WO2022033402A1 - 电子设备、无线通信方法以及计算机可读存储介质 - Google Patents

电子设备、无线通信方法以及计算机可读存储介质 Download PDF

Info

Publication number
WO2022033402A1
WO2022033402A1 PCT/CN2021/111155 CN2021111155W WO2022033402A1 WO 2022033402 A1 WO2022033402 A1 WO 2022033402A1 CN 2021111155 W CN2021111155 W CN 2021111155W WO 2022033402 A1 WO2022033402 A1 WO 2022033402A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission resource
reference signal
indication
electronic device
indications
Prior art date
Application number
PCT/CN2021/111155
Other languages
English (en)
French (fr)
Inventor
曹建飞
Original Assignee
索尼集团公司
曹建飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 曹建飞 filed Critical 索尼集团公司
Priority to CN202180057303.5A priority Critical patent/CN116134926A/zh
Publication of WO2022033402A1 publication Critical patent/WO2022033402A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of wireless communication technologies, and more particularly, to an electronic device, a wireless communication method, and a non-periodic reference signal capable of determining the indication information that will actually take effect when the indication information of beams or transmission resources of an aperiodic reference signal collides.
  • state computer-readable storage medium capable of determining the indication information that will actually take effect when the indication information of beams or transmission resources of an aperiodic reference signal collides.
  • Aperiodic reference signals in New Radio (NR) systems including aperiodic uplink reference signals such as aperiodic sounding reference signals (Aperiodic Sounding Reference Signal, Ap-SRS) and reference signals such as aperiodic channel state information (Aperiodic Sounding Reference Signal, Ap-SRS)
  • aperiodic uplink reference signals such as aperiodic sounding reference signals (Aperiodic Sounding Reference Signal, Ap-SRS)
  • reference signals such as aperiodic channel state information (Aperiodic Sounding Reference Signal, Ap-SRS)
  • Three levels of signaling can be used for configuration, update or selection, and triggering of Channel State Information-Reference Signal (Aperiodic Downlink Reference Signal of Ap-CSI-RS).
  • the network side can configure aperiodic reference signals (configuration of various transmission resources including beams, etc.) for the user equipment through signaling at the radio resource control (Radio Resource Control, RRC) layer.
  • RRC Radio Resource Control
  • the control element (Control Element, CE) (MAC CE) of the Access Control, MAC) layer updates or selects the configuration of the aperiodic reference signal (such as the indication information about the beam or transmission resources, etc.), and the downlink control through the physical layer Downlink Control Information (DCI) triggers the transmission or reception of aperiodic reference signals.
  • aperiodic reference signal such as the indication information about the beam or transmission resources, etc.
  • an object of at least one aspect of the present disclosure is to provide an electronic device, a wireless communication method, and a non-transitory computer-readable storage medium, which are capable of conflicting indication information of beams or transmission resources of aperiodic reference signals.
  • the situation determines the instructions that will actually take effect.
  • an electronic device which includes a processing circuit configured to: receive capability information about a beam indication of an aperiodic uplink reference signal reported by a user equipment; and based on the capability information , determine the beam indication that will actually take effect among the first beam indication determined according to the configuration information of the reference signal and the second beam indication determined according to the update message used to update the beam indication of the reference signal, wherein, for The transmission time of the trigger message triggering the reference signal is before the expected effective time indicated by the second beam, and the transmission time of the reference signal is after the expected effective time indicated by the second beam.
  • an electronic device which includes a processing circuit configured to: generate capability information about beam indication of an aperiodic uplink reference signal; and report the capability to a network-side device information, the capability information is used to determine, among the first beam indication determined according to the configuration information of the reference signal and the second beam indication determined according to the update message for updating the beam indication of the reference signal, the beam indication that will actually take effect Beam indication, wherein the transmission time of the trigger message for triggering the reference signal is before the expected effective time of the second beam indication, and the transmission time of the reference signal is at the expected effective time of the second beam indication Later.
  • an electronic device which includes a processing circuit configured to: receive capability information about a transmission resource indication of an aperiodic downlink reference signal reported by a user equipment; and according to the capability information, to determine the one that will actually take effect among the first group of transmission resource indications and the second group of transmission resource indications in the multiple transmission resource indications of the reference signal determined according to the first selection message and the second selection message respectively.
  • a group transmission resource indication wherein the sending time of the trigger message for triggering the reference signal is after the expected effective time of the first group of transmission resource indications and before the expected effective time of the second group of transmission resource indications, And the sending time of the reference signal is after the expected effective time indicated by the second group of transmission resources.
  • an electronic device which includes a processing circuit configured to: generate capability information about a transmission resource indication of an aperiodic downlink reference signal; and report the capability information, where the capability information is used to determine a first group of transmission resource indications and a second group of transmission resource indications of the multiple transmission resource indications of the reference signal determined according to the first selection message and the second selection message, respectively Among them, a group of transmission resource indications that will actually take effect, wherein the sending time of the trigger message for triggering the reference signal is after the expected effective time of the first group of transmission resource indications and after the second group of transmission resource indications. before the expected effective time of the indication, and the sending time of the reference signal is after the expected effective time indicated by the second group of transmission resources.
  • a wireless communication method which includes: receiving capability information about a beam indication of an aperiodic uplink reference signal reported by a user equipment; and determining based on the capability information according to the reference signal Among the first beam indication determined by the configuration information of the reference signal and the second beam indication determined according to the update message for updating the beam indication of the reference signal, the beam indication that will actually take effect, wherein the trigger for triggering the reference signal
  • the sending time of the message is before the expected valid time indicated by the second beam, and the sending time of the reference signal is after the expected valid time indicated by the second beam.
  • a wireless communication method which includes: receiving capability information about a transmission resource indication of an aperiodic downlink reference signal reported by a user equipment; Among the first group of transmission resource indications and the second group of transmission resource indications in the multiple transmission resource indications of the reference signal determined by the selection message and the second selection message, a group of transmission resource indications that will actually take effect, wherein, use After the sending time of the trigger message that triggers the reference signal is after the expected effective time of the first group of transmission resource indications and before the expected effective time of the second group of transmission resource indications, and the reference signal is sent at the time After the expected effective time of the second set of transmission resource indications.
  • a wireless communication method which includes: receiving capability information about a transmission resource indication of an aperiodic downlink reference signal reported by a user equipment; Among the first group of transmission resource indications and the second group of transmission resource indications in the multiple transmission resource indications of the reference signal determined by the selection message and the second selection message, a group of transmission resource indications that will actually take effect, wherein, use After the sending time of the trigger message that triggers the reference signal is after the expected effective time of the first group of transmission resource indications and before the expected effective time of the second group of transmission resource indications, and the reference signal is sent at the time After the expected effective time of the second set of transmission resource indications.
  • a wireless communication method which includes: generating capability information about a transmission resource indication of an aperiodic downlink reference signal; and reporting the capability information to a network-side device, where the capability information is It is used to determine, among the first group of transmission resource indications and the second group of transmission resource indications of the multiple transmission resource indications of the reference signal, which are determined according to the first selection message and the second selection message, respectively, a group that will actually take effect transmission resource indication, wherein the sending time of the trigger message for triggering the reference signal is after the expected effective time of the first group of transmission resource indications and before the expected effective time of the second group of transmission resource indications, and The sending time of the reference signal is after the expected effective time of the second group of transmission resource indications.
  • a non-transitory computer-readable storage medium storing executable instructions, the executable instructions, when executed by a processor, cause the processor to execute the above wireless communication method or electronic device of each function.
  • the user equipment side reports capability information about the aperiodic reference signal to the network side, and based on the capability The information determines the beam indication or transmission resource indication that will actually take effect, so that when a subsequent conflict scenario occurs, corresponding processing can be performed according to the predetermined indication information that will actually take effect.
  • 1 is a schematic diagram schematically illustrating a protocol stack in NR
  • FIG. 2 is a schematic diagram schematically illustrating an example of a scenario in which beam indications collide
  • FIG. 3 is a schematic diagram schematically illustrating another example of a scenario where beam indications collide
  • FIG. 4 is a block diagram showing a configuration example of an electronic device on the network side according to the first embodiment of the present disclosure
  • FIG. 5 is a schematic diagram showing an example of a MAC CE update message that can be used in the first embodiment of the present disclosure
  • FIG. 6 is an explanatory diagram for explaining an SRS request field of DCI trigger information that can be used in the first embodiment of the present disclosure
  • FIG. 7 is a schematic diagram schematically illustrating an example of a scenario of beam indication collision in the case that an aperiodic SRS resource set triggered by DCI trigger information includes multiple reference signals;
  • FIG. 8 is a block diagram showing a configuration example of an electronic device on the user equipment side according to the first embodiment of the present disclosure
  • FIG. 9 is a schematic diagram schematically illustrating an example of a scenario in which transmission resource indications collide
  • FIG. 10 is a schematic diagram schematically illustrating another example of a scenario in which transmission resource indications collide
  • FIG. 11 is a block diagram showing a configuration example of an electronic device on the network side according to the second embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram showing one example of a MAC CE selection message that can be used in the second embodiment of the present disclosure
  • FIG. 13 is a block diagram showing a configuration example of an electronic device on the user equipment side according to the second embodiment of the present disclosure
  • FIG. 14 is a flowchart illustrating a process example of the wireless communication method on the network side according to the first embodiment of the present disclosure
  • 15 is a flowchart illustrating a process example of the wireless communication method on the user equipment side according to the first embodiment of the present disclosure
  • 16 is a flowchart illustrating a process example of the wireless communication method on the network side according to the second embodiment of the present disclosure
  • 17 is a flowchart illustrating a process example of a wireless communication method on the user equipment side according to the second embodiment of the present disclosure
  • FIG. 18 is a block diagram illustrating a first example of a schematic configuration of an eNB to which techniques of this disclosure may be applied;
  • FIG. 19 is a block diagram illustrating a second example of a schematic configuration of an eNB to which techniques of this disclosure may be applied;
  • 20 is a block diagram showing an example of a schematic configuration of a smartphone to which the techniques of the present disclosure may be applied;
  • Fig. 21 is a block diagram showing an example of a schematic configuration of a car navigation apparatus to which the technology of the present disclosure can be applied.
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods in order to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms, and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known structures and well-known technologies are not described in detail.
  • FIG. 1 is a diagram schematically showing a protocol stack in NR.
  • the order of the protocol stacks in the NR from top to bottom is respectively NAS (Non Access Stratum, Non-Access Stratum Protocol) layer, RRC (Radio Resource Control, Radio Resource Control) layer, PDCP (Packet Data Convergence Protocol, Packet Data Convergence Protocol) layer, RLC (Radio-Link Control, Radio Link control) layer, MAC (Medium-Access Control, medium access control) layer and PHY layer (Physical Layer, physical layer, that is, the layer where the DCI is located).
  • NAS Non Access Stratum, Non-Access Stratum Protocol
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • Packet Data Convergence Protocol Packet Data Convergence Protocol
  • RLC Radio-Link Control, Radio Link control
  • MAC Medium-Access Control, medium access control
  • PHY layer Physical Layer, physical layer, that is, the layer where the DCI is located
  • the network side device NW can configure the aperiodic reference signal for the user equipment UE through the signaling of the RRC layer (that is, send the RRC configuration information of the aperiodic reference signal to the UE), and use the MAC CE as an update or selection message to update. Or select the configuration of the aperiodic reference signal, and trigger the UE to send or receive the aperiodic reference signal through a trigger message sent by the DCI of the physical layer.
  • FIG. 2 and FIG. 3 are diagrams schematically showing an example of a scenario of beam indication collision, each of which schematically shows an example in which a MAC CE update message updates the beam indication of the Ap-SRS and a DCI trigger message triggers the Ap-SRS timeline.
  • the network-side device NW has, for example, performed initial configuration for the Ap-SRS through RRC signaling, that is, has sent to the UE The RRC configuration information of the Ap-SRS indicated by the initial beam.
  • the user equipment UE After initial configuration through RRC signaling, on the one hand, assuming that the MAC CE update message in FIG. 2 or FIG. 3 is not considered first, when the user equipment UE receives the message from the NW as shown in FIG. 2 or FIG. 3 for When triggering the DCI trigger message of the Ap-SRS, it can determine its initial beam indication from the RRC configuration information of the Ap-SRS according to the DCI trigger message, and prepare the transmission beam based on the initial beam indication, so as to determine, for example, according to the DCI trigger message.
  • the Ap-SRS is sent at the sending time.
  • the UE as shown in FIG. 2 or FIG. 3 receives a MAC CE update message for updating the beam indication of the Ap-SRS (the MAC CE is relatively
  • the physical layer belongs to high-level signaling, usually carried by the Physical Downlink Shared Channel (PDSCH))
  • the UE first needs to send an acknowledgment message to the NW through the PDSCH carrying the MAC CE, that is, HARQ-ACK.
  • the UE needs to hand over the content of the MAC CE update message to the MAC layer entity for interpretation by the MAC layer entity, and this process takes, for example, 3ms.
  • the UE and the NW will consider that the updated beam indication according to the content of the MAC CE update message is valid, that is, for example, the updated beam indication carried by the MAC CE update message replaces the initial beam indication in the RRC configuration information.
  • the update beam indication for Ap-SRS (so this 3ms time can be regarded as the expected effective time of the beam indication updated by the MAC CE update message).
  • the UE may acquire the update beam indication according to the DCI trigger message to send the Ap-SRS.
  • the timelines of the DCI trigger message and the MAC CE update message do not overlap, and the beam indication actually used or followed by the UE for the triggered reference signal (the actually effective beam indication) is clear, and no beam appears. Indicates a situation of conflict or confusion.
  • the DCI trigger message occurs before the update beam indication determined according to the MAC CE update message takes effect, and the triggered Ap-SRS transmission occurs at After the effective time of the updated beam indication, a beam indication conflict occurs, and the NW on the network side cannot determine whether the UE actually sends the Ap based on the initial beam indication determined according to the RRC configuration information or the updated beam indication determined according to the MAC CE update message. -SRS.
  • the transmission resource configuration indication may also collide due to the overlapping timelines of the DCI trigger message and the MAC CE selection message, which will be discussed later in the case of aperiodic downlink reference signals. This is described in detail in the second embodiment of the downlink reference signal.
  • the present disclosure proposes an electronic device on the network side, an electronic device on the user equipment side, a wireless communication method, and a computer-readable storage medium, which enable conflicts in the indication information of beams or transmission resources of aperiodic reference signals
  • the indication information that will actually take effect is pre-determined, so that when a subsequent conflict scenario occurs, corresponding processing can be performed according to the pre-determined indication information that will actually take effect.
  • the electronic device on the network side according to the present disclosure may be the base station device itself, for example, an eNB (evolved node B), or a gNB.
  • the electronic equipment on the network side according to the present disclosure can also include electronic equipment on the network side other than the base station equipment, which can theoretically be any type of TRP (Transmit and Receive Port).
  • the TRP may have sending and receiving functions, for example, it may receive information from user equipment and base station equipment, and may also send information to user equipment and base station equipment.
  • the TRP may serve user equipment and be controlled by base station equipment. That is, the base station equipment provides services to the user equipment through TRP.
  • the base station device is sometimes directly described as an example of the electronic device on the network side, but the present disclosure is not limited to this, but can be appropriately applied to the above-mentioned situation of the electronic device on the network side.
  • the electronic equipment on the user equipment side may include various user equipments such as mobile terminals such as smart phones, tablet personal computers (PCs), notebook PCs, portable game terminals, portable/dongle-type mobile routers, and digital cameras device) or an in-vehicle terminal (such as a car navigation device).
  • the user equipment described above may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) performing machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module comprising a single die) mounted on each of the aforementioned terminals.
  • FIG. 4 is a block diagram showing a first configuration example of the electronic device on the network side according to the first embodiment of the present disclosure.
  • the electronic device 400 may include a transceiver 410 and a determination unit 420 and an optional control unit 430 for controlling the overall operation of the electronic device 400 and for storing various data and programs required by the electronic device 400 storage unit 440, etc.
  • each unit of the electronic device 400 may be included in the processing circuit.
  • the electronic device 400 may include either one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the transceiver 410 may receive the capability information reported by the user equipment regarding the beam indication of the aperiodic uplink reference signal such as Ap-SRS, and optionally store it in the storage unit 440 .
  • the determining unit 420 may determine, according to the capability information about the beam indication of the aperiodic uplink reference signal, the beam indication that will actually take effect in the scenario of conflicting beam indications. More specifically, the determining unit 420 may determine, according to the above-mentioned capability information, the first beam indication determined according to the configuration information of the aperiodic uplink reference signal and the second beam indication determined according to the update message for updating the beam indication of the reference signal. Among them, the beam indication that will actually take effect, wherein the transmission time of the trigger message for triggering the aperiodic uplink reference signal is before the expected effective time of the second beam indication determined according to the update message, and the transmission time of the reference signal is After the expected effective time of the second beam indication.
  • the determination unit 420 may generate information about the determined beam indication to be actually valid (also referred to herein as beam indication validation information when appropriate), and store the information in the storage unit 440 .
  • Examples of the above trigger message and update message may include the DCI trigger message and the MAC CE update message described above with reference to FIGS. 2 and 3 .
  • the aperiodic uplink reference signal may be pre-configured by the electronic device for the user equipment through RRC signaling, such as Ap-SRS pre-configured through RRC signaling.
  • the transceiver 410 may be configured to send configuration information (RRC configuration information) for the aperiodic uplink reference signal to the user equipment in advance through RRC signaling, where the configuration information may include various information about the transmission resources of the aperiodic uplink reference signal, etc. configuration, such as the first beam indication for aperiodic uplink reference signals, etc.
  • configuration information pre-sent to the user equipment by the transceiver 410 may include configuration information of one or more resource sets. Each resource set may include one or more aperiodic uplink reference signals.
  • the configuration information of each resource set may include RRC parameters for each aperiodic uplink reference signal of the resource set, such as the spatial relationship parameter SpatialRelationInfo, as the beam indication of the aperiodic uplink reference signal, which can be used as the current Example of a first beam indication in an embodiment.
  • RRC parameters for each aperiodic uplink reference signal of the resource set such as the spatial relationship parameter SpatialRelationInfo, as the beam indication of the aperiodic uplink reference signal, which can be used as the current Example of a first beam indication in an embodiment.
  • the transceiver 410 may also be configured to send a trigger message (DCI trigger message) to the user equipment through the DCI of the physical layer when the aperiodic uplink reference signal needs to be sent, where the DCI trigger message includes a trigger message for specifying the triggered Information about aperiodic uplink reference signals.
  • the DCI trigger message may include information for specifying the triggered resource set of the aperiodic uplink reference signal.
  • the DCI trigger message can trigger the aperiodic uplink reference signal in units of resource sets (rather than a single aperiodic uplink reference signal), for example.
  • the information for specifying the resource set included in the DCI trigger message enables the user equipment at the receiving end to trigger all aperiodic uplink reference signals of the resource set specified by the message in the resource set preconfigured through the RRC configuration information.
  • the user equipment may correspondingly acquire the first beam indication for each aperiodic uplink reference signal in the configuration information of the triggered resource set as a beam indication for the reference signal, and prepare a transmission beam accordingly to transmit the reference signal .
  • the transceiver 410 may also be configured to send an update message (MAC CE update message) to the user equipment through the MAC CE when the beam indication of the aperiodic uplink reference signal needs to be updated, where the MAC CE update message includes information about the reference signal.
  • the second beam indication of the signal is used to replace the first beam indication for the reference signal included in the RRC configuration information.
  • the MAC CE update message may include, for example, the second beam indication of each reference signal of the resource set of the aperiodic uplink reference signal to be updated.
  • the MAC CE update message may, for example, use each aperiodic uplink reference signal in the resource set specified by the message as a unit to update the beam indication.
  • such a MAC CE update message can cause the user equipment at the receiving end to replace the corresponding resource in the RRC configuration information with the second beam indication included in the message for each aperiodic uplink reference signal in the resource set specified by the message The first beam indication of the set of configuration information.
  • the user equipment receives a DCI trigger message for the reference signal (for example, for the resource set where the reference signal is located), the user equipment will use the updated second beam indication as the target A beam indication for the reference signal, and a transmit beam is prepared accordingly to transmit the reference signal.
  • the above-mentioned RRC configuration information, DCI trigger message and MAC CE update message can be generated through the processing of the control unit 430 of the electronic device 400 and controlled by the transceiver 410 to send them.
  • Specific examples of these information or messages and beam indications will be described later. Give a further description.
  • the sending time of the trigger message for triggering the aperiodic reference signal is determined according to the update message for updating the beam indication of the reference signal (for example, the above-mentioned MAC CE update message)
  • the update message for updating the beam indication of the reference signal for example, the above-mentioned MAC CE update message
  • a scenario in which the second beam indication of the second beam is before the expected effective time and the transmission time of the reference signal is after the expected effective time of the second beam indication is identified as a beam indication collision scenario.
  • the user equipment since the sending time of the DCI trigger message is before the expected effective time of the second beam indication determined according to the MAC CE update message, the user equipment may have obtained the RRC configuration information (for example, the corresponding resources based on the DCI trigger message) The first beam indication in the configuration information of the set) and prepare the transmission beam accordingly to transmit the reference signal; at the same time, since the transmission time of the reference signal is after the expected effective time of the second beam indication, the user equipment may also immediately follow the After the second beam indication for updating the beam indication of the reference signal takes effect, the transmission beam is prepared based on the second beam indication to transmit the reference signal.
  • the RRC configuration information for example, the corresponding resources based on the DCI trigger message
  • the network-side equipment (or even the user equipment itself) in the prior art may not be able to determine whether the first beam indication or the second beam indication actually takes effect.
  • Examples of such scenarios may include, but are not limited to, the example scenarios shown in FIGS. 2 and 3 .
  • the determining unit 420 may determine, based on the capability information received by the transceiver 410 in advance, the beam indication that will actually take effect in the scenario of conflicting beam indications (that is, determine the first beam indication at that time). which of the beam designation and the second beam designation will actually take effect), and information on the determined beam designation to actually take effect (beam designation effect information) may be generated and stored in the storage unit 440 for electronic use
  • the device 400 itself uses and/or transmits to the user equipment. In this way, when a beam indication conflict scenario such as shown in FIG. 2 and FIG. 3 occurs subsequently, the electronic device 400 and/or the user equipment on the network side can know the actually effective beam indication and perform corresponding processing according to the beam indication.
  • the capability information about the beam indication of the aperiodic uplink reference signal received by the transceiver 410 may be reported by the user equipment to the electronic device 400 after the initial access procedure.
  • the capability information may indicate the beam indication supported by the user equipment, for example, may have a length of 2 bits, wherein 01 indicates that the user equipment only supports the first beam indication determined according to the configuration information, and 10 indicates that the user equipment only supports the determination according to the update message For the second beam indication, 11 indicates that the user equipment supports the above two beam indications at the same time, and 00 is used as a reserved bit.
  • Such capability information is appropriately generated by the user equipment according to its own situation (for example, the storage capability regarding beam indication, the time required to prepare to transmit the beam, etc.) The generation of is further described.
  • the determining unit 420 may be configured to, when the capability information indicates that only one of the first beam indication determined according to the configuration information and the second beam indication determined according to the update message is supported, determine the One beam designation is determined as the beam designation to actually take effect. For example, when the capability information is 01, the determining unit 420 may determine that the first beam indication will actually take effect, and when the capability information is 10, determine that the second beam indication will actually take effect.
  • the determining unit 420 may be further configured to determine one of the beam indications as the actually valid beam in the case that the capability information indication supports both the first beam indication determined according to the configuration information and the second beam indication determined according to the update message instruct. For example, when the capability information is 11, the determining unit 420 may determine that one of the above two beam indications is the beam indication that will actually take effect. At this time, the determining unit 420 may, for example, randomly determine one of the two, or may determine the preferred one of the two according to a preset setting.
  • the determining unit 420 may be further configured to generate information about the determined beam indication to be actually valid, and store the information in the storage unit 440 as a beam indication validation message.
  • the beam indication validation information can be represented by, for example, 1 bit, where 0 indicates that the first beam indication determined according to the configuration information will actually take effect, and 1 indicates that the second beam indication determined according to the update message will actually take effect.
  • the transceiver 410 can refer to the information when necessary to Corresponding processing is performed based on the beam indication that will actually take effect.
  • the transceiver 410 may be configured to read the beam indication validation information from the storage unit 440 when needed (for example, when the control unit 430 determines that a conflict of beam indications occurs with respect to the current aperiodic uplink reference signal), and according to the The beam designation that will actually take effect specified by the information indicates that the aperiodic uplink reference signal from the user equipment is received. For example, when the read beam indication validation information is 0, the transceiver 410 receives the aperiodic uplink reference signal based on the first beam indication determined according to the configuration information, and when the information is 1, receives the aperiodic uplink reference signal based on the first beam indication determined according to the update message.
  • the transceiver 410 may, for example, receive the reference signal by using the receive beam corresponding to the transmit beam indicated by the beam indication.
  • control unit 430 may be configured to, when the electronic device 400 needs to receive an aperiodic uplink reference signal from the user equipment, determine whether a situation in which beam indications of the reference signal collide occurs.
  • the control unit 430 may control the transceiver 410 to read, for example, the beam indication validation information pre-stored in the storage unit 440 only when judging that a beam indication conflict occurs, so that the transceiver 410 can actually take effect according to the information specified by the information.
  • the beam indication is ready to receive the beam and receive the aperiodic uplink reference signal from the user equipment.
  • the judgment of the control unit 430 regarding the beam indication collision scenario may be based on the relationship between the transmission time of the trigger message that triggers the aperiodic uplink reference signal, the transmission time of the reference signal, and the expected effective time of the second beam indication determined according to the update message .
  • the control unit 430 may determine the above-mentioned times in various ways and determine the relationship between the respective times accordingly.
  • the sending time of the aperiodic reference signal can be determined by the sending time of the trigger message and the configuration information of the reference signal (for example, the time offset between the reference signal specified by the configuration information of the reference signal and the sending time of the trigger message), etc. Sure.
  • the expected effective time of the second beam indication may, for example, be based on the sending time of the update message and the length of the time period required for the second beam indication to be effective determined according to the update message (such as 3ms, for example, the length of the time period can be determined by the network side.
  • the electronic device is known in advance) to determine.
  • control unit 430 may be configured to only when the sending time of the trigger message triggering the aperiodic uplink reference signal is before the expected effective time of the second beam indication determined according to the update message for updating the beam indication of the reference signal, and the When the sending time of the reference signal is after the expected effective time of the second beam indication, a scenario in which a beam indication collision occurs is determined, and all other scenarios are determined as a scenario in which no beam indication collision occurs.
  • the granularity of the control unit 430 for judging the beam indication collision scenario may be, for example, detailed to, for example, each reference signal in the resource set triggered by the DCI trigger message.
  • the configuration information of the aperiodic uplink reference signal may be the configuration information of the resource set of the reference signal, which includes the first beam indication for each reference signal of the resource set.
  • the beam indication of the aperiodic uplink reference signal is updated, for example, by a MAC update message associated with the specified resource set (such as the MAC CE update message described above including the second beam indication for each reference signal of that resource set)
  • the expected effective time of the second beam indication determined according to such a MAC update message is also the same for multiple reference signals in the specified resource set.
  • different reference signals in the resource set may be transmitted in different slots, ie, have different transmission times. Therefore, for each reference signal in the triggered resource set, the control unit 430 may have different judgment results for the beam indication collision scenario.
  • the control unit can determine the occurrence of the current reference signal.
  • the beam indication collides regardless of the transmission time of other reference signals in the resource set of the reference signal.
  • the transmission time of another reference signal in the resource set may be before the expected effective time indicated by the second beam (both the transmission time of the trigger message and the transmission time of the other reference signal are before the expected effective time indicated by the second beam ), the control unit can determine that the other reference signal does not have a beam indication conflict (the first beam indication determined according to the configuration information, that is, the first beam indication of the reference signal in the configuration information of the resource set is actually effective) , but only judges that the current reference signal collides with beam indications, and can perform different processing on the current reference signal and the other reference signal.
  • the control unit can determine that the other reference signal does not have a beam indication conflict (the first beam indication determined according to the configuration information, that is, the first beam indication of the reference signal in the configuration information of the resource set is actually effective) , but only judges that the current reference signal collides with beam indications, and can perform different processing on the current reference signal and the other reference signal.
  • the control unit 430 may determine the following scenarios as a scenario where no beam indication collision occurs: at the transmission time of the reference signal, no beam for the reference signal has ever appeared Indicated update message (the first beam indication determined according to the configuration information actually takes effect at this time); at the sending time of the reference signal, an update message for the beam indication of the reference signal once appeared, but the update message determined according to the update message The second beam indication has not yet taken effect (the first beam indication determined according to the configuration information is actually taking effect at this time); at the time when the trigger message of the reference signal is sent, an update message for the beam indication of the reference signal has appeared, and according to The second beam indication determined for the update message has taken effect (at this time, it is the second beam indication that actually takes effect).
  • the transceiver 410 can be controlled to receive the aperiodic uplink reference signal in a manner similar to that in the prior art, that is, to prepare the receiving beam and receive the non-periodic uplink reference signal according to the actually effective beam indication.
  • the periodic uplink reference signal will not be repeated here.
  • the transceiver 410 when the transceiver 410 has the corresponding processing capability, the transceiver 410 itself can also make a judgment about the beam indication collision scenario when necessary, and appropriately perform the processing of receiving the aperiodic uplink reference signal according to the judgment result. , which will not be repeated here.
  • the transceiver 410 may be further configured to send information about the beam indication to be actually valid (beam indication validation information) to the user equipment through RRC signaling.
  • the device 400 does not send beam indication validation information to the user equipment, and the user equipment also knows the actually valid beam indication. Therefore, in this case, optionally, the electronic device 400 may not send the beam indication validation information to the user equipment.
  • the transceiver 410 of the electronic device 400 can send beam indication validation information to the user equipment irrespective of the content of the received capability information, so that the user equipment can prepare to send accordingly when needed beam and send aperiodic uplink reference signals.
  • the electronic device on the network side can determine the beam indication that will actually take effect in advance based on the capability information reported by the user equipment for a scenario in which the beam indications of the aperiodic uplink reference signal conflict, so that in the subsequent conflict scenario When it occurs, corresponding processing can be performed according to the predetermined beam indication that will actually take effect.
  • the Ap-SRS will be used as an example of the aperiodic uplink reference signal to describe the first beam indication, the second beam indication and the configuration associated with the aperiodic uplink reference signal that can be used in the first embodiment of the present disclosure.
  • Specific examples of information, update messages, and trigger messages are described, and example processing that can be performed by the electronic device of this embodiment is described in conjunction with these examples.
  • the first beam indication may be included in the configuration information (RRC configuration information) for the aperiodic uplink reference signal that is pre-sent to the user equipment by the electronic device 400 as the network-side device through RRC signaling.
  • the RRC configuration information may include various configurations related to transmission resources of aperiodic uplink reference signals and the like.
  • the RRC configuration information may include configuration information of one or more resource sets.
  • each SRS resource set is identified by a resource set ID (SRS-ResourceSetId) and includes a set of multiple (e.g., 4) SRS resources (SRS-Resource).
  • Each SRS resource is identified by an SRS resource ID (SRS-ResourceId) and can be used to transmit one Ap-SRS signal, therefore, in this document, such resources included in resource sets such as SRS resource sets are also referred to as appropriate It is directly called the reference signal included in the resource set.
  • SRS-ResourceId SRS resource ID
  • the beam indication represented by the RRC parameter SRS-SpatialRelationInfo for each SRS resource can be included, which can be used as the first embodiment of the present disclosure
  • the value of the RRC parameter SRS-SpatialRelationInfo is the index of the previously sent reference signal.
  • the index of the reference signal specified by SRS-SpatialRelationInfo may be the index of the previously sent uplink or downlink reference signal, such as the previously sent SRS signal, Synchronous Signal Block (SSB), or Channel Status Information Reference Signal (Channel Status) Information-Reference Signal, CSI-RS) index to indicate that the user equipment is advised to use the transmit beam for transmitting the uplink reference signal/the corresponding beam for receiving the downlink reference signal to perform uplink transmission of the Ap-SRS.
  • SSB Synchronous Signal Block
  • CSI-RS Channel Status Information Reference Signal
  • a group of SRS resources (a group of Ap-SRS) included in an aperiodic SRS resource set can be uniformly triggered by a DCI trigger message, that is, a DCI trigger message is used to trigger the user equipment to send a message with the SRS resource set A corresponding set of Ap-SRS signals.
  • the configuration information of the aperiodic SRS resource set of the Ap-SRS may further include parameters related to the triggering of the resource set.
  • the configuration information of the SRS resource set may include the parameter aperipodicSRS-ResourcetTrigger, the parameter is used to specify the DCI code point (code point) when the user equipment transmits the Ap-SRS of the resource set, and the value may be from 1 to SRS An integer in the range of minus one from the number of trigger states (SRS-TriggerState).
  • Different DCI trigger messages can be associated with different values of the parameter aperipodicSRS-ResourcetTrigger, so that the triggered SRS resource set is specified through the DCI trigger message.
  • the configuration information of the aperiodic SRS resource set may also include other parameters related to the triggering of the resource set, such as aperipodicSRS-ResourcetTriggerList, etc.
  • the DCI trigger message may also be associated with such parameters to Specifies the triggered SRS resource set.
  • the configuration information of the aperiodic SRS resource set may also include a parameter usage related to the purpose of the resource set, and its value may be, for example, beamManagement (beam management), codebook (codebook), noncodebook (non-codebook), attenaSwitching (antenna switching), etc.
  • the DCI trigger message may also be associated with a specific value of the parameter usage (attenaSwitching) to specify the triggered SRS resource set, and further details will be given later in the description of examples of the DCI trigger message .
  • the electronic device 400 in this embodiment may, for example, generate RRC configuration information such as the above-mentioned SRS resource set through appropriate processing through the control unit 430 thereof, and send it to the user equipment through the transceiver 410 in advance.
  • the MAC CE update message used by the electronic device 400 to update the beam indication of the aperiodic uplink reference signal preferably directly includes the second beam indication to be updated.
  • the MAC CE update message may include the second beam indication of each reference signal of the resource set of aperiodic uplink reference signals to be updated.
  • FIG. 5 An example of a MAC CE update message that directly includes the second beam indication for the Ap-SRS that can be used in this embodiment is shown in FIG. 5 .
  • the MAC CE update message includes N octets Oct1 to OctN, wherein the R field is a reserved bit, and the aperiodic SRS resource set ID in Oct2 is used to specify the aperiodic SRS resource set to be updated, Oct3 to OctN-M+1 include updated (second) beam indications for each SRS resource of the SRS resource set.
  • the aperiodic SRS resource set ID field in Oct2 is, for example, multiple aperiodic SRS resource sets pre-configured for the user equipment by the electronic device on the network side through RRC signaling (for example, the first beam indicated above in the "RRC configuration information"
  • the SRS resource set described in the "Example” section specifies the aperiodic SRS resource set involved.
  • the 1-bit C field indicates whether the cell ID of the SRS resource set and the BWP (Bandwidth Part, bandwidth part) ID of the SRS resource set exist in the MAC CE update message, and only when the value is 1, it indicates the existence (in this case) example, such as exists in Oct1).
  • the 1-bit SUL field is used to identify the carrier configuration type applied by the MAC CE update message. The value of 1 indicates the SUL (supplementary uplink, supplementary uplink) carrier configuration, and 0 indicates NUL (normal uplink, normal uplink) carrier configuration.
  • the 1-bit F i field indicates the type of beam indication used by the ith SRS resource (the ith Ap-SRS reference signal) in the involved aperiodic SRS resource set, F The value of i is 1 to indicate that the index of the previously transmitted non-zero power CSI-RS (nzp CSI-RS) is used, and the value of F i to 0 indicates that the index of the previously transmitted SSB or SRS is used.
  • the resource ID i is a beam indication for the ith SRS resource (the ith Ap-SRS reference signal), and indicates the index of the previously transmitted nzp CSI-RS or the index of the SRS according to the value of Fi.
  • the resource ID i (optionally together with the Fi field ) can be used as the second beam indication in the first embodiment of the present disclosure.
  • the electronic device 400 of this embodiment can, for example, generate the above-mentioned MAC CE update message through appropriate processing through its control unit 430, and send it to the user equipment through the transceiver 410 when the beam indication of the Ap-SRS needs to be updated.
  • the user equipment When the user equipment receives such a MAC CE update message, it can perform the following processing for the aperiodic SRS resource set specified by the aperiodic SRS resource set ID field of the MAC CE update message: for each SRS resource set in the SRS resource set SRS resources, replace the first beam indication indicated by the SpatialRelationInfo parameter of the corresponding SRS resource of the SRS resource set in the RRC configuration information with the second beam indication indicated by the corresponding resource ID in the MAC CE update message, as the SRS resource ( Ap-SRS reference signal) beam indication.
  • the DCI trigger message used by the electronic device 400 to trigger the aperiodic uplink reference signal may preferably include information for specifying a resource set of the aperiodic uplink reference signal, so as to trigger all reference signals included in the resource set.
  • the SRS-Request (SRS-Request) field of the DCI trigger message is considered here.
  • the SRS request (SRS-Request) field may be, for example, 2 bits, which is used for, for example, the electronic device on the network side to pre-send (pre-configured) multiple aperiodic SRS resource sets (for example, in the "RRC configuration" above) through RRC signaling
  • the triggered aperiodic SRS resource set is specified.
  • the SRS request field is 00 for no triggering, 01 for triggering the first one in the set of aperiodic SRS resources configured for triggering, 10 for triggering the second one in the set of aperiodic SRS resources configured for triggering, and 11 for triggering the configured The third in the set of aperiodic SRS resources.
  • FIG. 6 is a schematic diagram for explaining an example of an SRS request field that can be employed in this embodiment, which shows an example association between the SRS request field and the aperiodic SRS resource set that it triggers.
  • the SRS request field of the DCI trigger message is associated with the value of the parameter aperipodicSRS-ResourcetTrigger in the configuration information of the SRS resource set, so as to specify the parameter aperipodicSRS-ResourcetTrigger with the corresponding value through different values of the SRS request field Aperiodic SRS resource set, as the triggered SRS resource set.
  • the trigger parameter aperipodicSRS-ResourcetTrigger is configured as the SRS resource set of 1, 2, and 3, respectively.
  • the SRS request field of the DCI trigger message can be associated with such parameters to specify the triggered SRS resource set. For example, when the value of the SRS request field in the DCI trigger message is 01, 10, and 11, the entries in the aperipodicSRS-ResourcetTriggerList can be triggered to be configured as SRS resource sets of 1, 2, and 3, respectively.
  • the triggered resource set may also be specified through a parameter usage related to the usage of the resource set in the configuration information of the SRS resource set.
  • the parameter usage values for the first group of serving cells, the second group of serving cells, and the third group of serving cells can be triggered respectively.
  • the electronic device 400 of this embodiment can, for example, generate a DCI trigger message with the above SRS request field through appropriate processing through its control unit 430, and send it to the user equipment through the transceiver 410 when Ap-SRS needs to be triggered.
  • the user equipment When the user equipment receives the DCI trigger message with the above SRS request field sent by the electronic device 400, it can determine the triggered SRS resource set according to the field. If the user equipment has not received the MAC CE update message about the SRS resource set before, the user equipment will use the SpatialRelationInfo parameter (first beam indication) of each resource in the SRS resource set in the pre-received RRC configuration information Beam indication as a reference signal for this SRS resource set. In addition, if the user equipment has received the MAC CE update message about the SRS resource set before the DCI trigger message, and the beam indication (second beam indication) updated by the MAC CE update message has taken effect, the user equipment will use The corresponding resource ID (second beam indication) in the MAC CE update message such as shown in FIG. 5 is used as the beam indication for the reference signal of the SRS resource set.
  • the corresponding resource ID (second beam indication) in the MAC CE update message such as shown in FIG. 5 is used as the beam indication for the reference signal of the SRS resource
  • the resource set (for example, the SRS resource set) triggered by the DCI trigger message sent by the electronic device 400 includes multiple aperiodic uplink reference signals such as Ap-SRS, the DCI
  • the sending time of the trigger message is before the expected effective time of the second beam indication updated by, for example, the MAC CE update message, and among the multiple reference signals corresponding to the resource set triggered by the DCI trigger message, the sending time of a part of the reference signals Before the expected effective time indicated by the second beam, the transmission time of the other part of the reference signal is after the expected effective time indicated by the second beam.
  • FIG. 7 shows an example of this scenario, that is, an example scenario in which beam indication collision occurs when the aperiodic SRS resource set triggered by the DCI trigger information includes multiple reference signals.
  • the triggered aperiodic SRS resource set corresponds to 4 Ap-SRSs, wherein the first two signals Ap-SRS Tx1 and Ap-SRS Tx2, for example, jointly occupy one time slot (Slot) and transmit time Before the expected effective time of the second beam indication updated by the MAC CE update message shown in FIG. 5 (for example, the corresponding resource ID in the MAC CE update message shown in FIG.
  • the electronic device 400 on the network side according to the first embodiment of the present disclosure has used the determination unit 420 to determine the beam indication that will actually take effect in the beam indication conflict scenario in advance according to the capability information, and
  • the beam indication validation message may be stored in the storage unit 440 .
  • the electronic device 400 needs to receive the Ap-SRS from the user equipment, its transceiver 410 can read the information when necessary and receive the Ap-SRS appropriately.
  • the electronic device 400 can first determine whether a beam occurs through the control unit 430 (or the transceiver 410 itself). Indicates conflicting scenarios.
  • the transceiver 410 may, in a manner similar to the prior art, based on the initial first beam indication determined from the RRC configuration information according to the DCI trigger message (eg, such as the one in the DCI trigger message having the format shown in FIG. 6 )
  • the parameter SpatialRelationInfo of the corresponding SRS resource in the SRS resource set specified by the SRS request field is used to receive the reference signal.
  • the transmission time of the DCI trigger message is before the expected effective time indicated by the second beam, and the transmission time of the two reference signals themselves is at the time indicated by the second beam.
  • the electronic device 400 can therefore determine that a scene of beam indication collision occurs.
  • the updated second beam indication (for example, the corresponding resource ID in the MAC CE update information shown in FIG. 5 ) has taken effect, so that it cannot be determined in the prior art that the beam indication actually used by the user equipment is the updated second beam indication
  • the beam indication is also the initial first beam indication included in the RRC configuration information.
  • the transceiver 410 of the electronic device 400 in this embodiment may, for example, under the control of the control unit 430, read the beam indication validation information stored in the storage unit 440, and according to the read information, based on the actual The active beam indicates that the reference signal is to be received. For example, if the read beam indication validation information is 0, the transceiver 410 may base on the first beam indication determined from the RRC configuration information (eg, the one specified by the SRS request field in the DCI trigger message shown in FIG.
  • the RRC configuration information eg, the one specified by the SRS request field in the DCI trigger message shown in FIG.
  • the parameter SpatialRelationInfo) of the corresponding SRS resource in the SRS resource set receives Ap-SRS Tx3 and Ap-SRS Tx4; if the read beam indication validation information is 1, the transceiver 410 can be based on the second beam determined according to the MAC CE update message Indication (such as the corresponding resource ID in the MAC CE update information shown in FIG. 5 ) to receive Ap-SRS Tx3 and Ap-SRS Tx4.
  • the DCI trigger message includes information specifying a resource set of aperiodic uplink reference signals, and the resource set includes multiple aperiodic uplink reference signals, as long as the trigger message is sent at the time Before the expected effective time of the second beam indication, and the sending time of the current aperiodic uplink reference signal is after the expected effective time of the second beam indication, it can be recognized that the beam indication of the current reference signal collides, so as to appropriately
  • the correlation processing is performed according to the predetermined beam indication that will actually take effect, regardless of the transmission time of other reference signals in the resource set.
  • the first beam indication, the second beam indication and the configuration information associated therewith for the aperiodic uplink reference signal in the first embodiment of the present disclosure are described.
  • those skilled in the art can understand that the above examples and their details do not limit the embodiments of the present disclosure.
  • those skilled in the art can apply the electronic device 400 of this embodiment to any appropriate scenario, as long as the beam indications of the aperiodic uplink reference signals collide in the scenario (so that it may not be possible to determine the actual effective one) whether it is the initial beam indication or the updated beam indication).
  • Fig. 8 is a block diagram showing one configuration example of the electronic device on the user equipment side according to the first embodiment of the present disclosure.
  • the electronic device 800 may include a generating unit 810 and a transceiver 820 and an optional control unit 830 for controlling the overall operation of the electronic device 800 and for storing various data and programs required by the electronic device 800 storage unit 840, etc.
  • each unit of the electronic device 800 may be included in the processing circuit.
  • the electronic device 800 may include either one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the electronic device 800 may include, for example, the user device itself, or may be implemented as a further electronic device attached to the user device.
  • the generating unit 810 may generate capability information about a beam indication of an aperiodic uplink reference signal such as an Ap-SRS.
  • the transceiver 820 may report the capability information generated by the generating unit 810 to the network-side device.
  • the capability information can be used by at least the network-side device to determine the beam indication that will actually take effect in the scenario of conflicting beam indications. More specifically, the capability information may be used to determine which will actually take effect among the first beam indication determined according to the configuration information of the reference signal and the second beam indication determined according to the update message for updating the beam indication of the reference signal. Beam indication, wherein the sending time of the trigger message for triggering the aperiodic uplink reference signal is before the expected effective time of the second beam indication determined according to the update message, and the sending time of the reference signal is at the expected effective time of the second beam indication after time.
  • Examples of the above trigger message and update message may include the DCI trigger message and the MAC CE update message described above with reference to FIGS. 2 and 3 .
  • the aperiodic reference uplink signal may be pre-configured by the network side device for the electronic device 800 through RRC signaling, for example, Ap-SRS pre-configured through RRC signaling.
