WO2021147746A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2021147746A1
WO2021147746A1 PCT/CN2021/071651 CN2021071651W WO2021147746A1 WO 2021147746 A1 WO2021147746 A1 WO 2021147746A1 CN 2021071651 W CN2021071651 W CN 2021071651W WO 2021147746 A1 WO2021147746 A1 WO 2021147746A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
network node
electronic device
resource blocks
idle detection
Prior art date
Application number
PCT/CN2021/071651
Other languages
English (en)
French (fr)
Inventor
崔琪楣
贾靖
李�浩
崔焘
Original Assignee
索尼集团公司
崔琪楣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 崔琪楣 filed Critical 索尼集团公司
Priority to CN202180008292.1A priority Critical patent/CN114930969A/zh
Publication of WO2021147746A1 publication Critical patent/WO2021147746A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • This application relates to the field of wireless communication technologies, and specifically to unlicensed frequency band (unlicensed frequency band) wireless resource usage technologies. More specifically, it relates to an electronic device and method for wireless communication and a computer-readable storage medium.
  • LTE Long Term Evolution
  • NR New Radio
  • each network node independently performs channel idle detection such as Listen Before Talk (LBT).
  • LBT Listen Before Talk
  • a network node successfully accesses the channel of the unlicensed frequency band through LBT even if the same wireless channel is used
  • the access technology or other network nodes belonging to the same operator cannot access the channel through LBT, and thus cannot achieve a frequency reuse factor of 1, which reduces the spectrum utilization efficiency of unlicensed frequency bands.
  • an electronic device for wireless communication including: a processing circuit configured to: determine that a first network node completes channel idle detection for a channel in an unlicensed frequency band and accesses the channel; and Perform channel idle detection coordination to release one or more of the at least one resource block on the channel for channel idle detection of the second network node, where the first network node and the second network node use the same wireless connection Into technology.
  • a method for wireless communication including: determining that a first network node completes channel idle detection for a channel in an unlicensed frequency band and accesses the channel; and performing channel idle detection coordination to coordinate One or more of at least one resource block on the channel is released for channel idle detection of the second network node, where the first network node and the second network node use the same radio access technology.
  • an electronic device for wireless communication including: a processing circuit configured to determine whether a channel idle detection of a channel of an unlicensed frequency band by a first network node indicates that the channel is occupied And in the case of determining that the channel is occupied, perform channel idle detection coordination with the second network node, wherein the second network node and the first network node use the same wireless access technology and have already accessed the channel, The second network node releases one or more of the at least one resource block on the channel for channel idle detection of the first network node.
  • a method for wireless communication including: determining whether a channel idle detection of a channel of an unlicensed frequency band by a first network node indicates that the channel is occupied; and after determining that the channel is occupied In the case of performing channel idle detection coordination with the second network node, where the second network node and the first network node use the same wireless access technology and have already accessed the channel, the second network node One or more of the at least one resource block is released for channel idle detection of the first network node.
  • an electronic device for wireless communication including: a processing circuit, configured to obtain information about releasing resource blocks from a serving network node, wherein the serving network node accesses unauthorized
  • the information indicates the location of one or more resource blocks that are released for channel idle detection by other network nodes using the same radio access technology; and the information is parsed to determine the released one or The location of multiple resource blocks.
  • a method for wireless communication including: acquiring information about releasing resource blocks from a serving network node, wherein the serving network node accesses a channel of an unlicensed frequency band, and the information indicates Release the location of one or more resource blocks used for other network nodes using the same radio access technology to perform channel idle detection; and parse the information to determine the location of the released one or more resource blocks.
  • the electronic device and method according to the present application enable channel idle detection coordination between network nodes that use the same wireless access technology, so that these network nodes can reuse wireless transmission resources on unlicensed frequency bands, thereby improving unlicensed Frequency spectrum utilization efficiency of the frequency band.
  • a computer program code and a computer program product for implementing the above method for wireless communication and a computer on which the computer program code for implementing the above method for wireless communication is recorded are also provided Readable storage medium.
  • Fig. 1 shows a block diagram of functional modules of an electronic device for wireless communication according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of LBT coordination as an example
  • Fig. 3 shows a block diagram of functional modules of an electronic device for wireless communication according to an embodiment of the present application
  • Figure 4 shows a schematic example of the released subband
  • Figure 5 shows the specifications of the media access control layer and the physical layer of the wireless local area network in the existing standard
  • Fig. 6 shows a block diagram of functional modules of an electronic device for wireless communication according to another embodiment of the present application.
  • Fig. 7 shows a block diagram of functional modules of an electronic device for wireless communication according to another embodiment of the present application.
  • Fig. 8 shows a block diagram of functional modules of an electronic device for wireless communication according to another embodiment of the present application.
  • Fig. 9 shows a flowchart of a method for wireless communication according to an embodiment of the present application.
  • Fig. 10 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • Fig. 11 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • FIG. 12 shows a schematic example of the information flow between network nodes and between network nodes and UE
  • FIG. 13 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • FIG. 14 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • 15 is a block diagram showing an example of a schematic configuration of a smart phone to which the technology of the present disclosure can be applied;
  • FIG. 16 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 17 is a block diagram of an exemplary structure of a general personal computer in which the method and/or apparatus and/or system according to the embodiments of the present invention can be implemented.
  • FIG. 1 shows a block diagram of functional modules of an electronic device 100 for wireless communication according to an embodiment of the present application.
  • the electronic device 100 includes: a determining unit 101 configured to determine that the first network node is The channel of the unlicensed frequency band completes channel idle detection and accesses the channel; and the execution unit 102 is configured to perform channel idle detection coordination to release one or more of the at least one resource block on the channel for the second Channel idle detection of network nodes, where the first network node and the second network node use the same radio access technology (Radio Access Technology, RAT).
  • Radio Access Technology Radio Access Technology
  • the determining unit 101 and the executing unit 102 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip, for example.
  • the processing circuit may be implemented as a chip, for example.
  • each functional unit in the apparatus shown in FIG. 1 is only a logical module divided according to the specific function implemented by it, and is not used to limit the specific implementation manner.
  • the electronic device 100 may be provided on the side of the first network node or be communicably connected to the first network node.
  • the network node in this document refers to an entity that can provide access services in an unlicensed frequency band. For example, it can include various base stations such as eNB, gNB, and IAB base stations.
  • the first, second, etc. in this text are only for distinguishing purposes, and do not represent any order or other essential meanings.
  • the electronic device 100 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 100 may work as a network node itself, and may also include external devices such as a memory, a transceiver (not shown), and the like.
  • the memory can be used to store programs and related data information that the network node needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, user equipment, other network nodes, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the first network node and the second network node use the same RAT, and both can access the unlicensed frequency band for transmission.
  • the two may belong to the same operator.
  • the channel idle detection here is, for example, LBT.
  • the first network node completes channel idle detection for the channel of the unlicensed frequency band at an earlier time and successfully accesses the channel.
  • the first network node and its user equipment use the channel to perform data transmission. .
  • the second network node using the same RAT also tries to access the channel through channel idle detection. It can be understood that since the first network node is occupying the channel, the channel idle detection of the second network node will indicate that the channel is occupied, so that the second network node is blocked and cannot access the channel. In order to solve this problem, the execution unit 102 of this embodiment performs channel idle detection coordination to release part of the resources of the occupied channel for use by the second network node for channel idle detection.
  • part of the resources released may include one or more resource blocks.
  • Figure 2 shows a schematic diagram of LBT coordination as an example. Among them, the upper part of Figure 2 represents the operation of the first network node, and the lower part represents the operation of the second network node.
  • the first network node releases the time-frequency resource block in the blank part of the figure (hereinafter also referred to as punctured resource). ), the second network node uses the time-frequency resource block to perform channel vacancy assessment (Clear Channel Assessment, CCA) to complete LBT, so that the second network node can also access the channel and share the channel's transmission resources with the first network node .
  • CCA Channel vacancy assessment
  • FIG. 2 shows an example of releasing one resource block, but it is not limited to this, and multiple resource blocks may also be released.
  • the execution unit 102 may also be configured to determine whether to perform channel idle detection coordination according to the communication quality of the first network node. For example, when the communication quality of the first network node is poor, the execution unit may determine not to perform channel idle detection coordination. Moreover, it can be understood that in order to ensure the communication quality of the first network node, the number of resource blocks that can be released is limited.
  • the electronic device 100 may further include a transceiving unit 103 configured to receive a coordination request from the second network node, and the executing unit 102 is configured to perform channel idle detection coordination in response to the coordination request.
  • the second network node sends a coordination request after the LBT detection result indicates that the channel is busy.
  • the coordination request is sent via the Xn interface, for example.
  • the first network node enables channel idle detection coordination, that is, releases the corresponding resource block.
  • the second network node If the second network node does not know in advance which network node has access to the channel, it will send the coordination request to multiple network nodes, and the network node that does not have access to the channel (that is, the network node other than the first network node) There will be no response.
  • the transceiver unit 103 may receive coordination requests from multiple second network nodes, and the execution unit 102 releases one or more resource blocks in at least one resource block for each of the multiple second network nodes until all of the at least one resource block The resource block is released.
  • the first network node can realize channel idle detection coordination with multiple second network nodes.
  • the first network node releases one or more resource blocks.
  • the number of second network nodes that can achieve coordination depends on the total number of resource blocks that can be released by the first network node. As mentioned above, the total number can be determined based on the principle of ensuring the communication quality of the first network node.
  • the coordination request may also include its own performance of the second network node, such as signal-to-interference-to-noise ratio (SINR) information or priority information, and the execution unit 102 may determine whether to perform channel idle detection coordination based on this information. For example, in a case where the SINR of the second network node is low or the priority is low, the execution unit 102 may not perform channel idle detection coordination.
