WO2021031881A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2021031881A1
WO2021031881A1 PCT/CN2020/107689 CN2020107689W WO2021031881A1 WO 2021031881 A1 WO2021031881 A1 WO 2021031881A1 CN 2020107689 W CN2020107689 W CN 2020107689W WO 2021031881 A1 WO2021031881 A1 WO 2021031881A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
electronic device
time domain
uplink
wireless communication
Prior art date
Application number
PCT/CN2020/107689
Other languages
English (en)
French (fr)
Inventor
崔焘
Original Assignee
索尼公司
崔焘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 崔焘 filed Critical 索尼公司
Priority to EP20854275.3A priority Critical patent/EP4012964A4/en
Priority to CN202080056549.6A priority patent/CN114208103B/zh
Priority to US17/632,792 priority patent/US20220295536A1/en
Priority to KR1020227003442A priority patent/KR20220047971A/ko
Publication of WO2021031881A1 publication Critical patent/WO2021031881A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • This application relates to the field of wireless communication technology, and specifically relates to an uplink transmission technology in wireless communication in an unlicensed band (unlicensed band). More specifically, it relates to an electronic device and method for wireless communication and a computer-readable storage medium.
  • ultra-reliable and ultra-low latency communication In various application scenarios based on New Radio (NR) technology, ultra-reliable and ultra-low latency communication (Ultra reliable and low latency communication, URLLC) is an important one.
  • URLLC Ultra reliable and low latency communication
  • an uplink scheduling-free Configured Grant, CG
  • the uplink scheduling-free refers to that the user equipment (User Equipment, UE) can directly send uplink data without the uplink authorization and scheduling information sent by the base station after obtaining uplink synchronization with the base station.
  • an electronic device for wireless communication including: a processing circuit configured to: obtain control information from a base station; and determine an unlicensed frequency band that a user equipment can access based on the control information Multiple starting positions of the uplink scheduling-free time domain resources.
  • a method for wireless communication including: acquiring control information from a base station; and determining, based on the control information, an uplink scheduling-free time domain resource of an unlicensed frequency band that a user equipment can access Multiple starting positions.
  • an electronic device for wireless communication including: a processing circuit, configured to generate control information, the control information indicating the uplink scheduling-free of the unlicensed frequency band that the user equipment can access Multiple starting positions of the time domain resource; and providing the control information to the user equipment.
  • a method for wireless communication including: generating control information, the control information indicating a plurality of starting points of uplink non-scheduling time domain resources of an unlicensed frequency band that a user equipment can access Location; and provide the control information to the user equipment.
  • the electronic device and method according to the present application enable the user equipment to try to access the uplink non-scheduling time domain resources of the unlicensed frequency band at multiple locations in the time domain, improve the access success rate, and reduce the uplink transmission on the unlicensed frequency band Time delay.
  • a computer program code and a computer program product for implementing the above method for wireless communication and a computer on which the computer program code for implementing the above method for wireless communication is recorded are also provided Readable storage medium.
  • Fig. 1 shows a block diagram of functional modules of an electronic device for wireless communication according to an embodiment of the present application
  • Figures 2a and 2b show diagrams of examples of mini-slot-based PUSCH scheduling
  • Figure 3 shows a diagram of an example of slot-based PUSCH scheduling
  • FIG. 4 is a diagram showing an example of the setting of the SLIV field
  • Figure 5 shows a diagram of another example of mini-slot-based PUSCH scheduling
  • Figure 6 shows a diagram of another example of mini-slot-based PUSCH scheduling
  • Fig. 7 shows a block diagram of functional modules of an electronic device for wireless communication according to another embodiment of the present application.
  • Fig. 8 shows a flowchart of a method for wireless communication according to an embodiment of the present application
  • Fig. 9 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • FIG. 10 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • FIG. 11 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a smart phone to which the technology of the present disclosure can be applied;
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 14 is a block diagram of an exemplary structure of a general personal computer in which the method and/or apparatus and/or system according to the embodiments of the present invention can be implemented.
  • FIG. 1 shows a block diagram of functional modules of an electronic device 100 for wireless communication according to an embodiment of the present application.
  • the electronic device 100 includes: an acquiring unit 101 configured to acquire control information from a base station And the determining unit 102, configured to determine, based on the control information, multiple starting positions of the uplink scheduling-free time domain resources of the unlicensed frequency band that the user equipment can access.
  • the acquiring unit 101 and the determining unit 102 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip, for example.
  • the processing circuit may be implemented as a chip, for example.
  • each functional unit in the apparatus shown in FIG. 1 is only a logical module divided according to the specific function implemented by it, and is not used to limit the specific implementation manner.
  • the electronic device 100 may, for example, be provided on the user equipment (UE) side or be communicably connected to the UE.
  • the electronic device 100 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 100 may work as a user device itself, and may also include external devices such as a memory and a transceiver (not shown in the figure).
  • the memory can be used to store programs and related data information that the user equipment needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, base stations, other user equipment, etc.), and the implementation form of the transceiver is not specifically limited here. This also applies to the subsequent description of other configuration examples of the electronic device on the user equipment side.
  • a user equipment when a user equipment (UE) communicates on an unlicensed frequency band, it is necessary to first perform energy detection of whether the channel is occupied before transmitting data, such as listen before talk (LBT).
  • LBT listen before talk
  • the UE can access the channel to perform data transmission only when it detects that the channel is in an idle state.
  • the UE does not need to obtain resource scheduling information from the base station, but performs LBT on the channel and directly accesses the uplink scheduling-free resources when the LBT indicates that the channel is idle (also known as LBT success).
  • PUSCH Physical Uplink Shared Channel
  • Figure 2a shows the situation of PUSCH scheduling based on mini-slot (small time slot), which can be similarly applied to scheduling based on slot.
  • the UE attempts to perform LBT.
  • the time point for accessing the uplink non-scheduled time domain resources has passed when LBT is successful. Therefore, the UE cannot successfully send PUSCH, but in the second slot.
  • the LBT succeeds before reaching the point in time when it can access the uplink scheduling-free time domain resources, and the channel is reserved until this point in time, thereby successfully sending the PUSCH.
  • the time point at which the uplink scheduling-free time domain resource can be accessed in FIG. 2a is referred to as the starting position of the uplink scheduling-free time domain resource of the unlicensed frequency band that the UE can access.
  • Figure 2a shows a situation where there is one starting position in a time slot. In order to improve the chance of successful access, there may be multiple starting positions in one time slot.
  • the base station can notify the UE of multiple starting positions through control information.
  • the control information may be included in at least one of radio resource control (Radio Resource Control, RRC) signaling and downlink control information (Downlink Control Information, DCI), for example.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the determining unit 102 determines the positions of symbols as multiple starting positions in one slot based on the control information.
  • the control information can indicate a part or all of the symbols as the starting position.
  • the UE if the UE has successfully completed LBT before then, it can receive Into the uplink scheduling-free time domain resources to perform PUSCH transmission.
  • control information may include a bitmap
  • the determining unit 102 determines whether each symbol in a time slot is used as a starting position based on each bit in the bitmap.
  • a 14-bit bitmap may be used to indicate whether each of the 14 symbols is used as a starting position.
