WO2022083535A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2022083535A1
WO2022083535A1 PCT/CN2021/124358 CN2021124358W WO2022083535A1 WO 2022083535 A1 WO2022083535 A1 WO 2022083535A1 CN 2021124358 W CN2021124358 W CN 2021124358W WO 2022083535 A1 WO2022083535 A1 WO 2022083535A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam failure
user equipment
electronic device
bwp
frequency band
Prior art date
Application number
PCT/CN2021/124358
Other languages
English (en)
French (fr)
Inventor
刘敏
Original Assignee
索尼集团公司
刘敏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 刘敏 filed Critical 索尼集团公司
Priority to EP21881952.2A priority Critical patent/EP4207907A1/en
Priority to CN202180070251.5A priority patent/CN116420378A/zh
Priority to US18/245,164 priority patent/US20230370149A1/en
Publication of WO2022083535A1 publication Critical patent/WO2022083535A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06964Re-selection of one or more beams after beam failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/305Handover due to radio link failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular to beam failure recovery (Beam Failure Recovery, BFR) technology. More particularly, it relates to an electronic device and method for wireless communication and a computer-readable storage medium.
  • Beam Failure Recovery BFR
  • BFR beam fault recovery
  • the BFR process usually includes the following operations: beam failure detection, candidate beam identification, beam failure recovery request (Beam Failure Recovery Request, BFRQ) sending, beam failure recovery response (Beam Failure Recovery Response, BFRR) receiving, as shown in the schematic diagram in Figure 1 Show.
  • the user equipment User Equipment, UE
  • RS received reference signals
  • CSI-RS Channel State Information Reference Signal
  • SSB synchronizing signal blocks
  • the BFR process is completed by measuring for beam failure detection and candidate beam identification, sending BFRQ to a base station (shown as a Transceiver Point (TRP) in Figure 1) in the event of a beam failure, and receiving BFRR from the TRP.
  • TRP Transceiver Point
  • BWP Bandwidth part
  • RS for beam measurement can be transmitted on any BWP, and UE can identify candidate beams without switching BWP.
  • each satellite in a non-terrestrial network (NTN), can generate multiple beams.
  • NTN has two ways of corresponding physical cell identifiers (PCI) and beams.
  • PCI physical cell identifiers
  • each beam corresponds to a specific SSB.
  • each PCI corresponds to one beam, that is, each satellite cell corresponds to only one beam.
  • beam-specific SSB and beam-specific CSI RS can Used for beam management to avoid data transmission interruption and signaling overhead caused by cell handover.
  • the frequency reuse factor (FRF) when the frequency reuse factor (FRF) is equal to 1, the available bandwidth allocated to each beam is very large, but the UE may suffer from severe co-channel interference from adjacent beams. Therefore, using the frequency deployment with FRF>1 can effectively reduce the interference of adjacent beams and improve the Signal to Interference and Noise Ratio (SINR). Therefore, different beams may be located on different BWPs.
  • FRF frequency reuse factor
  • an electronic device for wireless communication comprising: a processing circuit configured to: determine whether a beam failure occurs; Switch from the current downlink frequency band to a specific frequency band.
  • a method for wireless communication comprising: determining whether a beam failure occurs; and in the case of determining that a beam failure occurs, switching a downlink frequency band of a user equipment from a current downlink frequency band to a specific downlink frequency band frequency band.
  • an electronic device for wireless communication comprising: a processing circuit configured to: generate configuration information of a set of candidate beams for beam failure recovery, wherein the configuration information includes candidate beams and sending the configuration information to the user equipment, wherein the user equipment switches to the frequency band indicated by the field when detecting a beam failure.
  • a method for wireless communication comprising: generating configuration information of a set of candidate beams for beam failure recovery, wherein the configuration information includes a field of an identification of a frequency band where the candidate beam is located; and sending the configuration information to the user equipment, where the user equipment switches to the frequency band indicated by the field when detecting the beam failure.
  • the electronic device and method according to the present application can quickly find a candidate beam when a beam failure occurs, thereby realizing fast beam failure recovery.
  • a computer program code and a computer program product for implementing the above-mentioned method for wireless communication, and a computer on which the computer program code for implementing the above-mentioned method for wireless communication is recorded Readable storage medium.
  • Figure 1 shows a schematic diagram of the BFR process
  • FIG. 2 shows a functional module block diagram of an electronic device for wireless communication according to an embodiment of the present application
  • FIG. 3 shows an example of only certain beam transmissions on each BWP
  • FIG. 4 shows a functional module block diagram of an electronic device for wireless communication according to an embodiment of the present application
  • FIG. 5 shows a functional block diagram of an electronic device for wireless communication according to another embodiment of the present application.
  • FIG. 6 shows a flowchart of a method for wireless communication according to an embodiment of the present application
  • FIG. 7 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • FIG. 8 is a block diagram illustrating a first example of a schematic configuration of an eNB or gNB to which techniques of this disclosure may be applied;
  • FIG. 9 is a block diagram illustrating a second example of a schematic configuration of an eNB or gNB to which techniques of this disclosure may be applied;
  • FIG. 10 is a block diagram showing an example of a schematic configuration of a smartphone to which the techniques of the present disclosure may be applied;
  • FIG. 11 is a block diagram showing an example of a schematic configuration of a car navigation apparatus to which the technology of the present disclosure can be applied.
  • FIG. 12 is a block diagram of an exemplary structure of a general-purpose personal computer in which methods and/or apparatuses and/or systems according to embodiments of the present invention may be implemented.
  • this embodiment provides a fast beam recovery technology. It should be understood that, although the problem addressed by the present application is described above based on the NTN scenario, the scope of application of the present application is not limited to this, but can be appropriately applied to any occasion with similar requirements.
  • FIG. 2 shows a block diagram of functional modules of an electronic device 100 for wireless communication according to an embodiment of the present application.
  • the electronic device 100 includes: a determining unit 101 configured to determine whether a beam failure occurs; And the switching unit 102 is configured to switch the downlink frequency band of the UE from the current downlink frequency band to a specific frequency band when the determining unit 101 determines that a beam failure occurs.
  • the determining unit 101 and the switching unit 102 may be implemented by one or more processing circuits, and the processing circuits may be implemented as chips, for example. Moreover, it should be understood that each functional unit in the apparatus shown in FIG. 2 is only a logical module divided according to the specific functions implemented by the functional units, and is not used to limit the specific implementation manner.
  • the electronic device 100 may be provided on the UE side or communicatively connected to the UE, for example.
  • the electronic device 100 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 100 may function as the UE itself, and may also include external devices such as a memory, a transceiver (not shown in the figure), and the like.
  • the memory can be used to store programs and related data information that the UE needs to execute to realize various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (eg, base stations, other UEs, etc.), and the implementation form of the transceiver is not particularly limited here.
  • the determining unit 101 may evaluate the quality of the current beam and determine whether a beam failure occurs by detecting a block error rate (Block Error Rate, BLER).
  • BLER Block Error Rate
  • the switching unit 101 switches the UE from the current downlink frequency band such as F1 to a specific frequency band such as F2. That is, the switching unit 101 performs the frequency band switching before performing the candidate beam identification.
  • the UE can quickly find an appropriate candidate beam in the specific frequency band to which it is switched, so as to quickly perform beam failure recovery.
  • the frequency band described here is a certain frequency range, which can be represented by BWP, for example.
  • BWP will be used as an example of a frequency band, but this is not limitative.
  • the UE supports simultaneous operation of multiple frequency bands, after switching the downlink frequency band of the UE to a specific frequency band, the current downlink frequency band can also be kept active.
  • each cell corresponds to multiple beams, and each BWP in each cell is bound to a corresponding beam.
  • each BWP in each cell is bound to a corresponding beam.
  • the beams represented by the square filled with slashes are transmitted only on BWP#1, and the beams represented by the square filled with solid color are transmitted only on BWP#2, which are represented by the square filled with diamonds.
  • the beam of 1 is only transmitted on BWP#3, and all beams perform SSB/SIB transmission on BWP#0 of the initial access, and may or may not perform CSI-RS transmission.
  • the switching unit 102 switches the UE to a specific BWP.
  • the switching unit 102 may also be configured to switch the UE to a specific BWP and/or a specific antenna polarization direction superior.
  • the specific BWP may be one of the following: the BWP of initial access; the BWP pre-configured by the base station; the BWP of the previous random access of the UE.
  • a specific BWP is the BWP of the initial access
  • the UE can select candidate beams among all the beams after switching to the BWP.
  • a specific BWP may be set by default as the BWP of the initial access.
  • the handover unit 102 may be configured to determine a specific BWP based on configuration information from the base station of a candidate beam set for BFR, which configuration information may be sent by RRC signaling, which may include, for example, the The identity of the corresponding BWP. For example, when the configuration information does not include the identifier of the BWP, for example, when the field of the identifier is empty, it can be considered that the base station instructs the UE to switch to the BWP of initial access or the BWP of the previous random access of the UE.
  • the switching unit 102 is further configured to trigger a switching timer to start timing when it is determined that a beam failure occurs, and when the timing of the switching timer reaches a predetermined time, the downlink frequency band of the UE is switched to a specific frequency band.