  • SINR signal-to-interference-to-noise ratio
  • the coordination request may also include information about the bandwidth requirement of the second network node, and the execution unit 102 performs channel idle detection coordination only when the bandwidth requirement of the second network node is not greater than the bandwidth of the channel. In this way, it can be ensured that sufficient bandwidth is provided for the second network node.
  • the transceiver unit 103 may also be configured to send an access notification to surrounding network nodes using the same RAT after the first network node accesses the channel. In this way, the second network node may only send the coordination request to the first network node through the Xn interface, for example.
  • the transceiver unit 103 may also be configured to send a response indicating that channel idle detection coordination is to be performed to the second network node. In this way, for example, if the second network node does not receive the response within a predetermined time, the channel idle detection for the channel can be temporarily stopped.
  • the channel idle detection coordination is performed dynamically based on requests from other network nodes.
  • a semi-static method can also be used.
  • the execution unit 102 may perform channel idle detection coordination by sending a channel state information reference signal (Channel State Information Reference Signal, CSI-RS) with zero power to the second network node, where the second network node can use zero power CSI-RS corresponding to the resource block to perform channel idle detection.
  • CSI-RS Channel State Information Reference Signal
  • the channel idle detection coordination is implemented through radio resource control (Radio Resources Control, RRC) signaling.
  • RRC Radio Resources Control
  • the puncturing resources are released. If the network node using other RATs detects that the channel is idle and accesses the channel at this time, there will be conflicts due to the absence of interference mitigation and suppression technologies between different RATs. Therefore, the execution unit 102 is also configured to set the size of the released one or more resource blocks, so that network nodes using the same RAT can detect access channels through idle channels, while network nodes using different RATs cannot access through idle channels. Enter the channel.
  • the width of the subband of the released resource block may be limited according to the bandwidth requirement of the second network node.
  • the subband width is smaller than the bandwidth requirement of the network node of the other RAT, the network node of the other RAT cannot detect the access channel through the idle channel, so that conflicts can be avoided.
  • FIG. 4 shows a schematic example of the released subbands.
  • the execution unit 102 may also be configured to set the time length of each of the released one or more resource blocks within a predetermined range, which is determined by the time required for various RATs to perform channel idle detection. In other words, the length of time can be set so that the network node of the same RAT can complete the channel idle detection, while the network node of other RATs cannot complete the channel idle detection.
  • the following uses NR-U (NR in Unlicensed Spectrum) and WIFI as examples of two RATs to illustrate the setting of the above time length.
  • NR-U NR in Unlicensed Spectrum
  • WIFI wireless fidelity
  • the third network node uses WIFI
  • the first network node has accessed the channel and released resource blocks to perform LBT coordination.
  • the time length of the resource block may be specifically set.
  • CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
  • DIFS distributed interframe space
  • Figure 5 shows the specifications of the media access control (MAC) layer and the physical layer of the wireless local area network in the existing standard. Among them, aSIFSTime is 3us, and aSlotTime is 5us.
  • DIFS aSIFSTime+2*aSlotTime
  • CAA detection of NR-U requires 8us.
  • time length of the released resource block is set to 8us or 9us
  • WIFI can not be accessed. This is because the channel detection in the second CCAdel will indicate busy for DIFS. It should be understood that this setting is only an example and not restrictive.
  • the first network node releases one or more resource blocks for channel idle detection of the second network node. In this way, the first network node and its UE cannot use these puncturing resources for data transmission during communication. In order to enable the UE to accurately perform decoding, the UE needs to know the location of these puncturing resources.
  • the execution unit 102 may notify the UE served by the first network node of the location information of the released one or more resource blocks.
  • the execution unit 102 may include the location information in the channel occupation time (Channel Occupancy Time, COT) field of the group common physical downlink control channel (GC-PDCCH).
  • COT Channel Occupancy Time
  • GC-PDCCH group common physical downlink control channel
  • GC-PDCCH can be located at the beginning of COT, which can reduce the false detection rate.
  • the COT duration field may include: bits used to determine the time domain position of one or more resource blocks (hereinafter also referred to as time domain bits); bits used to determine the frequency domain position of one or more resource blocks ( Hereinafter, it is also referred to as frequency domain bit); and a bit used to indicate the slot position of one or more resource blocks in the entire COT (hereinafter also referred to as slot bit).
  • the time domain bit is used to indicate which Orthogonal Frequency Division Multiplexing (OFDM) symbols the resource block specifically corresponds to in the time domain
  • the frequency domain bit is used to indicate the resource block in the frequency domain.
  • the time slot bit is used to indicate the position of the time slot of the resource block in the COT.
  • the bits used to determine the time domain position of the one or more resource blocks include bits used to specify the Orthogonal Frequency Division Multiplexing (OFDM) symbol group where the one or more resource blocks are located.
  • the bits used to determine the frequency domain position of the one or more resource blocks include bits used to specify the number of subbands from the boundary of the channel, where the bandwidth of the subband is a predetermined value.
  • one slot includes 14 OFDM symbols. Assume that the number of all transmitted symbols in COT is N INT . These transmission symbols can be divided into 14 consecutive symbol groups, for example, the front Each of the symbol groups includes OFDM symbols, after Each of the symbol groups includes OFDM symbols. 4 bits can be used to indicate which symbol group the time domain position of the resource block corresponds to, for example, "1000" corresponds to the 8th group. It should be understood that, depending on the number of OFDM symbol groups, the number of bits used to determine the time domain position can be changed accordingly. In this case, the bit used to indicate the slot position of the resource block in the entire COT can indicate the slot position on the one hand, and can also be used to distinguish between uplink and downlink on the other hand.
  • the channel bandwidth can be divided into multiple subbands, and the frequency domain position of the released resource block is represented by, for example, the subband where it is located.
  • several bits may be used to indicate that the number of subbands represented by the several bits from the boundary of the channel is the frequency domain range of the released resource block.
  • the number of bits required depends on the maximum bandwidth of the released resource block, and the boundary refers to the boundary of the frequency band of the channel, which may refer to the upper boundary or the lower boundary, for example, it may be pre-appointed.
  • COT duration field is only exemplary, and may need to be additionally specified in practice.
  • the GC-PDCCH may also be located in a mini-slot. Through the small time slot, the base station can start a downlink burst (DL burst) in the middle of the time slot, thereby making the transmission more flexible.
  • the GC-PDCCH may also include a COT duration field to indicate the location of the released resource block.
  • the COT duration field may include: bits used to determine the time domain position of one or more resource blocks; and bits used to determine the frequency domain position of one or more resource blocks. Since only the downlink transmission is included in the mini-slot, there is no need for a bit indicating the slot position.
  • the two parts of the COT duration field have the same meaning and configuration as the corresponding parts of the COT duration field in the GC-PDCCH at the beginning of the COT, and will not be repeated here.
  • the electronic device 100 enables channel idle detection coordination between network nodes that use the same RAT, so that these network nodes can reuse wireless transmission resources on unlicensed frequency bands, which improves Spectrum utilization efficiency of unlicensed bands.
  • the electronic device 100 can also prevent network nodes using other RATs from accessing the resource block by setting the size of the resource block used for coordination, thereby preventing conflicts.
  • the electronic device 100 also informs the position of the resource block released by the UE that has access to the channel through newly configured signaling, so that the UE can decode correctly.
  • Fig. 6 shows a block diagram of functional modules of an electronic device 200 according to another embodiment of the present application.
  • the electronic device 200 includes: a determining unit 201 configured to determine that the first network node targets an unlicensed frequency band; Whether the channel idle detection of the channel indicates that the channel is occupied; and the execution unit 202 is configured to perform channel idle detection coordination with the second network node when the determining unit 201 determines that the channel is occupied, wherein the second network node and The first network node uses the same RAT and has accessed the channel, and the second network node releases one or more of the at least one resource block on the channel for channel idle detection of the first network node.
  • the determination unit 201 and the unit execution 202 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip, for example.
  • the processing circuit may be implemented as a chip, for example.
  • each functional unit in the device shown in FIG. 6 is only a logical module divided according to the specific function implemented by it, and is not used to limit the specific implementation manner.
  • the electronic device 200 may be provided on the side of the first network node or be communicably connected to the first network node.
  • the network node in this document refers to an entity that can provide access services in an unlicensed frequency band.
  • it can include various base stations such as eNB, gNB, and IAB base stations.
  • the electronic device 200 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 200 may work as a network node itself, and may also include external devices such as a memory, a transceiver (not shown), and the like.
  • the memory can be used to store programs and related data information that the network node needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, user equipment, other network nodes, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the settings of the first network node and the second network node in this embodiment are not the same as in the first embodiment, but opposite.
  • the second network node is the node that successfully accesses the channel first, that is, the node that provides channel idle detection coordination
  • the first network node is the node that subsequently attempts to access the channel, that is, the node that requests channel idle detection and coordination. . Therefore, this embodiment is described from the perspective of a node requesting channel idle detection coordination.
  • the channel idle detection for the channel of the unlicensed frequency band may be, for example, LBT.
  • coordination is achieved in a dynamic mode.
  • the electronic device 200 further includes a transceiving unit 203 configured to send a coordination request to the second network node.
  • the coordination request includes, for example, information about the bandwidth requirement of the first network node. This information is used by the second network node to determine whether to perform channel idle detection coordination.
  • the transceiving unit 203 may send the coordination request through the Xn interface.
  • the transceiving unit 203 may also be configured to receive an access notification from the second network node. The receiving operation may occur after the second network node successfully accesses the channel. In this way, the first network node can learn that it is the second network node that has accessed the channel, so as to send the coordination request in a targeted manner.
  • the transceiver unit 203 may, for example, send a coordination request to multiple surrounding network nodes, where only the second network node that has accessed the channel will respond and execute Channel idle detection coordination.