  • the bit in the bitmap can be set to 1 to indicate the corresponding symbol as the starting position, or the opposite setting can be performed.
  • the meaning of the bits in the bitmap may be agreed in advance between the base station and the UE, or may be defined by the base station and notified to the UE through signaling such as RRC signaling.
  • control information may include a flag bit
  • the determining unit 102 determines, based on the flag bit, a set of specific symbols as multiple starting positions in a time slot.
  • set a set of specific symbols for example, symbols 1 to 10
  • the flag bit takes a predetermined value (for example, 1)
  • multiple symbols in the set are used as multiple starting positions. Start position.
  • signaling overhead can be reduced.
  • different sets of specific symbols serving as multiple start positions can also be determined based on different values of the multiple mark bits. For example, in the case of two flag bits, the value "00" corresponds to the symbol set ⁇ 0,3,5,7 ⁇ and the value "01" corresponds to the symbol set ⁇ 1,4,8,10 ⁇ , etc. Wait.
  • the determining unit 102 is further configured to determine the size of the uplink scheduling-free time domain resource for each starting position as the length from the starting position to the end of a time slot, As shown in Figure 3.
  • the size of the uplink scheduling-free time domain resource is the length from the start position at the time of access to the end of the time slot.
  • the opportunity for the UE to access the uplink scheduling-free time domain resources can be greatly improved, thereby reducing the uplink transmission delay.
  • the determining unit 102 may, for example, also determine the size of the uplink scheduling-free time domain resources based on the existing SLIV field, but does not use the start symbol determined based on the SLIV field (ie, Starting position), but using the multiple starting positions determined according to the control information.
  • the existing SLIV field can also be used as part of the control information.
  • the determining unit 102 may also determine the size of the uplink scheduling-free time domain resource based on other control information. That is, the control information also includes additional information indicating the size of the uplink scheduling-free time domain resource.
  • the SLIV field is included in the PUSCH-TimeDomainResourceAllocation of RRC signaling, as shown below:
  • Figure 2a if there are multiple starting positions in a slot, in the first slot, due to the delay of LBT and miss the first starting position, the UE can still start in the second The location accesses the uplink scheduling-free time domain resources to transmit PUSCH, as shown by the dotted box in the figure.
  • Figure 2b also shows a similar situation, where the second slot is reserved for PRACH/SSB, and the UE accesses the uplink scheduling-free time domain resource at the second starting position of the first slot. , To avoid a large time delay.
  • control information may include the SLIV field in the RRC signaling, and the determining unit 102 determines the positions of symbols serving as multiple starting positions in one time slot based on the SLIV field.
  • the value of the SLIV field is set to one or more of the previously unoccupied values among all the values of the SLIV field.
  • the previously unoccupied value of the SLIV field ranges from 105 to 127. It can be designed so that different values of SLIV correspond to different sets of symbols as multiple starting positions.
  • the correspondence relationship may be pre-stored in the base station and the UE in various forms, for example, so that when the UE obtains the value of the SLIV field, a set of symbols as multiple starting positions can be determined.
  • FIG. 4 is a diagram showing an example of the setting of the SLIV field.
  • SLIV in addition to the existing value of SLIV, SLIV can also be set to a value of 127, which means that all symbols (symbols 0-13) can be used as the starting position for access for PUSCH transmission
  • the size of the uplink scheduling-free time domain resource can be one of 1 to 14 symbols.
  • the determining unit 102 may be configured to determine the size of the uplink scheduling-free time domain resource for each starting position as the length from the starting position to the end of a time slot.
  • the size of the uplink scheduling-free time domain resource can also be set to other sizes, such as indicated by the SLIV field, indicated by another part of the control information, or have a default size.
  • FIG. 5 shows a specific example in which the control information indicator ⁇ 0, 3, 4, 5, 7 ⁇ is used as the starting position and the size of the uplink scheduling-free time domain resource is 4.
  • LBT succeeds at about the sixth symbol, so that the uplink scheduling-free time domain resource is accessed at symbol 7 as a starting position, and a 4-symbol-length PUSCH transmission.
  • the LBT succeeds at about the third symbol, so that the uplink non-scheduling time domain resource is accessed at symbol 4 as a starting position to perform PUSCH transmission with a length of 4 symbols.
  • the UE can be configured to transmit PUSCH on multiple mini-slots to improve resource utilization efficiency .
  • the UE after accessing at a certain starting position, after the UE performs PUSCH transmission on the uplink scheduling-free time domain resource of the size determined by the determining unit 102, it can also communicate with the uplink free-range resource after the uplink scheduling-free time domain resource.
  • the scheduled time domain resources have the same size of time-frequency resources (which can be considered as assigning additional uplink scheduling-free time domain resources) for PUSCH transmission.
  • control information may include the SLIV field in the RRC signaling (here the SLIV field only indicates a starting position), and the determining unit 102 determines the first starting position among the multiple starting positions and the uplink scheduling-free based on the SLIV field
  • the size of the time domain resource, and other starting positions among the multiple starting positions are determined based at least on the first starting position and the size of the uplink scheduling-free time domain resource.
  • the determining unit 102 may determine a time domain resource having the same size as the uplink scheduling free time domain resource after the uplink scheduling free time domain resource in a time slot as the time domain that the UE can use for uplink transmission. Resources until the end of this time slot. This operation can be performed by default, such as written in the factory settings, or it can be configured by the base station. For example, the determining unit 102 may determine the next starting position every time the size of the uplink non-schedulable time domain resource from the first starting position until the end of a time slot, thereby determining multiple starting positions. The UE transmits the PUSCH on time domain resources with the size of the uplink scheduling-free time domain resources from each starting position.
  • Fig. 6 shows an example in which multiple PUSCHs are allocated in one slot.
  • the starting position set by SLIV in FIG. 6 is the symbol ⁇ 0 ⁇
  • the size of the uplink scheduling-free time domain resource is 4 symbols, that is, the length occupied by one PUSCH transmission is 4 symbols.
  • the determining unit 102 determines that the multiple starting positions are ⁇ 0, 4, 8, 12 ⁇ .
  • the UE access position is relatively late, which is the symbol ⁇ 8 ⁇ , so only one PUSCH transmission is performed.
  • the UE accesses the uplink scheduling-free time domain resource at the 0th symbol. After the transmission of 4 symbols is performed, it can continue to perform two PUSCH transmissions in units of 4 symbols until The time slot ends.
  • the determining unit 102 may determine, based on the control information, a time domain resource that can be used for the uplink transmission of the UE after the scheduling-free time-frequency resource is the same size as the uplink scheduling-free time domain resource in a time slot. And determine multiple starting positions based on at least this number.
  • the control information may include a newly added field in RRC signaling or DCI, and the determining unit 102 is configured to determine the number based on the newly added field.
  • the newly added bit may be included in the above PUSCH-TimeDomainResourceAllocation, as shown below:
  • repK0 is a newly added field. Still taking Figure 6 as an example, for example, repK0 can be set to 2. As mentioned earlier, in the first slot, because the UE accesses the position relatively late, the number of symbols remaining after a PUSCH transmission is insufficient To transmit PUSCH again, so ignore repK0 at this time. In the second slot, according to the repK0, after performing the 4-symbol PUSCH transmission, continue to perform the 4-symbol PUSCH transmission twice.
