WO2021233212A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2021233212A1
WO2021233212A1 PCT/CN2021/093732 CN2021093732W WO2021233212A1 WO 2021233212 A1 WO2021233212 A1 WO 2021233212A1 CN 2021093732 W CN2021093732 W CN 2021093732W WO 2021233212 A1 WO2021233212 A1 WO 2021233212A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
harq feedback
cws
feedback value
processing circuit
Prior art date
Application number
PCT/CN2021/093732
Other languages
English (en)
French (fr)
Inventor
崔琪楣
贾靖
崔焘
Original Assignee
索尼集团公司
崔琪楣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 崔琪楣 filed Critical 索尼集团公司
Priority to US17/917,575 priority Critical patent/US20230180289A1/en
Priority to EP21808930.8A priority patent/EP4156834A4/en
Priority to CN202180035031.9A priority patent/CN115669175A/zh
Publication of WO2021233212A1 publication Critical patent/WO2021233212A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present disclosure relates to the field of wireless communication technology, in particular to adjusting the size of the competition window. More specifically, it relates to an electronic device and method for wireless communication that adjust the size of the competition window, and a computer-readable storage medium.
  • the 5G communication system is expected to work on high frequency band resources ranging from low frequency bands to around 100G, including licensed frequency bands and unlicensed frequency bands.
  • the unlicensed frequency band mainly considers the 5GHz frequency band and the 60GHz frequency band.
  • the 5G system operating in the unlicensed frequency band is called NR-U (unlicensed spectrum access based on NR (5G air interface)).
  • ETSI European Telecommunications Standards Institute
  • Category 3 CWS Competition Window Size
  • EDCA Enhanced Distributed Channel Access
  • 802.11 uses eight Different user priorities provide four different access priorities (such as category 4LBT) to transmit traffic at 60GHz.
  • the NR-U channel access mechanism is defined in Non-Patent Document 1. Compared with ETSI, the channel access of wifi in 60GHz is slightly expanded, and the CWS adjustment in 60GHz NR-U is not specified. Therefore, in order to coexist fairly with Wi-Fi in the future, it is necessary to further consider the CWS adjustment of NR-U.
  • Non-Patent Document 1 3GPP TS 37.213 (V16.0.0), December 2019
  • an electronic device for wireless communication which includes a processing circuit configured to obtain a hybrid automatic repeat request (HARQ) feedback value of transmitted transmission data; and based on HARQ feedback Value to adjust the size of the contention window of the carrier sense before the next data transmission.
  • HARQ hybrid automatic repeat request
  • a method for wireless communication comprising: obtaining a HARQ feedback value of transmitted transmission data; and adjusting the carrier sense performed before the next data transmission based on the HARQ feedback value
  • the competition window size CWS The competition window size CWS.
  • Fig. 1 shows a block diagram of functional modules of an electronic device for wireless communication according to an embodiment of the present disclosure.
  • Fig. 2 is a diagram showing an example of channel occupation time.
  • FIG. 3 is a schematic flowchart showing that an electronic device according to an embodiment of the present disclosure determines whether there is a hidden node based on the HARQ feedback value of non-reference data to adjust the CWS.
  • FIG. 4 shows a first example of the time occupied when the electronic device and other devices perform data transmission according to an embodiment of the present disclosure.
  • FIG. 5 shows a second example of the time occupied when the electronic device and other devices perform data transmission according to an embodiment of the present disclosure.
  • FIG. 6 shows a third example of the time occupied when the electronic device and other devices perform data transmission according to an embodiment of the present disclosure.
  • FIG. 7 shows a fourth example of the time occupied when the electronic device and other devices perform data transmission according to an embodiment of the present disclosure.
  • FIG. 8 is a diagram showing an example of the correspondence relationship between the block error rate and the value set of the contention window size according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart showing that an electronic device according to an embodiment of the present disclosure determines CWS based on a block error rate.
  • FIG. 10 shows a flowchart of a method for wireless communication according to an embodiment of the present disclosure.
  • FIG. 11 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied.
  • FIG. 12 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a smart phone to which the technology of the present disclosure can be applied.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 15 is a block diagram showing an example structure of a personal computer that can be adopted in an embodiment of the present disclosure.
  • FIG. 1 shows a functional module block diagram of an electronic device 100 for wireless communication according to an embodiment of the present disclosure.
  • the electronic device 100 includes: a first processing unit 102, which may be configured to obtain The hybrid automatic repeat request (HARQ) feedback value of the transmitted data; and the second processing unit 104, which may be configured to adjust the contention window size (CWS) of the carrier sense before the next data transmission based on the HARQ feedback value.
  • HARQ hybrid automatic repeat request
  • CWS contention window size
  • first processing unit 102 and the second processing unit 104 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip, for example.
  • the electronic device 100 may, for example, be provided on the side of the base station or be communicably connected to the base station.
  • the electronic device 100 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 100 may work as a base station itself, and may also include external devices such as a memory, a transceiver (not shown), and the like.
  • the memory can be used to store programs and related data information that the base station needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, user equipment, other base stations, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the transmission data may include only one data group and the electronic device 100 may only transmit the one data group within one channel occupation time (COT).
  • acquiring the HARQ feedback value of the transmitted transmission data refers to The electronic device 100 obtains the HARQ feedback value of a data group transmitted in the current COT, and the next data transmission performed by the electronic device 100 refers to the transmission of the data group performed in the next COT.
  • the transmission data may include multiple data groups and the electronic device 100 may transmit the foregoing multiple data groups within one COT.
  • acquiring the HARQ feedback value of the transmitted transmission data may refer to the electronic device 100 acquiring The HARQ feedback value of the first data group transmitted in the current COT, the next data transmission performed by the electronic device 100 refers to the transmission of the above multiple data groups in the current COT except for the first data group Other data groups.
  • HARQ-ACK the HARQ feedback value
  • ACK is an abbreviation for positive acknowledgement
  • the electronic device 100 can adjust the size of the contention window based on the obtained HARQ feedback value.
  • the first processing unit 102 may be configured to transmit transmission data on an unlicensed frequency band.
  • the unlicensed frequency band mainly considers the 5GHz frequency band and the 60GHz frequency band.
  • the 60GHz frequency band is taken as an example to describe the unlicensed frequency band.
  • the description for the 60 GHz frequency band is also suitable for the 5 GHz frequency band.
  • the second processing unit 104 may be configured to also adjust the CWS based on the judgment result obtained by judging whether there is a hidden node.
  • Hidden nodes can also be called hidden terminals or hidden terminals. Hidden nodes refer to nodes in the wireless network that are within the coverage of the receiving node but outside the coverage of the sending node.
  • the hidden node may send data packets to the same receiving node because it does not know the transmission of the sending node, causing the data packets to collide at the receiving node. After the collision, the sending node needs to retransmit the collision packet, which reduces the utilization of the channel.
  • Data interference may be caused by the conflict of multiple devices occupying the channel at the same time. If the channel is not allocated to multiple devices at the same time but there is still interference, the interference may be caused by the existence of hidden nodes.
  • HARQ-ACK feedback has a greater impact on the CWS adjustment in category 4LBT.
  • the problem of hidden nodes is very serious, leading to decoding errors at the user equipment and continuous feedback of NACK (Negative Acknowledgement), so that the CWS at the base station always increases. If the CWS is large, it is not conducive to 60GHz NR-U channel access.
  • the electronic device 100 can adjust the CWS according to the judgment result of whether there is a hidden node, so that the influence of the hidden node on the adjustment of the CWS can be reduced.
  • the second processing unit 104 may be configured to determine whether there is a hidden node based on the HARQ feedback value of at least part of the non-reference data in the non-reference data transmitted in the COT.
  • the data transmitted in each duration other than the first duration of time is non-reference data.
  • the first duration of the base station (for example, gNB) included in the channel occupation of a single unicast PDSCH is the reference duration.
  • Fig. 2 is a diagram showing an example of channel occupation time.
  • the first duration in the COT is the reference duration.
  • the duration other than the reference duration is called the non-reference duration.
  • the data transmitted within the duration is called the reference duration.
  • Data, the data transmitted in a non-duration time is called non-reference data.
  • the COT shown in FIG. 2 contains 6 non-reference durations. Those skilled in the art will know that the number of non-durations can be selected based on experience or actual conditions.
  • the electronic device 100 may transmit data in units of transmission blocks or code blocks.
  • data is transmitted in units of transmission blocks.
  • the reference data TB1 is transmitted in the reference duration
  • the non-reference data TB2-TB7 are respectively transmitted in the non-reference duration.
  • the electronic device although the electronic device also obtains the HARQ feedback value of the non-reference data, the electronic device does not consider the HARQ feedback value of the non-reference data to determine whether there is a hidden node to adjust the CWS.
  • the electronic device 100 according to the embodiment of the present disclosure can determine whether there is a hidden node to adjust the CWS based on the HARQ feedback value of the non-reference data, thereby further reducing the influence of the hidden node on the adjustment of the CWS. Generate additional signaling burden.
  • FIG. 3 is a schematic flowchart showing that the electronic device 100 according to an embodiment of the present disclosure determines whether there is a hidden node based on the HARQ feedback value of non-reference data to adjust the CWS.
  • step 1 it is idle when there is no data transmission.
  • step 2 it is judged whether to transmit data, that is, data detection is performed. If it is judged as "No” in step 2, return to step 1. When it is judged as "Yes” in step 2, go to step 3.
  • step 3 it is detected whether the delay duration (defer duration) is idle. When it is judged as "Yes” in step 3, proceed to step 4.
  • Different access priorities or access priorities have different CWS sizes (that is, the value sets of CWS are different), and CWp can be used to represent the channel access priority p (for example, p ⁇ ⁇ 1,2,3,4 ⁇ ) The size of the contention window. The number and size of the value set of CWp in each access priority p are different.
  • step 4 in [ 0,q-1] interval generates the count value N of the random backoff counter (also known as the backoff window size); as shown in the dashed box on the left of step 4, judge whether there is hidden by HARQ feedback value based on non-reference data
  • the node is used to adjust the current contention window size q (for example, keep the current contention window size q in the value set of CWp, or update the current contention window size q to the value after the current contention window size in the value set of CWp ) To affect the value interval of N in step 4.
  • step 5 it is detected whether the channel is idle within the time of Decca (Decca is the detection time slot size), and in step 6, it is determined whether N is 0.
  • step 7 eCCA (extended headroom channel assessment) time slot size detection is performed on the channel.
  • step 9 it is judged whether to transmit data. If it is judged as "No” in step 9, return to step 1.
  • step 10 it is judged whether to transmit the next data. If it is judged as "No” in step 10, return to step 1.
  • step 4 it is detected whether the channel is idle within the time of Decca (Decca is the detection time slot size), and in step 6, it is determined whether N is 0.
  • eCCA extended headroom channel assessment
  • CWS is sometimes used to represent the CWp in the channel access priority p
  • maintaining the CWS refers to maintaining the current contention window size.