  • the transceiver 810 may be configured to receive configuration information (RRC configuration information) for the aperiodic uplink reference signal from the network-side UE in advance through RRC signaling and may store it in the storage unit 840 .
  • the configuration information may include various configurations related to the transmission resources of the aperiodic uplink reference signal, for example, the first beam indication for the aperiodic uplink reference signal, and the like.
  • such configuration information received by transceiver 810 may include configuration information for one or more resource sets. Each resource set may include one or more aperiodic uplink reference signals.
  • the configuration information of each resource set may include RRC parameters for each aperiodic uplink reference signal of the resource set, such as the spatial relationship parameter SpatialRelationInfo, as the beam indication of the aperiodic uplink reference signal, which can be used as the current Example of a first beam indication in an embodiment.
  • RRC parameters for each aperiodic uplink reference signal of the resource set such as the spatial relationship parameter SpatialRelationInfo, as the beam indication of the aperiodic uplink reference signal, which can be used as the current Example of a first beam indication in an embodiment.
  • the transceiver 810 may be further configured to receive a trigger message (DCI trigger message) for triggering an aperiodic uplink reference signal sent through the DCI of the physical layer from the network side device, where the DCI trigger message includes a trigger message for specifying all Triggered aperiodic uplink reference signal information.
  • the DCI trigger message may include information for specifying the triggered resource set of the aperiodic uplink reference signal.
  • the DCI trigger message received by the transceiver 810 can trigger the aperiodic uplink reference signal in units of resource sets (rather than a single aperiodic uplink reference signal), for example.
  • the information for specifying the resource set included in the DCI trigger message enables the transceiver 810 to prepare to send all aperiodic uplink reference signals of the resource set specified by the message among the resource sets preconfigured through the RRC configuration information .
  • the transceiver 810 may correspondingly read the first beam indication for each aperiodic uplink reference signal from the configuration information of the triggered resource set received in advance and stored in the storage unit 840 as a beam for the reference signal. indication, and prepare the transmit beam accordingly to transmit the reference signal.
  • the transceiver 810 may be further configured to receive an update message (MAC CE update message) sent by the MAC CE for updating the beam indication of the aperiodic uplink reference signal from the network side device, where the MAC CE includes a reference to the reference signal.
  • the second beam indication of the signal is used to replace the first beam indication for the reference signal included in the RRC configuration information.
  • the MAC CE update message received by the transceiver 810 may include, for example, the second beam indication of each reference signal of the resource set of the aperiodic uplink reference signal to be updated.
  • the MAC CE update message may, for example, use each aperiodic uplink reference signal in the resource set specified by the message as a unit to update the beam indication.
  • the transceiver 810 when the transceiver 810 receives the MAC CE update message, under the control of the control unit 830, it can read the second beam indication of each aperiodic uplink reference signal in the specified resource set from the message and send it It is stored in the storage unit 840 to replace the previously obtained first beam indication of the configuration information of the corresponding resource set as the updated beam indication of each reference signal in the resource set. Thereafter, when the electronic device 800 receives a DCI trigger message for the above-mentioned reference signal (for example, the resource set for the reference signal), the transceiver of the electronic device 800 will use the updated second beam indication as the reference signal. The beam is indicated, and the transmit beam is prepared accordingly to transmit the reference signal.
  • a DCI trigger message for the above-mentioned reference signal
  • the sending time of the trigger message for triggering the aperiodic reference signal is determined according to the update message for updating the beam indication of the reference signal (for example, the above-mentioned MAC CE update message)
  • the update message for updating the beam indication of the reference signal for example, the above-mentioned MAC CE update message
  • a scene before the expected effective time of the second beam indication and the transmission time of the reference signal is after the expected effective time of the second beam indication is identified as a beam indication collision scene.
  • the electronic device on the user equipment side may have obtained the RRC configuration based on the DCI trigger message information (such as the configuration information of the corresponding resource set) indicates the first beam and prepares the transmission beam accordingly to transmit the reference signal; at the same time, since the transmission time of the reference signal is after the expected effective time indicated by the second beam, the user It is also possible that the electronic device on the device side prepares a transmission beam based on the second beam indication to transmit the reference signal immediately after the second beam indication for updating the beam indication of the reference signal takes effect.
  • the DCI trigger message information such as the configuration information of the corresponding resource set
  • capability information about the beam indication of the aperiodic uplink reference signal can be generated and reported to the network side device, for example, after the initial access procedure of the electronic device 800 .
  • the network-side device may determine, in advance, based on the capability information, the beam indication that will actually take effect in the scenario of conflicting beam indications (that is, determine which of the first beam indication and the second beam indication will actually take effect at that time), and For example, information about the determined beam indications to be actually effective may be generated and optionally sent to the user equipment. In this way, when a beam indication conflict scenario such as shown in FIG. 2 and FIG.
  • the network side device can know the actually effective beam indication and receive the aperiodic uplink reference signal according to the beam indication, and the user equipment side can receive the aperiodic uplink reference signal according to the beam indication.
  • the electronic device 800 can also prepare the transmit beam accordingly to transmit the aperiodic uplink reference signal.
  • the capability information about the beam indication of the aperiodic uplink reference signal generated by the generating unit 810 may represent the beam indication supported by the electronic device 800, for example, may have a length of 2 bits, wherein 01 indicates that only the configuration information is supported
  • the determined first beam indication (initial beam indication) indicates that only the second beam indication determined according to the update message (updated beam indication) is supported
  • 11 indicates that the above two beam indications are supported at the same time
  • 00 is used as a reserved bit.
  • the generating unit 810 may appropriately generate the above-mentioned capability information according to the situation of the electronic device 800 itself (such as the storage capability regarding the beam indication, the time required to prepare to transmit the beam, etc.).
  • the electronic device 800 has poor storage capacity for beam indications and can only store one beam indication for an aperiodic reference signal
  • the second beam indication determined according to the update message is stored in the storage unit 840 to replace the previously stored first beam indication, eg, included in the RRC configuration information (ie, the second beam indication is stored and the RRC configuration information is deleted). the first beam indication).
  • the transceiver 810 can only prepare to transmit the beam and transmit the uplink aperiodic reference signal based on the updated second beam indication. Therefore, the generating unit 810 may generate capability information in the form of 10 to indicate that the user equipment only supports the second beam indication determined according to the update message.
  • the electronic device 800 when the electronic device 800 has a relatively strong storage capacity for beam indications and can store multiple beam indications for one aperiodic reference signal, when the transceiver 820 receives the MAC CE update for updating the beam indications of the aperiodic reference signal message, it may store the second beam indication determined according to the update message in the storage unit 840 without deleting, for example, the previously stored first beam indication included in the RRC configuration information. In this case, the generating unit 810 of the electronic device 800 may generate the capability information according to, for example, the time required to prepare the transmission beam.
  • the transceiver 820 may not be able to prepare the transmission beam of the reference signal according to the second beam indication immediately after the second beam indication determined according to the update message takes effect.
  • the generating unit 810 may generate capability information in the form of 01 to indicate that the user equipment only supports the first beam indication determined according to the configuration information.
  • the transceiver 820 can complete the preparation of the transmission beam in a relatively short period of time, it has the ability to prepare the transmission beam according to the second beam designation immediately after the second beam designation determined by the update message takes effect and utilize the transmission beam The beam transmits the reference signal.
  • the generating unit 810 may prepare a beam for transmission based on the second beam indication determined according to the update message, or prepare a beam for transmission based on the first beam indication determined according to the RRC configuration information. Therefore, the generating unit 810 may generate capability information in the form of 11 to indicate that the user equipment simultaneously supports the above two beam indications.
  • the transceiver 820 may report the above-mentioned capability information generated by the generating unit 810 to the network-side device after the initial access procedure of the electronic device 800, so that the network-side device can pre-determine, based on the capability information, that the Actual beam indication in effect.
  • the one beam indication will naturally take effect.
  • beam indication For example, when the capability information is 01, what will actually take effect is the first beam indication determined according to the configuration information, and when the capability information is 10, what will actually take effect is the second beam indication determined according to the update message.
  • the electronic device 800 that generates the capability information can, for example, make such a determination by itself through its generating unit 810, and the network-side device that receives the capability information can also make the same determination.
  • the network side device may determine one of the beam indications as the actually valid beam indication. For example, when the capability information is 11, the network-side device will determine that one of the above two beam indications is the beam indication that will actually take effect.
  • the transceiver 820 may be further configured to receive information about the beam indication to be actually validated from the network side device through RRC signaling, and store the information in the storage unit 840 as a beam indication validation message.
  • the beam indication validation information can be represented by, for example, 1 bit, where 0 indicates that the first beam indication determined according to the configuration information will actually take effect, and 1 indicates that the second beam indication determined according to the update message will actually take effect.
  • the transceiver 820 may not receive the beam indication validation information from the network side device.
  • the transceiver 820 of the electronic device 800 may receive the beam indication validation information from the network-side device regardless of the content of the capability information generated by the generating unit 810 and optionally store it in the storage in unit 840. Subsequently, when the electronic device 800 wants to send the aperiodic uplink reference signal, the transceiver 820 can refer to the information when necessary, and appropriately prepare the transmission beam and transmit the aperiodic uplink reference signal.
  • the transceiver 810 of such an electronic device 800 can be configured to, when needed (for example, the control unit 830 judges the presence of a beam for the current aperiodic uplink reference signal) When indicating a conflict scenario), read the beam indication validation information from the storage unit 440, and prepare to send a beam and send aperiodic uplink reference signals to the network side device according to the beam indication that will actually be valid specified by the information.
  • the transceiver 810 may prepare to transmit a beam based on the first beam indication determined according to the configuration information, and when the information is 1, based on the second beam determined according to the update message Indicates that the beam is ready to transmit.
  • control unit 830 may be configured to, when the electronic device 800 needs to send an aperiodic uplink reference signal to the network-side device, determine whether the beam indication conflict of the reference signal occurs.
  • the control unit 830 may control the transceiver 810 to read, for example, the beam indication validation information previously received from the network side from the storage unit 440 only when judging that a beam indication conflict occurs, so that the transceiver 810 can use the information specified by the information. Beam indication that will actually take effect, ready to send beam and send aperiodic uplink reference signal.
  • the control unit 830 determines that there is no beam indication collision scenario, it can control the transceiver 810 to send aperiodic uplink reference signals in a manner similar to that in the prior art, which will not be repeated here.
  • the control unit 830 may, in a manner similar to the control unit 430 of the electronic device 400 on the network side, send the trigger message before the expected effective time of the second beam indication and send the reference signal before the expected effective time of the second beam indication. After the time, the scene in which the beam indication conflict occurs is judged, and all other scenarios are judged as the scene in which the beam indication collision does not occur, which will not be repeated here.
  • the control unit 830 judges the granularity of the beam indication collision scenario, for example, the granularity can also be detailed to each reference signal in the triggered resource set.
  • the control unit 830 can determine that a beam indication conflict occurs with respect to the current reference signal, which is inconsistent with the sending of other reference signals in the resource set of the reference signal. Time doesn't matter.
  • the transmission time of another reference signal in the resource set may be before the expected effective time indicated by the second beam (both the transmission time of the trigger message and the transmission time of the other reference signal are before the expected effective time indicated by the second beam ), the control unit 830 may determine that there is no beam indication collision for the other reference signal, and may perform different processing on the current reference signal and the another reference signal.
  • the control unit 830 may determine the following scenarios as a scenario where no beam indication collision occurs: at the transmission time of the reference signal, no beam for the reference signal has ever appeared Indicated update message (the first beam indication determined according to the configuration information actually takes effect at this time); at the sending time of the reference signal, an update message for the beam indication of the reference signal once appeared, but the update message determined according to the update message The second beam indication has not yet taken effect (the first beam indication determined according to the configuration information is actually taking effect at this time); at the time when the trigger message of the reference signal is sent, an update message for the beam indication of the reference signal has appeared, and according to The second beam indication determined for the update message has taken effect (the second beam indication actually taking effect at this time).
  • the transceiver 810 can be controlled to send the aperiodic uplink reference signal in a manner similar to that in the prior art, that is, according to the actually effective beam indication, prepare the sending beam and send the non-periodic uplink reference signal.
  • the periodic uplink reference signal will not be repeated here.
  • the transceiver 810 when the transceiver 810 has the corresponding processing capability, the transceiver 810 itself can also make a judgment about the beam indication collision scenario when necessary, and appropriately send the aperiodic uplink reference signal according to the judgment result. processing is not repeated here.
  • the transceiver 820 may not perform the process of reading the beam indication validation information from the storage unit 840.
  • the electronic device 800 has a poor storage capability for beam indications (only one beam indication can be stored), and the capability information generated by the generating unit 810 is 10, indicating that only the second beam indication determined according to the update message is supported.
  • the transceiver 820 of the electronic device 800 needs to send an aperiodic uplink reference signal to the network-side device, regardless of whether a beam indication conflict occurs, it can directly read the stored beam indication from the storage unit 840 and prepare A beam is sent for reference signal transmission.
  • the capability information generated by the generating unit 810 is 10, indicating that only the beam indications determined according to the configuration information are supported.
  • the control unit 830 can determine whether the beam indication conflict of the reference signal occurs.
  • the transceiver 820 may be controlled to prepare a beam for transmission and transmit a reference signal based on the first beam indication determined according to the configuration information.
  • the electronic device on the user equipment side can generate and report capability information about the beam indications it supports.
  • the scenario determines the beam indication that will actually take effect, so that when a subsequent conflict scenario occurs, corresponding processing can be performed according to the predetermined beam directive that will actually take effect.
  • an example of the RRC configuration information for Ap-SRS received by the transceiver 820 of the electronic device 800 may include an SRS whose one or more resource types (ResourceType) are aperiodic (aperiodic) pre-configured by the network-side device for the electronic device Resource set (SRS-ResourceSet) configuration information.
  • ResourceType resource types
  • SRS-ResourceSet electronic device Resource set
  • a beam indication represented by the RRC parameter SpatialRelationInfo may be included for each SRS resource (each Ap-SRS reference signal), which may be used as the first embodiment of the present disclosure
  • the electronic device 800 may be configured to receive configuration information of such an SRS resource set in advance through the transceiver 820 and store it in the storage unit 840 of the electronic device 800 .
  • an example of the MAC CE update message received by the transceiver 820 of the electronic device may include the MAC CE update message shown in FIG.
  • the 1-bit Fi field may be used as an example of the second beam indication for the corresponding Ap-SRS included in the MAC CE Update message.
  • the electronic device 800 may be configured to receive the above-mentioned MAC CE update message through the transceiver 820, and may perform corresponding update processing for the aperiodic SRS resource set specified by the aperiodic SRS resource set ID field of the MAC CE update message.
  • the storage unit 840 can only store one beam indication for each Ap-SRS (each SRS resource), then as the beam indication for each Ap-SRS, The storage unit 840 will only store the corresponding resource ID (second beam indication) in the MAC CE update message to replace the SpatialRelationInfo parameter (first beam indication) of the corresponding SRS resource in the previously stored configuration information of the SRS resource set ( That is, the storage unit 840 deletes the first beam indication indicated by the SpatialRelationInfo parameter of the corresponding SRS resource).
  • the storage unit 840 can store multiple beam indications for each Ap-SRS (each SRS resource), then each Ap-SRS beam after updating indication, the storage unit 840 will store the corresponding resource ID (second beam indication) in the MAC CE update message, but at the same time retain the SpatialRelationInfo parameter (first beam indication) of the corresponding SRS resource in the previously stored configuration information of the SRS resource set ).
  • the electronic device 800 After the second beam indication determined according to the MAC CE update message takes effect, under normal circumstances (scenarios where there is no beam indication conflict), the electronic device 800 will prepare to send based on the beam indication when it needs to send an aperiodic uplink reference signal beam and transmit. However, if there is a scenario of conflicting beam indications, the electronic device 800 will prepare to transmit the beam according to the actually effective beam indication and transmit the reference signal according to the previously described manner.
  • the DCI trigger message received by the transceiver 820 of the electronic device may include an SRS-Request (SRS-Request) field as information specifying an aperiodic SRS resource set.
  • SRS-Request SRS-Request
  • the transceiver 820 may determine the triggered SRS resource set according to the SRS request field.
  • the transceiver 820 may read, for example, each SRS resource in the configuration information of the SRS resource set stored in the storage unit 840 The SpatialRelationInfo parameter (the first beam indication), and according to the beam indication, prepare the transmission beam and transmit the reference signal.
  • the transceiver 820 For example, the corresponding resource ID in the MAC CE update message such as shown in FIG. 5 can be read from the storage unit 840 as the updated beam indication.
  • the electronic device 800 will prepare to transmit beams and transmit reference signals according to the actually effective beam indications according to the previously described manner.
  • the resource set (eg SRS resource set) triggered by the DCI trigger message received by the electronic device 800 includes multiple aperiodic uplink reference signals such as Ap-SRS, the DCI
  • the sending time of the trigger message is before the expected effective time of the second beam indication updated by, for example, the MAC CE update message, and among the multiple reference signals corresponding to the resource set triggered by the DCI trigger message, the sending time of a part of the reference signals Before the expected effective time indicated by the second beam, another part of the reference signal is sent after the expected effective time indicated by the second beam, such as the scenario shown in FIG. 7 .
  • the electronic device 800 on the user equipment side has pre-generated and reported capability information in the form of 11 to the network side device, indicating that it supports two beam indications; and also The information about the beam indication to be actually valid in the beam indication conflict scenario (beam indication validation message) has been received in advance from the network side device and stored in the storage unit 840 .
  • the electronic device 800 can first determine whether the occurrence of the the beam indication collision scenario.
  • the electronic device 800 can determine that no beam indication conflict has occurred.
  • the transceiver 810 may, in a manner similar to the prior art, based on the initial first beam indication determined according to the configuration information (eg, such as specified by the SRS request field in the DCI trigger message having the format shown in FIG. 6 )
  • the parameter SpatialRelationInfo of the corresponding SRS resource in that SRS resource set is used to receive the reference signal.
  • the transmission time of the DCI trigger message is before the expected effective time indicated by the second beam, and the transmission time of the two reference signals themselves is at the time indicated by the second beam.
  • the electronic device 800 can therefore determine that a beam indication conflict occurs.
  • the updated second beam indication (for example, the corresponding resource ID in the MAC CE update information shown in FIG. 5 ) has taken effect, so that in the prior art, the user equipment cannot determine which beam it should use to indicate that it is ready to send a beam.
  • the transceiver 810 of the electronic device 800 in this embodiment may, for example, under the control of the control unit 430, read the beam indication validation information stored in the storage unit 440, and according to the read information, based on the actual The active beam indicates that the reference signal is to be received.
  • the transceiver 810 may base on the first beam indication determined according to the configuration information (for example, the corresponding SRS resource in the SRS resource set specified by the SRS request field in the DCI trigger message)
  • the parameter SpatialRelationInfo prepares the transmit beams of Ap-SRS Tx3 and Ap-SRS Tx4 and sends them;
  • the transceiver 810 can indicate the second beam based on the second beam indication determined according to the MAC CE update message (for example, the corresponding resource IDs in the MAC CE update information shown in FIG. 5 ) prepare and transmit the transmission beams of Ap-SRS Tx3 and Ap-SRS Tx4.
  • the DCI trigger message includes information specifying a resource set of aperiodic uplink reference signals, and the resource set includes multiple aperiodic uplink reference signals, as long as the trigger message is sent at the time Before the expected effective time of the second beam indication, and the sending time of the current aperiodic uplink reference signal is after the expected effective time of the second beam indication, it can be recognized that the beam indication of the current reference signal collides, so as to appropriately
  • the correlation processing is performed according to the predetermined beam indication that will actually take effect, regardless of the transmission time of other reference signals in the resource set.
  • the first beam indication, the second beam indication and the configuration information associated therewith for the aperiodic uplink reference signal in the first embodiment of the present disclosure are described.
  • Specific examples of the update message and trigger message and example processing that can be performed by the electronic device 800 on the user equipment side Those skilled in the art can understand that the above examples and their details do not limit the embodiments of the present disclosure.
  • those skilled in the art can apply the electronic device 800 of this embodiment to any appropriate scenario, as long as the beam indications of the aperiodic uplink reference signals collide in the scenario (so that it may not be possible to determine the actual effective beam indication) whether it is the initial beam indication or the updated beam indication).
  • the Ap-CSI-RS is used as an example of the downlink aperiodic reference signal, and the second MAC CE selection message and the DCI trigger message are described with reference to FIG. 9 and FIG. 10 .
  • FIGS. 9 and 10 are schematic diagrams showing examples of scenarios in which transmission resource indications collide, each schematically showing that a second MAC CE selection message updates a set of transmission resource indications (such as a selected Ap-CSI-RS)
  • a set of aperiodic trigger states (Aperiodic trigger state)
  • each aperiodic trigger state is associated with the corresponding Ap-CSI-RS resource set, therefore, such aperiodic trigger state is also called transmission resource indication in this paper, after A detailed description will be given herein in conjunction with specific examples) and an example timeline for triggering the Ap-CSI-RS by the DCI trigger message. Note that, although not shown in the figures, before the timelines shown in FIGS.
  • the network-side device NW has, for example, performed initial configuration for Ap-CSI-RS through RRC signaling, that is, has already sent to the UE configuration information of multiple transmission resource indications, and a selection message (first MAC CE selection message) for selecting the first set of transmission resource indications among the configured multiple transmission resource indications has been sent to the UE through the MAC CE and The message is already in effect.
  • the UE may determine a corresponding, for example, a transmission resource indication among the first group of transmission resource indications selected by the first MAC CE selection message according to the DCI trigger message, and based on the transmission resource indication, for example, according to the DCI
  • the Ap-CSI-RS from the NW is received at the transmission time determined by the trigger message.
  • the UE when the UE receives the second MAC CE selection for selecting the second group of transmission resource indications from the multiple preconfigured transmission resource indications, as shown in FIG. 9 and FIG. 10 , message, the UE performs a series of processing similar to that previously described with reference to FIG. 2 and FIG. 3 , for example, with a time length of 3m, for example, replaces the first set of transmission resource indications with the second set of transmission resource indications (thus the 3ms time can be regarded as the expected effective time of the second set of transmission resource indications updated by the second MAC CE selection message).
  • the UE may determine, for example, a corresponding transmission resource indication from the second group of transmission resource indications according to the DCI trigger message, and based on the DCI trigger message
  • the transmission resource indicates that the Ap-CSI-RS from the NW is received at the transmission time determined eg from the DCI trigger message.
  • the time lines of the DCI trigger message and the second MAC CE selection message do not overlap, so the transmission resource indication actually followed by the UE (the actual effective transmission resource indication) is clear, and there is no transmission resource indication conflict. or confusion.
  • the DCI trigger message appears before the effective time of the second set of transmission resource indications selected by the second MAC CE selection message, and the The transmission of the triggered Ap-CSI-RS occurs after the effective time of the second group of transmission resource indications, and the conflict of transmission resource indications occurs, so that the network side cannot determine which group of transmission resource indications actually takes effect for the UE, There is also no way of knowing on which transmission resource indication the Ap-CSI-RS should be sent to the UE.
  • Fig. 11 is a block diagram showing one configuration example of the electronic device on the network side according to the second embodiment of the present disclosure.
  • the electronic device 1100 may include a transceiver 1110 and a determination unit 1120 and an optional control unit 1130 for controlling the overall operation of the electronic device 800 and for storing various data and programs required by the electronic device 1100 storage unit 1140, etc.
  • each unit of the electronic device 1100 may be included in the processing circuit.
  • the electronic device 1100 may include either one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the transceiver 1110 may receive the capability information reported by the user equipment regarding the transmission resource indication of the aperiodic downlink reference signal such as Ap-CSI-RS, and optionally store it in the storage unit 1140 .
  • the determining unit 1120 may determine, according to the capability information about the transmission resource indication of the aperiodic downlink reference signal, the transmission resource indication that will actually take effect in the scenario where the transmission resource indication collides.
  • the determining unit 1120 may determine, according to the above-mentioned capability information, a first group of transmission resource indications and a second group of transmission resource indications in the multiple transmission resource indications of the reference signal determined according to the first selection message and the second selection message respectively.
  • a group of transmission resource indications that will actually take effect wherein the sending time of the trigger message for triggering the reference signal is after the expected effective time of the first group of transmission resource indications and after the second transmission resource indication. before the expected effective time of the group transmission resource indication, and the sending time of the reference signal is after the expected effective time of the second group transmission resource indication.
  • the determining unit 1120 may generate information about the determined set of transmission resource indications that will actually take effect (also referred to herein as transmission resource indication validation information when appropriate), and store the information in the storage unit 1140 .
  • Examples of the above trigger message and the first selection message and the second selection message may include the DCI trigger message and the MAC CE selection message described above with reference to FIGS. 9 and 10 .
  • the aperiodic reference downlink signal may be pre-configured by the electronic device for the user equipment through RRC signaling, such as Ap-CSI-RS pre-configured through RRC signaling.
  • the transceiver 1110 may be configured to send configuration information (RRC configuration information) for multiple transmission resource indications of aperiodic downlink reference signals to the user equipment in advance through RRC signaling.
  • RRC configuration information configuration information
  • Each transmission resource indication may be associated with one or more resource sets for aperiodic downlink reference signals, and each resource set may include one or more aperiodic downlink reference signals.
  • An example of the transmission resource indication adopted in this embodiment may include an aperiodic trigger state (Aperiodic Trigger State).
  • An example of the configuration information indicated by the plurality of transmission resources may include an aperiodic trigger state list (Aperiodic Trigger State List) for, eg, 128 aperiodic trigger states.
  • the configuration information in the aperiodic trigger state list may include a parameter ResourceSet for each aperiodic trigger state to specify the same value as the aperiodic trigger state.
  • the nzp-CSI-RS resource set associated with the trigger state may also include, for example, an optional parameter qcl-info representing spatial quasi-colocation as a beam indication to indicate the transmission of each resource in the nzp-CSI-RS resource set beam.
  • the transceiver 1110 may be further configured to send a selection message ( MAC CE selection message), the MAC CE selection message is used to specify a group of transmission resource indications selected by it among the multiple pre-configured transmission resource indications.
  • the MAC CE selection message may include information indicating whether each transmission resource indication (aperiodic trigger state) is selected to specify the selected A set of (for example, a maximum of 63) aperiodic trigger states; the user equipment that receives the MAC CE selection message will know that this set of aperiodic trigger states is currently reserved.
  • the transceiver 1110 may also be configured to send a trigger message (DCI trigger message) to the user equipment through the DCI of the physical layer when the aperiodic downlink reference signal needs to be sent, where the DCI trigger message preferably includes a Information specifying the transmission resource indication to be used in a set of transmission resource indications (also referred to herein as a set of transmission resource indications that are actually valid).
  • the DCI trigger message may include the sequence number of the designated transmission resource indication in a set of transmission resource indications currently reserved.
  • the DCI trigger message can specify the 63 aperiodic trigger states by, for example, one of the sequence numbers 1 to 63 corresponding one of the states.
  • Such a DCI trigger message enables the user equipment to prepare to receive the aperiodic downlink reference signal associated with the transmission resource indication specified by the message.
  • the user equipment may prepare to receive the resource set associated with the aperiodic trigger state specified by the DCI trigger message (eg, the configuration information of the aperiodic trigger state in the configuration information of the aperiodic trigger state).
  • the nzp-CSI-RS resource set specified by the parameter ResourceSet can be based on the beam indication specified by the aperiodic trigger state (for example, the beam indication specified by the parameter qcl-info in the configuration information of the aperiodic trigger state)
  • the above-mentioned RRC configuration information, DCI trigger message and MAC CE selection message can be generated by the processing of the control unit 1130 of the electronic device 1100, and the transceiver 1110 can be controlled to send them. Examples give further description.
  • the sending time of the trigger message for example, the DCI trigger message
  • the first selection message for example, the first MAC CE selection message
  • the sending time of the reference signal is within the time indicated by the second group of transmission resources. Scenarios after the expected effective time are identified as scenarios in which transmission resource indications collide.
  • the user equipment since the sending time of the DCI trigger message is before the expected effective time indicated by the second transmission resource, which is determined according to the second selection message, the user equipment may have already switched from the first selection message to the user equipment based on the DCI trigger message.
  • the first group of transmission resources determined by the message determine the first transmission resource indication and make corresponding preparations (for example, including but not limited to preparing a receiving beam according to the beam indication specified by the first transmission resource indication) so as to receive the reference signal; at the same time, because The sending time of the reference signal is after the expected effective time of the second group of transmission resource indications.
  • the UE determines the second transmission from the second group of transmission resources based on the DCI trigger message immediately after the second group of transmission resource indications takes effect.
  • the resources are indicated and prepared accordingly for receiving reference signals.
  • the determining unit 1120 may determine, in advance, based on the capability information received by the transceiver 1110, a set of transmission resource indications that will actually take effect in the scenario of conflicting transmission resource indications (that is, Determine which set of the first set of transmission resource indications and the second set of transmission resource indications will actually be in effect at that time), and may generate information about the determined set of transmission resource indications that will actually be in effect (also referred to herein as appropriate It is called transmission resource indication validation information) and is stored in the storage unit 1140 for use by the electronic device 800 itself and/or sent to the user equipment. In this way, when a transmission resource indication conflict scenario such as shown in FIG. 9 and FIG. 10 occurs subsequently, the electronic device 800 and/or the user equipment on the network side can know a set of transmission resource indications that are actually in effect and transmit data according to the set of transmission resource indications. The resource indication is processed accordingly.
  • the capability information about the transmission resource indication of the aperiodic downlink reference signal received by the transceiver 1110 may be reported by the user equipment to the electronic device 800 after the initial access procedure.
  • the capability information may indicate the transmission resource indication supported by the user equipment, for example, may have a length of 2 bits, wherein 01 indicates that the user equipment only supports the first group of transmission resource indications determined according to the first selection message, and 10 indicates that the user equipment only supports the first group of transmission resource indications determined according to the first selection message.
  • the second group of transmission resource indications determined according to the second selection message is supported, 11 indicates that the user equipment supports the above two groups of transmission resource indications at the same time, and 00 is used as a reserved bit.
  • Such capability information is appropriately generated by the user equipment according to its own situation (for example, the storage capacity for transmission resource indication, the time required for preparations to receive reference signals, etc.), which will be discussed later in the section about the configuration of the user equipment. The generation of capability information is further described.
  • the determining unit 1120 may be configured to support only one of the first group of transmission resource indications determined according to the first selection message and the second group of transmission resource indications determined according to the second selection message when the capability information indicates
  • the group transmission resource indication is determined as a group transmission resource indication that will actually take effect. For example, when the capability information is 01, the determining unit 1120 may determine that the first group of transmission resource indications will actually take effect, and when the capability information is 10, determine that the second group of transmission resource indications will actually take effect.
  • the determining unit 1120 may be further configured to, in the case that the capability information indicates that both the first group of transmission resource indications determined according to the first selection message and the second group of transmission resource indications determined according to the second selection message are supported, determine one of them
  • the group transmission resource indication is determined as a group of transmission resource indications that will actually take effect.
  • the determining unit 1120 may determine that one of the foregoing two sets of transmission resource indications is a set of transmission resource indications that will actually take effect.
  • the determining unit 1120 may, for example, randomly determine one of the two, or may determine the preferred one of the two according to a preset setting.
  • the determining unit 1120 may be further configured to generate information about the determined set of transmission resource indications that will actually take effect, and store the information in the storage unit 1140 as a transmission resource indication validating message.
  • the transmission resource indication validation information can be represented by, for example, 1 bit, wherein, 0 indicates that the first group of transmission resource indications that will actually take effect are determined according to the first selection message, and 1 indicates that the transmission resource indications that will actually take effect are determined according to the second selection message.
  • the second set of transmission resource indications can be represented by, for example, 1 bit, wherein, 0 indicates that the first group of transmission resource indications that will actually take effect are determined according to the first selection message, and 1 indicates that the transmission resource indications that will actually take effect are determined according to the second selection message.
  • the transceiver 1110 may be configured to, for example, read the above-mentioned transmission resource indication validation information from the storage unit 1140 when needed, and based on the corresponding transmission resource indications in the group of transmission resource indications specified by the information, specified according to the DCI trigger message.
  • the transmission resource indication is used to send aperiodic downlink reference signals to the user equipment.
  • the transceiver 1110 when the read transmission resource indication validation information is 0, the transceiver 1110 sends an aperiodic downlink reference signal based on the corresponding transmission resource indication in the first group of transmission resource indications and specified according to the DCI trigger message, and sends the aperiodic downlink reference signal in this When the information is 1, the aperiodic downlink reference signal is sent based on the corresponding transmission resource indication in the second group of transmission resource indications and specified according to the DCI trigger message.
  • the configuration information of the transmission resource indication includes a beam indication for the resource set associated with the transmission resource indication, according to the actually valid transmission resource indication, the transceiver 1110 may, for example, use the beam indication associated with the transmission resource indication.
  • the beam of the resource set indicates the designated transmit beam, and transmits the aperiodic downlink reference signal.
  • control unit 1130 may be configured to, when an aperiodic downlink reference signal needs to be sent to the user equipment, determine whether a scenario in which the transmission resource indication of the reference signal collides occurs.
  • the control unit 1130 may only control the transceiver 1110 to read the validation information pre-stored in the storage unit 1140 only when judging that a conflict of transmission resource indications occurs, so that the transceiver 1110 can actually take effect according to the specified information.
  • a set of transmission resource indications, and the aperiodic downlink reference signal is sent based on the corresponding transmission resource indications specified in the set of transmission resource indications based on the DCI trigger message.
  • control unit 1130 determines that there is no transmission resource indication conflict scenario, it can control the transceiver 1110 to send an aperiodic downlink reference signal (for example, from the current standby and previously selected according to the MAC CE selection message) in a manner similar to that in the prior art.
  • an aperiodic downlink reference signal for example, from the current standby and previously selected according to the MAC CE selection message
  • a corresponding transmission resource indication is determined based on the DCI trigger message, and an aperiodic downlink reference signal is sent accordingly), which is not repeated here.
  • the judgment of the control unit 1130 regarding the transmission resource indication conflict scenario may be based on the sending time of the trigger message triggering the aperiodic downlink reference signal, the sending time of the reference signal, and the first and second groups determined according to the first and second selection messages.
  • the control unit 1130 may determine the above-mentioned times and the relationship between the respective times in various ways.
  • the sending time of the reference signal may be determined by the sending time of the trigger message of the aperiodic reference signal and the configuration information of the aperiodic reference signal (for example, the time offset between the reference signal specified by the configuration information of the reference signal and the sending time of the trigger message) move) and so on to confirm.
  • the expected effective time of the first and second groups of transmission resource indications may be, for example, based on the sending time of the first and second selection messages and the first and second groups of transmission resource indications determined according to the first and second selection messages
  • the length of the time period required to take effect (such as 3ms, for example, the length of the time period can be known in advance by the electronic device on the network side) is determined.
  • control unit 1130 may be configured to determine according to the second selection message only when the sending time of the trigger message triggering the aperiodic uplink reference signal is after the expected effective time of the first group of transmission resource indications determined according to the first selection message Before the expected effective time of the second group of transmission resource indications, and the sending time of the reference signal is after the expected effective time of the second group of transmission resource indications, it is determined that a transmission resource indication conflict occurs.
  • the control unit 1130 may determine all other scenarios as scenarios in which beam indication collision does not occur.
  • the granularity of the scene in which the control unit 1130 determines the collision of beam indications may be, for example, a transmission resource indication.
  • the DCI trigger message specifies, for example, one transmission resource indication among the alternative set of transmission resource indications selected by the MAC CE selection message to trigger all reference signals ( For example, each nzp-CSI-RS in the nzp-CSI-RS resource set associated with the transmission resource indication), that is, an alternative set of transmission resource indications determined by the MAC CE selection message is the basis of the DCI trigger message (with the In contrast, the MAC CE update message in the first embodiment is used to update the beam indication of the reference signal, but does not change the triggered reference signal itself).
  • the DCI trigger message has specified the alternative first set of transport resources according to the first MAC CE selection message
  • the first transport resource indication has been specified and the sending of the resource set associated with the first transport resource indication has started (for example, the first nzp-CSI-RS in each nzp-CSI-RS in the nzp-CSI-RS resource set associated with the first transmission resource indication), even if this process is selected according to the second MAC CE
  • the alternative second set of transmission resource indications selected by the message takes effect, and will not change other reference signals of the resource set associated with the first transmission resource indication that have been triggered to be sent (for example, the first transmission resource Indicate other nzp-CSI-RS in each nzp-CSI-RS in the associated nzp-CSI-RS resource set).
  • the control unit 1130 judges a scenario in which the transmission resource indication collides according to the transmission resource indication instead of each reference signal associated with the transmission resource indication.
  • the control unit 1130 may be configured to: according to the second selection message, only when the sending time of the trigger message triggering the aperiodic uplink reference signal is after the expected effective time of the first group of transmission resource indications determined according to the first selection message Before the determined expected effective time of the second group of transmission resource indications, and the sending times of the multiple aperiodic downlink reference signals included in the resource set associated with the transmission resource indication specified by the trigger message are all within the second group of transmission resource indications Only after the expected effective time of , determine the scenario where the transmission resource indication conflict occurs; the control unit 1130 may determine all other scenarios as the scenario where the beam indication conflict does not occur.
  • the control unit 1130 uses the transmission time of the first reference signal among these reference signals to be different. whichever prevails, and uniformly judges whether a transmission resource indication conflict occurs.
  • the following scenarios can be considered: at the sending time of the first reference signal (ie, the transmission resource indication associated with the transmission resource indication specified by the trigger message) The sending time of the first reference signal of the resource set, the same below), the second selection message for the transmission resource indication of the reference signal has not appeared (at this time, the first group of transmission resource indications determined according to the first selection message actually takes effect.
  • the transceiver 1110 when the transceiver 1110 has the corresponding processing capability, the transceiver 1110 can also make a judgment on the scenario of conflicting transmission resource indications when necessary, and appropriately perform the receiving aperiodic downlink reference signal according to the judgment result. processing, which will not be repeated here.
  • the transceiver 1110 may be further configured to send information about a set of transmission resource indications to be actually valid (transmission resource indication validation information) to the user equipment through RRC signaling.
  • the capability information from the user equipment indicates that the user equipment only supports the first group of transmission resource indications determined according to the first selection message or the second group of transmission resource indications determined according to the second selection message, for example, through 2-bit information 01 or 10
  • the electronic device 1100 may not send the transmission resource indication validation information to the user equipment.
  • the transceiver 1110 of the electronic device 1100 can send the transmission resource indication validation information to the user equipment irrespective of the content of the received capability information, so that the user equipment can prepare accordingly when needed Receive aperiodic downlink reference signals.
  • the electronic device on the network side can determine, in advance, based on the capability information reported by the user equipment, the transmission resource indication that will actually take effect in the case of a conflict between the transmission resource indications of the aperiodic downlink reference signals, so that in the subsequent When a conflict scenario occurs, corresponding processing can be performed according to the predetermined transmission resource indication that will actually take effect.
  • nzp-CSI-RS as an example of an aperiodic downlink reference signal
  • the transmission resource indication for aperiodic downlink reference signal that can be used in the first embodiment of the present disclosure and the configuration information and selection message associated therewith will be described and specific examples of trigger messages, and the example processing that can be performed by the electronic device of this embodiment is described in conjunction with these examples.
  • examples of transmission resource indications employed in this embodiment may include CSI aperiodic trigger states, where each CSI aperiodic trigger state may be associated with a non-zero power CSI-RS (nzp-CSI-RS) Resource sets of periodic downlink reference signals are associated, and each nzp-CSI-RS resource set may include one or more nzp-CSI-RSs.
  • nzp-CSI-RS non-zero power CSI-RS
  • An example of such configuration information indicated by transmission resources may include a CSI-AperiodicTriggerStateList (CSI-AperiodicTriggerStateList).
  • CSI-AperiodicTriggerStateList For each of a plurality of (eg, 128) CSI aperiodic trigger states (CSI-AperiodicTriggerState), for example, the nzp-CSI-RS reference signal used for measurement can be combined with the reference signal using the reference
  • the CSI reports that are reported after signal measurement are configured in association.
  • an association configuration for, for example, associating nzp-CSI-RS with CSI reporting may be included information (CSI-AssociatedReportConfigInfo).
  • the associated configuration information may include a parameter ResourceSet for specifying a resource set to specify a nzp-CSI-RS resource set associated with the CSI aperiodic trigger state, and may also include optional, as The parameter qcl-info of the beam indication is used to indicate the transmission beam of each resource in the nzp-CSI-RS resource set.
  • CSI-AperiodicTriggerState CSI-AperiodicTriggerState
  • the DCI trigger message is uniformly triggered. That is, a DCI trigger message is used to trigger the user equipment to send a group of nzp-CSI-RS signals associated with the CSI aperiodic trigger state.
  • the electronic device 1100 of this embodiment may, for example, generate RRC configuration information such as the above-mentioned CSI-AperiodicTriggerStateList (CSI-AperiodicTriggerStateList) through appropriate processing through its control unit 1130, and send it to the user equipment through the transceiver 1110 in advance.
  • RRC configuration information such as the above-mentioned CSI-AperiodicTriggerStateList (CSI-AperiodicTriggerStateList) through appropriate processing through its control unit 1130, and send it to the user equipment through the transceiver 1110 in advance.
  • the MAC CE selection message used to select a set of spare transmission resource indications among the multiple preconfigured transmission resource indications may include, for example, information used to indicate whether each transmission resource indication is selected, so as to specify the selected transmission resource indication.
  • Oct1 of the MAC CE selection message may include a 1-bit D field to indicate which configuration information the involved CSI aperiodic trigger state list (CSI-AperiodicTriggerStateList) is in (for example, as described above).
  • CSI-AperiodicTriggerStateList or a similarly configured AperiodicTriggerStateListForDCI-Format0-2).
  • Oct2 to OctN of the MAC CE selection message it includes the information used to indicate whether the i-th aperiodic trigger state (Aperiodic Trigger State) in the pre-configured CSI aperiodic trigger state list (for example, CSI-AperiodicTriggerStateList) is selected, 1-bit information Ti, when the value of Ti is 1, it indicates that the ith aperiodic trigger state is selected , and when the value of Ti is 0, it indicates that the ith aperiodic trigger state is not selected.
  • Aperiodic Trigger State the i-th aperiodic trigger state in the pre-configured CSI aperiodic trigger state list (for example, CSI-AperiodicTriggerStateList) is selected
  • 1-bit information Ti when the value of Ti is 1, it indicates that the ith aperiodic trigger state is selected , and when the value of Ti is 0, it indicates that the ith aperiodic trigger state is not selected.
  • the electronic device 1100 of this embodiment may, for example, generate the above-mentioned MAC CE selection message through appropriate processing through its control unit 1130, and send it to the user equipment through the transceiver 1110 when necessary.
  • the scenario where the electronic device 1100 needs to send the MAC CE selection message may be that the number of pre-configured aperiodic trigger states (for example, 128) is greater than the DCI-triggered candidate range (for example, 63).
  • the aperiodic triggering states selected by the MAC CE selection message may be saved as backup aperiodic triggering states, for example, so that when the DCI triggering message is subsequently received, the aperiodic triggering states can be saved from these aperiodic triggering states.
  • the alternate aperiodic trigger state is specified.
  • the DCI trigger message for triggering the aperiodic downlink reference signal preferably includes information for specifying the transmission resource indication to be used in the current standby group of transmission resource indications.
  • the DCI trigger message may Include the sequence number of the designated transmission resource indication in the currently spare set of transmission resource indications.
  • the CSI request (SRS-Request) field may be, for example, a maximum of 6 bits, which is used, for example, in a currently spare set of, for example, a maximum of 63 aperiodic trigger states (Aperiodic Trigger State) selected by the MAC CE selection message,
  • One of the 63 aperiodic trigger states is designated with a corresponding one of sequence numbers 1 to 63.
  • Sequence number 0 may, for example, indicate no triggering.
  • the electronic device 1100 of this embodiment can generate a DCI trigger message with the above CSI request field through appropriate processing, for example, through its control unit 1130, and send it to the user equipment through the transceiver 1110 when nzp-CSI-RS needs to be triggered.
  • the user equipment When the user equipment receives the DCI trigger message with the above CSI request field sent by the electronic device 1100, it can determine the triggered CSI aperiodic trigger state among the current standby group of CSI aperiodic trigger states according to the field, And can prepare to receive the resource set associated with the aperiodic trigger state specified by the DCI trigger message (for example, the nzp-CSI-RS resource set specified by the parameter ResourceSet in the configuration information of the aperiodic trigger state), and optionally The ground may prepare a receiving beam to receive the aperiodic downlink reference signals according to the beam indication specified by the aperiodic trigger state (eg, the beam indication specified by the parameter qcl-info in the configuration information of the aperiodic trigger state).
  • the resource set associated with the aperiodic trigger state specified by the DCI trigger message for example, the nzp-CSI-RS resource set specified by the parameter ResourceSet in the configuration information of the aperiodic trigger state
  • the ground may
  • the transmission resource indication for the aperiodic downlink reference signal and its association in the second embodiment of the present disclosure are described configuration information, specific examples of selection messages and trigger messages, and example processing that the electronic device 1100 can perform.
