WO2020029950A1 - 用于无线通信系统的电子设备、方法和存储介质 - Google Patents

用于无线通信系统的电子设备、方法和存储介质 Download PDF

Info

Publication number
WO2020029950A1
WO2020029950A1 PCT/CN2019/099403 CN2019099403W WO2020029950A1 WO 2020029950 A1 WO2020029950 A1 WO 2020029950A1 CN 2019099403 W CN2019099403 W CN 2019099403W WO 2020029950 A1 WO2020029950 A1 WO 2020029950A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
terminal
electronic device
base station
time period
Prior art date
Application number
PCT/CN2019/099403
Other languages
English (en)
French (fr)
Inventor
崔焘
Original Assignee
索尼公司
崔焘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 崔焘 filed Critical 索尼公司
Priority to US17/258,451 priority Critical patent/US20210282188A1/en
Priority to EP19848670.6A priority patent/EP3817486A4/en
Priority to CN201980051874.0A priority patent/CN112534923A/zh
Publication of WO2020029950A1 publication Critical patent/WO2020029950A1/zh
Priority to US18/305,400 priority patent/US20230262771A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates generally to wireless communication systems, and specifically to techniques for resource configuration, resource access, and transmission control.
  • the electronic device may include a processing circuit.
  • the processing circuit may be configured to receive resource configuration information through at least one of radio resource control (RRC) signaling and physical layer signaling, where the resource configuration information indicates resources allocated in an unlicensed band for the terminal to perform Uplink transmission.
  • RRC radio resource control
  • the resource includes one or more resources, and the resource configuration information includes information indicating one or more offset points of a position of the one or more resources.
  • the electronic device includes a processing circuit.
  • the processing circuit may be configured to send resource configuration information through at least one of radio resource control (RRC) signaling and physical layer signaling, where the resource configuration information indicates resources allocated in an unlicensed band for a terminal to perform uplink ⁇ Transmission.
  • RRC radio resource control
  • the resource includes one or more resources, and the resource configuration information includes information indicating one or more offset points of a position of the one or more resources.
  • the electronic device includes a processing circuit.
  • the processing circuit may be configured to generate a parameter K of the number of repeated transmissions for the same transmission block in the uplink; send the parameter K to the base station; and repeatedly send at least one transmission block K times.
  • An aspect of the present disclosure relates to an electronic device for a base station side in a wireless communication system.
  • the electronic device includes a processing circuit.
  • the processing circuit may be configured to receive a repeat transmission number parameter K for the same transport block in the uplink from the terminal; and receive K repeat transmissions for at least one transport block from the terminal.
  • Some aspects of the present disclosure relate to a wireless communication method for a terminal side and / or a base station side.
  • Another aspect of the present disclosure relates to a computer-readable storage medium storing one or more instructions.
  • the one or more instructions when executed by one or more processors of the electronic device, cause the electronic device to perform a method according to various embodiments of the present disclosure.
  • Yet another aspect of the present disclosure relates to various devices including components or units for performing operations of methods according to embodiments of the present disclosure.
  • FIG. 1 illustrates an exemplary wireless communication system according to an embodiment of the present disclosure
  • FIG. 2A illustrates an exemplary electronic device for a base station side according to an embodiment of the present disclosure
  • 2B illustrates an exemplary electronic device for a terminal side according to an embodiment of the present disclosure
  • 3A to 3D illustrate an exemplary resource configuration scheme according to an embodiment of the present disclosure
  • 4A and 4B illustrate an exemplary LBT process according to an embodiment of the present disclosure
  • FIG. 5 illustrates an exemplary operation flow for initiating a device to access a working channel according to an embodiment of the present disclosure
  • FIG. 6 illustrates a schematic diagram of an example of a shared COT according to an embodiment of the present disclosure
  • FIG. 7A illustrates an exemplary operation of an initiating device according to an embodiment of the present disclosure in the case of sharing a COT
  • FIG. 7B illustrates an exemplary operation of a responding device according to an embodiment of the present disclosure in the case of sharing a COT
  • 8A to 8C illustrate examples in which a sender determines and performs repeated transmission according to an embodiment of the present disclosure
  • FIG. 9A illustrates an exemplary electronic device for a sender according to an embodiment of the present disclosure
  • FIG. 9B illustrates an exemplary electronic device for a receiver according to an embodiment of the present disclosure
  • FIG. 10A illustrates a first example method of sending repeatedly by a sender according to an embodiment of the present disclosure
  • FIG. 10B illustrates a first example method for a receiver to receive repeated transmissions according to an embodiment of the present disclosure
  • FIG. 10C illustrates a second example method of sending repeatedly by a sender according to an embodiment of the present disclosure
  • FIG. 10D illustrates a second example method in which a receiver receives repeated transmissions according to an embodiment of the present disclosure.
  • FIG. 11 is a block diagram of an example structure of a personal computer that is an information processing device that can be employed in an embodiment of the present disclosure
  • FIG. 12 is a block diagram showing a first example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied;
  • FIG. 13 is a block diagram showing a second example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied;
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied; and
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 1 illustrates an exemplary wireless communication system 100 according to an embodiment of the present disclosure. It should be understood that FIG. 1 illustrates only one of many types and possible arrangements of a wireless communication system; the features of the present disclosure may be implemented in any of a variety of systems as needed.
  • the wireless communication system 100 includes a base station 120A and one or more terminals 110A, 110B to 110N, and the base station and the terminal may be configured to communicate through a transmission medium.
  • the base station 120A may also be equipped to communicate with a network 130 (eg, a core network of a cellular service provider, a telecommunications network such as a public switched telephone network (PSTN), and / or the Internet). Therefore, the base station 120A may facilitate communication between the terminals 110A to 110N and / or between the terminals 110A to 110N and the network 130.
  • a network 130 eg, a core network of a cellular service provider, a telecommunications network such as a public switched telephone network (PSTN), and / or the Internet.
  • PSTN public switched telephone network
  • base station herein has the full breadth of its ordinary meaning and includes at least wireless communication stations that are part of a wireless communication system or radio system to facilitate communication.
  • base stations may include but are not limited to the following: at least one of a base transceiver station (BTS) and a base station controller (BSC) in a GSM system; a radio network controller (RNC) in a WCDMA system and a At least one of them; eNBs in LTE and LTE-Advanced systems; access points (APs) in WLAN and WiMAX systems; and corresponding network nodes in communication systems to be or are being developed (for example, in 5G New Radio (NR) systems GNB, eLTE, eNB, etc.).
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • eNBs in LTE and LTE-Advanced systems
  • APs access points
  • WLAN Wireless Fidelity
  • WiMAX Wireless Fidelity
  • the term terminal has the full breadth of its usual meaning.
  • the terminal may be a mobile station (Mobile Station, MS), a user equipment (User Equipment, UE), or the like.
  • a terminal can be implemented as a device such as a mobile phone, a handheld device, a media player, a computer, a laptop or a tablet, or almost any type of wireless device.
  • terminals can communicate using multiple wireless communication technologies.
  • the terminal may be configured to communicate using two or more of GSM, UMTS, CDMA2000, WiMAX, LTE, LTE-A, WLAN, NR, Bluetooth, and the like.
  • the terminal may also be configured to communicate using only one wireless communication technology.
  • the coverage area of the base station 120A may be referred to as a cell.
  • Base stations 120A and other similar base stations (not shown) operating in accordance with one or more cellular communication technologies can provide terminals 110A to 110N and similar devices with continuous or near-continuous communication signal coverage over a wide geographic area.
  • the terminals 110A to 110N may receive radio signals from the base station 120A while receiving radio signals from neighboring base stations.
  • the terminal may maintain connections with multiple cells, for example, form dual connectivity with the primary base station and the secondary base station.
  • One of the multiple cells may be used as the primary cell of the terminal, and the other cell may be used as the secondary cell of the terminal.
  • some secondary cells may work in unlicensed frequency bands.
  • the base station and the terminal can communicate through both a licensed spectrum and an unlicensed spectrum.
  • Licensed and unlicensed bands can follow industry standard definitions or follow regional frequency management regulations.
  • the base station can allocate time and frequency domain resources for the uplink and downlink.
  • the frequency domain resources may be continuous or separated subcarriers; in an unlicensed frequency band, the frequency domain resources may also correspond to a certain bandwidth block.
  • the time domain resource may correspond to a certain period of time, for example, it may be a certain number of symbols, time slots, or subframes.
  • the allocation of time domain resources may involve indicating the start of the time period, the terminal, and additional offset points. The additional offset points can increase the flexibility of resource allocation in the time domain.
  • a transmission scheme of a transport block may be changed so that the same transport block is repetitively transmitted multiple times.
  • the sending scheme can complete multiple sending and receiving of a single transmission block in a short time, so that the transmission block can be received more quickly (for example, compared to general hybrid automatic repeat request (HARQ) processing). decoding.
  • HARQ general hybrid automatic repeat request
  • decoding In an unlicensed frequency band, the channel occupation time (COT) of a communication device is generally limited, for example, it is limited by the maximum MCOT. Therefore, this sending scheme is very useful for limited COT in unlicensed bands.
  • a base station and a terminal may communicate with each other through high-level signaling (such as radio resource control (RRC) signaling) and physical layer signaling (such as downlink control information DCI, uplink in an NR system).
  • RRC radio resource control
  • DCI downlink control information
  • At least one of the control information UCI performs signaling interaction (for example, performs resource configuration, etc.).
  • FIG. 2A illustrates an exemplary electronic device for a base station side according to an embodiment of the present disclosure, where the base station can be used for various wireless communication systems.
  • the electronic device 200 shown in FIG. 2A may include various units to implement various embodiments according to the present disclosure.
  • the electronic device 200 may include a first resource configuration unit 202 and a first transceiving unit 204.
  • the electronic device 200 may be implemented as the base station 120A (or a part thereof) in FIG. 1 or may be implemented as a device (such as a controller, or a controller thereof) for controlling the base station 120A or related to the base station 120A. portion).
  • the various operations described below in connection with the base station may be implemented by units 202 and 204 of the electronic device 200 or other possible units.
  • the first resource configuration unit 202 may be configured to determine resource configuration information for uplink and downlink.
  • the resource configuration information may be used for at least one of a licensed frequency band and an unlicensed frequency band.
  • the resource configuration information may indicate resources allocated in the licensed or unlicensed frequency band for uplink transmission by the terminal; the resource configuration information may also indicate the resources allocated in the licensed or unlicensed frequency band for the base station to perform downlink. ⁇ Transmission.
  • the resource may include one or more resources, and the resource configuration information may include one or more offset points indicating the location of the one or more resources.
  • the offset point may indicate a resource's offset situation in the frequency domain and / or time domain.
  • a single resource may correspond to multiple offset points, multiple resources may correspond to the same offset point, and at least one of the multiple resources may correspond to one or more offset points. Multiple offset points can be set to the same or different according to the configuration of resources and other requirements.
  • the resource corresponds to one or more time periods, at least one of which has a start point and an end point.
  • the resource configuration information may also indicate one or more offset points relative to the start point of the time period, as described in detail below.
  • the first transceiving unit 204 may be configured to send uplink resource configuration information to the terminal (for example, through at least one of RRC signaling and physical layer signaling). Once the downlink resource configuration information is determined, it can be known by the base station.
  • FIG. 2B illustrates an exemplary electronic device for a terminal side in which the terminal can be used in various wireless communication systems according to an embodiment of the present disclosure.
  • the electronic device 250 shown in FIG. 2B may include various units to implement various embodiments according to the present disclosure.
  • the electronic device 250 may include a second resource configuration unit 252 and a second transceiving unit 254.
  • the electronic device 250 may be implemented as any one (or a part thereof) of the terminal devices 110A to 110N in FIG. 1.
  • Various operations described below in connection with the terminal may be implemented by units 252 and 254 of the electronic device 250 or other possible units.
  • the second transceiving unit 254 may be configured to receive uplink resource configuration information from the base station (for example, via at least one of RRC signaling and physical layer signaling).
  • the resource configuration information may indicate resources allocated in a licensed frequency band or an unlicensed frequency band for a terminal to perform uplink transmission.
  • the resource may correspond to one or more time periods, at least one of which has a start point and an end point.
  • the resource configuration information may also indicate one or more offset points relative to the start point of the time period.
  • the second resource configuration unit 252 may be configured to determine an uplink resource to be used based on the resource configuration information.
  • each of the above units is only a logical module divided according to the specific functions it implements, and is not used to limit specific implementations.
  • the units may be implemented in software, hardware, or a combination of software and hardware.
  • the foregoing units may be implemented as independent physical entities, or may be implemented by a single entity (for example, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • the processing circuit may refer to various implementations of a digital circuit system, an analog circuit system, or a mixed-signal (combination of analog and digital) circuit system that performs functions in a computing system.
  • the processing circuit may include, for example, a circuit such as an integrated circuit (IC), an application specific integrated circuit (ASIC), a portion or circuit of a separate processor core, the entire processor core, a separate processor, such as a field programmable gate array (FPGA) Programmable hardware devices, and / or systems including multiple processors.
  • IC integrated circuit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the resource allocation mode may include, for example, known dynamic configurations, persistent configurations, and semi-persistent configurations.
  • a resource may correspond to one or more time periods, at least one of which has a start point and an end point.
  • the starting point and the ending point define a time range in which the terminal and / or the base station can use the corresponding resource.
  • the time range of the resource is determined.
  • the time range of the resource may be adaptive, thereby increasing the flexibility of the resource configuration in the time domain.
  • one or more offset points relative to the start point may be configured.
  • the resource configuration information may indicate the one or more offset points by an amount of offset time from a starting point or a specific reference time. In this way, when the terminal and / or the base station attempts to access the channel, the channel can be adaptively accessed at the starting point or the offset point according to whether the channel is occupied.
  • FIG. 3A illustrates an exemplary resource configuration scheme 300 according to an embodiment of the present disclosure.
  • the configuration scheme may be used in uplink and / or downlink; the configuration scheme may be used in a licensed frequency band and / or an unlicensed frequency band.
  • FIG. 3A and the following similar figures only the configuration of the time-frequency resources in the time domain is shown, and those skilled in the art can use any suitable manner to perform the frequency domain configuration.
  • the window 301 may represent an allocated time domain resource 301, that is, a time period 301 corresponding to the allocated time-frequency resource, and the time period 301 has a start point A and an end point B.
  • the time period 301 also has 2 offset points C and D (2 offset points are just examples, and may have other numbers of offset points).
  • the start point, end point, and offset point may be represented by the offset of the corresponding point with respect to the reference time (for example, the amount of offset subframes, the number of slots, and the amount of symbols).
  • the duration of the time period can also be used to implicitly indicate the end point.
  • the terminal or base station desires to use the resource 301, it can perform CCA before the starting point A and at least one of the offset points C and D (as shown by the dotted line in FIG. 3A) as the initiating device in order to determine whether it can be connected at the corresponding point.
  • Clear Channel Assessment may correspond to Type 2 in the NR system, and then Listen Before Talk (LBT) (such as one-shot LBT) or Type 4 ( Type 4) LBT.
  • the existence of the offset points C, D can make the initiating device more flexible and use the configured resources more efficiently.
  • the initiating device at the starting point A may not be ready for transmission or the CCA is unsuccessful, the initiating device may still The working channel is accessed at offset points C, D (or offset point D) and uses the allocated resources during the remaining time period of 301.
  • FIG. 3B shows a usage example of the resource allocation scheme 300.
  • the initiating device terminal or base station
  • the initiating device expects to access the working channel at the starting point A and performs CCA before point A (as shown by the solid line).
  • the CCA was unsuccessful, and the initiator failed to access the working channel at the starting point A. After that, the initiator performs CCA again (as shown by the solid line) before the next offset point C.
  • the CCA was successful, so the originating device can access the working channel at offset point C (although it failed to access at starting point A).
  • the resource allocation scheme 300 and the corresponding usage mode are obviously more flexible and efficient.
  • the offset point may be arranged only at a limited position of the time period 301. In this way, CCA can only be performed at a limited location (rather than continuously throughout the entire time period 301), thereby saving power consumption of the originating device.
  • the end point B of the time period 301 may be fixed or may be variable (for example, based on the point in time when the working channel is accessed). For example, because the CCA before the starting point A is unsuccessful, the originating device accesses the working channel later than the starting point A, so the terminal point B can be pushed back to B ′ accordingly to appropriately compensate for “late access”, for example, compensation period 311 .
  • the resource allocation scheme 300 in FIG. 3A may correspond to a static configuration or a part of a persistent or semi-persistent configuration (for example, one cycle).
  • FIG. 3C illustrates an exemplary resource configuration scheme 350 according to an embodiment of the present disclosure.
  • the resource allocation scheme 350 shows a specific example of persistent or semi-persistent configuration.
  • a plurality of time periods 351 to 353 of the resource have been configured.
  • Each of the time periods 351 to 353 can be understood similarly to the time period 301 in FIG. 3A.
  • each interval has a start and end point and an offset point.
  • the plurality of time periods 351 to 353 may be configured to have, for example, a period T.
  • FIG. 3D shows a usage example of the resource allocation scheme 350.
  • the channel access situation for each time period in this example can be understood similarly to FIG. 3B.
  • the initiator terminal or base station
  • the corresponding time period 361 (for example, equal to the offset between the first offset point and the starting point) may be compensated for the time period 351.
  • the initiator performs CCA 3 times and accesses the working channel at the second offset point.
  • the corresponding time period 362 (for example, equal to the offset between the second offset point and the starting point) may be compensated for the time period 352.
  • the initiator performs CCA only once and accesses the working channel at the starting point. Similar to the resource allocation scheme 300, the resource allocation scheme 350 and the corresponding usage mode are also more flexible and efficient.
  • offset points in a single time period may be unlimited, such as 2, 3, 4, and the like. These offsets can be distributed throughout the time period or only in the front part of the time period. In one embodiment, these offset points are scattered so that the initiating device does not continuously listen to the channel during the COT.
  • a resource allocation manner may be expressed in any appropriate manner.
  • various points related to a time period may be expressed in an absolute or relative manner.
  • the starting point, ending point, and offset point can be represented by the actual time domain position (for example, subframe, slot, symbol, etc.) of the corresponding point, such as n, m, n1, and n2 in FIG. 3A.
  • the end point and / or offset point may also be represented by a time-domain offset from the start point.
  • the following table shows an example indication of the resource configuration 300.
  • the start point, the end point, and the offset point are all expressed by an offset (offset0 to offset3) with respect to the reference time tr.
  • the starting point is still expressed by an offset (offset0) from the reference time tr
  • the end point and the offset point are expressed by offsets (offset11 to offset31) from the starting point, respectively.
  • Example 3 differs from Example 2 in that in Example 3, a unit offset delta is defined, and each offset point is represented as an integer multiple of the offset delta from the starting point.
  • the resource configuration 350 may be similarly represented.
  • Each time period 351 to 353 can be represented similarly to the time period 301.
  • only the number of offset points and offset conditions can be limited by the offset information, and the offset information is applicable to all time periods. In some cases, the offset information for different time periods may also be different.
  • the base station in the downlink, the base station itself knows the resource configuration; in the uplink, the base station can use high-level signaling (such as RRC signaling) and physical layer signaling (such as NR DCI). At least one of the relays transmits resource configuration information to the terminal. In some embodiments, all information related to the time period in the resource configuration, including the start point, the end point, and the offset point, may be transmitted only through high-level signaling. At this time, when initial configuration and reconfiguration (for example, reconfiguration of any of a start point, an end point, or an offset point) is required, high-level signaling needs to be transmitted. In one embodiment, the offset point may also be activated through physical layer signaling.
  • the offset point of the time period when configured through high-level signaling, the offset point is not automatically enabled.
  • the offset point is enabled only when activated through physical layer signaling.
  • the start and end points related to the time period in the resource configuration may be transmitted through high-level signaling, and the offset points related to the time period may be transmitted through physical layer signaling. Because the physical layer signaling can be transmitted quickly, the offset point information can be flexibly configured and updated through the transmission of the offset point information.
  • high-level signaling may be responsible for the initial configuration and reconfiguration of the start and end of the time period; physical layer signaling may be responsible for the initial configuration and reconfiguration of the offset point of the time period.
  • the start, end, and offset information of the time period may be transferred only through physical layer signaling.
  • basic parameters such as the resource usage cycle and transmission power can still be configured through high-level signaling.
  • these communication devices may include eNBs, gNBs, UEs in LTE or NR systems, and APs and MSs in WLAN systems.
  • eNBs evolved Node B
  • gNBs evolved Node B
  • UEs User Equipment
  • APs and MSs in WLAN systems.
  • the base station and the terminal may access an unlicensed channel (hereinafter also referred to as a working channel) in a similar manner as in the licensed frequency band only according to their own communication needs.
  • a working channel an unlicensed channel in a similar manner as in the licensed frequency band only according to their own communication needs.
  • the base station and the terminal can monitor the channel before accessing the working channel (for example, through the LBT method), and Make sure that the channel is connected to the working channel if the channel may be idle.
  • the device that sends the message to the other party first can be called the initiating device, and the corresponding other party can be called the responding device.
  • the initiating device For example, if a base station sends a downlink message first, the base station is the initiating device and the corresponding terminal is the responding device; the opposite situation can be similarly understood.
  • the base station / terminal is used as the initiating device or the responding device, the LBT process described in this disclosure may be applicable.
  • FIG. 4A and 4B illustrate an exemplary LBT process according to an embodiment of the present disclosure.
  • the fixed frame period includes a channel occupation time COT and an idle period.
  • this type of LBT can be referred to as a Frame-Based Equipment (FBE) LBT.
  • FBE Frame-Based Equipment
  • the terminal or base station desires to use the working channel during the COT, it can perform the LBT process as the initiating device.
  • the initiating device may listen to the working channel during the previous idle period adjacent to the COT (as indicated by the solid line CCA in FIG. 4A), and use the work during the COT if it is determined that the working channel is not occupied channel.
  • determining whether a channel is occupied may be referred to as a channel idle assessment CCA, which may be based on the signal energy or power situation monitored on the working channel. For example, when the monitored signal energy or power is lower than a specific threshold, the working channel may be considered unoccupied (or called idle, and CCA is successful at this time). In some embodiments, if the CCA before the COT is unsuccessful, the initiating device may continue the CCA at one or more offset points with respect to the COT afterwards (as indicated by the dotted CCA in FIG. 4A).
  • channel monitoring is performed during the idle period. If a CCA indicates that the channel is idle before the COT, the initiating device can use the working channel during the COT until the end of the COT. After the COT ends, the device will stop using the working channel. At this point, if the device still expects to use the working channel, CCA must be performed again during idle time.
  • the above-mentioned monitoring process may be performed by one-shot LBT.
  • a simple one-shot LBT corresponds to a time of 25 microseconds. Specifically, a combination of 16 microseconds plus one or more 9 microsecond periods constitutes a so-called one-shot. In some cases, more complicated LBT processes can be performed, such as Type 4LBT (including contention window and random backoff counter) in the NR system.
  • LBT Load-Based Equipment
  • COT is driven by the communication load of the originating device, and the transmission demand of the originating device leads to the emergence of COT.
  • the duration of the COT depends on the amount of transmission, as long as the COT does not exceed the maximum allowed MCOT. If transmission needs still exist after MCOT, the next COT can be driven after the idle period.