  • Updating CWS refers to updating the current contention window size to the value set after the current contention window size in the value set of CWp in the access priority p. For example, if the value set of CWp in the access priority p is ⁇ 15 ,31,63 ⁇ and the current contention window size is 31, then updating CWS refers to updating the current contention window size to 63.
  • the channel access priority p is sometimes simply referred to as the access priority p.
  • the second processing unit 104 may be configured to determine that there is a hidden node when the HARQ feedback value of each non-reference data transmitted in the COT is NACK, otherwise it is determined that there is no hidden node.
  • NACK all ACK/NACK feedback of non-reference duration is NACK. Therefore, the situation where the HARQ feedback value of each non-reference data transmitted in the COT is NACK is a severe interference situation.
  • the second processing unit 104 may be configured such that the ratio between the number of HARQ feedback values with a value of NACK and the total number of all HARQ feedback values among all HARQ feedback values of non-reference data transmitted within the COT is greater than or equal to a predetermined value.
  • the ratio threshold it is judged that there are hidden nodes; otherwise, it is judged that there are no hidden nodes.
  • those skilled in the art can set a predetermined ratio threshold in advance based on experience or application scenarios.
  • the second processing unit 104 may be configured to determine that there is no hidden node when the HARQ feedback value of the non-reference data transmitted first in time among the non-reference data transmitted in the COT is ACK; otherwise, It is determined that there are hidden nodes.
  • the aforementioned non-reference data transmitted first in time may be TB2 shown in FIG. 2.
  • the second processing unit 104 may be configured to determine that there is no hidden node when the HARQ feedback value of the non-reference data transmitted last in time among the non-reference data transmitted in the COT is ACK; otherwise, It is determined that there are hidden nodes.
  • the above-mentioned non-reference data transmitted last in time may be TB7 shown in FIG. 2.
  • the second processing unit 104 may be configured to determine that there is no hidden node when there is at least one ACK in the HARQ feedback value of the non-reference data transmitted in the COT, otherwise it is determined that there is a hidden node.
  • the second processing unit 104 may be configured to adjust the CWS further based on the HARQ feedback value of the reference data, where the reference data is data transmitted within the reference duration in the COT among the transmission data.
  • the duration of transmission TB1 in the COT is an example of the reference duration
  • the data TB1 transmitted within the reference duration is an example of the reference data.
  • the second processing unit 104 may be configured to set the CWS to a predetermined CWS minimum value when the HARQ feedback value of the reference data is ACK.
  • the predetermined CWS minimum value is the minimum value CWmin in the value set of CWp in the access priority p, and the minimum value is predetermined.
  • CCA is used to indicate the clear channel assessment
  • the rectangular block filled with diagonal lines indicates that data is transmitted within the time indicated by the rectangular block. Since the clearance channel assessment is a well-known technique in the art, it will not be repeated here.
  • FIG. 4 shows a first example of time occupancy when the electronic device 100 and other devices perform data transmission according to an embodiment of the present disclosure.
  • the electronic device 100 can set CWS as the minimum value in the value set of CWp in the access priority p.
  • the second processing unit 104 may be configured to update the CWS when the HARQ feedback value of the reference data is NACK and it is determined that there is no hidden node. For example, when the HARQ feedback value of the reference data is NACK and the electronic device 100 determines that there is no hidden node, the electronic device 100 considers that the data interference is caused by conflict, and therefore updates the CWS.
  • FIG. 5 shows a second example of time occupancy when the electronic device 100 and other devices perform data transmission according to an embodiment of the present disclosure.
  • the electronic device 100 determines that there is no hidden node .
  • the electronic device 100 determines that there are no hidden nodes, and therefore considers that the data interference is caused by conflicts, and thus updates the current contention window size to the value set of CWp in the access priority p The value after the current competition window size.
  • the second processing unit 104 may be configured to adjust the CWS based on the number of times the CWS maintains a predetermined maximum value of CWS when the HARQ feedback value of the reference data is NACK and it is determined that there is a hidden node.
  • the predetermined maximum value of CWS is the maximum value CWmax in the value set of CWp in the access priority p, and the maximum value is predetermined.
  • the electronic device 100 distinguishes whether data interference is due to hidden nodes or conflicts based on the number of times that CWS maintains a predetermined maximum value of CWS.
  • FIG. 6 shows a third example of time occupancy when the electronic device 100 and other devices perform data transmission according to an embodiment of the present disclosure.
  • FIG. 7 shows a fourth example of time occupancy when the electronic device 100 and other devices perform data transmission according to an embodiment of the present disclosure.
  • the HARQ feedback value of the reference data transmitted by the electronic device 100 within the reference duration is NACK.
  • other devices Data is also transmitted during the non-reference duration of the electronic device 100. Therefore, the HARQ feedback value of each non-reference data transmitted by the electronic device 100 within the non-reference duration is NACK, so the electronic device 100 determines that there is a hidden node. For example, in the case where the HARQ feedback value of the reference data as shown in FIG. 6 and FIG.
  • the electronic device 100 distinguishes whether the data interference is due to the hidden node or the hidden node based on the number of times the CWS maintains the predetermined maximum value of CWS. Caused by conflict.
  • X denote the number of times that CWS maintains a predetermined maximum value of CWS, which can be used to accumulate the duration that CWS is maintained as CWmax.
  • the second processing unit 104 may be configured to update the CWS when the number X is less than or equal to the predetermined number of times the CWS maintains the maximum value of the CWS. When the maximum value reaches a predetermined number of times, the CWS is reset to the predetermined CWS minimum value.
  • the electronic device 100 determines that the data interference is caused by conflicts, and therefore updates the CWS; and when the number of times X is greater than the number of times threshold, it determines that the data interference is caused by hidden nodes , So keep CWS.
  • K denote the predetermined number of times.
  • the second processing unit 104 may be configured to select the predetermined number of times K for each channel access priority p.
  • the electronic device 100 selects K from the set of values ⁇ 1, 2,..., 8 ⁇ for each access priority p ⁇ 1,2,3,4 ⁇ .
  • the predetermined CWS minimum value is the minimum value CWmin in the value set of CWp in the access priority p, and the minimum value is predetermined.
  • the above-mentioned number threshold is obtained based on the square of the predetermined number K.
  • the frequency threshold may be a value obtained by rounding K 2 /10 down.
  • K 2 /10 down Those skilled in the art can also think of other ways to obtain the threshold value of the number of times based on the predetermined number of times, which will not be repeated here.
  • the electronic device 100 can calculate the number of times threshold as 4 (a value obtained by rounding down 7 2 /10). If the number of times X that the CWS remains CWmax is 3, since the number of times X is less than the number threshold of 4, the electronic device 100 determines that the data interference is caused by conflicts rather than hidden nodes, and thus updates the CWS, that is, changes the current competition window The size is updated to the value after the current contention window size in the value set of CWp in the access priority p. And if X is greater than the threshold of times, the current contention window size is maintained.
  • the second processing unit 104 may be configured to determine whether there is a hidden node based on the information about the channel between the electronic device and the user equipment (UE) received from the user equipment and the HARQ feedback value of the reference data, wherein, The reference data is the data transmitted within the first duration of the reference duration in the channel occupation time in the transmission data.
  • UE user equipment
  • the electronic device 100 can determine whether there is a hidden node to adjust the CWS based on the channel information, so that the influence of the hidden node on the adjustment of the CWS can be further reduced.
  • the information of the channel is received together with the HARQ feedback value or is received through the HARQ feedback value.
  • the UE measures the channel, and sends the measurement result together with the HARQ feedback value to the electronic device 100 or sends the HARQ feedback value to the electronic device 100.
  • the information of the channel may be an energy detection threshold.
  • Those skilled in the art can also think of other ways of representing channel information other than the energy detection threshold, which will not be repeated here.
  • the second processing unit 104 may be configured to determine that there is no hidden node and update the CWS when the energy detection threshold X thresh is less than or equal to the predetermined energy detection threshold and the HARQ feedback value of the reference data is NACK.
  • updating CWS refers to updating the current contention window size to a value after the current contention window size in the value set of CWp in the access priority p.
  • the second processing unit 104 may be configured to determine that there is a hidden node and maintain CWS when the energy detection threshold X thresh is greater than a predetermined energy detection threshold and the HARQ feedback value of the reference data is NACK.
  • maintaining CWS refers to maintaining the current contention window size.
  • X thresh,max denote the predetermined energy detection threshold.
  • the predetermined energy detection threshold X thresh,max is predetermined at the electronic device 100.
  • Non-Patent Document 1 For specific descriptions of the energy detection threshold X thresh table and the predetermined energy detection threshold X thresh,max , please refer to Non-Patent Document 1, which will not be repeated here.
  • the second processing unit 104 may be configured to transmit transmission data in units of code blocks, and the second processing unit 104 may be configured to obtain NACK among the first HARQ feedback values corresponding to the initial transmission of code blocks.
  • the first ratio of the ratio and the second ratio of the ratio of NACK in the second HARQ feedback value corresponding to the case of retransmission of the code block are based on the rate of change of the second ratio with respect to the first ratio. Determine whether there are hidden nodes.
  • Z denote the ratio of NACK in the HARQ feedback value.
  • NACK For 5G communication, for PDSCH with transmission block-based transmission, at least one HARQ feedback is "ACK”, or for PDSCH with code block-based transmission, at least 10% of HARQ-ACK feedback is "ACK”, then the base station is considered The data corresponding to the HARQ-ACK feedback is successfully transmitted.
  • the electronic device 100 can determine whether there is a hidden node to adjust the CWS based on the above-mentioned rate of change, so that the influence of the hidden node on the adjustment of the CWS can be further reduced.
  • Z1 denote the first ratio
  • Z2 denote the second ratio
  • M% the rate of change of the second ratio with respect to the first ratio
  • the second processing unit 104 may be configured to determine that there is a hidden node and maintain the CWS when the rate of change M% is less than or equal to the predetermined rate of change, otherwise determine that there is no hidden node and update the CWS.
  • maintaining CWS refers to maintaining the current contention window size
  • updating CWS refers to updating the current contention window size to a value after the current contention window size in the value set of CWp in the access priority p.
  • the predetermined rate of change may be 10%.
  • B denote other code blocks.
  • the HARQ feedback value of code block A may be the aforementioned first HARQ feedback value.
  • the HARQ feedback value of the code block A' can be the above-mentioned second HARQ feedback value, and the other code blocks are transmitted together with the retransmitted code block A'.
  • the HARQ feedback values of code blocks A′ and B may be the foregoing second HARQ feedback value.
  • the second processing unit 104 may be configured to not transmit the code block together with the retransmitted code block when the first HARQ feedback value and the second HARQ feedback value are within the same COT.
  • the HARQ feedback value corresponding to the case of other code blocks is used as the second HARQ feedback value.
