network interface 823 described with reference to FIG. 9 .
  • Wireless communication interface 855 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication via RRH 860 and antenna 840 to terminals located in a sector corresponding to RRH 860.
  • Wireless communication interface 855 may generally include, for example, BB processor 856 .
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 9, except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include multiple BB processors 856 .
  • multiple BB processors 856 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 10 shows an example in which the wireless communication interface 855 includes multiple BB processors 856
  • the wireless communication interface 855 may also include a single BB processor 856 .
  • connection interface 857 is an interface for connecting the base station apparatus 850 (the wireless communication interface 855 ) to the RRH 860.
  • the connection interface 857 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station apparatus 850 (the wireless communication interface 855) to the RRH 860.
  • RRH 860 includes connection interface 861 and wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (the wireless communication interface 863 ) to the base station apparatus 850.
  • the connection interface 861 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840 .
  • Wireless communication interface 863 may typically include RF circuitry 864, for example.
  • RF circuitry 864 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 840 .
  • the wireless communication interface 863 may include a plurality of RF circuits 864 .
  • multiple RF circuits 864 may support multiple antenna elements.
  • FIG. 10 shows an example in which the wireless communication interface 863 includes multiple RF circuits 864
  • the wireless communication interface 863 may include a single RF circuit 864 .
  • the communication unit 102 and the transceiver of the electronic device 100 may be implemented by the wireless communication interface 855 and/or the wireless communication interface 863. At least a portion of the functionality may also be implemented by the controller 851 .
  • the controller 851 may perform the unified indication of the TCI state through the DCI by performing the functions of the generation unit 101 and the communication unit 102 .
  • FIG. 11 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the techniques of the present disclosure can be applied.
  • Smartphone 900 includes processor 901, memory 902, storage device 903, external connection interface 904, camera device 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, one or more Antenna switch 915 , one or more antennas 916 , bus 917 , battery 918 , and auxiliary controller 919 .
  • the processor 901 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and further layers of the smartphone 900 .
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901 .
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a Universal Serial Bus (USB) device to the smartphone 900 .
  • USB Universal Serial Bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 907 may include a set of sensors, such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives operations or information input from a user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900 .
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 912 may typically include, for example, BB processor 913 and RF circuitry 914 .
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 916 .
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG. 11 , the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 . Although FIG. 11 shows an example in which the wireless communication interface 912 includes multiple BB processors 913 and multiple RF circuits 914 , the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914 .
  • the wireless communication interface 912 may support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 may include the BB processor 913 and the RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • smartphone 900 may include multiple antennas 916 .
  • FIG. 11 shows an example in which the smartphone 900 includes multiple antennas 916 , the smartphone 900 may also include a single antenna 916 .
  • the smartphone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900 .
  • the bus 917 connects the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera device 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other connect.
  • the battery 918 provides power to the various blocks of the smartphone 900 shown in FIG. 11 via feeders, which are partially shown in phantom in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900, eg, in a sleep mode.
  • the communication unit 201 and the transceiver of the electronic device 200 may be implemented by the wireless communication interface 912 . At least a portion of the functionality may also be implemented by the processor 901 or the auxiliary controller 919 .
  • the processor 901 or the auxiliary controller 919 may enable unified indication of the TCI status through DCI by performing the functions of the communication unit 201 and the determination unit 202 .
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a car navigation apparatus 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, a wireless A communication interface 933 , one or more antenna switches 936 , one or more antennas 937 , and a battery 938 .
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 920 .
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921 .
  • the GPS module 924 measures the position (such as latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • Sensors 925 may include a set of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data generated by the vehicle, such as vehicle speed data.
  • the content player 927 reproduces content stored in storage media such as CDs and DVDs, which are inserted into the storage media interface 928 .
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives operations or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935 .
  • the BB processor 934 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 937 .
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 .
  • FIG. 12 shows an example in which the wireless communication interface 933 includes multiple BB processors 934 and multiple RF circuits 935 , the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935 .
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include the BB processor 934 and the RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937 .
  • FIG. 12 shows an example in which the car navigation device 920 includes a plurality of antennas 937 , the car navigation device 920 may also include a single antenna 937 .
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation apparatus 920 .
  • the battery 938 provides power to the various blocks of the car navigation device 920 shown in FIG. 12 via feeders, which are partially shown as dashed lines in the figure.
  • the battery 938 accumulates power supplied from the vehicle.
  • the communication unit 201 and the transceiver of the electronic device 200 may be implemented by the wireless communication interface 933 . At least a portion of the functionality may also be implemented by the processor 921 .
  • the processor 921 may enable unified indication of the TCI state through DCI by executing the functions of the communication unit 201 and the determination unit 202 .
  • the techniques of this disclosure may also be implemented as an in-vehicle system (or vehicle) 940 that includes one or more blocks of a car navigation device 920 , an in-vehicle network 941 , and a vehicle module 942 .
  • the vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941 .
  • the present disclosure also proposes a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by a machine, the above-mentioned method according to the embodiment of the present disclosure can be executed.
  • a storage medium for carrying the above-mentioned program product storing the machine-readable instruction code is also included in the disclosure of the present disclosure.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • programs constituting the software are installed from a storage medium or a network to a computer having a dedicated hardware configuration (for example, a general-purpose computer 1300 shown in FIG. 13 ) in which various programs are installed can perform various functions, etc.
  • a central processing unit (CPU) 1301 executes various processes according to a program stored in a read only memory (ROM) 1302 or a program loaded from a storage section 1308 to a random access memory (RAM) 1303 .
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1301 executes various processes and the like is also stored as needed.
  • the CPU 1301, the ROM 1302, and the RAM 1303 are connected to each other via a bus 1304.
  • Input/output interface 1305 is also connected to bus 1304 .
  • the following components are connected to the input/output interface 1305: an input section 1306 (including a keyboard, mouse, etc.), an output section 1307 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.), A storage section 1308 (including a hard disk, etc.), a communication section 1309 (including a network interface card such as a LAN card, a modem, etc.). The communication section 1309 performs communication processing via a network such as the Internet.
  • a driver 1310 may also be connected to the input/output interface 1305 as desired.
  • a removable medium 1311 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc. is mounted on the drive 1310 as needed, so that a computer program read therefrom is installed into the storage section 1308 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1311 .
  • a storage medium is not limited to the removable medium 1311 shown in FIG. 13 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable medium 1311 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read only memory (CD-ROM) and digital versatile disk (DVD)), magneto-optical disks (including minidisc (MD) (registered trademark) trademark)) and semiconductor memory.
  • the storage medium may be the ROM 1302, a hard disk contained in the storage section 1308, or the like, in which programs are stored and distributed to users together with the devices containing them.
  • each component or each step can be decomposed and/or recombined. These disaggregations and/or recombinations should be considered equivalents of the present disclosure. Also, the steps of executing the above-described series of processes can naturally be executed in chronological order in the order described, but need not necessarily be executed in chronological order. Certain steps can be performed in parallel or independently of each other.