  • configuration information specific examples of selection messages and trigger messages
  • example processing that the electronic device 1100 can perform.
  • FIG. 13 is a block diagram showing one configuration example of an electronic device on the user equipment side according to the second embodiment of the present disclosure.
  • the electronic device 1300 may include a generating unit 1310 and a transceiver 1320 and an optional control unit 1330 for controlling the overall operation of the electronic device 1300 and for storing various data and programs required by the electronic device 1300 storage unit 1340, etc.
  • each unit of the electronic device 1300 may be included in the processing circuit.
  • the electronic device 1300 may include either one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the electronic device 1300 may include, for example, the user device itself, or may be implemented as another electronic device attached to the user device.
  • the generating unit 1310 may generate capability information regarding a transmission resource indication of an aperiodic downlink reference signal such as Ap-CSI-RS.
  • the transceiver 1320 may report the capability information generated by the generating unit 1310 to the network-side device.
  • the capability information can be used by the network-side device to determine the transmission resource indication that will actually take effect in the scenario where the transmission resource indication conflicts. More specifically, the capability information may be used to determine a first group of transmission resource indications and a second group of transmission resource indications among the plurality of transmission resource indications of the reference signal determined according to the first selection message and the second selection message, respectively. Among the indications, a group of transmission resource indications that will actually take effect, wherein the sending time of the trigger message for triggering the reference signal is after the expected effective time of the first group of transmission resource indications and after the second group of transmissions before the expected effective time of the resource indication, and the sending time of the reference signal is after the expected effective time of the second group of transmission resource indications.
  • Examples of the above trigger message and the first selection message and the second selection message may include the DCI trigger message and the MAC CE selection message described above with reference to FIGS. 9 and 10 .
  • the aperiodic reference downlink signal may be pre-configured by the network side device for the electronic device 1300 through RRC signaling.
  • the transceiver 1310 may be configured to receive configuration information (RRC configuration information) of multiple transmission resource indications for aperiodic downlink reference signals from the network-side UE in advance through RRC signaling and may store it in the storage unit 1340 middle.
  • RRC configuration information configuration information
  • Each transmission resource indication may be associated with one or more resource sets for aperiodic downlink reference signals, and each resource set may include one or more aperiodic downlink reference signals.
  • An example of the transmission resource indication adopted in this embodiment may include an aperiodic trigger state (Aperiodic Trigger State).
  • An example of the configuration information indicated by the plurality of transmission resources may include an aperiodic trigger state list (Aperiodic Trigger State List) for, eg, 128 aperiodic trigger states.
  • nzp-CSI-RS non-zero power CSI-RS
  • a parameter ResourceSet can be included for each aperiodic trigger state to specify the relationship with the aperiodic trigger state.
  • the associated nzp-CSI-RS resource set and may also include, for example, an optional parameter qcl-info representing spatial quasi-co-location as a beam indication, to indicate the transmission beam of each resource in the nzp-CSI-RS resource set.
  • the transceiver 1310 may be further configured to receive a selection message (MAC CE selection message) sent from the network side user equipment through the MAC CE for selecting a set of alternate transmission resource indications from a plurality of preconfigured transmission resource indications ), the MAC CE selection message is used to specify a group of transmission resource indications selected by it among the multiple preconfigured transmission resource indications.
  • the MAC CE selection message may include information indicating whether each transmission resource indication (aperiodic trigger state) is selected to specify the selected A set of (eg up to 63) aperiodic trigger states.
  • the transceiver 1310 When the transceiver 1310 receives the MAC CE selection message, under the control of the control unit 1330, it can read a set of transmission resource indications (aperiodic trigger state) specified by the message from the RRC configuration information and store it in the storage In unit 1340, it is used as an alternative transmission resource indication of the aperiodic downlink reference signal, that is, a set of spare transmission resource indications.
  • aperiodic trigger state aperiodic trigger state
  • the transceiver 1310 may also be configured to receive a trigger message (DCI trigger message) sent from the network side UE through the DCI of the physical layer for triggering the aperiodic downlink reference signal, where the DCI trigger message preferably includes a Information for specifying a transmission resource indication to be used in a set of transmission resource indications currently reserved.
  • the DCI trigger message may include the sequence number of the designated transmission resource indication in a set of transmission resource indications currently reserved.
  • the DCI trigger message can specify the 63 aperiodic trigger states by, for example, one of the sequence numbers 1 to 63 corresponding one of the states.
  • the above-mentioned information included in the DCI trigger message enables the transceiver 1310 to select a set of transmission resource indications (that is, the previously valid, MAC CE selection message selected by the MAC CE selection message) stored in the storage unit 1340 according to the DCI trigger message.
  • the corresponding transmission resource indication is determined from the set of transmission resources of the TXR, and the aperiodic downlink reference signal associated with the transmission resource indication can be prepared to receive.
  • the transceiver 1310 may prepare to receive a resource set associated with the aperiodic trigger state specified by the DCI trigger message (eg, in the configuration information of the aperiodic trigger state) nzp-CSI-RS resource set specified by the parameter ResourceSet), and can be based on the beam indication specified by the aperiodic trigger state (for example, specified by the parameter qcl-info() in the configuration information of the aperiodic trigger state beam indication) to prepare the receive beam to receive these aperiodic downlink reference signals.
  • the sending time of the trigger message for example, the DCI trigger message
  • the first selection message for example, the first MAC CE selection message
  • the sending time of the reference signal is within the time indicated by the second group of transmission resources. Scenarios after the expected effective time are identified as scenarios in which transmission resource indications collide.
  • the electronic device on the user equipment side may compare the data based on the DCI trigger message. Determine the first transmission resource indication early from the first group of transmission resource indications (alternative transmission resource indications that have not been updated) stored in the storage unit and make corresponding preparations (for example, including but not limited to according to the first transmission resource indication).
  • the electronic device on the user equipment side may also be immediately after the first After the two sets of transmission resource indications take effect, the second transmission resource indication is determined from the second set of transmission resource indications (updated alternative transmission resource indications) stored in the storage unit at this time based on the DCI trigger message, and corresponding preparations are made to Receive a reference signal.
  • the network-side equipment or even the user equipment itself in the prior art may not be able to determine whether the first group of transmission resource indications or the second group of transmission resource indications actually take effect (correspondingly, it cannot be determined whether the actual take effect is from the first group of transmission resource indications). Whether the first transmission resource indication determined in the transmission resource indication is still the first transmission resource indication determined from the second group of transmission resource indications). Examples of such scenarios may include, but are not limited to, the example scenarios shown in FIGS. 9 and 10 .
  • the capability information about the transmission resource indication of the aperiodic downlink reference signal can be generated and reported to the network side device, for example, after the initial access procedure of the electronic device 1300.
  • the network side device may pre-determine, based on the capability information, a set of transmission resource indications that will actually take effect in the scenario of conflicting transmission resource indications (that is, determine the which group will actually take effect), and for example, information about the determined set of transmission resource indications to be actually taken effect (transmission resource indication validation information) may be generated and optionally sent to the electronic device 1300 on the user equipment side.
  • transmission resource indication conflict scenario such as shown in FIG. 9 and FIG.
  • the network side device can know the actually effective transmission resource indication and send an aperiodic downlink reference signal to the user equipment according to the transmission resource indication. , and the electronic device 1300 on the user equipment side can also prepare accordingly to receive the aperiodic downlink reference signal.
  • the capability information about the transmission resource indication of the aperiodic downlink reference signal generated by the generating unit 1310 may represent the transmission resource indication supported by the electronic device 1300, for example, may have a length of 2 bits, wherein 01 indicates that only For the first group of transmission resource indications determined by the first selection message, 10 indicates that only the second group of transmission resource indications determined according to the first selection message is supported, 11 indicates that the above two groups of transmission resource indications are supported at the same time, and 00 is used as a reserved bit.
  • the generating unit 1310 can appropriately generate the above-mentioned capability information according to the situation of the electronic device 1300 itself (eg, storage capability regarding transmission resource indication, time required for preparation for receiving reference signals, etc.).
  • the electronic device 1300 has poor storage capacity for transmission resource indications and can only store a set of transmission resource indications, as long as the transceiver 1310 receives the second MAC CE for updating the alternative transmission resource indications of the aperiodic reference signal selection message, the second group of transmission resource indications determined according to the MAC CE selection message is stored in the storage unit 1340 to replace the previously stored, for example, the first group of transmission resource indications determined according to the first MAC CE selection message ( That is, the second set is stored and the first set of transmission resource indications are deleted).
  • the transceiver 1310 can only prepare for receiving the downlink aperiodic reference signal (eg, prepare to receive a beam, etc.) based on the corresponding transmission resource indication in the updated second group of transmission resource indications and specified according to the DCI trigger message. . Therefore, the generating unit 1310 may generate capability information in the form of 10 to indicate that the user equipment only supports the second group of transmission resource indications determined according to the second selection message.
  • the electronic device 1300 when the electronic device 1300 has a relatively strong storage capacity for transmission resource indications and can store multiple sets of transmission resource indications, when the transceiver 1320 receives the second MAC CE selection for updating the alternative transmission resource indications of the aperiodic reference signal message, it may store in the storage unit 1340 the indication of the second group of transmission resources determined according to the second MAC CE selection message, without deleting, for example, the previously stored first group of transmission resources determined according to the first MAC CE selection message instruct. In this case, the generating unit 1310 of the electronic device 1300 may, for example, generate the capability information according to the time required to prepare for receiving the downlink aperiodic reference signal based on the transmission resource indication.
  • the transceiver 1320 may not be able to transmit according to the second set of transmission resources immediately The corresponding transmission resource indication in the resource indication is ready.
  • the generating unit 1310 may generate capability information in the form of 01 to indicate that the user equipment supports only the first group of transmission resource indications determined according to the first selection message.
  • the transceiver 1320 can complete the preparation work in a relatively short period of time, it is capable of making preparations according to the corresponding transmission resource indications in the second set of transmission resource indications immediately after the second set of transmission resource indications takes effect.
  • the transceiver 1320 may be ready to receive the reference signal transmission beam based on the corresponding transmission resource indication in the first or second set of transmission resource indications determined from the first or second selection message. Therefore, the generating unit 1310 may generate capability information in the form of 11 to indicate that the user equipment simultaneously supports the above two sets of transmission resource indications.
  • the transceiver 1320 may report the above-mentioned capability information generated by the generating unit 1310 to the network-side device after the initial access procedure of the electronic device 1300, so that the network-side device may predetermine the transmission resource indication conflict scenario based on the capability information A set of transport resource indications that will actually take effect.
  • the group of transmission resource indications is naturally the group of transmission resource indications that will actually take effect. For example, when the capability information is 01, the first group of transmission resource indications will actually take effect, and when the capability information is 10, the second group of transmission resource indications will actually take effect.
  • the electronic device 1300 that generates the capability information can, for example, make such a determination by itself through its generating unit 1310, and the network-side device that receives the capability information can also make the same determination.
  • the network side device may determine one of the group of transmission resource indications as the actually effective transmission resource indications. For example, when the capability information is 11, the network side device will determine that one of the above-mentioned two sets of transmission resource indications is a set of transmission resource indications that will actually take effect.
  • the transceiver 1320 may be further configured to receive information about a set of transmission resource indications to be actually valid from the network side device through RRC signaling, and store the information in the storage unit 1340 as a transmission resource indication validation message.
  • the transmission resource indication validation information can be represented by, for example, 1 bit, wherein 0 indicates that the first group of transmission resource indications to be actually valid is the first group of transmission resource indications, and 1 indicates that the second group of transmission resource indications to be actually validated.
  • the transceiver 1320 may not receive the transmission resource indication validation information from the network side device.
  • the transceiver 1320 of the electronic device 1300 may receive the transmission resource indication validation information from the network side device irrespective of the content of the capability information generated by the generating unit 1310 and optionally store it in the in the storage unit 1340, and make appropriate preparations to receive the aperiodic downlink reference signal.
  • the transceiver 1310 of such an electronic device 1300 can be configured to read the above transmission resource indication from the storage unit 1340 when needed, for example, to take effect. information, and prepares and receives aperiodic downlink reference signals according to the group of transmission resource indications that will actually take effect specified by the information.
  • the transceiver 1310 may prepare to receive the aperiodic downlink reference signal based on the corresponding transmission resource indication in the first group of transmission resource indications and specified according to the DCI trigger message , and when the information is 1, prepare to receive the aperiodic downlink reference signal based on the corresponding transmission resource indication according to the second group of transmission resource indications and specified according to the DCI trigger message.
  • the configuration information of the transmission resource indication includes a beam indication for the resource set associated with the transmission resource indication
  • the transceiver 1310 may, for example, be based on the transmission resource indication associated with the transmission resource indication.
  • the beam of the resource set indicates the designated transmit beam, and the corresponding receive beam is used to receive the aperiodic downlink reference signal from the network side.
  • control unit 1330 may be configured to, when it is necessary to receive an aperiodic downlink reference signal from a network-side device, determine whether a scenario in which the transmission resource indication of the reference signal collides occurs.
  • the control unit 1330 may control the transceiver 1310 to read, for example, the transmission resource indication validation information received from the network side in advance from the storage unit 1340 only when judging that a conflict of transmission resource indications occurs, so that the transceiver 1310 can determine the validity of the transmission resource indications according to the information.
  • the specified set of transmission resource indications that will actually take effect is prepared to receive aperiodic downlink reference signals based on the corresponding transmission resource indications specified in the set of transmission resource indications based on the DCI trigger message.
  • the transceiver 1310 can be controlled to receive the aperiodic downlink reference signal (for example, from the current standby and previously selected according to the MAC CE selection message) in a manner similar to that in the prior art.
  • the corresponding transmission resource indication is determined based on the DCI trigger message), which will not be repeated here.
  • the control unit 1330 may, in a manner similar to the control unit 1130 of the electronic device 1100 on the network side, only when the sending time of the trigger message for triggering the aperiodic downlink reference signal is after the expected effective time of the first group of transmission resource indications, the second Before the expected effective time of the second group of transmission resource indications, and the sending time of the reference signal is after the expected effective time of the second group of transmission resource indications, the scene where the transmission resource indication conflict occurs is judged, and all other scenarios are judged as non-conflicting scene, which will not be repeated here.
  • the granularity of the control unit 1330 for judging the beam indication collision scenario may also be, for example, a transmission resource indication.
  • a transmission resource indication associated with a resource set of aperiodic downlink reference signals is specified through the DCI trigger message, and the resource set includes multiple aperiodic downlink reference signals
  • the control unit 1330 may be configured to: only when the trigger The sending time of the trigger message of the aperiodic uplink reference signal is after the expected effective time of the first group of transmission resource indications determined according to the first selection message and before the expected effective time of the second group of transmission resource indications determined according to the second selection message, And when the transmission time of the multiple aperiodic downlink reference signals included in the resource set associated with the transmission resource indication specified by the trigger message is all after the expected effective time of the second group of transmission resource indications, it is judged that a transmission resource indication conflict occurs. and all other scenarios can be judged as scenarios in which
  • the following scenarios can be considered: at the sending time of the first reference signal (for example, the transmission resource indication associated with the transmission resource indication specified by the trigger message)
  • the second selection message for the transmission resource indication of the reference signal has never appeared (at this time, the first group of transmission resource indications determined according to the first selection message actually takes effect.
  • the transceiver 1310 when the transceiver 1310 has the corresponding processing capability, the transceiver 1310 itself can also make a judgment on the scenario of conflicting transmission resource indications when necessary, and appropriately perform the receiving aperiodic downlink reference signal according to the judgment result. processing, which will not be repeated here.
  • the transceiver 1320 may not perform the process of reading the transmission resource indication validation information from the storage unit 1340.
  • the capability information generated by the generating unit 1310 is 10, indicating that only the transmission resource indications determined according to the second selection message are supported.
  • the transceiver 1320 of the electronic device 1300 needs to receive an aperiodic downlink reference signal from the network side device, it can be directly read from the storage unit 1340 regardless of whether a transmission resource indication conflict occurs or not.
  • the stored group of transmission resource indications and the corresponding transmission resource indications specified in the group of transmission resource indications based on the DCI trigger message are prepared for receiving processing of reference signals.
  • the capability information generated by the generating unit 1310 is 01, indicating that only the first
  • the control unit 1330 can determine whether a conflict of transmission resource indications of the reference signal occurs.
  • the transceiver 1320 can be controlled to read the stored first group of transmission resource indications determined according to the first selection message from the storage unit 1340, and based on the DCI trigger message The corresponding transmission resource indications specified in the group of transmission resource indications are prepared for receiving processing of reference signals.
  • the electronic device on the user equipment side can generate and report capability information about the transmission resource indication it supports, and the capability information can be used, for example, by the network side device for the transmission resource indication for aperiodic reference signals
  • the conflict scenario determines the transmission resource indication that will actually take effect, so that when a subsequent conflict scenario occurs, corresponding processing can be performed according to the predetermined transmission resource indicator that will actually take effect.
  • an example of the transmission resource indication may include a CSI aperiodic trigger status
  • an example of the configuration information of multiple transmission resources may include a CSI aperiodic trigger status list (CSI- AperiodicTriggerStateList).
  • association configuration information for associating nzp-CSI-RS with CSI reporting, for example, may be included in the list
  • the association configuration information (CSI-AssociatedReportConfigInfo)
  • the electronic device 1300 may be configured to receive such a CSI aperiodic trigger state list (CSI-AperiodicTriggerStateList) in advance through the transceiver 1320 and store it in the storage unit 1340 of the electronic device 1300 .
  • an example of the MAC CE selection message may include the MAC CE selection message shown in FIG. 12 , for example, 128 configured from the CSI aperiodic trigger state list (CSI-AperiodicTriggerStateList) through the respective fields in Oct2 to OctN Among the aperiodic trigger states, for example, a maximum of 63 aperiodic trigger states are designated as a selected group of aperiodic trigger states.
  • the electronic device 1300 may be configured to receive the above-mentioned MAC CE selection message through the transceiver 1320, and may appropriately store a set of aperiodic trigger states selected by the MAC CE selection message in the storage unit 1340 as backup aperiodic trigger states.
  • the storage unit 1340 Only the second set of aperiodic trigger states determined according to the second MAC CE selection message will be stored to replace the previously stored first set of aperiodic trigger states determined according to the first MAC CE selection message (i.e., delete the first set of aperiodic trigger states). cycle trigger state).
  • the storage unit 1340 will store the second set while retaining the first set of aperiodic trigger states.
  • the DCI trigger message may include a CSI-Request (CSI-Request) field as an example of information for specifying a transmission resource indication to be used among a set of transmission resources in effect (a set of transmission resources currently reserved) .
  • the CSI request (SRS-Request) field may be, for example, a maximum of 6 bits, which is used to specify the 63 aperiodic trigger states (Aperiodic Trigger State) in a set of at most 63 aperiodic trigger states (Aperiodic Trigger State) in actual effect, for example, by corresponding serial numbers 1 to 63. one of the aperiodic trigger states.
  • the transceiver 1320 of the electronic device 1300 When the transceiver 1320 of the electronic device 1300 receives the DCI trigger message with the above CSI request field, it can determine the triggered one from a set of actually valid CSI aperiodic trigger states stored in the storage unit 1340 according to the field.
  • CSI aperiodic trigger status The transceiver 1320 may, for example, prepare to receive a resource set associated with the aperiodic trigger state (for example, the CSI-AperiodicTriggerStateList in the CSI-AperiodicTriggerStateList) according to the configuration information for the CSI aperiodic trigger state.
  • a resource set associated with the aperiodic trigger state for example, the CSI-AperiodicTriggerStateList in the CSI-AperiodicTriggerStateList
  • nzp-CSI-RS resource set specified by the parameter ResourceSet of the aperiodic trigger state For the nzp-CSI-RS resource set specified by the parameter ResourceSet of the aperiodic trigger state), and optionally according to the beam indication specified by the configuration information of the aperiodic trigger state (for example, the nzp-CSI-RS resource set in CSI-AperiodicTriggerStateList for the The beam indication specified by the parameter qcl-info in the aperiodic trigger state), prepare the receiving beam to receive these aperiodic downlink reference signals.
  • the configuration information of the aperiodic trigger state for example, the nzp-CSI-RS resource set in CSI-AperiodicTriggerStateList for the The beam indication specified by the parameter qcl-info in the aperiodic trigger state
  • the transmission resource indication for the aperiodic downlink reference signal and its association in the second embodiment of the present disclosure are described configuration information, specific examples of selection messages and trigger messages, and example processing that can be performed by the electronic device 1300 on the user equipment side.
  • FIG. 14 is a flowchart illustrating a process example of a wireless communication method on the network side according to an embodiment of the present disclosure.
  • step S1401 the capability information about the beam indication of the aperiodic uplink reference signal reported by the user equipment is received.
  • step S1402 based on the capability information, determine the first beam indication determined according to the configuration information of the reference signal and the second beam indication determined according to the update message for updating the beam indication of the reference signal. , the beam indication that will actually take effect in the scenario of conflicting beam indications.
  • the scenario of beam indication collision is the following scenario: the transmission time of the trigger message for triggering the reference signal is before the expected effective time of the second beam indication, and the transmission time of the reference signal is before the second beam After the indicated expected effective time.
  • the reference signal may comprise an aperiodic sounding reference signal.
  • step S1402 in the case that the capability information indicates that only one of the first beam indication and the second beam indication is supported, the one beam indication is determined to be actually taking effect beam indication.
  • step S1402 when the capability information indicates that both the first beam indication and the second beam indication are supported, the first beam indication or the second beam indication is determined as The beam indication that will actually take effect.
  • the wireless communication method may further include the following step: sending information about the beam indication to be actually taken effect to the user equipment through RRC signaling.
  • the wireless communication method may further include the following step: receiving the reference signal from the user equipment according to the actually valid beam indication.
  • the wireless communication method may further include one or more of the following steps: pre-send configuration information including the first beam indication to the user equipment through RRC signaling; downlink control through the physical layer information to send the trigger message to the user equipment; send the update message including the second beam indication to the user equipment through a control element of the medium access control layer.
  • the trigger message may include information for specifying the resource set of the reference signal.
  • the configuration information may include a first beam indication for aperiodic uplink reference signals in the resource set, and the update message includes a second beam indication for aperiodic uplink reference signals in the resource set.
  • the resource set includes multiple aperiodic uplink reference signals, and at least one reference signal in the multiple aperiodic uplink reference signals is sent at an expected time indicated by the second beam for the reference signal. before the effective time.
  • the subject performing the above method may be the electronic device 400 on the network side according to the first embodiment of the present disclosure, so various aspects of the foregoing embodiments of the electronic device 400 are applicable to this.
  • FIG. 15 is a flowchart illustrating a process example of the wireless communication method on the user equipment side according to the first embodiment of the present disclosure.
  • step S1501 capability information about the beam indication of the aperiodic uplink reference signal is generated.
  • step S1502 the capability information is reported to the network side device.
  • the capability information is used to determine the conflict of beam indications among the first beam indication determined according to the configuration information of the reference signal and the second beam indication determined according to the update message for updating the beam indication of the reference signal.
  • the beam indication that will actually take effect wherein the scenario of beam indication conflict is the following scenario: the sending time of the trigger message for triggering the reference signal is before the expected effective time of the second beam indication, and the reference signal The sending time of is after the expected effective time of the second beam indication.
  • the reference signal may comprise an aperiodic sounding reference signal.
  • the capability information indication may indicate that only one beam indication among the first beam indication and the second beam indication is supported, and the beam indication that will actually take effect is the one beam indication.
  • the capability information may indicate that both the first beam indication and the second beam indication are supported, and the beam indication that will actually take effect is the first beam indication or the second beam indication.
  • the wireless communication method further includes the following step: receiving the information about the beam indication that will actually take effect sent by the network side device through RRC signaling. In addition, optionally, the wireless communication method further includes the following step: sending the reference signal to the network-side device according to the beam indication actually taking effect.
  • the wireless communication method may further include one or more of the following steps: receiving configuration information including the first beam indication sent through RRC signaling in advance from the network side device;
  • the network side device receives the trigger message sent through the downlink control information of the physical layer; and receives the update message including the second beam indication sent through the control element of the medium access control layer from the network side device.
  • the trigger message may include information for specifying the resource set of the reference signal.
  • the configuration information may include a first beam indication for aperiodic uplink reference signals in the resource set, and the update message includes a second beam indication for aperiodic uplink reference signals in the resource set.
  • the resource set includes multiple aperiodic uplink reference signals, and at least one reference signal in the multiple aperiodic uplink reference signals is sent at an expected time indicated by the second beam for the reference signal. before the effective time.
  • the subject performing the above method may be the electronic device 800 according to the first embodiment of the present disclosure, so various aspects of the foregoing embodiments of the electronic device 800 are applicable to this.
  • FIG. 16 is a flowchart illustrating a process example of a wireless communication method on the network side according to an embodiment of the present disclosure.
  • step S1601 the capability information about the transmission resource indication of the aperiodic downlink reference signal reported by the user equipment is received.
  • step S1602 according to the capability information, determine a first group of transmission resource indications and a second group of transmission resource indications in the multiple transmission resource indications of the reference signal determined according to the first selection message and the second selection message respectively Among the transmission resource indications, a set of transmission resource indications that will actually take effect in the scenario of conflicting transmission resource indications, wherein the scenario of conflicting transmission resource indications is the following scenario: the sending time of the trigger message for triggering the reference signal is After the expected effective time of the first group of transmission resource indications and before the expected effective time of the second group of transmission resource indications, and the sending time of the reference signal is after the expected effective time of the second group of transmission resource indications .
  • the reference signal may comprise an aperiodic channel state information reference signal.
  • step S1602 in the case that the capability information indicates that only a group of transmission resource indications in the first group of transmission resource indications and the second group of transmission resource indications are supported, the group of transmission resource indications is The indication is determined as a set of transmission resource indications that will actually take effect.
  • step S1602 in the case that the capability information indicates that both the first group of transmission resource indications and the second group of transmission resource indications are supported, the first transmission resource indication group or the The second transmission resource group indication is determined to be a group of transmission resource indications that will actually take effect.
  • the wireless communication method may further include the following step: sending, to the user equipment through RRC signaling, information about a set of transmission resource indications that will actually take effect.
  • the wireless communication method may further include the following step: sending the reference signal to the user equipment according to the actually valid transmission resource indication.
  • the wireless communication method may further include one or more of the following steps: sending the configuration information of the multiple transmission resource indications to the user equipment in advance through RRC signaling; The trigger message is sent to the user equipment; the first selection message and the second selection message are sent to the user equipment through the control element of the medium access control layer.
  • the trigger message may include information for specifying the transmission resource indication to be used in a set of transmission resource indications that are actually in effect.
  • the indication of the transmission resource to be used may be associated with a resource set of the reference signal.
  • the resource set includes a plurality of aperiodic downlink reference signals, and the transmission times of the plurality of aperiodic downlink reference signals are all after the expected effective time indicated by the second group of transmission resources.
  • the subject performing the above method may be the electronic device 1100 on the network side according to the first embodiment of the present disclosure, so various aspects of the foregoing embodiments of the electronic device 1100 are applicable to this.
  • FIG. 17 is a flowchart illustrating a process example of the wireless communication method on the user equipment side according to the first embodiment of the present disclosure.
  • step S1701 capability information related to the transmission resource indication of the aperiodic downlink reference signal is generated.
  • step S1502 the capability information is reported to the network-side device, and the capability information is used to determine among the multiple transmission resource indications of the reference signal determined according to the first selection message and the second selection message respectively.
  • a group of transmission resource indications that will actually take effect in the scenario of conflicting transmission resource indications wherein the scenario of conflicting transmission resource indications is the following scenario: used to trigger all
  • the sending time of the trigger message of the reference signal is after the expected effective time of the first group of transmission resource indications and before the expected effective time of the second group of transmission resource indications, and the reference signal is sent at the After the expected effective time of the second set of transmission resource indications.
  • the reference signal may comprise an aperiodic channel state information reference signal.
  • the capability information indication may indicate that only a group of transmission resource indications in the first group of transmission resource indications and the second group of transmission resource indications are supported, and the group of transmission resource indications that will actually take effect is the set of transmission resource indications.
  • a set of transmission resource indications is described.
  • the capability information may indicate that both the first group of transmission resource indications and the second group of transmission resource indications are supported, and the group of transmission resource indications that will actually take effect is the first group of transmission resource indications or the second set of transmission resource indications.
  • the wireless communication method further includes the following step: receiving information about a group of transmission resource indications that will actually take effect and sent by the network side device through RRC signaling. In addition, optionally, the wireless communication method further includes the following step: receiving the reference signal from the network side device according to the actually valid transmission resource indication.
  • the wireless communication method may further include one or more of the following steps: receiving configuration information of the multiple transmission resource indications sent by the RRC signaling in advance from the network side device;
  • the network side device receives the trigger message sent through the downlink control information of the physical layer; and receives the first selection message and the second selection message sent through the control element of the medium access control layer from the network side device.
  • the trigger message may include information for specifying the transmission resource indication to be used in a set of transmission resource indications that are actually in effect.
  • the indication of the transmission resource to be used may be associated with a resource set of the reference signal.
  • the resource set includes a plurality of aperiodic downlink reference signals, and the transmission times of the plurality of aperiodic downlink reference signals are all after the expected effective time indicated by the second group of transmission resources.
  • the subject performing the above method may be the electronic device 1300 according to the second embodiment of the present disclosure, so various aspects of the foregoing embodiments of the electronic device 800 are applicable to this.
  • the electronic devices 400 and 1100 on the network side may be implemented as any type of base station devices, such as macro eNB and small eNB, and may also be implemented as any type of gNB (base station in a 5G system).
  • Small eNBs may be eNBs covering cells smaller than macro cells, such as pico eNBs, micro eNBs, and home (femto) eNBs.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • a base station may include: a subject (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (RRHs) disposed at a different location than the subject.
  • RRHs remote radio heads
  • the electronic devices 400 and 1100 on the network side can also be implemented as any type of TRP.
  • the TRP may have sending and receiving functions, for example, it may receive information from user equipment and base station equipment, and may also send information to user equipment and base station equipment.
  • the TRP can serve the user equipment and be controlled by the base station equipment.
  • the TRP may have a structure similar to that of the base station equipment, or may only have the structure related to sending and receiving information in the base station equipment.
  • the electronic devices 800 and 1300 on the user equipment side may be various user equipments, which may be implemented as mobile terminals such as smart phones, tablet personal computers (PCs), notebook PCs, portable game terminals, portable/dongle type mobile routers and digital cameras) or in-vehicle terminals (such as car navigation equipment).
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module comprising a single die) mounted on each of the above-mentioned user equipments.
  • eNB 1800 is a block diagram illustrating a first example of a schematic configuration of an eNB to which techniques of the present disclosure may be applied.
  • eNB 1800 includes one or more antennas 1810 and base station equipment 1820.
  • the base station apparatus 1820 and each antenna 1810 may be connected to each other via an RF cable.
  • Each of the antennas 1810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used by the base station apparatus 1820 to transmit and receive wireless signals.
  • eNB 1800 may include multiple antennas 1810.
  • multiple antennas 1810 may be compatible with multiple frequency bands used by eNB 1800.
  • FIG. 18 shows an example in which the eNB 1800 includes multiple antennas 1810, the eNB 1800 may also include a single antenna 1810.
  • the base station apparatus 1820 includes a controller 1821 , a memory 1822 , a network interface 1823 , and a wireless communication interface 1825 .
  • the controller 1821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 1820 .
  • the controller 1821 generates data packets from the data in the signal processed by the wireless communication interface 1825, and communicates the generated packets via the network interface 1823.
  • the controller 1821 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 1821 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control may be performed in conjunction with nearby eNB or core network nodes.
  • the memory 1822 includes RAM and ROM, and stores programs executed by the controller 1821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1823 is a communication interface for connecting the base station apparatus 1820 to the core network 1824 .
  • Controller 1821 may communicate with core network nodes or further eNBs via network interface 1823 .
  • the eNB 1800 and core network nodes or other eNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 1823 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 1823 is a wireless communication interface, the network interface 1823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1825 .
  • Wireless communication interface 1825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of eNB 1800 via antenna 1810.
  • the wireless communication interface 1825 may generally include, for example, a baseband (BB) processor 1826 and RF circuitry 1827 .
  • the BB processor 1826 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) various types of signal processing.
  • the BB processor 1826 may have some or all of the above-described logical functions.
  • the BB processor 1826 may be a memory storing a communication control program, or a module including a processor and associated circuitry configured to execute the program.
  • the update procedure may cause the functionality of the BB processor 1826 to change.
  • the module may be a card or blade that is inserted into a slot in the base station device 1820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1810 .
  • the wireless communication interface 1825 may include multiple BB processors 1826 .
  • multiple BB processors 1826 may be compatible with multiple frequency bands used by eNB 1800.
  • the wireless communication interface 1825 may include a plurality of RF circuits 1827 .
  • multiple RF circuits 1827 may be compatible with multiple antenna elements.
  • FIG. 18 shows an example in which the wireless communication interface 1825 includes multiple BB processors 1826 and multiple RF circuits 1827 , the wireless communication interface 1825 may also include a single BB processor 1826 or a single RF circuit 1827 .
  • the transceivers 410, 1110 in the electronic devices 400, 1100 previously described with reference to FIGS. 4 and 11 may be implemented through the wireless communication interface 1825 (optionally together with the antenna 1810) or the like.
  • the storage units 440 and 1140 in the electronic devices 400 and 1100 may be implemented by the memory 1822, for example.
  • the determination units 420 and 1120 and the control units 430 and 1130 in the electronic devices 400 and 1100 may be implemented by the controller 1821 .
  • the controller 1821 may perform the functions of the determination units 420, 1120 and the control units 430, 1130 by executing the instructions stored in the memory 1822, which will not be repeated here.
  • eNB 1930 includes one or more antennas 1940, base station equipment 1950, and RRH 1960.
  • the RRH 1960 and each antenna 1940 may be connected to each other via RF cables.
  • the base station apparatus 1950 and the RRH 1960 may be connected to each other via high-speed lines such as fiber optic cables.
  • Each of the antennas 1940 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1960 to transmit and receive wireless signals.
  • the eNB 1930 may include multiple antennas 1940.
  • multiple antennas 1940 may be compatible with multiple frequency bands used by eNB 1930.
  • FIG. 19 shows an example in which the eNB 1930 includes multiple antennas 1940, the eNB 1930 may also include a single antenna 1940.
  • the base station apparatus 1950 includes a controller 1951 , a memory 1952 , a network interface 1953 , a wireless communication interface 1955 , and a connection interface 1957 .
  • the controller 1951 , the memory 1952 and the network interface 1953 are the same as the controller 1821 , the memory 1822 and the network interface 1823 described with reference to FIG. 18 .
  • the network interface 1953 is a communication interface for connecting the base station apparatus 1950 to the core network 1954 .
  • Wireless communication interface 1955 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication via RRH 1960 and antenna 1940 to terminals located in a sector corresponding to RRH 1960.
  • the wireless communication interface 1955 may generally include, for example, a BB processor 1956.
  • the BB processor 1956 is the same as the BB processor 1826 described with reference to FIG. 18, except that the BB processor 1956 is connected to the RF circuit 1964 of the RRH 1960 via the connection interface 1957.
  • the wireless communication interface 1955 may include a plurality of BB processors 1956.
  • multiple BB processors 1956 may be compatible with multiple frequency bands used by eNB 1930.
  • FIG. 19 shows an example in which the wireless communication interface 1955 includes multiple BB processors 1956 , the wireless communication interface 1955 may also include a single BB processor 1956 .
  • connection interface 1957 is an interface for connecting the base station apparatus 1950 (the wireless communication interface 1955 ) to the RRH 1960 .
  • the connection interface 1957 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station device 1950 (the wireless communication interface 1955) to the RRH 1960.
  • the RRH 1960 includes a connection interface 1961 and a wireless communication interface 1963.
  • connection interface 1961 is an interface for connecting the RRH 1960 (the wireless communication interface 1963 ) to the base station apparatus 1950.
  • the connection interface 1961 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1963 transmits and receives wireless signals via the antenna 1940 .
  • Wireless communication interface 1963 may typically include RF circuitry 1964, for example.
  • RF circuitry 1964 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 1940 .
  • the wireless communication interface 1963 may include a plurality of RF circuits 1964 .
  • multiple RF circuits 1964 may support multiple antenna elements.
  • FIG. 19 shows an example in which the wireless communication interface 1963 includes a plurality of RF circuits 1964 , the wireless communication interface 1963 may also include a single RF circuit 1964 .
  • the transceivers 410 and 1110 in the electronic devices 400 and 1100 previously described with reference to FIGS. 4 and 11 can be implemented through the wireless communication interface 1963.
  • the storage units 440 and 1140 in the electronic devices 400 and 1100 can be implemented by the memory 1952, for example.
  • the determination units 420 and 1120 and the control units 430 and 1130 in the electronic devices 400 and 1100 may be implemented by the controller 1951 .
  • the controller 1951 may perform at least a part of the functions of the determination units 420, 1120 and the control units 430, 1130 by executing the instructions stored in the memory 1952, which will not be repeated here.
  • FIG. 20 is a block diagram showing an example of a schematic configuration of a smartphone 2000 to which the technology of the present disclosure can be applied.
  • Smartphone 2000 includes processor 2001, memory 2002, storage device 2003, external connection interface 2004, camera device 2006, sensor 2007, microphone 2008, input device 2009, display device 2010, speaker 2011, wireless communication interface 2012, one or more Antenna switch 2015, one or more antennas 2016, bus 2017, battery 2018, and auxiliary controller 2019.
  • the processor 2001 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and further layers of the smartphone 2000 .
  • the memory 2002 includes RAM and ROM, and stores data and programs executed by the processor 2001 .
  • the storage device 2003 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2004 is an interface for connecting external devices such as memory cards and Universal Serial Bus (USB) devices to the smartphone 2000 .
  • the camera 2006 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 2007 may include a set of sensors, such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 2008 converts the sound input to the smartphone 2000 into an audio signal.
  • the input device 2009 includes, for example, a touch sensor, a keypad, a keyboard, buttons, or switches configured to detect a touch on the screen of the display device 2010, and receives operations or information input from a user.
  • the display device 2010 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2000 .
  • the speaker 2011 converts the audio signal output from the smartphone 2000 into sound.
  • the wireless communication interface 2012 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 2012 may typically include, for example, BB processor 2013 and RF circuitry 2014.
  • the BB processor 2013 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2014 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 2016 .
  • the wireless communication interface 2012 may be a chip module on which the BB processor 2013 and the RF circuit 2014 are integrated. As shown in FIG. 20 , the wireless communication interface 2012 may include multiple BB processors 2013 and multiple RF circuits 2014 .
  • FIG. 20 shows an example in which the wireless communication interface 2012 includes multiple BB processors 2013 and multiple RF circuits 2014
  • the wireless communication interface 2012 may include a single BB processor 2013 or a single RF circuit 2014 .
  • the wireless communication interface 2012 may support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 2012 may include a BB processor 2013 and an RF circuit 2014 for each wireless communication scheme.
  • Each of the antenna switches 2015 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 2012 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 2016 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 2012 to transmit and receive wireless signals.
  • smartphone 2000 may include multiple antennas 2016 .
  • FIG. 20 shows an example in which the smartphone 2000 includes multiple antennas 2016
  • the smartphone 2000 may also include a single antenna 2016 .
  • the smartphone 2000 may include an antenna 2016 for each wireless communication scheme.
  • the antenna switch 2015 can be omitted from the configuration of the smartphone 2000 .
  • the bus 2017 connects the processor 2001, the memory 2002, the storage device 2003, the external connection interface 2004, the camera device 2006, the sensor 2007, the microphone 2008, the input device 2009, the display device 2010, the speaker 2011, the wireless communication interface 2012, and the auxiliary controller 2019 to each other connect.
  • the battery 2018 provides power to the various blocks of the smartphone 2000 shown in FIG. 20 via feeders, which are shown in part as dashed lines in the figure.
  • the auxiliary controller 2019 operates the minimum necessary functions of the smartphone 2000, eg, in a sleep mode.
  • the transceivers 820 and 1320 in the electronic devices 800 and 1300 previously described with reference to FIGS. 8 and 13 may be implemented through the wireless communication interface 2012 .
  • the storage units 840 and 1340 in the electronic devices 800 and 1300 can be implemented by, for example, the memory 2002 or the storage device 2003 .
  • the generating units 810 , 1310 and the control units 830 , 1330 in the electronic devices 800 , 1300 may be implemented by the processor 2001 or the auxiliary controller 2019 .
  • the processor 2001 or the auxiliary controller 2019 may perform at least a part of the functions of the generating units 810, 1310 and the control units 830, 1330 by executing the instructions stored in the memory 2002 or the storage device 2003, which will not be repeated here.
  • FIG. 21 is a block diagram showing an example of a schematic configuration of a car navigation apparatus 2120 to which the technology of the present disclosure can be applied.
  • the car navigation device 2120 includes a processor 2121, a memory 2122, a global positioning system (GPS) module 2124, a sensor 2125, a data interface 2126, a content player 2127, a storage medium interface 2128, an input device 2129, a display device 2130, a speaker 2131, a wireless A communication interface 2133, one or more antenna switches 2136, one or more antennas 2137, and a battery 2138.
  • GPS global positioning system
  • the processor 2121 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 2120 .
  • the memory 2122 includes RAM and ROM, and stores data and programs executed by the processor 2121 .
  • the GPS module 2124 measures the position (such as latitude, longitude, and altitude) of the car navigation device 2120 using GPS signals received from GPS satellites.
  • Sensors 2125 may include a set of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 2126 is connected to, for example, the in-vehicle network 2141 via a terminal not shown, and acquires data generated by the vehicle, such as vehicle speed data.
  • the content player 2127 reproduces content stored in storage media such as CDs and DVDs, which are inserted into the storage media interface 2128 .
  • the input device 2129 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 2130, and receives an operation or information input from a user.
  • the display device 2130 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 2131 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 2133 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 2133 may typically include, for example, BB processor 2134 and RF circuitry 2135.
  • the BB processor 2134 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2135 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 2137 .
  • the wireless communication interface 2133 can also be a chip module on which the BB processor 2134 and the RF circuit 2135 are integrated. As shown in FIG.
  • the wireless communication interface 2133 may include a plurality of BB processors 2134 and a plurality of RF circuits 2135 .
  • FIG. 21 shows an example in which the wireless communication interface 2133 includes multiple BB processors 2134 and multiple RF circuits 2135 , the wireless communication interface 2133 may include a single BB processor 2134 or a single RF circuit 2135 .
  • the wireless communication interface 2133 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 2133 may include the BB processor 2134 and the RF circuit 2135 for each wireless communication scheme.
  • Each of the antenna switches 2136 switches the connection destination of the antenna 2137 among a plurality of circuits included in the wireless communication interface 2133, such as circuits for different wireless communication schemes.
  • Each of the antennas 2137 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 2133 to transmit and receive wireless signals.
  • the car navigation device 2120 may include a plurality of antennas 2137 .
  • FIG. 21 shows an example in which the car navigation device 2120 includes a plurality of antennas 2137 , the car navigation device 2120 may also include a single antenna 2137 .
  • the car navigation device 2120 may include an antenna 2137 for each wireless communication scheme.
  • the antenna switch 2136 may be omitted from the configuration of the car navigation device 2120.
  • the battery 2138 provides power to the various blocks of the car navigation device 2120 shown in FIG. 21 via feeders, which are partially shown in the figure as dashed lines.
  • the battery 2138 accumulates power supplied from the vehicle.
  • the transceivers 820 and 1320 in the electronic devices 800 and 1300 previously described with reference to FIGS. 8 and 13 may be implemented through the wireless communication interface 2133 .
  • the storage units 840 and 1340 in the electronic devices 800 and 1300 can be implemented by the memory 2122, for example.
  • the generating units 810 and 1310 and the control units 830 and 1330 in the electronic devices 800 and 1300 may be implemented by the processor 2121 .
  • the processor 2121 may execute at least a part of the functions of the generating units 810 and 1310 and the control units 830 and 1330 in the 800 and 1300 by executing the instructions stored in the memory 2122, which will not be repeated here.
  • the techniques of this disclosure may also be implemented as an in-vehicle system (or vehicle) 2140 that includes one or more blocks of a car navigation device 2120 , an in-vehicle network 2141 , and a vehicle module 2142 .
  • the vehicle module 2142 generates vehicle data such as vehicle speed, engine speed, and failure information, and outputs the generated data to the in-vehicle network 2141 .
  • the units shown in dotted boxes in the functional block diagram shown in the drawings all indicate that the functional units are optional in the corresponding device, and each optional functional unit can be combined in an appropriate manner to achieve the required functions .
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only processing performed in time series in the stated order, but also processing performed in parallel or individually rather than necessarily in time series. Furthermore, even in the steps processed in time series, needless to say, the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了电子设备、无线通信方法以及计算机可读存储介质。电子设备可以包括处理电路,该处理电路被配置为:接收用户设备上报的关于非周期上行参考信号的波束指示的能力信息;基于能力信息,确定根据参考信号的配置信息确定的第一波束指示和根据用于更新参考信号的波束指示的更新消息确定的第二波束指示当中,将要实际生效的波束指示。这里,触发参考信号的触发消息的发送时间在第二波束指示的预期生效时间之前,参考信号的发送时间在该预期生效时间之后。根据本公开实施例的一方面,针对非周期参考信号的波束或传输资源的指示信息冲突的情况,可以基于用户设备的能力信息确定将要实际生效的指示信息,使得后续出现冲突场景时能够据此进行相应处理。 (图4)