  • the originating device can listen to the working channel for CCA whenever it needs to transmit, and use the working channel if CCA is successful. Until the end of the transfer or MCOT.
  • the channel monitoring method in FIG. 4A may also be used in the example of FIG. 4B, and is not repeated here.
  • the initiator can use the working channel on the premise that the corresponding resources have been allocated for the initiator. Under this premise, as long as the possibility of the channel being occupied (possibly for some reason, such as occupation from other communication systems) can be ruled out before the arrival of the COT, the initiating device can use the allocated resources. In some embodiments, in the case where the CCA before the COT is unsuccessful, the initiating device is allowed to continue the CCA during part or all of the COT, and use the working channel during the remaining COT if the CCA is successful. In some cases, the COT can be expanded accordingly or appropriately based on the time occupied by the CCA. In some embodiments, the initiating device may also share the COT with the responding device. Specifically, when the initiating device temporarily ends the transmission, the remaining COT can be shared with the responding device. When the responding device ends the transmission, the originating device can also resume using the working channel. The sharing process can be deduced by analogy.
  • the base station may be configured to send some fixed signaling or signals.
  • fixed signaling or signals can be matched with fixed COT; on the other hand, in the downlink, fewer devices access the working channel simultaneously with the base station, and the CCA of the base station is more likely to succeed (ensure that Send these signalings or signals). Therefore, in one embodiment, for the downlink FBE frame structure, the base station may be configured to send a synchronization signal (such as SS / PBCH in the NR system) and / or a reference signal (such as the discovery reference in the NR system) during the COT. Signal DRS).
  • a synchronization signal such as SS / PBCH in the NR system
  • a reference signal such as the discovery reference in the NR system
  • the terminal may be configured to receive a synchronization signal and / or a reference signal during the COT. At this time, if the base station and the terminal share the COT, the terminal can access the working channel for transmission during the shared COT. In one embodiment, the terminal may send only a small amount of data during the shared COT, such as sending a measurement report to the base station. Accordingly, the base station may be configured to receive transmissions, such as measurement reports, from the terminal during sharing of the COT with the terminal.
  • FIG. 5 illustrates an exemplary operation flow 500 for initiating a device to access a working channel according to an embodiment of the present disclosure.
  • the terminal may use the operation flow in the uplink, or the base station may use the operation flow in the downlink.
  • CCA is performed before the start of the time period. If the CCA is successful, the resource is started at the starting point; otherwise, the CCA is performed before each subsequent offset point until the CCA is successful at a certain offset point or all offset points have been passed.
  • one or more CCAs are performed before the start of the first time period to monitor whether the corresponding channel is occupied.
  • whether the CCA is successful can be determined according to certain criteria. If the CCA is successful, proceed to 512 to access the working channel at the starting point; otherwise proceed to 508.
  • CCA may be performed one or more times before the next offset point to monitor whether the corresponding channel is occupied.
  • the success of the CCA can also be determined by criteria. If successful, proceed to 512 to access the working channel at the offset; otherwise return to 508 and repeat the operations of 508 and 510 until CCA succeeds at a certain offset and picks up at the offset. Into the working channel, or CCA is unsuccessful until all the offset points have passed, so that the resources of the first time period are not used.
  • the initiating device may share the COT obtained by itself with the responding device, so that the resources during the COT period can be used by the responding device when it does not need transmission for a while, that is, improving the resource utilization efficiency.
  • FIG. 6 illustrates a shared COT example according to an embodiment of the present disclosure.
  • the initiator device can obtain the MCOT 600 through the CCA and start the first transmission 602 to the responding device at the starting point of the MCOT. Since the MCOT remains after the first transmission 602, the initiating device may send the working channel authorization information to the responding device within the first transmission 602 (for example, at the end of the first transmission 602) to allow the responding devices to share the MCOT (i.e.
  • the responding device may then make a second transmission 604 to the initiating device.
  • the initiator device may still use the corresponding resources of the MCOT again. For example, if the MCOT remains after the second transmission 604, the initiating device may perform a third transmission 606 to the responding device. Moreover, if the MCOT still remains after the third transmission 606, the initiating device can still share the MCOT with the responding device similarly as in 602.
  • each change in the transmission direction initiating device to response device or response device to initiating device
  • the responding device after receiving the working channel authorization information, if the responding device can transmit in the first time period after the end of the transmission from the initiating device, it can be directly at any time in the first time period Use the working channel for transmission to the initiating device; otherwise, if the responding device does not transmit until the first time period after the end of the transmission from the initiating device, it has to perform CCA for the working channel after the first time period, and Only after the CCA is successful can the transmission to the initiating device be performed using the working channel. In the example of FIG. 6, the responding device performs the second transmission 604 only after the CCA has undergone 1 time in the gap 603, and the transmission direction change is completed. Generally, if the amount of data to be transmitted after conversion is small (for example, control information), less CCA may be experienced in the transmission direction conversion, for example, once.
  • the amount of data to be transmitted after conversion is small (for example, control information)
  • less CCA may be experienced in the transmission direction conversion, for example, once.
  • the initiating device when the MCOT is shared with the responding device and the responding device has finished transmitting, if the initiating device can transmit within the first time period after the transmission from the responding device is completed, it can be in the first time period Use the working channel directly to transmit to the responding device at any time within the period; otherwise, if the initiating device does not transmit until the first time period after the end of the transmission from the responding device, it has to CCA is performed on the channel, and the transmission to the responding device can be performed using the working channel only after the CCA is successful.
  • the initiating device performs the third transmission 606 after undergoing the CCA 3 times in the gap 605 to complete the transmission direction conversion.
  • the amount of data to be transmitted after conversion for example, data services
  • more CCAs may be experienced in the transmission direction conversion, for example, more than 2 times.
  • the need for CCA for conversion after the first time period is mainly for fair consideration. That is, if the conversion gap is too long, the converted transmission is considered as a new occupation of the channel, so CCA is required.
  • the length of the first time period may be 16 microseconds, and each CCA may be 9 microseconds.
  • CCA for a working channel may correspond to one-shot listen-before-talk (LBT).
  • LBT listen-before-talk
  • the number of one-shot LBTs can be related to the gap length and the capabilities of the initiating or responding device.
  • FIG. 7A illustrates an exemplary operation of an initiating device according to an embodiment of the present disclosure in a case of sharing a COT.
  • the initiating device may be a base station in the downlink, or a terminal in the uplink.
  • the initiating device sends a working channel authorization to the responding device during the COT obtained by itself.
  • the transmission direction may change, and the responding device may further authorize the access to the working channel for transmission based on the working channel.
  • the initiating device may determine whether to re-use the working channel (e.g., based on whether there is data to send).
  • the initiating device may determine whether it will transmit within the first time period (eg, 16 microseconds). If so, proceed to 704. At 704, the initiating device may directly use the working channel for transmission. Otherwise proceed to 705. At 705, the initiator device can access the working channel through the CCA.
  • the first time period eg, 16 microseconds
  • FIG. 7B illustrates an exemplary operation of a responding device according to an embodiment of the present disclosure in the case of sharing a COT.
  • the responding device may be a terminal in the downlink or a base station in the uplink.
  • the responding device may receive a working channel authorization from the responding device.
  • the responding device may determine at 752 whether it will transmit within the first time period (eg, 16 microseconds). If so, proceed to 753.
  • the initiating device may directly use the working channel for transmission. Otherwise proceed to 754.
  • the initiating device may access the working channel through the CCA.
  • a sender in order to improve transmission efficiency of a transmission block, may repeatedly transmit a single transmission block.
  • the sender may determine the number K of repeated transmissions of a single transport block by itself, and notify the receiver of the number of repeated transmissions K.
  • the sender then sends K times for a single transport block.
  • the sender determines and repeatedly transmits a single transmission block 4 times, that is, a total of 4 transmissions from 802 to 808 (where the dashed lines indicate additional transmissions due to repetition), which can be close to or closely related in the time domain. adjacent.
  • the receiver may combine the K receptions of a single transport block to decode the transport block, thereby improving the decoding success rate.
  • the K transmissions of the transport block may be exactly the same, or may have different redundancy versions (RVs).
  • RVs redundancy versions
  • the sender also notifies the receiver of the RV parameter information (the parameter information may be the sequence / mode / rule of repeated RVs for repeated transmission of a single transport block), so that the receiver can perform merge processing (for example, Soft merge).
  • the resources configured for the sender may be limited in the time domain.
  • time domain resources configured for at least some senders may be limited due to the large number of users.
  • the sender can obtain a limited channel occupation time COT, for example, it is limited to the maximum MCOT.
  • the repeated transmission of a single transmission block according to the embodiment can be completed in a shorter time (and it is easier for the receiver to correctly receive the transmission block), so the transmission can be completed on limited time domain resources Sending of blocks.
  • the number of repeated transmissions K may be determined based on at least one or more of the following: the channel occupation time COT of the sender, the power level of the sender, or the link channel status of the sender to the receiver. For example, when there is a COT restriction, the sender can enable repeated sending; and / or, when the sender's power level is sufficient, the sender can enable repeated sending; and / or, when the above link channel is not ideal, the sender can Enable repeat sending.
  • FIG. 8A illustrates an example in which a sender determines and repeatedly transmits a single transport block according to an embodiment of the present disclosure.
  • the four transmissions 802 to 808 may correspond to multiple repeated transmissions of a single HARQ transmission of a single transmission block.
  • the single HARQ transmission may be the first HARQ transmission or subsequent retransmission of the single transmission block.
  • FIG. 8B illustrates an example of a single process in which a sender determines and repeatedly sends a HARQ transmission according to an embodiment of the present disclosure.
  • the number of repeated transmissions K is two. As shown in FIG.
  • the HARQ IDs of 802 and 804 are both 0, and they can be understood as multiple instances of the HARQ process with ID 0.
  • the receiver can receive the value of the sender's repeated transmission number K and the corresponding HARQ ID value each time through signaling. The receiver can decode the reception based on the K value and the HARQ ID value. Specifically, in FIG.
  • the HARQ retransmission may be initiated by the sender because the receiver fails to decode.
  • HARQ retransmission has the same process ID as the initial transmission, both of which are 0 in FIG. 8B; HARQ retransmission and initial transmission can be distinguished by the flag bit (for example, by new data indicator in the LTE and NR systems). ).
  • the HARQ retransmission may be repeatedly transmitted twice (the dotted line 814 indicates additional transmission due to repetition).
  • the HARQ IDs of 812 and 814 are both 0. Then, the receiver can similarly decode the reception based on the K value and the HARQ ID value.
  • HARQ retransmission can be performed multiple times within the limit of the maximum number of retransmissions, until the original transmission block is decoded or the maximum number of retransmissions is reached.
  • FIG. 8C illustrates an example in which a sender determines and repeatedly sends a HARQ transmission according to an embodiment of the present disclosure.
  • the number of repeated transmissions K is two.
  • the example of FIG. 8C can be understood similarly to FIG. 8B and is only briefly described here.
  • the sender can use these two processes to send, for example, the first transmission block and the second transmission block.
  • the receiver can also decode the first transport block and the second transport block based on the K value and the HARQ ID value. In the case of decoding failure, HARQ retransmission may be performed for different transport blocks.
  • FIG. 9A illustrates an exemplary electronic device for a sender, where the sender may be implemented as a terminal (or base station) in various wireless communication systems according to an embodiment of the present disclosure.
  • the electronic device 900 shown in FIG. 9A may include various units to implement various embodiments according to the present disclosure.
  • the electronic device 900 may include a parameter generation unit 902 and a third transceiving unit 904.
  • the parameter generation unit 902 may be configured to generate a parameter K of the number of repeated transmissions for the same transport block to be transmitted by the sender.
  • the third transceiving unit 904 may be configured to send the parameter K to the receiver, and repeatedly send at least one transport block K times.
  • the parameter generating unit 902 may be configured to generate a parameter K for the number of repeated transmissions for the same transmission block in the uplink.
  • the third transceiver unit 904 may be configured to send the parameter K to the base station, and repeatedly send at least one transport block K times.
  • FIG. 9B illustrates an exemplary electronic device for a receiver according to an embodiment of the present disclosure, where the receiver may be implemented as a base station (or terminal) in various wireless communication systems.
  • the electronic device 950 shown in FIG. 9B may include various units to implement various embodiments according to the present disclosure.
  • the electronic device 950 may include a parameter obtaining unit 952 and a fourth transceiving unit 954.
  • the parameter obtaining unit 952 may be configured to receive and obtain a repeat transmission number parameter K for the same transport block sent by the sender from the sender.
  • the fourth sending unit 954 may be configured to receive K repeated transmissions of at least one transport block from the receiver.
  • the parameter obtaining unit 952 may be configured to receive and obtain a repeat transmission number parameter K for the same transmission block in the uplink from the terminal.
  • the fourth sending unit 954 may be configured to receive K repeated transmissions of at least one transport block from the terminal.
  • Each of the above units is only a logical module divided according to the specific functions it implements, and is not used to limit specific implementations.
  • it can be implemented in software, hardware, or a combination of software and hardware.
  • the foregoing units may be implemented as independent physical entities, or may be implemented by a single entity (for example, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • the processing circuit may refer to various implementations of a digital circuit system, an analog circuit system, or a mixed-signal (combination of analog and digital) circuit system that performs functions in a computing system.
  • the processing circuit may include, for example, a circuit such as an integrated circuit (IC), an application specific integrated circuit (ASIC), a portion or circuit of a separate processor core, the entire processor core, a separate processor, such as a field programmable gate array (FPGA) Programmable hardware devices, and / or systems including multiple processors.
  • IC integrated circuit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FIG. 10A illustrates a first example method 1000a of a sender repeatedly transmitting according to an embodiment of the present disclosure.
  • the method can be performed by a terminal; in the downlink, the method can be performed by a base station.
  • the number of repeated transmissions K of the same transport block in the link from the sender to the receiver can be determined at 1002, and the K value is transmitted to the receiver.
  • the sender may repeatedly send at least one transport block K times.
  • FIG. 10B illustrates a first example method 1000b for a receiver to receive repeated transmissions according to an embodiment of the present disclosure.
  • the method can be performed by a base station; in the downlink, the method can be performed by a terminal.
  • the receiver can receive the number of repeated transmissions K of the same transmission block on the sender at 1006.
  • the receiver may receive K retransmissions of at least one transport block from the sender, and recover the at least one transport block from the K retransmissions received.
  • FIG. 10C illustrates a second example method 1050a of repeated sending by a sender according to an embodiment of the present disclosure.
  • the method can be performed by a terminal; in the downlink, the method can be performed by a base station.
  • the sender can use the HARQ process to repeatedly send a single transport block.
  • the sender may repeatedly send the HARQ initial transmission of the transmission block K times (for example, as multiple instances of the same HARQ process) at 1052, and determine whether an ACK is received at 1054. If it is determined as YES at 1054, it indicates that the transport block has been correctly recovered by the receiver, so it can proceed to 1058.
  • the sender may end the transmission of the HARQ process. If it is determined to be no at 1054, it indicates that the transmission block has not been correctly recovered by the receiver, so it is necessary to proceed to 1056 and send the next HARQ retransmission of the transmission block repeatedly K times. After that, you can return to 1054 to determine again whether an ACK was received. If it is determined to be YES this time, proceed to 1058 again; otherwise, repeat the operation of 1056.
  • FIG. 10D illustrates a second example method 1050b of a receiver receiving repeated transmissions according to an embodiment of the present disclosure.
  • the method can be performed by a base station; in the downlink, the method can be performed by a terminal.
  • the receiver may receive multiple repeated transmissions of HARQ initial transmission and / or retransmission of a single transport block.
  • the receiver can receive K repeated transmissions of the HARQ initial transmission of the transmission block, and perform multiple processing for multiple receptions.
  • the receiver can determine if the transport block was correctly restored. If yes at 1064, you can proceed to 1068.
  • the receiver can feedback the ACK and end the reception of the HARQ process. If the determination is no at 1064, then you need to proceed to 1066. At 1066, the receiver can feedback NACK; then, the receiver receives K repeated transmissions of HARQ retransmissions of the transport block, and performs a merge process. After that, you can return to 1064 to determine again whether the transport block is correctly restored. If the determination is yes this time, proceed to 1068; otherwise, repeat the operation of 1066.
  • the HARQ ID in the uplink may not be related to a specific resource. In this way, the HARQ process can no longer be bound to a specific time domain location, so that the time domain location can be flexibly configured or selected for the HARQ process and possibly multiple instances (for example, for the above-mentioned repeated sending).
  • Tables 2 to 4 show the uplink signaling related to the terminal's repeated transmission in the uplink.
  • a "Repetition K” field indicating the number of repeated transmissions and a "Repetition RV” field indicating the redundancy of different repeated transmissions can be added to the physical layer signaling (for example, NR UCI).
  • the physical layer signaling for example, NR UCI.
  • two bits can be used to indicate the number of repeated transmissions
  • Table 3 gives example values.
  • two bits can be used to represent repeated RV parameters for the same transmission block (such as the initial transmission or retransmission of the transmission block), and Table 4 shows an example RV sequence.
  • those skilled in the art can similarly use other high-level signaling and physical layer signaling to communicate the information related to repeated transmissions to the base station.
  • the base station may also configure the number of repeated transmissions in the uplink.
  • the number of times determined by the terminal can always cover the number of times the base station is configured, or the base station no longer configures the number of times or the number of times after it knows the terminal's autonomous configuration Configured as the default invalid value (that is, not adopted by the terminal).
  • the base station may also configure the repeated RV parameters of the uplink for the repeated transmission of the same transmission block (such as the initial transmission or retransmission of the transmission block).
  • the terminal may perform repeated transmission based on the repeated RV parameters configured by the base station.
  • the repeated RV parameters generated by the terminal can cover the repeated RV parameters configured by the base station.
  • a wireless communication method for a terminal side includes: receiving resource configuration information through at least one of radio resource control (RRC) signaling and physical layer signaling, wherein the resource configuration information indicates Resources allocated in an unlicensed frequency band are used by the terminal for uplink transmission.
  • RRC radio resource control
  • the resource includes one or more resources, and the resource configuration information includes information indicating one or more offset points of a position of the one or more resources.
  • the resource corresponds to one or more time periods, wherein at least one time period has a start point and an end point, and the resource configuration information further indicates one or more offsets relative to the start point of the at least one time period. Move point.
  • the method further comprises: performing a channel vacancy assessment (CCA) before the beginning of the at least one time period; if the CCA is successful, starting to use the resource at the starting point; CCA is performed before the shift point, until the CCA is successful or all shift points have been passed.
  • CCA channel vacancy assessment
  • the one or more offset points are indicated by an amount of offset time relative to the starting point or a specific reference time.
  • the end point of the at least one time period is fixed, or the end point of the at least one time period is variable.
  • receiving the resource configuration information through at least one of RRC signaling and physical layer signaling includes at least one of the following: receiving, through RRC signaling, the start, end, and bias of the at least one time period Information of a shift point; receiving information about a start point, an end point, and an offset point of the at least one time period through physical layer signaling; or receiving information about a start point and an end point of the at least one time period through RRC signaling, and Information about the offset point of the at least one time period is received through physical layer signaling.
  • the method further comprises: receiving a working channel use authorization from the base station during the channel occupation time of the base station; and performing at least one of the following: during any of the first time period after the transmission from the base station is completed Time, use the working channel directly for uplink transmission; or perform CCA for the working channel after the first time period, and use the working channel for uplink transmission after the CCA is successful.
  • the method further comprises: sending a working channel use authorization to the base station during the channel occupation time of the terminal; and performing at least one of the following: any time within the first time period after the transmission from the base station is completed Using the working channel directly for uplink transmission; or performing CCA for the working channel after the first period of time, and using the working channel for uplink transmission after the CCA is successful.
  • CCA for the working channel corresponds to Type 2 Listen-Before-Talk (LBT).
  • LBT Listen-Before-Talk
  • the CCA corresponds to a Type 2 LBT; and / or if the uplink transmission after the transmission from the base station ends is data , Then CCA corresponds to more than 2 type 2 LBTs.
  • the method further includes: for a channel access mode of an unlicensed frequency band configured with a frame-based device (FBE), performing the following operations: receiving a synchronization signal and / or a reference signal; and / or sending a measurement to a base station report.
  • FBE frame-based device
  • a wireless communication method for a base station side includes: sending resource configuration information through at least one of radio resource control (RRC) signaling and physical layer signaling, wherein the resource configuration information indicates The resources allocated in the unlicensed frequency band are used by the terminal for uplink transmission.
  • the resource includes one or more resources, and the resource configuration information includes information indicating one or more offset points of a position of the one or more resources.
  • the resource corresponds to one or more time periods, wherein at least one time period has a start point and an end point, and the resource configuration information further indicates one or more offsets relative to the start point of the at least one time period. Move point.
  • the one or more offset points are indicated by an amount of offset time relative to the starting point or a specific reference time.
  • the end point of the at least one time period is fixed, or the end point of the at least one time period is variable.
  • sending the resource configuration information through at least one of RRC signaling and physical layer signaling includes at least one of the following: sending the start, end and bias of the at least one time period through RRC signaling Information of a shift point; sending information about a start point, an end point, and an offset point of the at least one time period through physical layer signaling; or sending information about a start point and an end point of the at least one time period through RRC signaling, and Information about the offset point of the at least one time period is sent through physical layer signaling.
  • the method further comprises: receiving a working channel use authorization from the terminal during the channel occupation time of the terminal; and performing at least one of the following: any time within the first time period after the transmission from the terminal is completed Time, use the working channel directly for downlink transmission; or perform CCA for the working channel after the first period of time, and use the working channel for downlink transmission after CCA succeeds.
  • the method further comprises: sending a working channel use authorization to the terminal during the channel occupancy time of the base station; and performing at least one of the following: at any time within the first time period after the transmission from the terminal is completed , Directly using the working channel for downlink transmission; or performing CCA for the working channel after the first period of time, and using the working channel for downlink transmission after CCA is successful.
  • CCA for the working channel corresponds to Type 2 Listen-Before-Talk (LBT).
  • LBT Listen-Before-Talk
  • the CCA corresponds to a type 2 LBT; and / or if the downlink transmission after the end of the transmission from the terminal is data , Then CCA corresponds to more than 2 type 2 LBTs.
  • the method further includes, for a channel access mode configured with an unlicensed frequency band of a frame-based device (FBE), performing the following operations: sending a synchronization signal and / or a reference signal; and / or receiving a measurement from a terminal report.
  • FBE frame-based device
  • a wireless communication method for a terminal side includes: generating a parameter K of the number of repeated transmissions for the same transmission block in an uplink; transmitting the parameter K to a base station; and repeatedly transmitting at least one transmission block K Times.