  • the execution unit 202 continues to perform the channel idle detection after the transceiver unit 203 sends the coordination request, so that the channel idle detection can be completed on the released resource blocks and the channel can be accessed.
  • the transceiving unit 203 may also be configured to receive a response from the second network node indicating that channel idle detection coordination is to be performed. If the transceiver unit 203 receives the response within the predetermined time period, the execution unit 202 continues to perform channel idle detection to complete the channel idle detection on the released resource blocks; conversely, if the transceiver unit 203 does not receive the response within the predetermined time period In response, the execution unit 202 considers that the channel may have been accessed by a network node adopting another RAT, so that, for example, it temporarily gives up trying to access the channel.
  • coordination is achieved in a semi-static mode.
  • the transceiver unit 203 is configured to receive a CSI-RS with zero power from the second network node, and the first network node performs channel idle detection on a resource block corresponding to the CSI-RS with zero power.
  • the channel idle detection coordination is realized through RRC signaling.
  • the electronic device 200 enables channel idle detection coordination between network nodes that use the same RAT, so that these network nodes can reuse wireless transmission resources on unlicensed frequency bands, which improves Spectrum utilization efficiency.
  • both the electronic device 100 and the electronic device 200 may be configured on the same network node.
  • FIG. 8 shows a block diagram of functional modules of an electronic device 300 for wireless communication according to an embodiment of the present application.
  • the electronic device 300 includes: an acquiring unit 301 configured to acquire information about Information about releasing resource blocks, where the serving network node accesses a channel in an unlicensed frequency band, and the information indicates the location of one or more resource blocks that are released for other network nodes using the same RAT to perform channel idle detection; and
  • the determining unit 302 is configured to parse the information to determine the location of one or more resource blocks to be released.
  • the acquiring unit 301 and the determining unit 302 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip, for example.
  • the processing circuit may be implemented as a chip, for example.
  • each functional unit in the device shown in FIG. 8 is only a logical module divided according to the specific function implemented by it, and is not used to limit the specific implementation manner.
  • the electronic device 300 may, for example, be provided on the UE side or be communicably connected to the UE.
  • the electronic device 300 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 300 may work as a user device itself, and may also include external devices such as a memory, a transceiver (not shown in the figure) and the like.
  • the memory can be used to store programs and related data information that the user equipment needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, base stations, other user equipment, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the serving network node serving the UE in the unlicensed frequency band performs channel idle detection coordination, thereby releasing a part of resource blocks for channel idle detection by other network nodes using the same RAT.
  • the serving network node needs to notify the UE of the information about the location of the released resource block, so that the UE can decode it correctly.
  • the acquiring unit 301 may acquire the information based on the COT duration field of the GC-PDCCH. In other words, this information is included in the COT duration field.
  • GC-PDCCH is located at the beginning of COT.
  • the COT duration field includes: bits used to determine the time domain position of the one or more resource blocks; bits used to determine the frequency domain position of the one or more resource blocks; and bits used to indicate the one or more resource blocks.
  • the bits used to determine the time domain position of the one or more resource blocks include bits used to specify the OFDM symbol group in which the one or more resource blocks are located, and are used to determine the one or more resource blocks.
  • the frequency domain position information of includes bits for specifying the number of subbands from the boundary of the channel, where the bandwidth of the subband is a predetermined value.
  • the GC-PDCCH may also be located in a small slot.
  • the COT duration field includes: bits used to determine the time domain position of the one or more resource blocks; and bits used to determine the frequency domain position of the one or more resource blocks. The detailed description has been given in the first embodiment and will not be repeated here.
  • the electronic device 300 can correctly identify the position of the released resource block, so as to realize correct decoding while supporting channel idle detection coordination.
  • FIG. 9 shows a flowchart of a method for wireless communication according to an embodiment of the present application.
  • the method includes: determining that a first network node completes channel idle detection for a channel of an unlicensed frequency band and accesses the channel (S11) And performing channel idle detection coordination to release one or more of at least one resource block on the channel for channel idle detection of the second network node (S13), wherein the first network node and the second network node use The same RAT.
  • the method is executed on the side of the first network node, for example.
  • step S13 it may also be determined whether to perform channel idle detection coordination according to the communication quality of the first network node, such as SINR.
  • the channel idle detection coordination may be performed by sending a zero-power CSI-RS to the second network node, where the second network node can use the resources corresponding to the zero-power CSI-RS Block to perform channel idle detection.
  • the above method may further include step S12: receiving a coordination request from the second network node, and performing channel idle detection coordination in response to the coordination request.
  • the coordination request can be received via the Xn interface.
  • the coordination request may include information about the bandwidth requirement of the second network node, and the channel idle detection coordination is performed only when the bandwidth requirement of the second network node is not greater than the bandwidth of the channel.
  • the coordination request may also include information about the communication quality of the second network node, such as SINR or priority.
  • step S13 it may be determined whether to perform channel idle detection coordination based on this information.
  • the coordination request may be received from the plurality of second network nodes, and one or more resource blocks of the at least one resource block may be released for each of the plurality of second network nodes until all at least one resource block is released. Therefore, if after at least one resource block is released, a coordination request from the second network node is also received, then the channel idle detection coordination is not performed in response to the coordination request at this time.
  • the above method may further include the following step: sending a response indicating that channel idle detection coordination is to be performed to the second network node. After the first network node accesses the channel, it may also send an access notification to surrounding network nodes using the same RAT.
  • the above method may further include step S14: Notifying the UE served by the first network node of the location information of the released one or more resource blocks. This information may be included in the COT duration field of the GC-PDCCH.
  • GC-PDCCH may be located at the beginning of COT.
  • the COT duration field includes: bits used to determine the time domain position of the one or more resource blocks; bits used to determine the frequency domain position of the one or more resource blocks; and bits used to indicate the one or more resource blocks.
  • the bits used to determine the time domain position of the one or more resource blocks include bits used to specify the OFDM symbol group in which the one or more resource blocks are located, and are used to determine the frequency of the one or more resource blocks.
  • the bits of the field position include bits for specifying the number of subbands from the boundary of the channel, where the bandwidth of the subband is a predetermined value.
  • the GC-PDCCH can also be located in a small time slot.
  • the COT duration field includes: bits used to determine the time domain position of the one or more resource blocks; and bits used to determine the frequency domain position of the one or more resource blocks.
  • the size of the released one or more resource blocks may be set so that network nodes using the same RAT can detect access channels through idle channels, while network nodes using different RATs cannot detect access channels through idle channels.
  • the time length of each of the one or more resource blocks may be set within a predetermined range, which is determined by the time required for various RATs to perform channel idle detection.
  • FIG. 10 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • the method includes: determining whether the channel idle detection of the channel of the unlicensed frequency band by the first network node indicates that the channel is occupied (S21 ); and in the case of determining that the channel is occupied, perform channel idle detection coordination with the second network node (S22), wherein the second network node and the first network node use the same RAT and have access to the channel, and the second The network node releases one or more of the at least one resource block on the channel for channel idle detection of the first network node.
  • the method is executed on the side of the first network node, for example.
  • step S22 may include: sending a coordination request to the second network node.
  • the coordination request includes, for example, information about the bandwidth requirement of the first network node.
  • the coordination request can be sent through the Xn interface.
  • Step S22 may also include: receiving a response from the second network node indicating that channel idle detection coordination is to be performed.
  • the first network node may also receive an access notification from the second network node to identify the network node that has accessed the channel.
  • step S22 includes: receiving a zero-power CSI-RS from a second network node, and the first network node performs channel idle detection on a resource block corresponding to the zero-power CSI-RS.
  • FIG. 11 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • the method includes: acquiring information about releasing resource blocks from a serving network node (S31), wherein the serving network node accesses Channels in unlicensed frequency bands, the information indicates the location of one or more resource blocks released for channel idle detection by other network nodes using the same RAT; and the information is parsed to determine the released one or more resource blocks The location of the resource block (S32).
  • This method is executed on the UE side, for example.
  • the above information may be included in the COT duration field of the GC-PDCCH.
  • the description of this information has been given in the previous article and will not be repeated here.
  • LBT is shown as an example of channel idle detection.
  • the first network node first successfully accesses the channel of the unlicensed frequency band through the LBT, and communicates with the UE.
  • the step shown in the dashed box that is, sending an access notification to other network nodes (including the second network node) is optional.
  • the second network node performs LBT to try to access the channel, but the LBT indicates that the channel is occupied. Therefore, the second network node sends a coordination request to the first network node, for example, via the Xn interface. After receiving the coordination request, the first network node performs LBT coordination with the second network node.
  • the first network node may also send a coordination request response to the second network node.
  • the first network node may also make a series of judgments before determining to perform LBT coordination, such as whether the bandwidth requirement of the second network node is less than or equal to the channel bandwidth, whether the SINR of the first network node meets the requirements, and so on.
  • the second network node successfully accesses the channel by completing the LBT using the resource block released by the first network node.
  • the first network node performs LBT coordination, it also sends information for notifying the location of the released resource block to the UE it serves, and the information is included in the COT duration field of the GC-PDCCH, for example.
  • the technology of the present disclosure can be applied to various products.
  • the electronic devices 100 and 200 may be implemented as various base stations.
  • the base station can be implemented as any type of evolved Node B (eNB) or gNB (5G base station).
  • eNBs include, for example, macro eNBs and small eNBs.
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • a similar situation can also be used for gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • BTS base transceiver station
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) arranged in a place different from the main body.
  • a main body also referred to as a base station device
  • RRH remote radio heads
  • various types of user equipment can work as a base station by temporarily or semi-persistently performing base station functions.
  • the electronic device 300 may be implemented as various user devices.
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • FIG. 13 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 820 to transmit and receive wireless signals.