Description

电子设备、无线通信方法以及计算机可读存储介质
本申请要求于2020年8月13日提交中国专利局、申请号为202010811881.0、发明名称为“电子设备、无线通信方法以及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,更具体地,涉及一种针对非周期参考信号的波束或传输资源的指示信息存在冲突的情况能够确定将要实际生效的指示信息的电子设备、无线通信方法以及非暂态计算机可读存储介质。
背景技术
新无线电(New Radio,NR)系统中的非周期参考信号(包括诸如非周期探测参考信号(Aperiodic Sounding Reference Signal,Ap-SRS)的非周期上行参考信号以及诸如非周期信道状态信息参考信号(Aperiodic Channel State Information-Reference Signal,Ap-CSI-RS)的非周期下行参考信号)的配置、更新或选择、以及触发可以使用三个层次的信令。例如,网络侧可以通过无线资源控制(Radio Resource Control,RRC)层的信令为用户设备配置非周期参考信号(包括波束在内的各种传输资源的配置等),通过媒体接入控制(Media Access Control,MAC)层的控制元素(Control Element,CE)(MAC CE)更新或选择关于非周期性参考信号的配置(例如关于波束或传输资源的指示信息等),并且通过物理层的下行控制信息(Downlink Control Information,DCI)触发非周期参考信号的发送或接收。
在这种三层信令结构中,没有限制用于更新或选择非周期参考信号的配置的MAC CE与用于触发非周期参考信号的DCI之间的时序关系,因此,可能发生两者之间时序冲突的情形,从而导致无法确定MAC CE所更新或选择的配置对于DCI所触发的非周期参考信号的实际生效情况。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它 并不是意图用来确定本公开的关键性部分或重要部分,也不是意图用来限定本公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
鉴于上述问题,本公开的至少一方面的目的是提供一种电子设备、无线通信方法以及非暂态计算机可读存储介质,其能够针对非周期参考信号的波束或传输资源的指示信息存在冲突的情况确定将要实际生效的指示信息。
根据本公开的一方面,提供了一种电子设备,其包括处理电路,该处理电路被配置为:接收用户设备上报的关于非周期上行参考信号的波束指示的能力信息;以及基于所述能力信息,确定根据所述参考信号的配置信息确定的第一波束指示和根据用于更新所述参考信号的波束指示的更新消息确定的第二波束指示当中,将要实际生效的波束指示,其中,用于触发所述参考信号的触发消息的发送时间在所述第二波束指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二波束指示的预期生效时间之后。
根据本公开的另一方面,提供了一种电子设备,其包括处理电路,该处理电路被配置为:生成关于非周期上行参考信号的波束指示的能力信息;以及向网络侧设备上报所述能力信息,所述能力信息被用于在根据所述参考信号的配置信息确定的第一波束指示以及根据更新所述参考信号的波束指示的更新消息确定的第二波束指示当中,确定将要实际生效的波束指示,其中,用于触发所述参考信号的触发消息的发送时间在所述第二波束指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二波束指示的预期生效时间之后。
根据本公开的又一方面,提供了一种电子设备,其包括处理电路,该处理电路被配置为:接收用户设备上报的关于非周期下行参考信号的传输资源指示的能力信息;以及根据所述能力信息,确定分别根据第一选择消息和第二选择消息确定的、所述参考信号的多个传输资源指示中的第一组传输资源指示和第二组传输资源指示当中,将要实际生效的一组传输资源指示,其中,用于触发所述参考信号的触发消息的发送时间在所述第一组传输资源指示的预期生效时间之后并在所述第二组传输资源指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二组传输资源指示的预期生效时间之后。
根据本公开的再一方面,提供了一种电子设备,其包括处理电路,该处理电路被配置为:生成关于非周期下行参考信号的传输资源指示的能力信息;以 及向网络侧设备上报所述能力信息,所述能力信息被用于确定分别根据第一选择消息和第二选择消息确定的、所述参考信号的多个传输资源指示中的第一组传输资源指示和第二组传输资源指示当中,将要实际生效的一组传输资源指示,其中,用于触发所述参考信号的触发消息的发送时间在所述第一组传输资源指示的预期生效时间之后并在所述第二组传输资源指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二组传输资源指示的预期生效时间之后。
根据本公开的再一方面,提供了一种无线通信方法,其包括:接收用户设备上报的关于非周期上行参考信号的波束指示的能力信息;以及基于所述能力信息,确定根据所述参考信号的配置信息确定的第一波束指示和根据用于更新所述参考信号的波束指示的更新消息确定的第二波束指示当中,将要实际生效的波束指示,其中,用于触发所述参考信号的触发消息的发送时间在所述第二波束指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二波束指示的预期生效时间之后。
根据本公开的再一方面,提供了一种无线通信方法,其包括:接收用户设备上报的关于非周期下行参考信号的传输资源指示的能力信息;以及根据所述能力信息,确定分别根据第一选择消息和第二选择消息确定的、所述参考信号的多个传输资源指示中的第一组传输资源指示和第二组传输资源指示当中,将要实际生效的一组传输资源指示,其中,用于触发所述参考信号的触发消息的发送时间在所述第一组传输资源指示的预期生效时间之后并在所述第二组传输资源指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二组传输资源指示的预期生效时间之后。
根据本公开的再一方面,提供了一种无线通信方法,其包括:接收用户设备上报的关于非周期下行参考信号的传输资源指示的能力信息;以及根据所述能力信息,确定分别根据第一选择消息和第二选择消息确定的、所述参考信号的多个传输资源指示中的第一组传输资源指示和第二组传输资源指示当中,将要实际生效的一组传输资源指示,其中,用于触发所述参考信号的触发消息的发送时间在所述第一组传输资源指示的预期生效时间之后并在所述第二组传输资源指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二组传输资源指示的预期生效时间之后。
根据本公开的再一方面,提供了一种无线通信方法,其包括:生成关于非周期下行参考信号的传输资源指示的能力信息;以及向网络侧设备上报所述能力信息,所述能力信息被用于确定分别根据第一选择消息和第二选择消息确定的、所述参考信号的多个传输资源指示中的第一组传输资源指示和第二组传输资源指示当中,将要实际生效的一组传输资源指示,其中,用于触发所述参考信号的触发消息的发送时间在所述第一组传输资源指示的预期生效时间之后并在所述第二组传输资源指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二组传输资源指示的预期生效时间之后。
根据本公开的再一方面,还提供了一种存储有可执行指令的非暂态计算机可读存储介质,该可执行指令当由处理器执行时,使得处理器执行上述无线通信方法或电子设备的各个功能。
根据本公开的其它方面,还提供了用于实现上述根据本公开的无线通信方法的计算机程序代码和计算机程序产品。
根据本公开的实施例的至少一方面,针对关于非周期参考信号的波束或传输资源的指示信息存在冲突的情况,通过用户设备侧向网络侧上报关于非周期参考信号的能力信息,并且基于能力信息确定将要实际生效的波束指示或传输资源指示,使得能够在后续冲突场景出现时根据预先确定的将要实际生效的指示信息进行相应的处理。
在下面的说明书部分中给出本公开实施例的其它方面,其中,详细说明用于充分地公开本公开实施例的优选实施例,而不对其施加限定。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示意性地示出NR中的协议栈的示意图;
图2是示意性地示出波束指示冲突的场景的一个示例的示意图;
图3是示意性地示出波束指示冲突的场景的另一个示例的示意图;
图4是示出根据本公开第一实施例的网络侧的电子设备的一个配置示例的框图;
图5是示出在本公开第一实施例中可以使用的MAC CE更新消息的一个 示例的示意图;
图6是用于说明在本公开第一实施例中可以使用的DCI触发信息的SRS请求字段的说明图;
图7是示意性地示出DCI触发信息所触发的非周期SRS资源集包括多个参考信号的情况下的、波束指示冲突的场景的一个示例的示意图;
图8是示出根据本公开第一实施例的用户设备侧的电子设备的一个配置示例的框图;
图9是示意性地示出传输资源指示冲突的场景的一个示例的示意图;
图10是示意性地示出传输资源指示冲突的场景的另一个示例的示意图;
图11是示出根据本公开第二实施例的网络侧的电子设备的一个配置示例的框图;
图12是示出在本公开第二实施例中可以使用的MAC CE选择消息的一个示例的示意图;
图13是示出根据本公开第二实施例的用户设备侧的电子设备的一个配置示例的框图;
图14是示出根据本公开的第一实施例的网络侧的无线通信方法的过程示例的流程图;
图15是示出根据本公开的第一实施例的用户设备侧的无线通信方法的过程示例的流程图;
图16是示出根据本公开的第二实施例的网络侧的无线通信方法的过程示例的流程图;
图17是示出根据本公开的第二实施例的用户设备侧的无线通信方法的过程示例的流程图;
图18是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图;
图19是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图;
图20是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图21是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的 示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.问题的概述
2.第一实施例的配置示例
2.1网络侧的电子设备的配置示例
2.2关于波束指示的示例
2.3用户设备侧的电子设备的配置示例
3.第二实施例的配置示例
3.1网络侧的电子设备的配置示例
3.2关于传输资源指示的示例
3.3用户设备侧的电子设备的配置示例
4.方法实施例
4.1第一实施例的方法实施例
4.2第二实施例的方法实施例
5.应用示例
<1.问题的描述>
作为问题的背景,首先参照图1简要描述NR中的协议栈。图1是示意性地示出NR中的协议栈的示意图。如图1所示,对于用户设备UE、网络侧设备gNB、和实现接入和移动管理功能(Access and Mobility Management Function)等的功能实体AMF,NR中的协议栈从上到下的顺序分别是NAS(Non Access Stratum,非接入层协议)层、RRC(Radio Resource Control,无线资源控制)层、PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)层、RLC(Radio-Link Control,无线链路控制)层、MAC(Medium-Access Control,媒体接入控制)层和PHY层(Physical Layer,物理层,即DCI所在的层)。
图1所示的层中与本公开的内容密切相关的是RRC层、MAC层和PHY层。对于诸如Ap-SRS和Ap-CSI-RS的非周期参考信号的配置、更新或选择、以及触发,分别使用了这三层的信令。更具体地,网络侧设备NW可以通过RRC层的信令为用户设备UE配置非周期参考信号(即,向UE发送非周期参考信号的RRC配置信息),通过MAC CE作为更新或选择消息来更新或选择非周期性参考信号的配置,并且通过物理层的DCI发送的触发消息来触发UE对于非周期参考信号的发送或接收。
在这种三层信令结构中,没有限制用于更新或选择非周期参考信号的配置的MAC CE更新或选择消息与用于触发非周期参考信号的DCI触发消息之间的时序关系,因此,可能发生两者的时间线发生交叠的情形,从而导致无法确MAC CE所更新或选择的配置对于DCI所触发的参考信号的实际生效情况。
这里,以上行非周期性参考信号Ap-SRS作为示例,参照图2和图3描述MAC CE更新消息与DCI触发消息的时间线发生交叠从而导致波束指示冲突的示例。图2和图3是示意性地示出波束指示冲突的场景的示例的示意图,其各自示意性地示出了MAC CE更新消息更新Ap-SRS的波束指示和DCI触发消息触发Ap-SRS的示例时间线。注意,尽管图中未示出,但在图2和图3所示的时间线之前,网络侧设备NW例如已通过RRC信令为Ap-SRS进行了初始配置,即,已经向UE发送了包括初始波束指示的、Ap-SRS的RRC配置信息。
在通过RRC信令进行初始配置之后,一方面,假设先不考虑图2或图3 的MAC CE更新消息,则当用户设备UE如图2或图3所示那样收到NW发来的用于触发Ap-SRS的DCI触发消息时,其可以根据该DCI触发消息从Ap-SRS的RRC配置信息中确定其初始波束指示,并且基于该初始波束指示准备发送波束,以在例如根据DCI触发消息确定的发送时间发送Ap-SRS。
另一方面,假设先不考虑图2或图3的DCI触发消息,当UE如图2或图3所示,收到用于更新Ap-SRS的波束指示的MAC CE更新消息(MAC CE相对于物理层来说属于高层信令,通常由物理下行共享信道(Physical Downlink Shared Channel,PDSCH)来承载)时,UE首先需要通过承载MAC CE的PDSCH向NW发出一个确认信息,即HARQ-ACK。接着,UE需要将MAC CE更新消息的内容交给MAC层实体,以供MAC层实体解读,这个过程需要例如3ms的时间。在这3ms的时间后,UE和NW会认为根据MAC CE更新消息的内容更新后的波束指示生效,即,例如以MAC CE更新消息所承载的更新波束指示取代了RRC配置信息中的初始波束指示,作为针对Ap-SRS的更新波束指示(因此这3ms的时间可以被视为通过MAC CE更新消息所更新的波束指示的预期生效时间)。此后,如果UE在更新波束指示已经生效之后,再接收到针对Ap-SRS的DCI触发消息,则UE可以根据该DCI触发消息获取更新波束指示以发送Ap-SRS。
对于以上的假设情况,DCI触发消息和MAC CE更新消息的时间线不发生交叠,UE针对所触发的参考信号实际使用或遵照的波束指示(实际生效的波束指示)是明确的,没有出现波束指示冲突或混淆的情况。
然而,如果二者的时间线发生交叠,例如图2或图3所示,DCI触发消息出现在根据MAC CE更新消息确定的更新波束指示生效之前、而所触发的Ap-SRS的传输发生在更新波束指示的生效时间之后,则出现波束指示冲突的情况,网络侧的NW无法确定UE实际上基于根据RRC配置信息确定的初始波束指示还是基于根据MAC CE更新消息确定的更新波束指示来发送Ap-SRS。
另外,对于诸如Ap-CSI-RS的非周期下行参考信号,其传输资源配置指示同样可能由于DCI触发消息与MAC CE选择消息的交叠时间线而存在冲突的情况,稍后将在针对非周期下行参考信号的第二实施例中对此进行详细描述。
鉴于以上情况,希望能够识别非周期参考信号的波束指示或传输资源指示(在本文中适当时也称为“指示信息”)可能存在冲突的场景,并且适当地确定该场景下将要实际生效的指示信息。
本公开针对这样的场景提出了网络侧的电子设备、用户设备侧的电子设备、无线通信方法、以及计算机可读存储介质,其使得能够针对非周期参考信号的波束或传输资源的指示信息存在冲突的情况,预先确定将要实际生效的指示信息,以便在后续冲突场景出现时能够根据预先确定的将要实际生效的指示信息进行相应的处理。
根据本公开的网络侧的电子设备可以是基站设备本身,例如可以是eNB(演进型节点B),也可以是gNB。另外,根据本公开的网络侧的电子设备还可以包括除了基站设备以外的、网络侧的电子设备,理论上其可以是任何类型的TRP(Transmit and Receive Port,发送和接收端口)。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备和基站设备发送信息。在一个示例中,TRP可以为用户设备提供服务,并且受基站设备的控制。也就是说,基站设备通过TRP向用户设备提供服务。在下文的一些具体实施例或示例中,有时直接以基站设备作为网络侧的电子设备的示例进行描述,但本公开不限于此,而是可以适当地适用于上述网络侧的电子设备的情形。
根据本公开的用户设备侧的电子设备可以包括各种用户设备,例如移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。上述用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<2.第一实施例的网络侧的电子设备的配置示例>
[2.1网络侧的电子设备的配置示例]
图4是示出根据本公开的第一实施例的网络侧的电子设备的第一配置示例的框图。
如图4所示,电子设备400可以包括收发器410和确定单元420以及可选的用于控制电子设备400的总体操作的控制单元430和用于存储电子设备400 所需的各种数据和程序等的存储单元440。
这里,电子设备400的各个单元都可以包括在处理电路中。需要说明的是,电子设备400既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,收发器410可以接收用户设备上报的关于诸如Ap-SRS的非周期上行参考信号的波束指示的能力信息,并可选地将其存储在存储单元440中。
确定单元420可以根据关于非周期上行参考信号的波束指示的能力信息,确定波束指示冲突的场景下将要实际生效的波束指示。更具体地,确定单元420可以根据上述能力信息,确定根据非周期上行参考信号的配置信息确定的第一波束指示和根据用于更新该参考信号的波束指示的更新消息而确定的第二波束指示当中的、将要实际生效的波束指示,其中,用于触发该非周期上行参考信号的触发消息的发送时间在根据更新消息确定的第二波束指示的预期生效时间之前,并且参考信号的发送时间在第二波束指示的预期生效时间之后。可选地,确定单元420可以生成关于所确定的将要实际生效的波束指示的信息(本文中适当时也称为波束指示生效信息),并将该信息存储在存储单元440中。
上述触发消息和更新消息的示例可以包括以上参照图2和图3描述的DCI触发消息和MAC CE更新消息。此外,非周期上行参考信号可以是电子设备通过RRC信令为用户设备预先配置的,诸如通过RRC信令预先配置的Ap-SRS。
例如,收发器410可以被配置为通过RRC信令向用户设备预先发送针对非周期上行参考信号的配置信息(RRC配置信息),该配置信息可以包括关于非周期上行参考信号的传输资源等的各种配置,例如针对非周期上行参考信号的第一波束指示等。作为示例,收发器410向用户设备预先发送的这种配置信息可以包括一个或多个资源集的配置信息。每个资源集可以包括一个或多个非周期上行参考信号。在每个资源集的配置信息中,可以包括针对该资源集的每个非周期上行参考信号的、例如空间关系参数SpatialRelationInfo的RRC参数, 作为该非周期上行参考信号的波束指示,其可以作为本实施例中的第一波束指示的示例。
此外,例如,收发器410还可以被配置为当需要发送非周期上行参考信号时,通过物理层的DCI向用户设备发送触发消息(DCI触发消息),该DCI触发消息包括用于指定所触发的非周期上行参考信号的信息。作为示例,DCI触发消息可以包括用于指定所触发的非周期上行参考信号的资源集的信息。换言之,DCI触发消息例如可以以资源集(而非单个的非周期上行参考信号)为单位实现对非周期上行参考信号的触发。DCI触发消息所包括的用于指定资源集的信息使得接收端的用户设备可以在通过RRC配置信息预先配置好的资源集当中,触发该消息所指定的资源集的全部非周期上行参考信号。用户设备可以相应地获取所触发的资源集的配置信息中的针对每个非周期上行参考信号的第一波束指示,作为针对该参考信号的波束指示,并且相应地准备发送波束以发送该参考信号。
另外,例如,收发器410还可以被配置为当需要更新非周期上行参考信号的波束指示时,通过MAC CE向用户设备发送更新消息(MAC CE更新消息),该MAC CE更新消息包括针对该参考信号的第二波束指示,以用于取代RRC配置信息所包括的针对该参考信号的第一波束指示。MAC CE更新消息例如可以包括要更新的非周期上行参考信号的资源集的每个参考信号的第二波束指示。换言之,MAC CE更新消息例如可以以该消息所指定的资源集中的每个非周期上行参考信号为单位实现波束指示的更新。例如,这样的MAC CE更新消息可以使得接收端的用户设备针对该消息所指定的资源集中的每个非周期上行参考信号,以该消息中所包括的第二波束指示取代RRC配置信息中的相应资源集的配置信息的第一波束指示。在上述第二波束指示生效后,当用户设备再接收到针对该参考信号(例如针对该参考信号所在的资源集)的DCI触发消息时,用户设备将会以更新后的第二波束指示作为针对该参考信号的波束指示,并且相应地准备发送波束以发送该参考信号。
例如可以通过电子设备400的控制单元430的处理生成上述的RRC配置信息、DCI触发消息和MAC CE更新消息并控制收发器410进行发送,后文中将会对这些信息或消息以及波束指示的具体示例给出进一步的描述。
在本实施例中,将用于触发非周期参考信号的触发消息(例如上述DCI 触发消息)的发送时间在根据用于更新该参考信号的波束指示的更新消息(例如上述MAC CE更新消息)确定的第二波束指示的预期生效时间之前并且参考信号的发送时间在第二波束指示的预期生效时间之后的场景识别为波束指示冲突的场景。
在这种场景下,由于DCI触发消息的发送时间在根据MAC CE更新消息确定的第二波束指示的预期生效时间之前,因此,用户设备有可能已经基于DCI触发消息获取RRC配置信息(例如相应资源集的配置信息)中的第一波束指示并据此准备了发送波束来发送参考信号;同时,由于参考信号的发送时间在第二波束指示的预期生效时间之后,因此,用户设备也有可能紧接用于更新该参考信号的波束指示的第二波束指示生效之后才基于第二波束指示准备了发送波束来发送参考信号。这导致现有技术中的网络侧设备(甚至用户设备本身)可能无法确定实际生效的是第一波束指示还是第二波束指示。这种场景的示例可以包括但不限于图2和图3所示的示例场景。
利用本实施例的网络侧的电子设备400的配置,确定单元420可以预先基于收发器410所接收的能力信息来确定在波束指示冲突的场景下将要实际生效的波束指示(即,确定届时第一波束指示和第二波束指示中的哪个将会实际生效),并且可以生成关于所确定的将要实际生效的波束指示的信息(波束指示生效信息)并将其存储在存储单元440中,以供电子设备400自身使用和/或发送给用户设备。以此方式,当后续出现例如图2和图3所示的波束指示冲突的场景时,网络侧的电子设备400和/或用户设备可以知晓实际生效的波束指示并且根据该波束指示进行相应处理。
作为示例,收发器410所接收的、关于非周期上行参考信号的波束指示的能力信息可以是用户设备在初始接入流程之后上报给电子设备400的。该能力信息可以表示用户设备所支持的波束指示,例如可以具有2个比特的长度,其中,01表示用户设备仅支持根据配置信息确定的第一波束指示,10表示用户设备仅支持根据更新消息确定的第二波束指示,11表示用户设备同时支持以上两个波束指示,00被用作保留位。这样的能力信息由用户设备根据自身的情况(例如关于波束指示的存储能力、准备发送波束所需的时间等)适当地生成,稍后将在关于用户侧的电子设备的配置的部分对能力信息的生成给出进一步的描述。
在一个优选实施例中,确定单元420可以被配置为在能力信息指示仅支持根据配置信息确定的第一波束指示和根据更新消息确定的第二波束指示中的一个波束指示的情况下,将该一个波束指示确定为将要实际生效的波束指示。例如,确定单元420可以在能力信息为01时,确定将要实际生效的为第一波束指示,并且在能力信息为10时,确定将要实际生效的为第二波束指示。
此外,确定单元420可以进一步被配置为在能力信息指示同时支持根据配置信息确定的第一波束指示和根据更新消息确定的第二波束指示的情况下,将其中一个波束指示确定为实际生效的波束指示。例如,确定单元420可以在能力信息为11时,确定上述两个波束指示之一为将要实际生效的波束指示。此时,确定单元420例如可以随机确定两者之一,也可以根据预先的设置确定两者中的优选的一个。
可选地,确定单元420可以进一步被配置为生成关于所确定的将要实际生效的波束指示的信息,并将该信息作为波束指示生效消息存储在存储单元440中。波束指示生效信息例如可以通过1个比特表示,其中,0表示将要实际生效的是根据配置信息确定的第一波束指示,1表示将要实际生效的是根据更新消息确定的第二波束指示。
对于确定单元420以上述方式生成并存储在存储单元440中的波束指示生效消息,后续当电子设备400要接收来自用户设备的非周期上行参考信号时,收发器410可以在需要时参考该信息从而基于将要实际生效的波束指示进行相应处理。
例如,可选地,收发器410可以配置为在需要时(例如控制单元430针对当前非周期上行参考信号判断出现波束指示冲突的场景时)从存储单元440读取波束指示生效信息,并且根据该信息指定的将要实际生效的波束指示,接收来自用户设备的非周期上行参考信号。例如,收发器410在所读取的波束指示生效信息为0时,基于根据配置信息确定的第一波束指示接收非周期上行参考信号,并在该信息为1时,基于根据更新消息确定的第二波束指示接收非周期上行参考信号。在利用波束赋形进行通信的情况下,发送端的发送波束与接收端的接收波束对等,即具有波束对称性(beam correspondence)。因此,根据波束指示生效信息所指定的实际生效的波束指示,收发器410例如可以使用与该波束指示所指示的发送波束相对应的接收波束接收参考信号。
作为示例,控制单元430可以被配置为当电子设备400需要接收来自用户设备的非周期上行参考信号时,判断是否发生该参考信号的波束指示冲突的场景。控制单元430可以仅在判断发生波束指示冲突的场景时,才控制收发器410读取例如预先存储在存储单元440中的波束指示生效信息,使得收发器410可以根据该信息所指定的将要实际生效的波束指示,准备接收波束并接收来自用户设备的非周期上行参考信号。
控制单元430关于波束指示冲突的场景的判断可以基于触发非周期上行参考信号的触发消息的发送时间、该参考信号的发送时间和根据更新消息确定的第二波束指示的预期生效时间之间的关系。控制单元430可以通过各种方式确定上述时间并相应地确定各个时间之间的关系。例如,非周期参考信号的发送时间可以通过触发消息的发送时间以及该参考信号的配置信息(例如该参考信号的配置信息所指定的参考信号与触发消息的发送时间之间的时间偏移)等确定。此外,第二波束指示的预期生效时间例如可以根据更新消息的发送时间和根据更新消息确定的第二波束指示生效所需的时间段的长度(诸如3ms的该时间段的长度例如可以由网络侧的电子设备预先获知)确定。
例如,控制单元430可以被配置为仅当触发非周期上行参考信号的触发消息的发送时间在根据用于更新该参考信号的波束指示的更新消息确定的第二波束指示的预期生效时间之前而该参考信号的发送时间在第二波束指示的预期生效时间之后时,判断发生波束指示冲突的场景,并且将除此之外的所有场景判断为不发生波束指示冲突的场景。
这里,控制单元430判断波束指示冲突的场景的粒度例如可以详细到例如DCI触发消息所触发的资源集中的每个参考信号。如前所述,非周期上行参考信号的配置信息可以是参考信号的资源集的配置信息,其包括针对该资源集的每个参考信号的第一波束指示。当DCI触发消息通过指定参考信号的资源集的方式触发非周期上行参考信号时,以这样的资源集而非单个参考信号为单位触发参考信号,因此,对于所触发的资源集中的多个参考信号,其触发消息的发送时间是相同的。当例如通过与指定资源集相关联的MAC更新消息(例如以上描述的包括针对该资源集的每个参考信号的第二波束指示的MAC CE更新消息)来更新非周期上行参考信号的波束指示时,根据这样的MAC更新消息确定的第二波束指示的预期生效时间对于指定资源集中的多个参考信号也 是相同的。然而,该资源集中的不同参考信号可能在不同的时隙(slot)中发送,即具有不同的发送时间。因此,控制单元430针对所触发的资源集中的每个参考信号对波束指示冲突的场景的判断结果可以是不同的。
更具体地,针对DCI触发消息所触发的资源集包括多个参考信号的情况,只要当前参考信号的发送时间和触发消息的发送时间与第二波束指示的预期生效时间之间的关系满足波束指示冲突的场景的条件(触发消息的发送时间在第二波束指示的预期生效时间之前、当前参考信号的发送时间在第二波束指示的预期生效时间之后),控制单元就可以针对当前参考信号判断出现波束指示冲突,而与该参考信号的资源集中的其他参考信号的发送时间无关。例如,该资源集中的另一参考信号的发送时间可以在第二波束指示的预期生效时间之前(触发消息的发送时间和该另一参考信号的发送时间均在第二波束指示的预期生效时间之前),控制单元可以判断该另一参考信号没有发生波束指示冲突的情况(实际生效的是根据配置信息确定的第一波束指示,即资源集的配置信息中的该参考信号的第一波束指示),而仅判断当前参考信号发生波束指示冲突的情况,并且可以针对当前参考信号和该另一参考信号进行不同的处理。
作为没有发生波束指示冲突的场景的非穷举性示例,控制单元430可以将下述几种场景判断为没有发生波束指示冲突场景:在该参考信号的发送时间,未曾出现针对该参考信号的波束指示的更新消息(此时实际生效的是根据配置信息确定的第一波束指示);在该参考信号的发送时间,曾经出现针对该参考信号的波束指示的更新消息、但根据该更新消息确定的第二波束指示尚未生效(此时实际生效的是根据配置信息确定的第一波束指示);在该参考信号的触发消息的发送时间,曾经出现针对该参考信号的波束指示的更新消息、并且根据针对该更新消息确定的第二波束指示已生效(此时实际生效的是该第二波束指示)。
当控制单元430判断没有发生波束指示冲突的场景时,例如可以控制收发器410按照与现有技术中类似的方式接收非周期上行参考信号,即,根据实际生效的波束指示准备接收波束并接收非周期上行参考信号,这里不再赘述。
作为替选,当收发器410具有相应的处理能力时,也可以由收发器410自身在需要时进行关于波束指示冲突的场景的判断,并根据判断结果适当地进行接收非周期上行参考信号的处理,这里不再赘述。
优选地,收发器410可以进一步被配置为通过RRC信令向用户设备发送关于将要实际生效的波束指示的信息(波束指示生效信息)。
注意,当来自用户设备的能力信息例如通过2比特的信息01或10指示用户设备仅支持根据配置信息确定的第一波束指示或根据更新消息确定的第二波束指示之一时,即使网络侧的电子设备400不向用户设备发送波束指示生效信息,用户设备也知晓实际生效的波束指示。因此,这种情况下,可选地,电子设备400可以不向用户设备发送波束指示生效信息。然而,优选地,为了信令流程的统一,电子设备400的收发器410可以与所接收的能力信息的内容无关地向用户设备发送波束指示生效信息,使得用户设备可以在需要时据此准备发送波束并发送非周期上行参考信号。
以上描述了本公开的第一实施例的网络侧的电子设备的配置示例。根据本公开的第一实施例,网络侧的电子设备能够针对非周期上行参考信号的波束指示冲突的场景,预先基于用户设备所上报的能力信息确定将要实际生效的波束指示,以便在后续冲突场景出现时能够根据预先确定的将要实际生效的波束指示进行相应的处理。
[2.2波束指示相关示例]
接下来,将以Ap-SRS作为非周期上行参考信号的示例,描述本公开第一实施例中可以采用的针对非周期上行参考信号的第一波束指示、第二波束指示及与之关联的配置信息、更新消息和触发消息的具体示例,并且结合这些示例描述本实施例的电子设备可以进行的示例处理。
(RRC配置信息中的第一波束指示的示例)
第一波束指示可以被包括在作为网络侧设备的电子设备400通过RRC信令向用户设备预先发送的针对非周期上行参考信号的配置信息(RRC配置信息)中。该RRC配置信息可以包括关于非周期上行参考信号的传输资源等的各种配置。作为示例,该RRC配置信息可以包括一个或多个资源集的配置信息。
作为本实施例中可以采用的针对Ap-SRS的RRC配置信息的示例,这里考虑电子设备400为用户设备预先配置的、一个或多个资源类型(ResourceType)为非周期(aperiodic)的SRS资源集(SRS-ResourceSet)的配置信息。每个SRS资源集以资源集ID(SRS-ResourceSetId)标识,并且包 括一组多个(例如4个)SRS资源(SRS-Resource)。每个SRS资源以SRS资源ID(SRS-ResourceId)标识,并且可以用于传输一个Ap-SRS信号,因此,在本文中,在适当时也将诸如SRS资源集的资源集中所包括的这种资源直接称为资源集所包括的参考信号。
在非周期SRS资源集的配置信息中,可以包括针对每个SRS资源(每个Ap-SRS参考信号)的以RRC参数SRS-SpatialRelationInfo表示的波束指示,其可以用作本公开的第一实施例中的包括在RRC配置信息中的第一波束指示的示例。RRC参数SRS-SpatialRelationInfo的取值为先前发送的参考信号的索引。SRS-SpatialRelationInfo所指定的参考信号的索引可以是此前发送的上行或下行参考信号的索引,例如此前发送的SRS信号、同步信号块(Synchronous Signal Block,SSB)、或信道状态信息参考信号(Channel Status Information-Reference Signal,CSI-RS)的索引,以表示建议用户设备使用发送该上行参考信号的发送波束/接收该下行参考信号的对应波束来进行该Ap-SRS的上行传输。
如前所述,一个非周期SRS资源集所包括的一组SRS资源(一组Ap-SRS)可以通过一个DCI触发消息统一触发,即,通过一个DCI触发消息触发用户设备发送与该SRS资源集对应的一组Ap-SRS信号。
相应地,在Ap-SRS的非周期SRS资源集的配置信息中,还可以包括与资源集的触发有关的参数。例如,SRS资源集的配置信息中可以包括参数aperipodicSRS-ResourcetTrigger,该参数用于指定用户设备传输该资源集的Ap-SRS时的DCI码点(code point),并且取值可以是从1到SRS触发状态(SRS-TriggerState)的数目减去1的范围内的整数。可以将不同的DCI触发消息与参数aperipodicSRS-ResourcetTrigger的不同取值相关联,从而通过DCI触发消息指定所触发的SRS资源集。
这里,除了上述参数aperipodicSRS-ResourcetTrigger之外,非周期SRS资源集的配置信息中还可以包括与资源集的触发有关的其他参数例如aperipodicSRS-ResourcetTriggerList等,DCI触发消息也可以与这样的参数相关联以指定所触发的SRS资源集。另外,非周期SRS资源集的配置信息中还可以包括与资源集的用途相关的参数usage,其取值可以例如为beamManagement(波束管理)、codebook(码本)、noncodebook(非码本)、attenaSwitching(天 线切换)等。在一些场景中,DCI触发消息也可以与该参数usage的特定取值(attenaSwitching)相关联以指定所触发的SRS资源集,稍后将在关于DCI触发消息的示例的描述中给出进一步的细节。
本实施例的电子设备400可以例如通过其控制单元430通过适当处理生成诸如上述的SRS资源集的RRC配置信息,并将其通过收发器410预先将其发送给用户设备。
(MAC CE更新消息中的第二波束指示的示例)
电子设备400用于更新非周期上行参考信号的波束指示的MAC CE更新消息优选地直接包括要更新的第二波束指示。例如,MAC CE更新消息可以包括要更新的非周期上行参考信号的资源集的每个参考信号的第二波束指示。
图5中示出了本实施例中可以采用的直接包括针对Ap-SRS的第二波束指示的MAC CE更新消息的一个示例。如图5所示,该MAC CE更新消息包括N个八位组Oct1至OctN,其中,R字段为保留位,Oct2中的非周期SRS资源集ID用于指定要更新的非周期SRS资源集,Oct3至OctN-M+1包括该SRS资源集的各个SRS资源的更新(第二)波束指示。
Oct2中的非周期SRS资源集ID字段例如在网络侧的电子设备通过RRC信令预先为给用户设备配置的多个非周期SRS资源集(例如以上在“RRC配置信息中的第一波束指示的示例”部分描述的SRS资源集)中,指定所涉及的非周期SRS资源集。此外,1比特的C字段表示该MAC CE更新消息中是否存在SRS资源集的小区ID和SRS资源集的BWP(Bandwidth Part,带宽部分)ID,并且仅在取值为1时表示存在(在本示例中,例如存在于Oct1中)。1比特的SUL字段用于标识MAC CE更新消息所应用的载波配置类型,其取值为1表示SUL(supplementary uplink,补充的上行链路)载波配置,为0则表示NUL(normal uplink,正常的上行链路)载波配置。