  • the UE can send the same transport block (TB) or different TBs on the time domain resources that have the same size as the uplink free scheduling time domain resources after the above-mentioned uplink authorization-free scheduling resources.
  • the UE can use these time domain resources with the same size as the uplink non-scheduling time domain resources to retransmit the same data or send new data, which is not restrictive.
  • the determining unit 102 is also configured to set the actual access
  • the information of the starting position of the uplink scheduling-free time domain resource is included in the scheduling-free uplink control information (Configured Grant-Uplink Control Information, CG-UCI) to be provided to the base station.
  • CG-UCI Configured Grant-Uplink Control Information
  • the electronic device 100 can try to access the uplink free-scheduling time-domain resources of the unlicensed frequency band at multiple locations in the time domain, which improves the success rate of access and reduces the unlicensed frequency band.
  • FIG. 7 shows a block diagram of functional modules of an electronic device 200 according to another embodiment of the present application.
  • the electronic device 200 includes: a generating unit 201 configured to generate control information, the control information indicating the user equipment Multiple starting positions of the uplink scheduling-free time domain resources of the unlicensed frequency band that can be accessed; and the providing unit 202 is configured to provide control information to the user equipment.
  • the generating unit 201 and the providing unit 202 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip, for example.
  • the processing circuit may be implemented as a chip, for example.
  • each functional unit in the apparatus shown in FIG. 7 is only a logical module divided according to the specific function implemented by it, and is not used to limit the specific implementation manner.
  • the electronic device 200 may, for example, be installed on the base station side or be communicably connected to the base station.
  • the electronic device 200 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 200 may work as a base station itself, and may also include external devices such as a memory, a transceiver (not shown), and the like.
  • the memory can be used to store programs and related data information that the base station needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, user equipment, other base stations, etc.), and the implementation form of the transceiver is not specifically limited here.
  • control information can indicate the positions of symbols as multiple starting positions in one slot.
  • the UE accesses the uplink scheduling-free time domain resource at one of the multiple starting positions indicated by the control information.
  • the control information may include a bitmap, and each bit of the bitmap determines whether each symbol in a time slot is used as a starting position. You can set each bit to 0 or 1 to indicate whether the corresponding symbol is the starting position. For example, when the bitmap is "01001001001000", the indicator symbols ⁇ 1, 4, 7, 10 ⁇ will be used as the starting position, and the UE can access the uplink scheduling-free time domain resources at these symbols.
  • the meaning of the bits in the bitmap may be agreed in advance between the base station and the UE, or may be limited by the base station and notify the UE through signaling such as RRC signaling.
  • the control information may include a flag bit which, when taking a specific value, indicates a set of specific symbols serving as a plurality of starting positions in a time slot.
  • a set of specific symbols for example, symbols 1 to 10
  • the flag bit takes a predetermined value (for example, 1)
  • multiple symbols in the set are indicated as multiple starting positions.
  • different values of the multiple flag bits can also be used to indicate different sets of specific symbols as multiple starting positions. For example, in the case of two flag bits, the value "00" corresponds to the symbol set ⁇ 0,3,5,7 ⁇ and the value "01" corresponds to the symbol set ⁇ 1,4,8,10 ⁇ , etc. Wait. In this way, the signaling overhead can be reduced.
  • control information may include the SLIV field in the RRC signaling, which is used to indicate the positions of multiple start positions in a time slot.
  • the value of the SLIV field may be one or more of the previously unoccupied values among all the values of the SLIV field.
  • the UE accesses the uplink scheduling-free time domain resources at one of the multiple starting positions indicated by the control information.
  • the UE can use the starting position until the end of the current time slot Time domain resources for PUSCH transmission.
  • Such a configuration may be the default of the base station and the UE, for example, written in the factory settings, or may be configured by the base station, for example, through RRC signaling.
  • the control information can also indicate the size of the uplink scheduling-free time domain resources through the SLIV field or another part of the control information, so that the UE can determine the symbol length that can be occupied by PUSCH transmission. ; Or, the size of the uplink scheduling-free time domain resource can also be the default.
  • the UE may be configured to transmit PUSCH on multiple mini-slots to improve resource utilization efficiency.
  • the control information may include the following field: this field indicates that the uplink non-scheduled time domain resource in a time slot can be used for the UE's uplink transmission and has the same size as the uplink non-scheduled time domain resource.
  • the control information may include a newly added field in RRC signaling or DCI to indicate the number.
  • the newly added field may be included in the PUSCH-TimeDomainResourceAllocation of RRC signaling.
  • the UE may use a time domain resource having the same size as the uplink scheduling free time domain resource after the uplink scheduling free time domain resource in one time slot for uplink transmission until the end of the time slot.
  • a time domain resource having the same size as the uplink scheduling free time domain resource after the uplink scheduling free time domain resource in one time slot for uplink transmission until the end of the time slot.
  • Such a configuration may be the default of the base station and the UE, for example, written in the factory settings, or may be configured by the base station, for example, through RRC signaling. Note that this also implicitly determines the number of time domain resources with the same size as the uplink non-scheduling time domain resources that can be used for the UE's uplink transmission after the uplink non-scheduling time domain resources in a time slot.
  • control information may further include a SLIV field, which is used to indicate the first starting position among the multiple starting positions and the size of the uplink scheduling-free time domain resource.
  • the SLIV field at this time can take the value that has been previously occupied among the values of the SLIV field.
  • the providing unit 202 may provide the above-mentioned control information via at least one of RRC signaling and DCI.
  • the electronic device 200 may further include: an acquiring unit 203 configured to acquire CG-UCI from the UE, where the CG-UCI includes the start of the uplink scheduling-free time domain resources actually accessed by the UE. Information about the starting position.
  • the time domain position for the UE to access the uplink scheduling-free resource can be any one of the multiple initial positions, but the base station cannot determine which one is specific.
  • the base station can learn at which initial position the UE has accessed the uplink non-schedulable resource, so as to determine which symbol of the time slot should start receiving the PUSCH.
  • the acquiring unit 203 is further configured to have the uplink non-schedulable time domain resource that can be used for the UE's uplink transmission after the uplink non-schedulable resource in one time slot. Monitor at the beginning of time domain resources of the same size. In this way, the base station can correctly receive one or more PUSCHs transmitted on time domain resources that have the same size as the uplink scheduling free time domain resources after the uplink scheduling free resources.
  • the electronic device 200 enables the UE to try to access the uplink scheduling-free time domain resources of the unlicensed frequency band at multiple locations in the time domain, which improves the success rate of UE access and reduces The delay of uplink transmission on the unlicensed frequency band.
  • FIG. 8 shows a flowchart of a method for wireless communication according to an embodiment of the present application.
  • the method includes: acquiring control information from a base station (S11); and determining, based on the control information, the unauthorized access that the UE can access Multiple starting positions of the uplink scheduling-free time domain resources of the frequency band (S21). This method may be executed on the UE side, for example.
  • control information may be included in at least one of RRC signaling and DCI.
  • step S12 the positions of symbols serving as multiple starting positions in one slot can be determined based on the control information.