  • the eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 13 shows an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station device 820. For example, the controller 821 generates a data packet based on the data in the signal processed by the wireless communication interface 825, and transmits the generated packet via the network interface 823. The controller 821 may bundle data from multiple baseband processors to generate a bundled packet, and deliver the generated bundled packet. The controller 821 may have a logic function to perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or another eNB via the network interface 823.
  • the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface (such as an S1 interface and an X2 interface).
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 823 is a wireless communication interface, the network interface 823 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to a terminal located in a cell of the eNB 800 via an antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and an RF circuit 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • layers such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)
  • the BB processor 826 may have a part or all of the above-mentioned logical functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 826.
  • the module may be a card or a blade inserted into the slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810.
  • the wireless communication interface 825 may include a plurality of BB processors 826.
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827.
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 13 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the transceiving units of the electronic devices 100 and 200 may be implemented by a wireless communication interface 825. At least part of the functions may also be implemented by the controller 821.
  • the controller 821 can implement the channel idle detection coordination between network nodes using the same RAT by executing the functions of the determining unit 101 and the executing unit 102 or by executing the functions of the determining unit 201 and the executing unit 202, so that these Network nodes can reuse wireless transmission resources on unlicensed frequency bands to improve spectrum utilization efficiency.
  • FIG. 14 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that similarly, the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 830 includes one or more antennas 840, base station equipment 850, and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 14 shows an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station equipment 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG. 13.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may generally include, for example, a BB processor 856.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 13 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include a plurality of BB processors 856.
  • multiple BB processors 856 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 14 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module used to connect the base station device 850 (wireless communication interface 855) to the communication in the above-mentioned high-speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may generally include, for example, an RF circuit 864.
  • the RF circuit 864 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 840.
  • the wireless communication interface 863 may include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 14 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the transceiving units of the electronic devices 100 and 200 may be implemented by the wireless communication interface 855 and/or the wireless communication interface 863. At least a part of the functions may also be implemented by the controller 851.
  • the controller 851 can implement the channel idle detection coordination between network nodes using the same RAT by executing the functions of the determining unit 101 and the executing unit 102 or by executing the functions of the determining unit 201 and the executing unit 202, so that these Network nodes can reuse wireless transmission resources on unlicensed frequency bands to improve spectrum utilization efficiency.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a smart phone 900 to which the technology of the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the smart phone 900.
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the imaging device 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 907 may include a group of sensors, such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts the sound input to the smart phone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from the user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced), and performs wireless communication.
  • the wireless communication interface 912 may generally include, for example, a BB processor 913 and an RF circuit 914.
  • the BB processor 913 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 916.
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG. 15, the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914. Although FIG. 15 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • the wireless communication interface 912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • the smart phone 900 may include multiple antennas 916.
  • FIG. 15 shows an example in which the smart phone 900 includes a plurality of antennas 916, the smart phone 900 may also include a single antenna 916.
  • the smart phone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connect.
  • the battery 918 supplies power to each block of the smart phone 900 shown in FIG. 15 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode, for example.
  • the transceiver of the electronic device 300 may be implemented by the wireless communication interface 912. At least part of the function may also be implemented by the processor 901 or the auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 can correctly identify the position of the released resource block by executing the functions of the acquiring unit 301 and the determining unit 302, so as to implement correct decoding while supporting channel idle detection coordination.
  • FIG. 16 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, wireless
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or SoC, and controls the navigation function of the car navigation device 920 and other functions.
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 uses GPS signals received from GPS satellites to measure the position of the car navigation device 920 (such as latitude, longitude, and altitude).
  • the sensor 925 may include a group of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, an in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may generally include, for example, a BB processor 934 and an RF circuit 935.
  • the BB processor 934 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 937.
  • the wireless communication interface 933 may also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 16 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937.