在Oct3至OctN-M+1中,1比特的F i字段指示所涉及的非周期SRS资源集中的第i个SRS资源(第i个Ap-SRS参考信号)所使用的波束指示的类型,F i取值为1表示使用先前发送的非零功率(non-zero power)CSI-RS(nzp CSI-RS)的索引,F i取值为0表示使用先前发送的SSB或SRS的索引。资源ID i是针对第i个SRS资源(第i个Ap-SRS参考信号)的波束指示,并且根据F i的值而指示先前发送的nzp CSI-RS的索引或SRS的索引。资源ID i(可选地 连同F i字段)可以用作本公开的第一实施例中的第二波束指示。
本实施例的电子设备400可以例如通过其控制单元430经由适当处理生成上述MAC CE更新消息,并在需要更新Ap-SRS的波束指示时通过收发器410将其发送给用户设备。
当用户设备接收到这样的MAC CE更新消息时,可以针对该MAC CE更新消息的非周期SRS资源集ID字段所指定的那个非周期SRS资源集,进行下述处理:对于该SRS资源集中的每个SRS资源,以MAC CE更新消息中的相应的资源ID表示的第二波束指示取代RRC配置信息中的该SRS资源集的相应SRS资源的SpatialRelationInfo参数表示的第一波束指示,作为该SRS资源(Ap-SRS参考信号)的波束指示。
(DCI触发消息中的指定资源集的信息的示例)
电子设备400用于触发非周期上行参考信号的DCI触发消息可以优选地包括用于指定非周期上行参考信号的资源集的信息,以触发该资源集所包括的全部参考信号。
作为本实施例中可以采用的DCI触发消息中所包括的、用于指定Ap-SRS的非周期SRS资源集的信息的示例,这里考虑DCI触发消息的SRS请求(SRS-Request)字段。SRS请求(SRS-Request)字段例如可以为2个比特,其用于例如在网络侧的电子设备通过RRC信令预先发送(预先配置的)多个非周期SRS资源集(例如以上在“RRC配置信息中的第一波束指示的示例”部分描述的SRS资源集)中,指定所触发的非周期SRS资源集。作为示例,SRS请求字段为00表示不触发,01表示触发所配置的非周期SRS资源集中的第一个,10表示触发所配置的非周期SRS资源集中的第二个,11表示触发所配置的非周期SRS资源集中的第三个。
图6是用于说明本实施例中可以采用的SRS请求字段的一个示例的示意图,其示出了SRS请求字段与其所触发的非周期SRS资源集的之间的示例关联。在该示例中,DCI触发消息的SRS请求字段与SRS资源集的配置信息中的参数aperipodicSRS-ResourcetTrigger的取值相关联,以通过SRS请求字段的不同取值指定参数aperipodicSRS-ResourcetTrigger具有相应取值的非周期SRS资源集,作为所触发的SRS资源集。DCI触发消息中的SRS请求字段的值为01、10、11时,分别触发参数aperipodicSRS-ResourcetTrigger被配置为1、2、 3的SRS资源集。
替选地,当SRS资源集的配置信息中还包括了与资源集的触发相关的其他参数例如aperipodicSRS-ResourcetTriggerList等时,DCI触发消息的SRS请求字段可以与这样的参数相关联以指定所触发的SRS资源集。例如,当DCI触发消息中的SRS请求字段的值为01、10、11时,可以分别触发参数aperipodicSRS-ResourcetTriggerList中的条目被配置为1、2、3的SRS资源集。
替选地,还可以通过SRS资源集的配置信息中与资源集的用途相关的参数usage指定所触发的资源集。在一些场景中,当DCI触发消息中的SRS请求字段的值为01、10、11时,可以分别触发针对第一组服务小区、第二组服务小区、第三组服务小区的参数usage取值为attenaSwitching(天线切换)的非周期SRS资源集。
本实施例的电子设备400可以例如通过其控制单元430经由适当处理生成具有以上SRS请求字段的DCI触发消息,并在需要触发Ap-SRS时通过收发器410将其发送给用户设备。
当用户设备接收到电子设备400所发送的具有以上SRS请求字段的DCI触发消息时,可以根据该字段确定所触发的SRS资源集。如果用户设备此前没有接收过关于该SRS资源集的MAC CE更新消息,则用户设备将会以预先接收的RRC配置信息中的、该SRS资源集中的每个资源的SpatialRelationInfo参数(第一波束指示)作为该SRS资源集的参考信号的波束指示。另外,如果在DCI触发消息之前,用户设备已接收到关于SRS资源集的MAC CE更新消息、并且该MAC CE更新消息所更新的波束指示(第二波束指示)已经生效,则用户设备将会以诸如图5所示的MAC CE更新消息中的相应的资源ID(第二波束指示)作为针对该SRS资源集的参考信号的波束指示。
以上以Ap-SRS为例,描述了本实施例中可以采用的波束指示及与之关联的配置信息、更新消息和触发消息的具体示例。
接下来,继续结合以上具体示例,考虑下述场景:电子设备400所发送的DCI触发消息所触发的资源集(例如SRS资源集)包括多个诸如Ap-SRS的非周期上行参考信号,该DCI触发消息的发送时间在例如通过MAC CE更新消息而更新的第二波束指示的预期生效时间之前,并且在DCI触发消息所触发的资源集所对应的多个参考信号当中,一部分参考信号的发送时间在第二波束 指示的预期生效时间之前,而另一部分参考信号的发送时间在第二波束指示的预期生效时间之后。
图7示出了该场景的一个示例,即,DCI触发信息所触发的非周期SRS资源集包括多个参考信号的情况下发生波束指示冲突的一个示例场景。在该示例场景中,所触发的非周期SRS资源集对应于4个Ap-SRS,其中,前两个信号Ap-SRS Tx1和Ap-SRS Tx2例如共同占用了一个时隙(Slot)并且发送时间在图5所示的MAC CE更新消息所更新的第二波束指示(例如图5所示的MAC CE更新信息中的相应的资源ID)的预期生效时间之前,后两个信号Ap-SRS Tx3和Ap-SRS Tx4例如共同占用了随后的一个时隙并且发送时间在第二波束指示(例如图5所示的MAC CE更新信息中的相应的资源ID)的预期生效时间后。
针对上述场景,例如如前所述,根据本公开的第一实施例的网络侧的电子设备400已经利用确定单元420预先根据能力信息确定了波束指示冲突场景下的将要实际生效的波束指示,并且可以将波束指示生效消息存储在存储单元440中。当电子设备400需要接收来自用户设备的Ap-SRS时,其收发器410可以在必要时读取该信息并适当地接收Ap-SRS。
更具体地,当出现图7所示的情况并且电子设备400需要接收Ap-SRS Tx1至Ap-SRS Tx4时,电子设备400可以通过控制单元430(或收发器410本身)首先判断是否出现了波束指示冲突的场景。这里,对于前两个参考信号Ap-SRS Tx1和Ap-SRS Tx2,由于其发送时间在第二波束指示的预期生效时间之前,所以电子设备400可以判断并未发生波束指示冲突。此时,收发器410可以按照与现有技术类似的方式,基于根据DCI触发消息从RRC配置信息中确定的初始的第一波束指示(例如诸如具有图6所示格式的、DCI触发消息中的SRS请求字段所指定的那个SRS资源集中的相应SRS资源的参数SpatialRelationInfo),对该参考信号进行接收。
对于后两个参考信号Ap-SRS Tx3和Ap-SRS Tx4,其DCI触发消息的发送时间在第二波束指示的预期生效时间之前、并且这两个参考信号自身的发送时间在第二波束指示的预期生效时间之后,因此,电子设备400可以判断出现了波束指示冲突的场景。此时,更新的第二波束指示(例如图5所示的MAC CE更新信息中的相应的资源ID)已经生效,导致在现有技术中无法确定用户设 备实际使用的波束指示是更新的第二波束指示还是RRC配置信息中所包括的初始的第一波束指示。
在这在情况下,本实施例的电子设备400的收发器410例如可以在控制单元430的控制下,读取存储单元440所存储的波束指示生效信息,并且根据所读取的信息,基于实际生效的那个波束指示对该参考信号进行接收。例如,如果所读取的波束指示生效信息为0,则收发器410可以基于从RRC配置信息中确定的第一波束指示(例如图6所示的DCI触发消息中的SRS请求字段所指定的那个SRS资源集中的相应SRS资源的参数SpatialRelationInfo)接收Ap-SRS Tx3和Ap-SRS Tx4;如果所读取的波束指示生效信息为1,则收发器410可以基于根据MAC CE更新消息确定的第二波束指示(例如图5所示的MAC CE更新信息中的相应的资源ID)接收Ap-SRS Tx3和Ap-SRS Tx4。
利用本公开实施例的电子设备的以上处理,针对DCI触发消息包括指定非周期上行参考信号的资源集的信息、并且该资源集包括多个非周期上行参考信号的场景,只要触发消息的发送时间在第二波束指示的预期生效时间之前、并且当前的非周期上行参考信号的发送时间在第二波束指示的预期生效时间之后,就可以识别出该当前参考信号的波束指示发生冲突,从而适当地根据预先确定的将要实际生效的波束指示进行相关处理,而与该资源集中其他参考信号的发送时间无关。
以上在参照图1描述的三层信令结构的情况下,描述了本公开第一实施例中的针对非周期上行参考信号的第一波束指示、第二波束指示及与之关联的配置信息、更新消息和触发消息的具体示例以及电子设备400可以进行的示例处理。本领域技术人员可以理解,上述示例及其细节不构成对本公开实施例的限制。在本公开内容的基础上,本领域技术人员可以将本实施例的电子设备400应用于任意适当场景,只要该场景下非周期上行参考信号的波束指示发生冲突(从而导致可能无法确定实际生效的是初始波束指示还是更新波束指示)即可。
[2.3.用户设备侧的电子设备的配置示例]
与上述网络侧的电子设备的配置示例相对应的,下面将详细描述根据本公开的第一实施例的用户设备侧的电子设备的配置示例。
图8是示出根据本公开的第一实施例的用户设备侧的电子设备的一个配 置示例的框图。
如图8所示,电子设备800可以包括生成单元810和收发器820以及可选的用于控制电子设备800的总体操作的控制单元830和用于存储电子设备800所需的各种数据和程序等的存储单元840。
这里,电子设备800的各个单元都可以包括在处理电路中。需要说明的是,电子设备800既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。此外,电子设备800例如可以包括用户设备本身,或者可以实现为附接至用户设备的另外的电子设备。
根据本公开的实施例,生成单元810可以生成关于诸如Ap-SRS的非周期上行参考信号的波束指示的能力信息。收发器820可以向网络侧设备上报生成单元810所生成的能力信息。
该能力信息可以被至少网络侧设备用于确定波束指示冲突的场景下将要实际生效的波束指示。更具体地,该能力信息可以被用于确定根据该参考信号的配置信息确定的第一波束指示和根据更新该参考信号的波束指示的更新消息确定的第二波束指示当中的、将要实际生效的波束指示,其中,用于触发该非周期上行参考信号的触发消息的发送时间在根据更新消息确定的第二波束指示的预期生效时间之前,并且参考信号的发送时间在第二波束指示的预期生效时间之后。
上述触发消息和更新消息的示例可以包括以上参照图2和图3描述的DCI触发消息和MAC CE更新消息。此外,非周期参考上行信号可以是网络侧设备通过RRC信令为电子设备800预先配置的,例如通过RRC信令预先配置的Ap-SRS。
作为示例,收发器810可以被配置为通过RRC信令从网络侧户设备预先接收针对非周期上行参考信号的配置信息(RRC配置信息)并且可以将其存储在存储单元840中。该配置信息可以包括关于非周期上行参考信号的传输资源等的各种配置,例如针对非周期上行参考信号的第一波束指示等。作为示例,收发器810接收的这种配置信息可以包括一个或多个资源集的配置信息。每个资源集可以包括一个或多个非周期上行参考信号。在每个资源集的配置信息 中,可以包括针对该资源集的每个非周期上行参考信号的、例如空间关系参数SpatialRelationInfo的RRC参数,作为该非周期上行参考信号的波束指示,其可以作为本实施例中的第一波束指示的示例。
此外,例如,收发器810还可以被配置为从网络侧设备接收通过物理层的DCI发送的用于触发非周期上行参考信号的触发消息(DCI触发消息),该DCI触发消息包括用于指定所触发的非周期上行参考信号的信息。作为示例,DCI触发消息可以包括用于指定所触发的非周期上行参考信号的资源集的信息。换言之,收发器810所接收的DCI触发消息例如可以以资源集(而非单个的非周期上行参考信号)为单位实现对非周期上行参考信号的触发。例如,DCI触发消息所包括的用于指定资源集的信息使得收发器810可以根在通过RRC配置信息预先配置好的资源集当中,准备发送该消息所指定的资源集的全部非周期上行参考信号。收发器810可以相应地从预先接收并存储在存储单元840中的、所触发的资源集的配置信息中读取针对每个非周期上行参考信号的第一波束指示,作为针对该参考信号的波束指示,并且相应地准备发送波束以发送该参考信号。
另外,例如,收发器810还可以被配置为从网络侧设备接收通过MAC CE发送的用于更新非周期上行参考信号的波束指示的更新消息(MAC CE更新消息),该MAC CE包括针对该参考信号的第二波束指示,以用于取代RRC配置信息所包括的针对该参考信号的第一波束指示。收发器810所接收的MAC CE更新消息例如可以包括要更新的非周期上行参考信号的资源集的每个参考信号的第二波束指示。换言之,MAC CE更新消息例如可以以该消息所指定的资源集中的每个非周期上行参考信号为单位实现波束指示的更新。例如,当收发器810接收到该MAC CE更新消息时,可以在控制单元830的控制下,从该消息读取所指定的资源集中的每个非周期上行参考信号的第二波束指示并将其存储在存储单元840中,以取代先前获得的相应资源集的配置信息的第一波束指示,作为更新后的该资源集中的每个参考信号的波束指示。此后,当电子设备800再接收到针对上述参考信号(例如针对该参考信号的资源集)的DCI触发消息时,电子设备800的收发器将会以更新后的第二波束指示作为该参考信号的波束指示,并且相应地准备发送波束以发送该参考信号。
后文中将会对这些信息或消息以及波束指示的具体示例给出进一步的描 述。
在本实施例中,将用于触发非周期参考信号的触发消息(例如上述DCI触发消息)的发送时间在根据用于更新该参考信号的波束指示的更新消息(例如上述MAC CE更新消息)确定的第二波束指示的预期生效时间之前并且该参考信号的发送时间在第二波束指示的预期生效时间之后的场景识别为波束指示冲突的场景。
在这种场景下,由于DCI触发消息的发送时间在根据MAC CE更新消息确定的、第二波束指示的预期生效时间之前,因此,用户设备侧的电子设备有可能已经基于DCI触发消息获取RRC配置信息(例如相应资源集的配置信息)中的第一波束指示并据此准备了发送波束来发送参考信号;同时,由于参考信号的发送时间在第二波束指示的预期生效时间之后,因此,用户设备侧的电子设备也有可能紧接用于更新该参考信号的波束指示的第二波束指示生效之后才基于第二波束指示准备了发送波束来发送参考信号。这使得现有技术中的网络侧设备(甚至用户设备本身)可能无法确定实际生效的是第一波束指示还是第二波束指示。这种场景的示例可以包括但不限于图2和图3所示的示例场景。
利用本实施例的用户设备侧的电子设备800的配置,可以例如在电子设备800的初始接入流程之后生成并向网络侧设备上报关于非周期上行参考信号的波束指示的能力信息。相应地,网络侧设备可以预先基于该能力信息确定在波束指示冲突的场景下将要实际生效的波束指示(即,确定届时第一波束指示和第二波束指示中的哪个将会实际生效),并且例如可以生成关于所确定的将要实际生效的波束指示的信息并可选地发送给用户设备。以此方式,当后续出现例如图2和图3所示的波束指示冲突的场景时,网络侧设备可以知晓实际生效的波束指示并根据该波束指示接收非周期上行参考信号,并且用户设备侧的电子设备800也可以相应地准备发送波束以发送非周期上行参考信号。
作为示例,生成单元810所生成的关于非周期上行参考信号的波束指示的能力信息可以表示电子设备800所支持的波束指示,例如可以具有2个比特的长度,其中,01表示仅支持根据配置信息确定的的第一波束指示(初始波束指示),10表示仅支持根据更新消息确定的第二波束指示(更新波束指示),11表示同时支持以上两个波束指示,00被用作保留位。
生成单元810可以根据电子设备800自身的情况(例如关于波束指示的存 储能力、准备发送波束所需的时间等)适当地生成上述能力信息。
例如,当电子设备800关于波束指示的存储能力较差而针对一个非周期参考信号只能存储一个波束指示时,只要收发器810接收到用于更新该非周期参考信号的波束指示的MAC CE更新消息,就在存储单元840中存储根据更新消息确定的第二波束指示以取代先前已经存储的、例如包括在RRC配置信息中的第一波束指示(即,存储第二波束指示而删除RRC配置信息的第一波束指示)。这种情况下,收发器810只能基于更新的第二波束指示准备发送波束并发送上行非周期性参考信号。因此,生成单元810可以生成10形式的能力信息,以表示用户设备仅支持根据更新消息确定的第二波束指示。
另外,当电子设备800关于波束指示的存储能力较强而可以针对一个非周期参考信号存储多个波束指示时,当收发器820接收到用于更新该非周期参考信号的波束指示的MAC CE更新消息时,其可以在存储单元840中存储根据更新消息确定的第二波束指示、同时也不删除例如先前已经存储的包括在RRC配置信息中的第一波束指示。这种情况下,电子设备800的生成单元810可以例如根据准备发送波束所需的时间等生成能力信息。
作为示例,如果收发器820需要较长的时间准备发送波束,则在根据更新消息确定的第二波束指示生效之后,其可能无法立即根据第二波束指示准备好参考信号的发送波束。在这种情况下,生成单元810可以生成诸如01形式的能力信息,以表示用户设备仅支持根据配置信息确定的第一波束指示。与之对照,如果收发器820在较短时间内即可完成发送波束的准备,则其有能力在更新消息确定的第二波束指示生效之后立即根据第二波束指示准备好发送波束并利用该发送波束发送参考信号。在这种情况下,生成单元810既可以基于根据更新消息确定的第二波束指示准备发送波束,也可以基于根据RRC配置信息确定的第一波束指示准备发送波束。因此,生成单元810可以生成诸如11形式的能力信息,以表示用户设备同时支持上述两个波束指示。
作为示例,收发器820可以在电子设备800的初始接入流程之后将生成单元810生成的上述能力信息报给网络侧设备,使得网络侧设备可以基于该能力信息预先确定波束指示冲突的场景下将要实际生效的波束指示。
在一个优选实施例中,在能力信息指示仅支持根据配置信息确定的第一波束指示和根据更新消息确定的第二波束指示中的一个波束指示的情况下,该一 个波束指示自然是将要实际生效的波束指示。例如,在能力信息为01时,要实际生效的为根据配置信息确定的第一波束指示,并且在能力信息为10时,将要实际生效的为根据更新消息确定的第二波束指示。生成该能力信息的电子设备800例如可以通过其生成单元810自行进行这样的确定,而接收到该能力信息的网络侧设备也可以做出同样的确定。
此外,在能力信息指示同时支持根据配置信息确定的第一波束指示和根据更新消息确定的第二波束指示的情况下,网络侧设备可以将其中一个波束指示确定为实际生效的波束指示。例如,在能力信息为11时,网络侧设备会确定上述两个波束指示之一为将要实际生效的波束指示。
可选地,收发器820可以进一步被配置通过RRC信令从网络侧设备接收关于将要实际生效的波束指示的信息,并将该信息作为波束指示生效消息存储在存储单元840中。波束指示生效信息例如可以通过1个比特表示,其中,0表示将要实际生效的是根据配置信息确定的第一波束指示,1表示将要实际生效的是根据更新消息确定的第二波束指示。
注意,当电子设备800的生成单元810生成的能力信息例如通过2比特的信息01或10指示仅支持根据配置信息确定的第一波束指示或根据更新消息确定的第二波束指示之一时,即使收发器820不从网络侧设备接收波束指示生效信息,收发器820也知晓实际生效的波束指示(并且实际上电子设备800可能也仅存储了该波束指示)。因此,这种情况下,收发器820可以不从网络侧设备接收波束指示生效信息。然而,优选地,为了信令流程的统一,电子设备800的收发器820可以与生成单元810生成的能力信息的内容无关地从网络侧设备接收波束指示生效信息并可选地将其存储在存储单元840中。后续当电子设备800要发送非周期上行参考信号时,收发器820可以在需要时参考该信息,并且适当地准备发送波束并发送非周期上行参考信号。
例如,可选地,对于给定的电子设备800,如果其关于波束指示的存储能力较强(可以存储多个波束指示)、并且在较短时间内即可完成发送波束的准备,其生成单元810生成了诸如11形式的能力信息以表示同时支持两个波束指示,则这样的电子设备800的收发器810可以被配置为在需要时(例如控制单元830针对当前非周期上行参考信号判断出现波束指示冲突的场景时)从存储单元440读取上述波束指示生效信息,并且根据该信息指定的将要实际生效 的波束指示,准备发送波束并向网络侧设备发送非周期上行参考信号。例如,收发器810可以在所读取的波束指示生效信息为0时,基于根据配置信息确定的第一波束指示准备发送波束,并在该信息为1时,基于根据更新消息确定的第二波束指示准备发送波束。
作为示例,控制单元830可以被配置为当电子设备800需要向网络侧设备发送非周期上行参考信号时,判断是否发生该参考信号的波束指示冲突的场景。控制单元830可以仅在判断发生波束指示冲突的场景时,才控制收发器810从存储单元440读取例如预先从网络侧接收到的波束指示生效信息,使得收发器810可以根据该信息所指定的将要实际生效的波束指示,准备发送波束并发送非周期上行参考信号。当控制单元830判断没有发生波束指示冲突的场景时,可以控制收发器810按照与现有技术中类似的方式发送非周期上行参考信号,这里不再赘述。
控制单元830可以按照与网络侧的电子设备400的控制单元430类似的方式,在触发消息的发送时间在第二波束指示的预期生效时间之前而参考信号的发送时间在第二波束指示的预期生效时间之后时,判断发生波束指示冲突的场景,并将所有其他场景判断为不发生波束指示冲突的场景,这里不再赘述。
此外,与网络侧的电子设备400的控制单元430类似地,当针对参考信号的配置信息、触发消息以及用于更新参考信号的波束指示的更新消息均与包括多个参考信号的资源集相关联时,控制单元830判断波束指示冲突的场景的粒度同样例如可以详细到所触发的资源集中的每个参考信号。即,只要当前参考信号的发送时间和触发消息的发送时间与第二波束指示的预期生效时间之间的关系满足波束指示冲突的场景的条件(触发消息的发送时间在第二波束指示的预期生效时间之前、当前参考信号的发送时间在第二波束指示的预期生效时间之后),控制单元830就可以针对当前参考信号判断出现波束指示冲突,而与该参考信号的资源集中的其他参考信号的发送时间无关。例如,该资源集中的另一参考信号的发送时间可能在第二波束指示的预期生效时间之前(触发消息的发送时间和该另一参考信号的发送时间均在第二波束指示的预期生效时间之前),控制单元830可以判断该另一参考信号没有发生波束指示冲突的情况,并且可以针对当前参考信号和该另一参考信号进行不同的处理。
作为没有发生波束指示冲突的场景的非穷举性示例,控制单元830可以将 下述几种场景判断为没有发生波束指示冲突场景:在该参考信号的发送时间,未曾出现针对该参考信号的波束指示的更新消息(此时实际生效的是根据配置信息确定的第一波束指示);在该参考信号的发送时间,曾经出现针对该参考信号的波束指示的更新消息、但根据该更新消息确定的第二波束指示尚未生效(此时实际生效的是根据配置信息确定的第一波束指示);在该参考信号的触发消息的发送时间,曾经出现针对该参考信号的波束指示的更新消息、并且根据针对该更新消息确定的第二波束指示已生效(此时实际生效的第二波束指示)。
当控制单元830判断没有发生波束指示冲突的场景时,例如可以控制收发器810按照与现有技术中类似的方式发送非周期上行参考信号,即,根据实际生效的波束指示准备发送波束并发送非周期上行参考信号,这里不再赘述。
此外,替选地,当收发器810具有相应的处理能力时,也可以由收发器810自身在需要时进行关于波束指示冲突的场景的判断,并根据判断结果适当地进行发送非周期上行参考信号的处理,这里不再赘述。
注意,当电子设备800的生成单元810生成的能力信息例如通过2比特的信息01或10指示仅支持根据配置信息确定的第一波束指示或根据更新消息确定的第二波束指示之一时,即使收发器820不读取波束指示生效信息,其也知晓实际生效的波束指示(并且实际上电子设备800可能也仅存储了该波束指示)。因此,对于这样的电子设备800,收发器820可以不进行从存储单元840读取波束指示生效信息的处理。
更具体地,例如,当电子设备800对于波束指示的存储能力较差(只能存储一个波束指示)、生成单元810生成的能力信息为10而表示仅支持根据更新消息确定的第二波束指示时,当电子设备800的收发器820需要向网络侧设备发送非周期上行参考信号时,无论是否发生波束指示冲突的场景,其均可直接从存储单元840中读取所存储的那个波束指示并准备发送波束以进行参考信号的发送。
另外,例如,当电子设备800对于波束指示的存储能力较强(可以存储多个波束指示)但准备波束的时间较长、生成单元810生成的能力信息为10而表示仅支持根据配置信息确定的第一波束指示时,当电子设备800需要向网络侧设备发送非周期上行参考信号时,可以通过控制单元830判断是否发生该参 考信号的波束指示冲突的场景。当控制单元830判断发生波束指示冲突的场景时,可以控制收发器820基于根据配置信息确定的第一波束指示准备发送波束并进行参考信号的发送。
以上描述了本公开的第一实施例的用户设备侧的电子设备的配置示例。根据本公开的第一实施例,用户设备侧的电子设备能够生成并上报关于其所支持的波束指示的能力信息,能力信息能够例如被网络侧设备用于针对非周期参考信号的波束指示冲突的场景确定将要实际生效的波束指示,以便在后续冲突场景出现时能够根据预先确定的将要实际生效的波束指示进行相应的处理。
接下来,将结合以上[2.2波束指示相关示例]中的具体示例,简要描述本实施例的用户设备侧的电子设备800及其各个单元可以进行的示例处理。
例如,电子设备800的收发器820接收的针对Ap-SRS的RRC配置信息的示例可以包括网络侧设备为电子设备预先配置的、一个或多个资源类型(ResourceType)为非周期(aperiodic)的SRS资源集(SRS-ResourceSet)的配置信息。在每个在非周期SRS资源集的配置信息中,可以针对每个SRS资源(每个Ap-SRS参考信号)包括以RRC参数SpatialRelationInfo表示的波束指示,其可以用作本公开的第一实施例中的包括在RRC配置信息中的第一波束指示的示例。电子设备800可以被配置为通过收发器820预先接收这样的SRS资源集的配置信息,并将其存储在电子设备800的存储单元840中。
此外,例如,电子设备的收发器820接收的MAC CE更新消息的示例可以包括图5所示的MAC CE更新消息,该MAC CE更新消息的Oct3至OctN-M+1中的资源ID i(可选地连同1比特的F i字段)可以用作MAC CE更新消息中所包括的针对相应的Ap-SRS的第二波束指示的示例。
电子设备800可以被配置为通过收发器820接收上述MAC CE更新消息,并且可以针对该MAC CE更新消息的非周期SRS资源集ID字段所指定的那个非周期SRS资源集,进行相应的更新处理。
例如,当电子设备800关于波束指示的存储能力较差、即存储单元840针对每个Ap-SRS(每个SRS资源)只能存储一个波束指示时,则作为每个Ap-SRS的波束指示,存储单元840将仅存储MAC CE更新消息中的相应的资源ID(第二波束指示),以取代先前存储的该SRS资源集的配置信息中的相应SRS资源的SpatialRelationInfo参数(第一波束指示)(即,存储单元840删除 相应SRS资源的SpatialRelationInfo参数表示的第一波束指示)。
此外,当电子设备800关于波束指示的存储能力较强、即存储单元840针对每个Ap-SRS(每个SRS资源)可以存储多个波束指示时,则作为更新后的每个Ap-SRS波束指示,存储单元840将存储MAC CE更新消息中的相应的资源ID(第二波束指示),但同时保留先前存储的该SRS资源集的配置信息中的相应SRS资源的SpatialRelationInfo参数(第一波束指示)。当跟根据MAC CE更新消息确定的第二波束指示生效后,在一般情况下(没有发生波束指示冲突的场景),电子设备800在需要发送非周期上行参考信号时将会基于该波束指示准备发送波束并进行发送。然而,如果出现波束指示冲突的场景,则电子设备800将根据此前描述的方式按照实际生效的波束指示准备发送波束并进行参考信号的发送。
另外,例如,电子设备的收发器820接收的DCI触发消息可以包括SRS请求(SRS-Request)字段作为指定非周期SRS资源集的信息。收发器820在接收到具有以上SRS请求字段的DCI触发消息时,可以根据该SRS请求字段确定所触发的SRS资源集。
此外,如果电子设备800此前没有接收过关于该SRS资源集的MAC CE更新消息,则收发器820例如可以读取存储单元840中所存储的、该SRS资源集的配置信息中的每个SRS资源的SpatialRelationInfo参数(第一波束指示),并且根据该波束指示准备发送波束并发送参考信号。另外,如果在DCI触发消息之前,电子设备800已接收到关于该SRS资源集的MAC CE更新消息、并且该MAC CE更新消息所更新的波束指示(第二波束指示)已经生效,则收发器820例如可以从存储单元840中读取作为更新后的波束指示的、诸如图5所示的MAC CE更新消息中的相应资源ID。除此之外,如果出现波束指示冲突的场景,则电子设备800将根据此前描述的方式按照实际生效的波束指示准备发送波束并进行参考信号的发送。
接下来,继续结合以上具体示例,考虑下述场景:电子设备800所接收的DCI触发消息所触发的资源集(例如SRS资源集)包括多个诸如Ap-SRS的非周期上行参考信号,该DCI触发消息的发送时间在例如通过MAC CE更新消息而更新的第二波束指示的预期生效时间之前,并且在DCI触发消息所触发的资源集所对应的多个参考信号当中,一部分参考信号的发送时间在第二波束 指示的预期生效时间之前,而另一部分参考信号的发送时间在第二波束指示的预期生效时间之后,例如图7所示的场景。
针对图7所示的上述场景,考虑下述的用户设备侧的电子设备800:该电子设备已经预先生成并向网络侧设备上报了11形式的能力信息,表示其支持两个波束指示;并且也已经预先从网络侧设备接收了关于波束指示冲突场景下的将要实际生效的波束指示的信息(波束指示生效消息),并且已将其存储在存储单元840中。
在这种情况下,当出现图7所示的情况并且电子设备800需要接收Ap-SRS Tx1至Ap-SRS Tx4时,电子设备800可以通过控制单元830(或收发器820本身)首先判断是否出现了波束指示冲突的场景。这里,对于前两个参考信号Ap-SRS Tx1和Ap-SRS Tx2,由于其发送时间在第二波束指示的预期生效时间之前,所以电子设备800可以判断并未发生波束指示冲突。此时,收发器810可以按照与现有技术类似的方式,基于根据配置信息确定的初始的第一波束指示(例如诸如具有图6所示格式的、DCI触发消息中的SRS请求字段所指定的那个SRS资源集中的相应SRS资源的参数SpatialRelationInfo),对该参考信号进行接收。
对于后两个参考信号Ap-SRS Tx3和Ap-SRS Tx4,其DCI触发消息的发送时间在第二波束指示的预期生效时间之前、并且这两个参考信号自身的发送时间在第二波束指示的预期生效时间之后,因此,电子设备800可以判断出现了波束指示冲突的场景。此时,更新的第二波束指示(例如图5所示的MAC CE更新信息中的相应的资源ID)已经生效,导致在现有技术中用户设备无法确定其应该使用哪个波束指示准备发送波束。
在这在情况下,本实施例的电子设备800的收发器810例如可以在控制单元430的控制下,读取存储单元440所存储的波束指示生效信息,并且根据所读取的信息,基于实际生效的那个波束指示对该参考信号进行接收。例如,如果所读取的波束指示生效信息为0,则收发器810可以基于根据配置信息确定的第一波束指示(例如DCI触发消息中的SRS请求字段所指定的那个SRS资源集中的相应SRS资源的参数SpatialRelationInfo)准备Ap-SRS Tx3和Ap-SRS Tx4的发送波束并进行发送;如果所读取的波束指示生效信息为1,则收发器810可以基于根据MAC CE更新消息确定的第二波束指示(例如图5所示的 MAC CE更新信息中的相应的资源ID)准备Ap-SRS Tx3和Ap-SRS Tx4的发送波束并进行发送。
利用本公开实施例的电子设备的以上处理,针对DCI触发消息包括指定非周期上行参考信号的资源集的信息、并且该资源集包括多个非周期上行参考信号的场景,只要触发消息的发送时间在第二波束指示的预期生效时间之前、并且当前的非周期上行参考信号的发送时间在第二波束指示的预期生效时间之后,就可以识别出该当前参考信号的波束指示发生冲突,从而适当地根据预先确定的将要实际生效的波束指示进行相关处理,而与该资源集中其他参考信号的发送时间无关。
以上在参照图1描述的三层信令结构的情况下,描述了本公开第一实施例中的针对非周期上行参考信号的第一波束指示、第二波束指示及与之关联的配置信息、更新消息和触发消息的具体示例以及用户设备侧的电子设备800可以进行的示例处理。本领域技术人员可以理解,上述示例及其细节不构成对本公开实施例的限制。在本公开内容的基础上,本领域技术人员可以将本实施例的电子设备800应用于任意适当场景,只要该场景下非周期上行参考信号的波束指示发生冲突(从而导致可能无法确定实际生效的是初始波束指示还是更新波束指示)即可。
<3.第二实施例的网络侧的电子设备的配置示例>
为了描述本公开的第二实施例所解决的问题,这里,首先以Ap-CSI-RS作为下行非周期性参考信号的示例,参照图9和图10描述第二MAC CE选择消息与DCI触发消息发生交叠从而导致传输资源指示冲突的冲突的示例。
图9和图10是示出传输资源指示冲突的场景的示例的示意图,其各自示意性地示出了第二MAC CE选择消息更新所选择的Ap-CSI-RS的一组传输资源指示(诸如一组非周期触发状态(Aperiodic trigger state),每个非周期触发状态与相应的Ap-CSI-RS资源集相关联,因此,本文中也将这样的非周期触发状态称为传输资源指示,后文中将结合具体示例对其给出详细描述)和DCI触发消息触发Ap-CSI-RS的示例时间线。注意,尽管图中未示出,但在图9和图10所示的时间线之前,网络侧设备NW例如已通过RRC信令为Ap-CSI-RS进行了初始配置,即,已经向UE发送了多个传输资源指示的配置信息,并且已经通过MAC CE向UE发送了用于在所配置的多个传输资源指 示中选择第一组传输资源指示的选择消息(第一MAC CE选择消息)并且该消息已经生效。
此后,一方面,假设先不考虑图9和图10所示的第二MAC CE选择消息,则当UE如图9和图10所示那样收到NW发来的用于触发Ap-CSI-RS的DCI触发消息时,UE可以根据该DCI触发消息在被第一MAC CE选择消息所选择的第一组传输资源指示当中确定相应的例如一个传输资源指示,并且基于该传输资源指示在例如根据DCI触发消息确定的发送时间接收来自NW的Ap-CSI-RS。
另一方面,假设先不考虑DCI触发消息,当UE如图9和图10所示,收到用于在预先配置的多个传输资源指示中选择第二组传输资源指示的第二MAC CE选择消息时,UE进行诸如与此前参照图2和图3描述的类似的、例如3m时间长度的一系列处理之后,例如以第二组传输资源指示取代第一组传输资源指示(因此这3ms的时间可以被视为通过第二MAC CE选择消息所更新的第二组传输资源指示的预期生效时间)。此后,如果UE在第二组传输资源指示已经生效之后,再接收到新的DCI触发消息,则可以根据该DCI触发消息在第二组传输资源指示当中确定相应的例如一个传输资源指示,并且基于该传输资源指示在例如根据DCI触发消息确定的发送时间接收来自NW的Ap-CSI-RS。
对于以上的假设情况,DCI触发消息和第二MAC CE选择消息的时间线不发生交叠,因而UE实际遵照的传输资源指示(实际生效的传输资源指示)是明确的,没有出现传输资源指示冲突或混淆的情况。
然而,如果二者的时间线发生交叠,例如,如图9和图10所示,DCI触发消息出现在第二MAC CE选择消息所选择的第二组传输资源指示的生效时间之前、而所触发的Ap-CSI-RS的传输发生在第二组传输资源指示的生效时间之后,则出现传输资源指示冲突的情况,导致网络侧无法确定对UE而言实际生效是哪一组传输资源指示,也就无法知晓应该基于哪个传输资源指示来向UE发送Ap-CSI-RS。
鉴于以上情况,提出了本公开的第二实施例。
[3.1网络侧的电子设备的配置示例]
图11是示出根据本公开的第二实施例的网络侧的电子设备的一个配置示 例的框图。