  • the control information includes a bitmap, and in step S12, it is determined whether each symbol in a slot is used as a starting position based on each bit of the bitmap.
  • the control information may include a flag bit. Based on the flag bit in step S12, a set of specific symbols serving as a plurality of starting positions in a time slot is determined.
  • the above method further includes: for each starting position, determining the size of the uplink scheduling-free time domain resource as the length from the starting position to the end of the one time slot.
  • control information includes the SLIV field in the RRC signaling
  • the above method includes: determining the positions of symbols serving as multiple starting positions in a time slot based on the SLIV field.
  • the value of the SLIV field may be one or more of the previously unoccupied values among all the values of the SLIV field.
  • the size of the uplink scheduling-free time domain resource can be determined as the length from the starting position to the end of a time slot.
  • the number of time domain resources with the same size as the uplink non-scheduling time domain resources that can be used for the uplink transmission of the UE after the uplink non-scheduling time domain resources in a time slot can be determined based on the control information, and at least based on the The number determines multiple starting positions.
  • the control information includes a newly added field in RRC signaling or DCI, and the number is determined based on the newly added field.
  • the newly added field is included in PUSCH-TimeDomainResourceAllocation of RRC signaling, for example.
  • control information may include the SLIV field in the RRC signaling, the first starting position among the multiple starting positions and the size of the uplink scheduling-free time domain resource are determined based on the SLIV field, and based on at least the first starting position and the uplink free time domain.
  • the size of the scheduling time domain resource determines the other starting positions among the multiple starting positions.
  • the same transmission block or different transmission blocks can be sent on time domain resources of the same size.
  • the above method may further include step S13: Including the information of the starting position of the actually accessed uplink scheduling-free time domain resources in the CG-UCI to provide the base station.
  • Fig. 9 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • the method includes: generating control information indicating the uplink scheduling-free time domain of the unlicensed frequency band that the UE can access Multiple starting positions of the resource (S21); and providing control information to the UE (S22).
  • control information may be provided via at least one of RRC signaling and DCI.
  • control information indicates the positions of symbols as multiple starting positions in one slot.
  • the control information may include a bitmap, and each bit of the bitmap determines whether each symbol in a time slot is used as a starting position.
  • the control information may include a flag bit, which, when taking a specific value, indicates a set of specific symbols serving as a plurality of starting positions in a time slot.
  • control information includes the SLIV field in the RRC signaling, which is used to indicate the positions of multiple start positions in a slot.
  • the value of the SLIV field may be one or more of the previously unoccupied values among all the values of the SLIV field.
  • the control information may further include a field that indicates the number of time domain resources with the same size as the uplink non-scheduling time domain resources that can be used for the uplink transmission of the UE after the uplink non-scheduling time domain resources in a time slot.
  • the control information may include a newly added field in RRC signaling or DCI to indicate the number.
  • the newly added field is included in PUSCH-TimeDomainResourceAllocation of RRC signaling, for example.
  • the control information may further include a SLIV field, which is used to indicate the first starting position among the multiple starting positions and the size of the uplink scheduling-free time domain resource.
  • the above method may further include step S23: Obtain CG-UCI from the UE, where the CG-UCI includes the information of the starting position of the uplink scheduling-free time domain resource actually accessed by the UE.
  • monitoring can also be performed at the beginning of a time domain resource with the same size as the uplink non-scheduling resource that can be used for the UE's uplink transmission after the uplink non-scheduling resource in a time slot.
  • the technology of the present disclosure can be applied to various products.
  • the electronic device 200 may be implemented as various base stations.
  • the base station can be implemented as any type of evolved Node B (eNB) or gNB (5G base station).
  • eNBs include, for example, macro eNBs and small eNBs.
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • a similar situation can also be used for gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • BTS base transceiver station
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) arranged in a different place from the main body.
  • a main body also referred to as a base station device
  • RRH remote radio heads
  • various types of user equipment can operate as a base station by temporarily or semi-persistently performing base station functions.
  • the electronic device 100 may be implemented as various user devices.
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • FIG. 10 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used for the base station device 820 to transmit and receive wireless signals.
  • the eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 10 shows an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station device 820. For example, the controller 821 generates a data packet based on the data in the signal processed by the wireless communication interface 825, and transmits the generated packet via the network interface 823. The controller 821 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet. The controller 821 may have a logical function to perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or another eNB via the network interface 823.
  • the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface (such as an S1 interface and an X2 interface).
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 823 is a wireless communication interface, the network interface 823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and an RF circuit 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • the BB processor 826 may have a part or all of the above-mentioned logical functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 826.
  • the module may be a card or a blade inserted into the slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810.
  • the wireless communication interface 825 may include a plurality of BB processors 826.
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827.
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 10 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the transceiver of the electronic device 200 may be implemented by a wireless communication interface 825. At least part of the functions may also be implemented by the controller 821.
  • the controller 821 can indicate to the UE the multiple starting positions of the uplink free-scheduled time domain resources of the unlicensed frequency band that can be accessed by executing the functions of the generating unit 201 and the providing unit 202, by executing the function of the acquiring unit 203. Determine the starting position of the uplink scheduling-free time domain resource actually accessed by the UE.
  • FIG. 11 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that similarly, the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 11 shows an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station equipment 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG. 10.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may generally include, for example, a BB processor 856.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 10 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include a plurality of BB processors 856.
  • multiple BB processors 856 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 11 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station equipment 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module used to connect the base station device 850 (wireless communication interface 855) to the communication in the above-mentioned high-speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may also be a communication module used for communication in the aforementioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may generally include, for example, an RF circuit 864.
  • the RF circuit 864 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 840.
  • the wireless communication interface 863 may include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 11 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the transceiver of the electronic device 200 may be implemented by the wireless communication interface 855 and/or the wireless communication interface 863. At least part of the functions may also be implemented by the controller 851.
  • the controller 851 can indicate to the UE the multiple starting positions of the uplink free-scheduled time domain resources of the unlicensed frequency band that can be accessed by executing the functions of the generating unit 201 and the providing unit 202, and by executing the function of the acquiring unit 203 Determine the starting position of the uplink scheduling-free time domain resource actually accessed by the UE.
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a smart phone 900 to which the technology of the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more Antenna switch 915, one or more antennas 916, bus 917, battery 918, and auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the imaging device 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 907 may include a group of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from the user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may generally include, for example, a BB processor 913 and an RF circuit 914.
  • the BB processor 913 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 916.
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG. 12, the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914. Although FIG. 12 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • the wireless communication interface 912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • the smart phone 900 may include multiple antennas 916.
  • FIG. 12 shows an example in which the smart phone 900 includes a plurality of antennas 916, the smart phone 900 may also include a single antenna 916.
  • the smart phone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, memory 902, storage device 903, external connection interface 904, camera 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, and auxiliary controller 919 to each other. connection.
  • the battery 918 supplies power to each block of the smartphone 900 shown in FIG. 12 via a feeder line, which is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode, for example.