  • the method further includes: repeatedly transmitting the at least one transport block K times based on redundant version (RV) parameter information configured for repeated transmission by the base station; or generating RV parameter information for repeated transmission,
  • RV redundant version
  • the base station sends the generated RV parameter information, and repeatedly transmits at least one transport block K times based on the generated RV parameter information.
  • the method further includes generating the parameter K based on at least one or more of: a maximum channel occupation time of the terminal; a power level of the terminal; or an uplink channel condition.
  • repeatedly sending the at least one transport block K times includes: repeatedly sending the hybrid automatic repeat request (HARQ) initial transmission of the at least one transport block K times; and / or sending the at least one At least one HARQ retransmission of the transport block is repeated K times.
  • HARQ hybrid automatic repeat request
  • the method further includes: for at least one HARQ process of uplink transmission, selecting a HARQ ID for the at least one HARQ process from a plurality of HARQ IDs, wherein the selected HARQ ID is not related to a specific Related to the resource; and sending a HARQ ID for the at least one HARQ process to the base station.
  • a wireless communication method for a base station side includes: receiving a repeat transmission number parameter K for a same transmission block in an uplink from a terminal; and receiving K times of at least one transmission block from a terminal Send repeatedly.
  • the method further includes: decoding and repeating the K repeated transmissions of the at least one transport block based on redundant version (RV) parameter information configured by the base station for repeated transmission; or receiving RV parameter information from the terminal, And based on the received RV parameter information, K times of the at least one transport block are repeatedly sent and decoded.
  • RV redundant version
  • receiving K repeated transmissions of at least one transmission block from the terminal includes: receiving K repeated transmissions of a hybrid automatic repeat request (HARQ) initial transmission of the at least one transmission block, and receiving from the received Decoding the at least one transmission block in K repeated transmissions; or receiving K repeated transmissions of at least one HARQ retransmission of the at least one transmission block, and decoding the at least one from the received K transmissions and previous transmissions Transmission block.
  • HARQ hybrid automatic repeat request
  • the method further comprises receiving a HARQ ID of at least one HARQ process for the uplink from the terminal, wherein the HARQ ID is not associated with a specific resource.
  • machine-executable instructions in the machine-readable storage medium or program product may be configured to perform operations corresponding to the above-mentioned device and method embodiments.
  • the embodiments of the machine-readable storage medium or program product are clear to those skilled in the art, and therefore will not be described repeatedly.
  • Machine-readable storage media and program products for carrying or including the above-mentioned machine-executable instructions also fall within the scope of the present disclosure.
  • Such a storage medium may include, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • FIG. 11 is a block diagram showing an example structure of a personal computer as an information processing apparatus that can be adopted in an embodiment of the present disclosure.
  • the personal computer may correspond to the above-described exemplary terminal device according to the present disclosure.
  • a central processing unit (CPU) 1301 performs various processes according to a program stored in a read only memory (ROM) 1302 or a program loaded from a storage section 1308 to a random access memory (RAM) 1303.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1301 performs various processes and the like is also stored as necessary.
  • the CPU 1301, the ROM 1302, and the RAM 1303 are connected to each other via a bus 1304.
  • An input / output interface 1305 is also connected to the bus 1304.
  • the input section 1306 includes a keyboard, a mouse, etc .
  • the output section 1307 includes a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc .
  • a storage section 1308 Including hard disks, etc .
  • communication part 1309 including network interface cards such as LAN cards, modems, etc.
  • the communication section 1309 performs communication processing via a network such as the Internet.
  • the driver 1310 is also connected to the input / output interface 1305 as needed.
  • a removable medium 1311 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc. is installed on the drive 1310 as needed, so that a computer program read out therefrom is installed into the storage section 1308 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 1311.
  • a storage medium is not limited to the removable medium 1311 shown in FIG. 11 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable medium 1311 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read-only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered trademark) ))
  • the storage medium may be a ROM 1302, a hard disk included in the storage section 1308, and the like, in which programs are stored, and are distributed to users along with the device containing them.
  • the base stations mentioned in this disclosure can be implemented as any type of evolved Node B (gNB), such as macro gNB and small gNB.
  • the small gNB may be a gNB covering a cell smaller than a macro cell, such as a pico gNB, a pico gNB, and a home (femto) gNB.
  • the base station may be implemented as any other type of base station, such as a NodeB and a Base Transceiver Station (BTS).
  • BTS Base Transceiver Station
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (Remote Radio Heads, RRHs) disposed at different places from the main body.
  • a main body also referred to as a base station device
  • RRHs Remote Radio Heads
  • various types of terminals described below can work as base stations by temporarily or semi-persistently performing base station functions.
  • the terminal devices mentioned in this disclosure are also referred to as user devices in some examples, and can be implemented as mobile terminals such as smart phones, tablet personal computers (PCs), notebook PCs, portable gaming terminals, portable / dongles Mobile routers and digital cameras) or in-vehicle terminals such as car navigation equipment.
  • the user equipment may also be implemented as a terminal (also called a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the terminals described above.
  • FIG. 12 is a block diagram showing a first example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • the gNB 1400 includes a plurality of antennas 1410 and a base station device 1420.
  • the base station device 1420 and each antenna 1410 may be connected to each other via an RF cable.
  • the gNB 1400 (or the base station device 1420) herein may correspond to the above-mentioned electronic devices 300A, 1300A, and / or 1500B.
  • Each of the antennas 1410 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna, and is used for the base station device 1420 to transmit and receive wireless signals.
  • MIMO multiple-input multiple-output
  • the gNB 1400 may include multiple antennas 1410.
  • multiple antennas 1410 may be compatible with multiple frequency bands used by gNB 1400.
  • the base station device 1420 includes a controller 1421, a memory 1422, a network interface 1423, and a wireless communication interface 1425.
  • the controller 1421 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station device 1420. For example, the controller 1421 generates a data packet according to data in a signal processed by the wireless communication interface 1425, and passes the generated packet via the network interface 1423. The controller 1421 may bundle data from multiple baseband processors to generate a bundled packet, and pass the generated bundled packet. The controller 1421 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 1422 includes a RAM and a ROM, and stores a program executed by the controller 1421 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1423 is a communication interface for connecting the base station device 1420 to the core network 1424.
  • the controller 1421 may communicate with a core network node or another gNB via the network interface 1423.
  • the gNB 1400 and the core network node or other gNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface.
  • the network interface 1423 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1423 is a wireless communication interface, compared with the frequency band used by the wireless communication interface 1425, the network interface 1423 can use a higher frequency band for wireless communication.
  • the wireless communication interface 1425 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in a cell of a gNB 1400 via an antenna 1410.
  • the wireless communication interface 1425 may generally include, for example, a baseband (BB) processor 1426 and an RF circuit 1427.
  • the BB processor 1426 can perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and execute layers (such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and packet data convergence protocols (PDCP)).
  • the BB processor 1426 may have a part or all of the above-mentioned logical functions.
  • the BB processor 1426 may be a memory storing a communication control program or a module including a processor and related circuits configured to execute the program. Updating the program can change the function of the BB processor 1426.
  • the module may be a card or a blade inserted into a slot of the base station device 1420. Alternatively, the module may be a chip mounted on a card or a blade.
  • the RF circuit 1427 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1410.
  • FIG. 12 illustrates an example in which one RF circuit 1427 is connected to one antenna 1410, the present disclosure is not limited to this illustration, but one RF circuit 1427 may be connected to multiple antennas 1410 at the same time.
  • the wireless communication interface 1425 may include a plurality of BB processors 1426.
  • multiple BB processors 1426 may be compatible with multiple frequency bands used by gNB 1400.
  • the wireless communication interface 1425 may include a plurality of RF circuits 1427.
  • multiple RF circuits 1427 may be compatible with multiple antenna elements.
  • FIG. 12 illustrates an example in which the wireless communication interface 1425 includes a plurality of BB processors 1426 and a plurality of RF circuits 1427, the wireless communication interface 1425 may also include a single BB processor 1426 or a single RF circuit 1427.
  • FIG. 13 is a block diagram showing a second example of a schematic configuration of a gNB to which the technology of the present disclosure can be applied.
  • the gNB 1530 includes multiple antennas 1540, base station equipment 1550, and RRH 1560.
  • the RRH 1560 and each antenna 1540 may be connected to each other via an RF cable.
  • the base station equipment 1550 and RRH 1560 may be connected to each other via a high-speed line such as a fiber optic cable.
  • the gNB 1530 (or base station device 1550) herein may correspond to the above-mentioned electronic devices 300A, 1300A, and / or 1500B.
  • Each of the antennas 1540 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for RRH 1560 to transmit and receive wireless signals.
  • the gNB 1530 may include multiple antennas 1540.
  • multiple antennas 1540 may be compatible with multiple frequency bands used by gNB 1530.
  • the base station device 1550 includes a controller 1551, a memory 1552, a network interface 1553, a wireless communication interface 1555, and a connection interface 1557.
  • the controller 1551, the memory 1552, and the network interface 1553 are the same as the controller 1421, the memory 1422, and the network interface 1423 described with reference to FIG.
  • the wireless communication interface 1555 supports any cellular communication scheme such as LTE and LTE-Advanced, and provides wireless communication to a terminal located in a sector corresponding to the RRH 1560 via the RRH 1560 and the antenna 1540.
  • the wireless communication interface 1555 may typically include, for example, a BB processor 1556.
  • the BB processor 1556 is the same as the BB processor 1426 described with reference to FIG. 12 except that the BB processor 1556 is connected to the RRH 1560 via the connection interface 1557.
  • the wireless communication interface 1555 may include a plurality of BB processors 1556.
  • multiple BB processors 1556 may be compatible with multiple frequency bands used by gNB 1530.
  • FIG. 13 shows an example in which the wireless communication interface 1555 includes a plurality of BB processors 1556, the wireless communication interface 1555 may include a single BB processor 1556.
  • connection interface 1557 is an interface for connecting the base station device 1550 (wireless communication interface 1555) to the RRH 1560.
  • the connection interface 1557 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station device 1550 (wireless communication interface 1555) to the RRH 1560.
  • the RRH 1560 includes a connection interface 1561 and a wireless communication interface 1563.
  • connection interface 1561 is an interface for connecting the RRH 1560 (wireless communication interface 1563) to the base station device 1550.
  • the connection interface 1561 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1563 transmits and receives wireless signals via the antenna 1540.
  • the wireless communication interface 1563 may generally include, for example, an RF circuit 1564.
  • the RF circuit 1564 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1540.
  • FIG. 13 shows an example in which one RF circuit 1564 is connected to one antenna 1540, the present disclosure is not limited to this illustration, but one RF circuit 1564 may be connected to multiple antennas 1540 at the same time.
  • the wireless communication interface 1563 may include a plurality of RF circuits 1564.
  • multiple RF circuits 1564 may support multiple antenna elements.
  • FIG. 13 shows an example in which the wireless communication interface 1563 includes a plurality of RF circuits 1564, the wireless communication interface 1563 may include a single RF circuit 1564.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smartphone 1600 to which the technology of the present disclosure can be applied.
  • the smartphone 1600 includes a processor 1601, a memory 1602, a storage device 1603, an external connection interface 1604, a camera device 1606, a sensor 1607, a microphone 1608, an input device 1609, a display device 1610, a speaker 1611, a wireless communication interface 1612, one or more An antenna switch 1615, one or more antennas 1616, a bus 1617, a battery 1618, and an auxiliary controller 1619.
  • the smart phone 1600 (or the processor 1601) herein may correspond to the above-mentioned terminal device 300B and / or 1500A.
  • the processor 1601 may be, for example, a CPU or a system on chip (SoC), and controls functions of an application layer and another layer of the smartphone 1600.
  • the memory 1602 includes a RAM and a ROM, and stores data and programs executed by the processor 1601.
  • the storage device 1603 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1604 is an interface for connecting external devices such as a memory card and a universal serial bus (USB) device to the smartphone 1600.
  • the imaging device 1606 includes an image sensor such as a charge-coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 1607 may include a set of sensors such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1608 converts a sound input to the smartphone 1600 into an audio signal.
  • the input device 1609 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1610, and receives an operation or information input from a user.
  • the display device 1610 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1600.
  • the speaker 1611 converts an audio signal output from the smartphone 1600 into a sound.
  • the wireless communication interface 1612 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 1612 may generally include, for example, a BB processor 1613 and an RF circuit 1614.
  • the BB processor 1613 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1614 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1616.
  • the wireless communication interface 1612 may be a chip module on which a BB processor 1613 and an RF circuit 1614 are integrated. As shown in FIG.
  • the wireless communication interface 1612 may include multiple BB processors 1613 and multiple RF circuits 1614. Although FIG. 14 shows an example in which the wireless communication interface 1612 includes multiple BB processors 1613 and multiple RF circuits 1614, the wireless communication interface 1612 may also include a single BB processor 1613 or a single RF circuit 1614.
  • the wireless communication interface 1612 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 1612 may include a BB processor 1613 and an RF circuit 1614 for each wireless communication scheme.
  • Each of the antenna switches 1615 switches a connection destination of the antenna 1616 between a plurality of circuits included in the wireless communication interface 1612 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 1616 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the wireless communication interface 1612 to transmit and receive wireless signals.
  • the smartphone 1600 may include a plurality of antennas 1616.
  • FIG. 14 illustrates an example in which the smartphone 1600 includes a plurality of antennas 1616, the smartphone 1600 may also include a single antenna 1616.
  • the smartphone 1600 may include an antenna 1616 for each wireless communication scheme.
  • the antenna switch 1615 may be omitted from the configuration of the smartphone 1600.
  • the bus 1617 connects the processor 1601, the memory 1602, the storage device 1603, the external connection interface 1604, the camera 1606, the sensor 1607, the microphone 1608, the input device 1609, the display device 1610, the speaker 1611, the wireless communication interface 1612, and the auxiliary controller 1619 to each other. connection.
  • the battery 1618 supplies power to each block of the smartphone 1600 shown in FIG. 14 via a feeder, and the feeder is partially shown as a dotted line in the figure.
  • the auxiliary controller 1619 operates the minimum necessary functions of the smartphone 1600 in the sleep mode, for example.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a car navigation device 1720 to which the technology of the present disclosure can be applied.
  • Car navigation device 1720 includes a processor 1721, a memory 1722, a global positioning system (GPS) module 1724, a sensor 1725, a data interface 1726, a content player 1727, a storage medium interface 1728, an input device 1729, a display device 1730, a speaker 1731, and a wireless The communication interface 1733, one or more antenna switches 1736, one or more antennas 1737, and a battery 1738.
  • the car navigation device 1720 (or the processor 1721) herein may correspond to the terminal device 300B and / or 1500A described above.
  • the processor 1721 may be, for example, a CPU or a SoC, and controls navigation functions and other functions of the car navigation device 1720.
  • the memory 1722 includes a RAM and a ROM, and stores data and programs executed by the processor 1721.
  • the GPS module 1724 uses GPS signals received from GPS satellites to measure the position (such as latitude, longitude, and altitude) of the car navigation device 1720.
  • the sensor 1725 may include a set of sensors such as a gyroscope sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 1726 is connected to, for example, an in-vehicle network 1741 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 1727 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 1728.
  • the input device 1729 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1730, and receives an operation or information input from a user.
  • the display device 1730 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 1731 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1733 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 1733 may generally include, for example, a BB processor 1734 and an RF circuit 1735.
  • the BB processor 1734 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1735 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1737.
  • the wireless communication interface 1733 may also be a chip module on which a BB processor 1734 and an RF circuit 1735 are integrated. As shown in FIG.
  • the wireless communication interface 1733 may include a plurality of BB processors 1734 and a plurality of RF circuits 1735.
  • FIG. 15 shows an example in which the wireless communication interface 1733 includes a plurality of BB processors 1734 and a plurality of RF circuits 1735, the wireless communication interface 1733 may also include a single BB processor 1734 or a single RF circuit 1735.
  • the wireless communication interface 1733 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1733 may include a BB processor 1734 and an RF circuit 1735 for each wireless communication scheme.
  • Each of the antenna switches 1736 switches a connection destination of the antenna 1737 between a plurality of circuits included in the wireless communication interface 1733, such as circuits for different wireless communication schemes.
  • Each of the antennas 1737 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the wireless communication interface 1733 to transmit and receive wireless signals.
  • the car navigation device 1720 may include a plurality of antennas 1737.
  • FIG. 15 shows an example in which the car navigation device 1720 includes a plurality of antennas 1737, the car navigation device 1720 may also include a single antenna 1737.
  • the car navigation device 1720 may include an antenna 1737 for each wireless communication scheme.
  • the antenna switch 1736 may be omitted from the configuration of the car navigation device 1720.
  • the battery 1738 supplies power to each block of the car navigation device 1720 shown in FIG. 15 via a feeder, and the feeder is partially shown as a dotted line in the figure.
  • the battery 1738 accumulates power provided from the vehicle.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1740 including one or more of a car navigation device 1720, an in-vehicle network 1741, and a vehicle module 1742.
  • vehicle module 1742 generates vehicle data such as vehicle speed, engine speed, and failure information, and outputs the generated data to the in-vehicle network 1741.
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only processes performed in time series in the described order, but also processes performed in parallel or individually instead of having to be performed in time series. Further, even in the steps processed in a time series, needless to say, the order can be appropriately changed.
  • An electronic device for a terminal side in a wireless communication system including a processing circuit configured to:
  • Radio resource control RRC
  • physical layer signaling wherein the resource configuration information indicates resources allocated in an unlicensed frequency band for uplink transmission by the terminal
  • the resource includes one or more resources, and the resource configuration information includes information indicating one or more offset points of a position of the one or more resources.
  • Clause 2 The electronic device according to clause 1, wherein the resource corresponds to one or more time periods, at least one of which has a start point and an end point, and the resource configuration information further indicates that relative to the at least one time period One or more offset points of the starting point, the processing circuit is further configured to:
  • CCA channel vacancy assessment
  • the resource is started to be used at the starting point, otherwise CCA is performed before each offset point until the CCA is successful or all offset points have been passed.
  • Clause 4 The electronic device according to Clause 3, wherein an end point of the at least one time period is fixed or an end point of the at least one time period is variable.
  • Clause 5 The electronic device according to Clause 3, wherein receiving the resource configuration information through at least one of RRC signaling and physical layer signaling includes at least one of the following:
  • RRC signaling Information about the start and end of the at least one time period is received through RRC signaling, and information about the offset point of the at least one time period is received through physical layer signaling.
  • CCA is performed for the working channel after the first time period, and uplink transmission is performed using the working channel after CCA is successful.
  • CCA is performed for the working channel after the first time period, and uplink transmission is performed using the working channel after CCA is successful.
  • Clause 8 The electronic device according to Clause 6 or 7, wherein the CCA performed on the working channel corresponds to type 2 listen-before-talk (LBT).
  • LBT listen-before-talk
  • Clause 9 The electronic device according to Clause 8, wherein if the uplink transmission is control information after the transmission from the base station is completed, the CCA corresponds to a type 2 LBT; and / or
  • the CCA corresponds to two or more type 2 LBTs.
  • An electronic device for a base station side in a wireless communication system comprising a processing circuit configured to:
  • Radio resource control RRC
  • Physical layer signaling Sending resource configuration information through at least one of radio resource control (RRC) signaling and physical layer signaling, where the resource configuration information indicates resources allocated in an unlicensed frequency band for a terminal to perform uplink transmission
  • the resource includes one or more resources, and the resource configuration information includes information indicating one or more offset points of a position of the one or more resources.
  • Clause 12 The electronic device according to clause 11, wherein the resource corresponds to one or more time periods, and at least one of the time periods has a start point and an end point, and the resource configuration information further indicates that relative to the at least one time period One or more offset points of the starting point, and the one or more offset points are indicated by an offset time amount from the starting point or a specific reference time.
  • Clause 13 The electronic device of clause 12, wherein an end point of the at least one time period is fixed or an end point of the at least one time period is variable.
  • Clause 14 The electronic device according to Clause 12, wherein sending the resource configuration information through at least one of RRC signaling and physical layer signaling includes at least one of the following:
  • Information about the start and end of the at least one time period is sent through RRC signaling, and information about the offset point of the at least one time period is sent through physical layer signaling.
  • CCA is performed for the working channel after the first period of time, and downlink transmission is performed using the working channel after CCA is successful.
  • CCA is performed for the working channel after the first period of time, and downlink transmission is performed using the working channel after CCA is successful.
  • Clause 17 The electronic device according to Clause 15 or 16, wherein the CCA performed on the working channel corresponds to type 2 listen-before-talk (LBT).
  • LBT listen-before-talk
  • Clause 18 The electronic device according to Clause 17, wherein if the downlink transmission after the transmission from the terminal ends is control information, the CCA corresponds to a type 2 LBT; and / or
  • the CCA corresponds to two or more type 2 LBTs.
  • Clause 19 The electronic device according to Clause 11, wherein the processing circuit is further configured to perform a channel access method for an unlicensed frequency band configured with a frame-based device (FBE), as follows:
  • An electronic device for a terminal side in a wireless communication system comprising a processing circuit configured to:
  • Clause 21 The electronic device according to Clause 20, wherein the processing circuit is further configured to:
  • Generate RV parameter information for repeated transmission send the generated RV parameter information to the base station, and repeatedly send at least one transport block K times based on the generated RV parameter information.
  • Clause 22 The electronic device of clause 20, wherein the processing circuit is further configured to generate the parameter K based on at least one or more of the following:
  • the power level of the terminal or
  • HARQ hybrid automatic repeat request
  • An electronic device for a base station side in a wireless communication system comprising a processing circuit configured to:
  • Clause 27 The electronic device according to clause 25, wherein receiving K repeated transmissions of at least one transport block from the terminal includes:
  • a HARQ ID of at least one HARQ process for an uplink is received from a terminal, where the HARQ ID is not associated with a specific resource.
  • a wireless communication method for a terminal side comprising:
  • Radio resource control RRC
  • physical layer signaling wherein the resource configuration information indicates resources allocated in an unlicensed frequency band for uplink transmission by the terminal
  • the resource includes one or more resources, and the resource configuration information includes information indicating one or more offset points of a position of the one or more resources.
  • a wireless communication method for a base station side comprising:
  • Radio resource control RRC
  • Physical layer signaling Sending resource configuration information through at least one of radio resource control (RRC) signaling and physical layer signaling, where the resource configuration information indicates resources allocated in an unlicensed frequency band for a terminal to perform uplink transmission
  • the resource includes one or more resources, and the resource configuration information includes information indicating one or more offset points of a position of the one or more resources.
  • a wireless communication method for a terminal side comprising:
  • a wireless communication method for a base station side comprising:
  • Clause 33 A computer-readable storage medium storing one or more instructions that, when executed by one or more processors of an electronic device, cause the electronic device to execute as described in clauses 29 to 32 The method described.
  • Clause 34 An apparatus for use in a wireless communication system, comprising means for performing the method as described in clauses 29 to 32.