如图11所示,电子设备1100可以包括收发器1110和确定单元1120以及可选的用于控制电子设备800的总体操作的控制单元1130和用于存储电子设备1100所需的各种数据和程序等的存储单元1140。
这里,电子设备1100的各个单元都可以包括在处理电路中。需要说明的是,电子设备1100既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,收发器1110可以接收用户设备上报的关于诸如Ap-CSI-RS的非周期下行参考信号的传输资源指示的能力信息,并可选地将其存储在存储单元1140中。
确定单元1120可以根据关于非周期下行参考信号的传输资源指示的能力信息,确定传输资源指示冲突的场景下将要实际生效的传输资源指示。
更具体地,确定单元1120可以根据上述能力信息,确定分别根据第一选择消息和第二选择消息确定的、所述参考信号的多个传输资源指示中的第一组传输资源指示和第二组传输资源指示当中,将要实际生效的一组传输资源指示,其中,用于触发所述参考信号的触发消息的发送时间在所述第一组传输资源指示的预期生效时间之后并在所述第二组传输资源指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二组传输资源指示的预期生效时间之后。可选地,确定单元1120可以生成关于所确定的将要实际生效的一组传输资源指示的信息(本文中适当时也称为传输资源指示生效信息),并将该信息存储在存储单元1140中。
上述触发消息以及第一选择消息和第二选择消息的示例可以包括以上参照图9和图10描述的DCI触发消息和MAC CE选择消息。此外,可选地,非周期参考下行信号可以是电子设备通过RRC信令为用户设备预先配置的,诸如通过RRC信令预先配置的Ap-CSI-RS。
作为示例,收发器1110可以被配置为通过RRC信令向用户设备预先发送针对非周期下行参考信号的多个传输资源指示的配置信息(RRC配置信息)。每个传输资源指示可以与针对非周期下行参考信号的一个或多个资源集相关 联,每个资源集可以包括一个或多个非周期下行参考信号。本实施例中采用的传输资源指示的示例可以包括非周期触发状态(Aperiodic Trigger State)。多个传输资源指示的配置信息的示例可以包括针对例如128个非周期触发状态的非周期触发状态列表(Aperiodic Trigger State List)。以非零功率CSI-RS(nzp-CSI-RS)作为非周期下行参考信号的示例,非周期触发状态列表中的配置信息中可以针对每个非周期触发状态包括参数ResourceSet以指定与该非周期触发状态相关联的nzp-CSI-RS资源集,并且例如还可以包括可选的表示空间准共址的参数qcl-info作为波束指示,以指示该nzp-CSI-RS资源集中的各个资源的发送波束。
此外,另外,例如,收发器1110还可以被配置为当需要从通过RRC配置信息预先配置的多个传输资源指示中选择一组备用的传输资源指示时,通过MAC CE向用户设备发送选择消息(MAC CE选择消息),该MAC CE选择消息用于在预先配置的多个传输资源指示当中、指定其所选择的一组传输资源指示。例如,MAC CE选择消息可以包括用于表示每个传输资源指示(非周期触发状态)是否被选择的信息,以在例如通过非周期触发状态列表配置的128个非周期触发状态当中,指定所选择的一组(例如最多63个)非周期触发状态;接收到该MAC CE选择消息的用户设备将会了解目前备用的是这一组非周期触发状态。
例如,收发器1110还可以被配置为当需要发送非周期下行参考信号时,通过物理层的DCI向用户设备发送触发消息(DCI触发消息),该DCI触发消息优选地包括用于在当前备用的一组传输资源指示(本文中也称为实际生效的一组传输资源指示)中指定要使用的传输资源指示的信息。作为示例,该DCI触发消息可以包括所指定的那个传输资源指示在当前备用的一组传输资源指示中的序号。例如,当MAC CE选择消息在预先配置的128个非周期触发状态当中,指定了备用的63个非周期触发状态之后,DCI触发消息可以通过例如序号1至63之一指定该63个非周期触发状态中的相应一者。这样的DCI触发消息使得用户设备可以准备接收与该消息所指定的那个传输资源指示相关联的非周期下行参考信号。例如,当采用非周期触发状态作为传输资源指示的示例时,用户设备可以准备接收与DCI触发消息所指定的非周期触发状态相关联的资源集(例如,该非周期触发状态的配置信息中的参数ResourceSet 所指定的nzp-CSI-RS资源集),并且可以根据该非周期触发状态所指定的波束指示(例如,该非周期触发状态的配置信息中的参数qcl-info所指定的波束指示)准备接收波束来接收这些非周期下行参考信号。
例如可以通过电子设备1100的控制单元1130的处理生成上述的RRC配置信息、DCI触发消息和MAC CE选择消息并控制收发器1110进行发送,后文中将会对这些信息或消息以及传输资源指示的具体示例给出进一步的描述。
在本实施例中,将用于触发非周期下行参考信号的触发消息(例如DCI触发消息)的发送时间在根据第一选择消息(例如第一MAC CE选择消息)确定的第一组传输资源指示的预期生效时间之后、并在根据第二选择消息(例如第二MAC CE选择消息)确定的第二组传输资源指示的预期生效时间之前,并且参考信号的发送时间在第二组传输资源指示的预期生效时间之后的场景识别为传输资源指示冲突的场景。
在这种场景下,由于DCI触发消息的发送时间在根据第二选择消息确定的、第二传输资源指示的预期生效时间之前,因此,用户设备有可能已经基于DCI触发消息而从根据第一选择消息确定的第一组传输资源中确定第一传输资源指示并进行相应准备(例如包括但不限于根据该第一传输资源指示所指定的波束指示准备了接收波束)以便接收参考信号;同时,由于参考信号的发送时间在第二组传输资源指示的预期生效时间之后,因此,UE也有可能紧接第二组传输资源指示生效之后才基于DCI触发消息而从第二组传输资源中确定第二传输资源指示并进行相应准备以便接收参考信号。这导致现有技术中的网络侧设备(甚至用户设备本身)可能无法确定实际生效的是第一组传输资源指示还是第二组传输资源指示(相应地,无法确定实际生效的是从第一组传输资源指示中确定的第一传输资源指示还是从第二组传输资源指示中确定的第二传输资源指示)。这种场景的示例可以包括但不限于图9和图10所示的示例场景。
利用本实施例的网络侧的电子设备800的配置,确定单元1120可以预先基于收发器1110所接收的能力信息来确定在传输资源指示冲突的场景下将要实际生效的一组传输资源指示(即,确定届时第一组传输资源指示和第二组传输资源指示中的哪一组将会实际生效),并且可以生成关于所确定的将要实际生效的一组传输资源指示的信息(本文中适当时也称为传输资源指示生效信 息)并将其存储在存储单元1140中,以供电子设备800自身使用和/或发送给用户设备。以此方式,当后续出现例如图9和图10所示的传输资源指示冲突的场景时,网络侧的电子设备800和/或用户设备可以知晓实际生效的一组传输资源指示并且根据该组传输资源指示进行相应处理。
作为示例,收发器1110所接收的、关于非周期下行参考信号的传输资源指示的能力信息可以是用户设备在初始接入流程之后上报给电子设备800的。该能力信息可以表示用户设备所支持的传输资源指示,例如可以具有2个比特的长度,其中,01表示用户设备仅支持根据第一选择消息确定的第一组传输资源指示,10表示用户设备仅支持根据第二选择消息确定的第二组传输资源指示,11表示用户设备同时支持以上两组传输资源指示,00被用作保留位。这样的能力信息由用户设备根据自身的情况(例如关于传输资源指示的存储能力、为接收参考信号进行准备工作所需的时间等)适当地生成,稍后将在关于用户设备的配置的部分对能力信息的生成给出进一步的描述。
在一个优选实施例中,确定单元1120可以被配置为在能力信息指示仅支持根据第一选择消息确定的第一组传输资源指示和根据第二选择消息确定的第二组传输资源指示中的一组传输资源指示的情况下,将该组传输资源指示确定为将要实际生效的一组传输资源指示。例如,确定单元1120可以在能力信息为01时,确定将要实际生效的为第一组传输资源指示,并且在能力信息为10时,确定将要实际生效的为第二组传输资源指示。
此外,确定单元1120可以进一步被配置为在能力信息指示同时支持根据第一选择消息确定的第一组传输资源指示和根据第二选择消息确定的第二组传输资源指示的情况下,将其中一组传输资源指示确定为将要实际生效的一组传输资源指示。例如,确定单元1120可以在能力信息为11时,确定上述两组传输资源指示之一为将要实际生效的一组传输资源指示。此时,确定单元1120例如可以随机确定两者之一,也可以根据预先的设置确定两者中的优选的一个。
可选地,确定单元1120可以进一步被配置为生成关于所确定的将要实际生效的一组传输资源指示的信息,并将该信息作为传输资源指示生效消息存储在存储单元1140中。传输资源指示生效信息例如可以通过1个比特表示,其中,0表示将要实际生效的是根据第一选择消息确定的第一组传输资源指示, 1表示将要实际生效的是根据第二选择消息确定的第二组传输资源指示。
可选地,收发器1110可以配置为例如在需要时从存储单元1140读取上述传输资源指示生效信息,并且基于该信息所指定的那组传输资源指示当中的、根据DCI触发消息指定的相应的传输资源指示,向用户设备发送非周期下行参考信号。例如,收发器1110在所读取的传输资源指示生效信息为0时,基于第一组传输资源指示当中的、根据DCI触发消息指定的相应的传输资源指示发送非周期下行参考信号,并在该信息为1时,基于第二组传输资源指示当中的、根据DCI触发消息指定的相应的传输资源指示发送非周期下行参考信号。可选地,当传输资源指示的配置信息包括针对与该传输资源指示相关联的资源集的波束指示时,根据实际生效的传输资源指示,收发器1110例如可以使用与该传输资源指相关联的资源集的波束指示所指定的发送波束,发送非周期下行参考信号。
可选地,控制单元1130可以被配置为当需要向用户设备发送非周期下行参考信号时,判断是否发生该参考信号的传输资源指示冲突的场景。控制单元1130可以仅在判断发生传输资源指示冲突的场景时,才控制收发器1110读取例如预先存储在存储单元1140中的生效信息,使得收发器1110可以根据该信息所指定的将要实际生效的一组传输资源指示,基于DCI触发消息在该组传输资源指示当中指定的相应的传输资源指示发送非周期下行参考信号。
当控制单元1130判断没有发生传输资源指示冲突的场景时,可以控制收发器1110按照与现有技术中类似的方式发送非周期下行参考信号(例如,从当前备用的、此前根据MAC CE选择消息所选择的一组传输资源当中,基于DCI触发消息确定相应的传输资源指示,并且相应地发送非周期下行参考信号),这里不再赘述。
控制单元1130关于传输资源指示冲突的场景的判断可以基于触发非周期下行参考信号的触发消息的发送时间、参考信号的发送时间和根据第一、第二选择消息确定的第一组、第二组传输资源指示的预期生效时间之间的关系。控制单元1130可以通过各种方式确定上述时间以及各个时间之间的关系。例如,参考信号的发送时间可以通过非周期参考信号的触发消息的发送时间以及非周期参考信号的配置信息(例如参考信号的配置信息所指定的参考信号与触发消息的发送时间之间的时间偏移)等确定。此外,第一组、第二组传输资源指 示的预期生效时间例如可以根据第一、第二选择消息的发送时间和根据第一、第二选择消息确定的第一组、第二组传输资源指示生效所需的时间段的长度(诸如3ms的该时间段的长度例如可以由网络侧的电子设备预先获知)确定。
作为示例,控制单元1130可以被配置为仅当触发非周期上行参考信号的触发消息的发送时间在根据第一选择消息确定的第一组传输资源指示的预期生效时间之后、根据第二选择消息确定的第二组传输资源指示的预期生效时间之前,而参考信号的发送时间在第二组传输资源指示的预期生效时间之后时时,才判断发生传输资源指示冲突的场景。控制单元1130可以将除此之外的所有场景判断为不发生波束指示冲突的场景。
这里,控制单元1130判断波束指示冲突的场景的粒度例如可以是传输资源指示。如前所述,DCI触发消息在MAC CE选择消息所选择的、备选的一组传输资源指示当中,指定例如一个传输资源指示来触发与该传输资源指示相关联的资源集的全部参考信号(例如与该传输资源指示相关联的nzp-CSI-RS资源集中的各个nzp-CSI-RS),即MAC CE选择消息所确定的、备选的一组传输资源指示是DCI触发消息的基础(与之对照,第一实施例中的MAC CE更新消息用于更新参考信号的波束指示,但并不更改所触发的参考信号本身)。因此,一旦DCI触发消息已根据第一MAC CE选择消息所选择的、备选的第一组传输资源指定了其中例如第一传输资源指示并且已经开始发送与第一传输资源指示相关联的资源集的参考信号(例如与第一传输资源指示相关联的nzp-CSI-RS资源集中的各个nzp-CSI-RS中的第一nzp-CSI-RS),则即使这个过程中根据第二MAC CE选择消息所选择的、备选的第二组传输资源指示生效,也不会改变已被触发而要发送的、与第一传输资源指示相关联的资源集的其他参考信号(例如与第一传输资源指示相关联的nzp-CSI-RS资源集中的各个nzp-CSI-RS中的其他nzp-CSI-RS)。
因此,在本实例中,优选地,控制单元1130按照传输资源指示、而非按照与传输资源指示相关联的每个参考信号判断传输资源指示冲突的场景。优选地,控制单元1130可以被配置为:仅当触发非周期上行参考信号的触发消息的发送时间在根据第一选择消息确定的第一组传输资源指示的预期生效时间之后、根据第二选择消息确定的第二组传输资源指示的预期生效时间之前,并且与通过触发消息指定的传输资源指示相关联的资源集中所包括的多个非周 期下行参考信号的发送时间均在第二组传输资源指示的预期生效时间之后时,才判断发生传输资源指示冲突的场景;控制单元1130可以将除此之外的所有场景判断为不发生波束指示冲突的场景。以此方式,尽管与DCI触发消息所指定的传输资源指示相关联的资源集的各个非周期下行参考信号的发送时间可能不同,但控制单元1130以这些参考信号中的第一参考信号的发送时间为准,统一判断是否发生传输资源指示冲突。
作为控制单元1130判断没有发生传输资源指示冲突的场景的非穷举性示例,可以考虑下述几种场景:在第一参考信号的发送时间(即,与触发消息指定的传输资源指示相关联的资源集的第一个参考信号的发送时间,下同),未曾出现针对参考信号的传输资源指示的第二选择消息(此时实际生效的是根据第一选择消息确定的第一组传输资源指示);在第一参考信号的发送时间,曾经出现针对参考信号的传输资源指示的第二选择消息、但根据该第二选择消息确定的第二组传输资源指示尚未生效(此时实际生效的是根据第一选择消息确定的第一组传输资源指示);在参考信号的触发消息的发送时间,曾经出现针对参考信号的传输资源指示的第二选择消息、并且根据针对该第二选择消息确定的第二组传输资源指示已生效(此时实际生效的是第二组传输资源指示)。
作为替选,当收发器1110具有相应的处理能力时,也可以由收发器1110自身在需要时进行关于传输资源指示冲突的场景的判断,并根据判断结果适当地进行接收非周期下行参考信号的处理,这里不再赘述。
优选地,收发器1110可以进一步被配置为通过RRC信令向用户设备发送关于将要实际生效的一组传输资源指示的信息(传输资源指示生效信息)。
注意,当来自用户设备的能力信息例如通过2比特的信息01或10指示用户设备仅支持根据第一选择消息确定的第一组传输资源指示或根据第二选择消息确定的第二组传输资源指示之一时,即使网络侧的电子设备800不向用户设备发送传输资源指示生效信息,用户设备也知晓实际生效的是哪一组传输资源指示。因此,这种情况下,电子设备1100可以不向用户设备发送传输资源指示生效信息。然而,优选地,为了信令流程的统一,电子设备1100的收发器1110可以与所接收的能力信息的内容无关地向用户设备发送传输资源指示生效信息,使得用户设备可以在需要时据此准备接收非周期下行参考信号。
以上描述了本公开的第二实施例的网络侧的电子设备的配置示例。根据本 公开的第二实施例,网络侧的电子设备能够针对非周期下行参考信号的传输资源指示冲突的场景,预先基于用户设备所上报的能力信息确定将要实际生效的传输资源指示,以便在后续冲突场景出现时能够根据预先确定的将要实际生效的传输资源指示进行相应的处理。
[3.2传输资源指示相关示例]
接下来,将以nzp-CSI-RS作为非周期下行参考信号的示例,描述本公开第一实施例中可以采用的针对非周期下行参考信号的传输资源指示及与之关联的配置信息、选择消息和触发消息的具体示例,并且结合这些示例描述本实施例的电子设备可以进行的示例处理。
(传输资源的配置信息的示例)
如前所述,本实施例中采用的传输资源指示的示例可以包括CSI非周期触发状态,其中每个CSI非周期触发状态可以与诸如非零功率CSI-RS(nzp-CSI-RS)的非周期下行参考信号的资源集相关联,每个nzp-CSI-RS资源集可以包括一个或多个nzp-CSI-RS。
这样的传输资源指示的配置信息的示例可以包括CSI非周期触发状态列表(CSI-AperiodicTriggerStateList)。在CSI非周期触发状态列表中,针对多个(例如128个)CSI非周期触发状态(CSI-AperiodicTriggerState)中的每一个,可将用于测量的例如nzp-CSI-RS参考信号与利用该参考信号测量后进行报告的CSI报告相关联地配置。更具体地,在CSI非周期触发状态列表(CSI-AperiodicTriggerStateList)中,针对每个非周期触发状态(CSI-AperiodicTriggerState),可以包括用于例如将nzp-CSI-RS与CSI报告相关联的关联配置信息(CSI-AssociatedReportConfigInfo)。该关联配置信息(CSI-AssociatedReportConfigInfo)可以包括用于指定资源集的参数ResourceSet,以指定与该CSI非周期触发状态相关联的nzp-CSI-RS资源集,并且例如还可以包括可选的、作为波束指示的参数qcl-info,以指示该nzp-CSI-RS资源集中的各个资源的发送波束。
如前所述,与一个传输资源指示例如一个CSI非周期触发状态(CSI-AperiodicTriggerState)相关联的nzp-CSI-RS资源集的所有nzp-CSI-RS可以通过一个指定了该CSI非周期触发状态的DCI触发消息统一触发。即,通过一个DCI触发消息触发用户设备发送与该CSI非周期触发状态相关联的 一组nzp-CSI-RS信号。
本实施例的电子设备1100可以例如通过其控制单元1130通过适当处理生成诸如上述CSI非周期触发状态列表(CSI-AperiodicTriggerStateList)的RRC配置信息,并将其通过收发器1110预先发送给用户设备。
(用于选择备用传输资源指示的MAC CE选择消息的示例)
本实施例中用于在预先配置的多个传输资源指示中选择一组备用的传输资源指示的MAC CE选择消息例如可以包括用于表示每个传输资源指示是否被选择的信息,以指定所选择的一组传输资源指示。
图12中示出了本实施例中可以采用的MAC CE选择消息的示例。如图所示,该MAC CE选择消息的Oct1中可以包括1比特的D字段,以指示所涉及的CSI非周期触发状态列表(CSI-AperiodicTriggerStateList)是在哪个配置信息当中(例如在如前所述的CSI-AperiodicTriggerStateList,或在以类似方式配置的AperiodicTriggerStateListForDCI-Format0-2中)所配置的。
在该MAC CE选择消息的Oct2至OctN中,包括用于表示预先配置的CSI非周期触发状态列表(例如CSI-AperiodicTriggerStateList)中的第i个非周期触发状态(Aperiodic Trigger State)是否被选择的、1比特的信息T i,当T i的值为1时指示第i个非周期触发状态被选择,T i的值为0时指示第i个非周期触发状态没有选择。通过字段T 0至T (N-2)*8+7例如可以从共T (N-1)*8个(例如,N=17时,共128个)非周期触发状态当中,指定例如最多63个非周期触发状态,作为所选择的一组非周期触发状态。
本实施例的电子设备1100可以例如通过其控制单元1130经由适当处理生成上述MAC CE选择消息,并在需要时通过收发器1110将其发送给用户设备。电子设备1100需要发送上述MAC CE选择消息的场景例如可以是预先配置的非周期触发状态的数量(例如128个)大于DCI触发的备选范围(例如63个)。当用户设备接收到这样的MAC CE选择消息时,可以将该MAC CE选择消息所选择的那些非周期触发状态作为备用的非周期触发状态例如进行保存,以在后续接收到DCI触发消息时从这些备用的非周期触发状态中进行指定。
(用于指定传输资源指示的DCI触发消息的示例)
本实施例中,用于触发非周期下行参考信号的DCI触发消息优选地包括用于在当前备用的一组传输资源指示中指定要使用的传输资源指示的信息,作 为示例,该DCI触发消息可以包括所指定的那个传输资源指示在当前备用的一组传输资源指示中的序号。
作为本实施例中可以采用的DCI触发消息中所包括的、用于在当前备用的一组传输资源当中指定要使用的传输资源指示的信息的示例,这里考虑DCI触发消息的CSI请求(CSI-Request)字段。CSI请求(SRS-Request)字段例如可以为最多6个比特,其用于例如在通过MAC CE选择消息所选择的、当前备用的一组例如最多63个非周期触发状态(Aperiodic Trigger State)当中,以相应的序号1至63之一指定该63个非周期触发状态中的一者。序号0例如可以表示不触发。
本实施例的电子设备1100可以例如通过其控制单元1130经由适当处理生成具有以上CSI请求字段的DCI触发消息,并在需要触发nzp-CSI-RS时通过收发器1110将其发送给用户设备。
当用户设备接收到电子设备1100所发送的具有以上CSI请求字段的DCI触发消息时,可以根据该字段,在当前备用的一组CSI非周期触发状态当中确定所触发的那个CSI非周期触发状态,并且可以准备接收与DCI触发消息所指定的非周期触发状态相关联的资源集(例如,该非周期触发状态的配置信息中的参数ResourceSet所指定的nzp-CSI-RS资源集),并且可选地可以根据该非周期触发状态所指定的波束指示(例如,该非周期触发状态的配置信息中的参数qcl-info所指定的波束指示)准备接收波束来接收这些非周期下行参考信号。
以上在参照图1描述的三层信令结构的情况下,以nz-CSI-RS为具体示例,描述了本公开第二实施例中的针对非周期下行参考信号的传输资源指示及与之关联的配置信息、选择消息和触发消息的具体示例以及电子设备1100可以进行的示例处理。本领域技术人员可以理解,上述示例及其细节不构成对本公开实施例的限制。在本公开内容的基础上,本领域技术人员可以将本实施例的电子设备1100应用于任意适当场景,只要该场景下非周期下行参考信号的传输资源指示发生冲突(从而导致可能无法确定实际生效的是第一组传输资源指示还是第二组传输资源指示)即可。
[3.3.用户设备侧的电子设备的配置示例]
与上述网络侧的电子设备的配置示例相对应的,下面将详细描述根据本公 开的第二实施例的用户设备侧的电子设备的配置示例。
图13是示出根据本公开的第二实施例的用户设备侧的电子设备的一个配置示例的框图。
如图13所示,电子设备1300可以包括生成单元1310和收发器1320以及可选的用于控制电子设备1300的总体操作的控制单元1330和用于存储电子设备1300所需的各种数据和程序等的存储单元1340。
这里,电子设备1300的各个单元都可以包括在处理电路中。需要说明的是,电子设备1300既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。此外,电子设备1300例如可以包括用户设备本身,或者可以实现为附接至用户设备的另外的电子设备。
根据本公开的实施例,生成单元1310可以生成关于诸如Ap-CSI-RS的非周期下行参考信号的传输资源指示的能力信息。收发器1320可以向网络侧设备上报生成单元1310所生成的能力信息。
该能力信息可以被网络侧设备用于确定传输资源指示冲突的场景下将要实际生效的传输资源指示。更具体地,该能力信息可以被用于确定分别根据第一选择消息和第二选择消息确定的、所述参考信号的多个传输资源指示中的第一组传输资源指示和第二组传输资源指示当中,将要实际生效的一组传输资源指示,其中,用于触发所述参考信号的触发消息的发送时间在所述第一组传输资源指示的预期生效时间之后并在所述第二组传输资源指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二组传输资源指示的预期生效时间之后。
上述触发消息以及第一选择消息和第二选择消息的示例可以包括以上参照图9和图10描述的DCI触发消息和MAC CE选择消息。此外,可选地,非周期参考下行信号可以是网络侧设备通过RRC信令为电子设备1300预先配置的。
作为示例,收发器1310可以被配置为通过RRC信令从网络侧户设备预先接收针对非周期下行参考信号的多个传输资源指示的配置信息(RRC配置信息)并且可以将其存储在存储单元1340中。每个传输资源指示可以与针对非 周期下行参考信号的一个或多个资源集相关联,每个资源集可以包括一个或多个非周期下行参考信号。本实施例中采用的传输资源指示的示例可以包括非周期触发状态(Aperiodic Trigger State)。多个传输资源指示的配置信息的示例可以包括针对例如128个非周期触发状态的非周期触发状态列表(Aperiodic Trigger State List)。以非零功率CSI-RS(nzp-CSI-RS)作为非周期下行参考信号的示例,在非周期触发状态列表中,可以针对每个非周期触发状态包括参数ResourceSet以指定与该非周期触发状态相关联的nzp-CSI-RS资源集,并且例如还可以包括可选的表示空间准共址的参数qcl-info作为波束指示,以指示该nzp-CSI-RS资源集中的各个资源的发送波束。
另外,例如,收发器1310还可以被配置为从网络侧户设备接收通过MAC CE发送的用于从预先配置的多个传输资源指示中选择一组备用传输资源指示的选择消息(MAC CE选择消息),该MAC CE选择消息用于在预先配置的多个传输资源指示当中、指定其所选择的一组传输资源指示。例如,MAC CE选择消息可以包括用于表示每个传输资源指示(非周期触发状态)是否被选择的信息,以在例如通过非周期触发状态列表配置的128个非周期触发状态当中,指定所选择的一组(例如最多63个)非周期触发状态。当收发器1310接收到该MAC CE选择消息时,可以在控制单元1330的控制下从RRC配置信息中读取该消息所指定的一组传输资源指示(非周期触发状态)并将其存储在存储单元1340中,作为非周期下行参考信号的备选传输资源指示,即备用的一组传输资源指示。
此外,例如,收发器1310还可以被配置为从网络侧户设备接收通过物理层的DCI发送的用于触发非周期下行参考信号的触发消息(DCI触发消息),该DCI触发消息优选地包括用于在当前备用的一组传输资源指示中指定要使用的一个传输资源指示的信息。作为示例,该DCI触发消息可以包括所指定的那个传输资源指示在当前备用的一组传输资源指示中的序号。例如,当MAC CE选择消息在预先配置的128个非周期触发状态当中,指定了备用的63个非周期触发状态之后,DCI触发消息可以通过例如序号1至63之一指定该63个非周期触发状态中的相应一者。例如,DCI触发消息所包括的上述信息使得收发器1310可以根据DCI触发消息从存储存储单元1340中所存储的、当前备用的一组传输资源指示(即此前已生效的、MAC CE选择消息所选择的那组传 输资源)中确定相应的传输资源指示,并且可以准备接收与该传输资源指示相关联的非周期下行参考信号。例如,当采用非周期触发状态作为传输资源指示的示例时,收发器1310可以准备接收与DCI触发消息所指定的非周期触发状态相关联的资源集(例如,该非周期触发状态的配置信息中的参数ResourceSet所指定的nzp-CSI-RS资源集),并且可以根据该非周期触发状态所指定的波束指示(例如,该非周期触发状态的配置信息中的参数qcl-info()所指定的波束指示)准备接收波束来接收这些非周期下行参考信号。
后文中将会对这些信息或消息以及传输资源指示的具体示例给出进一步的描述。
在本实施例中,将用于触发非周期下行参考信号的触发消息(例如DCI触发消息)的发送时间在根据第一选择消息(例如第一MAC CE选择消息)确定的第一组传输资源指示的预期生效时间之后、并在根据第二选择消息(例如第二MAC CE选择消息)确定的第二组传输资源指示的预期生效时间之前,并且参考信号的发送时间在第二组传输资源指示的预期生效时间之后的场景识别为传输资源指示冲突的场景。
在这种场景下,由于DCI触发消息的发送时间在根据第二选择消息确定的、第二组传输资源指示的预期生效时间之前,因此,用户设备侧的电子设备有可能基于DCI触发消息而较早地从存储单元中所存储的、第一组传输资源指示(尚未更新的备选传输资源指示)当中确定第一传输资源指示并进行了相应准备(例如包括但不限于根据该第一传输资源指示所指定的波束指示准备了接收波束)以便接收参考信号;同时,由于参考信号的发送时间在第二组传输资源指示的预期生效时间之后,因此,用户设备侧的电子设备也有可能紧接第二组传输资源指示生效之后才基于DCI触发消息而从此时存储单元中所存储的、第二组传输资源指示(更新后的备选传输资源指示)当中确定第二传输资源指示并进行相应准备以便接收参考信号。这导致现有技术中的网络侧设备(甚至用户设备本身)可能无法确定实际生效的是第一组传输资源指示还是第二组传输资源指示(相应地,无法确定实际生效的是从第一组传输资源指示中确定的第一传输资源指示还是从第二组传输资源指示中确定的第一传输资源指示)。这种场景的示例可以包括但不限于图9和图10所示的示例场景。
利用本实施例的用户设备侧的电子设备1300的配置,可以例如在电子设 备1300的初始接入流程之后生成并向网络侧设备上报关于非周期下行参考信号的传输资源指示的能力信息。相应地,网络侧设备可以预先基于该能力信息确定在传输资源指示冲突的场景下将要实际生效的一组传输资源指示(即,确定届时第一组传输资源指示和第二组传输资源指示中的哪一组将会实际生效),并且例如可以生成关于所确定的将要实际生效的一组传输资源指示的信息(传输资源指示生效信息)并可选地发送给用户设备侧的电子设备1300。以此方式,当后续出现例如图9和图10所示的传输资源指示冲突的场景时,网络侧设备可以知晓实际生效的传输资源指示并根据该传输资源指示向用户设备发送非周期下行参考信号,并且用户设备侧的电子设备1300也可以相应地进行准备以接收非周期下行参考信号。
作为示例,生成单元1310所生成的关于非周期下行参考信号的传输资源指示的能力信息可以表示电子设备1300所支持的传输资源指示,例如可以具有2个比特的长度,其中,01表示仅支持根据第一选择消息确定的第一组传输资源指示,10表示仅支持根据第一选择消息确定的第二组传输资源指示,11表示同时支持以上两组传输资源指示,00被用作保留位。
生成单元1310可以根据电子设备1300自身的情况(例如关于传输资源指示的存储能力、为接收参考信号进行准备所需的时间等)适当地生成上述能力信息。
例如,当电子设备1300关于传输资源指示的存储能力较差而只能存储一组传输资源指示时,只要收发器1310接收到用于更新非周期参考信号的备选传输资源指示的第二MAC CE选择消息,就在存储单元1340中存储根据该MAC CE选择消息确定的第二组传输资源指示,以取代先前已经存储的、例如根据第一MAC CE选择消息所确定的第一组传输资源指示(即,存储第二组而删除第一组传输资源指示)。这种情况下,收发器1310只能基于更新的第二组传输资源指示当中的、根据DCI触发消息指定的相应的传输资源指示为接收下行非周期性参考信号进行准备(例如准备接收波束等)。因此,生成单元1310可以生成10形式的能力信息,以表示用户设备仅支持根据第二选择消息确定的第二组传输资源指示。
另外,当电子设备1300关于传输资源指示的存储能力较强而可以存储多组传输资源指示时,当收发器1320接收到用于更新非周期参考信号的备选传 输资源指示的第二MAC CE选择消息时,其可以在存储单元1340中存储根据第二MAC CE选择消息确定的第二组传输资源指示、同时也不删除例如先前已经存储的根据第一MAC CE选择消息确定的第一组传输资源指示。这种情况下,电子设备1300的生成单元1310可以例如根据基于传输资源指示为接收下行非周期性参考信号进行准备所需的时间等生成能力信息。
作为示例,如果收发器1320需要较长的时间为接收下行非周期性参考信号进行准备,则在根据第二选择消息确定的第二组传输资源指示生效之后,其可能无法立即根据第二组传输资源指示中的相应传输资源指示做好准备。在这种情况下,生成单元1310可以生成诸如01形式的能力信息,以表示用户设备仅支持根据第一选择消息确定的第一组传输资源指示。与之对照,如果收发器1320在较短时间内即可完成准备工作,则其有能力在第二组传输资源指示生效之后立即根据第二组传输资源指示中的相应传输资源指示做好准备准备并接收参考信号。换言之,在这种情况下,收发器1320可以基于根据第一或第二选择消息确定的第一或第二组传输资源指示中的相应传输资源指示做好准备以接收参考信号发送波束。因此,生成单元1310可以生成诸如11形式的能力信息,以表示用户设备同时支持上述两组传输资源指示。
作为示例,收发器1320可以在电子设备1300的初始接入流程之后将生成单元1310生成的上述能力信息报给网络侧设备,使得网络侧设备可以基于该能力信息预先确定传输资源指示冲突的场景下将要实际生效的一组传输资源指示。
在一个优选实施例中,在能力信息指示仅支持根据第一选择消息确定的第一组传输资源指示和根据第二选择消息确定的第二组传输资源指示中的一组传输资源指示的情况下,该一组传输资源指示自然是将要实际生效的那组传输资源指示。例如,在能力信息为01时,要实际生效的为第一组传输资源指示,并且在能力信息为10时,将要实际生效的为第二组传输资源指示。生成该能力信息的电子设备1300例如可以通过其生成单元1310自行进行这样的确定,而接收到该能力信息的网络侧设备也可以做出同样的确定。
此外,在能力信息指示同时支持第一组传输资源指示和第二组传输资源指示的情况下,网络侧设备可以将其中一组传输资源指示确定为实际生效的传输资源指示。例如,在能力信息为11时,网络侧设备会确定上述两组传输资源 指示之一为将要实际生效的一组传输资源指示。
可选地,收发器1320可以进一步被配置通过RRC信令从网络侧设备接收关于将要实际生效的一组传输资源指示的信息,并将该信息作为传输资源指示生效消息存储在存储单元1340中。传输资源指示生效信息例如可以通过1个比特表示,其中,0表示将要实际生效的是第一组传输资源指示,1表示将要实际生效的第二组传输资源指示。
注意,当电子设备1300的生成单元1310生成的能力信息例如通过2比特的信息01或10指示仅支持第一组传输资源指示或第二组传输资源指示之一时,即使收发器1320不从网络侧设备接收传输资源指示生效信息,收发器1320也知晓实际生效的一组传输资源指示(并且实际上电子设备1300可能也仅存储了该组传输资源指示)。因此,这种情况下,收发器1320可以不从网络侧设备接收传输资源指示生效信息。然而,优选地,为了信令流程的统一,电子设备1300的收发器1320可以与生成单元1310生成的能力信息的内容无关地从网络侧设备接收传输资源指示生效信息并可选地将其存储在存储单元1340中,并且适当地进行准备工作以接收非周期下行参考信号。
可选地,对于给定的电子设备1300,如果其关于传输资源指示的存储能力较强(可以存储多组传输资源指示)、并且在较短时间内即可完成接收参考信号的准备工作,其生成单元1310生成了诸如11形式的能力信息以表示同时支持两组传输资源指示,则这样的电子设备1300的收发器1310可以被配置为例如在需要时从存储单元1340读取上述传输资源指示生效信息,并且根据该信息指定的将要实际生效的那组传输资源指示进行准备并接收非周期下行参考信号。例如,收发器1310可以在所读取的传输资源指示生效信息为0时,基于第一组传输资源指示当中的、根据DCI触发消息指定的相应的传输资源指示进行准备以接收非周期下行参考信号,并在该信息为1时,基于根据第二组传输资源指示当中的、根据DCI触发消息指定的相应的传输资源指示进行准备以接收非周期下行参考信号。可选地,当传输资源指示的配置信息包括针对与该传输资源指示相关联的资源集的波束指示时,根据实际生效的传输资源指示,收发器1310例如可以基于与该传输资源指示相关联的资源集的波束指示所指定的发送波束,使用相应的接收波束接收来自网络侧的非周期下行参考信号。
可选地,控制单元1330可以被配置为当需要从网络侧设备接收非周期下行参考信号时,判断是否发生该参考信号的传输资源指示冲突的场景。控制单元1330可以仅在判断发生传输资源指示冲突的场景时,才控制收发器1310从存储单元1340读取例如预先从网络侧接收到的传输资源指示生效信息,使得收发器1310可以根据该信息所指定的将要实际生效的一组传输资源指示,基于DCI触发消息在该组传输资源指示当中指定的相应的传输资源指示进行准备以接收非周期下行参考信号。当控制单元1330判断没有发生传输资源指示冲突的场景时,可以控制收发器1310按照与现有技术中类似的方式接收非周期下行参考信号(例如,从当前备用的、此前根据MAC CE选择消息所选择的一组传输资源当中、基于DCI触发消息确定相应的传输资源指示),这里不再赘述。