  • FIG. 16 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 16 via a feeder line, which is partially shown as a dashed line in the figure.
  • the battery 938 accumulates electric power supplied from the vehicle.
  • the transceiver of the electronic device 300 may be implemented by the wireless communication interface 933. At least part of the functions may also be implemented by the processor 921.
  • the processor 921 can correctly identify the position of the released resource block by executing the functions of the acquiring unit 301 and the determining unit 302, so as to implement correct decoding while supporting channel idle detection coordination.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 940 including one or more blocks in the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data (such as vehicle speed, engine speed, and failure information), and outputs the generated data to the in-vehicle network 941.
  • the present invention also proposes a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by a machine, the above-mentioned method according to the embodiment of the present invention can be executed.
  • a storage medium for carrying the above-mentioned program product storing machine-readable instruction codes is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and so on.
  • a computer with a dedicated hardware structure (such as a general-purpose computer 1700 shown in FIG. 17) is installed from a storage medium or a network to the program constituting the software, and various programs are installed on the computer. When, it can perform various functions and so on.
  • a central processing unit (CPU) 1701 executes various processes in accordance with a program stored in a read-only memory (ROM) 1702 or a program loaded from a storage portion 1708 to a random access memory (RAM) 1703.
  • ROM read-only memory
  • RAM random access memory
  • data required when the CPU 1701 executes various processes and the like is also stored as necessary.
  • the CPU 1701, the ROM 1702, and the RAM 1703 are connected to each other via a bus 1704.
  • the input/output interface 1005 is also connected to the bus 1704.
  • the following components are connected to the input/output interface 1705: input part 1706 (including keyboard, mouse, etc.), output part 1707 (including display, such as cathode ray tube (CRT), liquid crystal display (LCD), etc., and speakers, etc.), Storage part 1708 (including hard disk, etc.), communication part 1709 (including network interface card such as LAN card, modem, etc.).
  • the communication section 1709 performs communication processing via a network such as the Internet.
  • the driver 1710 can also be connected to the input/output interface 1705 according to needs.
  • Removable media 1711 such as magnetic disks, optical disks, magneto-optical disks, semiconductor memory, etc. are installed on the drive 1710 as needed, so that the computer programs read out therefrom are installed into the storage portion 1708 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 1711.
  • this storage medium is not limited to the removable medium 1711 shown in FIG. 17 where the program is stored and distributed separately from the device to provide the program to the user.
  • removable media 1711 include magnetic disks (including floppy disks (registered trademarks)), optical disks (including compact disk read-only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including mini disks (MD) (registered Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 1702, a hard disk contained in the storage portion 1708, etc., in which programs are stored and distributed to users together with the devices containing them.
  • each component or each step can be decomposed and/or recombined.
  • decomposition and/or recombination should be regarded as equivalent solutions of the present invention.
  • the steps of performing the above-mentioned series of processing can naturally be performed in chronological order in the order of description, but do not necessarily need to be performed in chronological order. Some steps can be performed in parallel or independently of each other.

Abstract

提供了一种用于无线通信的电子设备、方法和计算机可读存储介质,该电子设备包括:处理电路,被配置为:确定第一网络节点针对非授权频段的信道完成信道空闲检测并接入该信道;以及执行信道空闲检测协调,以将该信道上的至少一个资源块中的一个或多个释放用于第二网络节点的信道空闲检测,其中,第一网络节点和第二网络节点使用相同的无线接入技术。

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2020年1月21日提交中国专利局、申请号为202010070477.2、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体地涉及非授权频段(unlicensed frequency band)的无线资源使用技术。更具体地,涉及一种用于无线通信的电子设备和方法以及计算机可读存储介质。
背景技术
在长期演进(Long Term Evolution,LTE)和新无线电(New Radio,NR)技术中,已经广泛研究了各种干扰减轻和抑制方案,以使得运营商可以以频率复用因子1来进行传输。在非授权频段上,这些方案也可以用来减轻干扰。
然而,在非授权频段上,各个网络节点独立地执行信道空闲检测比如先听后说(Listen Before Talk,LBT),当一个网络节点通过LBT成功接入非授权频段的信道时,即使使用同一无线接入技术或属于同一运营商的其他网络节点也无法通过LBT接入该信道,从而无法实现频率复用因子1,这降低了非授权频段的频谱利用效率。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:确定第一网络节点针对非授权频段的信道完成信道空闲检测并接入该信道;以及执行信道空闲检测协调,以将该信道上的至少一个资源块中的一个或多个释放用于第二网络节点的信道空闲检测,其中,第一网络节点和第二网络节点使用相同的无线接入技术。
根据本申请的一个方面,提供了一种用于无线通信的方法,包括:确定第一网络节点针对非授权频段的信道完成信道空闲检测并接入该信道;以及执行信道空闲检测协调,以将该信道上的至少一个资源块中的一个或多个释放用于第二网络节点的信道空闲检测,其中,第一网络节点和第二网络节点使用相同的无线接入技术。
根据本申请的另一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:确定第一网络节点针对非授权频段的信道的信道空闲检测是否指示该信道被占用;以及在确定该信道被占用的情况下,执行与第二网络节点的信道空闲检测协调,其中,第二网络节点与第一网络节点使用相同的无线接入技术并且已经接入该信道,第二网络节点将该信道上的至少一个资源块中的一个或多个释放用于第一网络节点的信道空闲检测。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:确定第一网络节点针对非授权频段的信道的信道空闲检测是否指示该信道被占用;以及在确定该信道被占用的情况下,执行与第二网络节点的信道空闲检测协调,其中,第二网络节点与第一网络节点使用相同的无线接入技术并且已经接入该信道,第二网络节点将该信道上的至少一个资源块中的一个或多个释放用于第一网络节点的信道空闲检测。
根据本申请的另一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:从服务网络节点获取关于释放资源块的信息,其中,服务网络节点接入非授权频段的信道,该信息指示被释放用于使用相同的无线接入技术的其他网络节点执行信道空闲检测的一个或多个资源块的位置;以及对该信息进行解析,以确定被释放的一个或多个资源块的位置。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括: 从服务网络节点获取关于释放资源块的信息,其中,服务网络节点接入非授权频段的信道,该信息指示被释放用于使用相同的无线接入技术的其他网络节点执行信道空闲检测的一个或多个资源块的位置;以及对该信息进行解析,以确定被释放的一个或多个资源块的位置。
根据本申请的电子设备和方法使得能够在使用相同的无线接入技术的网络节点之间实现信道空闲检测协调,从而使得这些网络节点能够复用非授权频段上的无线传输资源,提高了非授权频段的频谱利用效率。
依据本发明的其它方面,还提供了用于实现上述用于无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图2示出了作为示例的LBT协调的一个示意图;
图3示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图4示出了所释放的子带的一个示意性示例;
图5示出了现有标准中无线局域网的媒体接入控制层和物理层的规范;
图6示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图7示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图8示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图9示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图10示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图11示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图12示出了网络节点之间以及网络节点与UE之间的信息流程的一个示意性示例;
图13是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图;
图14是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图;
图15是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图16是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图17是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而 有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
图1示出了根据本申请的一个实施例的用于无线通信的电子设备100的功能模块框图,如图1所示,电子设备100包括:确定单元101,被配置为确定第一网络节点针对非授权频段的信道完成信道空闲检测并接入该信道;以及执行单元102,被配置为执行信道空闲检测协调,以将该信道上的至少一个资源块中的一个或多个释放用于第二网络节点的信道空闲检测,其中,第一网络节点和第二网络节点使用相同的无线接入技术(Radio Access Technique,RAT)。