Abstract

本公开提供了一种用于无线通信的电子设备、方法和计算机可读存储介质,该电子设备包括:处理电路,被配置为:生成用于统一传输配置指示(TCI)状态的指示的下行控制信息,该下行控制信息包括用于上行链路调度的下行控制信息和新定义的下行控制信息中至少之一,其中,统一TCI状态用于指示下行波束和上行波束两者;以及将该下行控制信息发送给用户设备。

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2021年1月14日提交中国专利局、申请号为202110047927.0、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体地涉及无线通信系统中的波束管理技术。更具体地,涉及一种用于无线通信的电子设备和方法以及计算机可读存储介质。
背景技术
在5G新空口无线电(New Radio,NR)通信系统中,上行和下行的波束指示是波束管理中的一个重要方面。在5G现有的Rel.15/Rel.16中,为下行链路定义了不同的准共址(Quasi CoLocation,QCL)类型,下行链路的波束指示是基于QCL和传输配置指示(Transmission Configuration Indication,TCI)状态进行的;上行链路的波束指示是通过定义与参考信号之间的空间关系来实现的。
在考虑时延的情况下,基于下行控制信息(Downlink Control Information,DCI)的波束指示机制的性能优于基于媒体接入控制控制元素(Media Access Control Control Element,MAC CE)的波束指示机制,但是可靠性难以保证。
此外,在3GPP RAN1会议中提出了统一TCI状态的概念,支持上下行联合的统一TCI状态指示和上下行单独的统一TCI状态指示,而现有的TCI状态指示机制适用于下行链路。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某 些方面的基本理解。应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图确定本公开的关键或重要部分,也不是意图限定本公开的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:生成用于统一TCI状态的指示的DCI,该DCI包括用于上行链路调度的DCI和新定义的DCI中至少之一,其中,统一TCI状态用于指示下行波束和上行波束两者;以及将该DCI发送给用户设备(User Equipment,UE)。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:生成用于统一TCI状态的指示的DCI,该DCI包括用于上行链路调度的DCI和新定义的DCI中至少之一,其中,统一TCI状态用于指示下行波束和上行波束两者;以及将该DCI发送给UE。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:从基站接收用于统一TCI状态的指示的DCI,该DCI包括用于上行链路调度的DCI和新定义的DCI中至少之一,其中,统一TCI状态用于指示下行波束和上行波束两者;以及基于该DCI确定统一TCI状态。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:从基站接收用于统一TCI状态的指示的DCI,该DCI包括用于上行链路调度的DCI和新定义的DCI中至少之一,其中,统一TCI状态用于指示下行波束和上行波束两者;以及基于该DCI确定统一TCI状态。
根据本公开的其它方面,还提供了用于实现上述用于无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
根据本申请的实施例的电子设备和方法能够通过DCI来进行统一TCI状态的指示,减小了时延。
通过以下结合附图对本公开的优选实施例的详细说明,本公开的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本公开的以上和其它优点和特征,下面结合附图对本公开的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本公开的典型示例,而不应看作是对本公开的范围的限定。在附图中:
图1示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图2示出了根据本申请的实施例的混合自动重传机制的示例的示意图;
图3示出了根据本申请的实施例的混合自动重传机制的示例的示意图;
图4示出了根据本申请的实施例的混合自动重传机制的示例的示意图;
图5示出了根据本申请的实施例的混合自动重传机制的示例的示意图;
图6示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图7示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图8示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图9是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图;
图10是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图;
图11是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图12是示出可以应用本公开内容的技术的汽车导航设备的示意性 配置的示例的框图;以及
图13是其中可以实现根据本公开的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与根据本公开的方案密切相关的设备结构和/或处理步骤,而省略了与本公开关系不大的其他细节。
<第一实施例>
图1示出了根据本申请的一个实施例的用于无线通信的电子设备100的功能模块框图,如图1所示,电子设备100包括:生成单元101,被配置为生成用于统一TCI状态的指示的DCI,该DCI包括用于上行链路调度的DCI和新定义的DCI中至少之一,其中,统一TCI状态用于指示下行波束和上行波束两者;以及通信单元102,被配置为将该DCI发送给UE。
其中,生成单元101和通信单元102可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片、处理器。并且,应该理解,图1中所示的电子设备中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备100例如可以设置在基站侧或者可通信地连接到基站。本申请中所述的基站也可以是收发点(Transmit Receive Point,TRP)或 者接入点(Access Point,AP)。这里,还应指出,电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备100可以工作为基站本身,并且还可以包括诸如存储器、收发器(未示出)等外部设备。存储器可以用于存储基站实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,UE、其他基站等等)间的通信,这里不具体限制收发器的实现形式。
如前所述,统一TCI状态用于指示上行波束和下行波束两者。在本实施例中,提出了使用用于上行链路调度的下行控制信息(UL DCI)和新定义的DCI中至少之一来进行统一TCI状态的指示。
在第一示例中,用于统一TCI状态的指示的DCI包括UL DCI,该UL DCI包括探测参考信号资源指示符(Sounding Reference Signal Resource Indicator,SRI)和统一TCI状态标识。这里的UL DCI是在现有的UL DCI格式上进行扩展得到的。具体地,可以通过扩展DCI Format 0_1/0_2而得到本示例的UL DCI。
在现有的DCI Format 0_1/0_2中包含的SRI具有重要作用,其用于指示物理上行共享信道(Physical Uplink Shared Channel,PUSCH)遵循的探测参考信号(SRS)空间关系,还用于PUSCH上行功率控制和发送天线端口选择等。
在本示例的UL DCI中,除了上述SRI之外还包括统一TCI状态标识,其中,统一TCI状态标识用于指示PUSCH的波束,SRI至少用于指示PUSCH的上行功率控制和发送天线端口选择。该示例的指示方式可以称为扩展模式。