  • the switching unit 102 may trigger the switching timer when the physical layer of the UE reports a beam failure indication to a higher layer (eg, the MAC layer). That is, the handover timer is triggered when the physical layer of the UE detects the occurrence of a beam failure.
  • the length of the above predetermined time may depend on the capabilities of the UE.
  • the timing of the handover timer since the UE is performing BWP handover and cannot measure a new beam, the upper layer of the UE does not send a new beam request command to the physical layer of the UE.
  • the predetermined time when the predetermined time is set to 5ms, the UE will complete the handover to the specific frequency band 5ms after detecting the occurrence of the beam failure.
  • the length of the predetermined time may also be set to 0.
  • the determining unit 101 is further configured to determine a candidate beam for recovery of the user beam failure on the specific frequency band.
  • the determining unit 101 may be configured to perform multiple beam quality measurements on beams in a specific frequency band, and determine candidate beams according to the results of multiple beam quality measurements. For example, the determining unit 101 may determine a beam whose beam quality is gradually improved as a candidate beam.
  • the determination unit 101 may determine the candidate beam in combination with the characteristics of the satellite communication.
  • the determining unit 101 may be configured to determine the candidate beams according to the satellite ephemeris information and/or the position information of the satellite beams and the position information of the UE.
  • the determining unit 101 may be configured to perform beam quality measurement on beams in a specific frequency band, and determine candidate beams according to the measurement results and satellite ephemeris information and/or position information of the satellite beams. For example, the determining unit 101 may further estimate the changing trend of the corresponding beam based on the current beam quality measurement result in combination with the satellite ephemeris information and/or the position information of the satellite beam, so as to determine, for example, a beam whose beam quality will become better. as a candidate beam.
  • the determination unit 101 may determine the candidate beam based on the comparison of the beam quality measurement result and a predetermined threshold, wherein the predetermined threshold is lower than the threshold of layer 3 for cell handover decision. In the decision of layer 3 for cell handover, only when the beam quality is higher than the threshold value, the cell handover is determined. In the NTN network, since it can be combined with satellite ephemeris information and/or satellite beam position information to predict whether the beam quality will become better and better, if the beam quality will become better and better, the current beam quality The requirements may be relatively low, therefore, the predetermined threshold for comparison may be set low.
  • the electronic device 100 may further include a transceiver unit 103 configured to send the determination result of the candidate beam to the base station via BFRQ, and detect the BFRR from the base station.
  • the transceiving unit 103 is configured to transmit the BFRQ via a physical random access channel (PRACH).
  • PRACH physical random access channel
  • the switching unit 102 is further configured to switch the uplink BWP to a specific BWP, and use corresponding resources on the newly activated uplink BWP For example, random access channel, MAC CE, etc. send BFRQ.
  • the switching unit 102 is further configured to determine whether the current BWP contains available resources for BFRQ transmission, and in the determination result In the case of yes, use the available resources on the current uplink BWP to send BFRQ, and if the determination result is no, switch the uplink BWP to the initial uplink BWP or the BWP containing the available resources to send BFRQ.
  • FDD frequency division duplex
  • the available resources may, for example, include one of the following: non-contention random access (contention free random access, CFRA) resources associated with the determined candidate beam; contention based random access (contention based random access, CBRA) resources; Resource for sending Link Recovery Request (LRR).
  • CFRA non-contention random access
  • CBRA contention based random access
  • LRR Link Recovery Request
  • the switching unit 102 determines whether the current uplink BWP contains CFRA resources associated with the available candidate beam. If the CFRA resource is included, the uplink BWP is not switched but the BFRQ is sent using the CFRA resource; otherwise, the switching unit 102 switches the uplink BWP to the initial uplink BWP or the BWP that includes the CFRA resource associated with the available candidate beam to send BFRQ. On the other hand, in the above case, if the determining unit 101 does not find an available candidate beam, the switching unit 102 determines whether the current uplink BWP contains available CBRA resources.
  • the switching unit 102 does not switch the uplink BWP but uses the CBRA resource to send the BFRQ; otherwise, the switching unit 102 switches the uplink BWP to the initial uplink BWP or the BWP that includes the CBRA resource to send the BFRQ.
  • the switching unit 102 determines whether the current uplink BWP contains resources for transmitting LRR. If such a resource is included, the switching unit 102 does not switch the uplink BWP but uses the resource to send the BFRQ; otherwise, the switching unit 102 switches the uplink BWP to the initial uplink BWP or the BWP capable of sending LRR to send the BFRQ.
  • the transceiver unit 103 After sending the BFRQ, the transceiver unit 103 is further configured to detect the BFRR from the base station on a specific time-frequency resource (eg, recoverySearchSpace). Since signal transmission and processing take time, the UE can wait for a period of time to start blind detection of BFRR after sending BFRQ, which can reduce power consumption.
  • a specific time-frequency resource eg, recoverySearchSpace
  • the transceiving unit 103 is configured to start detecting BFRR after a predetermined period of time after sending the BFRQ, wherein the predetermined period of time is based at least in part on the relationship between the UE and the satellite distance is determined.
  • the predetermined time period is longer because of the larger time delay in the NTN network due to the increase of the transmission distance.
  • BFRR detection can start at slot n+m+K_offset, K_offset depends on the UE
  • the distance to the satellite may, for example, correspond to the time taken for the round-trip transmission of the signal between the UE and the satellite.
  • the predetermined time period is also determined based on the transmission time involved in the feeder link.
  • the base station on the satellite only performs signal reception and forwarding, and the actual processing is still performed by the base station on the ground, so the total delay also includes the signal transmission on the feeder link between the satellite and the ground base station.
  • the occupied transmission time the delay further increases. In order to reduce power consumption, it is necessary to take this transmission time into consideration when setting the timing to start detecting BFRR.
  • a beam failure recovery timer (beamFailureRecoveryTimer) is defined.
  • the UE needs to complete the reception of the BFRR within the time period defined by the timer to successfully complete the BFR. According to the characteristics of the NTN network, this embodiment improves the timer.
  • the switching unit 102 is configured to start the beam failure recovery timer when a beam failure is detected, and terminate the beam failure recovery timer when the BFRR is received. and, wherein the timing duration of the beam failure recovery timer is determined based at least in part on the distance between the UE and the satellite. For example, compared to a terrestrial network, the timing period may be extended by the time taken for the round-trip transmission of the signal between the UE and the satellite.
  • the timing duration is also determined based on the transmission time involved in the feeder link.
  • the electronic device 100 can quickly find a candidate beam by switching the UE to a specific downlink frequency band when a beam failure occurs, thereby realizing fast beam failure recovery.
  • FIG. 5 shows a functional block diagram of an electronic device 200 according to another embodiment of the present application.
  • the electronic device 200 includes: a generating unit 201 configured to generate a configuration of a candidate beam set for BFR information, wherein the configuration information includes an identification (ID) field of the frequency band where the candidate beam is located; and the sending unit 202 is configured to send the configuration information to the UE, wherein the UE switches to this field when detecting a beam failure to indicate frequency band.
  • ID identification
  • the generating unit 201 and the sending unit 202 may be implemented by one or more processing circuits, and the processing circuits may be implemented as chips, for example. Moreover, it should be understood that each functional unit in the apparatus shown in FIG. 5 is only a logical module divided according to the specific functions implemented by the functional units, and is not used to limit the specific implementation manner.
  • the electronic device 200 may be provided at the base station side or communicatively connected to the base station, for example.
  • the electronic device 200 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 200 may function as the base station itself, and may also include external devices such as memory, transceivers (not shown).
  • the memory can be used to store programs and related data information that the base station needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (eg, user equipment, other base stations, etc.), and the implementation form of the transceiver is not particularly limited here.
  • the generating unit 201 includes the identification of the frequency band where the candidate beam is located in the configuration information of the candidate beam set, so that the UE can switch to the frequency band indicated by the corresponding field when detecting the beam failure, thereby speeding up the beam failure recovery speed.
  • the sending unit 202 may, for example, send the configuration information to the UE through RRC signaling.
  • the frequency band may be represented by BWP, and when the identified field is empty, the field indicates the BWP of the initial access or the BWP of the previous random access of the UE.
  • the identifier field when the identifier field is empty, it indicates that the UE will switch to the default BWP, which may be the BWP of the initial access or the BWP of the previous random access of the UE.
  • the generating unit 201 is further configured to determine a predetermined threshold for candidate beam selection in BFR, and the transmitting unit 202 transmits it to the UE, wherein the predetermined threshold is Below layer 3 threshold for cell handover decisions.