其中,确定单元101和执行单元102可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。并且,应该理解,图1中所示的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备100可以设置在第一网络节点侧或者可通信地连接到第一网络节点。本文中的网络节点指的是可以提供在非授权频段的接入服务的实体,例如可以包括各种基站比如eNB、gNB、IAB基站等。本文中的第一、第二等仅是为了区分的目的,而不代表任何顺序或其他实质含义。
这里,还应指出,电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备100可以工作为网络节点本身,并且还可以包括诸如存储器、收发器(未示出)等外部设备。存储器可以用于存储网络节点实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,用户设备、其他网络节点等等)间的通信,这里不具体限制收发器的实现形式。
在本实施例中,第一网络节点和第二网络节点使用相同的RAT,并且均能够接入非授权频段进行传输。在一个示例中,二者可以属于相同的运营商。这里的信道空闲检测例如为LBT。其中,第一网络节点在较早的时间针对非授权频段的信道完成信道空闲检测并成功接入该信道,例如,第一网络节点和其用户设备(User Equipment,UE)利用该信道执行数据传输。
此时,使用同一RAT的第二网络节点也通过信道空闲检测尝试接入该信道。可以理解,由于第一网络节点正在占用该信道,因此,第二网络节点的信道空闲检测将指示信道被占用,从而使得第二网络节点被阻挡而无法接入该信道。为了解决该问题,本实施例的执行单元102执行信道空闲检测协调,以释放所占用信道的部分资源,供第二网络节点进行信道空闲检测使用。
其中,所释放的部分资源可以包括一个或多个资源块。图2示出了作为示例的LBT协调的一个示意图。其中,图2的上半部分代表第一网络节点的操作,下半部分代表第二网络节点的操作,第一网络节点释放图中空白部分的时频资源块(下文中也称为打孔资源),第二网络节点利用该时频资源块执行信道空闲评估(Clear Channel Assessment,CCA)从而完成LBT,这样,第二网络节点也可以接入信道,与第一网络节点共享该信道的传输资源。图2示出了释放一个资源块的示例,但是并不限于此,也可以释放多个资源块。
另一方面,执行单元102还可以被配置为根据第一网络节点的通信质量来确定是否执行信道空闲检测协调。例如,当第一网络节点的通信质量较差时,执行单元可以确定不执行信道空闲检测协调。并且,可以理解,为了保证第一网络节点的通信质量,能够释放的资源块的数量是有限制的。
如图3所示,在一个示例中,电子设备100还可以包括收发单元103,被配置为从第二网络节点接收协调请求,执行单元102被配置为响应于该协调请求执行信道空闲检测协调。参照图2,例如,第二网络节点在LBT的检测结果指示信道繁忙之后,发出协调请求。该协调请求例如经由Xn接口发送。相应地,第一网络节点在收到该协调请求后,使能信道空闲检测协调,即,释放相应的资源块。如果第二网络节点事先并不知道周围哪个网络节点已经接入了信道,则会向多个网络节点发送该协 调请求,没有接入信道的网络节点(即,第一网络节点以外的网络节点)将不做响应。
收发单元103可以从多个第二网络节点接收协调请求,并且执行单元102针对多个第二网络节点中的每一个释放至少一个资源块中的一个或多个资源块,直到全部所述至少一个资源块被释放为止。换言之,第一网络节点可以实现与多个第二网络节点的信道空闲检测协调。针对每一个第二网络节点,第一网络节点释放一个或多个资源块。能够实现协调的第二网络节点的数目取决于第一网络节点能够释放的资源块的总数目,如前所述,该总数目可以基于保证第一网络节点的通信质量的原则确定。
此外,协调请求中还可以包括第二网络节点的自身性能比如信干噪比SINR的信息或者优先级信息,执行单元102可以根据这些信息来确定是否执行信道空闲检测协调。例如,在第二网络节点的SINR较低或者优先级较低的情况下,执行单元102可以不执行信道空闲检测协调。
此外,协调请求中还可以包括第二网络节点的带宽需求的信息,执行单元102仅在第二网络节点的带宽需求不大于信道的带宽的情况下才执行信道空闲检测协调。这样,可以保证为第二网络节点提供足够的带宽。
为了通知其他网络节点可以进行信道空闲检测协调,收发单元103还可以被配置为在第一网络节点接入信道之后向使用同一RAT的周围网络节点发送已接入通知。这样,第二网络节点例如可以通过Xn接口仅向第一网络节点发送协调请求。
另外,收发单元103还可以被配置为将指示要执行信道空闲检测协调的响应发送给第二网络节点。这样,例如,第二网络节点在预定时间内未接收到该响应的情况下可以暂时停止对该信道的信道空闲检测。
在以上的示例中,信道空闲检测协调是基于其他网络节点的请求而动态执行的。在其他示例中,还可以采用半静态的方式。例如,执行单元102可以通过向第二网络节点发送具有零功率的信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)来执行信道空闲检测协调,其中,第二网络节点能够使用零功率的CSI-RS对应的资源块来执行信道空闲检测。
在该情况下,信道空闲检测协调是通过无线资源控制(Radio Resources Control,RRC)信令来实现的。
在执行信道空闲检测协调之后,释放打孔资源,如果此时采用其他RAT的网络节点检测到信道空闲并接入信道,则由于不同RAT之间不存在干扰减轻和抑制技术,会引起冲突。因此,执行单元102还被配置为设置所释放的一个或多个资源块的大小,以使得使用同一RAT的网络节点能够通过空闲信道检测接入信道而使用不同RAT的网络节点不能通过空闲信道接入该信道。
例如,可以根据第二网络节点的带宽需求来限定所释放的资源块的子带宽度。在该子带宽度小于其他RAT的网络节点的带宽需求的情况下,其他RAT的网络节点不能通过空闲信道检测该接入信道,从而可以避免冲突。以LBT协调为例,图4示出了所释放的子带的一个示意性示例。
此外,执行单元102还可以被配置为将所释放的一个或多个资源块的每一个的时间长度设置在预定范围内,该预定范围由各种RAT执行信道空闲检测所需的时间决定。换言之,可以设置时间长度,以使得同一RAT的网络节点能够完成信道空闲检测,而其他RAT的网络节点不能完成信道空闲检测。
下面以NR-U(NR in Unlicensed Spectrum)和WIFI作为两种RAT的示例来说明上述时间长度的设置。假设第一网络节点和第二网络节点采用NR-U,第三网络节点采用WIFI,第一网络节点已经接入信道并且释放资源块来执行LBT协调。为了使得第二网络节点能够利用释放的资源块接入信道而第三网络节点无法接入信道,可以对资源块的时间长度进行特定设置。
具体地,在WIFI中,采用称为具有冲突避免的载波感测多址接入(Carrier Sense Multiple Access with Collision Avoidance,CSMA/CA)的退避机制,其中,在能够接入信道进行传输之前,信道需要在最小量的时间、即分布式帧间空隙(Distributed Interframe Space,DIFS)内被感测为空闲。图5示出了现有标准中无线局域网的媒体接入控制 (MAC)层和物理层的规范。其中,aSIFSTime为3us,aSlotTime为5us。
PIFS=aSIFSTime+aSlotTime
DIFS=aSIFSTime+2*aSlotTime
从图5中可以看出在DIFS中有两个CCAdel、即CCA检测,DIFS为13us。NR-U的CAA检测需要8us。例如在将释放的资源块的时间长度设置为8us或9us的情况下,可以使得NR-U能够接入而WIFI不能接入,这是因为对于DIFS在第二个CCAdel中信道检测将指示繁忙。应该理解,该设置仅是一个示例,而不是限制性的。
如前所述,在信道空闲检测协调中,第一网络节点释放一个或多个资源块用于第二网络节点的信道空闲检测。这样,第一网络节点及其UE在通信时将不能使用这些打孔资源进行数据传输。为了使得UE能够准确地进行解码,UE需要获知这些打孔资源的位置。
例如,执行单元102可以向第一网络节点服务的UE通知所释放的一个或多个资源块的位置的信息。例如,执行单元102可以将位置的信息包括在组通用物理下行控制信道(group common physical downlink control channel,GC-PDCCH)的信道占用时间(Channel Occupancy Time,COT)长度字段中。
在一个示例中,GC-PDCCH可以位于COT的开始处,这可以降低误检测率。COT时长字段可以包括:用于确定一个或多个资源块的时域位置的位(bit)(以下也称为时域位);用于确定一个或多个资源块的频域位置的位(以下也称为频域位);以及用于指示一个或多个资源块在整个COT中的时隙位置的位(以下也称为时隙位)。通过解析该COT时长字段,UE可以准确地确定被释放的资源块的位置,从而在解码的时候排除这些位置。
例如,时域位用于指示资源块在时域上具体对应于哪个或哪几个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符 号,频域位用于指示资源块在频域上具体对应于哪个频率范围,时隙位用于指示资源块在COT中的时隙的位置。
例如,用于确定该一个或多个资源块的时域位置的位包括用于指定该一个或多个资源块所在的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号组的位,用于确定该一个或多个资源块的频域位置的位包括用于指定从信道的边界起子带的个数的位,其中,子带的带宽为预定值。
具体地,一个时隙包括14个OFDM符号。假设在COT中所有的传输符号数为N INT。这些传输符号可以分为14个连续的符号组,例如,前
Figure PCTCN2021071651-appb-000001
个符号组的每一个包括
Figure PCTCN2021071651-appb-000002
个OFDM符号,后
Figure PCTCN2021071651-appb-000003
个符号组的每一个包括
Figure PCTCN2021071651-appb-000004
个OFDM符号。可以使用4个比特来指示资源块的时域位置对应于哪个符号组,例如,“1000”对应于第8组。应该理解,取决于OFDM符号组的数量,可以相应地改变用来确定时域位置的位的数目。在这种情况下,用于指示资源块在整个COT中的时隙位置的位一方面可以指示时隙位置,另一方面也可以用于区分上下行。
在频域上,可以将信道带宽划分为多个子带,所释放的资源块的频域位置例如用所在的子带表示。示例性地,可以用若干个比特来表示从信道的边界起这若干个比特所代表的数目的子带为释放的资源块的频域范围。其中,所需的比特数目取决于释放的资源块的最大带宽,边界指的是信道的频带的边界,可以指上边界,也可以指下边界,例如可以预先约定好。
例如,在60GHz上,假设信道的传输带宽为约2GHz,如果每个子带设置为20MHz,则在使用7个比特来指示子带数目的情况下,最多可以指示2 7=128个子带,对应于信道带宽128×20MHz=2560MHz。即,在这种情况下,使用7比特来指示资源块的频域位置是足够的,能够覆盖整个信道带宽。
应该理解,上述COT时长字段的定义仅是示例性的,实际中可以需要另外地规定。
在另一个示例中,GC-PDCCH还可以位于小时隙(mini-slot)中。通过小时隙,基站可以在时隙的中间启动下行链路突发(DL burst),从而使得传输变得更灵活。作为一种补充,该GC-PDCCH中也可以包括COT时长字段,以指示所释放的资源块的位置。
在该示例中,COT时长字段可以包括:用于确定一个或多个资源块的时域位置的位;以及用于确定一个或多个资源块的频域位置的位。由于mini-slot中仅包括下行传输,因此不需要指示时隙位置的位。COT时长字段的两个部分与前述位于COT开始处的GC-PDCCH中的COT时长字段的相应部分具有相同的含义和配置,在此不再重复。
综上所述,根据本实施例的电子设备100使得能够在使用相同的RAT的网络节点之间实现信道空闲检测协调,从而使得这些网络节点能够复用非授权频段上的无线传输资源,提高了非授权频段的频谱利用效率。此外,电子设备100还可以通过设置用于协调的资源块的大小,阻止使用其他RAT的网络节点接入该资源块,从而防止冲突。电子设备100还通过新配置的信令来通知已经接入信道的UE所释放的资源块的位置,以使得UE能够正确解码。
<第二实施例>
图6示出了根据本申请的另一个实施例的电子设备200的功能模块框图,如图6所示,电子设备200包括:确定单元201,被配置为确定第一网络节点针对非授权频段的信道的信道空闲检测是否指示信道被占用;以及执行单元202,被配置为在确定单元201确定信道被占用的情况下,执行与第二网络节点的信道空闲检测协调,其中,第二网络节点与第一网络节点使用相同的RAT并且已经接入信道,第二网络节点将信道上的至少一个资源块中的一个或多个释放用于第一网络节点的信道空闲检测。
其中,确定单元201和单元执行202可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。并且,应该理解,图6中所示的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模 块,而不是用于限制具体的实现方式。
电子设备200可以设置在第一网络节点侧或者可通信地连接到第一网络节点。本文中的网络节点指的是可以提供在非授权频段的接入服务的实体,例如可以包括各种基站比如eNB、gNB、IAB基站等。
这里,还应指出,电子设备200可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备200可以工作为网络节点本身,并且还可以包括诸如存储器、收发器(未示出)等外部设备。存储器可以用于存储网络节点实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,用户设备、其他网络节点等等)间的通信,这里不具体限制收发器的实现形式。
应该注意,本实施例中的第一网络节点和第二网络节点的设定与第一实施例中不是相同的,而是相反的。在本实施例中,第二网络节点是先成功接入信道的节点、即提供信道空闲检测协调的节点,而第一网络节点是后续尝试接入信道的节点、即请求信道空闲检测协调的节点。因此,本实施例是从请求信道空闲检测协调的节点的角度进行描述的。
类似地,针对非授权频段的信道的信道空闲检测例如可以为LBT。
在一个示例中,以动态模式实现协调。如图7所示,电子设备200还包括收发单元203,被配置为向第二网络节点发送协调请求。协调请求中例如包括第一网络节点的带宽需求的信息。该信息供第二网络节点用于确定是否执行信道空闲检测协调。例如,收发单元203可以通过Xn接口来发送该协调请求。
此外,收发单元203还可以被配置为从第二网络节点接收已接入通知。该接收操作可以在第二网络节点成功接入信道后发生,这样,第一网络节点可以获知已接入信道的是第二网络节点,从而有针对性的发送协调请求。
在第一网络节点并不知道哪个网络节点已经接入信道的情况下,收发单元203例如可以向周围的多个网络节点发送协调请求,其中只有已经接入信道的第二网络节点会响应并执行信道空闲检测协调。
执行单元202在收发单元203发送协调请求之后继续执行信道空闲检测,从而能够在释放的资源块上完成信道空闲检测而接入信道。
另外,收发单元203还可以被配置为从第二网络节点接收指示要执行信道空闲检测协调的响应。如果收发单元203在预定时间段内接收到该响应,则执行单元202继续执行信道空闲检测以在释放的资源块上完成信道空闲检测;反之,如果收发单元203在预定时间段内没有接收到该响应,则执行单元202认为已经接入信道的可能是采用其他RAT的网络节点,从而例如暂时放弃尝试接入该信道。
在另一个示例中,以半静态模式实现协调。在该示例中,收发单元203被配置为接收来自第二网络节点的具有零功率的CSI-RS,并且第一网络节点在该零功率的CSI-RS对应的资源块上执行信道空闲检测。在该情况下,信道空闲检测协调是通过RRC信令来实现的。
综上所述,根据本实施例的电子设备200使得能够在使用相同的RAT的网络节点之间实现信道空闲检测协调,从而使得这些网络节点能够复用非授权频段上的无线传输资源,提高了频谱利用效率。
应该注意,在同一网络节点上,可以既配置有电子设备100,又配置有电子设备200。
<第三实施例>
图8示出了根据本申请的一个实施例的用于无线通信的电子设备300的功能模块框图,如图8所示,电子设备300包括:获取单元301,被配置为从服务网络节点获取关于释放资源块的信息,其中,服务网络节点接入非授权频段的信道,所述信息指示被释放用于使用相同的RAT的其他网络节点执行信道空闲检测的一个或多个资源块的位置;以及确定单元302,被配置为对所述信息进行解析,以确定被释放的一个或多个资源块的位置。