  • the second processing unit 104 may use the HARQ feedback value of code block A'as the second HARQ feedback value when the first HARQ feedback value and the second HARQ feedback value are within the same COT.
  • the second processing unit 104 may be configured to transmit the code block together with the retransmitted code block when the first HARQ feedback value and the second HARQ feedback value are in the same COT.
  • the HARQ feedback value corresponding to the case of other code blocks is used as the second HARQ feedback value.
  • the second processing unit 104 may use the HARQ feedback values of code blocks A'and B as the above-mentioned second HARQ feedback value when the first HARQ feedback value and the second HARQ feedback value are in the same COT.
  • the second processing unit 104 may be configured to transmit other codes together with the retransmitted code block when the first HARQ feedback value and the second HARQ feedback value are not in the same COT.
  • the HARQ feedback value corresponding to the block condition is used as the second HARQ feedback value.
  • the second processing unit 104 may use the HARQ feedback values of code blocks A'and B as the above-mentioned second HARQ feedback value when the first HARQ feedback value and the second HARQ feedback value are not in the same COT.
  • the second processing unit 104 may be configured to determine CWS based on a block error rate (BLER).
  • BLER block error rate
  • the electronic device 100 can determine the CWS based only on the block error rate without the HARQ feedback value.
  • the second processing unit 104 may be configured to determine the CWS according to the correspondence between the predetermined block error rate and the value set of the CWS.
  • the CWS in the value set corresponding to the block error rate is greater.
  • the value set corresponding to the block error rate is characterized by the channel access priority, where the higher the block error rate, the lower the channel access priority.
  • CWS is randomly selected from the value set corresponding to the block error rate.
  • FIG. 8 is a diagram showing an example of the correspondence relationship between the block error rate and the value set of CWS according to an embodiment of the present disclosure.
  • A% denote BLER.
  • the link adaptation with A% is divided into four levels, and A% corresponds to four channel access priorities p (in category 4LBT, there are four priority access p).
  • p in category 4LBT, there are four priority access p.
  • For users with a smaller A% a higher channel access priority is selected, and the CWS in the value set of CWS is smaller.
  • For users with a larger A% a lower channel access priority is selected, and the CWS in the value set of CWS is larger.
  • the current contention window size q is randomly selected among 15, 31, and 63, and the backoff window N is selected in the interval [0,q-1], that is, the backoff window N It is generated by link-level adaptation with BLER A%.
  • FIG. 9 is a schematic flowchart showing that the electronic device 100 according to an embodiment of the present disclosure determines the CWS based on the block error rate.
  • Fig. 9 The difference between Fig. 9 and Fig. 3 is only the dashed box. Steps 1 to 10 in Fig. 9 are the same as steps 1 to 10 in Fig. 3. In FIG. 9, as shown by the dashed box on the left side of step 4, the current contention window size q is determined based on the block error rate to affect the value interval of N in step 4.
  • FIG. 10 shows a flowchart of a method S1000 for wireless communication according to an embodiment of the present disclosure.
  • the method S1000 starts from step S1002.
  • step S1004 the HARQ feedback value of the transmitted transmission data is acquired.
  • step S1006 based on the HARQ feedback value, the size of the contention window of the carrier sensing performed before the next data transmission is adjusted.
  • the method S1000 ends in step S1008.
  • the method S1000 can be executed on the base station side.
  • This method may be executed by the electronic device 100 described in the above embodiment, for specific details, please refer to the description of the corresponding position above, which will not be repeated here.
  • the technology of the disclosure can be applied to various products.
  • the electronic device 100 may be implemented as various base stations.
  • the base station can be implemented as any type of evolved Node B (eNB) or gNB (5G base station).
  • eNBs include, for example, macro eNBs and small eNBs.
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • a similar situation can also be used for gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • BTS base transceiver station
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) arranged in a different place from the main body.
  • a main body also referred to as a base station device
  • RRH remote radio heads
  • various types of user equipment can work as a base station by temporarily or semi-persistently performing base station functions.
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • FIG. 11 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 820 to transmit and receive wireless signals.
  • the eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 11 shows an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station device 820. For example, the controller 821 generates a data packet based on the data in the signal processed by the wireless communication interface 825, and transmits the generated packet via the network interface 823. The controller 821 may bundle data from multiple baseband processors to generate a bundled packet, and deliver the generated bundled packet. The controller 821 may have a logic function to perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or another eNB via the network interface 823.
  • the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface (such as an S1 interface and an X2 interface).
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 823 is a wireless communication interface, the network interface 823 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and an RF circuit 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • layers such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)
  • the BB processor 826 may have a part or all of the above-mentioned logical functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 826.
  • the module may be a card or a blade inserted into the slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810.
  • the wireless communication interface 825 may include a plurality of BB processors 826.
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827.
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 11 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the transceiver of the electronic device 100 described with reference to FIG. 1 may be implemented by a wireless communication interface 825. At least part of the functions may also be implemented by the controller 821. For example, the controller 821 may adjust the size of the contention window based on the acquired HARQ feedback value by executing the functions of the first processing unit 102 and the second processing unit 104 described above with reference to FIG. 1.
  • FIG. 12 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that similarly, the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 830 includes one or more antennas 840, base station equipment 850, and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 12 shows an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station equipment 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG. 11.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may generally include, for example, a BB processor 856.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 11 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include a plurality of BB processors 856.
  • multiple BB processors 856 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 12 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module used to connect the base station device 850 (wireless communication interface 855) to the communication in the above-mentioned high-speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may generally include, for example, an RF circuit 864.
  • the RF circuit 864 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 840.
  • the wireless communication interface 863 may include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 12 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the transceiver of the electronic device 100 described with reference to FIG. 1 may be implemented by a wireless communication interface 855. At least a part of the functions may also be implemented by the controller 851. For example, the controller 851 may adjust the size of the contention window based on the acquired HARQ feedback value by executing the functions of the first processing unit 102 and the second processing unit 104 described above with reference to FIG. 1.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a smart phone 900 to which the technology of the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the smart phone 900.
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the imaging device 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 907 may include a group of sensors, such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts the sound input to the smart phone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives operations or information input from the user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced), and performs wireless communication.
  • the wireless communication interface 912 may generally include, for example, a BB processor 913 and an RF circuit 914.
  • the BB processor 913 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 916.
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG. 13, the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914. Although FIG. 13 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • the wireless communication interface 912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • the smart phone 900 may include a plurality of antennas 916.
  • FIG. 13 shows an example in which the smart phone 900 includes a plurality of antennas 916, the smart phone 900 may also include a single antenna 916.
  • the smart phone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connect.
  • the battery 918 supplies power to each block of the smart phone 900 shown in FIG. 13 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode, for example.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, wireless
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or SoC, and controls the navigation function of the car navigation device 920 and other functions.
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 uses GPS signals received from GPS satellites to measure the position of the car navigation device 920 (such as latitude, longitude, and altitude).
  • the sensor 925 may include a group of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, an in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may generally include, for example, a BB processor 934 and an RF circuit 935.
  • the BB processor 934 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 937.
  • the wireless communication interface 933 may also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 14 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937.
  • FIG. 14 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 14 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the battery 938 accumulates electric power supplied from the vehicle.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 940 including one or more blocks in the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data (such as vehicle speed, engine speed, and failure information), and outputs the generated data to the in-vehicle network 941.
  • the present invention also proposes a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by a machine, the above-mentioned method according to the embodiment of the present invention can be executed.
  • Storage media include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and so on.
  • a computer with a dedicated hardware structure (such as the general-purpose computer 1500 shown in FIG. 15) is installed from a storage medium or a network to the program constituting the software, and the computer is installed with various programs. When, it can perform various functions and so on.
  • a central processing unit (CPU) 1501 performs various processes in accordance with a program stored in a read only memory (ROM) 1502 or a program loaded from a storage part 1508 to a random access memory (RAM) 1503.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1501 executes various processing and the like is also stored as needed.
  • the CPU 1501, ROM 1502, and RAM 1503 are connected to each other via a bus 1504.
  • the input/output interface 1505 is also connected to the bus 1504.
  • the following components are connected to the input/output interface 1505: input part 1506 (including keyboard, mouse, etc.), output part 1507 (including display, such as cathode ray tube (CRT), liquid crystal display (LCD), etc., and speakers, etc.), Storage part 1508 (including hard disk, etc.), communication part 1509 (including network interface card such as LAN card, modem, etc.).
  • the communication section 1509 performs communication processing via a network such as the Internet.
  • the driver 1510 can also be connected to the input/output interface 1505 according to needs.
  • Removable media 1511 such as magnetic disks, optical disks, magneto-optical disks, semiconductor memory, etc. are installed on the drive 1510 as needed, so that the computer programs read out therefrom are installed into the storage portion 1508 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 1511.
  • this storage medium is not limited to the removable medium 1511 shown in FIG. 15 in which the program is stored and distributed separately from the device to provide the program to the user.
  • removable media 1511 include magnetic disks (including floppy disks (registered trademarks)), optical disks (including compact disk read-only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including mini disks (MD) (registered Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 1502, a hard disk included in the storage portion 1508, etc., in which programs are stored and distributed to users together with the devices containing them.
  • each component or each step can be decomposed and/or recombined.
  • decomposition and/or recombination should be regarded as equivalent solutions of the present invention.
  • the steps of performing the above-mentioned series of processing can naturally be performed in chronological order in the order of description, but do not necessarily need to be performed in chronological order. Some steps can be performed in parallel or independently of each other.
  • This technology can also be implemented as follows.
  • An electronic device for wireless communication including:
  • the processing circuit is configured as:
  • the contention window size CWS of the carrier sense performed before the next data transmission is adjusted.
  • Supplement 2 The electronic device according to Supplement 1, wherein the processing circuit is configured to further adjust the CWS based on a judgment result obtained by judging whether there is a hidden node.
  • Appendix 3 The electronic device according to appendix 2, wherein the processing circuit is configured to determine whether or not based on the HARQ feedback value of at least a part of the non-reference data in the non-reference data transmitted within the channel occupation time COT The hidden node exists, wherein the data transmitted in each duration except the first duration as the reference duration in the COT is the non-reference data.
  • Appendix 4 The electronic device according to Appendix 3, wherein the processing circuit is configured to determine that the HARQ feedback value of each non-reference data transmitted in the COT is NACK. The hidden node, otherwise it is determined that the hidden node does not exist.
  • Supplement 5 The electronic device according to Supplement 3, wherein the processing circuit is configured to compare the number of HARQ feedback values with NACK among all HARQ feedback values of non-reference data transmitted in the COT. If the ratio between the total number of all HARQ feedback values is greater than or equal to a predetermined ratio threshold, it is determined that the hidden node exists, otherwise it is determined that the hidden node does not exist.
  • Appendix 6 The electronic device according to appendix 3, wherein the processing circuit is configured to the HARQ feedback value of the non-reference data transmitted first in time among the non-reference data transmitted in the COT In the case of ACK, it is determined that the hidden node does not exist, otherwise it is determined that the hidden node exists.