控制单元1330可以按照与网络侧的电子设备1100的控制单元1130类似的方式,仅在用于触发非周期下行参考信号的触发消息的发送时间在第一组传输资源指示的预期生效时间之后、第二组传输资源指示的预期生效时间之前,而参考信号的发送时间在第二组传输资源指示的预期生效时间之后时,才判断发生传输资源指示冲突的场景,并将所有其他场景判断为不冲突的场景,这里不再赘述。
注意,与网络侧的电子设备1100的控制单元1130类似地,控制单元1330判断波束指示冲突的场景的粒度例如同样可以是传输资源指示。例如,当通过DCI触发消息指定了与非周期下行参考信号的资源集相关联的传输资源指示,并且该资源集包括多个非周期下行参考信号时,控制单元1330可以被配置为:仅当触发非周期上行参考信号的触发消息的发送时间在根据第一选择消息确定的第一组传输资源指示的预期生效时间之后、根据第二选择消息确定的第二组传输资源指示的预期生效时间之前,并且与通过触发消息指定的传输资源指示相关联的资源集中所包括的多个非周期下行参考信号的发送时间均在第二组传输资源指示的预期生效时间之后时,才判断发生传输资源指示冲突的场景;并且可以将除此之外的所有场景判断为不发生波束指示冲突的场景。
作为控制单元1330判断没有发生传输资源指示冲突的场景的非穷举性示例,可以考虑下述几种场景:在第一参考信号的发送时间(例如,与触发消息指定的传输资源指示相关联的资源集的第一个参考信号的发送时间,下同), 未曾出现针对参考信号的传输资源指示的第二选择消息(此时实际生效的是根据第一选择消息确定的第一组传输资源指示);在第一参考信号的发送时间,曾经出现针对参考信号的传输资源指示的第二选择消息、但根据该第二选择消息确定的第二组传输资源指示尚未生效(此时实际生效的是根据第一选择消息确定的第一组传输资源指示);在参考信号的触发消息的发送时间,曾经出现针对参考信号的传输资源指示的第二选择消息、并且根据针对该第二选择消息确定的第二组传输资源指示已生效(此时实际生效的是第二组传输资源指示)。
作为替选,当收发器1310具有相应的处理能力时,也可以由收发器1310自身在需要时进行关于传输资源指示冲突的场景的判断,并根据判断结果适当地进行接收非周期下行参考信号的处理,这里不再赘述。
注意,当电子设备1300的生成单元1310生成的能力信息例如通过2比特的信息01或10指示仅支持第一组传输资源指示或第二组传输资源指示之一时,即使收发器1320不从存储单元1340读取例如预先从网络侧设备接收的传输资源指示生效信息,其也知晓实际生效的那组传输资源指示(并且实际上电子设备1300可能也仅存储了该组传输资源指示)。因此,对于这样的电子设备1300,收发器1320可以不进行从存储单元1340读取传输资源指示生效信息的处理。
更具体地,例如,当电子设备1300对于传输资源指示的存储能力较差(只能存储一组传输资源指示)、生成单元1310生成的能力信息为10而表示仅支持根据第二选择消息确定的第二组传输资源指示时,当电子设备1300的收发器1320需要从网络侧设备接收非周期下行参考信号时,无论是否发生传输资源指示冲突的场景,其均可直接从存储单元1340中读取所存储的那组传输资源指示、并基于DCI触发消息在该组传输资源指示当中指定的相应的传输资源指示进行准备以进行参考信号的接收处理。
另外,例如,当电子设备1300对于传输资源指示的存储能力较强(可以存储多组传输资源指示)但准备波束的时间较长、生成单元1310生成的能力信息为01而表示仅支持根据第一选择消息确定的第一组传输资源指示时,当电子设备1300需要从网络侧设备接收非周期下行参考信号时,可以通过控制单元1330判断是否发生该参考信号的传输资源指示冲突的场景。当控制单元1330判断发生传输资源指示冲突的场景时,可以控制收发器1320从存储单元 1340中读取所存储的、根据第一选择消息确定的第一组传输资源指示,并基于DCI触发消息在该组传输资源指示当中指定的相应的传输资源指示进行准备以进行参考信号的接收处理。
以上描述了本公开的第二实施例的用户设备侧的电子设备的配置示例。根据本公开的第二实施例,用户设备侧的电子设备能够生成并上报关于其所支持的传输资源指示的能力信息,能力信息能够被例如网络侧设备用于针对非周期参考信号的传输资源指示冲突的场景确定将要实际生效的传输资源指示,以便在后续冲突场景出现时能够根据预先确定的将要实际生效的传输资源指示进行相应的处理。
接下来,将结合以上[3.2传输资源指示相关示例]中的具体示例,简要描述本实施例的用户设备侧的电子设备1300及其各个单元可以进行的示例处理。
例如,以nzp-CSI-RS作为非周期下行参考信号的示例,传输资源指示的示例可以包括CSI非周期触发状态,多个传输资源的配置信息的示例可以包括CSI非周期触发状态列表(CSI-AperiodicTriggerStateList)。在该列表中可以针对每个非周期触发状态(CSI-AperiodicTriggerState)包括用于例如将nzp-CSI-RS与CSI报告相关联的关联配置信息(CSI-AssociatedReportConfigInfo),该关联配置信息(CSI-AssociatedReportConfigInfo)可以包括用于指定资源集的参数ResourceSet,以指定与该CSI非周期触发状态相关联的nzp-CSI-RS资源集,并且例如还可以包括可选的、作为波束指示的参数qcl-info,以指示该nzp-CSI-RS资源集中的各个资源的发送波束。电子设备1300可以被配置为通过收发器1320预先接收这样的CSI非周期触发状态列表(CSI-AperiodicTriggerStateList),并将其存储在电子设备1300的存储单元1340中。
此外,例如,MAC CE选择消息的示例可以包括图12所示的MAC CE选择消息,其通过Oct2至OctN中的各个字段例如从CSI非周期触发状态列表(CSI-AperiodicTriggerStateList)所配置的例如128个非周期触发状态当中,指定例如最多63个非周期触发状态,作为所选择的一组非周期触发状态。电子设备1300可以被配置为通过收发器1320接收上述MAC CE选择消息,并 且可以将该MAC CE选择消息选择的一组非周期触发状态适当地存储在存储单元1340中作为备用非周期触发状态。
例如,当电子设备1300关于传输资源指示的存储能力较差而只能存储一组传输资源指示时,则当在第一MAC CE选择消息之后,接收到第二MAC CE选择消息时,存储单元1340将仅存储根据第二MAC CE选择消息确定的第二组非周期触发状态,以取代先前存储的、根据第一MAC CE选择消息确定的第一组非周期触发状态(即,删除第一组非周期触发状态)。此外,当电子设备1300关于传输资源指示的存储能力较强而可以存储多组传输资源指示时,存储单元1340将存储第二组同时保留第一组非周期触发状态。
另外,例如,DCI触发消息可以包括CSI请求(CSI-Request)字段,作为用于在实际生效的一组传输资源(当前备用的一组传输资源)当中指定要使用的传输资源指示的信息的示例。CSI请求(SRS-Request)字段例如可以为最多6个比特,其用于在实际生效的一组例如最多63个非周期触发状态(Aperiodic Trigger State)当中,通过相应的序号1至63指定该63个非周期触发状态中的一者。
当电子设备1300的收发器1320接收到具有以上CSI请求字段的DCI触发消息时,可以根据该字段,在存储单元1340中所存储的实际生效的一组CSI非周期触发状态当中确定所触发的那个CSI非周期触发状态。收发器1320可以例根据存储单元1340中所存储的CSI-AperiodicTriggerStateList中的针对该CSI非周期触发状态的配置信息,准备接收与该非周期触发状态相关联的资源集(例如,CSI-AperiodicTriggerStateList中的针对该非周期触发状态的参数ResourceSet所指定的nzp-CSI-RS资源集),并且可选地可以根据该非周期触发状态的配置信息所指定的波束指示(例如,CSI-AperiodicTriggerStateList中的针对该非周期触发状态的参数qcl-info所指定的波束指示),准备接收波束来接收这些非周期下行参考信号。
以上在参照图1描述的三层信令结构的情况下,以nz-CSI-RS为具体示例,描述了本公开第二实施例中的针对非周期下行参考信号的传输资源指示及与之关联的配置信息、选择消息和触发消息的具体示例以及用户设备侧的电子设备1300可以进行的示例处理。本领域技术人员可以理解,上述示例及其细节不构成对本公开实施例的限制。在本公开内容的基础上,本领域技术人员可以 将本实施例的电子设备1300应用于任意适当场景,只要该场景下非周期下行参考信号的传输资源指示发生冲突(从而导致可能无法确定实际生效的是第一组传输资源指示还是第二组传输资源指示)即可。
<4.方法实施例>
[4.1第一实施例的方法实施例]
(网络侧的无线通信方法的实施例)
接下来将详细描述根据本公开实施例的由网络侧的电子设备(即电子设备400)执行的用于无线通信方法。
图14是示出根据本公开的实施例的网络侧的无线通信方法的过程示例的流程图。
如图14所示,在步骤S1401中,接收用户设备上报的关于非周期上行参考信号的波束指示的能力信息。接着,在步骤S1402中,基于所述能力信息,确定根据所述参考信号的配置信息确定的第一波束指示和根据用于更新所述参考信号的波束指示的更新消息确定的第二波束指示当中,波束指示冲突的场景下将要实际生效的波束指示。波束指示冲突的场景是下述场景:用于触发所述参考信号的触发消息的发送时间在所述第二波束指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二波束指示的预期生效时间之后。作为示例,所述参考信号可以包括非周期探测参考信号。
可选地,在步骤S1402中,在所述能力信息指示仅支持所述第一波束指示和所述第二波束指示中的一个波束指示的情况下,将所述一个波束指示确定为将要实际生效的波束指示。
可选地,在步骤S1402中,在所述能力信息指示同时支持所述第一波束指示和所述第二波束指示的情况下,将所述第一波束指示或所述第二波束指示确定为将要实际生效的波束指示。
此外,可选地,无线通信方法中还可以包括下述步骤:通过RRC信令向所述用户设备发送关于将要实际生效的波束指示的信息。此外,可选地,无线通信方法中还可以包括下述步骤:根据实际生效的波束指示,接收来自所述用户设备的所述参考信号。
此外,可选地,无线通信方法中还可以包括下述步骤中一个或多个:通过RRC信令向所述用户设备预先发送包括所述第一波束指示的配置信息;通过 物理层的下行控制信息向所述用户设备发送所述触发消息;通过媒体接入控制层的控制元素向所述用户设备发送包括所述第二波束指示的所述更新消息。
作为示例,触发消息可以包括用于指定所述参考信号的资源集的信息。此外,作为示例,配置信息可以包括针对所述资源集中的非周期上行参考信号的第一波束指示,并且所述更新消息包括针对所述资源集中的非周期上行参考信号的第二波束指示。在一个优选实施例中,所述资源集包括多个非周期上行参考信号,所述多个非周期上行参考信号中的至少一个参考信号的发送时间在针对该参考信号的第二波束指示的预期生效时间之前。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的第一实施例的网络侧的电子设备400,因此前文中关于电子设备400的实施例的各种方面均适用于此。
(用户设备侧的无线通信方法的实施例)
接下来将详细描述根据本公开第一实施例的由用户设备侧的电子设备(即电子设备800)执行的无线通信方法。
图15是示出根据本公开的第一实施例的用户设备侧的无线通信方法的过程示例的流程图。
如图15所示,在步骤S1501中,生成关于非周期上行参考信号的波束指示的能力信息。接着,在步骤S1502中,向网络侧设备上报所述能力信息。所述能力信息被用于在根据所述参考信号的配置信息确定的第一波束指示以及根据更新所述参考信号的波束指示的更新消息确定的第二波束指示当中,确定波束指示冲突的场景下将要实际生效的波束指示,其中,波束指示冲突的场景是下述场景:用于触发所述参考信号的触发消息的发送时间在所述第二波束指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二波束指示的预期生效时间之后。作为示例,所述参考信号可以包括非周期探测参考信号。
可选地,所述能力信息指示可以指示仅支持所述第一波束指示和所述第二波束指示中的一个波束指示,并且将要实际生效的波束指示是所述一个波束指示。替选地,所述能力信息可以指示同时支持所述第一波束指示和所述第二波束指示,并且将要实际生效的波束指示是所述第一波束指示或所述第二波束指示。
此外,可选地,无线通信方法还包括下述步骤:接收所述网络侧设备通过 RRC信令发送的关于将要实际生效的波束指示的信息。此外,可选地,无线通信方法还包括下述步骤:根据实际生效的波束指示,向所述网络侧设备发送所述参考信号。
此外,可选地,无线通信方法中还可以包括下述步骤中一个或多个:从所述网络侧设备预先接收通过RRC信令发送的包括所述第一波束指示的配置信息;从所述网络侧设备接收通过物理层的下行控制信息发送的所述触发消息;从所述网络侧设备接收通过媒体接入控制层的控制元素发送的包括所述第二波束指示的所述更新消息。
作为示例,触发消息可以包括用于指定所述参考信号的资源集的信息。此外,作为示例,配置信息可以包括针对所述资源集中的非周期上行参考信号的第一波束指示,并且所述更新消息包括针对所述资源集中的非周期上行参考信号的第二波束指示。在一个优选实施例中,所述资源集包括多个非周期上行参考信号,所述多个非周期上行参考信号中的至少一个参考信号的发送时间在针对该参考信号的第二波束指示的预期生效时间之前。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的第一实施例的电子设备800,因此前文中关于电子设备800的实施例的各种方面均适用于此。
[4.2第二实施例的方法实施例]
(网络侧的无线通信方法的实施例)
接下来将详细描述根据本公开实施例的由网络侧的电子设备(即电子设备1100)执行的用于无线通信方法。
图16是示出根据本公开的实施例的网络侧的无线通信方法的过程示例的流程图。
如图16所示,在步骤S1601中,接收用户设备上报的关于非周期下行参考信号的传输资源指示的能力信息。接着,在步骤S1602中,根据所述能力信息,确定分别根据第一选择消息和第二选择消息确定的、所述参考信号的多个传输资源指示中的第一组传输资源指示和第二组传输资源指示当中,传输资源指示冲突的场景下将要实际生效的一组传输资源指示,其中,传输资源指示冲突的场景是下述场景:用于触发所述参考信号的触发消息的发送时间在所述第一组传输资源指示的预期生效时间之后并在所述第二组传输资源指示的预期 生效时间之前,并且所述参考信号的发送时间在所述第二组传输资源指示的预期生效时间之后。作为示例,所述参考信号可以包括非周期信道状态信息参考信号。
可选地,在步骤S1602中,在所述能力信息指示仅支持所述第一组传输资源指示和所述第二组传输资源指示中的一组传输资源指示的情况下,将该组传输资源指示确定为将要实际生效的一组传输资源指示。
可选地,在步骤S1602中,在所述能力信息指示同时支持所述第一组传输资源指示和所述第二组传输资源指示的情况下,将所述第一传输资源指示组或所述第二传输资源组指示确定为将要实际生效的一组传输资源指示。
此外,可选地,无线通信方法中还可以包括下述步骤:通过RRC信令向所述用户设备发送关于将要实际生效的一组传输资源指示的信息。此外,可选地,无线通信方法中还可以包括下述步骤:根据实际生效的传输资源指示,向所述用户设备发送所述参考信号。
此外,可选地,无线通信方法中还可以包括下述步骤中一个或多个:通过RRC信令向所述用户设备预先发送所述多个传输资源指示的配置信息;通过物理层的下行控制信息向所述用户设备发送所述触发消息;通过媒体接入控制层的控制元素向所述用户设备发送所述第一选择消息和所述第二选择消息。
作为示例,触发消息可以包括用于在实际生效的一组传输资源指示中指定要使用的传输资源指示的信息。此外,作为示例,所述要使用的传输资源指示可以与所述参考信号的资源集相关联。在一个优选实施例中,所述资源集包括多个非周期下行参考信号,所述多个非周期下行参考信号的发送时间均在所述第二组传输资源指示的预期生效时间之后。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的第一实施例的网络侧的电子设备1100,因此前文中关于电子设备1100的实施例的各种方面均适用于此。
(用户设备侧的无线通信方法的实施例)
接下来将详细描述根据本公开第二实施例的由用户设备侧的电子设备(即电子设备1300)执行的无线通信方法。
图17是示出根据本公开的第一实施例的用户设备侧的无线通信方法的过程示例的流程图。
如图17所示,在步骤S1701中,生成关于非周期下行参考信号的传输资源指示的能力信息。接着,在步骤S1502中,向网络侧设备上报所述能力信息,所述能力信息被用于确定分别根据第一选择消息和第二选择消息确定的、所述参考信号的多个传输资源指示中的第一组传输资源指示和第二组传输资源指示当中,传输资源指示冲突的场景下将要实际生效的一组传输资源指示,其中,传输资源指示冲突的场景是下述场景:用于触发所述参考信号的触发消息的发送时间在所述第一组传输资源指示的预期生效时间之后并在所述第二组传输资源指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二组传输资源指示的预期生效时间之后。作为示例,所述参考信号可以包括非周期信道状态信息参考信号。
可选地,所述能力信息指示可以指示仅支持所述第一组传输资源指示和所述第二组传输资源指示中的一组传输资源指示,并且将要实际生效的一组传输资源指示是所述一组传输资源指示。替选地,所述能力信息可以指示同时支持所述第一组传输资源指示和所述第二组传输资源指示,并且将要实际生效的一组传输资源指示是所述第一组传输资源指示或所述第二组传输资源指示。
此外,可选地,无线通信方法还包括下述步骤:接收所述网络侧设备通过RRC信令发送的关于将要实际生效的一组传输资源指示的信息。此外,可选地,无线通信方法还包括下述步骤:根据实际生效的传输资源指示,从所述网络侧设备接收所述参考信号。
此外,可选地,无线通信方法中还可以包括下述步骤中一个或多个:从所述网络侧设备预先接收通过RRC信令发送的所述多个传输资源指示的配置信息;从所述网络侧设备接收通过物理层的下行控制信息发送的所述触发消息;从所述网络侧设备接收通过媒体接入控制层的控制元素发送的所述第一选择消息和所述第二选择消息。
作为示例,触发消息可以包括用于在实际生效的一组传输资源指示中指定要使用的传输资源指示的信息。此外,作为示例,所述要使用的传输资源指示可以与所述参考信号的资源集相关联。在一个优选实施例中,所述资源集包括多个非周期下行参考信号,所述多个非周期下行参考信号的发送时间均在所述第二组传输资源指示的预期生效时间之后。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的第二实施 例的电子设备1300,因此前文中关于电子设备800的实施例的各种方面均适用于此。
<5.应用示例>
本公开内容的技术能够应用于各种产品。
例如,网络侧的电子设备400和1100可以被实现为任何类型的基站设备,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB(5G系统中的基站)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
另外,网络侧的电子设备400和1100还可以被实现为任何类型的TRP。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备和基站设备发送信息。在典型的示例中,TRP可以为用户设备提供服务,并且受基站设备的控制。进一步,TRP可以具备与的基站设备类似的结构,也可以仅具备基站设备中与发送和接收信息相关的结构。
用户设备侧的电子设备800和1300可以为各种用户设备,其可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图18是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 1800包括一个或多个天线1810以及基站设备1820。基站设备1820和每个天线1810可以经由RF线缆彼此连接。
天线1810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1820发送和接收 无线信号。如图18所示,eNB 1800可以包括多个天线1810。例如,多个天线1810可以与eNB 1800使用的多个频带兼容。虽然图18示出其中eNB 1800包括多个天线1810的示例,但是eNB 1800也可以包括单个天线1810。
基站设备1820包括控制器1821、存储器1822、网络接口1823以及无线通信接口1825。
控制器1821可以为例如CPU或DSP,并且操作基站设备1820的较高层的各种功能。例如,控制器1821根据由无线通信接口1825处理的信号中的数据来生成数据分组,并经由网络接口1823来传递所生成的分组。控制器1821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1822包括RAM和ROM,并且存储由控制器1821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1823为用于将基站设备1820连接至核心网1824的通信接口。控制器1821可以经由网络接口1823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1823为无线通信接口,则与由无线通信接口1825使用的频带相比,网络接口1823可以使用较高频带用于无线通信。
无线通信接口1825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1810来提供到位于eNB 1800的小区中的终端的无线连接。无线通信接口1825通常可以包括例如基带(BB)处理器1826和RF电路1827。BB处理器1826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1821,BB处理器1826可以具有上述逻辑功能的一部分或全部。BB处理器1826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1826的功能改变。该模块可以为插入到基 站设备1820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1827可以包括例如混频器、滤波器和放大器,并且经由天线1810来传送和接收无线信号。
如图18所示,无线通信接口1825可以包括多个BB处理器1826。例如,多个BB处理器1826可以与eNB 1800使用的多个频带兼容。如图18所示,无线通信接口1825可以包括多个RF电路1827。例如,多个RF电路1827可以与多个天线元件兼容。虽然图18示出其中无线通信接口1825包括多个BB处理器1826和多个RF电路1827的示例,但是无线通信接口1825也可以包括单个BB处理器1826或单个RF电路1827。
在图18所示的eNB 1800中,此前参照图4、图11描述的电子设备400、1100中的收发器410、1110可以通过无线通信接口1825(可选地连同天线1810)等实现。电子设备400、1100中的存储单元440、1140例如可以通过存储器1822实现。电子设备400、1100中的确定单元420、1120以及控制单元430、1130可以通过控制器1821实现。例如,控制器1821可以通过执行存储器1822中存储的指令而执行确定单元420、1120和控制单元430、1130的功能,这里不再赘述。
(第二应用示例)
图19是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 1930包括一个或多个天线1940、基站设备1950和RRH 1960。RRH 1960和每个天线1940可以经由RF线缆而彼此连接。基站设备1950和RRH 1960可以经由诸如光纤线缆的高速线路而彼此连接。
天线1940中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1960发送和接收无线信号。如图19所示,eNB 1930可以包括多个天线1940。例如,多个天线1940可以与eNB 1930使用的多个频带兼容。虽然图19示出其中eNB 1930包括多个天线1940的示例,但是eNB 1930也可以包括单个天线1940。
基站设备1950包括控制器1951、存储器1952、网络接口1953、无线通信接口1955以及连接接口1957。控制器1951、存储器1952和网络接口1953与参照图18描述的控制器1821、存储器1822和网络接口1823相同。网络接口1953为用于将基站设备1950连接至核心网1954的通信接口。
无线通信接口1955支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1960和天线1940来提供到位于与RRH 1960对应的扇区中的终端的无线通信。无线通信接口1955通常可以包括例如BB处理器1956。除了BB处理器1956经由连接接口1957连接到RRH 1960的RF电路1964之外,BB处理器1956与参照图18描述的BB处理器1826相同。如图19所示,无线通信接口1955可以包括多个BB处理器1956。例如,多个BB处理器1956可以与eNB 1930使用的多个频带兼容。虽然图19示出其中无线通信接口1955包括多个BB处理器1956的示例,但是无线通信接口1955也可以包括单个BB处理器1956。
连接接口1957为用于将基站设备1950(无线通信接口1955)连接至RRH1960的接口。连接接口1957还可以为用于将基站设备1950(无线通信接口1955)连接至RRH 1960的上述高速线路中的通信的通信模块。
RRH 1960包括连接接口1961和无线通信接口1963。
连接接口1961为用于将RRH 1960(无线通信接口1963)连接至基站设备1950的接口。连接接口1961还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1963经由天线1940来传送和接收无线信号。无线通信接口1963通常可以包括例如RF电路1964。RF电路1964可以包括例如混频器、滤波器和放大器,并且经由天线1940来传送和接收无线信号。如图19所示,无线通信接口1963可以包括多个RF电路1964。例如,多个RF电路1964可以支持多个天线元件。虽然图19示出其中无线通信接口1963包括多个RF电路1964的示例,但是无线通信接口1963也可以包括单个RF电路1964。
在图19所示的eNB 1930中,此前参照图4、图11描述的电子设备400、1100中的收发器410、1110可以通过无线通信接口1963实现。电子设备400、1100中的存储单元440、1140例如可以通过存储器1952实现。电子设备400、1100中的确定单元420、1120以及控制单元430、1130可以通过控制器1951实现。例如,控制器1951可以通过执行存储器1952中存储的指令而执行确定单元420、1120和控制单元430、1130的至少一部分功能,这里不再赘述。
[关于用户设备的应用示例]
(第一应用示例)
图20是示出可以应用本公开内容的技术的智能电话2000的示意性配置的示例的框图。智能电话2000包括处理器2001、存储器2002、存储装置2003、外部连接接口2004、摄像装置2006、传感器2007、麦克风2008、输入装置2009、显示装置2010、扬声器2011、无线通信接口2012、一个或多个天线开关2015、一个或多个天线2016、总线2017、电池2018以及辅助控制器2019。
处理器2001可以为例如CPU或片上系统(SoC),并且控制智能电话2000的应用层和另外层的功能。存储器2002包括RAM和ROM,并且存储数据和由处理器2001执行的程序。存储装置2003可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2004为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2000的接口。
摄像装置2006包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2007可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2008将输入到智能电话2000的声音转换为音频信号。输入装置2009包括例如被配置为检测显示装置2010的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2010包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2000的输出图像。扬声器2011将从智能电话2000输出的音频信号转换为声音。
无线通信接口2012支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2012通常可以包括例如BB处理器2013和RF电路2014。BB处理器2013可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2014可以包括例如混频器、滤波器和放大器,并且经由天线2016来传送和接收无线信号。无线通信接口2012可以为其上集成有BB处理器2013和RF电路2014的一个芯片模块。如图20所示,无线通信接口2012可以包括多个BB处理器2013和多个RF电路2014。虽然图20示出其中无线通信接口2012包括多个BB处理器2013和多个RF电路2014的示例,但是无线通信接口2012也可以包括单个BB处理器2013或单个RF电路2014。
此外,除了蜂窝通信方案之外,无线通信接口2012可以支持另外类型的 无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2012可以包括针对每种无线通信方案的BB处理器2013和RF电路2014。
天线开关2015中的每一个在包括在无线通信接口2012中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线2016中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2012传送和接收无线信号。如图20所示,智能电话2000可以包括多个天线2016。虽然图20示出其中智能电话2000包括多个天线2016的示例,但是智能电话2000也可以包括单个天线2016。
此外,智能电话2000可以包括针对每种无线通信方案的天线2016。在此情况下,天线开关2015可以从智能电话2000的配置中省略。
总线2017将处理器2001、存储器2002、存储装置2003、外部连接接口2004、摄像装置2006、传感器2007、麦克风2008、输入装置2009、显示装置2010、扬声器2011、无线通信接口2012以及辅助控制器2019彼此连接。电池2018经由馈线向图20所示的智能电话2000的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2019例如在睡眠模式下操作智能电话2000的最小必需功能。
在图20所示的智能电话2000中,此前参照图8、图13描述的电子设备800、1300中的收发器820、1320可以通过无线通信接口2012实现。电子设备800、1300中的存储单元840、1340例如可以通过存储器2002或存储装置2003实现。电子设备800、1300中的生成单元810、1310和控制单元830、1330可以由处理器2001或辅助控制器2019实现。例如,处理器2001或辅助控制器2019可以通过执行存储器2002或存储装置2003中存储的指令而执行生成单元810、1310和控制单元830、1330的至少一部分功能,这里不再赘述。
(第二应用示例)
图21是示出可以应用本公开内容的技术的汽车导航设备2120的示意性配置的示例的框图。汽车导航设备2120包括处理器2121、存储器2122、全球定位系统(GPS)模块2124、传感器2125、数据接口2126、内容播放器2127、存储介质接口2128、输入装置2129、显示装置2130、扬声器2131、无线通信 接口2133、一个或多个天线开关2136、一个或多个天线2137以及电池2138。
处理器2121可以为例如CPU或SoC,并且控制汽车导航设备2120的导航功能和另外的功能。存储器2122包括RAM和ROM,并且存储数据和由处理器2121执行的程序。
GPS模块2124使用从GPS卫星接收的GPS信号来测量汽车导航设备2120的位置(诸如纬度、经度和高度)。传感器2125可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2126经由未示出的终端而连接到例如车载网络2141,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2127再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口2128中。输入装置2129包括例如被配置为检测显示装置2130的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置2130包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器2131输出导航功能的声音或再现的内容。
无线通信接口2133支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2133通常可以包括例如BB处理器2134和RF电路2135。BB处理器2134可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2135可以包括例如混频器、滤波器和放大器,并且经由天线2137来传送和接收无线信号。无线通信接口2133还可以为其上集成有BB处理器2134和RF电路2135的一个芯片模块。如图21所示,无线通信接口2133可以包括多个BB处理器2134和多个RF电路2135。虽然图21示出其中无线通信接口2133包括多个BB处理器2134和多个RF电路2135的示例,但是无线通信接口2133也可以包括单个BB处理器2134或单个RF电路2135。
此外,除了蜂窝通信方案之外,无线通信接口2133可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2133可以包括BB处理器2134和RF电路2135。
天线开关2136中的每一个在包括在无线通信接口2133中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线2137的连接目的地。
天线2137中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2133传送和接收无线信号。如图21所示,汽车导航设备2120可以包括多个天线2137。虽然图21示出其中汽车导航设备2120包括多个天线2137的示例,但是汽车导航设备2120也可以包括单个天线2137。
此外,汽车导航设备2120可以包括针对每种无线通信方案的天线2137。在此情况下,天线开关2136可以从汽车导航设备2120的配置中省略。
电池2138经由馈线向图21所示的汽车导航设备2120的各个块提供电力,馈线在图中被部分地示为虚线。电池2138累积从车辆提供的电力。
在图21示出的汽车导航设备2120中,此前参照图8、图13描述的电子设备800、1300中的收发器820、1320可以通过无线通信接口2133实现。电子设备800、1300中的存储单元840、1340例如可以通过存储器2122实现。电子设备800、1300中的生成单元810、1310和控制单元830、1330可以由处理器2121实现。例如,处理器2121可以通过执行存储器2122中存储的指令而执行800、1300中的生成单元810、1310和控制单元830、1330的至少一部分功能,这里不再赘述。
本公开内容的技术也可以被实现为包括汽车导航设备2120、车载网络2141以及车辆模块2142中的一个或多个块的车载系统(或车辆)2140。车辆模块2142生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2141。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。
Figure PCTCN2021111155-appb-000001