其中,获取单元301和确定单元302可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。并且,应该理解,图8中所示的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备300例如可以设置在UE侧或者可通信地连接到UE。这里,还应指出,电子设备300可以以芯片级来实现,或者也可以以设备级来 实现。例如,电子设备300可以工作为用户设备本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储用户设备实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,基站、其他用户设备等等)间的通信,这里不具体限制收发器的实现形式。
在本实施例中,在非授权频段服务于UE的服务网络节点执行了信道空闲检测协调,从而将一部分资源块释放用于使用相同RAT的其他网络节点进行信道空闲检测。相应地,服务网络节点需要将关于所释放的资源块的位置的信息通知UE,以使得UE能够正确地解码。
例如,获取单元301可以基于GC-PDCCH的COT时长字段来获取该信息。换言之,该信息包括在COT时长字段中。
在一个示例中,GC-PDCCH位于COT的开始处。COT时长字段包括:用于确定所述一个或多个资源块的时域位置的位;用于确定所述一个或多个资源块的频域位置的位;以及用于指示所述一个或多个资源块在整个COT中的时隙位置的位。例如,用于确定所述一个或多个资源块的时域位置的位包括用于指定所述一个或多个资源块所在的OFDM符号组的位,用于确定所述一个或多个资源块的频域位置的信息包括用于指定从信道的边界起子带的个数的位,其中,子带的带宽为预定值。
在另一个示例中,GC-PDCCH还可以位于小时隙中。COT时长字段包括:用于确定所述一个或多个资源块的时域位置的位;以及用于确定所述一个或多个资源块的频域位置的位。详细描述已经在第一实施例中给出,在此不再重复。
综上所述,根据本实施例的电子设备300能够正确识别被释放的资源块的位置,从而在支持信道空闲检测协调的情况下实现正确的解码。
<第四实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描 述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图9示出了根据本申请的一个实施例的用于无线通信的方法的流程图,该方法包括:确定第一网络节点针对非授权频段的信道完成信道空闲检测并接入该信道(S11);以及执行信道空闲检测协调,以将信道上的至少一个资源块中的一个或多个释放用于第二网络节点的信道空闲检测(S13),其中,第一网络节点和第二网络节点使用相同的RAT。该方法例如在第一网络节点侧执行。
例如,在步骤S13中还可以根据第一网络节点的通信质量比如SINR等来确定是否执行信道空闲检测协调。
在一个示例中,在步骤S13中可以通过向第二网络节点发送具有零功率的CSI-RS来执行信道空闲检测协调,其中,第二网络节点能够使用所述零功率的CSI-RS对应的资源块来执行信道空闲检测。
在另一个示例中,如图9的虚线框所示,上述方法还可以包括步骤S12:从第二网络节点接收协调请求,并且响应于该协调请求执行信道空闲检测协调。例如,可以经由Xn接口接收协调请求。协调请求中可以包括第二网络节点的带宽需求的信息,并且,仅在第二网络节点的带宽需求不大于信道的带宽的情况下执行信道空闲检测协调。此外,协调请求中还可以包括第二网络节点的通信质量比如SINR或者优先级等的信息,在步骤S13中可以根据这些信息来确定是否执行信道空闲检测协调。
可以从多个第二网络节点接收协调请求,并且针对多个第二网络节点中的每一个释放至少一个资源块中的一个或多个资源块,直到全部至少一个资源块被释放为止。因此,如果在释放了至少一个资源块后,还接收到来自第二网络节点的协调请求,则此时也不响应于该协调请求执行信道空闲检测协调。
虽然图9中未示出,但是上述方法还可以包括如下步骤:将指示要执行信道空闲检测协调的响应发送给第二网络节点。在第一网络节点接入信道之后还可以向使用同一RAT的周围网络节点发送已接入通知。
此外,如图9中的另一个虚线框所示,上述方法还可以包括步骤S14: 向第一网络节点服务的UE通知所释放的一个或多个资源块的位置的信息。该信息可以包括在GC-PDCCH的COT时长字段中。
例如,GC-PDCCH可以位于COT的开始处。COT时长字段包括:用于确定所述一个或多个资源块的时域位置的位;用于确定所述一个或多个资源块的频域位置的位;以及用于指示所述一个或多个资源块在整个信道占用时间中的时隙位置的位。用于确定所述一个或多个资源块的时域位置的位包括用于指定所述一个或多个资源块所在的OFDM符号组的位,用于确定所述一个或多个资源块的频域位置的位包括用于指定从信道的边界起子带的个数的位,其中,子带的带宽为预定值。
此外,GC-PDCCH还可以位于小时隙中。COT时长字段包括:用于确定所述一个或多个资源块的时域位置的位;以及用于确定所述一个或多个资源块的频域位置的位。
其中,所释放的一个或多个资源块的大小可以被设置为使得使用同一RAT的网络节点能够通过空闲信道检测接入信道而使用不同RAT的网络节点不能通过空闲信道检测接入信道。例如,可以将所述一个或多个资源块的每一个的时间长度设置在预定范围内,该预定范围由各种RAT执行信道空闲检测所需的时间决定。
图10示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,该方法包括:确定第一网络节点针对非授权频段的信道的信道空闲检测是否指示信道被占用(S21);以及在确定信道被占用的情况下,执行与第二网络节点的信道空闲检测协调(S22),其中,第二网络节点与第一网络节点使用相同的RAT并且已经接入信道,第二网络节点将信道上的至少一个资源块中的一个或多个释放用于第一网络节点的信道空闲检测。该方法例如在第一网络节点侧执行。
在一个示例中,步骤S22可以包括:向第二网络节点发送协调请求。该协调请求中例如包括第一网络节点的带宽需求的信息。可以通过Xn接口来发送该协调请求。步骤S22中还可以包括:从第二网络节点接收指示要执行信道空闲检测协调的响应。此外,第一网络节点还可以从第二网络节点接收已接入通知,以识别接入信道的网络节点。
在另一个示例中,步骤S22包括:接收来自第二网络节点的具有零功率的CSI-RS,并且第一网络节点在所述零功率的CSI-RS对应的资源 块上执行信道空闲检测。
图11示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,该方法包括:从服务网络节点获取关于释放资源块的信息(S31),其中,服务网络节点接入非授权频段的信道,该信息指示被释放用于使用相同的RAT的其他网络节点执行信道空闲检测的一个或多个资源块的位置;以及对该信息进行解析,以确定被释放的一个或多个资源块的位置(S32)。该方法例如在UE侧执行。
其中,上述信息可以包括在GC-PDCCH的COT时长字段中。有关该信息的描述已经在前文中给出,在此不再重复。
上述方法分别对应于第一实施例中所描述的电子设备100、第二实施例中所描述的电子200和第三实施例中所描述的电子设备300,其具体细节可参见以上相应位置的描述,在此不再重复。注意,上述各个方法可以结合或单独使用。
为了便于理解,以下参照图12给出了网络节点之间以及网络节点与UE之间的信息流程的一个示意性示例。该示例仅是说明性的,而非限制性的。
在图12中,示出了LBT作为信道空闲检测的示例。其中,第一网络节点首先通过LBT成功接入非授权频段的信道,并且与UE进行通信。虚线框所示的步骤,即向其他网络节点(包括第二网络节点)发送已接入通知是可选的。接下来,第二网络节点执行LBT以尝试接入信道,但是LBT指示信道被占用。因此,第二网络节点例如经由Xn接口向第一网络节点发送协调请求。第一网络节点在接收到该协调请求后执行与第二网络节点的LBT协调。如图中的虚线所示,第一网络节点还可以向第二网络节点发送协调请求响应。此外,第一网络节点在确定执行LBT协调之前还可以进行一系列判断,比如第二网络节点的带宽需求是否小于等于信道带宽,第一网络节点的SINR是否满足要求,等等。第二网络节点通过利用第一网络节点释放的资源块完成LBT而成功接入信道。另外,第一网络节点在执行LBT协调时,还向其服务的UE发送用于通知所释放的资源块的位置的信息,该信息例如包括在GC-PDCCH的COT时长字段中。
本公开内容的技术能够应用于各种产品。
例如,电子设备100和200可以被实现为各种基站。基站可以被实现为任何类型的演进型节点B(eNB)或gNB(5G基站)。eNB例如包括宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。对于gNB也可以由类似的情形。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
电子设备300可以被实现为各种用户设备。用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图13是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图13所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图13示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图13所示,无线通信接口825可以包括多个BB处理器826。例 如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图13所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图13示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图13所示的eNB 800中,电子设备100和200的收发单元可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行确定单元101、执行单元102的功能或者通过执行确定单元201、执行单元202的功能来实现在使用相同的RAT的网络节点之间的信道空闲检测协调,从而使得这些网络节点能够复用非授权频段上的无线传输资源,提高频谱利用效率。
(第二应用示例)
图14是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图14所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图14示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图13描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图13描述的BB处理器826相同。如图14 所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图14示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图14所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图14示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图14所示的eNB 830中,电子设备100和200的收发单元可以由无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以由控制器851实现。例如,控制器851可以通过执行确定单元101、执行单元102的功能或者通过执行确定单元201、执行单元202的功能来实现在使用相同的RAT的网络节点之间的信道空闲检测协调,从而使得这些网络节点能够复用非授权频段上的无线传输资源,提高频谱利用效率。
[关于用户设备的应用示例]
(第一应用示例)
图15是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个 天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图15所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图15示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种 无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图15所示,智能电话900可以包括多个天线916。虽然图15示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图15所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图15所示的智能电话900中,电子设备300的收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行获取单元301和确定单元302的功能来正确识别被释放的资源块的位置,从而在支持信道空闲检测协调的情况下实现正确的解码。
(第二应用示例)
图16是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的 导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图16所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图16示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图16所示,汽车导航设备920可以包括多个天线937。虽然图16示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图16所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图16示出的汽车导航设备920中,电子设备300的收发器可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行获取单元301和确定单元302的功能来正确识别被释放的资源块的位置,从而在支持信道空闲检测协调的情况下实现正确的解码。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、 光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图17所示的通用计算机1700)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图17中,中央处理单元(CPU)1701根据只读存储器(ROM)1702中存储的程序或从存储部分1708加载到随机存取存储器(RAM)1703的程序执行各种处理。在RAM 1703中,也根据需要存储当CPU 1701执行各种处理等等时所需的数据。CPU 1701、ROM 1702和RAM 1703经由总线1704彼此连接。输入/输出接口1005也连接到总线1704。
下述部件连接到输入/输出接口1705:输入部分1706(包括键盘、鼠标等等)、输出部分1707(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1708(包括硬盘等)、通信部分1709(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1709经由网络比如因特网执行通信处理。根据需要,驱动器1710也可连接到输入/输出接口1705。可移除介质1711比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1710上,使得从中读出的计算机程序根据需要被安装到存储部分1708中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质1711安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图17所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1711。可移除介质1711的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1702、存储部分1708中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (36)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    确定第一网络节点针对非授权频段的信道完成信道空闲检测并接入所述信道;以及