此外,为了提高DCI的传输可靠性,通信单元102还被配置为应用混合自动重传请求(Hybrid Automatic Retransmission request,HARQ)机制。
例如,在UE正确接收本示例的UL DCI并且基站正确接收UE发送的PUSCH的情况下,通信单元102向UE反馈混合自动重传请求确认(HARQ-ACK)。图2示出了在这种情况下的HARQ机制的示意图。其中,基站(gNB)向UE发出包含统一TCI状态标识的UL DCI,UE正确接收该UL DCI并在调度的PUSCH上进行数据传输,gNB正确接收该PUSCH,并在下一个DCI中进行隐式的ACK反馈,例如用反转的新 数据指示(New Data Indicator,NDI)来表示ACK,该ACK与调度的PUSCH具有相同的HARQ进程ID。
在UE没有正确接收UL DCI从而无法发送PUSCH的情况下,通信单元102向UE反馈HARQ-NACK。图3示出了在这种情况下的HARQ机制的示意图。其中,gNB向UE发出包含统一TCI状态标识的UL DCI,UE未正确接收该UL DCI,从而无法向gNB发送PUSCH。gNB在下一个DCI中进行隐式的NACK反馈,例如用未反转的NDI来表示该NACK,该NACK与调度的PUSCH具有相同的HARQ进程ID。
在UE正确接收UL DCI并且基站没有正确接收UE发送的PUSCH的情况下,通信单元102向UE反馈针对所述UL DCI的HARQ-ACK和针对所述PUSCH的HARQ-NACK。图4示出了在这种情况下的HARQ机制的示意图。其中,gNB向UE发出包含统一TCI状态标识的UL DCI,UE正确接收该UL DCI并在调度的PUSCH上进行数据传输,但是gNB无法正确解码该PUSCH,此时gNB认为UE已经正确接收包含统一TCI状态标识的UL DCI并且发送了相应的PUSCH,因此gNB对UL DCI发送ACK并对PUSCH发送NACK。例如,用反转的NDI来表示该ACK,用未反转的NDI来表示该NACK,该ACK和NACK与调度的PUSCH具有相同的HARQ进程ID。
可以看出,在图2至图4所示的HARQ机制中,HARQ-ACK和HARQ-NACK包含在UL DCI之后的其他DCI中。通过应用HARQ机制,可以有效提高DCI的传输可靠性。当UE接收到隐式的HARQ反馈时,UL DCI所指示的统一TCI状态将在一定时间后应用,时间长短取决于UE的能力。
在第二示例中,用于统一TCI状态的指示的DCI包括UL DCI,该UL DCI包括SRI,其中,SRI与统一TCI状态相关联。在该示例中,不改变现有的UL DCI的格式,但是SRI与统一TCI状态相关联、即SRI所指示的SRS资源与统一TCI状态相关联,以使得在指示统一TCI状态的同时得到对应的SRS资源。例如,可以由通信单元102通过高层信令比如无线资源控制(Radio Resouce Control,RRC)信令或MAC CE将SRI与统一TCI状态进行关联。该示例的指示方式可以称为关联模式。
前文中参照图2至图4所述的HARQ机制同样可以应用于该第二示 例,在此不再重复。
在第三示例中,用于统一TCI状态的指示的DCI包括新定义的DCI,该新定义的DCI专用于指示统一TCI状态,而不用于上下行数据传输的调度。通信单元102可以使用无线网络临时标识(Radio network temporary indicator,RNTI)对新定义的DCI进行加扰。
在该新定义的DCI中,可以优化或删除原有DCI中不相关的部分,以减小信令开销。该DCI可以用于多种TCI状态指示,例如,可以用于上下行联合的统一TCI状态指示或上下行单独的统一TCI状态指示,也可以对多个信号/信道进行共同的统一TCI状态指示,或者对单一的信号/信道进行统一TCI状态指示。
其中,新定义的DCI至少包括统一TCI状态标识。此外,根据需要,新定义的DCI还可以包括如下中的一项或多项:信道/信号应用,用于指示上下行信道/信号及其所在的成份载波(Component carrier,CC)或部分带宽(Bandwidth Part,BWP);物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源标识,用于指示UE进行HARQ-ACK的反馈时使用的PUCCH资源;物理下行控制信道(Physical Downplink Control Channel,PDCCH)到PUCCH定时(PDCCH_to_PUCCH_timing),用于指示从发送新定义的DCI到UE发送PUCCH以进行HARQ-ACK的反馈之间的时间;信道状态信息(Channel Status Information,CSI)请求字段,用于非周期地触发下行CSI反馈。
具体地,基站通过信道/信号应用通知UE所指示的统一TCI状态要应用的一个或多个信道/信号及其分别所在的CC或者BWP;通过PUCCH资源标识通知UE可以使用哪些PUCCH资源反馈HARQ-ACK,该HARQ-ACK用于确认UE正确收到了新定义的DCI;通过PDCCH到PUCCH定时通知UE新定义的DCI的发送到HARQ-ACK的反馈之间的定时关系。
此外,基站还可以通过CSI请求字段来触发非周期下行CSI上报。具体地,通过包括CSI请求字段,该新定义的DCI能够触发非周期的CSI-RS的发送,UE对该非周期的CSI-RS进行测量并向基站上报测量结果、即执行非周期的CSI上报。其中,非周期的CSI上报和相关的参 数例如通过RRC信令预先配置。例如,RRC信令配置了3个非周期CSI上报,每一个中包括非周期CSI的测量资源,这里的CSI请求字段可以为2比特,例如,01、10、11分别对应1个非周期CSI上报,00被保留用来表示没有非周期CSI上报,即3个非周期CSI上报均不被触发。
在该第三示例中,为了提高新定义的DCI的传输可靠性,可以类似地应用HARQ机制。图5示出了应用于该第三示例的HARQ机制的一个示意图。其中,图5示出了在UE正确接收新定义的DCI的情况下,通信单元102从UE接收使用PUCCH发送的HARQ-ACK。此外,在UE没有正确接收新定义的DCI的情况下,通信单元102不从UE接收HARQ的反馈。在UE没有正确接收新定义的DCI但是正确接收了其他用于下行链路调度的DCI并反馈HARQ-ACK的情况下,从UE接收针对该新定义的DCI的HARQ-NACK,即,针对该新定义的DCI的HARQ-NACK附加在针对其他用于下行链路调度的DCI的HARQ-ACK中发送。
此外,通信单元102还可以从UE接收波束应用定时参数(BeamApplicationTiming),该波束应用定时参数指示UE发送HARQ-ACK之后新定义的DCI指示的统一TCI状态被应用所需要的时间,如图5中的示例所示。换言之,UE向基站发送HARQ-ACK后经过BeamApplicationTiming的时间,该新定义的DCI所指示的统一TCI状态将被应用。BeamApplicationTiming的长度取决于UE的能力。
在第四示例中,除了新定义的DCI之外,用于统一TCI状态的指示的DCI还包括UL DCI,该UL DCI包括用于指示SRS资源的SRI,统一TCI状态标识用于指示SRS资源的空间关系(spatial relation)。换言之,在该示例中,使用UL DCI指示SRS资源,并使用新定义的DCI对SRS资源的空间关系进行动态的更新,从而实现期望的波束指示。该示例的指示方式可以称为间接模式。
第一和第二示例中的HARQ机制和第三示例中的HARQ机制两者或其中的一种可以应用于本示例。
在Rel.15/Rel.16中,为下行链路信号定义了四种QCL类型,用于指示两个下行参考信号之间的相同的属性。在将统一TCI状态应用于上行链路时,需要定义新的QCL类型,即针对上行链路的QCL类型。例 如,可以定义如下三种QCL类型:QCL Type X,用于定义两个参考信号的时间提前量(Time Advance,TA)相同;QCL Type Y,用于定义两个参考信号之间的路径损耗(Path Loss,PL)相同;QCL Type Z,用于定义上行发送波束的方向。应该理解,这里的类型X、Y、Z仅是示例,无论是名称还是具体含义都不是限制性的。根据本实施例的DCI中可以包括一个或多个针对上行链路的QCL类型,例如用于指示两个上行参考信号之间的相同的属性。
综上所述,根据本实施例的电子设备100能够通过DCI来进行统一TCI状态的指示,减小了时延,并且还可以通过应用HARQ机制来提高DCI传输的可靠性。此外,本实施例还定义了针对上行链路的QCL类型。