Abstract

本公开内容涉及用于无线通信系统的电子设备、方法和存储介质。描述了关于资源配置、资源接入和发送控制的各种实施例。在一个实施例中,用于无线通信系统中的终端侧的电子设备包括处理电路,该处理电路被配置为通过无线电资源控制(RRC)信令和物理层信令中的至少一者接收资源配置信息,其中资源配置信息指示在非授权频段中分配的资源以供所述终端进行上行链路传输。所述资源包括一个或多个资源,所述资源配置信息包括指示该一个或多个资源的位置的一个或多个偏移点的信息。

Description

用于无线通信系统的电子设备、方法和存储介质 技术领域
本公开一般地涉及无线通信系统,并且具体地涉及用于资源配置、资源接入和发送控制的技术。
背景技术
近年来,移动通信技术的应用日益广泛,与之俱来的是对移动数据需求的不断增长。该需求促使人们寻求能够提高移动数据速率以及吞吐量的各种改进技术。移动通信传统地是在授权频段工作,移动运营商试图通过将移动通信扩展到非授权频段来将一部分移动数据需求卸载到非授权频段。相关的改进技术包括3GPP LAA(License Assisted Access)、FeLAA(Further Enhanced LAA)以及5G New Radio(NR)系统中的相关技术等。然而,非授权频段原本已被一些无线通信设备使用,包括符合802.11系列标准的设备。因此,在上述改进技术中,需要考虑蜂窝无线通信设备与非授权频段中的原有无线通信设备的共存问题。
发明内容
本公开的一个方面涉及用于无线通信系统中的终端侧的电子设备。根据一个实施例,该电子设备可以包括处理电路。该处理电路可以被配置为通过无线电资源控制(RRC)信令和物理层信令中的至少一者接收资源配置信息,其中资源配置信息指示在非授权频段中分配的资源以供所述终端进行上行链路传输。所述资源包括一个或多个资源,所述资源配置信息包括指示该一个或多个资源的位置的一个或多个偏移点的信息。
本公开的一个方面涉及用于无线通信系统中的基站侧的电子设备。根据一个实施例,该电子设备包括处理电路。该处理电路可以被配置为通过无线电资源控制(RRC)信令和物理层信令中的至少一者发送资源配置信息,其中资源配置信息指示在非授权频段中分配的资源以供终端进行上行链路传输。所述资源包括一个或多个资源,所述资源配置信息包括指示该一个或多个资源的位置的一个或多个偏移点的信息。
本公开的一个方面涉及用于无线通信系统中的终端侧的电子设备。根据一个实施例,该电子设备包括处理电路。该处理电路可以被配置为生成针对上行链路中同一传输块的重复发送次数参数K;向基站发送参数K;以及将至少一个传输块重复发送K次。
本公开的一个方面涉及用于无线通信系统中的基站侧的电子设备。根据一个实施例,该电子设备包括处理电路。该处理电路可以被配置为接收来自终端的针对上行链路中同一传输块的重复发送次数参数K;以及接收来自终端的至少一个传输块的K次重复发送。
本公开的一些方面涉及用于终端侧和/或基站侧的无线通信方法。
本公开的另一个方面涉及存储有一个或多个指令的计算机可读存储介质。在一些实施例中,该一个或多个指令可以在由电子设备的一个或多个处理器执行时,使电子设备执行根据本公开的各种实施例的方法。
本公开的再一个方面涉及各种装置,包括用于执行根据本公开实施例的各方法的操作的部件或单元。
提供上述概述是为了总结一些示例性的实施例,以提供对本文所描述的主题的各方面的基本理解。因此,上述特征仅仅是例子并且不应该被解释为以任何方式缩小本文所描述的主题的范围或精神。本文所描述的主题的其他特征、方面和优点将从以下结合附图描述的具体实施方式而变得明晰。
附图说明
图1示出了根据本公开实施例的示例性无线通信系统;
图2A示出了根据本公开实施例的用于基站侧的示例性电子设备;
图2B示出了根据本公开实施例的用于终端侧的示例性电子设备;
图3A至图3D示出了根据本公开实施例的示例性资源配置方案;
图4A和图4B示出了根据本公开实施例的示例性LBT过程;
图5示出了根据本公开实施例的用于发起设备接入工作信道的示例性操作流程;
图6示出了根据本公开实施例的共享COT示例的示意图;
图7A示出了根据本公开实施例的发起设备在共享COT情况下的示例性操作;
图7B示出了根据本公开实施例的响应设备在共享COT情况下的示例性操作;
图8A至图8C示出了根据本公开实施例的发送方确定并进行重复发送的示例;
图9A示出了根据本公开实施例的用于发送方的示例性电子设备;
图9B示出了根据本公开实施例的用于接收方的示例性电子设备;
图10A示出了根据本公开实施例的发送方重复发送的第一示例方法;
图10B示出了根据本公开实施例的接收方接收重复发送的第一示例方法;
图10C示出了根据本公开实施例的发送方重复发送的第二示例方法;
图10D示出了根据本公开实施例的接收方接收重复发送的第二示例方法。
图11是作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图;
图12是示出可以应用本公开的技术的gNB的示意性配置的第一示例的框图;
图13是示出可以应用本公开的技术的gNB的示意性配置的第二示例的框图;
图14是示出可以应用本公开的技术的智能电话的示意性配置的示例的框图;以及图15是示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
本公开中描述的实施例仅为示例,它们可以有各种变型和另选形式。应理解,附图及其详细描述不是要将方案限定为所公开的特定形式,而是要涵盖属于权利要求的精神和范围内的所有修改、等同和另选方案。
具体实施方式
以下描述根据本公开的设备和方法等各方面的代表性应用。这些例子的描述仅是为了增加上下文并帮助理解所描述的实施例。因此,对本领域技术人员而言明晰的是,以下所描述的实施例可以在没有具体细节当中的一些或全部的情况下被实施。在其他情况下,众所周知的过程步骤没有详细描述,以避免不必要地模糊所描述的实施例。其他应用也是可能的,本公开的方案并不限制于这些示例。
图1示出了根据本公开实施例的示例性无线通信系统100。应理解,图1仅示出无线通信系统的多种类型和可能布置中的一种;本公开的特征可根据需要在各种系统中的任一者中实现。
如图1所示,无线通信系统100包括基站120A以及一个或多个终端110A、110B至110N,该基站和终端可以被配置为通过传输介质进行通信。基站120A可以还被配备为与网络130(例如,蜂窝服务提供方的核心网、诸如公共交换电话网(PSTN)的电信网络和/或互联网)进行通信。因此,基站120A可以便于终端110A至110N之间和/或终端110A至110N与网络130之间的通信。
应理解,在本文中基站一词具有其通常含义的全部广度,并且至少包括作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的示例可以包括但不限于以下:GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的至少一者;WCDMA系统中的无线电网络控制器(RNC)和Node B中的至少一者;LTE和LTE- Advanced系统中的eNB;WLAN、WiMAX系统中的接入点(AP);以及将要或正在开发的通信系统中对应的网络节点(例如5G New Radio(NR)系统中的gNB,eLTE eNB等)。本文中基站的部分功能也可以实现为在D2D、M2M以及V2V通信场景下对通信具有控制功能的实体,或者实现为在认知无线电通信场景下起频谱协调作用的实体。
在本文中终端一词具有其通常含义的全部广度,例如终端可以为移动站(Mobile Station,MS)、用户设备(User Equipment,UE)等。终端可以实现为诸如移动电话、手持式设备、媒体播放器、计算机、膝上型电脑或平板电脑的设备或者几乎任何类型的无线设备。在一些情况下,终端可以使用多种无线通信技术进行通信。例如,终端可以被配置为使用GSM、UMTS、CDMA2000、WiMAX、LTE、LTE-A、WLAN、NR、蓝牙等中的两者或更多者进行通信。在一些情况下,终端也可以被配置为仅使用一种无线通信技术进行通信。
在图1中,基站120A的覆盖区域可以被称为小区。根据一种或多种蜂窝通信技术进行操作的基站120A和其他类似基站(未示出)可以在广阔的地理区域上向终端110A至110N以及类似设备提供连续或近似连续的通信信号覆盖。在图1中,终端110A至110N可以在接收来自基站120A的无线电信号的同时,接收来自相邻基站的无线电信号。在一些实施例中,终端可以维护与多个小区的连接,例如与主基站和辅基站形成双连接(Dual Connectivity)。这多个小区中的一个小区可以作为终端的主小区,另一个小区可以作为终端的辅小区。在一个实施例中,一些辅小区可以在非授权频段工作。
在本公开的实施例中,基站和终端可以通过授权频段(licensed spectrum)和非授权频段(unlicensed spectrum)这两者进行通信。授权频段和非授权频段可以遵循行业标准的定义或者遵循地域的频率管理规定。对于授权频段和非授权频段,基站都可以分配上下行链路的时域和频域资源。一般地,频域资源可以是连续或分开的子载波;在非授权频段,频域资源还可以对应一定的带宽块(bandwidth part)。时域资源可以对应一定的时间段,例如可以是一定数量的符号、时隙或者子帧。在一些实施例中,时域资源的分配可以涉及指示时间段的起点、终端以及附加的偏移点。附加的偏移点可以在时域上增加资源分配的灵活性。
在本公开的实施例中,可以改变传输块的发送方案以使得同一传输块被重复(repetition)发送多次。该发送方案可以在较短的时间内完成单个传输块的多次发送和接收,使得传输块能够更快地(例如相比于一般的混合自动重传请求(HARQ)处理而言)被正确接收解码。在非授权频段中,通信设备的信道占用时间(Channel Occupancy  Time,COT)一般而言有限,例如受限于最大值MCOT。因此,该发送方案对于非授权频段中的有限COT而言是非常有用的。
在本公开的实施例中,基站和终端之间可以通过高层信令(例如无线电资源控制(RRC)信令)和物理层信令(例如NR系统中的下行链路控制信息DCI、上行链路控制信息UCI)中的至少一者进行信令交互(例如进行资源配置等)。
资源配置与资源接入
图2A示出了根据本公开实施例的用于基站侧的示例性电子设备,其中该基站可以用于各种无线通信系统。图2A所示的电子设备200可以包括各种单元以实现根据本公开的各实施例。在该示例中,电子设备200可以包括第一资源配置单元202和第一收发单元204。在一种实施方式中,电子设备200可被实现为图1中的基站120A(或其一部分),或者可被实现为用于控制基站120A或与基站120A相关的设备(例如控制器,或其一部分)。以下结合基站描述的各种操作可以由电子设备200的单元202和204或者其他可能的单元实现。
在一些实施例中,第一资源配置单元202可以被配置为确定用于上下行链路的资源配置信息。该资源配置信息可以用于授权频段和非授权频段中的至少一者。例如,资源配置信息可以指示在授权频段或非授权频段中分配的资源以供终端进行上行链路传输;资源配置信息还可以指示在授权频段或非授权频段中分配的资源以供基站进行下行链路传输。在一些实施例中,资源可以包括一个或多个资源,资源配置信息可以包括指示该一个或多个资源的位置的一个或多个偏移点。该偏移点可以指示资源在频域和/或时域的偏移情况。在实施例中,单个资源可以对应多个偏移点,多个资源可以对应同一偏移点,多个资源中的至少一个资源可以对应一个或多个偏移点。其中多个偏移点可根据资源的配置以及其它需求设置成相同或不同。
在一些实施例中,资源对应一个或多个时间段,其中至少一个时间段具有起点和终点。除了起点和终点之外,资源配置信息还可以指示相对于时间段的起点的一个或多个偏移点,如下文详细描述的。
在一些实施例中,第一收发单元204可以被配置为向终端发送上行链路的资源配置信息(例如通过RRC信令和物理层信令中的至少一者)。下行链路的资源配置信息一经确定就可以被基站知晓。
图2B示出了根据本公开实施例的用于终端侧的示例性电子设备,其中该终端可以用于各种无线通信系统。图2B所示的电子设备250可以包括各种单元以实现根据本公开 的各实施例。在该示例中,电子设备250可以包括第二资源配置单元252和第二收发单元254。在一种实施方式中,电子设备250可被实现为图1中的终端设备110A至110N中任一个(或其一部分)。以下结合终端描述的各种操作可以由电子设备250的单元252和254或者其他可能的单元实现。
在一些实施例中,第二收发单元254可以被配置为接收来自基站的上行链路的资源配置信息(例如通过RRC信令和物理层信令中的至少一者)。该资源配置信息可以指示在授权频段或非授权频段中分配的资源以供终端进行上行链路传输。该资源可以对应一个或多个时间段,其中至少一个时间段具有起点和终点。除了起点和终点之外,资源配置信息还可以指示相对于时间段的起点的一个或多个偏移点。相应地,第二资源配置单元252可以被配置为基于资源配置信息确定要使用的上行链路资源。
上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。其中,处理电路可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟和数字的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)这样的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
在无线通信系统中,存在配置时频资源的多种可行方式。根据在一定时间期间所配置的资源是否变化,资源配置方式可以包括例如已知的动态配置、持续性配置以及半持续性配置等。在本公开的实施例中,资源可以对应一个或多个时间段,其中至少一个时间段具有起点和终点。该起点和终点限定了终端和/或基站可以使用相应资源的时间范围,在起点和终点已被确定的情况下,资源的时间范围即被确定。在一些实施例中,可以对资源的时间范围赋予自适应性,从而增加资源配置在时域上的灵活性。在一个实施例中,除了时间段的起点和终点之外,还可以配置相对于起点的一个或多个偏移点。例如,资源配置信息可以通过相对于起点或特定参考时间的偏移时间量来指示所述一个或多个偏移点。这样,在终端和/或基站尝试接入信道时,可以根据信道是否被占用而自适应地在起点或偏移点处接入信道。
图3A示出了根据本公开实施例的示例性资源配置方案300。在实施例中,可以在上行链路和/或下行链路中使用该配置方案;可以在授权频段和/或非授权频段中使用该配 置方案。在图3A以及接下来的类似图中,仅示出了时频资源在时域的配置情况,本领域技术人员可以使用任何适当的方式进行频域配置。如图3A所示,窗口301可以表示分配的时域资源301,也即分配的时频资源对应的时间段301,时间段301具有起点A和终点B。附加地,时间段301还具有2个偏移点C和D(2个偏移点仅是示例,可以具有其他数目的偏移点)。在一些实施方式中,可以用相应点的相对于参考时间的偏移情况(例如偏移的子帧量、时隙量、符号量等)来表示起点、终点和偏移点。在一个实施例中,也可以用时间段的持续时间来隐式地指示终点。如果终端或基站期望使用资源301,则可以作为发起设备在起点A和偏移点C、D中的至少一个之前进行CCA(如图3A中虚线所示),以便确定是否可以在相应点处接入工作信道。在实施例中,信道空闲评估(Clear Channel Assessment,CCA)可以对应于NR系统中的类型2(Type 2)先听后说(Listen Before Talk,LBT)(例如one-shot LBT)或类型4(Type 4)LBT。
在图3A中,相比于仅具有起点A,偏移点C、D的存在可以使得发起设备更灵活并且更有效地利用所配置的资源。例如,在一个实施例中,虽然已经配置了资源的时间段301,但是在起点A(或者偏移点C)处发起设备可能未准备好传输或者CCA不成功,则发起设备仍可能在之后的偏移点C、D(或者偏移点D)处接入工作信道并在301的剩余时间段期间使用分配的资源。图3B示出了资源配置方案300的使用示例。在该示例中,发起设备(终端或基站)期望在起点A处接入工作信道,并在A点之前进行CCA(如实线所示)。然而,该CCA不成功,发起设备未能在起点A处接入工作信道。之后,发起设备在接下来的偏移点C之前再次进行CCA(如实线所示)。该CCA成功,因此发起设备可以在偏移点C处接入工作信道(尽管在起点A处未能接入)。与因为在起点A处未能接入工作信道便放弃使用整个时间段301相比,资源配置方案300和相应的使用方式显然是更灵活并且高效的。另一方面,在一些实施例中,偏移点可以仅安排在时间段301的有限位置处。这样,CCA仅可以在有限位置处进行(而不是在整个时间段301内持续进行),从而节省发起设备的功率消耗。
在图3B的示例中,时间段301的终点B可以是固定的,或者可以是可变的(例如基于接入工作信道的时间点)。例如,由于在起点A前的CCA不成功使得发起设备晚于起点A接入工作信道,因此可以使终点B相应推后为B'以对“晚接入”进行适当补偿,例如补偿时间段311。
图3A中的资源配置方案300可以对应于一次静态配置,也可以对应于持续性或半持续性配置的一部分(例如一个周期)。图3C示出了根据本公开实施例的示例性资源配 置方案350。资源配置方案350示出了持续性或半持续性配置的一个具体示例。在图3C的示例中,已经配置了资源的多个时间段351至353。可以与图3A中的时间段301类似地理解每个时间段351至353。例如,每个间段具有起点和终点以及偏移点。此外,在图3C中,多个时间段351至353可以被配置为具有例如周期T。
图3D示出了资源配置方案350的使用示例。可以与图3B类似地理解该示例中每个时间段的信道接入情况。例如,对于时间段351,发起设备(终端或基站)进行了2次CCA,并在第1个偏移点处接入工作信道。可选地,可以对时间段351补偿相应的时间段361(例如等于第1个偏移点与起点的偏移量)。对于时间段362,发起设备进行了3次CCA,并在第2个偏移点处接入工作信道。可选地,可以对时间段352补偿相应的时间段362(例如等于第2个偏移点与起点的偏移量)。对于时间段363,发起设备仅进行了1次CCA,并在起点处接入工作信道。与资源配置方案300类似,资源配置方案350和相应的使用方式也是更灵活并且高效的。
应理解,单个时间段中偏移点的数量可以不受限制,例如2个、3个、4个等。这些偏移点可以分布在整个时间段期间,也可以仅分布在时间段的靠前部分中。在一个实施例中,这些偏移点是分散的,使得发起设备不会在COT期间持续监听信道。
根据本公开实施例的资源配置方式可以用任何适当的方式来表示。例如,可以以绝对方式或相对方式来表示与时间段相关的各个点。根据一种方式,可以用相应点的实际时域位置(例如子帧、时隙、符号等)来表示起点、终点和偏移点,例如图3A中的n、m、n1和n2。根据另一种方式,可以用相应点的相对于参考时间(例如SFN=0、终端接收到特定信令(例如上行调度信息)时的时隙或符号位置等)的偏移情况(例如偏移的子帧量、时隙量、符号量等)来表示起点、终点和偏移点。在一些情况下,终点和/或偏移点也可以用相对于起点的时域偏移来表示。
下表示出了资源配置300的示例指示方式。如表格所示,在示例1中,起点、终点和偏移点均用相对于参考时间tr的偏移量(offset0至offset3)表示。在示例2中,起点仍然用相对于参考时间tr的偏移量(offset0)表示,而用分别相对于起点的偏移量(offset11至offset31)来表示终点和偏移点。示例3与示例2的不同之处在于,在示例3中,定义了单位偏移量delta,每个偏移点被表示为相对于起点偏移delta的整数倍。可以类似地表示资源配置350。每个时间段351至353可以与时间段301类似地表示。在一个实施例中,对于多个时间段351至353,可以通过偏移信息仅限定偏移点的个数和偏移情况,并且该偏移信息对于所有时间段均适用。在一些情况下,不同时间段的偏移信息 也可以不同。
表1
  示例1 示例2 示例3
起点A n=tr+offset0 n=tr+offset0 n=tr+offset0
终点B m=tr+offset1 m=n+offset10 m=n+offset10
偏移点C n1=tr+offset2 n1=n+offset20 n1=n+delta
偏移点D n2=tr+offset3 n2=n+offset30 n1=n+2×delta
在本公开的实施例中,在下行链路中,基站自身知晓资源配置情况;在上行链路中,基站可以通过高层信令(例如RRC信令)和物理层信令(例如NR DCI)中的至少一者向终端传递资源配置信息。在一些实施例中,可以仅通过高层信令传递资源配置中与时间段相关的全部信息,包括起点、终点和偏移点。此时,在需要进行初始配置和重新配置(例如重新配置起点、终点或偏移点中的任一者)时,均需要传递高层信令。在一个实施例中,还可以通过物理层信令激活偏移点。即在通过高层信令配置了时间段的偏移点的情况下,偏移点不会自动启用。只有在通过物理层信令激活的情况下,偏移点才被启用。在另一些实施例中,可以通过高层信令传递资源配置中的与时间段相关的起点和终点,通过物理层信令传递与时间段相关的偏移点。由于物理层信令能够快速传递,因此通过其传递偏移点信息,可以更灵活地配置和更新时间段的偏移点。此时,高层信令可以负责时间段的起点和终点的初始配置和重新配置;物理层信令可以负责时间段的偏移点的初始配置和重新配置。在还有的一些实施例中,可以仅通过物理层信令传递时间段的起点、终点和偏移点信息。在一些情况下,在遵循上述实施例中的信令使用方式的同时,仍然可以通过高层信令配置资源的使用周期、传输功率等基础参数。
符合不同无线通信标准的多种类型的通信设备均可以使用非授权频段进行通信。例如,这些通信设备可以包括LTE或NR系统中的eNB、gNB、UE以及WLAN系统中的AP和MS等。就使用非授权频段中的信道而言,不同系统中的通信设备之间会存在竞争。在一些情况下,基站和终端可以仅根据自身通信需求以与在授权频段中类似的方式接入非授权信道(下文也称工作信道)。在一些情况下,为了使非授权频段中的大部分通信设备能够以公平的方式使用非授权信道,基站和终端可以在接入工作信道之前对信道进行监听(例如,通过LBT方式),并且在确定信道可能空闲的情况下接入工作信道。
在LBT方式中,先向对方发送消息的设备可以称为发起设备,相应的对方可以称 为响应设备。例如,如果基站首先发送下行链路消息,则该基站为发起设备,相应的终端为响应设备;可以类似地理解相反的情况。对于基站/终端作为发起设备或响应设备的情况,本公开中描述的LBT过程均可以适用。
图4A和图4B示出了根据本公开实施例的示例性LBT过程。在图4A中,存在固定的帧周期,该固定的帧周期包括信道占用时间COT和空闲时段。如已知的,此类LBT可以称为基于帧的设备(Frame-Based Equipment,FBE)LBT。如果终端或基站期望在COT期间使用工作信道,则其可以作为发起设备进行LBT过程。例如,发起设备可以在与COT相邻的在前空闲时段期间监听工作信道(如图4A中实线CCA所指示的),并在确定工作信道未被占用的情况下,在该COT期间使用工作信道。确定信道是否被占用的一个示例可以称为信道空闲评估CCA,其可以基于在工作信道上监听到的信号能量或功率情况。例如,在监听到的信号能量或功率低于特定阈值的情况下,可以认为工作信道未被占用(或称是空闲的,此时CCA成功)。在一些实施例中,如果在COT之前的CCA不成功,则发起设备可以在之后相对于COT的一个或多个偏移点处继续进行CCA(如图4A中虚线CCA所指示的)。
在图4A中,在空闲时段期间进行信道监听,如果在COT之前有CCA指示信道空闲,则发起设备可以在该COT期间使用工作信道,直到该COT结束。在该COT结束后,该设备将停止使用工作信道。此时,如果该设备仍期望使用工作信道,则必须在空闲时间再次进行CCA。在一些实施例中,上述监听过程可以通过one-shot LBT进行。一个简单的one-shot LBT对应25微秒的时间。具体地,16微秒加上一个或多个9微秒的时段组合构成所谓的one-shot。在一些情况下,可以进行更加复杂的LBT过程,例如NR系统中的Type 4LBT(包含竞争窗口和随机退避计数器)。
在图4B中,不存在固定的帧周期,但是COT和空闲时段仍然在时域交替出现。如已知的,此类LBT可以称为基于负载的设备(Load-Based Equipment,LBE)LBT。在LBE LBT中,COT是由发起设备的通信负荷驱动的,发起设备的传输需求导致COT的出现。而且,COT的时长取决于传输量,只要COT不超出允许的最大值MCOT。如果在MCOT后传输需求仍然存在,则可以在空闲时段后驱动下一个COT。与图4A中不同,在LBE LBT中,由于COT的出现在时域中不是固定的,因此发起设备可以只要在需要进行传输时就监听工作信道进行CCA,并在CCA成功的情况下使用工作信道,直到传输结束或者达到MCOT为止。在图4B的示例中也可以使用图4A中的信道监听方式,此处不再重复。
在COT期间,发起设备可以使用工作信道的前提是已经为发起设备分配的相应的资源。在该前提下,只要可以在COT到来前排除信道被占用(可能由于某种原因,例如来自其他通信系统的占用)的可能,发起设备就可以使用已分配的资源。在一些实施例中,在COT前的CCA不成功的情况下,允许发起设备可以在COT的一部分或全部期间继续进行CCA,并在CCA成功的情况下在剩余的COT期间使用工作信道。在一些情况下,COT可以根据CCA占用的时间被相应或适当地扩展。在一些实施例中,发起设备还可以与响应设备共享COT。具体地,在发起设备暂时结束传输时,可以与响应设备共享剩余COT。在响应设备结束传输时,发起设备还可以恢复使用工作信道。该共享过程可以以此类推。
在一些实施例中,对于下行链路FBE帧结构(即基站作为发起设备),在COT期间,基站可以被配置为发送一些固定的信令或信号。这样,一方面,固定的信令或信号可以与固定的COT相匹配;另一方面,在下行链路中,与基站同时接入工作信道的设备较少,基站的CCA更容易成功(确保能够发送这些信令或信号)。因此,在一个实施例中,对于下行链路FBE帧结构,基站可以被配置为在COT期间发送同步信号(例如NR系统中的SS/PBCH)和/或参考信号(例如NR系统中的发现参考信号DRS)。相应地,终端可以被配置为在COT期间接收同步信号和/或参考信号。此时,在基站与终端共享COT的情况下,终端可以在共享的COT期间接入工作信道进行传输。在一个实施例中,终端可以在共享的COT期间仅发送少量数据,例如向基站发送测量报告。相应地,基站可以被配置为在与终端共享COT期间接收来自终端的传输,例如测量报告。