  • the generating unit 201 is further configured to determine, based at least in part on the distance between the UE and the satellite, the length of the interval between the UE sending the BFRQ and starting to detect the BFRR from the base station, the sending unit 202 The information of the interval time length is sent to the UE. For example, when determining the interval time length, the generating unit 201 not only considers the time required for regular transmission and processing of the signal, but also considers the time occupied by the round-trip transmission of the signal between the UE and the satellite. In the case of transparent transmission, the generating unit 201 also determines the interval time length based on the transmission time involved in the feeder link.
  • the generating unit 201 is further configured to determine the timing duration of the beam failure recovery timer based at least in part on the distance between the UE and the satellite, and the sending unit 202 uses the timing duration information. Sent to the UE, wherein the beam failure recovery timer is started when the UE detects a beam failure, and is terminated when the UE receives a BFRR from the base station. For example, when determining the timing duration, the generating unit 201 considers not only the time required for candidate beam determination, normal transmission and processing of signals, but also the time occupied by the round-trip transmission of signals between the UE and the satellite. In the case of transparent transmission, the generating unit 201 also determines the timing duration based on the transmission time involved in the feeder link.
  • the electronic device 200 provides the UE with configuration information including the identification of the frequency band, so that the UE can switch to a specific downlink frequency band when a beam failure occurs, and can quickly find a candidate beam, thereby realizing fast beam failure recover.
  • FIG. 6 shows a flowchart of a method for wireless communication according to an embodiment of the present application, the method includes: determining whether a beam failure occurs (S11); The frequency band is switched from the current downlink frequency band to a specific frequency band (S12). This method can be performed on the UE side, for example.
  • the current downlink frequency band may still remain active.
  • Step S12 may further include: triggering a switching timer to start timing when it is determined that a beam failure occurs, and switching the downlink frequency band of the UE to a specific frequency band when the timing of the switching timer reaches a predetermined time.
  • the handover timer may be triggered when the UE's physical layer reports a beam failure indication to higher layers.
  • the upper layer of the UE does not send a new beam request command to the physical layer of the UE.
  • the frequency band may be represented by BWP
  • the specific BWP may be one of the following: the BWP of initial access; the BWP pre-configured by the base station; the BWP of the previous random access of the user equipment.
  • the specific BWP may be determined based on the configuration information of the candidate beam set for beam failure recovery from the base station.
  • the above method may further include step S13 : determining a candidate beam for beam failure recovery on a specific frequency band.
  • multiple beam quality measurements may be performed on beams in a specific frequency band, and candidate beams may be determined according to the results of multiple beam quality measurements.
  • the candidate beam can be determined according to the satellite ephemeris information and/or the position information of the satellite beam and the position information of the user equipment; Beam quality is measured, and candidate beams are determined based on the measurement results and satellite ephemeris information and/or satellite beam position information.
  • the candidate beams may be determined based on the comparison of the measurement result and a predetermined threshold, wherein the predetermined threshold is lower than the threshold of layer 3 for cell handover decision.
  • the above method may further include: sending the determination result of the candidate beam to the base station via BFRQ, and detecting the BFRR from the base station.
  • the uplink BWP can also be switched to a specific BWP, and the BFRQ can be sent using corresponding resources on the newly activated uplink BWP.
  • the downlink BWP in the case where the downlink BWP is not bound to the uplink BWP, it can be determined whether the current uplink BWP contains available resources that can be used for BFRQ transmission, and if the determination result is yes, the current uplink BWP can be used.
  • the available resources are used to send the BFRQ, and if the determination result is negative, the uplink BWP is switched to the initial uplink BWP or the BWP including the available resources to send the BFRQ.
  • the available resources include, for example, one of the following: non-contention random access resources associated with the determined candidate beams; contention-based random access resources; resources for sending link recovery requests.
  • the detection of BFRR begins after a predetermined period of time after sending the BFRQ, wherein the predetermined period of time is determined at least in part based on the distance between the UE and the satellite.
  • the predetermined time period is also determined based on the transmission time involved in the feeder link in transparent transmission.
  • the UE starts the beam failure recovery timer when it detects a beam failure, and aborts the beam failure recovery timer when it receives BFRR.
  • the timing of the beam failure recovery timer The duration is determined based at least in part on the distance between the UE and the satellite. For transparent transmission, the timing duration is also determined based on the transmission time involved in the feeder link in transparent transmission.
  • FIG. 7 shows a flowchart of a method for wireless communication according to another embodiment of the present application, the method includes: generating configuration information of a candidate beam set for BFR ( S21 ), wherein the configuration information includes candidate beams and sending the configuration information to the UE (S22), wherein the UE switches to the frequency band indicated by the field when detecting a beam failure.
  • the method can be performed at the base station side, for example.
  • the frequency band can be represented by BWP, and when the field of identification is empty, this field indicates the BWP of the initial access or the BWP of the previous random access of the UE.
  • the above method further includes: determining and sending to the UE a predetermined threshold for candidate beam selection in beam failure recovery, wherein the predetermined threshold is lower than the layer 3 use threshold for cell handover decision.
  • the above method further comprises: based at least in part on the distance between the UE and the satellite, determining the interval time between the UE sending the BFRQ and starting to detect the BFRR from the base station length, and send the information of the interval time length to the UE.
  • the interval time length is also determined based on the transmission time involved in the feeder link in the transparent transmission.
  • the above method further includes: determining the timing duration of the beam failure recovery timer based at least in part on the distance between the UE and the satellite, and sending the timing duration information To the UE, wherein the beam failure recovery timer is started when the UE detects a beam failure and is terminated when the UE receives a BFRR from the base station.
  • the timing duration is also determined based on the transmission time involved in the feeder link in the transparent transmission.
  • the electronic device 100 may be implemented as various user devices.
  • User equipment may be implemented as mobile terminals such as smart phones, tablet personal computers (PCs), notebook PCs, portable game terminals, portable/dongle-type mobile routers, and digital cameras or vehicle-mounted terminals such as car navigation devices.
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module comprising a single die) mounted on each of the aforementioned terminals.
  • the electronic device 200 may be implemented as various base stations.
  • a base station may be implemented as any type of evolved Node B (eNB) or gNB (5G base station).
  • eNBs include, for example, macro eNBs and small eNBs. Small eNBs may be eNBs covering cells smaller than macro cells, such as pico eNBs, micro eNBs, and home (femto) eNBs. A similar situation can also be used for gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • BTS base transceiver station
  • a base station may include: a subject (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (RRHs) disposed at a different location than the subject.
  • a subject also referred to as a base station device
  • RRHs remote radio heads
  • various types of user equipment can operate as a base station by temporarily or semi-persistently performing a base station function.
  • eNB 800 is a block diagram illustrating a first example of a schematic configuration of an eNB or gNB to which the techniques of this disclosure may be applied. Note that the following description takes an eNB as an example, but the same can be applied to a gNB.
  • eNB 800 includes one or more antennas 810 and base station equipment 820. The base station apparatus 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 8 shows an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station apparatus 820 includes a controller 821 , a memory 822 , a network interface 823 , and a wireless communication interface 825 .
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 820 .
  • the controller 821 generates data packets from data in the signal processed by the wireless communication interface 825 and communicates the generated packets via the network interface 823 .
  • the controller 821 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 821 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, admission control and scheduling. This control may be performed in conjunction with nearby eNB or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 823 is a communication interface for connecting the base station apparatus 820 to the core network 824 .
  • the controller 821 may communicate with core network nodes or further eNBs via the network interface 823 .
  • eNB 800 and core network nodes or other eNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 823 is a wireless communication interface, the network interface 823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825 .
  • Wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of eNB 800 via antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and RF circuitry 827 .
  • the BB processor 826 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) various types of signal processing.
  • the BB processor 826 may have some or all of the above-described logical functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor and associated circuitry configured to execute the program.
  • the update procedure may cause the functionality of the BB processor 826 to change.
  • the module may be a card or blade that is inserted into a slot of the base station device 820 .
  • the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810 .
  • the wireless communication interface 825 may include multiple BB processors 826 .
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827 .
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 8 shows an example in which the wireless communication interface 825 includes multiple BB processors 826 and multiple RF circuits 827 , the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827 .
  • the sending unit 202 and the transceiver of the electronic device 200 may be implemented by the wireless communication interface 825. At least a portion of the functionality may also be implemented by the controller 821 .