  • Supplement 7 The electronic device according to Supplement 3, wherein the processing circuit is configured as the HARQ feedback value of the non-reference data transmitted last in time among the non-reference data transmitted in the COT In the case of ACK, it is determined that the hidden node does not exist, otherwise it is determined that the hidden node exists.
  • Appendix 8 The electronic device according to Appendix 3, wherein the processing circuit is configured to determine that there is no ACK in the HARQ feedback value of the non-reference data transmitted in the COT. The hidden node, otherwise it is determined that the hidden node exists.
  • Supplement 9 The electronic device according to any one of Supplements 3 to 8, wherein the processing circuit is configured to adjust the CWS further based on the HARQ feedback value of reference data, wherein the reference data is Among the transmission data, data transmitted within the reference duration in the COT.
  • Supplement 10 The electronic device according to Supplement 9, wherein the processing circuit is configured to set the CWS to a predetermined minimum CWS when the HARQ feedback value of the reference data is ACK.
  • Supplement 11 The electronic device according to Supplement 9, wherein the processing circuit is configured to perform processing on the CWS when the HARQ feedback value of the reference data is NACK and it is determined that the hidden node does not exist. Update.
  • Appendix 12 The electronic device according to Appendix 9, wherein the processing circuit is configured to maintain a predetermined value based on the CWS when the HARQ feedback value of the reference data is NACK and the hidden node is determined to exist The maximum number of CWS is adjusted to the CWS.
  • Supplement 13 The electronic device according to Supplement 12, wherein the CWS is updated if the number of times is less than or equal to the threshold value of the number of times obtained based on the predetermined number of times the CWS maintains the maximum value of the CWS, otherwise Maintaining the CWS, wherein, when the CWS maintains the maximum value of the CWS for the predetermined number of times, the CWS is reset to a predetermined minimum value of the CWS.
  • Supplement 14 The electronic device according to Supplement 13, wherein the processing circuit is configured to select the predetermined number of times for each channel access priority.
  • Supplement 15 The electronic device according to Supplement 13 or 14, wherein the number threshold is obtained based on the square of the predetermined number.
  • Supplement 16 The electronic device according to Supplement 2, wherein the processing circuit is configured to perform HARQ based on information and reference data about the channel between the electronic device and the user equipment received from the user equipment The feedback value is used to determine whether there is the hidden node, wherein the reference data is the data transmitted within the first duration of the channel occupation time as the reference duration in the transmission data.
  • Supplement 17 The electronic device according to Supplement 16, wherein the information of the channel is received together with the HARQ feedback value or is received through the HARQ feedback value.
  • Supplement 18 The electronic device according to Supplement 16 or 17, wherein the channel information is an energy detection threshold.
  • Supplement 19 The electronic device according to Supplement 18, wherein the processing circuit is configured to, when the energy detection threshold is less than or equal to a predetermined energy detection threshold and the HARQ feedback value of the reference data is NACK, It is determined that the hidden node does not exist and the CWS is updated.
  • Supplement 20 The electronic device according to Supplement 19, wherein the processing circuit is configured to determine that when the energy detection threshold is greater than a predetermined energy detection threshold and the HARQ feedback value of the reference data is NACK The hidden node and keep the CWS.
  • the processing circuit is configured to transmit the transmission data in units of code blocks, and
  • the processing circuit is configured to obtain the first ratio as the ratio of NACK in the first HARQ feedback value corresponding to the case of initially transmitting the code block and the second ratio as the second ratio corresponding to the case of retransmitting the code block.
  • the second ratio of the ratio of NACK in the HARQ feedback value is determined, and whether the hidden node exists is determined based on the rate of change of the second ratio with respect to the first ratio.
  • Supplement 22 The electronic device according to Supplement 21, wherein the processing circuit is configured to determine that the hidden node exists and maintain the CWS when the rate of change is less than or equal to a predetermined rate of change, otherwise It is determined that the hidden node does not exist and the CWS is updated.
  • Supplement 23 The electronic device according to Supplement 21 or 22, wherein the processing circuit is configured to perform when the first HARQ feedback value and the second HARQ feedback value are within the same channel occupation time Next, when the code block is retransmitted, the HARQ feedback value corresponding to the case where other code blocks are not transmitted together with the retransmitted code block is used as the second HARQ feedback value.
  • Supplement 24 The electronic device according to Supplement 21 or 22, wherein the processing circuit is configured to perform when the first HARQ feedback value and the second HARQ feedback value are within the same channel occupation time Next, when the code block is retransmitted, the HARQ feedback value corresponding to the case where other code blocks are transmitted together with the retransmitted code block is used as the second HARQ feedback value.
  • Supplement 25 The electronic device according to Supplement 21 or 22, wherein the processing circuit is configured to perform when the first HARQ feedback value and the second HARQ feedback value are not within the same channel occupation time Next, when the code block is retransmitted, the HARQ feedback value corresponding to the case where other code blocks are transmitted together with the retransmitted code block is used as the second HARQ feedback value.
  • Supplement 26 The electronic device according to any one of Supplements 1 to 25, wherein the processing circuit is configured to transmit the transmission data on an unlicensed frequency band.