图5示出了根据本公开实施例的用于发起设备接入工作信道的示例性操作流程500。在实施例中,终端可以在上行链路中使用该操作流程,或者基站可以在下行链路中使用该操作流程。在该操作流程500中,对于资源配置中的至少一个时间段,在该时间段的起点之前进行CCA。如果CCA成功,则在该起点处开始使用资源;否则在接着的每个偏移点之前进行CCA,直到在某个偏移点处CCA成功或者已经经过全部偏移点时为止。如图5所示,在流程500开始后,在502处确定是否基于资源配置(例如配置300)使用第一时间段(例如301)的资源。如果确定是,则前进到504;否则流程结束。在504处,在第一时间段的起点之前进行一次或多个CCA,以监听相应信道是否被占用。在506处,可以按照一定的标准确定CCA是否成功。如果CCA成功,则前进到512以在起点处接入工作信道;否则前进到508。在508处,可以在下一个偏移点前进行一次或多次CCA,以监听相应信道是否被占用。在510处,也可以标准确定CCA是否成功。如果成功,则 前进到512以在该偏移点处接入工作信道;否则回到508,并重复508和510的操作,直到在某个偏移点处CCA成功并在该偏移点处接入工作信道,或者直到经过所有的偏移点CCA均未成功从而不使用第一时间段的资源。
在本公开的实施例中,发起设备可以与响应设备共享自身获得的COT,以便在自身暂时不需要传输时使得COT期间的资源能够被响应设备使用,即提高资源的利用效率。图6示出了根据本公开实施例的共享COT示例的示意图。在图6中,发起设备可以通过CCA获得MCOT 600,并在MCOT的起点处开始向响应设备的第一传输602。由于在第一传输602后MCOT仍有剩余,因此发起设备可以在第一传输602内(例如第一传输602的结尾处)向响应设备发送工作信道授权信息,以允许响应设备共享MCOT(也即在MCOT的剩余期间共享相应的资源)。接着,响应设备可以进行向发起设备的第二传输604。在与响应设备共享MCOT后,发起设备仍然可能再次使用MCOT的相应资源。例如,如果在第二传输604后MCOT仍有剩余,则发起设备可以进行向响应设备的第三传输606。而且,如果在第三传输606后MCOT仍有剩余,则发起设备仍可以类似于602中那样与响应设备共享MCOT。在图6中,传输方向(发起设备至响应设备或者响应设备至发起设备)的每次改变也可以称为传输方向转换,转换前后的传输之间往往存在间隙(gap),如图中603和605所示。接下来将描述在转换(或间隙)期间的具体操作示例。
在一些实施例中,在接收到工作信道授权信息后,如果响应设备可以在来自发起设备的传输结束后的第一时间段内进行传输,则其可以在该第一时间段内的任意时间直接使用工作信道进行到发起设备的传输;否则,如果响应设备要在来自发起设备的传输结束后的第一时间段后才进行传输,则其不得不在第一时间段后针对工作信道进行CCA,并在CCA成功之后才能够使用工作信道进行到发起设备的传输。在图6的示例中,响应设备在间隙603中经历了1次CCA才进行第二传输604,完成一次传输方向转换。一般地,如果转换后待传输的数据量较少(例如控制信息),则传输方向转换中可以经历较少的CCA,例如1次。
在一些实施例中,在与响应设备共享MCOT并且响应设备已经结束传输时,如果发起设备可以在来自响应设备的传输结束后的第一时间段内进行传输,则其可以在该第一时间段内的任意时间直接使用工作信道进行到响应设备的传输;否则,如果发起设备要在来自响应设备的传输结束后的第一时间段后才进行传输,则其不得不在第一时间段后针对工作信道进行CCA,并在CCA成功之后才能够使用工作信道进行到响应设备的 传输。在图6的示例中,发起设备在间隙605中经历了3次CCA才进行第三传输606,完成传输方向转换。一般地,如果转换后待传输的数据量较多(例如数据业务),则传输方向转换中可以经历较多的CCA,例如2次以上。
在上述实施例中,在第一时间段后的转换需要进行CCA主要出于公平考量。即如果转换间隙过长,则将转换后的传输视为新产生的对信道的占用,因此需要CCA。在一个实施例中,上述第一时间段的长度可以为16微秒,每个CCA可以为9微秒。例如,针对工作信道进行的CCA可以对应于one-shot先听后说(LBT)。在一个实施例中,在第一时间段后将存在多个CCA,或者可以存在多个one-shot LBT,以便完全填充传输转换中的间隙。one-shot LBT的数量可以与间隙长度和发起设备或响应设备的能力相关。
图7A示出了根据本公开实施例的发起设备在共享COT情况下的示例性操作。在实施例中,发起设备可以是下行链路中的基站,或者是上行链路中的终端。操作700开始后,在701处,发起设备在自己获得的COT期间向响应设备发送工作信道授权。如前所述,可以发生传输方向的转换,响应设备进而可以基于该工作信道授权接入工作信道进行传输。在响应设备传输结束后,在702处,发起设备可以确定是否要重新使用工作信道(例如,基于是否有数据要发送)。在需要重新使用的情况下,在703处,发起设备可以确定是否会在第一时间段(例如16微秒)内传输。如果是,则前进到704。在704处,发起设备可以直接使用工作信道进行传输。否则前进到705。在705处,发起设备可以通过CCA接入工作信道。
图7B示出了根据本公开实施例的响应设备在共享COT情况下的示例性操作。在实施例中,响应设备可以是下行链路中的终端,或者是上行链路中的基站。操作750开始后,在751处,在发起设备的COT期间,响应设备可以接收来自响应设备的工作信道授权。在需要使用工作信道的情况下,响应设备可以在752处确定是否会在第一时间段(例如16微秒)内传输。如果是,则前进到753。在753处,发起设备可以直接使用工作信道进行传输。否则前进到754。在754处,发起设备可以通过CCA接入工作信道。
传输块发送方案——重复发送
在本公开的实施例中,为了提高传输块的发送效率,发送方(例如,下行链路中的基站,上行链路中的终端)可以重复发送单个传输块。具体地,发送方可以自己确定要重复发送单个传输块的次数K,并向接收方通知该重复发送次数K。接着,发送方对单个传输块进行K次发送。如图8A所示,发送方确定并将单个传输块重复发送4次,即802至808共4次发送(其中虚线表示因重复而额外进行的发送),它们可以在时域上 接近或者紧相邻。接收方可以对单个传输块的K次接收进行合并处理以解码该传输块,从而提高解码成功率。传输块的这K次发送可以完全相同,或者可以具有不同的冗余版本(Redundancy Version,RV)。在后一情况下,发送方还会向接收方通知RV参数信息(该参数信息可以是针对单个传输块的重复发送的重复RV的序列/模式/规则),以便于接收方进行合并处理(例如软合并)。
在一些情况下,为发送方配置的资源在时域上可能是受限的。例如,在授权频段或非授权频段中,由于用户数量大,为至少一些发送方配置的时域资源可能有限。再例如,在非授权频段中,由于基站、终端与WLAN等非授权频段的其他设备共享该频段,发送方能够获得信道占用时间COT有限,例如被限制为最大值MCOT。这此类情况下,根据实施例的单个传输块的重复发送由于可以在较短的时间内完成(而且接收方更容易正确接收该传输块),因此可以在受限的时域资源上完成传输块的发送。
在一些实施例中,可以至少基于以下中的一项或多项来确定重复发送次数K,即发送方的信道占用时间COT、发送方电量水平、或发送方到接收方的链路信道状况。例如,在存在COT限制时,发送方可以启用重复发送;以及/或者,在发送方电量水平充足时,发送方可以启用重复发送;以及/或者,在上述链路信道不理想时,发送方可以启用重复发送。
图8A示出了根据本公开实施例的发送方确定并重复发送单个传输块的一个示例。在使用HARQ机制的情况下,这4次发送802至808可以对应于单个传输块的单次HARQ传输的多次重复发送。其中,单次HARQ传输可以是该单个传输块的首次HARQ传输或之后的重传。图8B示出了根据本公开实施例的发送方确定并重复发送HARQ传输的单个进程的示例。在该示例中,重复发送次数K为2。如图8B所示,对于单个传输块,首先以HARQ进程号(或称HARQ ID)=0的HARQ进程发送该传输块的初传。进一步地,由于重复发送次数K被确定为2,因此可以对上述初传重复发送2次(虚线804表示因重复而额外进行的发送)。此处,发送802和804的HARQ ID均为0,它们可以被理解为ID为0的HARQ进程的多个实例。接收方可以通过信令接收到发送方重复发送次数K的值和每次接收对应的HARQ ID值。接收方可以基于K值和HARQ ID值来对接收进行解码。具体地,在图8B中,可能由于接收方解码失败,因此发送方发起了HARQ重传。HARQ重传与初传具有相同的进程ID,在图8B中均为0;可以通过标志比特来区分HARQ重传与初传(例如,通过LTE、NR系统中的new data indicator(新数据指示))。在该传输块的HARQ重传中,可以对HARQ重传重复发送2 次(虚线814表示因重复而额外进行的发送)。同样,发送812和814的HARQ ID均为0。接着,接收方可以类似地基于K值和HARQ ID值来对接收进行解码。HARQ重传可以在最大重传次数的限制内进行多次,直到解码出原传输块或者达到最大重传次数为止。
图8C示出了根据本公开实施例的发送方确定并重复发送HARQ传输的多个进程的示例。在该示例中,重复发送次数K为2。图8C的示例可以与图8B类似地理解,此处仅作简要说明。在图8C中,存在并发的2个HARQ进程(HARQ ID分别为0和1),发送方可以分别使用这2个进程来发送例如第一传输块和第二传输块。接收方同样可以基于K值和HARQ ID值来解码第一传输块和第二传输块。在解码失败的情况下,可以针对不同的传输块分别进行HARQ重传。
图9A示出了根据本公开实施例的用于发送方的示例性电子设备,其中该发送方可以实现为各种无线通信系统中的终端(或基站)。图9A所示的电子设备900可以包括各种单元以实现根据本公开的各实施例。在该示例中,电子设备900可以包括参数生成单元902和第三收发单元904。
在一些实施例中,参数生成单元902可以被配置为生成针对要由发送方发送的同一传输块的重复发送次数参数K。第三收发单元904可以被配置为向接收方发送参数K,并且将至少一个传输块重复发送K次。
在发送方被实现为终端的情况下,参数生成单元902可以被配置为生成针对上行链路中同一传输块的重复发送次数参数K。第三收发单元904可以被配置为向基站发送参数K,并且将至少一个传输块重复发送K次。
图9B示出了根据本公开实施例的用于接收方的示例性电子设备,其中该接收方可以实现为各种无线通信系统中的基站(或终端)。图9B所示的电子设备950可以包括各种单元以实现根据本公开的各实施例。在该示例中,电子设备950可以包括参数获得单元952和第四收发单元954。
在一些实施例中,参数获得单元952可以被配置为接收并获得来自发送方的针对发送方发送的同一传输块的重复发送次数参数K。第四发送单元954可以被配置为接收来自接收方的至少一个传输块的K次重复发送。
在接收方被实现为基站的情况下,参数获得单元952可以被配置为接收并获得来自终端的针对上行链路中同一传输块的重复发送次数参数K。第四发送单元954可以被配置为接收来自终端的至少一个传输块的K次重复发送。
上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具 体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。其中,处理电路可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟和数字的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)这样的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
图10A示出了根据本公开实施例的发送方重复发送的第一示例方法1000a。在上行链路中,可以由终端执行该方法;在下行链路中,可以由基站执行该方法。方法1000a开始后,可以在1002处确定在从发送方到接收方的链路中同一传输块的重复发送次数K,并向接收方发送该K值。在1004处,发送方可以将至少一个传输块重复发送K次。
图10B示出了根据本公开实施例的接收方接收重复发送的第一示例方法1000b。在上行链路中,可以由基站执行该方法;在下行链路中,可以由终端执行该方法。方法1000b开始后,接收方可以在1006处接收关于发送方的同一传输块的重复发送次数K。在1008处,接收方可以接收来自发送方的至少一个传输块的K次重复发送,并从所接收的K次重复发送中恢复该至少一个传输块。
图10C示出了根据本公开实施例的发送方重复发送的第二示例方法1050a。在上行链路中,可以由终端执行该方法;在下行链路中,可以由基站执行该方法。对于至少一个HARQ进程,发送方可以使用该HARQ进程重复发送单个传输块。如图10C所示,发送方可以在1052处将传输块的HARQ初传重复发送K次(例如作为同一HARQ进程的多个实例),并在1054处确定是否接收到ACK。如果在1054处确定为是,则表明传输块已经被接收方正确恢复,因此可以前进到1058。在1058处,发送方可以结束该HARQ进程的传输。如果在1054处确定为否,则表明传输块没有被接收方正确恢复,因此需要前进到1056处将传输块的下一HARQ重传重复发送K次。之后,可以返回到1054处再次确定是否接收到ACK。如果这次确定为是,则同样前进到1058;否则,重复1056的操作。
图10D示出了根据本公开实施例的接收方接收重复发送的第二示例方法1050b。在上行链路中,可以由基站执行该方法;在下行链路中,可以由终端执行该方法。在图10D的示例中,接收方可以对单个传输块的HARQ初传和/或重传的多次重复发送进行接收。如图10D所示,对于至少一个HARQ进程,在1062处,接收方可以接收传输块的 HARQ初传的K次重复发送,并对多次接收进行合并处理。在1064处,接收方可以确定传输块是否被正确恢复。如果在1064处确定为是,则可以前进到1068。在1068处,接收方可以反馈ACK,并结束该HARQ进程的接收。如果在1064处确定为否,则需要前进到1066处。在1066处,接收方可以反馈NACK;接着,接收方接收传输块的HARQ重传的K次重复发送,并进行合并处理。之后,可以返回到1064处再次确定传输块是否被正确恢复。如果这次确定为是,则前进到1068;否则,重复1066的操作。
在一些实施例中,在授权频段或非授权频段中,上行链路中的HARQ ID可以不与特定的资源相关。这样,HARQ进程可以例如不再与特定的时域位置绑定,从而可以为HARQ进程以及可能的多个实例(例如用于上述重复发送)灵活地配置或选择时域位置。
表2至表4示出了与终端在上行链路中进行重复发送相关的上行链路信令。如表2所示,可以在物理层信令(例如NR UCI)中增加表示重复发送次数的“Repetition K”字段和表示不同重复发送的冗余情况的“Repetition RV”字段。如表2所示,可以用2个比特表示重复发送次数,并且表3给出了示例取值。如表2所示,可以用2个比特表示针对同一传输块(例如该传输块的初传或重传)的重复发送的重复RV参数,并且表4给出了示例RV序列。除了在NR UCI中表示重复发送次数和重复RV参数之外,本领域技术人员还可以类似地用其他高层信令和物理层信令向基站传达与重复发送相关的信息。
在一些情况下,基站也可能对上行链路的重复发送次数进行配置。在一些实施例中,由于终端要自主确定上行链路的重复发送次数,因此终端确定的次数可以总是覆盖基站配置的次数,或者基站在知晓终端自主配置后不再配置该次数或者将该次数配置为默认的无效值(即不被终端采用)。
在一些情况下,基站也可能对上行链路的用于同一传输块(例如该传输块的初传或重传)的重复发送的重复RV参数进行配置。在这些情况下,终端可以基于基站配置的重复RV参数进行重复发送。在一些实施例中,由于终端可以自主生成上述重复RV参数,因此终端生成的重复RV参数可以覆盖基站配置的重复RV参数。
表2:重复发送相关信令格式示例
Figure PCTCN2019099403-appb-000001
表3:Repetition K字段示例
Repetition K字段值 应用的K值
00 1
01 2
10 4
11 8
表4:Repetition RV字段示例(K>1)
Repetition RV值 应用的RV序列值
00 {0,2,3,1}
01 {0,3,0,3}
10 {0,0,0,0}
11 reserved
示例性方法
根据本公开的一个方面,一种用于终端侧的无线通信方法包括:通过无线电资源控制(RRC)信令和物理层信令中的至少一者接收资源配置信息,其中所述资源配置信息指示在非授权频段中分配的资源以供所述终端进行上行链路传输。所述资源包括一个或多个资源,所述资源配置信息包括指示该一个或多个资源的位置的一个或多个偏移点的信息。
在一个实施例中,所述资源对应一个或多个时间段,其中至少一个时间段具有起点和终点,所述资源配置信息还指示相对于所述至少一个时间段的起点的一个或多个偏移点。
在一个实施例中,该方法还包括:在所述至少一个时间段的起点之前进行信道空闲评估(CCA);如果CCA成功,则在所述起点处开始使用所述资源,否则在每个偏移点之前进行CCA,直到CCA成功或者已经经过全部偏移点时为止。
在一个实施例中,通过相对于所述起点或特定参考时间的偏移时间量来指示所述一个或多个偏移点。
在一个实施例中,所述至少一个时间段的终点是固定的,或者所述至少一个时间段的终点是可变的。
在一个实施例中,通过RRC信令和物理层信令中的至少一者接收资源配置信息包括以下中的至少一者:通过RRC信令接收关于所述至少一个时间段的起点、终点和偏移点的信息;通过物理层信令接收关于所述至少一个时间段的起点、终点和偏移点的信息;或者通过RRC信令接收关于所述至少一个时间段的起点和终点的信息,并且通过物理层信令接收关于所述至少一个时间段的偏移点的信息。
在一个实施例中,该方法还包括:在基站的信道占用时间期间,接收来自基站的工作信道使用授权;以及执行以下至少一项:在来自基站的传输结束后的第一时间段内的任意时间,直接使用所述工作信道进行上行链路传输;或者在所述第一时间段后针对所述工作信道进行CCA,并在CCA成功之后使用所述工作信道进行上行链路传输。
在一个实施例中,该方法还包括:在终端的信道占用时间期间,向基站发送工作信道使用授权;以及执行以下至少一项:在来自基站的传输结束后的第一时间段内的任意时间,直接使用所述工作信道进行上行链路传输;或者在所述第一时间段后针对所述工作信道进行CCA,并在CCA成功之后使用所述工作信道进行上行链路传输。
在一个实施例中,针对所述工作信道进行的CCA对应于类型2先听后说(LBT)。
在一个实施例中,如果在来自基站的传输结束后的上行链路传输为控制信息,则 CCA对应1个类型2 LBT;以及/或者如果在来自基站的传输结束后的上行链路传输为数据,则CCA对应2个以上类型2 LBT。
在一个实施例中,该方法还包括:针对配置基于帧的设备(FBE)的非授权频段的信道接入方式,进行如下操作:接收同步信号和/或参考信号;以及/或者向基站发送测量报告。
根据本公开的一个方面,一种用于基站侧的无线通信方法包括:通过无线电资源控制(RRC)信令和物理层信令中的至少一者发送资源配置信息,其中所述资源配置信息指示在非授权频段中分配的资源以供终端进行上行链路传输。其中,所述资源包括一个或多个资源,所述资源配置信息包括指示该一个或多个资源的位置的一个或多个偏移点的信息。
在一个实施例中,所述资源对应一个或多个时间段,其中至少一个时间段具有起点和终点,所述资源配置信息还指示相对于所述至少一个时间段的起点的一个或多个偏移点。
在一个实施例中,通过相对于所述起点或特定参考时间的偏移时间量来指示所述一个或多个偏移点。
在一个实施例中,所述至少一个时间段的终点是固定的,或者所述至少一个时间段的终点是可变的。
在一个实施例中,通过RRC信令和物理层信令中的至少一者发送资源配置信息包括以下中的至少一者:通过RRC信令发送关于所述至少一个时间段的起点、终点和偏移点的信息;通过物理层信令发送关于所述至少一个时间段的起点、终点和偏移点的信息;或者通过RRC信令发送关于所述至少一个时间段的起点和终点的信息,并且通过物理层信令发送关于所述至少一个时间段的偏移点的信息。
在一个实施例中,该方法还包括:在终端的信道占用时间期间,接收来自终端的工作信道使用授权;以及执行以下至少一项:在来自终端的传输结束后的第一时间段内的任意时间,直接使用所述工作信道进行下行链路传输;或者在所述第一时间段后针对所述工作信道进行CCA,并在CCA成功之后使用所述工作信道进行下行链路传输。
在一个实施例中,该方法还包括:在基站的信道占用时间期间,向终端发送工作信道使用授权;以及执行以下至少一项:在来自终端的传输结束后的第一时间段内的任意时间,直接使用所述工作信道进行下行链路传输;或者在所述第一时间段后针对所述工作信道进行CCA,并在CCA成功之后使用所述工作信道进行下行链路传输。
在一个实施例中,针对所述工作信道进行的CCA对应于类型2先听后说(LBT)。
在一个实施例中,如果在来自终端的传输结束后的下行链路传输为控制信息,则CCA对应1个类型2 LBT;以及/或者如果在来自终端的传输结束后的下行链路传输为数据,则CCA对应2个以上类型2 LBT。
在一个实施例中,该方法还包括针对配置基于帧的设备(FBE)的非授权频段的信道接入方式,进行如下操作:发送同步信号和/或参考信号;以及/或者接收来自终端的测量报告。
根据本公开的一个方面,一种用于终端侧的无线通信方法包括:生成针对上行链路中同一传输块的重复发送次数参数K;向基站发送参数K;以及将至少一个传输块重复发送K次。
在一个实施例中,该方法还包括:基于基站配置的针对重复发送的冗余版本(RV)参数信息将所述至少一个传输块重复发送K次;或者生成针对重复发送的RV参数信息,向基站发送所生成的RV参数信息,并且基于所生成的RV参数信息将至少一个传输块重复发送K次。
在一个实施例中,该方法还包括至少基于以下中的一项或多项来生成所述参数K:所述终端的最大信道占用时间;所述终端的电量水平;或上行链路信道状况。
在一个实施例中,将所述至少一个传输块重复发送K次包括:将所述至少一个传输块的混合自动重传请求(HARQ)初传重复发送K次;和/或将所述至少一个传输块的至少一个HARQ重传重复发送K次。
在一个实施例中,该方法还包括:对于上行链路传输的至少一个HARQ进程,从多个HARQ ID中选择用于所述至少一个HARQ进程的HARQ ID,其中所选择的HARQ ID不与特定的资源相关;以及向基站发送用于所述至少一个HARQ进程的HARQ ID。
根据本公开的一个方面,一种用于基站侧的无线通信方法包括:接收来自终端的针对上行链路中同一传输块的重复发送次数参数K;以及接收来自终端的至少一个传输块的K次重复发送。
在一个实施例中,该方法还包括:基于基站配置的针对重复发送的冗余版本(RV)参数信息对所述至少一个传输块的K次重复发送解码;或者接收来自终端的RV参数信息,并且基于所接收的RV参数信息对所述至少一个传输块的K次重复发送解码。
在一个实施例中,接收来自终端的至少一个传输块的K次重复发送包括:接收所 述至少一个传输块的混合自动重传请求(HARQ)初传的K次重复发送,并从所接收的K次重复发送中解码所述至少一个传输块;或接收所述至少一个传输块的至少一个HARQ重传的K次重复发送,并从所接收的K次发送和先前发送中解码所述至少一个传输块。
在一个实施例中,该方法还包括接收来自终端的用于上行链路的至少一个HARQ进程的HARQ ID,其中所述HARQ ID不与特定的资源相关。
以上分别描述了根据本公开实施例的各示例性电子设备和方法。应当理解,这些电子设备的操作或功能可以相互组合,从而实现比所描述的更多或更少的操作或功能。各方法的操作步骤也可以以任何适当的顺序相互组合,从而类似地实现比所描述的更多或更少的操作。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图11所示的通用个人计算机1300安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。图11是示出作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图。在一个例子中,该个人计算机可以对应于根据本公开的上述示例性终端设备。
在图11中,中央处理单元(CPU)1301根据只读存储器(ROM)1302中存储的程序或从存储部分1308加载到随机存取存储器(RAM)1303的程序执行各种处理。在RAM 1303中,也根据需要存储当CPU 1301执行各种处理等时所需的数据。
CPU 1301、ROM 1302和RAM 1303经由总线1304彼此连接。输入/输出接口1305也连接到总线1304。
下述部件连接到输入/输出接口1305:输入部分1306,包括键盘、鼠标等;输出部分1307,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分1308,包括硬盘等;和通信部分1309,包括网络接口卡比如LAN卡、调制解 调器等。通信部分1309经由网络比如因特网执行通信处理。
根据需要,驱动器1310也连接到输入/输出接口1305。可拆卸介质1311比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1310上,使得从中读出的计算机程序根据需要被安装到存储部分1308中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1311安装构成软件的程序。