<第二实施例>
图6示出了根据本申请的另一个实施例的电子设备200的功能模块框图,如图6所示,电子设备200包括:通信单元201,被配置为从基站接收用于统一TCI状态的指示的DCI,该DCI包括用于上行链路调度的DCI(UL DCI)和新定义的DCI中至少之一,其中,统一TCI状态用于指示下行波束和上行波束两者;以及确定单元202,被配置为基于该DCI确定统一TCI状态。
其中,通信单元201和确定单元202可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片、处理器。并且,应该理解,图6中所示的电子设备中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备200例如可以设置在UE侧或者可通信地连接到UE。这里,还应指出,电子设备200可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备200可以工作为UE本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储用户设备实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,基站、其他用户设备等等)间的通信,这里不具体限制收发器的实现形式。
与第一实施例中类似,用于统一TCI状态的指示的DCI可以有多种形式。
在用于统一TCI状态的指示的DCI包括UL DCI的情况下,该UL DCL可以包括SRI和统一TCI状态标识。例如,统一TCI状态标识用于指示PUSCH的波束,SRI至少用于指示PUSCH的上行功率控制和发送天线端口选择。该UL DCI可以通过扩展DCI Format 0_1/0_2而得到。该DCI的指示形式可以被称为扩展模式。
在用于统一TCI状态的指示的DCI包括UL DCI的情况下,该UL DCL还可以被配置为包括SRI,该SRI与统一TCI状态相关联。即,UE在得到该SRI时可以例如由确定单元202同时确定SRS资源和对应的统一TCI状态。其中,通信单元201还可以接收将SRI与统一TCI状态进行关联的高层信令,其中,所述高层信令例如包括RRC信令或MAC CE。该DCI的指示形式可以被称为关联模式。
在用于统一TCI状态的指示的DCI包括新定义的DCI的情况下,该新定义的DCI专用于指示统一TCI状态,而不用于上下行数据传输的调度。该新定义的DCI至少包括统一TCI状态标识。此外,根据需要,该新定义的DCI还可以包括如下中的一项或多项:信道/信号应用,用于指示上下行信道/信号及其所在的成份载波或BWP;PUCCH资源标识,用于指示UE进行HARQ-ACK的反馈时使用的PUCCH资源;PDCCH到PUCCH定时,用于指示从发送新定义的DCI到UE发送PUCCH以进行HARQ-ACK的反馈之间的时间;CSI请求字段,用于非周期地触发下行CSI反馈。
具体地,确定单元202可以根据信道/信号应用确定所指示的统一TCI状态要应用的一个或多个信道/信号及其分别所在的CC或者BWP;可以根据PUCCH资源标识确定要使用哪些PUCCH资源反馈HARQ-ACK,该HARQ-ACK用于确认UE正确收到了新定义的DCI;可以根据PDCCH到PUCCH定时确定新定义的DCI的发送到HARQ-ACK的反馈之间的定时关系。
此外,确定单元202还可以根据CSI请求字段来确定是否要进行非周期下行CSI的上报以及如何上报。具体地,非周期的CSI上报和相关的参数例如通过RRC信令预先配置。例如,RRC信令配置了3个非周期CSI上报,每一个中包括非周期CSI的测量资源,这里的CSI请求字段可以为2比特,例如,01、10、11分别对应1个非周期CSI上报,00被保留用来表示没有非周期CSI上报,即3个非周期CSI上报均不被触 发。例如,假设CSI请求字段取值为01,则UE根据该取值确定要进行某一个非周期CSI上报,并基于之前通过RRC信令收到的非周期CSI上报的配置来确定该非周期CSI上报的测量资源,在该测量资源上对非周期的CSI-RS进行测量并向基站上报测量结果。
此外,通信单元201还被配置为向基站发送波束应用定时参数(BeamApplicationTiming),该波束应用定时参数指示UE发送HARQ-ACK之后新定义的DCI指示的统一TCI状态被应用所需要的时间。该波束应用定时参数取决于UE的能力。UE在向基站发送HARQ-ACK之后经过BeamApplicationTiming的时间,新定义的DCI指示的统一TCI状态将被应用。
另外,在用于统一TCI状态的指示的DCI包括新定义的DCI的情况下,该用于统一TCI状态的指示的DCI还可以包括UL DCI,其中,
UL DCI包括用于指示SRS资源的SRI,新定义的DCI中的统一TCI状态标识用于指示SRS资源的空间关系。具体地,UE根据UL DCI确定SRS资源,根据新定义的DCI确定统一TCI状态进而根据该统一TCI状态更新SRS资源的空间关系,从而实现期望的波束指示。该DCI的指示形式可以被称为间接模式。
在以上各种形式中,为了提高DCI的传输可靠性,均可以应用HARQ机制。具体的描述已经在第一实施例中参照图2至图5给出,在此仅简单描述UE侧通信单元201的相应操作。
在用于统一TCI状态的指示的DCI包括UL DCI的情况下,通信单元201可以执行如下操作:在正确接收UL DCI时向基站发送PUSCH,在基站正确接收UE发送的PUSCH的情况下,从基站接收HARQ-ACK;在没有正确接收UL DCI从而UE无法发送PUSCH的情况下,从基站接收HARQ-NACK;以及在正确接收UL DCI时向基站发送PUSCH,在基站没有正确接收UE发送的该PUSCH的情况下,从基站接收针对UL DCI的HARQ-ACK和针对PUSCH的HARQ-NACK。例如,上述HARQ-ACK和HARQ-NACK可以包含在UL DCI之后的其他DCI中。
在用于统一TCI状态的指示的DCI包括新定义的DCI的情况下,通信单元201可以执行如下操作:在正确接收新定义的DCI的情况下,向基站发送HARQ-ACK;在没有正确接收新定义的DCI的情况下,不 向基站发送HARQ的反馈;以及在没有正确接收新定义的DCI但是正确接收了其他用于下行链路调度的DCI的情况下,向基站发送针对其他DCI的HARQ-ACK同时发送针对该新定义的DCI的HARQ-NACK。
在用于用于统一TCI状态的指示的DCI包括UL DCI和新定义的DCI的情况下,通信单元201可以通过执行上述两组操作中的两者或其中之一来实现HARQ机制。
如前所述,在将统一TCI状态应用于上行链路时,需要定义新的QCL类型,即针对上行链路的QCL类型。例如,可以定义如下三种QCL类型:QCL Type X,用于定义两个参考信号的TA相同;QCL Type Y,用于定义两个参考信号之间的PL相同;QCL Type Z,用于定义上行发送波束的方向。应该理解,这里的类型X、Y、Z仅是示例,无论是名称还是具体含义都不是限制性的。根据本实施例的DCI中可以包括一个或多个针对上行链路的QCL类型,确定单元202例如可以根据QCL类型来确定两个上行参考信号之间的相同的属性。
综上所述,根据本实施例的电子设备200能够通过DCI来进行统一TCI状态的指示,减小了时延,并且还可以通过应用HARQ机制来提高DCI传输的可靠性。
<第三实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图7示出了根据本申请的一个实施例的用于无线通信的方法的流程图,该方法包括:生成用于统一TCI状态的指示的DCI,该DCI包括UL DCI和新定义的DCI中至少之一,其中,统一TCI状态用于指示下行波束和上行波束两者(S11);以及将所述下行控制信息发送给UE (S12)。该方法例如可以在基站侧执行。
在第一示例中,用于统一TCI状态的指示的DCI包括UL DCI,该UL DCI包括SRI和统一TCI状态标识。例如,统一TCI状态标识用于指示PUSCH的波束,SRI至少用于指示PUSCH的上行功率控制和发送天线端口选择。该UL DCI可以通过扩展DCI Format 0_1/0_2而得到。
在第二示例中,用于统一TCI状态的指示的DCI包括UL DCI,该UL DCI包括SRI,其中,SRI与统一TCI状态相关联。可以通过高层信令比如RRC信令或MAC CE将SRI与统一TCI状态进行关联。