  • the controller 821 may generate various configuration information and transmit the configuration information to the UE by performing the functions of the generating unit 201 and the transmitting unit 202 .
  • eNB 830 includes one or more antennas 840, base station equipment 850, and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via RF cables.
  • the base station apparatus 850 and the RRH 860 may be connected to each other via high-speed lines such as fiber optic cables.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 9 shows an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station apparatus 850 includes a controller 851 , a memory 852 , a network interface 853 , a wireless communication interface 855 , and a connection interface 857 .
  • the controller 851 , the memory 852 and the network interface 853 are the same as the controller 821 , the memory 822 and the network interface 823 described with reference to FIG. 8 .
  • Wireless communication interface 855 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication via RRH 860 and antenna 840 to terminals located in a sector corresponding to RRH 860.
  • Wireless communication interface 855 may generally include, for example, BB processor 856 .
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 8, except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include multiple BB processors 856 .
  • multiple BB processors 856 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 9 shows an example in which the wireless communication interface 855 includes multiple BB processors 856
  • the wireless communication interface 855 may also include a single BB processor 856 .
  • connection interface 857 is an interface for connecting the base station apparatus 850 (the wireless communication interface 855 ) to the RRH 860.
  • the connection interface 857 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station apparatus 850 (the wireless communication interface 855) to the RRH 860.
  • RRH 860 includes connection interface 861 and wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (the wireless communication interface 863 ) to the base station apparatus 850.
  • the connection interface 861 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840 .
  • Wireless communication interface 863 may typically include RF circuitry 864, for example.
  • RF circuitry 864 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 840 .
  • the wireless communication interface 863 may include a plurality of RF circuits 864 .
  • multiple RF circuits 864 may support multiple antenna elements.
  • FIG. 9 shows an example in which the wireless communication interface 863 includes multiple RF circuits 864 , the wireless communication interface 863 may also include a single RF circuit 864 .
  • the sending unit 202 and the transceiver of the electronic device 200 may be implemented by the wireless communication interface 855 and/or the wireless communication interface 863. At least a portion of the functionality may also be implemented by the controller 851 .
  • the controller 851 may generate various configuration information by performing the functions of the generating unit 201 and the transmitting unit 202 and transmit the configuration information to the UE.
  • FIG. 10 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the techniques of the present disclosure can be applied.
  • Smartphone 900 includes processor 901, memory 902, storage device 903, external connection interface 904, camera device 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, one or more Antenna switch 915 , one or more antennas 916 , bus 917 , battery 918 , and auxiliary controller 919 .
  • the processor 901 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and further layers of the smartphone 900 .
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901 .
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a Universal Serial Bus (USB) device to the smartphone 900 .
  • USB Universal Serial Bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 907 may include a set of sensors, such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives operations or information input from a user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900 .
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 912 may typically include, for example, BB processor 913 and RF circuitry 914 .
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 916 .
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG. 10 , the wireless communication interface 912 may include multiple BB processors 913 and multiple RF circuits 914 . Although FIG. 10 shows an example in which the wireless communication interface 912 includes multiple BB processors 913 and multiple RF circuits 914 , the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914 .
  • the wireless communication interface 912 may support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 may include the BB processor 913 and the RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • smartphone 900 may include multiple antennas 916 .
  • FIG. 10 shows an example in which the smartphone 900 includes multiple antennas 916 , the smartphone 900 may also include a single antenna 916 .
  • the smartphone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900 .
  • the bus 917 connects the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera device 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other connect.
  • the battery 918 provides power to the various blocks of the smartphone 900 shown in FIG. 10 via feeders, which are partially shown in phantom in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900, eg, in a sleep mode.
  • the transceiver unit 103 and the transceiver of the electronic device 100 may be implemented by the wireless communication interface 912 . At least a portion of the functionality may also be implemented by the processor 901 or the auxiliary controller 919 .
  • the processor 901 or the auxiliary controller 919 can implement the downlink frequency band switching and fast beam failure recovery by executing the functions of the determination unit 101 , the switching unit 102 and the transceiver unit 103 .
  • FIG. 11 is a block diagram showing an example of a schematic configuration of a car navigation apparatus 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, a wireless A communication interface 933 , one or more antenna switches 936 , one or more antennas 937 , and a battery 938 .
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 920 .
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921 .
  • the GPS module 924 measures the position (such as latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • Sensors 925 may include a set of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data generated by the vehicle, such as vehicle speed data.
  • the content player 927 reproduces content stored in storage media such as CDs and DVDs, which are inserted into the storage media interface 928 .
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives operations or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935 .
  • the BB processor 934 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 937 .
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include multiple BB processors 934 and multiple RF circuits 935 .
  • FIG. 11 shows an example in which the wireless communication interface 933 includes multiple BB processors 934 and multiple RF circuits 935
  • the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935 .
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include the BB processor 934 and the RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937 .
  • FIG. 11 shows an example in which the car navigation device 920 includes a plurality of antennas 937
  • the car navigation device 920 may also include a single antenna 937 .
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation apparatus 920 .
  • the battery 938 provides power to the various blocks of the car navigation device 920 shown in FIG. 11 via feeders, which are partially shown as dashed lines in the figure.
  • the battery 938 accumulates power supplied from the vehicle.
  • the transceiver unit 103 and the transceiver of the electronic device 100 may be implemented by the wireless communication interface 933 . At least a portion of the functionality may also be implemented by the processor 921 .
  • the processor 921 can implement the downlink frequency band switching and fast beam failure recovery by executing the functions of the determining unit 101 , the switching unit 102 and the transceiver unit 103 .
  • the techniques of this disclosure may also be implemented as an in-vehicle system (or vehicle) 940 that includes one or more blocks of a car navigation device 920 , an in-vehicle network 941 , and a vehicle module 942 .
  • the vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941 .
  • the present invention also provides a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by a machine, the above method according to the embodiment of the present invention can be executed.
  • a storage medium for carrying the above-mentioned program product storing the machine-readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware configuration (for example, a general-purpose computer 1200 shown in FIG. 12 ) in which various programs are installed. can perform various functions, etc.
  • a central processing unit (CPU) 1201 executes various processes according to a program stored in a read only memory (ROM) 1202 or a program loaded from a storage section 1208 to a random access memory (RAM) 1203 .
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1201 executes various processes and the like is also stored as needed.
  • the CPU 1201, the ROM 1202, and the RAM 1203 are connected to each other via a bus 1204.
  • Input/output interface 1205 is also connected to bus 1204 .
  • the following components are connected to the input/output interface 1205: an input section 1206 (including a keyboard, mouse, etc.), an output section 1207 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.), A storage part 1208 (including a hard disk, etc.), a communication part 1209 (including a network interface card such as a LAN card, a modem, etc.). The communication section 1209 performs communication processing via a network such as the Internet.
  • Driver 1210 may also be connected to input/output interface 1205 as desired.
  • a removable medium 1211 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc. is mounted on the drive 1210 as needed, so that a computer program read therefrom is installed into the storage section 1208 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1211 .
  • such a storage medium is not limited to the removable medium 1211 shown in FIG. 12 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable medium 1211 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read only memory (CD-ROM) and digital versatile disk (DVD)), magneto-optical disks (including minidisc (MD) (registered trademark) trademark)) and semiconductor memory.
  • the storage medium may be the ROM 1202, a hard disk contained in the storage section 1208, or the like, in which programs are stored and distributed to users together with the devices containing them.
  • each component or each step can be decomposed and/or recombined. These disaggregations and/or recombinations should be considered equivalents of the present invention. Also, the steps of executing the above-described series of processes can naturally be executed in chronological order in the order described, but need not necessarily be executed in chronological order. Certain steps may be performed in parallel or independently of each other.