  • the transceiver of the electronic device 100 may be implemented by the wireless communication interface 912. At least part of the functions may also be implemented by the processor 901 or the auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 can determine the multiple starting positions of the uplink non-scheduling time domain resources of the unlicensed frequency band that the UE can access by executing the functions of the acquiring unit 101 and the determining unit 102, so as to achieve higher The success rate and lower latency implement scheduling-free uplink transmission of unlicensed frequency bands.
  • Fig. 13 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, wireless
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or SoC, and controls the navigation function of the car navigation device 920 and other functions.
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 uses GPS signals received from GPS satellites to measure the position of the car navigation device 920 (such as latitude, longitude, and altitude).
  • the sensor 925 may include a group of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, an in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 includes a screen such as an LCD or an OLED display, and displays images of navigation functions or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may generally include, for example, a BB processor 934 and an RF circuit 935.
  • the BB processor 934 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 937.
  • the wireless communication interface 933 may also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 13 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 may support another type of wireless communication scheme such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include multiple antennas 937.
  • FIG. 13 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 13 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the battery 938 accumulates power supplied from the vehicle.
  • the transceiver or the sending unit of the electronic device 100 may be implemented by the wireless communication interface 933. At least part of the functions may also be implemented by the processor 921.
  • the processor 921 may determine the multiple starting positions of the uplink unscheduled time domain resources of the unlicensed frequency band that the UE can access by executing the functions of the acquiring unit 101 and the determining unit 102, thereby achieving a higher success rate and lower Delay execution of unlicensed frequency band scheduling-free uplink transmission.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 940 including one or more blocks in the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data (such as vehicle speed, engine speed, and failure information), and outputs the generated data to the vehicle network 941.
  • the present invention also proposes a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by a machine, the above method according to the embodiment of the present invention can be executed.
  • a storage medium for carrying the above-mentioned program product storing machine-readable instruction codes is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and so on.
  • a computer with a dedicated hardware structure (such as a general-purpose computer 1400 shown in FIG. 14) is installed from a storage medium or a network to the program constituting the software, and the computer is installed with various programs. When, can perform various functions and so on.
  • a central processing unit (CPU) 1401 performs various processes in accordance with a program stored in a read only memory (ROM) 1402 or a program loaded from a storage portion 1408 to a random access memory (RAM) 1403.
  • the RAM 1403 also stores data required when the CPU 1401 executes various processes and the like as necessary.
  • the CPU 1401, the ROM 1402, and the RAM 1403 are connected to each other via a bus 1404.
  • the input/output interface 1405 is also connected to the bus 1404.
  • the following components are connected to the input/output interface 1405: input part 1406 (including keyboard, mouse, etc.), output part 1407 (including display, such as cathode ray tube (CRT), liquid crystal display (LCD), etc., and speakers, etc.), Storage part 1408 (including hard disk, etc.), communication part 1409 (including network interface card such as LAN card, modem, etc.).
  • the communication section 1409 performs communication processing via a network such as the Internet.
  • the driver 1410 can also be connected to the input/output interface 1405 according to needs.
  • Removable media 1411 such as magnetic disks, optical disks, magneto-optical disks, semiconductor memory, etc. are installed on the drive 1410 as needed, so that the computer programs read out therefrom are installed into the storage portion 1408 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 1411.