本领域技术人员应当理解,这种存储介质不局限于图11所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1311。可拆卸介质1311的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1302、存储部分1308中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本公开的技术能够应用于各种产品。例如,本公开中提到的基站可以被实现为任何类型的演进型节点B(gNB),诸如宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的终端设备在一些示例中也称为用户设备,可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以下将参照图12至图15描述根据本公开的应用示例。
关于基站的应用示例
第一应用示例
图12是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 1400包括多个天线1410以及基站设备1420。基站设备1420和每个天线1410可以 经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1400(或基站设备1420)可以对应于上述电子设备300A、1300A和/或1500B。
天线1410中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1420发送和接收无线信号。如图12所示,gNB 1400可以包括多个天线1410。例如,多个天线1410可以与gNB 1400使用的多个频段兼容。
基站设备1420包括控制器1421、存储器1422、网络接口1423以及无线通信接口1425。
控制器1421可以为例如CPU或DSP,并且操作基站设备1420的较高层的各种功能。例如,控制器1421根据由无线通信接口1425处理的信号中的数据来生成数据分组,并经由网络接口1423来传递所生成的分组。控制器1421可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1421可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1422包括RAM和ROM,并且存储由控制器1421执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1423为用于将基站设备1420连接至核心网1424的通信接口。控制器1421可以经由网络接口1423而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1400与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1423还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1423为无线通信接口,则与由无线通信接口1425使用的频段相比,网络接口1423可以使用较高频段用于无线通信。
无线通信接口1425支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1410来提供到位于gNB 1400的小区中的终端的无线连接。无线通信接口1425通常可以包括例如基带(BB)处理器1426和RF电路1427。BB处理器1426可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1421,BB处理器1426可以具有上述逻辑功能的一部分或全部。BB处理器1426可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1426的功能改变。该模块可以为插入到基站 设备1420的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1427可以包括例如混频器、滤波器和放大器,并且经由天线1410来传送和接收无线信号。虽然图12示出一个RF电路1427与一根天线1410连接的示例,但是本公开并不限于该图示,而是一个RF电路1427可以同时连接多根天线1410。
如图12所示,无线通信接口1425可以包括多个BB处理器1426。例如,多个BB处理器1426可以与gNB 1400使用的多个频段兼容。如图12所示,无线通信接口1425可以包括多个RF电路1427。例如,多个RF电路1427可以与多个天线元件兼容。虽然图12示出其中无线通信接口1425包括多个BB处理器1426和多个RF电路1427的示例,但是无线通信接口1425也可以包括单个BB处理器1426或单个RF电路1427。
第二应用示例
图13是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 1530包括多个天线1540、基站设备1550和RRH 1560。RRH 1560和每个天线1540可以经由RF线缆而彼此连接。基站设备1550和RRH 1560可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 1530(或基站设备1550)可以对应于上述电子设备300A、1300A和/或1500B。
天线1540中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1560发送和接收无线信号。如图13所示,gNB 1530可以包括多个天线1540。例如,多个天线1540可以与gNB 1530使用的多个频段兼容。
基站设备1550包括控制器1551、存储器1552、网络接口1553、无线通信接口1555以及连接接口1557。控制器1551、存储器1552和网络接口1553与参照图12描述的控制器1421、存储器1422和网络接口1423相同。
无线通信接口1555支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1560和天线1540来提供到位于与RRH 1560对应的扇区中的终端的无线通信。无线通信接口1555通常可以包括例如BB处理器1556。除了BB处理器1556经由连接接口1557连接到RRH 1560的RF电路1564之外,BB处理器1556与参照图12描述的BB处理器1426相同。如图13所示,无线通信接口1555可以包括多个BB处理器1556。例如,多个BB处理器1556可以与gNB 1530使用的多个频段兼容。虽然图13示出其中无线通信接口1555包括多个BB处理器1556的示例,但是无线通信接口1555也可以包括单个BB处理器1556。
连接接口1557为用于将基站设备1550(无线通信接口1555)连接至RRH 1560 的接口。连接接口1557还可以为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的上述高速线路中的通信的通信模块。
RRH 1560包括连接接口1561和无线通信接口1563。
连接接口1561为用于将RRH 1560(无线通信接口1563)连接至基站设备1550的接口。连接接口1561还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1563经由天线1540来传送和接收无线信号。无线通信接口1563通常可以包括例如RF电路1564。RF电路1564可以包括例如混频器、滤波器和放大器,并且经由天线1540来传送和接收无线信号。虽然图13示出一个RF电路1564与一根天线1540连接的示例,但是本公开并不限于该图示,而是一个RF电路1564可以同时连接多根天线1540。
如图13所示,无线通信接口1563可以包括多个RF电路1564。例如,多个RF电路1564可以支持多个天线元件。虽然图13示出其中无线通信接口1563包括多个RF电路1564的示例,但是无线通信接口1563也可以包括单个RF电路1564。
关于用户设备(终端)的应用示例
第一应用示例
图14是示出可以应用本公开内容的技术的智能电话1600的示意性配置的示例的框图。智能电话1600包括处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612、一个或多个天线开关1615、一个或多个天线1616、总线1617、电池1618以及辅助控制器1619。在一种实现方式中,此处的智能电话1600(或处理器1601)可以对应于上述终端设备300B和/或1500A。
处理器1601可以为例如CPU或片上系统(SoC),并且控制智能电话1600的应用层和另外层的功能。存储器1602包括RAM和ROM,并且存储数据和由处理器1601执行的程序。存储装置1603可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1604为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1600的接口。
摄像装置1606包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1607可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1608将输入到智能电话1600的声音转换为音频信号。输入装置1609包括例如被配置为检测显示装置1610的屏幕上 的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1610包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1600的输出图像。扬声器1611将从智能电话1600输出的音频信号转换为声音。
无线通信接口1612支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1612通常可以包括例如BB处理器1613和RF电路1614。BB处理器1613可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1614可以包括例如混频器、滤波器和放大器,并且经由天线1616来传送和接收无线信号。无线通信接口1612可以为其上集成有BB处理器1613和RF电路1614的一个芯片模块。如图14所示,无线通信接口1612可以包括多个BB处理器1613和多个RF电路1614。虽然图14示出其中无线通信接口1612包括多个BB处理器1613和多个RF电路1614的示例,但是无线通信接口1612也可以包括单个BB处理器1613或单个RF电路1614。
此外,除了蜂窝通信方案之外,无线通信接口1612可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1612可以包括针对每种无线通信方案的BB处理器1613和RF电路1614。
天线开关1615中的每一个在包括在无线通信接口1612中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1616的连接目的地。
天线1616中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1612传送和接收无线信号。如图14所示,智能电话1600可以包括多个天线1616。虽然图14示出其中智能电话1600包括多个天线1616的示例,但是智能电话1600也可以包括单个天线1616。
此外,智能电话1600可以包括针对每种无线通信方案的天线1616。在此情况下,天线开关1615可以从智能电话1600的配置中省略。
总线1617将处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612以及辅助控制器1619彼此连接。电池1618经由馈线向图14所示的智能电话1600的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1619例如在睡眠模式下操作智能电话1600的最小必需功能。
第二应用示例
图15是示出可以应用本公开内容的技术的汽车导航设备1720的示意性配置的示例的框图。汽车导航设备1720包括处理器1721、存储器1722、全球定位系统(GPS)模块1724、传感器1725、数据接口1726、内容播放器1727、存储介质接口1728、输入装置1729、显示装置1730、扬声器1731、无线通信接口1733、一个或多个天线开关1736、一个或多个天线1737以及电池1738。在一种实现方式中,此处的汽车导航设备1720(或处理器1721)可以对应于上述终端设备300B和/或1500A。
处理器1721可以为例如CPU或SoC,并且控制汽车导航设备1720的导航功能和另外的功能。存储器1722包括RAM和ROM,并且存储数据和由处理器1721执行的程序。
GPS模块1724使用从GPS卫星接收的GPS信号来测量汽车导航设备1720的位置(诸如纬度、经度和高度)。传感器1725可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1726经由未示出的终端而连接到例如车载网络1741,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1727再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1728中。输入装置1729包括例如被配置为检测显示装置1730的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1730包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1731输出导航功能的声音或再现的内容。
无线通信接口1733支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1733通常可以包括例如BB处理器1734和RF电路1735。BB处理器1734可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1735可以包括例如混频器、滤波器和放大器,并且经由天线1737来传送和接收无线信号。无线通信接口1733还可以为其上集成有BB处理器1734和RF电路1735的一个芯片模块。如图15所示,无线通信接口1733可以包括多个BB处理器1734和多个RF电路1735。虽然图15示出其中无线通信接口1733包括多个BB处理器1734和多个RF电路1735的示例,但是无线通信接口1733也可以包括单个BB处理器1734或单个RF电路1735。
此外,除了蜂窝通信方案之外,无线通信接口1733可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每 种无线通信方案,无线通信接口1733可以包括BB处理器1734和RF电路1735。
天线开关1736中的每一个在包括在无线通信接口1733中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1737的连接目的地。
天线1737中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1733传送和接收无线信号。如图15所示,汽车导航设备1720可以包括多个天线1737。虽然图15示出其中汽车导航设备1720包括多个天线1737的示例,但是汽车导航设备1720也可以包括单个天线1737。
此外,汽车导航设备1720可以包括针对每种无线通信方案的天线1737。在此情况下,天线开关1736可以从汽车导航设备1720的配置中省略。
电池1738经由馈线向图15所示的汽车导航设备1720的各个块提供电力,馈线在图中被部分地示为虚线。电池1738累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备1720、车载网络1741以及车辆模块1742中的一个或多个块的车载系统(或车辆)1740。车辆模块1742生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1741。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
可以通过以下条款中描述的方式实现本公开的各种示例实施例:
条款1、一种用于无线通信系统中的终端侧的电子设备,包括处理电路,所述处理电路被配置为:
通过无线电资源控制(RRC)信令和物理层信令中的至少一者接收资源配置信息,其中所述资源配置信息指示在非授权频段中分配的资源以供所述终端进行上行链路传输,
其中,所述资源包括一个或多个资源,所述资源配置信息包括指示该一个或多个资源的位置的一个或多个偏移点的信息。
条款2、如条款1所述的电子设备,其中,所述资源对应一个或多个时间段,其中至少一个时间段具有起点和终点,所述资源配置信息还指示相对于所述至少一个时间段的起点的一个或多个偏移点,所述处理电路还被配置为:
在所述至少一个时间段的起点之前进行信道空闲评估(CCA);
如果CCA成功,则在所述起点处开始使用所述资源,否则在每个偏移点之前进行CCA,直到CCA成功或者已经经过全部偏移点时为止。
条款3、如条款2所述的电子设备,其中,通过相对于所述起点或特定参考时间的偏移时间量来指示所述一个或多个偏移点。
条款4、如条款3所述的电子设备,其中,所述至少一个时间段的终点是固定的,或者所述至少一个时间段的终点是可变的。
条款5、如条款3所述的电子设备,其中,通过RRC信令和物理层信令中的至少一者接收资源配置信息包括以下中的至少一者:
通过RRC信令接收关于所述至少一个时间段的起点、终点和偏移点的信息;
通过物理层信令接收关于所述至少一个时间段的起点、终点和偏移点的信息;或者
通过RRC信令接收关于所述至少一个时间段的起点和终点的信息,并且通过物理层信令接收关于所述至少一个时间段的偏移点的信息。
条款6、如条款1所述的电子设备,其中,所述处理电路还被配置为:
在基站的信道占用时间期间,接收来自基站的工作信道使用授权;以及
执行以下至少一项:
在来自基站的传输结束后的第一时间段内的任意时间,直接使用所述工作信道进行上行链路传输;或者
在所述第一时间段后针对所述工作信道进行CCA,并在CCA成功之后使用所述工作信道进行上行链路传输。
条款7、如条款1所述的电子设备,其中,所述处理电路还被配置为:
在终端的信道占用时间期间,向基站发送工作信道使用授权;以及
执行以下至少一项:
在来自基站的传输结束后的第一时间段内的任意时间,直接使用所述工作信道进行上行链路传输;或者
在所述第一时间段后针对所述工作信道进行CCA,并在CCA成功之后使用所述 工作信道进行上行链路传输。
条款8、如条款6或7所述的电子设备,其中,针对所述工作信道进行的CCA对应于类型2先听后说(LBT)。
条款9、如条款8所述的电子设备,其中,如果在来自基站的传输结束后的上行链路传输为控制信息,则CCA对应1个类型2 LBT;以及/或者
如果在来自基站的传输结束后的上行链路传输为数据,则CCA对应2个以上类型2 LBT。
条款10、如条款1所述的电子设备,其中,所述处理电路还被配置为针对配置基于帧的设备(FBE)的非授权频段的信道接入方式,进行如下操作:
接收同步信号和/或参考信号;以及/或者
向基站发送测量报告。
条款11、一种用于无线通信系统中的基站侧的电子设备,包括处理电路,所述处理电路被配置为:
通过无线电资源控制(RRC)信令和物理层信令中的至少一者发送资源配置信息,其中所述资源配置信息指示在非授权频段中分配的资源以供终端进行上行链路传输,
其中,所述资源包括一个或多个资源,所述资源配置信息包括指示该一个或多个资源的位置的一个或多个偏移点的信息。
条款12、如条款11所述的电子设备,其中,所述资源对应一个或多个时间段,其中至少一个时间段具有起点和终点,所述资源配置信息还指示相对于所述至少一个时间段的起点的一个或多个偏移点,并且通过相对于所述起点或特定参考时间的偏移时间量来指示所述一个或多个偏移点。
条款13、如条款12所述的电子设备,其中,所述至少一个时间段的终点是固定的,或者所述至少一个时间段的终点是可变的。
条款14、如条款12所述的电子设备,其中,通过RRC信令和物理层信令中的至少一者发送资源配置信息包括以下中的至少一者:
通过RRC信令发送关于所述至少一个时间段的起点、终点和偏移点的信息;
通过物理层信令发送关于所述至少一个时间段的起点、终点和偏移点的信息;或者
通过RRC信令发送关于所述至少一个时间段的起点和终点的信息,并且通过物理层信令发送关于所述至少一个时间段的偏移点的信息。
条款15、如条款11所述的电子设备,其中,所述处理电路还被配置为:
在终端的信道占用时间期间,接收来自终端的工作信道使用授权;以及
执行以下至少一项:
在来自终端的传输结束后的第一时间段内的任意时间,直接使用所述工作信道进行下行链路传输;或者
在所述第一时间段后针对所述工作信道进行CCA,并在CCA成功之后使用所述工作信道进行下行链路传输。
条款16、如条款11所述的电子设备,其中,所述处理电路还被配置为:
在基站的信道占用时间期间,向终端发送工作信道使用授权;以及
执行以下至少一项:
在来自终端的传输结束后的第一时间段内的任意时间,直接使用所述工作信道进行下行链路传输;或者
在所述第一时间段后针对所述工作信道进行CCA,并在CCA成功之后使用所述工作信道进行下行链路传输。
条款17、如条款15或16所述的电子设备,其中,针对所述工作信道进行的CCA对应于类型2先听后说(LBT)。
条款18、如条款17所述的电子设备,其中,如果在来自终端的传输结束后的下行链路传输为控制信息,则CCA对应1个类型2 LBT;以及/或者
如果在来自终端的传输结束后的下行链路传输为数据,则CCA对应2个以上类型2 LBT。
条款19、如条款11所述的电子设备,其中,所述处理电路还被配置为针对配置基于帧的设备(FBE)的非授权频段的信道接入方式,进行如下操作:
发送同步信号和/或参考信号;以及/或者
接收来自终端的测量报告。
条款20、一种用于无线通信系统中的终端侧的电子设备,包括处理电路,所述处理电路被配置为:
生成针对上行链路中同一传输块的重复发送次数参数K;
向基站发送参数K;以及
将至少一个传输块重复发送K次。
条款21、如条款20所述的电子设备,其中,所述处理电路还被配置为:
基于基站配置的针对重复发送的冗余版本(RV)参数信息将所述至少一个传输块重复发送K次;或者
生成针对重复发送的RV参数信息,向基站发送所生成的RV参数信息,并且基于所生成的RV参数信息将至少一个传输块重复发送K次。
条款22、如条款20所述的电子设备,其中,所述处理电路还被配置为至少基于以下中的一项或多项来生成所述参数K:
所述终端的最大信道占用时间;
所述终端的电量水平;或
上行链路信道状况。
条款23、如条款20所述的电子设备,其中,将所述至少一个传输块重复发送K次包括:
将所述至少一个传输块的混合自动重传请求(HARQ)初传重复发送K次;和/或将所述至少一个传输块的至少一个HARQ重传重复发送K次。
条款24、如条款20所述的电子设备,其中,所述处理电路还被配置为:
对于上行链路传输的至少一个HARQ进程,从多个HARQ ID中选择用于所述至少一个HARQ进程的HARQ ID,其中所选择的HARQ ID不与特定的资源相关;以及
向基站发送用于所述至少一个HARQ进程的HARQ ID。
条款25、一种用于无线通信系统中的基站侧的电子设备,包括处理电路,所述处理电路被配置为:
接收来自终端的针对上行链路中同一传输块的重复发送次数参数K;以及
接收来自终端的至少一个传输块的K次重复发送。
条款26、如条款25所述的电子设备,其中,所述处理电路还被配置为:
基于基站配置的针对重复发送的冗余版本(RV)参数信息对所述至少一个传输块的K次重复发送解码;或者
接收来自终端的RV参数信息,并且基于所接收的RV参数信息对所述至少一个传输块的K次重复发送解码。
条款27、如条款25所述的电子设备,其中,接收来自终端的至少一个传输块的K次重复发送包括:
接收所述至少一个传输块的混合自动重传请求(HARQ)初传的K次重复发送,并从所接收的K次重复发送中解码所述至少一个传输块;或
接收所述至少一个传输块的至少一个HARQ重传的K次重复发送,并从所接收的K次发送和先前发送中解码所述至少一个传输块。
条款28、如条款25所述的电子设备,其中,所述处理电路还被配置为:
接收来自终端的用于上行链路的至少一个HARQ进程的HARQ ID,其中所述HARQ ID不与特定的资源相关。
条款29、一种用于终端侧的无线通信方法,包括:
通过无线电资源控制(RRC)信令和物理层信令中的至少一者接收资源配置信息,其中所述资源配置信息指示在非授权频段中分配的资源以供所述终端进行上行链路传输,
其中,所述资源包括一个或多个资源,所述资源配置信息包括指示该一个或多个资源的位置的一个或多个偏移点的信息。
条款30、一种用于基站侧的无线通信方法,包括:
通过无线电资源控制(RRC)信令和物理层信令中的至少一者发送资源配置信息,其中所述资源配置信息指示在非授权频段中分配的资源以供终端进行上行链路传输,
其中,所述资源包括一个或多个资源,所述资源配置信息包括指示该一个或多个资源的位置的一个或多个偏移点的信息。
条款31、一种用于终端侧的无线通信方法,包括:
生成针对上行链路中同一传输块的重复发送次数参数K;
向基站发送参数K;以及
将至少一个传输块重复发送K次。
条款32、一种用于基站侧的无线通信方法,包括:
接收来自终端的针对上行链路中同一传输块的重复发送次数参数K;以及
接收来自终端的至少一个传输块的K次重复发送。
条款33、一种存储有一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理器执行时使该电子设备执行如条款29至32所述的方法。
条款34、一种用于无线通信系统中的装置,包括用于执行如条款29至32所述的方法的单元。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得 包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (34)