    执行信道空闲检测协调,以将所述信道上的至少一个资源块中的一个或多个释放用于第二网络节点的信道空闲检测,其中,所述第一网络节点和所述第二网络节点使用相同的无线接入技术。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为从第二网络节点接收协调请求,并且响应于所述协调请求执行所述信道空闲检测协调。
  3. 根据权利要求2所述的电子设备,其中,所述协调请求中包括所述第二网络节点的带宽需求的信息,并且,所述处理电路被配置为仅在所述第二网络节点的带宽需求不大于所述信道的带宽的情况下执行所述信道空闲检测协调。
  4. 根据权利要求2所述的电子设备,其中,所述处理电路被配置为经由Xn接口接收所述协调请求。
  5. 根据权利要求2所述的电子设备,其中,所述处理电路被配置为从多个第二网络节点接收协调请求,并且针对所述多个第二网络节点中的每一个释放所述至少一个资源块中的一个或多个资源块,直到全部所述至少一个资源块被释放为止。
  6. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为将指示要执行所述信道空闲检测协调的响应发送给所述第二网络节点。
  7. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为在所述第一网络节点接入所述信道之后向使用同一无线接入技术的周围网络节点发送已接入通知。
  8. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为 通过向所述第二网络节点发送具有零功率的信道状态信息参考信号来执行所述信道空闲检测协调,其中,所述第二网络节点能够使用所述零功率的信道状态信息参考信号对应的资源块来执行信道空闲检测。
  9. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为根据所述第一网络节点的通信质量来确定是否执行所述信道空闲检测协调。
  10. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为设置所释放的一个或多个资源块的大小,以使得使用同一无线接入技术的网络节点能够通过空闲信道检测接入所述信道而使用不同无线接入技术的网络节点不能通过空闲信道检测接入所述信道。
  11. 根据权利要求10所述的电子设备,其中,所述处理电路被配置为将所述一个或多个资源块的每一个的时间长度设置在预定范围内,所述预定范围由各种无线接入技术执行信道空闲检测所需的时间决定。
  12. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为向所述第一网络节点服务的用户设备通知所释放的一个或多个资源块的位置的信息。
  13. 根据权利要求12所述的电子设备,其中,所述处理电路被配置为将所述位置的信息包括在组通用物理下行控制信道的信道占用时间时长字段中。
  14. 根据权利要求13所述的电子设备,其中,所述组通用物理下行控制信道位于信道占用时间的开始处。
  15. 根据权利要求14所述的电子设备,其中,所述信道占用时间时长字段包括:用于确定所述一个或多个资源块的时域位置的位;用于确定所述一个或多个资源块的频域位置的位;以及用于指示所述一个或多个资源块在整个信道占用时间中的时隙位置的位。
  16. 根据权利要求15所述的电子设备,其中,用于确定所述一个或多个资源块的时域位置的位包括用于指定所述一个或多个资源块所在的正交频分复用符号组的位,用于确定所述一个或多个资源块的频域位置的位包括用于指定从所述信道的边界起子带的个数的位,其中,所述子带的带宽为预定值。
  17. 根据权利要求14所述的电子设备,其中,所述组通用物理下行控制信道还位于小时隙中。
  18. 根据权利要求17所述的电子设备,其中,所述信道占用时间时长字段包括:用于确定所述一个或多个资源块的时域位置的位;以及用于确定所述一个或多个资源块的频域位置的位。
  19. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    确定第一网络节点针对非授权频段的信道的信道空闲检测是否指示所述信道被占用;以及
    在确定所述信道被占用的情况下,执行与第二网络节点的信道空闲检测协调,其中,所述第二网络节点与所述第一网络节点使用相同的无线接入技术并且已经接入所述信道,所述第二网络节点将所述信道上的至少一个资源块中的一个或多个释放用于所述第一网络节点的信道空闲检测。
  20. 根据权利要求19所述的电子设备,其中,所述处理电路被配置为向所述第二网络节点发送协调请求。
  21. 根据权利要求20所述的电子设备,其中,所述协调请求中包括所述第一网络节点的带宽需求的信息。
  22. 根据权利要求20所述的电子设备,其中,所述处理电路还被配置为从所述第二网络节点接收指示要执行所述信道空闲检测协调的响应。
  23. 根据权利要求20所述的电子设备,其中,所述处理电路被配置为经由Xn接口来发送所述协调请求。
  24. 根据权利要求20所述的电子设备,其中,所述处理电路还被配置为从所述第二网络节点接收已接入通知。
  25. 根据权利要求19所述的电子设备,其中,所述处理电路被配置为接收来自所述第二网络节点的具有零功率的信道状态信息参考信号,并且所述第一网络节点在所述零功率的信道状态信息参考信号对应的资源块上执行信道空闲检测。
  26. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    从服务网络节点获取关于释放资源块的信息,其中,所述服务网络节点接入非授权频段的信道,所述信息指示被释放用于使用相同的无线接入技术的其他网络节点执行信道空闲检测的一个或多个资源块的位置;以及
    对所述信息进行解析,以确定被释放的所述一个或多个资源块的位置。
  27. 根据权利要求26所述的电子设备,其中,所述处理电路被配置为基于组通用物理下行控制信道的信道占用时间时长字段获取所述信息。
  28. 根据权利要求27所述的电子设备,其中,所述组通用物理下行控制信道位于信道占用时间的开始处。
  29. 根据权利要求28所述的电子设备,其中,所述信道占用时间时长字段包括:用于确定所述一个或多个资源块的时域位置的位;用于确定所述一个或多个资源块的频域位置的位;以及用于指示所述一个或多个资源块在整个信道占用时间中的时隙位置的位。
  30. 根据权利要求29所述的电子设备,其中,用于确定所述一个或多个资源块的时域位置的位包括用于指定所述一个或多个资源块所在的正交频分复用符号组的位,用于确定所述一个或多个资源块的频域位置的信息包括用于指定从所述信道的边界起子带的个数的位,其中,所述子带的带宽为预定值。
  31. 根据权利要求28所述的电子设备,其中,所述组通用物理下行控制信道还位于小时隙中。
  32. 根据权利要求31所述的电子设备,其中,所述信道占用时间时长字段包括:用于确定所述一个或多个资源块的时域位置的位;以及用于确定所述一个或多个资源块的频域位置的位。
  33. 一种用于无线通信的方法,包括:
    确定第一网络节点针对非授权频段的信道完成信道空闲检测并接入所述信道;以及
    执行信道空闲检测协调,以将所述信道上的至少一个资源块中的一个或多个释放用于第二网络节点的信道空闲检测,其中,所述第一网络节点和所述第二网络节点使用相同的无线接入技术。
  34. 一种用于无线通信的方法,包括:
    确定第一网络节点针对非授权频段的信道的信道空闲检测是否指示所述信道被占用;以及
    在确定所述信道被占用的情况下,执行与第二网络节点的信道空闲检测协调,其中,所述第二网络节点与所述第一网络节点使用相同的无线接入技术并且已经接入所述信道,所述第二网络节点将所述信道上的至少一个资源块中的一个或多个释放用于所述第一网络节点的信道空闲检测。
  35. 一种用于无线通信的方法,包括:
    从服务网络节点获取关于释放资源块的信息,其中,所述服务网络节点接入非授权频段的信道,所述信息指示被释放用于使用相同的无线接入技术的其他网络节点执行信道空闲检测的一个或多个资源块的位置;以及
    对所述信息进行解析,以确定被释放的所述一个或多个资源块的位置。
  36. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据权利要求33至35中的任意一项所述的用于无线通信的方法。
PCT/CN2021/071651 2020-01-21 2021-01-14 用于无线通信的电子设备和方法、计算机可读存储介质 WO2021147746A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180008292.1A CN114930969A (zh) 2020-01-21 2021-01-14 用于无线通信的电子设备和方法、计算机可读存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010070477.2 2020-01-21
CN202010070477.2A CN113225831A (zh) 2020-01-21 2020-01-21 用于无线通信的电子设备和方法、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021147746A1 true WO2021147746A1 (zh) 2021-07-29

Family

ID=76991656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071651 WO2021147746A1 (zh) 2020-01-21 2021-01-14 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (2)

Country Link
CN (2) CN113225831A (zh)
WO (1) WO2021147746A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106304092A (zh) * 2015-05-15 2017-01-04 中兴通讯股份有限公司 一种非授权频谱的共享方法及装置
WO2017120542A1 (en) * 2016-01-06 2017-07-13 Intel IP Corporation Method and apparatus for channel access for transmission of pusch and ul control
WO2019161795A1 (en) * 2018-02-26 2019-08-29 Huawei Technologies Co., Ltd. Method and apparatus for bandwidth indication in unlicensed spectrum
CN110611959A (zh) * 2019-09-26 2019-12-24 中兴通讯股份有限公司 一种数据传输方法、装置和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106304092A (zh) * 2015-05-15 2017-01-04 中兴通讯股份有限公司 一种非授权频谱的共享方法及装置
WO2017120542A1 (en) * 2016-01-06 2017-07-13 Intel IP Corporation Method and apparatus for channel access for transmission of pusch and ul control
WO2019161795A1 (en) * 2018-02-26 2019-08-29 Huawei Technologies Co., Ltd. Method and apparatus for bandwidth indication in unlicensed spectrum
CN110611959A (zh) * 2019-09-26 2019-12-24 中兴通讯股份有限公司 一种数据传输方法、装置和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS INC: "MAC Impacts of Multiple CCAs in Wide Band Operation", 3GPP DRAFT; R2-1906729 MAC IMPACTS OF MULTIPLE CCAS IN WIDE BAND OPERATION, vol. RAN WG2, 3 May 2019 (2019-05-03), Reno, USA, pages 1 - 5, XP051711035 *

Also Published As

Publication number Publication date
CN113225831A (zh) 2021-08-06
CN114930969A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
US20230262771A1 (en) Electronic device for wireless communication system, method and storage medium
US20230023099A1 (en) Electronic device, radio communication method, and computer readable storage medium
KR102460473B1 (ko) 전자 디바이스, 정보 처리 장치, 및 정보 처리 방법
US11849443B2 (en) Electronic device, radio communication method, and computer readable storage medium
EP3606205A1 (en) Electronic device and method for wireless communication
US20220400470A1 (en) Terminal device, base station apparatus, and communication method
EP4221393A1 (en) Electronic device and method for use in radio communication, and computer-readable storage medium
US20230300798A1 (en) Electronic device, method, and storage medium for wireless communication
US11096205B2 (en) Device and method for controlling communication of downlink data
WO2021147746A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021031881A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US10306626B2 (en) Device
WO2021233212A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN111602421B (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
WO2022083535A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20170238281A1 (en) Device and system
WO2020143522A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744384

Country of ref document: EP

Kind code of ref document: A1