  • this storage medium is not limited to the removable medium 1411 shown in FIG. 14 that stores the program and is distributed separately from the device to provide the program to the user.
  • removable media 1411 include magnetic disks (including floppy disks (registered trademarks)), optical disks (including compact disk read-only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including mini disks (MD) (registered Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 1402, a hard disk included in the storage portion 1408, etc., in which programs are stored and distributed to users along with the devices containing them.
  • each component or each step can be decomposed and/or recombined.
  • decomposition and/or recombination should be regarded as equivalent solutions of the present invention.
  • the steps of executing the above-mentioned series of processing can naturally be executed in chronological order in the order of description, but do not necessarily need to be executed in chronological order. Some steps can be performed in parallel or independently of each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种用于无线通信的电子设备、方法和计算机可读存储介质,该电子设备包括:处理电路,被配置为:获取来自基站的控制信息;以及基于该控制信息确定用户设备能够接入的非授权频段的上行免调度时域资源的多个起始位置。 (图1)

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2019年8月16日提交中国专利局、申请号为201910759087.3、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体地涉及非授权频段(unlicensed band)的无线通信中的上行传输技术。更具体地,涉及一种用于无线通信的电子设备和方法以及计算机可读存储介质。
背景技术
在基于新无线(New Radio,NR)技术的各种应用场景中,超高可靠和超低时延通信(Ultra reliable and low latency communication,URLLC)是重要的一个。为了满足URLLC的要求,可以缩短TTI以及mini-slot等有关帧结构的变化,通过缩短调度和反馈的最小单位来满足超低时延的基本需求。此外,还提出了引入上行免调度(Configured Grant,CG)方案以最大程度减小信令开销,从而进一步降低时延。其中,上行免调度指的是用户设备(User Equipment,UE)在与基站取得上行同步后无需基站发送的上行授权及调度信息,可以直接发送上行数据。
另外,针对非授权频段使用的研究越来越受到重视。但是,对于非授权频段而言,由于在使用前需要进行信道是否空闲的检测,其机制本身存在时延,因此,在将上行免调度方案应用于非授权频段时,可能需要另外的设计。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性 概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:获取来自基站的控制信息;以及基于该控制信息确定用户设备能够接入的非授权频段的上行免调度时域资源的多个起始位置。
根据本申请的一个方面,提供了一种用于无线通信的方法,包括:获取来自基站的控制信息;以及基于该控制信息确定用户设备能够接入的非授权频段的上行免调度时域资源的多个起始位置。
根据本申请的另一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:生成控制信息,该控制信息指示用户设备能够接入的非授权频段的上行免调度时域资源的多个起始位置;以及将该控制信息提供给用户设备。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:生成控制信息,该控制信息指示用户设备能够接入的非授权频段的上行免调度时域资源的多个起始位置;以及将该控制信息提供给用户设备。
根据本申请的电子设备和方法使得用户设备能够在时域上的多个位置处尝试接入非授权频段的上行免调度时域资源,提高接入的成功率,降低非授权频段上的上行传输的时延。
依据本发明的其它方面,还提供了用于实现上述用于无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功 能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图2a和图2b示出了基于mini-slot的PUSCH调度的示例的图;
图3示出了基于slot的PUSCH调度的一个示例的图;
图4示出了SLIV字段的设置的一个示例的图;
图5示出了基于mini-slot的PUSCH调度的另一个示例的图;
图6示出了基于mini-slot的PUSCH调度的另一个示例的图;
图7示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图8示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图9示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图10是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图;
图11是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图;
图12是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图13是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图14是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚 和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
图1示出了根据本申请的一个实施例的用于无线通信的电子设备100的功能模块框图,如图1所示,电子设备100包括:获取单元101,被配置为获取来自基站的控制信息;以及确定单元102,被配置为基于该控制信息确定用户设备能够接入的非授权频段的上行免调度时域资源的多个起始位置。
其中,获取单元101和确定单元102可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。并且,应该理解,图1中所示的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备100例如可以设置在用户设备(UE)侧或者可通信地连接到UE。这里,还应指出,电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备100可以工作为用户设备本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储用户设备实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,基站、其他用户设备等等)间的通信,这里不具体限制收发器的实现形式。这同样适用于随后关于用户设备侧的电子设备的其他配置示例的描述。
如前所述,当用户设备(UE)在非授权频段上进行通信时,在传输数据之前需要首先进行信道是否被占用的能量检测比如先听后说(Listen  Before Talk,LBT)。UE只有在检测到信道处于空闲状态的情况下,才能够接入信道执行数据传输。在采用上行免调度的情况下,UE不需要从基站获取资源调度信息,而是对信道执行LBT且在LBT指示信道空闲(也可称为LBT成功)的情况下直接接入上行免调度资源,以进行物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的传输,如图2a所示。
图2a示出了基于mini-slot(小时隙)的PUSCH调度的情形,对于基于slot的调度可以类似地适用。如图2a所示,UE执行LBT的尝试,在第一个slot中由于LBT成功时能够接入上行免调度时域资源的时间点已经过去,因此UE并不能成功发送PUSCH,而是在第二个slot中再次执行LBT。在第二个slot中,LBT在到达能够接入上行免调度时域资源的时间点前成功,并将信道保留至该时间点,从而成功发送PUSCH。
在本实施例中,图2a中的能够接入上行免调度时域资源的时间点被称为UE能够接入的非授权频段的上行免调度时域资源的起始位置。图2a示出了一个时隙中存在一个起始位置的情况,为了提高接入成功的机会,在一个时隙中可以有多个起始位置。在这种情况下,基站可以通过控制信息将多个起始位置的信息通知给UE。控制信息例如可以包括在无线资源控制(Radio Resource Control,RRC)信令和下行控制信息(Downlink Control Information,DCI)中的至少一个中。
例如,确定单元102基于控制信息确定一个时隙中作为多个起始位置的符号的位置。示例性地,在一个时隙中有14个符号,控制信息可以指示其中的一部分或全部符号作为起始位置,在这些起始位置处,如果UE在此之前已经成功完成了LBT,则可以接入上行免调度时域资源来执行PUSCH的传输。