  • Attachment 27 An electronic device for wireless communication, including:
  • the processing circuit is configured as:
  • the contention window size CWS of the carrier sense before the next data transmission is determined.
  • Supplement 28 The electronic device according to Supplement 27, wherein the processing circuit is configured to determine the CWS according to a correspondence between a predetermined block error rate and a value set of CWS.
  • Supplement 29 The electronic device according to Supplement 28, wherein, in the correspondence relationship, as the block error rate increases, the CWS in the value set corresponding to the block error rate increases.
  • Supplement 30 The electronic device according to Supplement 29, wherein the value set corresponding to the block error rate is characterized by a channel access priority, wherein, as the block error rate is greater, the value set The channel access priority is lower.
  • Supplement 31 The electronic device according to any one of Supplements 28 to 29, wherein the CWS is randomly selected from the value set corresponding to the block error rate.
  • Appendix 32 A method for wireless communication, including:
  • the contention window size CWS of the carrier sense performed before the next data transmission is adjusted.
  • Supplement 33 A computer-readable storage medium having computer-executable instructions stored thereon. When the computer-executable instructions are executed, the method for wireless communication according to Supplement 32 is executed.

Abstract

本公开提供了一种用于无线通信的电子设备、方法和计算机可读存储介质,其中,用于无线通信的电子设备包括处理电路,处理电路被配置为:获取所传送的传输数据的混合自动重复请求(HARQ)反馈值;以及基于HARQ反馈值,调整在下一次数据传送前进行的载波监听的竞争窗大小(CWS)。

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2020年5月21日提交中国专利局、申请号为202010436147.0、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及无线通信技术领域,具体地涉及调整竞争窗大小。更具体地,涉及一种调整竞争窗大小的用于无线通信的电子设备和方法、以及计算机可读存储介质。
背景技术
为了满足巨大的业务量需求,5G通信系统预期可以工作在从低频段直到100G左右的高频段资源上,包括授权频段和非授权频段。其中,非授权频段主要考虑5GHz频段和60GHz频段。将工作在非授权频段的5G系统称为NR-U(基于NR(5G空口)的非授权频谱接入)。
ETSI(欧洲电信标准化协会)于2014年提议在60GHz LBT(先听后说)中使用类别3CWS(竞争窗大小)调整,但2016年在802.11中的EDCA(增强型分布式信道访问)使用八个不同的用户优先级来提供四个不同的访问优先级(如类别4LBT)来在60GHz传输流量。另外,在非专利文献1中定义了NR-U信道访问机制。与ETSI相比,60GHz中wifi的信道访问略有扩展,而未指定60GHz NR-U中的CWS调整。因此,为了将来与wifi公平共存,需要进一步考虑NR-U的CWS调整。
引用列表
非专利文献1:3GPP TS 37.213(V16.0.0),2019.12
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某 些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本公开的一个方面,提供了一种用于无线通信的电子设备,其包括处理电路,处理电路被配置为获取所传送的传输数据的混合自动重复请求(HARQ)反馈值;以及基于HARQ反馈值,调整在下一次数据传送前进行的载波监听的竞争窗大小。
根据本公开的另一个方面,提供了一种用于无线通信的方法,该方法包括:获取所传送的传输数据的HARQ反馈值;以及基于HARQ反馈值,调整在下一次数据传送前进行的载波监听的竞争窗大小CWS。
依据本发明的其它方面,还提供了用于实现上述用于无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1示出了根据本公开的一个实施例的用于无线通信的电子设备的功能模块框图。
图2是示出信道占用时间的示例的图。
图3是示出根据本公开实施例的电子设备基于非参考数据的HARQ反馈值来判断是否存在隐藏节点以调整CWS的示意流程图。
图4示出了根据本公开实施例的电子设备和其他设备进行数据传送时的时间占用的第一示例。
图5示出了根据本公开实施例的电子设备和其他设备进行数据传送时的时间占用的第二示例。
图6示出了根据本公开实施例的电子设备和其他设备进行数据传送时的时间占用的第三示例。
图7示出了根据本公开实施例的电子设备和其他设备进行数据传送时的时间占用的第四示例。
图8是示出根据本公开实施例的误块率与竞争窗大小的取值集合之间的对应关系的示例的图。
图9是示出根据本公开实施例的电子设备基于误块率来确定CWS的示意流程图。
图10示出了根据本公开的一个实施例的用于无线通信的方法的流程图。
图11是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。
图12是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。
图13是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图。
图14是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图。
图15是示出作为本公开实施例中可采用的个人计算机的示例结构的框图。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅 是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与根据本公开的方案密切相关的设备结构和/或处理步骤,而省略了与本公开关系不大的其它细节。
下面结合附图详细说明根据本公开的实施例。
图1示出了根据本公开的实施例的用于无线通信的电子设备100的功能模块框图,如图1所示,电子设备100包括:第一处理单元102,其可以被配置为获取所传送的传输数据的混合自动重复请求(HARQ)反馈值;以及第二处理单元104,其可以被配置为基于HARQ反馈值,调整在下一次数据传送前进行的载波监听的竞争窗大小(CWS)。
其中,第一处理单元102和第二处理单元104可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。
电子设备100例如可以设置在基站侧或者可通信地连接到基站。这里,还应指出,电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备100可以工作为基站本身,并且还可以包括诸如存储器、收发器(未示出)等外部设备。存储器可以用于存储基站实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,用户设备、其他基站等等)间的通信,这里不具体限制收发器的实现形式。
例如,传输数据可仅包括一个数据组以及电子设备100可以在一个信道占用时间(COT)内仅传送该一个数据组,在这种情况下,获取所传送的传输数据的HARQ反馈值指的是电子设备100获取在当前COT内传送的一个数据组的HARQ反馈值,电子设备100所进行的下一次数据传送指的是在下一个COT内所进行的数据组的传送。例如,传输数据可以包括多个数据组以及电子设备100可以在一个COT内传送上述多个数据组,在这种情况下,获取所传送的传输数据的HARQ反馈值可以指的是电子设备100获取在当前COT内传送的第一个数据组的HARQ反馈值,电子设备100所进行的下一次数据传送指的是在当前COT内传送上述多个数据组中的除了第一个数据组之外的其他数据组。
在下文中,有时将HARQ反馈值称为HARQ-ACK,其中,ACK是肯定应答的缩写。
根据本公开实施例的电子设备100能够基于所获取的HARQ反馈值调整竞争窗大小。
作为示例,第一处理单元102可以被配置为在非授权频段上传送传输数据。非授权频段主要考虑5GHz频段和60GHz频段。在下文中,如没有特殊说明,以60GHz频段为例来描述非授权频段。本领域技术人员可以理解,针对60GHz频段的描述也适合于5GHz频段。
作为示例,第二处理单元104可以被配置为还基于通过判断是否存在隐藏节点所获得的判断结果来调整CWS。
隐藏节点也可以称为隐藏终端或隐藏端,隐藏节点是指在无线网络中,在接收节点的覆盖范围内而在发送节点的覆盖范围外的节点。隐藏节点由于不知道发送节点的发送而可能向相同的接收节点发送数据分组,导致数据分组在接收节点处碰撞。碰撞后发送节点要重传碰撞的分组,这降低了信道的利用率。
数据干扰(数据碰撞)可能是由于多个设备同时占用信道的冲突而导致的,如果信道未同时分配给多个设备但仍然存在干扰,则干扰可能是由于存在隐藏节点而导致的。
在60GHz频段,由于隐藏节点的存在,HARQ-ACK反馈对类别4LBT中的CWS调整影响较大。例如,在60GHz频段,隐藏节点问题非常严重,导致用户设备端解码错误并持续反馈NACK(否定应答),从而使基站端的CWS总是增加。如果CWS很大,则不利于60GHz的NR-U信道访问。
根据本公开实施例的电子设备100能够根据是否存在隐藏节点的判断结果来调整CWS,从而能够降低隐藏节点对CWS调整的影响。
作为示例,第二处理单元104可以被配置为基于在COT内传送的非参考数据中的至少一部分非参考数据的HARQ反馈值,来判断是否存在隐藏节点,其中,在COT中的除了作为参考持续时间的第一个持续时间之外的每个持续时间内传送的数据为非参考数据。
假设信道占用包括单播物理下行共享信道(PDSCH),则包含在单个单播PDSCH的信道占用中的基站(例如,gNB)的第一个持续时间是参考持续时间。
图2是示出信道占用时间的示例的图。如图2所示,COT中的第一个 持续时间为参考持续时间,除了参考持续时间之外的持续时间内称为非参考持续时间,在下文中,将在持续时间内传送的数据称为参考数据,将在非持续时间内传送的数据称为非参考数据。例示而非限制,图2所示的COT中包含6个非参考持续时间,本领域技术人员可以知道,可以根据经验或实际情况来选择非持续时间的数量。
电子设备100可以以传输块或码块为单位来传送数据。在图2中,为了简便,假设以传输块为单位来传送数据。如图2所示,在参考持续时间传送参考数据TB1,在非参考持续时间分别传送非参考数据TB2-TB7。
在现有技术中,尽管电子设备也获取了非参考数据的HARQ反馈值,但是电子设备并不考虑非参考数据的HARQ反馈值来判断是否存在隐藏节点从而调整CWS。然而,根据本公开实施例的电子设备100能够基于非参考数据的HARQ反馈值来判断是否存在隐藏节点以调整CWS,从而能进一步降低隐藏节点对CWS调整的影响,另外相对于现有技术不会产生额外的信令负担。
图3是示出根据本公开实施例的电子设备100基于非参考数据的HARQ反馈值来判断是否存在隐藏节点以调整CWS的示意流程图。
如图3所示,在步骤1中,在没有数据传输时为空闲状态。在步骤2中,判断是否要传送数据,即进行数据检测。在步骤2中判断为“否”时,返回步骤1。在步骤2中判断为“是”时,进行到步骤3。在步骤3中,检测延迟持续时间(defer duration)是否为空闲。在步骤3中判断为“是”时,进行到步骤4。不同访问优先级(或接入优先级)的CWS大小不同(即CWS的取值集合不同),可以用CWp表示信道访问优先级p(例如,p∈{1,2,3,4})的竞争窗大小,每一访问优先级p中CWp的取值集合中的数量和大小不同,假设访问优先级p的CWp的取值集合中的当前竞争窗大小为q,在步骤4中,在[0,q-1]区间生成随机退避计数器的计数值N(也可称为退避窗口大小);如步骤4左侧的虚线方框所示,通过基于非参考数据的HARQ反馈值判断是否存在隐藏节点以用于调整当前竞争窗大小q(例如,保持CWp的取值集合中的当前竞争窗大小q,或者将当前竞争窗大小q更新为CWp的取值集合中在当前竞争窗大小之后的值)来影响步骤4中的N的取值区间。在步骤5中,检测Decca(Decca为检测时隙大小)的时间内信道是否空闲,在步骤6中,判断N是否为0。在步骤6中判断为“否”时,在步骤7中,对信道进行eCCA(扩展净空信道评估)时隙大小的检测,在 步骤8中,如果检测到信道繁忙则重新返回到步骤5进行Decca的检测,如果检测到信道不繁忙则使N=N-1,直到N减到0才进行数据传输。在步骤6中判断为“是”时,进行到步骤9。在步骤9中,判断是否传送数据。在步骤9中判断为“否”时,返回到步骤1。在步骤9中判断为“是”时,进行到步骤10。在步骤10中,判断是否传送下一数据。在步骤10中判断为“否”时,返回到步骤1。在步骤10中判断为“是”时,进行到步骤4。
在下文中,为了简便,有时用CWS表示信道访问优先级p中的CWp,保持CWS指的是保持当前竞争窗大小。更新CWS指的是将当前竞争窗大小更新为访问优先级p中的CWp的取值集合中在当前竞争窗大小之后的值,例如,如果访问优先级p中的CWp的取值集合为{15,31,63}并且当前竞争窗大小为31,则更新CWS指的是将当前竞争窗大小更新为63。在下文中,有时将信道访问优先级p简称为访问优先级p。