在第三示例中,用于统一TCI状态的指示的DCI包括新定义的DCI,该新定义的DCI专用于指示统一TCI状态,并且至少包括统一TCI状态标识。此外,新定义的DCI还可以包括如下中的一项或多项:信道/信号应用,用于指示上下行信道/信号及其所在的成份载波或部分带宽;PUCCH资源标识,用于指示UE进行HARQ-ACK的反馈时使用的PUCCH资源;PDCCH到PUCCH定时,用于指示从发送新定义的DCI到UE发送PUCCH以进行HARQ-ACK的反馈之间的时间;CSI请求字段,用于非周期地触发下行CSI反馈。该新定义的DCI可以使用RNTI进行加扰。
此外,上述方法还可以包括:从UE接收波束应用定时参数,该波束应用定时参数指示UE发送HARQ-ACK之后新定义的DCI指示的统一TCI状态被应用所需要的时间。
在第四示例中,除了新定义的DCI之外,用于统一TCI状态的指示的DCI还包括UL DCI,其中,UL DCI包括用于指示SRS资源的SRI,统一TCI状态标识用于指示SRS资源的空间关系。
此外,为了提高DCI的传输可靠性,上述方法还包括应用HARQ机制。
例如,在用于统一TCI状态的指示的DCI包括UL DCI的情况下,上述方法包括:在UE正确接收UL DCI并且基站正确接收UE发送的PUSCH的情况下,向UE反馈HARQ-ACK;在UE没有正确接收UL DCI从而无法发送PUSCH的情况下,向UE反馈HARQ-NACK;以及在UE正确接收UL DCI并且基站没有正确接收UE发送的PUSCH的情况下,向UE反馈针对UL DCI的HARQ-ACK和针对PUSCH的 HARQ-NACK。例如,HARQ-ACK和HARQ-NACK可以包含在UL DCI之后的其他DCI中。
在用于统一TCI状态的指示的DCI包括新定义的DCI的情况下,上述方法包括:在UE正确接收新定义的DCI的情况下,从UE接收HARQ-ACK;在UE没有正确接收新定义的DCI的情况下,不从UE接收HARQ的反馈;以及在UE没有正确接收新定义的DCI但是正确接收了其他UL DCI并反馈HARQ-ACK的情况下,从UE接收针对该新定义的DCI的HARQ-NACK。
DCI中还可以包括针对上行链路的QCL类型,QCL类型包括如下中的一个或多个:QCL Type X,用于定义两个参考信号的时间提前量相同;QCL Type Y,用于定义两个参考信号之间的路径损耗相同;QCL Type Z,用于定义上行发送波束的方向。
图8示出了根据本申请的一个实施例的用于无线通信的方法的流程图,该方法包括:从基站接收用于统一TCI状态的指示的DCI,该DCI包括UL DCI和新定义的DCI中至少之一,其中,统一TCI状态用于指示下行波束和上行波束两者(S21);以及基于DCI确定统一TCI状态(S22)。该方法例如可以在UE侧执行。
有关用于统一TCI状态的指示的DCI的具体形式在以上关于基站侧执行的方法中已经给出了详细描述,在此不再重复。
此外,为了提高DCI的传输可靠性,还可以应用HARQ机制。
在用于统一TCI状态的指示的DCI包括UL DCI的情况下,UE侧执行的方法还包括:在正确接收UL DCI时向基站发送PUSCH,在基站正确接收UE发送的PUSCH的情况下,从基站接收HARQ-ACK;在没有正确接收UL DCI从而UE无法发送PUSCH的情况下,从基站接收HARQ-NACK;以及在正确接收UL DCI时向基站发送PUSCH,在基站没有正确接收UE发送的该PUSCH的情况下,从基站接收针对UL DCI的HARQ-ACK和针对PUSCH的HARQ-NACK。例如,上述HARQ-ACK和HARQ-NACK可以包含在UL DCI之后的其他DCI中。
在用于统一TCI状态的指示的DCI包括新定义的DCI的情况下,UE侧执行的方法还:在正确接收新定义的DCI的情况下,向基站发送HARQ-ACK;在没有正确接收新定义的DCI的情况下,不向基站发送 HARQ的反馈;以及在没有正确接收新定义的DCI但是正确接收了其他用于下行链路调度的DCI的情况下,向基站发送针对其他DCI的HARQ-ACK同时发送针对该新定义的DCI的HARQ-NACK。
注意,上述各个方法可以结合或单独使用,其细节在第一至第二实施例中已经进行了详细描述,在此不再重复。
本公开内容的技术能够应用于各种产品。
例如,电子设备100可以被实现为各种基站。基站可以被实现为任何类型的演进型节点B(eNB)或gNB(5G基站)。eNB例如包括宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。对于gNB也可以由类似的情形。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
电子设备200可以被实现为各种用户设备。用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图9是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图9所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图9示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被 配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图9所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图9所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图9示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图9所示的eNB 800中,电子设备100的通信单元102、收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行生成单元101和通信单元102的功能来通过DCI进行统一TCI状态的指示。
(第二应用示例)
图10是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图10所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图10示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图9描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进), 并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图9描述的BB处理器826相同。如图10所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图10示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图10所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图10示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图10所示的eNB 830中,电子设备100的通信单元102、收发器可以由无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以由控制器851实现。例如,控制器851可以通过执行生成单元101和通信单元102的功能来通过DCI进行统一TCI状态的指示。
[关于用户设备的应用示例]
(第一应用示例)
图11是示出可以应用本公开内容的技术的智能电话900的示意性配 置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图11所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图11示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图11所示,智能电话900可以包括多个天线916。虽然图11示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图11所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图11所示的智能电话900中,电子设备200的通信单元201、收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行通信单元201和确定单元202的功能使得能够通过DCI进行统一TCI状态的指示。