  1. 一种用于无线通信系统中的终端侧的电子设备,包括处理电路,所述处理电路被配置为:
    通过无线电资源控制(RRC)信令和物理层信令中的至少一者接收资源配置信息,其中所述资源配置信息指示在非授权频段中分配的资源以供所述终端进行上行链路传输,
    其中,所述资源包括一个或多个资源,所述资源配置信息包括指示该一个或多个资源的位置的一个或多个偏移点的信息。
  2. 如权利要求1所述的电子设备,其中,所述资源对应一个或多个时间段,其中至少一个时间段具有起点和终点,所述资源配置信息还指示相对于所述至少一个时间段的起点的一个或多个偏移点,所述处理电路还被配置为:
    在所述至少一个时间段的起点之前进行信道空闲评估(CCA);
    如果CCA成功,则在所述起点处开始使用所述资源,否则在每个偏移点之前进行CCA,直到CCA成功或者已经经过全部偏移点时为止。
  3. 如权利要求2所述的电子设备,其中,通过相对于所述起点或特定参考时间的偏移时间量来指示所述一个或多个偏移点。
  4. 如权利要求3所述的电子设备,其中,所述至少一个时间段的终点是固定的,或者所述至少一个时间段的终点是可变的。
  5. 如权利要求3所述的电子设备,其中,通过RRC信令和物理层信令中的至少一者接收资源配置信息包括以下中的至少一者:
    通过RRC信令接收关于所述至少一个时间段的起点、终点和偏移点的信息;
    通过物理层信令接收关于所述至少一个时间段的起点、终点和偏移点的信息;或者
    通过RRC信令接收关于所述至少一个时间段的起点和终点的信息,并且通过物理层信令接收关于所述至少一个时间段的偏移点的信息。
  6. 如权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    在基站的信道占用时间期间,接收来自基站的工作信道使用授权;以及
    执行以下至少一项:
    在来自基站的传输结束后的第一时间段内的任意时间,直接使用所述工作信道进行上行链路传输;或者
    在所述第一时间段后针对所述工作信道进行CCA,并在CCA成功之后使用所述工作信道进行上行链路传输。
  7. 如权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    在终端的信道占用时间期间,向基站发送工作信道使用授权;以及
    执行以下至少一项:
    在来自基站的传输结束后的第一时间段内的任意时间,直接使用所述工作信道进行上行链路传输;或者
    在所述第一时间段后针对所述工作信道进行CCA,并在CCA成功之后使用所述工作信道进行上行链路传输。
  8. 如权利要求6或7所述的电子设备,其中,针对所述工作信道进行的CCA对应于类型2先听后说(LBT)。
  9. 如权利要求8所述的电子设备,其中,如果在来自基站的传输结束后的上行链路传输为控制信息,则CCA对应1个类型2LBT;以及/或者
    如果在来自基站的传输结束后的上行链路传输为数据,则CCA对应2个以上类型2LBT。
  10. 如权利要求1所述的电子设备,其中,所述处理电路还被配置为针对配置基于帧的设备(FBE)的非授权频段的信道接入方式,进行如下操作:
    接收同步信号和/或参考信号;以及/或者
    向基站发送测量报告。
  11. 一种用于无线通信系统中的基站侧的电子设备,包括处理电路,所述处理电路 被配置为:
    通过无线电资源控制(RRC)信令和物理层信令中的至少一者发送资源配置信息,其中所述资源配置信息指示在非授权频段中分配的资源以供终端进行上行链路传输,
    其中,所述资源包括一个或多个资源,所述资源配置信息包括指示该一个或多个资源的位置的一个或多个偏移点的信息。
  12. 如权利要求11所述的电子设备,其中,所述资源对应一个或多个时间段,其中至少一个时间段具有起点和终点,所述资源配置信息还指示相对于所述至少一个时间段的起点的一个或多个偏移点,并且通过相对于所述起点或特定参考时间的偏移时间量来指示所述一个或多个偏移点。
  13. 如权利要求12所述的电子设备,其中,所述至少一个时间段的终点是固定的,或者所述至少一个时间段的终点是可变的。
  14. 如权利要求12所述的电子设备,其中,通过RRC信令和物理层信令中的至少一者发送资源配置信息包括以下中的至少一者:
    通过RRC信令发送关于所述至少一个时间段的起点、终点和偏移点的信息;
    通过物理层信令发送关于所述至少一个时间段的起点、终点和偏移点的信息;或者
    通过RRC信令发送关于所述至少一个时间段的起点和终点的信息,并且通过物理层信令发送关于所述至少一个时间段的偏移点的信息。
  15. 如权利要求11所述的电子设备,其中,所述处理电路还被配置为:
    在终端的信道占用时间期间,接收来自终端的工作信道使用授权;以及执行以下至少一项:
    在来自终端的传输结束后的第一时间段内的任意时间,直接使用所述工作信道进行下行链路传输;或者
    在所述第一时间段后针对所述工作信道进行CCA,并在CCA成功之后使用所述工作信道进行下行链路传输。
  16. 如权利要求11所述的电子设备,其中,所述处理电路还被配置为:
    在基站的信道占用时间期间,向终端发送工作信道使用授权;以及
    执行以下至少一项:
    在来自终端的传输结束后的第一时间段内的任意时间,直接使用所述工作信道进行下行链路传输;或者
    在所述第一时间段后针对所述工作信道进行CCA,并在CCA成功之后使用所述工作信道进行下行链路传输。
  17. 如权利要求15或16所述的电子设备,其中,针对所述工作信道进行的CCA对应于类型2先听后说(LBT)。
  18. 如权利要求17所述的电子设备,其中,如果在来自终端的传输结束后的下行链路传输为控制信息,则CCA对应1个类型2LBT;以及/或者
    如果在来自终端的传输结束后的下行链路传输为数据,则CCA对应2个以上类型2LBT。
  19. 如权利要求11所述的电子设备,其中,所述处理电路还被配置为针对配置基于帧的设备(FBE)的非授权频段的信道接入方式,进行如下操作:
    发送同步信号和/或参考信号;以及/或者
    接收来自终端的测量报告。
  20. 一种用于无线通信系统中的终端侧的电子设备,包括处理电路,所述处理电路被配置为:
    生成针对上行链路中同一传输块的重复发送次数参数K;
    向基站发送参数K;以及
    将至少一个传输块重复发送K次。
  21. 如权利要求20所述的电子设备,其中,所述处理电路还被配置为:
    基于基站配置的针对重复发送的冗余版本(RV)参数信息将所述至少一个传输块重复发送K次;或者
    生成针对重复发送的RV参数信息,向基站发送所生成的RV参数信息,并且基于所生成的RV参数信息将至少一个传输块重复发送K次。
  22. 如权利要求20所述的电子设备,其中,所述处理电路还被配置为至少基于以下中的一项或多项来生成所述参数K:
    所述终端的最大信道占用时间;
    所述终端的电量水平;或
    上行链路信道状况。
  23. 如权利要求20所述的电子设备,其中,将所述至少一个传输块重复发送K次包括:
    将所述至少一个传输块的混合自动重传请求(HARQ)初传重复发送K次;和/或
    将所述至少一个传输块的至少一个HARQ重传重复发送K次。
  24. 如权利要求20所述的电子设备,其中,所述处理电路还被配置为:
    对于上行链路传输的至少一个HARQ进程,从多个HARQ ID中选择用于所述至少一个HARQ进程的HARQ ID,其中所选择的HARQ ID不与特定的资源相关;以及
    向基站发送用于所述至少一个HARQ进程的HARQ ID。
  25. 一种用于无线通信系统中的基站侧的电子设备,包括处理电路,所述处理电路被配置为:
    接收来自终端的针对上行链路中同一传输块的重复发送次数参数K;以及
    接收来自终端的至少一个传输块的K次重复发送。
  26. 如权利要求25所述的电子设备,其中,所述处理电路还被配置为:
    基于基站配置的针对重复发送的冗余版本(RV)参数信息对所述至少一个传输块的K次重复发送解码;或者
    接收来自终端的RV参数信息,并且基于所接收的RV参数信息对所述至少一个传输块的K次重复发送解码。
  27. 如权利要求25所述的电子设备,其中,接收来自终端的至少一个传输块的K次重复发送包括:
    接收所述至少一个传输块的混合自动重传请求(HARQ)初传的K次重复发送,并从所接收的K次重复发送中解码所述至少一个传输块;或
    接收所述至少一个传输块的至少一个HARQ重传的K次重复发送,并从所接收的K次发送和先前发送中解码所述至少一个传输块。
  28. 如权利要求25所述的电子设备,其中,所述处理电路还被配置为:
    接收来自终端的用于上行链路的至少一个HARQ进程的HARQ ID,其中所述HARQ ID不与特定的资源相关。
  29. 一种用于终端侧的无线通信方法,包括:
    通过无线电资源控制(RRC)信令和物理层信令中的至少一者接收资源配置信息,其中所述资源配置信息指示在非授权频段中分配的资源以供所述终端进行上行链路传输,
    其中,所述资源包括一个或多个资源,所述资源配置信息包括指示该一个或多个资源的位置的一个或多个偏移点的信息。
  30. 一种用于基站侧的无线通信方法,包括:
    通过无线电资源控制(RRC)信令和物理层信令中的至少一者发送资源配置信息,其中所述资源配置信息指示在非授权频段中分配的资源以供终端进行上行链路传输,
    其中,所述资源包括一个或多个资源,所述资源配置信息包括指示该一个或多个资源的位置的一个或多个偏移点的信息。
  31. 一种用于终端侧的无线通信方法,包括:
    生成针对上行链路中同一传输块的重复发送次数参数K;
    向基站发送参数K;以及
    将至少一个传输块重复发送K次。
  32. 一种用于基站侧的无线通信方法,包括:
    接收来自终端的针对上行链路中同一传输块的重复发送次数参数K;以及
    接收来自终端的至少一个传输块的K次重复发送。
  33. 一种存储有一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理器执行时使该电子设备执行如权利要求29至32所述的方法。
  34. 一种用于无线通信系统中的装置,包括用于执行如权利要求29至32所述的方法的单元。
PCT/CN2019/099403 2018-08-10 2019-08-06 用于无线通信系统的电子设备、方法和存储介质 WO2020029950A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/258,451 US20210282188A1 (en) 2018-08-10 2019-08-06 Electronic device for wireless communication system, method and storage medium
EP19848670.6A EP3817486A4 (en) 2018-08-10 2019-08-06 ELECTRONIC DEVICE INTENDED FOR A WIRELESS COMMUNICATION SYSTEM, AND PROCESS AND INFORMATION MEDIA
CN201980051874.0A CN112534923A (zh) 2018-08-10 2019-08-06 用于无线通信系统的电子设备、方法和存储介质
US18/305,400 US20230262771A1 (en) 2018-08-10 2023-04-24 Electronic device for wireless communication system, method and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810908619.0 2018-08-10
CN201810908619.0A CN110831179A (zh) 2018-08-10 2018-08-10 用于无线通信系统的电子设备、方法和存储介质