Abstract

本公开提供了一种用于无线通信的电子设备、方法和计算机可读存储介质,该电子设备包括:处理电路,被配置为:确定是否发生波束故障;以及在确定发生波束故障的情况下,将用户设备的下行频段从当前下行频段切换到特定频段。

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2020年10月23日提交中国专利局、申请号为202011145891.1、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体地涉及波束故障恢复(Beam Failure Recovery,BFR)技术。更具体地,涉及一种用于无线通信的电子设备和方法以及计算机可读存储介质。
背景技术
在使用高频段进行通信时,为了提高覆盖范围使用了波束赋形技术,同时,由于波束赋形后的波束较窄且高频信号容易被遮挡,因此在NR中提出了波束故障恢复(BFR)技术,由于其不涉及层3(Radio Resource Control,RRC(无线资源控制))的信令,因此比传统的无线链路恢复的速度要快。
BFR过程通常包括如下操作:波束故障检测、候选波束识别、波束故障恢复请求(Beam Failure Recovery Request,BFRQ)发送、波束故障恢复响应(Beam Failure Recovery Response,BFRR)接收,如图1中的示意图所示。其中,用户设备(User Equipment,UE)通过对接收到的参考信号(RS)比如信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、同步信号块(synchronizing signal block,SSB)等进行测量来进行波束故障检测和候选波束识别,在发生波束故障的情况下向基站(图1中示出为收发点(TRP))发送BFRQ,并且接收来自TRP的BFRR,从而完成BFR过程。
此外,在NR中引入了部分带宽(Bandwidth part,BWP)机制,以使得能够根据业务变换快速动态地调节网络配置以适配业务变化并且将UE适当地切换到频段窄的BWP上来节约能量消耗。
在NR Rel-15中,用于波束测量的RS可以在任意BWP上传输,UE可以在不切换BWP的情况下识别候选波束。
根据38.821,在非地面网络(Non-terrestrial network,NTN)中,每个卫星都可以产生多个波束,目前NTN有两种物理小区标识(Physical Cell Identifier,PCI)与波束的对应方式。第一种,每个PCI对应多个波束,每个波束对应特定的SSB。第二种,每个PCI对应一个波束,即,每个卫星小区仅对应一个波束。
在第一种情况下,对于空闲(idle)状态的UE,其只需要检测映射到同一个PCI的SSB就可以快速简单地重新同步;对于连接状态的UE,波束特定SSB和波束特定CSI RS可以用于波束管理,以避免小区切换造成的数据传输中断和信令开销。
此外,在NTN场景下,当频率复用因子(frequency reuse factor,FRF)等于1时,分配到每个波束上的可用带宽非常大,但是UE可能遭受严重的来自相邻波束的同信道干扰。因此,利用FRF>1的频率部署可以有效降低相邻波束的干扰,提高信干噪比(Signal to Interference and Noise Ratio,SINR)。因此,不同的波束可能位于不同的BWP上。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:确定是否发生波束故障;以及在确定发生波束故障的情况下,将用户设备的下行频段从当前下行频段切换到特定频段。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:确定是否发生波束故障;以及在确定发生波束故障的情况下,将用户设备的下行频段从当前下行频段切换到特定频段。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:生成用于波束故障恢复的候选波束集合的配置信息,其中,该配置信息包括候选波束所在的频段的标识的字段;以及将该配置信息发送给用户设备,其中,用户设备在检测到波束故障时切换到所述字段指示的频段。
根据本申请的一个方面,提供了一种用于无线通信的方法,包括:生成用于波束故障恢复的候选波束集合的配置信息,其中,该配置信息包括候选波束所在的频段的标识的字段;以及将该配置信息发送给用户设备,其中,用户设备在检测到波束故障时切换到所述字段指示的频段。
根据本申请的电子设备和方法能够在发生波束故障时快速找到候选波束,从而实现快速的波束故障恢复。
依据本发明的其它方面,还提供了用于实现上述用于无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1示出了BFR过程的示意图;
图2示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图3示出了每个BWP上仅有特定波束传输的示例;
图4示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图5示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图6示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图7示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图8是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图;
图9是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图;
图10是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图11是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图12是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
如前所述,例如,在NTN中可能存在不同的波束位于不同的BWP上的情形,从而在发生波束故障时,UE可能无法在当前BWP上找到合适的候选波束。鉴于此,本实施例提供了一种快速的波束恢复技术。应该理解,虽然以上基于NTN的场景来描述了本申请所针对的问题,但是本申请所能应用的范围并不限于此,而是可以适当地应用于任何具有相似需求的场合。
图2示出了根据本申请的一个实施例的用于无线通信的电子设备100的功能模块框图,如图2所示,电子设备100包括:确定单元101,被配置为确定是否发生波束故障;以及切换单元102,被配置为在确定单元101确定发生波束故障的情况下,将UE的下行频段从当前下行频段切换到特定频段。
其中,确定单元101和切换单元102可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。并且,应该理解,图2中所示的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备100例如可以设置在UE侧或者可通信地连接到UE。这里,还应指出,电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备100可以工作为UE本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储UE实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,基站、其他UE等等)间的通信,这里不具体限制收发器的实现形式。
例如,确定单元101可以通过检测误块率(Block Error Rate,BLER)来评估当前波束的质量并确定是否发生波束故障。在确定单元101确定发生波束故障时,切换单元101将UE从当前下行频段比如F1切换到特定频段比如F2。即,切换单元101在执行候选波束识别之前进行该频段切换。例如,UE在所切换到的特定频段上能够更快找到适当的候选波束,以快速进行波束故障恢复。
这里所述的频段为一定的频率范围,例如可以用BWP表示。在下 文的具体描述中会以BWP作为频段的示例,但是这并不是限制性的。
应该注意,如果UE支持多个频段同时操作,则在将UE的下行频段切换到特定频段后,还可以将当前下行频段保持激活状态。
以NTN为例,每个小区对应多个波束,并且每个小区中的每个BWP与相应的波束绑定。换言之,对于除初始接入的BWP以外的BWP,每个BWP上仅有特定波束传输,并且所有波束均在初始接入的BWP上传输,如图3所示。在图3的示例中,频率复用因子FRF=3,BWP#0是初始接入的BWP,不同的波束用不同的图案表示。可以看出,除了BWP#0之外,用斜线填充的方块表示的波束仅在BWP#1上传输,用纯色填充的方块表示的波束仅在BWP#2上传输,用菱形填充的方块表示的波束仅在BWP#3上传输,而所有波束均在初始接入的BWP#0上进行SSB/SIB的传输,并且可以进行CSI-RS的传输,也可以不进行CSI-RS的传输。
在这种情况下,当发生波束故障时,当前BWP上可能不存在供切换的适当的候选波束,为了提高波束故障恢复的速度,切换单元102将UE切换到特定BWP上。
此外,在考虑天线极化方向以降低相邻小区间的同频干扰的情况下,当发生波束故障时,切换单元102还可以被配置为将UE切换到特定BWP以及/或者特定天线极化方向上。
例如,该特定BWP可以为如下之一:初始接入的BWP;基站预先配置的BWP;UE前一次随机接入的BWP。
由于所有的波束均在初始接入的BWP上传输,因此,当特定BWP为初始接入的BWP时,UE切换到该BWP后可以在所有波束中进行候选波束的选择。例如,可以将特定BWP默认设置为初始接入的BWP。
此外,切换单元102可以被配置为基于来自基站的用于BFR的候选波束集合(candidate beam set)的配置信息来确定特定BWP,该配置信息可以通过RRC信令发送,其中例如可以包括候选波束的相应的BWP的标识。例如,在该配置信息中不包括BWP的标识例如该标识的字段为空时,可以认为基站指示将UE切换到初始接入的BWP或者UE前一次随机接入的BWP。
在一个示例中,切换单元102还被配置为在确定发生波束故障时触发切换计时器开始计时,并在该切换计时器的计时达到预定时间时,UE的下行频段切换到特定频段。例如,切换单元102可以在UE的物理层向高层(例如,MAC层)报告波束故障指示(beam failure indication)时触发该切换计时器。即,该切换计时器在UE的物理层检测到波束故障发生时被触发。
上述预定时间的长度可以取决于UE的能力。在该切换计时器的计时期间,由于UE正在进行BWP的切换,无法测量新波束,因此UE的高层不向UE的物理层发送新波束请求的命令。示例性地,当该预定时间设置为5ms时,UE将在检测到波束故障发生的5ms后完成到特定频段的切换。此外,也可以将该预定时间的长度设置为0。
在UE切换到特定波段后,确定单元101还被配置为在特定频段上确定用户波束故障恢复的候选波束。
例如,确定单元101可以被配置为对特定频段上的波束进行多次波束质量测量,并根据多次波束质量测量的结果来确定候选波束。例如,确定单元101可以将波束质量逐渐提高的波束确定为候选波束。
此外,在UE通过NTN与位于卫星上的基站进行通信的情况下,确定单元101可以结合卫星通信的特点来进行候选波束的确定。
例如,由于卫星相对于地面上的UE的相对运动具有规律性,因此从基站发射的波束的波束质量是可预测的。确定单元101可以被配置为根据卫星星历信息和/或卫星波束的位置信息以及UE的位置信息确定候选波束。
或者,确定单元101可以被配置为对特定频段上的波束进行波束质量测量,并根据测量结果以及卫星星历信息和/或卫星波束的位置信息来确定候选波束。例如,确定单元101可以在当前波束质量测量结果的基础上,结合卫星星历信息和/或卫星波束的位置信息来进一步估计相应波束的变化趋势,从而确定例如波束质量将变得更好的波束作为候选波束。
确定单元101可以基于波束质量测量结果和预定阈值的比较来确定候选波束,其中,预定阈值低于层3用于小区切换判决的阈值。在层3用于小区切换的判决中,只有波束质量高于阈值时,才确定进行小区切换。在NTN网络中,由于可以结合卫星星历信息和/或卫星波束的位置 信息等来预测波束质量是否会变得越来越好,如果波束质量会变得越来越好,则当前波束质量的要求可以相对低一些,因此,可以将用于比较的预定阈值设置地较低。
在确定了候选波束之后,UE需要向基站发送BFRQ。相应地,如图4所示,电子设备100还可以包括收发单元103,被配置为将候选波束的确定结果经由BFRQ发送至基站,并检测来自基站的BFRR。
例如,收发单元103被配置为经由物理随机接入信道(PRACH)发送该BFRQ。
在上行BWP和下行BWP绑定的情况下比如在时分双工(TDD)系统中,切换单元102还被配置为将上行BWP也切换至特定BWP,并在新激活的上行BWP上使用相应的资源比如随机接入信道、MAC CE等发送BFRQ。
在上行BWP和下行BWP不绑定的情况下比如在频分双工(FDD)系统中,切换单元102还被配置为确定当前BWP上是否包含可用于BFRQ的发送的可用资源,并且在确定结果为是的情况下在当前上行BWP上使用该可用资源发送BFRQ,在确定结果为否的情况下将上行BWP切换至初始上行BWP或者包含可用资源的BWP来进行BFRQ的发送。
可用资源例如可以包括如下之一:与确定的候选波束相关联的非竞争随机接入(contention free random access,CFRA)资源;基于竞争的随机接入(contention based random access,CBRA)资源;用于发送链路恢复请求(Link Recovery Request,LRR)的资源。