作为示例,第二处理单元104可以被配置为在COT内传送的每个非参考数据的HARQ反馈值均为NACK的情况下,判断存在隐藏节点,否则判断不存在隐藏节点。在严重干扰的情况下,所有非参考持续时间的ACK/NACK反馈均为NACK。因此,在COT内传送的每个非参考数据的HARQ反馈值均为NACK的情况是严重干扰的情况。
作为示例,第二处理单元104可以被配置为在COT内传送的非参考数据的所有HARQ反馈值当中值为NACK的HARQ反馈值的数量与所有HARQ反馈值的总数量之间的比率大于等于预定比率阈值的情况下,判断存在隐藏节点,否则判断不存在隐藏节点。例如,本领域技术人员可以根据经验或应用场景预先设置预定比率阈值。
作为示例,第二处理单元104可以被配置为在COT内传送的非参考数据当中的在时间上最先被传送的非参考数据的HARQ反馈值为ACK的情况下,判断不存在隐藏节点,否则判断存在隐藏节点。例如,上述在时间上最先被传送的非参考数据可以是图2中所示的TB2。
作为示例,第二处理单元104可以被配置为在COT内传送的非参考数据当中的、在时间上最后被传送的非参考数据的HARQ反馈值为ACK的情况下,判断不存在隐藏节点,否则判断存在隐藏节点。例如,上述在时间上最后被传送的非参考数据可以是图2中所示的TB7。
作为示例,第二处理单元104可以被配置为在COT内传送的非参考数 据的HARQ反馈值中存在至少一个ACK的情况下,判断不存在隐藏节点,否则判断存在隐藏节点。
作为示例,第二处理单元104可以被配置为还基于参考数据的HARQ反馈值来调整CWS,其中,参考数据是传输数据当中的、在COT中的参考持续时间内传送的数据。
例如,如图2所示,COT中的传送TB1的持续时间是参考持续时间的示例,以及在参考持续时间内传送的数据TB1是参考数据的示例。
作为示例,第二处理单元104可以被配置为在参考数据的HARQ反馈值为ACK的情况下,将CWS设置为预定的CWS最小值。
例如,预定的CWS最小值是访问优先级p中的CWp的取值集合中的最小值CWmin,该最小值是被预先确定的。
在下面的图4至图7中,用CCA表示净空信道评估,以及用斜线填充的矩形块表示在该矩形块表示的时间内传送数据。由于净空信道评估属于本领域公知的技术,这里不再累述。
图4示出了根据本公开实施例的电子设备100和其他设备进行数据传送时的时间占用的第一示例。
如图4所示,其他设备在电子设备100的参考持续时间内仅进行CCA而没有传送数据,因此,电子设备100在参考持续时间内所传送的参考数据的HARQ反馈值为ACK,则电子设备100可以将CWS设置为访问优先级p中的CWp的取值集合中的最小值。
作为示例,第二处理单元104可以被配置为在参考数据的HARQ反馈值为NACK以及判断不存在隐藏节点的情况下,对CWS进行更新。例如,电子设备100在参考数据的HARQ反馈值为NACK以及判断不存在隐藏节点的情况下,认为数据干扰是由于冲突导致的,因此对CWS进行更新。
图5示出了根据本公开实施例的电子设备100和其他设备进行数据传送时的时间占用的第二示例。
如图5所示,其他设备在电子设备100的参考持续时间内也传送数据,因此,电子设备100在参考持续时间内所传送的参考数据的HARQ反馈值为NACK。其他设备在电子设备100的非参考持续时间内没有传送数据,因此电子设备100在非参考持续时间内传送的每个非参考数据的HARQ反 馈值均为ACK,因此电子设备100判断不存在隐藏节点。在图5所示的情况下,电子设备100判断不存在隐藏节点,因此认为数据干扰是由于冲突而导致的,从而将当前竞争窗大小更新为访问优先级p中的CWp的取值集合中的在当前竞争窗大小之后的值。
作为示例,第二处理单元104可以被配置为在参考数据的HARQ反馈值为NACK以及判断存在隐藏节点的情况下,基于CWS保持预定的CWS最大值的次数,对CWS进行调整。
例如,预定的CWS最大值是访问优先级p中的CWp的取值集合中的最大值CWmax,该最大值是被预先确定的。
在参考数据的HARQ反馈值为NACK以及判断存在隐藏节点的情况下,需要进一步区分数据干扰是由于隐藏节点还是由于冲突导致的。根据本公开实施例的电子设备100基于CWS保持预定的CWS最大值的次数来区分数据干扰是由于隐藏节点还是由于冲突导致的。
图6示出了根据本公开实施例的电子设备100和其他设备进行数据传送时的时间占用的第三示例。
图7示出了根据本公开实施例的电子设备100和其他设备进行数据传送时的时间占用的第四示例。
如图6和图7所示,其他设备在电子设备100的参考持续时间内也传送数据,因此,电子设备100在参考持续时间内所传送的参考数据的HARQ反馈值为NACK,另外,其他设备在电子设备100的非参考持续时间内也传送数据,因此电子设备100在非参考持续时间内传送的每个非参考数据的HARQ反馈值均为NACK,因此电子设备100判断存在隐藏节点。在例如如图6和图7所示的参考数据的HARQ反馈值为NACK以及判断存在隐藏节点的情况下,电子设备100基于CWS保持预定的CWS最大值的次数来区分数据干扰是由于隐藏节点还是由于冲突导致的。
令X表示CWS保持预定的CWS最大值的次数,其可以用于累积CWS保持为CWmax的持续时间。
作为示例,第二处理单元104可以被配置为在次数X小于等于基于CWS保持CWS最大值的预定次数而得到的次数阈值的情况下,对CWS进行更新,否则保持CWS,其中,在CWS保持CWS最大值达到预定次数时, CWS被重置为预定的CWS最小值。
例如,电子设备100在次数X小于等于次数阈值的情况下,判断数据干扰是由于冲突导致的,因此对CWS进行更新;而在次数X大于次数阈值的情况下,判断数据干扰是由于隐藏节点导致的,因此保持CWS。
令K表示预定次数,作为示例,第二处理单元104可以被配置为针对每个信道访问优先级p而选择预定次数K。例如,电子设备100为每个访问优先级p∈{1,2,3,4}从值{1、2,…,8}的集合中选择K。如上所述,例如,预定的CWS最小值是访问优先级p中的CWp的取值集合中的最小值CWmin,该最小值是被预先确定的。在CWS保持CWmax达到预定次数K时,CWS被重置为CWmin。
其中,上述次数阈值是基于预定次数K的平方而得到的。
例如,次数阈值可以为将K 2/10向下取整后的值。本领域技术人员还可以想到基于预定次数而得到次数阈值的其他方式,这里不再累述。
假设与冲突相比,隐藏节点问题的存在时间要长于冲突,这将导致隐藏节点的X的增加速度更快。
例如,电子设备100使K为7,则可以计算上述次数阈值为4(将7 2/10向下取整后的值)。如果CWS保持为CWmax的次数X为3,由于该次数X小于次数阈值4,则电子设备100确定发生数据干扰的原因是冲突而不是隐藏节点,由此对CWS进行更新,即,将当前竞争窗大小更新为访问优先级p中的CWp的取值集合中的在当前竞争窗大小之后的值。而如果X大于次数阈值,则保持当前竞争窗大小。
作为示例,第二处理单元104可以被配置为基于从用户设备接收的关于电子设备与用户设备(UE)之间的信道的信息和参考数据的HARQ反馈值,来判断是否存在隐藏节点,其中,参考数据是传输数据中的、在信道占用时间中的作为参考持续时间的第一个持续时间内传送的数据。
根据本公开实施例的电子设备100能够基于信道信息来判断是否存在隐藏节点以调整CWS,从而能进一步降低隐藏节点对CWS调整的影响。
作为示例,信道的信息与HARQ反馈值一起被接收或者通过HARQ反馈值被接收。
例如,UE测量信道,并将测量结果与HARQ反馈值一起发送给电子 设备100或者通过HARQ反馈值发送给电子设备100。
作为示例,信道的信息可以是能量检测阈值。令X thresh表示能量检测阈值。本领域技术人员还可以想到除了能量检测阈值之外的、信道的信息的其他表示方式,这里不再累述。
作为示例,第二处理单元104可以被配置为在能量检测阈值X thresh小于等于预定能量检测阈值并且参考数据的HARQ反馈值为NACK的情况下,判断不存在隐藏节点并且更新CWS。例如,更新CWS指的是将当前竞争窗大小更新为访问优先级p中的CWp的取值集合中的在当前竞争窗大小之后的值。
作为示例,第二处理单元104可以被配置为在能量检测阈值X thresh大于预定能量检测阈值并且参考数据的HARQ反馈值为NACK的情况下,判断存在隐藏节点并且保持CWS。例如,保持CWS指的是保持当前竞争窗大小。
令X thresh,max表示预定能量检测阈值。例如,在电子设备100处预先确定预定能量检测阈值X thresh,max
有关能量检测阈值X thresh表和预定能量检测阈值X thresh,max的具体描述,请参见非专利文献1,在此不再累述。
作为示例,第二处理单元104可以被配置为以码块为单位传送传输数据,以及第二处理单元104可以被配置为获取作为与初始传送码块的情况相对应的第一HARQ反馈值当中NACK所占的比率的第一比率以及作为与重传码块的情况相对应的第二HARQ反馈值中NACK所占的比率的第二比率,并且基于第二比率相对于第一比率的变化率来判断是否存在隐藏节点。
例如,令Z表示HARQ反馈值当中NACK所占的比率。
在非专利文献1中,对于4G通信,HARQ-ACK反馈中有Z=80%以上为“NACK”,则认为基站所进行的与该HARQ-ACK反馈所对应的数据的传送失败。对于5G通信,对于具有基于传输块的传输的PDSCH,至少一个HARQ反馈是“ACK”,或者对于具有基于码块的传输的PDSCH,至少10%的HARQ-ACK反馈是“ACK”,则认为基站所进行的与该HARQ-ACK反馈所对应的数据的传送成功。
根据本公开实施例的电子设备100能够基于上述变化率来判断是否存在隐藏节点以调整CWS,从而能进一步降低隐藏节点对CWS调整的影响。
例如,令Z1表示第一比率,Z2表示第二比率,以及用M%表示第二比率相对于第一比率的变化率。
作为示例,第二处理单元104可以被配置为在变化率M%小于等于预定变化率的情况下,判断存在隐藏节点并且保持CWS,否则判断不存在隐藏节点并且更新CWS。例如,保持CWS指的是保持当前竞争窗大小,更新CWS指的是将当前竞争窗大小更新为访问优先级p中的CWp的取值集合中的在当前竞争窗大小之后的值。
例如,本领域技术人员可以根据经验或实际应用场景确定预定变化率。例如,预定变化率可以为10%。
令A表示初始传送的码块以及令A’表示所重传的码块,其中,A和A’中包含相同的数据。在对码块A进行重传时,可以不与所重传的码块A’一起传送其他码块,或者可以与所重传的码块A’一起传送其他码块。令B表示其他码块。码块A的HARQ反馈值可以是上述第一HARQ反馈值。在不与所重传的码块A’一起传送其他码块的情况下,码块A’的HARQ反馈值可以是上述第二HARQ反馈值,在与所重传的码块A’一起传送其他码块B的情况下,码块A’和B的HARQ反馈值可以是上述第二HARQ反馈值。
作为示例,第二处理单元104可以被配置为在第一HARQ反馈值和第二HARQ反馈值在相同的COT内的情况下,将在重传码块时不与所重传的码块一起传送其他码块的情况对应的HARQ反馈值作为第二HARQ反馈值。例如,第二处理单元104可以在第一HARQ反馈值和第二HARQ反馈值在相同的COT内的情况下,将码块A’的HARQ反馈值作为上述第二HARQ反馈值。
作为示例,第二处理单元104可以被配置为在第一HARQ反馈值和第二HARQ反馈值在相同的COT的情况下,将在重传所述码块时与所重传的码块一起传送其他码块的情况对应的HARQ反馈值作为第二HARQ反馈值。例如,第二处理单元104可以在第一HARQ反馈值和第二HARQ反馈值在相同的COT的情况下,将码块A’和B的HARQ反馈值作为上述第二HARQ反馈值。
作为示例,第二处理单元104可以被配置为在第一HARQ反馈值和第二HARQ反馈值不在相同的COT的情况下,将在重传码块时与所重传的码块一起传送其他码块的情况对应的HARQ反馈值作为第二HARQ反馈值。例如,第二处理单元104可以在第一HARQ反馈值和第二HARQ反馈值不在相同的COT的情况下,将码块A’和B的HARQ反馈值作为上述第二HARQ反馈值。
作为示例,第二处理单元104可以被配置为基于误块率(BLER)来确定CWS。
根据本公开实施例的电子设备100能够仅基于误块率而无需HARQ反馈值来确定CWS。
作为示例,第二处理单元104可以被配置为根据预先确定的误块率与CWS的取值集合之间的对应关系来确定CWS。
作为示例,在上述对应关系中,随着误块率越大,与误块率对应的取值集合中的CWS越大。
作为示例,与误块率对应的取值集合通过信道访问优先级来表征,其中,随着误块率越大,信道访问优先级越低。
作为示例,CWS是从与误块率对应的取值集合内随机选择的。
图8是示出根据本公开实施例的误块率与CWS的取值集合之间的对应关系的示例的图。
在图中,令A%表示BLER。如图8所示,将具有A%的链路自适应分为四个级别,A%对应于四个信道访问优先级p(在类别4LBT中,有四个优先级访问p)。对于A%较小的用户,选择较高的信道访问优先级,CWS的取值集合中的CWS较小。相反,对于A%较大的用户,则选择较低的信道访问优先级,CWS的取值集合中的CWS较大。例如,如果A%为75%,信道访问优先级为3,在15、31和63中随机选择当前竞争窗大小q,并在[0,q-1]区间选择退避窗口N,即退避窗口N是由具有BLER A%的链路级自适应生成的。
图9是示出根据本公开实施例的电子设备100基于误块率来确定CWS的示意流程图。
图9与图3的区别仅在于虚线方框,图9中的步骤1至步骤10与图3中的 步骤1至步骤10相同。在图9中,如步骤4左侧的虚线方框所示,通过基于误块率来确定当前竞争窗大小q从而影响步骤4中的N的取值区间。
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图10示出了根据本公开的一个实施例的用于无线通信的方法S1000的流程图。方法S1000从步骤S1002开始。在步骤S1004中,获取所传送的传输数据的HARQ反馈值。在步骤S1006中,基于HARQ反馈值,调整在下一次数据传送前进行的载波监听的竞争窗大小。方法S1000在步骤S1008结束。该方法S1000可以在基站侧执行。
该方法例如可以通过上述实施例中所描述的电子设备100来执行,其具体细节可参见以上相应位置的描述,在此不再重复。
公开内容的技术能够应用于各种产品。
例如,电子设备100可以被实现为各种基站。基站可以被实现为任何类型的演进型节点B(eNB)或gNB(5G基站)。eNB例如包括宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。对于gNB也可以由类似的情形。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机 (PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图11是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图11所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图11示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。 控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图11所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图11所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图11示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图11所示的eNB 800中,参照图1描述的电子设备100的收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行上述参照图1描述的第一处理单元102和第二处理单元104的功能来基于所获取的HARQ反馈值而调整竞争窗大小。