Claims (46)

  1. 如权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    通过RRC信令向所述用户设备预先发送包括所述第一波束指示的配置信息。
  2. 如权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    通过物理层的下行控制信息向所述用户设备发送所述触发消息。
  3. 如权利要求7所述的电子设备,其中,
    所述触发消息包括用于指定所述参考信号的资源集的信息。
  4. 如权利要求8所述的电子设备,其中,
    所述配置信息包括针对所述资源集中的非周期上行参考信号的第一波束指示,并且所述更新消息包括针对所述资源集中的非周期上行参考信号的第二波束指示。
  5. 如权利要求9所述的电子设备,其中,
    所述资源集包括多个非周期上行参考信号,所述多个非周期上行参考信号中的至少一个参考信号的发送时间在针对该参考信号的第二波束指示的预期生效时间之前。
  6. 如权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    通过媒体接入控制层的控制元素向所述用户设备发送包括所述第二波束指示的所述更新消息。
  7. 如权利要求1所述的电子设备,其中,
    所述参考信号包括非周期探测参考信号。
  8. 一种电子设备,包括:
    处理电路,被配置为:
    生成关于非周期上行参考信号的波束指示的能力信息;以及
    向网络侧设备上报所述能力信息,所述能力信息被用于在根据所述参考信号的配置信息确定的第一波束指示以及根据更新所述参考信号的波束指示的更新消息确定的第二波束指示当中,确定将要实际生效的波束指示,
    其中,用于触发所述参考信号的触发消息的发送时间在所述第二波束指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二波束指示的预期生效时间之后。
  9. 如权利要求13所述的电子设备,其中,所述能力信息指示仅支持所述第一波束指示和所述第二波束指示中的一个波束指示,并且将要实际生效的波束指示是所述一个波束指示。
  10. 如权利要求13所述的电子设备,其中,所述能力信息指示同时支持所述第一波束指示和所述第二波束指示,并且将要实际生效的波束指示是所述第一波束指示或所述第二波束指示。
  11. 如权利要求13所述的电子设备,其中,所述处理电路还被配置为:
    接收所述网络侧设备通过RRC信令发送的关于将要实际生效的波束指示的信息。
  12. 如权利要求13所述的电子设备,其中,所述处理电路还被配置为:
    根据实际生效的波束指示,向所述网络侧设备发送所述参考信号。
  13. 如权利要求13所述的电子设备,其中,所述处理电路还被配置为:
    从所述网络侧设备预先接收通过RRC信令发送的包括所述第一波束指示的配置信息。
  14. 如权利要求13所述的电子设备,其中,所述处理电路还被配置为:
    从所述网络侧设备接收通过物理层的下行控制信息发送的所述触发消息。
  15. 如权利要求19所述的电子设备,其中,
    所述触发消息包括用于指定所述参考信号的资源集的信息。
  16. 如权利要求20所述的电子设备,其中,
    所述配置信息包括针对所述资源集中的非周期上行参考信号的第一波束指示,并且所述更新消息包括针对所述资源集中的非周期上行参考信号的第二波束指示。
  17. 如权利要求21所述的电子设备,其中,
    所述资源集包括多个非周期上行参考信号,其中,所述多个非周期上行参考信号中的至少一个参考信号的发送时间在针对该参考信号的第二波束指示的预期生效时间之前。
  18. 如权利要求13所述的电子设备,其中,所述处理电路还被配置为:
    从所述网络侧设备接收通过媒体接入控制层的控制元素发送的包括所述第二波束指示的所述更新消息。
  19. 一种电子设备,包括:
    处理电路,被配置为:
    接收用户设备上报的关于非周期下行参考信号的传输资源指示的能力信息;以及
    根据所述能力信息,确定分别根据第一选择消息和第二选择消息确定的、所述参考信号的多个传输资源指示中的第一组传输资源指示和第二组传输资源指示当中,将要实际生效的一组传输资源指示,
    其中,用于触发所述参考信号的触发消息的发送时间在所述第一组传输资源指示的预期生效时间之后并在所述第二组传输资源指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二组传输资源指示的预期生效时间之后。
  20. 如权利要求24所述的电子设备,其中,所述处理电路还被配置为:
    在所述能力信息指示仅支持所述第一组传输资源指示和所述第二组传输 资源指示中的一组传输资源指示的情况下,将该组传输资源指示确定为将要实际生效的一组传输资源指示。
  21. 如权利要求24所述的电子设备,其中,所述处理电路还被配置为:
    在所述能力信息指示同时支持所述第一组传输资源指示和所述第二组传输资源指示的情况下,将所述第一传输资源指示组或所述第二传输资源组指示确定为将要实际生效的一组传输资源指示。
  22. 如权利要求24所述的电子设备,其中,所述处理电路还被配置为:
    通过RRC信令向所述用户设备发送关于将要实际生效的一组传输资源指示的信息。
  23. 如权利要求24所述的电子设备,其中,所述处理电路还被配置为:
    根据实际生效的传输资源指示,向所述用户设备发送所述参考信号。
  24. 如权利要求24所述的电子设备,其中,所述处理电路还被配置为:
    通过RRC信令向所述用户设备预先发送所述多个传输资源指示的配置信息。
  25. 如权利要求24所述的电子设备,其中,所述处理电路还被配置为:
    通过物理层的下行控制信息向所述用户设备发送所述触发消息。
  26. 如权利要求30所述的电子设备,其中,
    所述触发消息包括用于在实际生效的一组传输资源指示中指定要使用的传输资源指示的信息。
  27. 如权利要求31所述的电子设备,其中,
    所述要使用的传输资源指示与所述参考信号的资源集相关联。
  28. 如权利要求32所述的电子设备,其中,
    所述资源集包括多个非周期下行参考信号,所述多个非周期下行参考信号的发送时间均在所述第二组传输资源指示的预期生效时间之后。
  29. 如权利要求24所述的电子设备,其中,所述处理电路还被配置为:
    通过媒体接入控制层的控制元素向所述用户设备发送所述第一选择消息和所述第二选择消息。
  30. 如权利要求24所述的电子设备,其中,
    所述参考信号包括非周期信道状态信息参考信号。
  31. 一种电子设备,包括:
    处理电路,被配置为:
    生成关于非周期下行参考信号的传输资源指示的能力信息;以及
    向网络侧设备上报所述能力信息,所述能力信息被用于确定分别根据第一选择消息和第二选择消息确定的、所述参考信号的多个传输资源指示中的第一组传输资源指示和第二组传输资源指示当中,将要实际生效的一组传输资源指示,
    其中,用于触发所述参考信号的触发消息的发送时间在所述第一组传输资源指示的预期生效时间之后并在所述第二组传输资源指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二组传输资源指示的预期生效时间之后。
  32. 如权利要求36所述的电子设备,其中,所述能力信息指示仅支持所述第一组传输资源指示和所述第二组传输资源指示中的一组传输资源指示,并且将要实际生效的一组传输资源指示是所述一组传输资源指示。
  33. 如权利要求36所述的电子设备,其中,所述能力信息指示同时支持所述第一组传输资源指示和所述第二组传输资源指示,并且将要实际生效的一组传输资源指示是所述第一组传输资源指示或所述第二组传输资源指示。
  34. 如权利要求36所述的电子设备,其中,所述处理电路还被配置为:
    接收所述网络侧设备通过RRC信令发送的关于将要实际生效的一组传输资源指示的信息。
  35. 如权利要求36所述的电子设备,其中,所述处理电路还被配置为:
    根据实际生效的传输资源指示,从所述网络侧设备接收所述参考信号。
  36. 如权利要求36所述的电子设备,其中,所述处理电路还被配置为:
    从所述网络侧设备预先接收通过RRC信令发送的所述多个传输资源指示的配置信息。
  37. 如权利要求36所述的电子设备,其中,
    从所述网络侧设备接收通过物理层的下行控制信息发送的所述触发消息。
  38. 如权利要求42所述的电子设备,其中,
    所述触发消息包括用于在实际生效的一组传输资源指示中指定要使用的传输资源指示的信息。
  39. 如权利要求43所述的电子设备,其中,
    所述要使用的传输资源指示与所述参考信号的资源集相关联。
  40. 如权利要求44所述的电子设备,其中,
    所述资源集包括多个非周期下行参考信号,所述多个非周期下行参考信号的发送时间均在所述第二组传输资源指示的预期生效时间之后。
  41. 如权利要求36所述的电子设备,其中,所述处理电路还被配置为:
    从所述网络侧设备接收通过媒体接入控制层的控制元素发送的所述第一选择消息和所述第二选择消息。
  42. 一种无线通信方法,包括:
    接收用户设备上报的关于非周期上行参考信号的波束指示的能力信息;以及
    基于所述能力信息,确定根据所述参考信号的配置信息确定的第一波束指示和根据用于更新所述参考信号的波束指示的更新消息确定的第二波束指示当中,将要实际生效的波束指示,
    其中,用于触发所述参考信号的触发消息的发送时间在所述第二波束指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二波束指示的预期生效时间之后。
  43. 一种无线通信方法,包括:
    生成关于非周期上行参考信号的波束指示的能力信息;以及
    向网络侧设备上报所述能力信息,所述能力信息被用于在根据所述参考信号的配置信息确定的第一波束指示以及根据更新所述参考信号的波束指示的更新消息确定的第二波束指示当中,确定将要实际生效的波束指示,
    其中,用于触发所述参考信号的触发消息的发送时间在所述第二波束指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二波束指示的预期生效时间之后。
  44. 一种无线通信方法,包括:
    接收用户设备上报的关于非周期下行参考信号的传输资源指示的能力信息;以及
    根据所述能力信息,确定分别根据第一选择消息和第二选择消息确定的、所述参考信号的多个传输资源指示中的第一组传输资源指示和第二组传输资源指示当中,将要实际生效的一组传输资源指示,
    其中,用于触发所述参考信号的触发消息的发送时间在所述第一组传输资源指示的预期生效时间之后并在所述第二组传输资源指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二组传输资源指示的预期生效时间之后。
  45. 一种无线通信方法,包括:
    生成关于非周期下行参考信号的传输资源指示的能力信息;以及
    向网络侧设备上报所述能力信息,所述能力信息被用于确定分别根据第一选择消息和第二选择消息确定的、所述参考信号的多个传输资源指示中的第一组传输资源指示和第二组传输资源指示当中,将要实际生效的一组传输资源指示,
    其中,用于触发所述参考信号的触发消息的发送时间在所述第一组传输资源指示的预期生效时间之后并在所述第二组传输资源指示的预期生效时间之前,并且所述参考信号的发送时间在所述第二组传输资源指示的预期生效时间之后。
  46. 一种存储有程序的非暂态计算机可读存储介质,所述程序当由处理器执行时,使得所述处理器执行根据权利要求47至50中任一项所述的方法。
PCT/CN2021/111155 2020-08-13 2021-08-06 电子设备、无线通信方法以及计算机可读存储介质 WO2022033402A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180057303.5A CN116134926A (zh) 2020-08-13 2021-08-06 电子设备、无线通信方法以及计算机可读存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010811881.0 2020-08-13
CN202010811881.0A CN114080030A (zh) 2020-08-13 2020-08-13 电子设备、无线通信方法以及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022033402A1 true WO2022033402A1 (zh) 2022-02-17

Family

ID=80247696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111155 WO2022033402A1 (zh) 2020-08-13 2021-08-06 电子设备、无线通信方法以及计算机可读存储介质

Country Status (2)

Country Link
CN (2) CN114080030A (zh)
WO (1) WO2022033402A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024045191A1 (zh) * 2022-09-02 2024-03-07 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110100483A (zh) * 2016-11-02 2019-08-06 Idac控股公司 用于无线系统中的功率有效波束管理的设备、系统和方法
CN110521134A (zh) * 2017-03-09 2019-11-29 Lg 电子株式会社 无线通信系统中执行波束恢复的方法及其设备
US20200106498A1 (en) * 2018-09-28 2020-04-02 Qualcomm Incorporated Synchronizing timing for updating beam configuration information
CN111066370A (zh) * 2017-08-24 2020-04-24 三星电子株式会社 在无线通信系统中配置波束指示的装置和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110100483A (zh) * 2016-11-02 2019-08-06 Idac控股公司 用于无线系统中的功率有效波束管理的设备、系统和方法
CN110521134A (zh) * 2017-03-09 2019-11-29 Lg 电子株式会社 无线通信系统中执行波束恢复的方法及其设备
CN111066370A (zh) * 2017-08-24 2020-04-24 三星电子株式会社 在无线通信系统中配置波束指示的装置和方法
US20200106498A1 (en) * 2018-09-28 2020-04-02 Qualcomm Incorporated Synchronizing timing for updating beam configuration information

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "On Beam Indication", 3GPP DRAFT; R1-1717627 ON BEAM INDICATION_V1, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20171009 - 20171013, 8 October 2017 (2017-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051340813 *

Also Published As

Publication number Publication date
CN114080030A (zh) 2022-02-22
CN116134926A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
US20230141536A1 (en) Electronic device, wireless communication method and computer-readable medium
US11757510B2 (en) Electronic devices and communication methods
US20230102698A1 (en) Network device, user equipment, wireless communication method and storage medium
WO2021169828A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021139669A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
EP4135449A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2018128029A1 (ja) 端末装置、基地局装置、方法及び記録媒体
CN114041270A (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2021190386A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022033402A1 (zh) 电子设备、无线通信方法以及计算机可读存储介质
WO2020140836A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022028318A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022037467A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
EP4207862A1 (en) Electronic device, wireless communication method, and non-transitory computer-readable storage medium
CN116848918A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US10028256B2 (en) Apparatus
WO2022083535A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022083525A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN117730602A (zh) 用于无线通信的管理电子设备、成员电子设备以及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855455

Country of ref document: EP

Kind code of ref document: A1