(第二应用示例)
图12是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及 电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图12所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图12示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路 (诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图12所示,汽车导航设备920可以包括多个天线937。虽然图12示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图12所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图12示出的汽车导航设备920中,电子设备200的通信单元201、收发器可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行通信单元201和确定单元202的功能使得能够通过DCI进行统一TCI状态的指示。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本公开的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本公开的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本公开还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本公开实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的 存储介质也包括在本公开的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本公开的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图13所示的通用计算机1300)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图13中,中央处理单元(CPU)1301根据只读存储器(ROM)1302中存储的程序或从存储部分1308加载到随机存取存储器(RAM)1303的程序执行各种处理。在RAM 1303中,也根据需要存储当CPU 1301执行各种处理等等时所需的数据。CPU 1301、ROM 1302和RAM 1303经由总线1304彼此连接。输入/输出接口1305也连接到总线1304。
下述部件连接到输入/输出接口1305:输入部分1306(包括键盘、鼠标等等)、输出部分1307(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1308(包括硬盘等)、通信部分1309(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1309经由网络比如因特网执行通信处理。根据需要,驱动器1310也可连接到输入/输出接口1305。可移除介质1311比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1310上,使得从中读出的计算机程序根据需要被安装到存储部分1308中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质1311安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图13所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1311。可移除介质1311的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1302、存储部分1308中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本公开的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以 并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (33)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    生成用于统一传输配置指示TCI状态的指示的下行控制信息,所述下行控制信息包括用于上行链路调度的下行控制信息和新定义的下行控制信息中至少之一,其中,所述统一TCI状态用于指示下行波束和上行波束两者;以及
    将所述下行控制信息发送给用户设备。
  2. 根据权利要求1所述的电子设备,其中,所述下行控制信息包括用于上行链路调度的下行控制信息,所述用于上行链路调度的下行控制信息包括探测参考信号资源指示符和统一TCI状态标识。
  3. 根据权利要求2所述的电子设备,其中,所述统一TCI状态标识用于指示物理上行共享信道的波束,所述探测参考信号资源指示符至少用于指示物理上行共享信道的上行功率控制和发送天线端口选择。
  4. 根据权利要求2所述的电子设备,其中,所述用于上行链路调度的下行控制信息通过扩展DCI Format 0_1/0_2而得到。
  5. 根据权利要求1所述的电子设备,其中,所述下行控制信息包括用于上行链路调度的下行控制信息,所述用于上行链路调度的下行控制信息包括探测参考信号资源指示符,其中,探测参考信号资源指示符与统一TCI状态相关联。
  6. 根据权利要求5所述的电子设备,其中,所述处理电路还被配置为通过高层信令将探测参考信号资源指示符与统一TCI状态进行关联。
  7. 根据权利要求6所述的电子设备,其中,所述高层信令包括无线资源控制信令或媒体接入控制控制元素。
  8. 根据权利要求1所述的电子设备,其中,所述下行控制信息包括新定义的下行控制信息,所述新定义的下行控制信息专用于指示所述统一TCI状态,并且至少包括统一TCI状态标识。
  9. 根据权利要求8所述的电子设备,其中,所述新定义的下行控制 信息还包括如下中的一项或多项:信道/信号应用,用于指示上下行信道/信号及其所在的成份载波或部分带宽;物理上行控制信道资源标识,用于指示所述用户设备进行混合自动重传请求确认HARQ-ACK的反馈时使用的物理上行控制信道资源;物理下行控制信道到物理上行控制信道定时,用于指示从发送所述新定义的下行控制信息到所述用户设备发送物理上行控制信道以进行所述HARQ-ACK的反馈之间的时间;信道状态信息请求字段,用于非周期地触发下行信道状态信息反馈。
  10. 根据权利要求8所述的电子设备,其中,所述处理电路还被配置为使用无线网络临时标识对所述新定义的下行控制信息进行加扰。
  11. 根据权利要求9所述的电子设备,其中,所述处理电路还被配置为从所述用户设备接收波束应用定时参数,该波束应用定时参数指示所述用户设备发送所述HARQ-ACK之后所述新定义的下行控制信息指示的统一TCI状态被应用所需要的时间。
  12. 根据权利要求8所述的电子设备,其中,所述下行控制信息还包括所述用于上行链路调度的下行控制信息,其中,所述用于上行链路调度的下行控制信息包括用于指示探测参考信号资源的探测参考信号资源指示符,所述统一TCI状态标识用于指示探测参考信号资源的空间关系。
  13. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为应用混合自动重传请求HARQ机制,来提高所述下行控制信息的传输可靠性。
  14. 根据权利要求13所述的电子设备,其中,所述下行控制信息包括用于上行链路调度的下行控制信息,所述处理电路被配置为如下应用所述HARQ机制:
    在所述用户设备正确接收所述用于上行链路调度的下行控制信息并且基站正确接收所述用户设备发送的物理上行共享信道的情况下,向所述用户设备反馈HARQ-ACK;
    在所述用户设备没有正确接收所述用于上行链路调度的下行控制信息从而无法发送所述物理上行共享信道的情况下,向所述用户设备反馈HARQ-NACK;以及