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/258,451 A-371-Of-International US20210282188A1 (en) 2018-08-10 2019-08-06 Electronic device for wireless communication system, method and storage medium
US18/305,400 Continuation US20230262771A1 (en) 2018-08-10 2023-04-24 Electronic device for wireless communication system, method and storage medium

Publications (1)

Publication Number Publication Date
WO2020029950A1 true WO2020029950A1 (zh) 2020-02-13

Family

ID=69413379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099403 WO2020029950A1 (zh) 2018-08-10 2019-08-06 用于无线通信系统的电子设备、方法和存储介质

Country Status (4)

Country Link
US (2) US20210282188A1 (zh)
EP (1) EP3817486A4 (zh)
CN (2) CN110831179A (zh)
WO (1) WO2020029950A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153610A1 (ko) * 2019-01-24 2020-07-30 엘지전자 주식회사 비면허 대역에서의 상향링크 송수신 방법 및 이를 위한 장치
US11606811B2 (en) * 2019-08-26 2023-03-14 Qualcomm Incorporated Techniques for determining resources for communicating over an acquired channel
WO2021088055A1 (zh) * 2019-11-08 2021-05-14 Oppo广东移动通信有限公司 非授权频谱上的数据传输方法、装置、设备及存储介质
US20230066174A1 (en) * 2020-04-15 2023-03-02 Qualcomm Incorporated Techniques for ue-to-ue channel occupancy time sharing in unlicensed spectrum
CN111833206B (zh) * 2020-06-27 2021-05-25 中国计量科学研究院 一种能源管理系统
WO2022000483A1 (en) * 2020-07-03 2022-01-06 Lenovo (Beijing) Limited Method and apparatus for uplink transmission on configured grant resources
US20230269767A1 (en) * 2020-08-13 2023-08-24 Beijing Xiaomi Mobile Software Co., Ltd. Method for resource configuration, and communication device
WO2022047650A1 (en) * 2020-09-02 2022-03-10 Qualcomm Incorporated Channel occupancy time sharing for frame-based equipment
CN112512079A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 信息传输方法、电子设备和存储介质
CN113163022B (zh) * 2021-02-24 2023-05-23 深圳市日海飞信信息系统技术有限公司 面向垂直行业的数据传输方法、装置、设备及存储介质
WO2022236801A1 (en) * 2021-05-14 2022-11-17 Lenovo (Beijing) Limited Transmission switching on multiple carriers in iot ntn
US11882600B2 (en) * 2021-06-18 2024-01-23 Qualcomm Incorporated Conditional uplink grant in unlicensed spectrum

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197643A (zh) * 2006-12-07 2008-06-11 大唐移动通信设备有限公司 一种数据上传和接收的方法、及终端、基站和系统
CN101568148A (zh) * 2008-04-24 2009-10-28 中兴通讯股份有限公司 为ue分配连续授权资源及在该资源上发送数据的方法
CN105992373A (zh) * 2015-01-30 2016-10-05 中兴通讯股份有限公司 数据传输方法、装置、基站及用户设备
CN106301733A (zh) * 2015-06-26 2017-01-04 中兴通讯股份有限公司 数据的传输方法及装置
CN107667565A (zh) * 2015-04-09 2018-02-06 三星电子株式会社 在使用非授权频带的蜂窝网络中分配资源的方法及其设备
WO2018086541A1 (en) * 2016-11-11 2018-05-17 Huawei Technologies Co., Ltd. Systems and methods for grant-free uplink transmission

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105848165B (zh) * 2015-01-14 2022-01-18 中兴通讯股份有限公司 非授权资源的使用方法、系统、基站及用户设备
US10383103B2 (en) * 2015-04-09 2019-08-13 Samsung Electronics Co., Ltd. Method for allocating resources in cellular network using unlicensed band and device therefor
WO2016171765A1 (en) * 2015-04-22 2016-10-27 Intel IP Corporation Transmission designs for radio access technologies
EP3297378B1 (en) * 2015-05-08 2020-10-28 LG Electronics Inc. Method for transmitting or receiving uplink signal in wireless communication system and device therefor
KR20170093068A (ko) * 2016-02-04 2017-08-14 한국전자통신연구원 통신 네트워크에서 상향링크 전송의 스케쥴링 방법
US10869333B2 (en) * 2016-12-16 2020-12-15 Huawei Technologies Co., Ltd. Systems and methods for mixed grant-free and grant-based uplink transmissions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197643A (zh) * 2006-12-07 2008-06-11 大唐移动通信设备有限公司 一种数据上传和接收的方法、及终端、基站和系统
CN101568148A (zh) * 2008-04-24 2009-10-28 中兴通讯股份有限公司 为ue分配连续授权资源及在该资源上发送数据的方法
CN105992373A (zh) * 2015-01-30 2016-10-05 中兴通讯股份有限公司 数据传输方法、装置、基站及用户设备
CN107667565A (zh) * 2015-04-09 2018-02-06 三星电子株式会社 在使用非授权频带的蜂窝网络中分配资源的方法及其设备
CN106301733A (zh) * 2015-06-26 2017-01-04 中兴通讯股份有限公司 数据的传输方法及装置
WO2018086541A1 (en) * 2016-11-11 2018-05-17 Huawei Technologies Co., Ltd. Systems and methods for grant-free uplink transmission

Also Published As

Publication number Publication date
EP3817486A1 (en) 2021-05-05
CN112534923A (zh) 2021-03-19
US20210282188A1 (en) 2021-09-09
CN110831179A (zh) 2020-02-21
US20230262771A1 (en) 2023-08-17
EP3817486A4 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
WO2020029950A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
CN106452705B (zh) 无线通信系统中的电子设备和无线通信方法
WO2020166280A1 (ja) 通信装置及び通信方法
US20220116147A1 (en) Electronic device, wireless communication method, and computer readable medium
WO2017135026A1 (ja) 無線通信装置、通信方法、コンピュータプログラム及び無線通信システム
JP7268955B2 (ja) 端末装置、通信方法、及びプログラム
WO2017167165A1 (zh) 电子装置、信息处理设备和信息处理方法
WO2019238009A1 (zh) 电子设备、通信方法和存储介质
JP2018160847A (ja) 通信装置、通信方法、及びプログラム
WO2018128029A1 (ja) 端末装置、基地局装置、方法及び記録媒体
JP2020527876A (ja) 電子装置及び無線通信方法
US20230300798A1 (en) Electronic device, method, and storage medium for wireless communication
US11096205B2 (en) Device and method for controlling communication of downlink data
WO2019007262A1 (zh) 无线通信方法和无线通信设备
JP6265139B2 (ja) 通信制御装置、通信制御方法及び端末装置
WO2015186392A1 (ja) 装置
JP7424317B2 (ja) 通信装置、通信方法、及びプログラム
KR20220047971A (ko) 무선 통신을 위한 전자 디바이스 및 방법, 및 컴퓨터 판독가능 저장 매체
JP6642057B2 (ja) 無線通信装置、通信方法、コンピュータプログラム及び無線通信システム
WO2017135031A1 (ja) 無線通信装置、通信方法、コンピュータプログラム及び無線通信システム
WO2021233212A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022206575A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2021204108A1 (zh) 电子设备、通信方法和存储介质
WO2020108370A1 (zh) 电子装置、无线通信方法和计算机可读介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019848670

Country of ref document: EP

Effective date: 20210128

NENP Non-entry into the national phase

Ref country code: DE