(第二应用示例)
图12是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图12所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图12示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图11描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图11描述的BB处理器826相同。如图12所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图12示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图12所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图12示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图12所示的eNB 830中,参照图1描述的电子设备100的收发器可以由无线通信接口855实现。功能的至少一部分也可以由控制器851实现。例如,控制器851可以通过执行上述参照图1描述的第一处理单元102和第二处理单元104的功能来基于所获取的HARQ反馈值而调整竞争窗大小。
[关于用户设备的应用示例]
(第一应用示例)
图13是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感 器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图13所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图13示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图13所示,智能电话900可以包括多个天线916。虽然图13示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口 904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图13所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
(第二应用示例)
图14是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF 电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图14所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图14示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图14所示,汽车导航设备920可以包括多个天线937。虽然图14示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图14所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者 计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图15所示的通用计算机1500)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图15中,中央处理单元(CPU)1501根据只读存储器(ROM)1502中存储的程序或从存储部分1508加载到随机存取存储器(RAM)1503的程序执行各种处理。在RAM 1503中,也根据需要存储当CPU 1501执行各种处理等等时所需的数据。CPU 1501、ROM 1502和RAM 1503经由总线1504彼此连接。输入/输出接口1505也连接到总线1504。
下述部件连接到输入/输出接口1505:输入部分1506(包括键盘、鼠标等等)、输出部分1507(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1508(包括硬盘等)、通信部分1509(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1509经由网络比如因特网执行通信处理。根据需要,驱动器1510也可连接到输入/输出接口1505。可移除介质1511比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1510上,使得从中读出的计算机程序根据需要被安装到存储部分1508中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质1511安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图15所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1511。可移除介质1511的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包 含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1502、存储部分1508中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。
本技术还可以如下实现。
附记1.一种用于无线通信的电子设备,包括:
处理电路,被配置为:
获取所传送的传输数据的混合自动重复请求HARQ反馈值;以及
基于所述HARQ反馈值,调整在下一次数据传送前进行的载波监听的竞争窗大小CWS。
附记2.根据附记1所述的电子设备,其中,所述处理电路被配置为还基于通过判断是否存在隐藏节点所获得的判断结果来调整所述CWS。
附记3.根据附记2所述的电子设备,其中,所述处理电路被配置为基于在信道占用时间COT内传送的非参考数据中的至少一部分非参考数据的HARQ反馈值,来判断是否存在所述隐藏节点,其中,在所述COT 中的除了作为参考持续时间的第一个持续时间之外的每个持续时间内传送的数据为所述非参考数据。
附记4.根据附记3所述的电子设备,其中,所述处理电路被配置为在所述COT内传送的每个非参考数据的HARQ反馈值均为NACK的情况下,判断存在所述隐藏节点,否则判断不存在所述隐藏节点。
附记5.根据附记3所述的电子设备,其中,所述处理电路被配置为在所述COT内传送的非参考数据的所有HARQ反馈值当中值为NACK的HARQ反馈值的数量与所述所有HARQ反馈值的总数量之间的比率大于等于预定比率阈值的情况下,判断存在所述隐藏节点,否则判断不存在所述隐藏节点。
附记6.根据附记3所述的电子设备,其中,所述处理电路被配置为在所述COT内传送的非参考数据当中的在时间上最先被传送的非参考数据的HARQ反馈值为ACK的情况下,判断不存在所述隐藏节点,否则判断存在所述隐藏节点。
附记7.根据附记3所述的电子设备,其中,所述处理电路被配置为在所述COT内传送的非参考数据当中的、在时间上最后被传送的非参考数据的HARQ反馈值为ACK的情况下,判断不存在所述隐藏节点,否则判断存在所述隐藏节点。
附记8.根据附记3所述的电子设备,其中,所述处理电路被配置为在所述COT内传送的非参考数据的HARQ反馈值中存在至少一个ACK的情况下,判断不存在所述隐藏节点,否则判断存在所述隐藏节点。
附记9.根据附记3至8中任一项所述的电子设备,其中,所述处理电路被配置为还基于参考数据的HARQ反馈值来调整所述CWS,其中,所述参考数据是所述传输数据当中的、在所述COT中的所述参考持续时间内传送的数据。
附记10.根据附记9所述的电子设备,其中,所述处理电路被配置为在所述参考数据的HARQ反馈值为ACK的情况下,将所述CWS设置为预定的CWS最小值。
附记11.根据附记9所述的电子设备,其中,所述处理电路被配置为在所述参考数据的HARQ反馈值为NACK以及判断不存在所述隐藏节 点的情况下,对所述CWS进行更新。
附记12.根据附记9所述的电子设备,其中,所述处理电路被配置为在所述参考数据的HARQ反馈值为NACK以及判断存在所述隐藏节点的情况下,基于CWS保持预定的CWS最大值的次数,对所述CWS进行调整。
附记13.根据附记12所述的电子设备,其中,在所述次数小于等于基于CWS保持所述CWS最大值的预定次数而得到的次数阈值的情况下,对所述CWS进行更新,否则保持所述CWS,其中,在CWS保持所述CWS最大值达到所述预定次数时,所述CWS被重置为预定的CWS最小值。
附记14.根据附记13所述的电子设备,其中,所述处理电路被配置为针对每个信道访问优先级而选择所述预定次数。
附记15.根据附记13或14所述的电子设备,其中,所述次数阈值是基于所述预定次数的平方而得到的。
附记16.根据附记2所述的电子设备,其中,所述处理电路被配置为基于从用户设备接收的关于所述电子设备与所述用户设备之间的信道的信息和参考数据的HARQ反馈值,来判断是否存在所述隐藏节点,其中,所述参考数据是所述传输数据中的、在信道占用时间中的作为参考持续时间的第一个持续时间内传送的数据。
附记17.根据附记16所述的电子设备,其中,所述信道的信息与HARQ反馈值一起被接收或者通过所述HARQ反馈值被接收。
附记18.根据附记16或17所述的电子设备,其中,所述信道的信息是能量检测阈值。
附记19.根据附记18所述的电子设备,其中,所述处理电路被配置为在所述能量检测阈值小于等于预定能量检测阈值并且所述参考数据的HARQ反馈值为NACK的情况下,判断不存在所述隐藏节点并且更新所述CWS。
附记20.根据附记19所述的电子设备,其中,所述处理电路被配置为所述能量检测阈值大于预定能量检测阈值并且所述参考数据的HARQ反馈值为NACK的情况下,判断存在所述隐藏节点并且保持所述CWS。
附记21.根据附记2所述的电子设备,其中,
所述处理电路被配置为以码块为单位传送所述传输数据,以及
所述处理电路被配置为获取作为与初始传送码块的情况相对应的第一HARQ反馈值当中NACK所占的比率的第一比率以及作为与重传所述码块的情况相对应的第二HARQ反馈值中NACK所占的比率的第二比率,并且基于所述第二比率相对于所述第一比率的变化率来判断是否存在所述隐藏节点。
附记22.根据附记21所述的电子设备,其中,所述处理电路被配置为在所述变化率小于等于预定变化率的情况下,判断存在所述隐藏节点并且保持所述CWS,否则判断不存在所述隐藏节点并且更新所述CWS。
附记23.根据附记21或22所述的电子设备,其中,所述处理电路被配置为在所述第一HARQ反馈值和所述第二HARQ反馈值在相同的信道占用时间内的情况下,将在重传所述码块时不与所重传的码块一起传送其他码块的情况对应的HARQ反馈值作为所述第二HARQ反馈值。
附记24.根据附记21或22所述的电子设备,其中,所述处理电路被配置为在所述第一HARQ反馈值和所述第二HARQ反馈值在相同的信道占用时间内的情况下,将在重传所述码块时与所重传的码块一起传送其他码块的情况对应的HARQ反馈值作为所述第二HARQ反馈值。
附记25.根据附记21或22所述的电子设备,其中,所述处理电路被配置为在所述第一HARQ反馈值和所述第二HARQ反馈值不在相同的信道占用时间内的情况下,将在重传所述码块时与所重传的码块一起传送其他码块的情况对应的HARQ反馈值作为所述第二HARQ反馈值。
附记26.根据附记1至25中任一项所述的电子设备,其中,所述处理电路被配置为在非授权频段上传送所述传输数据。
附记27.一种用于无线通信的电子设备,包括:
处理电路,被配置为:
基于所传送的数据的误块率,确定在下一次数据传送前进行的载波监听的竞争窗大小CWS。
附记28.根据附记27所述的电子设备,其中,所述处理电路被配置为根据预先确定的误块率与CWS的取值集合之间的对应关系来确定所 述CWS。
附记29.根据附记28所述的电子设备,其中,在所述对应关系中,随着误块率越大,与所述误块率对应的所述取值集合中的CWS越大。
附记30.根据附记29所述的电子设备,其中,与所述误块率对应的所述取值集合通过信道访问优先级来表征,其中,随着所述误块率越大,所述信道访问优先级越低。
附记31.根据附记28至29中任一项所述的电子设备,其中,所述CWS是从与所述误块率对应的所述取值集合内随机选择的。
附记32.一种用于无线通信的方法,包括:
获取所传送的传输数据的混合自动重复请求HARQ反馈值;以及
基于所述HARQ反馈值,调整在下一次数据传送前进行的载波监听的竞争窗大小CWS。
附记33.一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据附记32所述的用于无线通信的方法。

Claims (33)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    获取所传送的传输数据的混合自动重复请求HARQ反馈值;以及
    基于所述HARQ反馈值,调整在下一次数据传送前进行的载波监听的竞争窗大小CWS。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为还基于通过判断是否存在隐藏节点所获得的判断结果来调整所述CWS。
  3. 根据权利要求2所述的电子设备,其中,所述处理电路被配置为基于在信道占用时间COT内传送的非参考数据中的至少一部分非参考数据的HARQ反馈值,来判断是否存在所述隐藏节点,其中,在所述COT中的除了作为参考持续时间的第一个持续时间之外的每个持续时间内传送的数据为所述非参考数据。
  4. 根据权利要求3所述的电子设备,其中,所述处理电路被配置为在所述COT内传送的每个非参考数据的HARQ反馈值均为NACK的情况下,判断存在所述隐藏节点,否则判断不存在所述隐藏节点。
  5. 根据权利要求3所述的电子设备,其中,所述处理电路被配置为在所述COT内传送的非参考数据的所有HARQ反馈值当中值为NACK的HARQ反馈值的数量与所述所有HARQ反馈值的总数量之间的比率大于等于预定比率阈值的情况下,判断存在所述隐藏节点,否则判断不存在所述隐藏节点。
  6. 根据权利要求3所述的电子设备,其中,所述处理电路被配置为在所述COT内传送的非参考数据当中的在时间上最先被传送的非参考数据的HARQ反馈值为ACK的情况下,判断不存在所述隐藏节点,否则判断存在所述隐藏节点。
  7. 根据权利要求3所述的电子设备,其中,所述处理电路被配置为在所述COT内传送的非参考数据当中的、在时间上最后被传送的非参考数据的HARQ反馈值为ACK的情况下,判断不存在所述隐藏节点,否则判断存在所述隐藏节点。