    在所述用户设备正确接收所述用于上行链路调度的下行控制信息并且所述基站没有正确接收所述用户设备发送的物理上行共享信道的情况下,向所述用户设备反馈针对所述用于上行链路调度的下行控制信息的HARQ-ACK和针对所述物理上行共享信道的HARQ-NACK。
  15. 根据权利要求14所述的电子设备,其中,所述HARQ-ACK和所述HARQ-NACK包含在所述用于上行链路调度的下行控制信息之后的其他下行控制信息中。
  16. 根据权利要求13所述的电子设备,其中,所述下行控制信息包括新定义的下行控制信息,所述处理电路还被配置为:
    在所述用户设备正确接收所述新定义的下行控制信息的情况下,从所述用户设备接收HARQ-ACK;
    在所述用户设备没有正确接收所述新定义的下行控制信息的情况下,不从所述用户设备接收HARQ的反馈;以及
    在所述用户设备没有正确接收所述新定义的下行控制信息但是正确接收了其他用于下行链路调度的下行控制信息并反馈HARQ-ACK的情况下,从所述用户设备接收针对该新定义的下行控制信息的HARQ-NACK。
  17. 根据权利要求1所述的电子设备,其中,所述下行控制信息中包括针对上行链路的准共址类型,所述准共址类型包括如下中的一个或多个:QCL Type X,用于定义两个参考信号的时间提前量相同;QCL Type Y,用于定义两个参考信号之间的路径损耗相同;QCL Type Z,用于定义上行发送波束的方向。
  18. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    从基站接收用于统一传输配置指示TCI状态的指示的下行控制信息,所述下行控制信息包括用于上行链路调度的下行控制信息和新定义的下行控制信息中至少之一,其中,所述统一TCI状态用于指示下行波束和上行波束两者;以及
    基于所述下行控制信息确定统一TCI状态。
  19. 根据权利要求18所述的电子设备,其中,所述下行控制信息包 括用于上行链路调度的下行控制信息,所述用于上行链路调度的下行控制信息包括探测参考信号资源指示符和统一TCI状态标识。
  20. 根据权利要求19所述的电子设备,其中,所述统一TCI状态标识用于指示物理上行共享信道的波束,所述探测参考信号资源指示符至少用于指示物理上行共享信道的上行功率控制和发送天线端口选择。
  21. 根据权利要求18所述的电子设备,其中,所述下行控制信息包括用于上行链路调度的下行控制信息,所述用于上行链路调度的下行控制信息包括探测参考信号资源指示符,其中,探测参考信号资源指示符与统一TCI状态相关联。
  22. 根据权利要求21所述的电子设备,其中,所述处理电路还被配置为接收将探测参考信号资源指示符与统一TCI状态进行关联的高层信令,其中,所述高层信令包括无线资源控制信令或媒体接入控制控制元素。
  23. 根据权利要求18所述的电子设备,其中,所述下行控制信息包括新定义的下行控制信息,所述新定义的下行控制信息专用于指示所述统一TCI状态,并且至少包括统一TCI状态标识。
  24. 根据权利要求23所述的电子设备,其中,所述新定义的下行控制信息还包括如下中的一项或多项:信道/信号应用,用于指示上下行信道/信号及其所在的成份载波或部分带宽;物理上行控制信道资源标识,用于指示用户设备进行混合自动重传请求确认HARQ-ACK的反馈时使用的物理上行控制信道资源;物理下行控制信道到物理上行控制信道定时,用于指示从发送所述新定义的下行控制信息到所述用户设备发送物理上行控制信道以进行所述HARQ-ACK的反馈之间的时间;信道状态信息请求字段,用于非周期地触发下行信道状态信息反馈。
  25. 根据权利要求24所述的电子设备,其中,所述处理电路还被配置为向所述基站发送波束应用定时参数,该波束应用定时参数指示所述用户设备发送所述HARQ-ACK之后所述新定义的下行控制信息指示的统一TCI状态被应用所需要的时间。
  26. 根据权利要求23所述的电子设备,其中,所述下行控制信息还包括所述用于上行链路调度的下行控制信息,其中,所述用于上行链路调度的下行控制信息包括用于指示探测参考信号资源的探测参考信号资 源指示符,所述统一TCI状态标识用于指示探测参考信号资源的空间关系。
  27. 根据权利要求18所述的电子设备,其中,所述处理电路还被配置为应用混合自动重传请求HARQ机制,来提高所述下行控制信息的传输可靠性。
  28. 根据权利要求27所述的电子设备,其中,所述下行控制信息包括用于上行链路调度的下行控制信息,所述处理电路被配置为如下应用所述HARQ机制:
    在正确接收所述用于上行链路调度的下行控制信息并且所述基站正确接收用户设备发送的物理上行共享信道的情况下,从所述基站接收HARQ-ACK;
    在没有正确接收所述用于上行链路调度的下行控制信息从而所述用户设备无法发送所述物理上行共享信道的情况下,从所述基站接收HARQ-NACK;以及
    在正确接收所述用于上行链路调度的下行控制信息并且所述基站没有正确接收所述用户设备发送的物理上行共享信道的情况下,从所述基站接收针对所述用于上行链路调度的下行控制信息的HARQ-ACK和针对所述物理上行共享信道的HARQ-NACK。
  29. 根据权利要求28所述的电子设备,其中,所述HARQ-ACK和所述HARQ-NACK包含在所述用于上行链路调度的下行控制信息之后的其他下行控制信息中。
  30. 根据权利要求27所述的电子设备,其中,所述下行控制信息包括新定义的下行控制信息,所述处理电路还被配置为:
    在正确接收所述新定义的下行控制信息的情况下,向所述基站发送HARQ-ACK;
    在没有正确接收所述新定义的下行控制信息的情况下,不向所述基站发送HARQ的反馈;以及
    在没有正确接收所述新定义的下行控制信息但是正确接收了其他用于下行链路调度的下行控制信息的情况下,向所述基站发送针对其他下行控制信息的HARQ-ACK同时发送针对该新定义的下行控制信息的 HARQ-NACK。
  31. 一种用于无线通信的方法,包括:
    生成用于统一传输配置指示TCI状态的指示的下行控制信息,所述下行控制信息包括用于上行链路调度的下行控制信息和新定义的下行控制信息中至少之一,其中,所述统一TCI状态用于指示下行波束和上行波束两者;以及
    将所述下行控制信息发送给用户设备。
  32. 一种用于无线通信的方法,包括:
    从基站接收用于统一传输配置指示TCI状态的指示的下行控制信息,所述下行控制信息包括用于上行链路调度的下行控制信息和新定义的下行控制信息中至少之一,其中,所述统一TCI状态用于指示下行波束和上行波束两者;以及
    基于所述下行控制信息确定统一TCI状态。
  33. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据权利要求31或32所述的用于无线通信的方法。
PCT/CN2022/070681 2021-01-14 2022-01-07 用于无线通信的电子设备和方法、计算机可读存储介质 WO2022152049A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280009302.8A CN116848918A (zh) 2021-01-14 2022-01-07 用于无线通信的电子设备和方法、计算机可读存储介质
EP22738930.1A EP4266792A4 (en) 2021-01-14 2022-01-07 ELECTRONIC DEVICE AND METHOD FOR WIRELESS COMMUNICATION AND COMPUTER-READABLE STORAGE MEDIUM
JP2023542656A JP2024503679A (ja) 2021-01-14 2022-01-07 無線通信のための電子装置及び方法
US18/268,631 US20240040556A1 (en) 2021-01-14 2022-01-07 Electronic device and method for wireless communication, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110047927.0 2021-01-14
CN202110047927.0A CN114765865A (zh) 2021-01-14 2021-01-14 用于无线通信的电子设备和方法、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022152049A1 true WO2022152049A1 (zh) 2022-07-21