例如,在FDD情况下,如果当前服务小区是SpCell并且确定单元101找到了可用的候选波束,则切换单元102确定当前的上行BWP是否包含与该可用的候选波束相关联的CFRA资源。如果包含该CFRA资源,则不进行上行BWP的切换而是使用该CFRA资源发送BFRQ;否则,切换单元102将上行BWP切换至初始上行BWP或者包含与该可用的候选波束相关联的CFRA资源的BWP来发送BFRQ。另一方面,在上述情况下,如果确定单元101未找到可用的候选波束,则切换单元102确定当前的上行BWP是否包含可用的CBRA资源。如果包含CBRA资源,则切换单元102不进行上行BWP的切换而是使用该CBRA资源发送 BFRQ;否则,切换单元102将上行BWP切换至初始上行BWP或者包含CBRA资源的BWP来发送BFRQ。
作为另一个示例,在FDD情况下,如果当前服务小区是SCell,则切换单元102确定当前的上行BWP是否包含用于发送LRR的资源。如果包含这样的资源,则切换单元102不进行上行BWP的切换而是使用该资源发送BFRQ;否则,切换单元102将上行BWP切换至初始上行BWP或者可发送LRR的BWP来发送BFRQ。
在发送了BFRQ后,收发单元103还被配置为在特定时频资源(比如recoverySearchSpace)上检测来自基站的BFRR。由于信号的传输以及处理都需要时间,因此UE可以在发送BFRQ之后等待一段时间开始对BFRR的盲检,这样可以降低功耗。
在UE通过NTN与位于卫星上的基站进行通信的情况下,收发单元103被配置为在发送BFRQ后的预定时间段后开始检测BFRR,其中,该预定时间段至少部分地基于UE与卫星之间的距离确定。与陆地网络相比,该预定时间段较长,这是因为NTN网络中由于传输距离的增大而有较大的时延。例如,假设在时隙n处发送BFRQ,在陆地网络中,在时隙n+m处开始检测BFRR,而在NTN中,可以在时隙n+m+K_offset处开始检测BFRR,K_offset取决于UE与卫星(卫星波束)之间的距离,例如可以对应于信号在UE和卫星之间的往返传输所占用的时间。
进一步地,对于透明传输,该预定时间段还基于馈线链路(feeder link)所涉及的传输时间确定。在透明传输中,卫星上的基站只执行信号的接收和转发,实际的处理仍由地面上的基站执行,因此总的时延还包括信号在卫星与地面基站之间的馈线链路上传输所占用的传输时间,时延进一步增大。为了降低功耗,在开始检测BFRR的定时的设定上,需要将该传输时间考虑在内。
此外,为了保证在一定时间内完成BFR,定义了波束故障恢复定时器(beamFailureRecoveryTimer)。UE需要在该定时器所限定的时长内完成BFRR的接收,才能成功完成BFR。针对NTN网络的特点,本实施例对该定时器进行了改进。
具体地,在UE通过NTN与位于卫星上的基站进行通信的情况下,切换单元102被配置为在检测到波束故障时启动波束故障恢复定时器, 并在接收到BFRR时终止该波束故障恢复定时器,其中,波束故障恢复定时器的定时时长至少部分的基于UE与卫星之间的距离确定。例如,与地面网络相比,可以将该定时时长延长与信号在UE与卫星之间的往返传输所占用的时间。
类似地,对于透明传输,该定时时长还基于馈线链路所涉及的传输时间确定。
综上所述,根据本实施例的电子设备100通过在发生波束故障时将UE切换到特定下行频段,能够快速找到候选波束,从而实现快速的波束故障恢复。
<第二实施例>
图5示出了根据本申请的另一个实施例的电子设备200的功能模块框图,如图5所示,电子设备200包括:生成单元201,被配置为生成用于BFR的候选波束集合的配置信息,其中,该配置信息包括候选波束所在的频段的标识(ID)的字段;以及发送单元202,被配置为将配置信息发送给UE,其中,UE在检测到波束故障时切换到该字段指示的频段。
其中,生成单元201和发送单元202可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。并且,应该理解,图5中所示的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备200例如可以设置在基站侧或者可通信地连接到基站。这里,还应指出,电子设备200可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备200可以工作为基站本身,并且还可以包括诸如存储器、收发器(未示出)等外部设备。存储器可以用于存储基站实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,用户设备、其他基站等等)间的通信,这里不具体限制收发器的实现形式。
生成单元201将候选波束所在的频段的标识包含在候选波束集合的配置信息中,以使得UE在检测到波束故障时可以切换到相应的字段所指示的频段,从而加快波束故障恢复的速度。发送单元202例如可以通 过RRC信令将所述配置信息发送给UE。
例如,频段可以用BWP表示,在标识的字段为空时,该字段指示初始接入的BWP或者UE前一次随机接入的BWP。如第一实施例中所述,当标识的字段为空时,指示UE将切换到默认的BWP,该默认的BWP可以是初始接入的BWP,也可以是UE前一次随机接入的BWP。
在UE通过NTN与位于卫星上的基站进行通信的情况下,生成单元201还被配置为确定用于BFR中的候选波束选择的预定阈值,发送单元202将其发送给UE,其中,该预定阈值低于层3用于小区切换判决的阈值。
此外,为了降低UE的功耗,生成单元201还被配置为至少部分地基于UE与卫星之间的距离,确定UE在发送BFRQ与开始检测来自基站的BFRR之间的间隔时间长度,发送单元202将该间隔时间长度的信息发送给UE。例如,生成单元201在确定该间隔时间长度时,不仅考虑信号的常规传输和处理所需要的时间,还将信号在UE和卫星之间的往返传输所占用的时间考虑在内。在透明传输的情况下,生成单元201还基于馈线链路所涉及的传输时间确定间隔时间长度。
进一步地,为了确保BFR在一定时间内完成,生成单元201还被配置为至少部分地基于UE与卫星之间的距离,确定波束故障恢复定时器的定时时长,发送单元202将该定时时长的信息发送给UE,其中,波束故障恢复定时器在UE检测到波束故障时启动,并在UE接收到来自基站的BFRR时中止。例如,生成单元201在确定该定时时长时,不仅考虑候选波束确定、信号的常规传输和处理所需要的时间,还将信号在UE和卫星之间的往返传输所占用的时间考虑在内。在透明传输的情况下,生成单元201还基于馈线链路所涉及的传输时间确定该定时时长。
以上各个方面的相关细节在第一实施例中已经详细给出,在此不再重复。
综上所述,根据本实施例的电子设备200通过向UE提供包含频段的标识的配置信息,使得UE在发生波束故障时切换到特定下行频段,能够快速找到候选波束,从而实现快速的波束故障恢复。
<第三实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图6示出了根据本申请的一个实施例的用于无线通信的方法的流程图,该方法包括:确定是否发生波束故障(S11);以及在确定发生波束故障的情况下,将UE的下行频段从当前下行频段切换到特定频段(S12)。该方法例如可以在UE侧执行。
例如,在UE的下行频段切换到特定频段的同时,当前下行频段可以仍保持激活状态。
步骤S12还可以包括:在确定发生波束故障时触发切换计时器开始计时,并在该切换计时器的计时达到预定时间时,UE的下行频段切换到特定频段。例如,可以在UE的物理层向高层报告波束故障指示时触发该切换计时器。在该切换计时器的计时期间,UE的高层不向UE的物理层发送新的波束请求的命令。
例如,频段可以用BWP表示,特定BWP可以为以下之一:初始接入的BWP;基站预先配置的BWP;所述用户设备前一次随机接入的BWP。其中,可以基于来自基站的用于波束故障恢复的候选波束集合的配置信息来确定特定BWP。
在特定场景下,例如,对于除初始接入的BWP以外的BWP,每个BWP上仅有特定波束传输,并且所有波束均在初始接入的BWP上传输。
如图6中的虚线框所示,上述方法还可以包括步骤S13:在特定频段上确定用于波束故障恢复的候选波束。示例性地,可以对特定频段上的波束进行多次波束质量测量,并根据多次波束质量测量的结果来确定候选波束。在UE通过NTN与位于卫星上的基站进行通信的情况下,可以根据卫星星历信息和/或卫星波束的位置信息以及用户设备的位置信 息确定候选波束;或者,可以对特定频段上的波束进行波束质量测量,并根据测量结果以及卫星星历信息和/或卫星波束的位置信息来确定候选波束。其中,可以基于测量结果和预定阈值的比较来确定候选波束,其中,预定阈值低于层3用于小区切换判决的阈值。
虽然图中未示出,但是上述方法还可以包括:将候选波束的确定结果经由BFRQ发送至基站,并检测来自基站的BFRR。
在下行BWP与上行BWP绑定的情况下,还可以将上行BWP切换至特定BWP,并在新激活的上行BWP上使用相应的资源发送BFRQ。
另一方面,在下行BWP与上行BWP不绑定的情况下,可以先确定当前上行BWP上是否包含可用于BFRQ的发送的可用资源,并且在确定结果为是的情况下在当前上行BWP上使用所述可用资源发送BFRQ,在确定结果为否的情况下将上行BWP切换至初始上行BWP或者包含所述可用资源的BWP来进行BFRQ的发送。
可用资源例如包括以下之一:与确定的候选波束相关联的非竞争随机接入资源;基于竞争的随机接入资源;用于发送链路恢复请求的资源。
此外,在UE通过NTN与位于卫星上的基站进行通信的情况下,在发送BFRQ后的预定时间段后开始检测BFRR,其中,该预定时间段至少部分地基于UE与卫星之间的距离确定。对于透明传输,该预定时间段还基于透明传输中馈线链路所涉及的传输时间确定。
UE在检测到波束故障时启动波束故障恢复定时器,并在接收到BFRR时中止波束故障恢复定时器,在UE通过NTN与位于卫星上的基站进行通信的情况下,波束故障恢复定时器的定时时长至少部分地基于UE与卫星之间的距离确定。对于透明传输,该定时时长还基于透明传输中馈线链路所涉及的传输时间确定。
图7示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,该方法包括:生成用于BFR的候选波束集合的配置信息(S21),其中,配置信息包括候选波束所在的频段的标识的字段;以及将该配置信息发送给UE(S22),其中,UE在检测到波束故障时切换到所述字段指示的频段。该方法例如可以在基站侧执行。
例如,频段可以用BWP表示,在标识的字段为空时,该字段指示 初始接入的BWP或者UE前一次随机接入的BWP。
在UE通过NTN与位于卫星上的基站进行通信的情况下,上述方法还包括:确定用于波束故障恢复中的候选波束选择的预定阈值并发送给UE,其中,该预定阈值低于层3用于小区切换判决的阈值。
在UE通过NTN与位于卫星上的基站进行通信的情况下,上述方法还包括:至少部分地基于UE与卫星之间的距离,确定UE在发送BFRQ与开始检测来自基站的BFRR之间的间隔时间长度,并将该间隔时间长度的信息发送给UE。在透明传输的情况下,还基于透明传输中馈线链路所涉及的传输时间确定该间隔时间长度。
在UE通过NTN与位于卫星上的基站进行通信的情况下,上述方法还包括:至少部分地基于UE与卫星之间的距离,确定波束故障恢复定时器的定时时长,并将定时时长的信息发送给UE,其中,波束故障恢复定时器在UE检测到波束故障时启动,并在UE接收到来自基站的BFRR时中止。在透明传输的情况下,还基于透明传输中馈线链路所涉及的传输时间确定该定时时长。
上述方法分别对应于第一实施例中所描述的电子设备100以及第二实施例中所描述的电子设备200,其具体细节可参见以上相应位置的描述,在此不再重复。注意,上述各个方法可以结合或单独使用。
本公开内容的技术能够应用于各种产品。
例如,电子设备100可以被实现为各种用户设备。用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
电子设备200可以被实现为各种基站。基站可以被实现为任何类型的演进型节点B(eNB)或gNB(5G基站)。eNB例如包括宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微 eNB和家庭(毫微微)eNB。对于gNB也可以由类似的情形。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
[关于基站的应用示例]
(第一应用示例)
图8是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图8所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图8示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图8所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图8所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图8示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图8所示的eNB 800中,电子设备200的发送单元202、收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行生成单元201和发送单元202的功能来生成各种配置信息并将配置信息发送给UE。
(第二应用示例)
图9是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图9所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图9示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图8描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图8描述的BB处理器826相同。如图9所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图9示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信 接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图9所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图9示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图9所示的eNB 830中,电子设备200的发送单元202、收发器可以由无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以由控制器851实现。例如,控制器851可以通过执行生成单元201和发送单元202的功能来生成各种配置信息并将配置信息发送给UE。