在一个示例中,控制信息可以包括比特图,确定单元102基于比特图中的每一位确定一个时隙中的每一个符号是否作为起始位置。在一个时隙中有14个符号的情况下,例如,可以采用14位的比特图来分别指示14个符号中的每一个是否作为起始位置。其中,可以将比特图中的位设置为1来表示对应的符号作为起始位置,或者进行相反的设置。比特图中的位的含义可以在基站和UE之间事先约定,也可以由基站进行限定并通过信令比如RRC信令来通知UE。
或者,控制信息可以包括标记位,确定单元102基于该标记位来确定一个时隙中作为多个起始位置的特定符号的集合。在这种情况下,设置特定符号的集合(比如,符号1至10)作为多个起始位置,当标记位取预定值(比如1)时,将该集合中的多个符号作为多个起始位置。采用这种方式,可以减小信令开销。此外,当控制信息包括多个标记位时,还可以基于多个标记位的不同取值来确定作为多个起始位置的不同的特定符号的集合。例如,在两个标记位的情况下,取值“00”对应于符号集合{0,3,5,7}而取值“01”对应于符号集合{1,4,8,10},等等。
在采用基于slot的PUSCH调度的情况下,确定单元102还被配置为针对每一个起始位置,将上行免调度时域资源的大小确定为从该起始位置起至一个时隙结束的长度,如图3所示。在图3的示例中,例如确定符号1至10均可作为起始位置,在大约第7个符号处LBT成功完成,从而在作为起始位置之一的第8个符号处接入上行免调度时域资源来传输PUSCH,且PUSCH的传输持续到该slot结束。换言之,上行免调度时域资源的大小为从接入时的起始位置起至时隙结束的长度。可以看出,接入时的起始位置越靠前,上行免调度时域资源的大小越大。通过在一个时隙中设置多个起始位置,可以大大提高UE接入上行免调度时域资源的机会,从而降低上行传输时延。
在基于mini-slot的PUSCH调度的情况下,确定单元102例如还可以基于已有的SLIV字段来确定上行免调度时域资源的大小,但是并不采用基于SLIV字段确定的起始符号(即,起始位置),而是采用上述根据控制信息确定的多个起始位置。该已有的SLIV字段也可以作为控制信息的一部分。或者,确定单元102还可以基于其他的控制信息来确定上行免调度时域资源的大小。即,控制信息还包括另外的指示上行免调度时域资源的大小的信息。
其中,SLIV字段包括在RRC信令的PUSCH-TimeDomainResourceAllocation中,如下所示:
Figure PCTCN2020107689-appb-000001
Figure PCTCN2020107689-appb-000002
在图2a的示例中,如果在一个slot中有多个起始位置时,在第一个slot中,由于LBT的延迟而错过了第一个起始位置,UE仍可在第二个起始位置处接入上行免调度时域资源以传输PUSCH,如图中的虚线框所示。此外,图2b也示出了类似的情形,其中,第二个slot被预留用于PRACH/SSB,UE在第一个slot的第二个起始位置处接入了上行免调度时域资源,避免了产生较大的时延。
在另一个示例中,控制信息可以包括RRC信令中的SLIV字段,确定单元102基于该SLIV字段来确定一个时隙中作为多个起始位置的符号的位置。
在该示例中,SLIV字段的取值被设置为SLIV字段的所有取值中先前未占用取值中的一个或多个。其中,SLIV字段的先前未占用取值的范围为105至127。可以进行设计以使得SLIV的不同取值对应于不同的作为多个起始位置的符号集合。该对应关系例如可以以各种形式预先保存在基站和UE中,以使得当UE获取了SLIV字段的值时可以确定作为多个起始位置的符号的集合。
示例性地,可以使用SLIV=105来表示符号{0,3,4,5,7}作为多个起始位置的情形,使用SLIV=127来表示所有符号均可作为多个起始位置的情形,等等。应该理解,这里给出的例子仅是为了理解的需要,并不是限制性的。图4示出了SLIV字段的设置的一个示例的图。如图4所示,除了SLIV已有的取值之外,SLIV还可以取值为127,其代表所有符号(符号0-13)均可以作为用于接入的起始位置,用于PUSCH传输的上行免调度时域资源的大小相应地可以为1至14个符号之一。其中,确定单元102可以被配置为针对每一个起始位置,将上行免调度时域资源的大小确定为从该起始位置起至一个时隙结束的长度。
此外,对于基于mini-slot的PUSCH调度的情形,也可以将上行免调度时域资源的大小设置为其他大小,例如通过SLIV字段来指示,通过控制信息的另外的部分来指示或者具有默认大小。为了便于理解,图5示出了控制信息指示符号{0,3,4,5,7}作为起始位置且上行免调度时域资源的大小为4的具体示例。在图5所示的第一个slot中,例如在大约第6个符号处LBT成功,从而在作为一个起始位置的符号7处接入上行 免调度时域资源,进行长度为4个符号的PUSCH传输。在第二slot中,例如在大约第3个符号处LBT成功,从而在作为一个起始位置的符号4处接入上行免调度时域资源,进行长度为4个符号的PUSCH传输。
另一方面,在基于mini-slot的PUSCH调度的情况下,在一个slot中可以有多个mini-slot,因此,可以将UE配置为在多个mini-slot上传输PUSCH,以提高资源利用效率。换言之,在某一个起始位置接入之后,UE在确定单元102所确定的大小的上行免调度时域资源上进行PUSCH传输之后,还可以在该上行免调度时域资源之后的与该上行免调度时域资源具有相同大小的时频资源(可以认为是分配另外的上行免调度时域资源)上进行PUSCH传输。
例如,控制信息可以包括RRC信令中的SLIV字段(这里SLIV字段仅指示一个起始位置),确定单元102基于该SLIV字段确定所述多个起始位置中的第一起始位置和上行免调度时域资源的大小,以及至少基于该第一起始位置和上行免调度时域资源的大小确定多个起始位置中的其他起始位置。
在一个示例中,确定单元102可以将一个时隙中在所述上行免调度时域资源之后的与上行免调度时域资源具有相同大小的时域资源确定为UE能够用于上行传输的时域资源,直到该一个时隙结束为止。该操作可以是默认执行的比如写在出厂设置中,也可以是由基站配置的。例如,确定单元102可以从第一起始位置起,每隔上行免调度时域资源的大小确定下一个起始位置,直到一个时隙结束,从而确定多个起始位置。UE在每一个起始位置起的具有上行免调度时域资源的大小的时域资源上传输PUSCH。
图6示出了一个时隙中分配多个PUSCH的示例。假设图6中通过SLIV设置的起始位置为符号{0},且上行免调度时域资源的大小为4个符号,即,一个PUSCH传输所占用的长度为4个符号。确定单元102确定多个起始位置为{0,4,8,12}。在第一个slot中,由于LBT延迟了较长时间,UE接入的位置比较靠后,为符号{8},因此只进行了一次PUSCH传输。在第二个slot中,UE在第0个符号处即接入上行免调度时域资源,在执行了4个符号的传输之后,可以继续以4个符号为单位执行两次PUSCH的传输,直到时隙结束。
在另一个示例中,确定单元102可以基于控制信息来确定一个时隙中在上述免调度时频资源之后还能够用于UE的上行传输的与上行免调度时域资源具有相同大小的时域资源的个数,并至少基于该个数来确定多个起始位置。例如,控制信息可以包括RRC信令或DCI中的新加字段,确定单元102被配置为基于该新加字段来确定该个数。
示例性地,新加比特可以包括在上述PUSCH-TimeDomainResourceAllocation中,如下所示:
Figure PCTCN2020107689-appb-000003
其中,repK0为新加的字段。仍然以图6为例,例如可以将repK0设置为2,如前所述,在第一个slot中,由于UE接入的位置比较靠后,因此在进行了一次PUSCH传输之后剩余的符号数不足以再次传输PUSCH,因此此时忽略repK0。在第二个slot中,根据该repK0,在执行了4个符号的PUSCH传输之后,继续执行两次4个符号的PUSCH传输。
应该理解,在上述上行免授权调度资源之后的与上行免调度时域资源具有相同大小的时域资源上,UE可以发送相同的传输块(Transport Block,TB),也可以发送不同的TB。换言之,UE可以利用这些与上行免调度时域资源具有相同大小的时域资源重传相同的数据,也可以发送新的数据,这都不是限制性的。
可以看出,在存在多个初始位置的情况下,UE在哪个初始位置处接入上行免调度时域资源将取决于LBT执行的情况,因此,确定单元102还被配置为将实际接入的上行免调度时域资源的起始位置的信息包括在免调度上行控制信息(Configured Grant-Uplink Control Information,CG-UCI)中,以提供给基站。这样,基站可以通过CG-UCI来获知PUSCH的起始位置,从而正确地进行数据接收。
综上所述,根据本实施例的电子设备100能够在时域上的多个位置处尝试接入非授权频段的上行免调度时域资源,提高了接入的成功率,降低了非授权频段上的上行传输的时延。
<第二实施例>
图7示出了根据本申请的另一个实施例的电子设备200的功能模块框图,如图7所示,电子设备200包括:生成单元201,被配置为生成控制信息,该控制信息指示用户设备能够接入的非授权频段的上行免调度时域资源的多个起始位置;以及提供单元202,被配置为将控制信息提供给用户设备。
其中,生成单元201和提供单元202可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。并且,应该理解,图7中所示的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备200例如可以设置在基站侧或者可通信地连接到基站。这里,还应指出,电子设备200可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备200可以工作为基站本身,并且还可以包括诸如存储器、收发器(未示出)等外部设备。存储器可以用于存储基站实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,用户设备、其他基站等等)间的通信,这里不具体限制收发器的实现形式。
与第一实施例中类似地,控制信息可以指示一个时隙中作为多个起始位置的符号的位置。UE在控制信息所指示的多个起始位置之一接入上行免调度时域资源。
例如,控制信息可以包括比特图,比特图的每一位确定一个时隙中的每一个符号是否作为起始位置。可以通过将每一位设置为0或者1,来指示相应的符号是否作为起始位置。例如,当比特图为“01001001001000”时,指示符号{1,4,7,10}将作为起始位置,UE可以在这些符号处接入上行免调度时域资源。其中,比特图中的位的含义可以在基站和UE之间事先约定,也可以由基站进行限定并通过信令比如RRC信令来通知UE。
可替选地/作为补充,控制信息可以包括标记位,该标记位在取特定值时指示一个时隙中作为多个起始位置的特定符号的集合。例如,设置特定符号的集合(比如,符号1至10)作为多个起始位置,当标记位取预定值(比如1)时,指示该集合中的多个符号作为多个起始位置。此外,当控制信息包括多个标记位时,还可以使用多个标记位的不同取值来指示作为多个起始位置的不同的特定符号的集合。例如,在两个标记位的情况下,取值“00”对应于符号集合{0,3,5,7}而取值“01”对应于符号集合{1,4,8,10},等等。采用这种方式,可以减小信令开销。