  8. 根据权利要求3所述的电子设备,其中,所述处理电路被配置为在所述COT内传送的非参考数据的HARQ反馈值中存在至少一个ACK的情况下,判断不存在所述隐藏节点,否则判断存在所述隐藏节点。
  9. 根据权利要求3至8中任一项所述的电子设备,其中,所述处理电路被配置为还基于参考数据的HARQ反馈值来调整所述CWS,其中,所述参考数据是所述传输数据当中的、在所述COT中的所述参考持续时间内传送的数据。
  10. 根据权利要求9所述的电子设备,其中,所述处理电路被配置为在所述参考数据的HARQ反馈值为ACK的情况下,将所述CWS设置为预定的CWS最小值。
  11. 根据权利要求9所述的电子设备,其中,所述处理电路被配置为在所述参考数据的HARQ反馈值为NACK以及判断不存在所述隐藏节点的情况下,对所述CWS进行更新。
  12. 根据权利要求9所述的电子设备,其中,所述处理电路被配置为在所述参考数据的HARQ反馈值为NACK以及判断存在所述隐藏节点的情况下,基于CWS保持预定的CWS最大值的次数,对所述CWS进行调整。
  13. 根据权利要求12所述的电子设备,其中,在所述次数小于等于基于CWS保持所述CWS最大值的预定次数而得到的次数阈值的情况下,对所述CWS进行更新,否则保持所述CWS,其中,在CWS保持所述CWS最大值达到所述预定次数时,所述CWS被重置为预定的CWS最小值。
  14. 根据权利要求13所述的电子设备,其中,所述处理电路被配置为针对每个信道访问优先级而选择所述预定次数。
  15. 根据权利要求13或14所述的电子设备,其中,所述次数阈值是基于所述预定次数的平方而得到的。
  16. 根据权利要求2所述的电子设备,其中,所述处理电路被配置为基于从用户设备接收的关于所述电子设备与所述用户设备之间的信道的信息和参考数据的HARQ反馈值,来判断是否存在所述隐藏节点,其中,所述参考数据是所述传输数据中的、在信道占用时间中的作为参考持续 时间的第一个持续时间内传送的数据。
  17. 根据权利要求16所述的电子设备,其中,所述信道的信息与HARQ反馈值一起被接收或者通过所述HARQ反馈值被接收。
  18. 根据权利要求16或17所述的电子设备,其中,所述信道的信息是能量检测阈值。
  19. 根据权利要求18所述的电子设备,其中,所述处理电路被配置为在所述能量检测阈值小于等于预定能量检测阈值并且所述参考数据的HARQ反馈值为NACK的情况下,判断不存在所述隐藏节点并且更新所述CWS。
  20. 根据权利要求19所述的电子设备,其中,所述处理电路被配置为所述能量检测阈值大于预定能量检测阈值并且所述参考数据的HARQ反馈值为NACK的情况下,判断存在所述隐藏节点并且保持所述CWS。
  21. 根据权利要求2所述的电子设备,其中,
    所述处理电路被配置为以码块为单位传送所述传输数据,以及
    所述处理电路被配置为获取作为与初始传送码块的情况相对应的第一HARQ反馈值当中NACK所占的比率的第一比率以及作为与重传所述码块的情况相对应的第二HARQ反馈值中NACK所占的比率的第二比率,并且基于所述第二比率相对于所述第一比率的变化率来判断是否存在所述隐藏节点。
  22. 根据权利要求21所述的电子设备,其中,所述处理电路被配置为在所述变化率小于等于预定变化率的情况下,判断存在所述隐藏节点并且保持所述CWS,否则判断不存在所述隐藏节点并且更新所述CWS。
  23. 根据权利要求21或22所述的电子设备,其中,所述处理电路被配置为在所述第一HARQ反馈值和所述第二HARQ反馈值在相同的信道占用时间内的情况下,将在重传所述码块时不与所重传的码块一起传送其他码块的情况对应的HARQ反馈值作为所述第二HARQ反馈值。
  24. 根据权利要求21或22所述的电子设备,其中,所述处理电路被配置为在所述第一HARQ反馈值和所述第二HARQ反馈值在相同的信道占用时间内的情况下,将在重传所述码块时与所重传的码块一起传送其他码块的情况对应的HARQ反馈值作为所述第二HARQ反馈值。
  25. 根据权利要求21或22所述的电子设备,其中,所述处理电路被配置为在所述第一HARQ反馈值和所述第二HARQ反馈值不在相同的信道占用时间内的情况下,将在重传所述码块时与所重传的码块一起传送其他码块的情况对应的HARQ反馈值作为所述第二HARQ反馈值。
  26. 根据权利要求1至25中任一项所述的电子设备,其中,所述处理电路被配置为在非授权频段上传送所述传输数据。
  27. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    基于所传送的数据的误块率,确定在下一次数据传送前进行的载波监听的竞争窗大小CWS。
  28. 根据权利要求27所述的电子设备,其中,所述处理电路被配置为根据预先确定的误块率与CWS的取值集合之间的对应关系来确定所述CWS。
  29. 根据权利要求28所述的电子设备,其中,在所述对应关系中,随着误块率越大,与所述误块率对应的所述取值集合中的CWS越大。
  30. 根据权利要求29所述的电子设备,其中,与所述误块率对应的所述取值集合通过信道访问优先级来表征,其中,随着所述误块率越大,所述信道访问优先级越低。
  31. 根据权利要求28至29中任一项所述的电子设备,其中,所述CWS是从与所述误块率对应的所述取值集合内随机选择的。
  32. 一种用于无线通信的方法,包括:
    获取所传送的传输数据的混合自动重复请求HARQ反馈值;以及
    基于所述HARQ反馈值,调整在下一次数据传送前进行的载波监听的竞争窗大小CWS。
  33. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据权利要求32所述的用于无线通信的方法。
PCT/CN2021/093732 2020-05-21 2021-05-14 用于无线通信的电子设备和方法、计算机可读存储介质 WO2021233212A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/917,575 US20230180289A1 (en) 2020-05-21 2021-05-14 Electronic device for use in radio communication, method, and computer-readable storage medium
EP21808930.8A EP4156834A4 (en) 2020-05-21 2021-05-14 ELECTRONIC DEVICE FOR USE IN RADIO COMMUNICATION, METHOD AND COMPUTER READABLE STORAGE MEDIUM
CN202180035031.9A CN115669175A (zh) 2020-05-21 2021-05-14 用于无线通信的电子设备和方法、计算机可读存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010436147.0 2020-05-21
CN202010436147.0A CN113709897A (zh) 2020-05-21 2020-05-21 用于无线通信的电子设备和方法、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021233212A1 true WO2021233212A1 (zh) 2021-11-25

Family

ID=78645845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093732 WO2021233212A1 (zh) 2020-05-21 2021-05-14 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (4)

Country Link
US (1) US20230180289A1 (zh)
EP (1) EP4156834A4 (zh)
CN (2) CN113709897A (zh)
WO (1) WO2021233212A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107580801A (zh) * 2015-05-12 2018-01-12 Lg 电子株式会社 在支持未授权带的无线接入系统中基于harq‑ack信息调整竞争窗口大小的方法和支持该方法的设备
CN108370533A (zh) * 2015-09-14 2018-08-03 联想创新有限公司(香港) 在无线通信系统中的竞争窗口大小调整
WO2019156542A1 (ko) * 2018-02-12 2019-08-15 엘지전자 주식회사 무선 통신 시스템에서 경쟁 윈도우 크기 조절 방법 및 상기 방법을 이용하는 통신 장치
CN110166182A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种竞争窗管理的方法及发送设备
CN110167161A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种确定竞争窗大小的方法和装置
CN110958711A (zh) * 2018-09-27 2020-04-03 中兴通讯股份有限公司 竞争窗的调整方法及装置、存储介质、电子装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107667496B (zh) * 2015-08-14 2021-04-09 韩国电子通信研究院 支持授权频带和非授权频带的网络中通信结点的操作方法
WO2020061583A1 (en) * 2018-09-21 2020-03-26 Kai Xu Channel access for unlicensed carriers in a radio system
KR20200054068A (ko) * 2018-11-09 2020-05-19 삼성전자주식회사 무선 통신 시스템에서 서브밴드 기반 채널 접속 방법 및 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107580801A (zh) * 2015-05-12 2018-01-12 Lg 电子株式会社 在支持未授权带的无线接入系统中基于harq‑ack信息调整竞争窗口大小的方法和支持该方法的设备
CN108370533A (zh) * 2015-09-14 2018-08-03 联想创新有限公司(香港) 在无线通信系统中的竞争窗口大小调整
WO2019156542A1 (ko) * 2018-02-12 2019-08-15 엘지전자 주식회사 무선 통신 시스템에서 경쟁 윈도우 크기 조절 방법 및 상기 방법을 이용하는 통신 장치
CN110166182A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种竞争窗管理的方法及发送设备
CN110167161A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种确定竞争窗大小的方法和装置
CN110958711A (zh) * 2018-09-27 2020-04-03 中兴通讯股份有限公司 竞争窗的调整方法及装置、存储介质、电子装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP TS 37.213, December 2019 (2019-12-01)
See also references of EP4156834A4

Also Published As

Publication number Publication date
CN115669175A (zh) 2023-01-31
CN113709897A (zh) 2021-11-26
EP4156834A1 (en) 2023-03-29
US20230180289A1 (en) 2023-06-08
EP4156834A4 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
US20230262771A1 (en) Electronic device for wireless communication system, method and storage medium
TW201722181A (zh) 用於共享通訊媒體上的短實體上行鏈路控制通道(pucch)的混合自動重複請求(harq)有效負荷映射
CN109417778B (zh) 用于无线通信的电子设备和方法
US20220116147A1 (en) Electronic device, wireless communication method, and computer readable medium
US11496271B2 (en) Device that convey data for a block acknowledge (ACK)
US20230345530A1 (en) Electronic device and method for use in radio communication, and computer-readable storage medium
WO2020259363A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN110611934A (zh) 电子设备、通信方法和存储介质
US11096205B2 (en) Device and method for controlling communication of downlink data
WO2018177077A1 (zh) 用于无线通信的网络控制端和网络节点的电子设备和方法
US10674515B2 (en) User equipment and base station in wireless communications system, and wireless communications method
WO2021233212A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021031881A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
JP7424317B2 (ja) 通信装置、通信方法、及びプログラム
WO2020108370A1 (zh) 电子装置、无线通信方法和计算机可读介质
WO2021147746A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
EP4016911A1 (en) Electronic device and method for wireless communication, and computer readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021808930

Country of ref document: EP

Effective date: 20221221