[关于用户设备的应用示例]
(第一应用示例)
图10是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信 息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图10所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图10示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图10所示,智能电话900可以包括多个天线916。虽然图10示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口 904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图10所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图10所示的智能电话900中,电子设备100的收发单元103、收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行确定单元101、切换单元102和收发单元103的功能实现下行频段的切换和快速的波束故障恢复。
(第二应用示例)
图11是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图11所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图11示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图11所示,汽车导航设备920可以包括多个天线937。虽然图11示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图11所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图11示出的汽车导航设备920中,电子设备100的收发单元103、收发器可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行确定单元101、切换单元102和收发单元103的功能实现下行频段的切换和快速的波束故障恢复。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图12所示的通用计算机1200)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图12中,中央处理单元(CPU)1201根据只读存储器(ROM)1202中存储的程序或从存储部分1208加载到随机存取存储器(RAM)1203的程序执行各种处理。在RAM 1203中,也根据需要存储当CPU 1201执行各种处理等等时所需的数据。CPU 1201、ROM 1202和RAM 1203经由总线1204彼此连接。输入/输出接口1205也连接到总线1204。
下述部件连接到输入/输出接口1205:输入部分1206(包括键盘、鼠标等等)、输出部分1207(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1208(包括硬盘等)、通信部分1209(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1209经由网络比如因特网执行通信处理。根据需要,驱动器1210也可连接到输入/输出接口1205。可移除介质1211比如磁盘、光盘、磁光盘、 半导体存储器等等根据需要被安装在驱动器1210上,使得从中读出的计算机程序根据需要被安装到存储部分1208中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质1211安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图12所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1211。可移除介质1211的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1202、存储部分1208中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (30)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    确定是否发生波束故障;以及
    在确定发生波束故障的情况下,将用户设备的下行频段从当前下行频段切换到特定频段。
  2. 根据权利要求1所述的电子设备,其中,频段用部分带宽BWP表示,特定BWP为以下之一:初始接入的BWP;基站预先配置的BWP;所述用户设备前一次随机接入的BWP。
  3. 根据权利要求2所述的电子设备,其中,所述处理电路被配置为基于来自所述基站的用于波束故障恢复的候选波束集合的配置信息来确定所述特定BWP。
  4. 根据权利要求2所述的电子设备,其中,对于除所述初始接入的BWP以外的BWP,每个BWP上仅有特定波束传输,并且所有波束均在所述初始接入的BWP上传输。
  5. 根据权利要求1所述的电子设备,其中,在所述用户设备的下行频段切换到所述特定频段的同时,所述当前下行频段仍保持激活状态。
  6. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为在确定发生所述波束故障时触发切换计时器开始计时,并在该切换计时器的计时达到预定时间时,所述用户设备的下行频段切换到所述特定频段。
  7. 根据权利要求6所述的电子设备,其中,所述处理电路被配置为在所述用户设备的物理层向高层报告波束故障指示时触发所述切换计时器。
  8. 根据权利要求6所述的电子设备,其中,在所述切换计时器的计时期间,所述用户设备的高层不向所述用户设备的物理层发送新的波束请求的命令。
  9. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置 为在所述特定频段上确定用于波束故障恢复的候选波束。
  10. 根据权利要求9所述的电子设备,其中,所述处理电路被配置为对所述特定频段上的波束进行多次波束质量测量,并根据所述多次波束质量测量的结果来确定所述候选波束。
  11. 根据权利要求9所述的电子设备,其中,所述用户设备通过非地面网络与位于卫星上的基站进行通信,所述处理电路被配置为根据卫星星历信息和/或卫星波束的位置信息以及所述用户设备的位置信息确定所述候选波束。
  12. 根据权利要求9所述的电子设备,其中,所述用户设备通过非地面网络与位于卫星上的基站进行通信,所述处理电路被配置为对所述特定频段上的波束进行波束质量测量,并根据测量结果以及卫星星历信息和/或卫星波束的位置信息来确定所述候选波束。
  13. 根据权利要求9所述的电子设备,其中,所述用户设备通过非地面网络与位于卫星上的基站进行通信,所述处理电路被配置为对所述特定频段上的波束进行波束质量测量,并基于测量结果和预定阈值的比较来确定所述候选波束,其中,所述预定阈值低于层3用于小区切换判决的阈值。
  14. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为在所述特定BWP上确定用于波束故障恢复的候选波束,将确定结果经由波束故障恢复请求发送至所述基站,并检测来自所述基站的波束故障恢复响应。
  15. 根据权利要求14所述的电子设备,其中,
    在下行BWP与上行BWP绑定的情况下,所述处理电路还被配置为将上行BWP切换至所述特定BWP,并在新激活的上行BWP上使用相应的资源发送所述波束故障恢复请求;以及
    在下行BWP与上行BWP不绑定的情况下,所述处理电路被配置为确定当前上行BWP上是否包含可用于所述波束故障恢复请求的发送的可用资源,并且在确定结果为是的情况下在当前上行BWP上使用所述可用资源发送所述波束故障恢复请求,在确定结果为否的情况下将上行BWP切换至初始上行BWP或者包含所述可用资源的BWP来进行所 述波束故障恢复请求的发送。
  16. 根据权利要求15所述的电子设备,其中,所述可用资源包括以下之一:与确定的候选波束相关联的非竞争随机接入资源;基于竞争的随机接入资源;用于发送链路恢复请求的资源。
  17. 根据权利要求14所述的电子设备,其中,所述用户设备通过非地面网络与位于卫星上的所述基站进行通信,所述处理电路被配置为在发送所述波束故障恢复请求后的预定时间段后开始检测所述波束故障恢复响应,其中,所述预定时间段至少部分地基于所述用户设备与卫星之间的距离确定。
  18. 根据权利要求17所述的电子设备,其中,所述预定时间段还基于透明传输中馈线链路所涉及的传输时间确定。
  19. 根据权利要求14所述的电子设备,其中,所述用户设备通过非地面网络与位于卫星上的所述基站进行通信,所述处理电路被配置为在检测到波束故障时启动波束故障恢复定时器,并在接收到所述波束故障恢复响应时中止所述波束故障恢复定时器,其中,所述波束故障恢复定时器的定时时长至少部分地基于所述用户设备与卫星之间的距离确定。
  20. 根据权利要求19所述的电子设备,其中,所述定时时长还基于透明传输中馈线链路所涉及的传输时间确定。
  21. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    生成用于波束故障恢复的候选波束集合的配置信息,其中,所述配置信息包括候选波束所在的频段的标识的字段;以及
    将所述配置信息发送给用户设备,其中,所述用户设备在检测到波束故障时切换到所述字段指示的频段。
  22. 根据权利要求21所述的电子设备,其中,频段用部分带宽BWP表示,在所述标识的字段为空时,该字段指示初始接入的BWP或者所述用户设备前一次随机接入的BWP。
  23. 根据权利要求21所述的电子设备,其中,所述用户设备通过非地面网络与位于卫星上的基站进行通信,所述处理电路还被配置为确定用于波束故障恢复中的候选波束选择的预定阈值并发送给所述用户设 备,其中,所述预定阈值低于层3用于小区切换判决的阈值。
  24. 根据权利要求21所述的电子设备,其中,所述用户设备通过非地面网络与位于卫星上的基站进行通信,所述处理电路还被配置为至少部分地基于所述用户设备与卫星之间的距离,确定所述用户设备在发送波束故障恢复请求与开始检测来自所述基站的波束故障恢复响应之间的间隔时间长度,并将所述间隔时间长度的信息发送给所述用户设备。
  25. 根据权利要求24所述的电子设备,其中,所述处理电路还被配置为基于透明传输中馈线链路所涉及的传输时间确定所述间隔时间长度。
  26. 根据权利要求21所述的电子设备,其中,所述用户设备通过非地面网络与位于卫星上的基站进行通信,所述处理电路还被配置为至少部分地基于所述用户设备与卫星之间的距离,确定波束故障恢复定时器的定时时长,并将所述定时时长的信息发送给所述用户设备,其中,所述波束故障恢复定时器在所述用户设备检测到波束故障时启动,并在所述用户设备接收到来自所述基站的波束故障恢复响应时中止。
  27. 根据权利要求26所述的电子设备,其中,所述处理电路还被配置为基于透明传输中馈线链路所涉及的传输时间确定所述定时时长。
  28. 一种用于无线通信的方法,包括:
    确定是否发生波束故障;以及
    在确定发生波束故障的情况下,将用户设备的下行频段从当前下行频段切换到特定频段。
  29. 一种用于无线通信的方法,包括:
    生成用于波束故障恢复的候选波束集合的配置信息,其中,所述配置信息包括候选波束所在的频段的标识的字段;以及
    将所述配置信息发送给用户设备,其中,所述用户设备在检测到波束故障时切换到所述字段指示的频段。
  30. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据权利要求28或29所述的用于无线通信的方法。
PCT/CN2021/124358 2020-10-23 2021-10-18 用于无线通信的电子设备和方法、计算机可读存储介质 WO2022083535A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21881952.2A EP4207907A1 (en) 2020-10-23 2021-10-18 Electronic device for use in wireless communication, method, and computer-readable storage medium
CN202180070251.5A CN116420378A (zh) 2020-10-23 2021-10-18 用于无线通信的电子设备和方法、计算机可读存储介质
US18/245,164 US20230370149A1 (en) 2020-10-23 2021-10-18 Electronic device for use in wireless communication, method, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011145891.1A CN114501505A (zh) 2020-10-23 2020-10-23 用于无线通信的电子设备和方法、计算机可读存储介质
CN202011145891.1 2020-10-23