Family

ID=82363392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070681 WO2022152049A1 (zh) 2021-01-14 2022-01-07 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (5)

Country Link
US (1) US20240040556A1 (zh)
EP (1) EP4266792A4 (zh)
JP (1) JP2024503679A (zh)
CN (2) CN114765865A (zh)
WO (1) WO2022152049A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065602A1 (en) * 2022-09-30 2024-04-04 Qualcomm Incorporated Default bwp and cell for an rs in a tci state

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200267764A1 (en) * 2019-02-14 2020-08-20 Nazanin Rastegardoost Dynamic PRACH Scheduling using Slot Formats
CN111819823A (zh) * 2018-03-07 2020-10-23 株式会社Ntt都科摩 用户终端以及无线通信方法
CN113316253A (zh) * 2020-02-27 2021-08-27 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819823A (zh) * 2018-03-07 2020-10-23 株式会社Ntt都科摩 用户终端以及无线通信方法
US20200267764A1 (en) * 2019-02-14 2020-08-20 Nazanin Rastegardoost Dynamic PRACH Scheduling using Slot Formats
CN113316253A (zh) * 2020-02-27 2021-08-27 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (SAMSUNG): "Moderator summary for multi-beam enhancement", 3GPP DRAFT; R1-2008147, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 3 November 2020 (2020-11-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051950269 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065602A1 (en) * 2022-09-30 2024-04-04 Qualcomm Incorporated Default bwp and cell for an rs in a tci state

Also Published As

Publication number Publication date
EP4266792A4 (en) 2024-05-01
JP2024503679A (ja) 2024-01-26
CN116848918A (zh) 2023-10-03
EP4266792A1 (en) 2023-10-25
CN114765865A (zh) 2022-07-19
US20240040556A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
US11757510B2 (en) Electronic devices and communication methods
WO2021169904A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021169828A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021139669A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
EP3768026A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
EP4007192A1 (en) Electronic device, wireless communication method, and computer-readable storage medium
WO2021190386A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022152049A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2020140836A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022028318A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230276452A1 (en) Electronic device, wireless communication method and computer-readable storage medium
WO2022083525A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021068880A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022083535A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023083108A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023134528A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022083541A1 (zh) 电子设备、通信方法和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22738930

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18268631

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280009302.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023542656

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022738930

Country of ref document: EP

Effective date: 20230719

NENP Non-entry into the national phase

Ref country code: DE