Publications (1)

Publication Number Publication Date
WO2022083535A1 true WO2022083535A1 (zh) 2022-04-28

Family

ID=81291538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124358 WO2022083535A1 (zh) 2020-10-23 2021-10-18 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (4)

Country Link
US (1) US20230370149A1 (zh)
EP (1) EP4207907A1 (zh)
CN (2) CN114501505A (zh)
WO (1) WO2022083535A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110798864A (zh) * 2018-08-01 2020-02-14 维沃移动通信有限公司 用于波束失败恢复的方法和终端设备
WO2020264134A1 (en) * 2019-06-28 2020-12-30 Convida Wireless, Llc Apparatus, system, method, and computer-readable medium for performing beam failure recovery
WO2021062654A1 (en) * 2019-09-30 2021-04-08 Nokia Shanghai Bell Co., Ltd. Beam failure recovery for serving cell
WO2021151849A1 (en) * 2020-01-27 2021-08-05 Nokia Technologies Oy Beam failure recovery for dormant bandwidth part
US20210314021A1 (en) * 2020-04-01 2021-10-07 Qualcomm Incorporated Beam failure recovery procedure resource reduction with bandwidth part hopping

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110798864A (zh) * 2018-08-01 2020-02-14 维沃移动通信有限公司 用于波束失败恢复的方法和终端设备
WO2020264134A1 (en) * 2019-06-28 2020-12-30 Convida Wireless, Llc Apparatus, system, method, and computer-readable medium for performing beam failure recovery
WO2021062654A1 (en) * 2019-09-30 2021-04-08 Nokia Shanghai Bell Co., Ltd. Beam failure recovery for serving cell
WO2021151849A1 (en) * 2020-01-27 2021-08-05 Nokia Technologies Oy Beam failure recovery for dormant bandwidth part
US20210314021A1 (en) * 2020-04-01 2021-10-07 Qualcomm Incorporated Beam failure recovery procedure resource reduction with bandwidth part hopping

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Unresolved issues for BFR on SCell", 3GPP DRAFT; R2-1915640, vol. RAN WG2, 8 November 2019 (2019-11-08), Reno, Nevada, USA, pages 1 - 3, XP051817291 *
MEDIATEK INC.: "Summary 2 on Remaing issues on Beam Failure Recovery", 3GPP DRAFT; R1-1805689_7 1 2 2 4_SUMMARY_1_BFR_V07, vol. RAN WG1, 19 April 2018 (2018-04-19), Sanya, China, pages 1 - 21, XP051427814 *
NOKIA, NOKIA SHANGHAI BELL: "Further details on BWP switch interaction with RA", 3GPP DRAFT; R2-1800961 FURTHER DETAILS ON BWP SWITCH INTERACTION WITH RA,, vol. RAN WG2, 12 January 2018 (2018-01-12), VancouverVancouver, Canada, pages 1 - 5, XP051386471 *

Also Published As

Publication number Publication date
CN114501505A (zh) 2022-05-13
US20230370149A1 (en) 2023-11-16
EP4207907A1 (en) 2023-07-05
CN116420378A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
JP7147790B2 (ja) 電子機器、無線通信装置、及び無線通信方法
KR20200086686A (ko) 무선 통신 시스템에서의 장치 및 방법, 및 컴퓨터-판독가능 저장 매체
US10499277B2 (en) Terminal apparatus, communication control method and communication control apparatus
US20200213957A1 (en) Device in wireless communication system and method
WO2021169828A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
EP4221393A1 (en) Electronic device and method for use in radio communication, and computer-readable storage medium
US20220256518A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
EP4135449A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2021031882A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2021190386A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2020140836A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022194082A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022152049A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022028318A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022033402A1 (zh) 电子设备、无线通信方法以及计算机可读存储介质
US20230046108A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2022083535A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20220167186A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
US10512086B2 (en) Transmission of discovery signal in small cells while in off state
EP4175343A1 (en) Electronic device, wireless communication method and non-transitory computer-readable storage medium
EP4016911A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
WO2023134528A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN114930969A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN111602421A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021881952

Country of ref document: EP

Effective date: 20230331

NENP Non-entry into the national phase

Ref country code: DE