此外,控制信息可以包括RRC信令中的SLIV字段,用于指示一个时隙中作为多个起始位置的符号的位置。例如,SLIV字段的取值可以为SLIV字段的所有取值中先前未占用取值中的一个或多个。具体细节已在第一实施例中参照图4进行了描述,在此不再重复。
UE在控制信息所指示的多个起始位置之一接入上行免调度时域资源,在一个示例中,例如在基于slot的PUSCH调度中,UE可以使用该起始位置直至当前时隙结束时的时域资源进行PUSCH的传输。这样的配置可以是基站与UE默认的比如写在出厂设置中,也可以由基站比如通过RRC信令来配置。在基于mini-slot的PUSCH调度的情况下,控制信息例如还可以通过SLIV字段或控制信息的另外的部分来指示上行免调度时域资源的大小,以使得UE能够确定PUSCH传输能够占用的符号长度;或者,上行免调度时域资源的大小也可以是默认的。
在另一个示例中,例如在基于mini-slot的PUSCH调度中,UE可以被配置为在多个mini-slot上传输PUSCH,以提高资源利用效率。在这种情况下,例如,控制信息可以包括如下字段:该字段指示一个时隙中上行免调度时域资源之后还能够用于UE的上行传输的与上行免调度时域资源具有相同大小的时域资源的个数。控制信息可以包括RRC信令或DCI中的新加字段以用于指示该个数。例如,新加字段可以包括在RRC信令的PUSCH-TimeDomainResourceAllocation中。
替选地,UE可以使用一个时隙中在上行免调度时域资源之后的与上行免调度时域资源具有相同大小的时域资源来进行上行传输,直到该一个时隙结束为止。这样的配置可以是基站与UE默认的比如写在出厂设置中,也可以由基站比如通过RRC信令来配置。注意,这里也隐含确定了一个时隙中上行免调度时域资源之后还能够用于UE的上行传输的与 上行免调度时域资源具有相同大小的时域资源的个数。
例如,控制信息还可以包括SLIV字段,用于指示多个起始位置中的第一起始位置以及上行免调度时域资源的大小。此时的SLIV字段可以取SLIV字段的取值中先前已被占用的取值。通过结合第一起始位置、上行免调度时域资源的大小以及上述个数,控制信息指示了多个起始位置。相关具体细节已在第一实施例中参照图6进行了描述,在此不再重复。
例如,提供单元202可以经由RRC信令和DCI中的至少一个提供上述控制信息。
此外,如图7中的虚线框所示,电子设备200还可以包括:获取单元203,被配置为从UE获取CG-UCI,CG-UCI包括UE实际接入的上行免调度时域资源的起始位置的信息。
由于基站通过控制信息指示了多个初始位置,因此UE接入上行免调度资源的时域位置可以为这多个初始位置中的任何一个,但是基站并不能确定具体是哪一个。通过获取单元203的操作,基站能够获知UE在哪个初始位置处接入了上行免调度资源,从而确定应该从时隙的哪个符号处开始接收PUSCH。
在一个时隙中可分配多个PUSCH的情况下,获取单元203还被配置为在一个时隙中所述上行免调度资源之后的能够用于UE的上行传输的与上行免调度时域资源具有相同大小的时域资源的起始处进行监听。这样,基站可以正确地接收在上行免调度资源之后的与上行免调度时域资源具有相同大小的时域资源上传输的一个或多个PUSCH。
综上所述,根据本实施例的电子设备200使得UE能够在时域上的多个位置处尝试接入非授权频段的上行免调度时域资源,提高了UE接入的成功率,降低了非授权频段上的上行传输的时延。
<第三实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述 用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图8示出了根据本申请的一个实施例的用于无线通信的方法的流程图,该方法包括:获取来自基站的控制信息(S11);以及基于该控制信息确定UE能够接入的非授权频段的上行免调度时域资源的多个起始位置(S21)。该方法例如可以在UE侧执行。
其中,控制信息可以包括在RRC信令和DCI中的至少一个中。
在步骤S12中,可以基于该控制信息确定一个时隙中作为多个起始位置的符号的位置。例如,控制信息包括可以比特图,在步骤S12中基于比特图的每一位确定一个时隙中的每一个符号是否作为起始位置。或者,控制信息可以包括标记位,在步骤S12中基于该标记位来确定一个时隙中作为多个起始位置的特定符号的集合。
在一个示例中,上述方法还包括:针对每一个起始位置,将上行免调度时域资源的大小确定为从该起始位置起至所述一个时隙结束的长度。
在另一个示例中,控制信息包括RRC信令中的SLIV字段,上述方法包括:基于该SLIV字段来确定一个时隙中作为多个起始位置的符号的位置。其中,SLIV字段的取值可以为SLIV字段的所有取值中先前未占用取值中的一个或多个。针对每一个起始位置,可以将上行免调度时域资源的大小确定为从该起始位置起至一个时隙结束的长度。
此外,还可以基于控制信息确定一个时隙中上行免调度时域资源之后还能够用于UE的上行传输的与上行免调度时域资源具有相同大小的时域资源的个数,并至少基于该个数确定多个起始位置。例如,控制信息包括RRC信令或DCI中的新加字段,基于该新加字段确定该个数。该新加字段例如包括在RRC信令的PUSCH-TimeDomainResourceAllocation中。
例如,控制信息可以包括RRC信令中的SLIV字段,基于该SLIV字段确定多个起始位置中的第一起始位置和上行免调度时域资源的大 小,以及至少基于第一起始位置和上行免调度时域资源的大小确定多个起始位置中的其他起始位置。
其中,在相同大小的时域资源上可以发送相同传输块或不同传输块。
如图8中的虚线框所示,上述方法还可以包括步骤S13:将实际接入的上行免调度时域资源的起始位置的信息包括在CG-UCI中,以提供给基站。
图9示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,该方法包括:生成控制信息,该控制信息指示UE能够接入的非授权频段的上行免调度时域资源的多个起始位置(S21);以及将控制信息提供给UE(S22)。
在步骤S22中,可以经由RRC信令和DCI中的至少一个提供控制信息。
例如,控制信息指示一个时隙中作为多个起始位置的符号的位置。控制信息可以包括比特图,比特图的每一位确定一个时隙中的每一个符号是否作为起始位置。控制信息可以包括标记位,该标记位在取特定值时指示一个时隙中作为多个起始位置的特定符号的集合。
例如,控制信息包括RRC信令中的SLIV字段,用于指示一个时隙中作为多个起始位置的符号的位置。SLIV字段的取值可以为SLIV字段的所有取值中先前未占用取值中的一个或多个。
控制信息还可以包括如下字段:该字段指示一个时隙中上行免调度时域资源之后还能够用于UE的上行传输的与上行免调度时域资源具有相同大小的时域资源的个数。控制信息可以包括RRC信令或DCI中的新加字段以用于指示该个数。该新加字段例如包括在RRC信令的PUSCH-TimeDomainResourceAllocation中。此外,控制信息还可以包括SLIV字段,用于指示多个起始位置中的第一起始位置以及上行免调度时域资源的大小。
如图9中的虚线框所示,上述方法还可以包括步骤S23:从UE获取CG-UCI,该CG-UCI包括UE实际接入的上行免调度时域资源的起始位置的信息。此外,在步骤S23中,还可以在一个时隙中上行免调度资源之后的能够用于UE的上行传输的与上行免调度资源具有相同大小的时 域资源的起始处进行监听。
上述方法分别对应于第一实施例中所描述的装置100和第二实施例中所描述的装置200,其具体细节可参见以上相应位置的描述,在此不再重复。注意,上述各个方法可以结合或单独使用。
本公开内容的技术能够应用于各种产品。
例如,电子设备200可以被实现为各种基站。基站可以被实现为任何类型的演进型节点B(eNB)或gNB(5G基站)。eNB例如包括宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。对于gNB也可以由类似的情形。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
电子设备100可以被实现为各种用户设备。用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图10是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输 入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图10所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图10示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理 器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图10所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图10所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图10示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图10所示的eNB 800中,电子设备200的收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行生成单元201和提供单元202的功能来向UE指示能够接入的非授权频段的上行免调度时域资源的多个起始位置,通过执行获取单元203的功能来确定UE实际接入的上行免调度时域资源的起始位置。
(第二应用示例)
图11是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图11所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图11示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图10描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图10描述的BB处理器826相同。如图11所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图11示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图11所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图11示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图11所示的eNB 830中,电子设备200的收发器可以由无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以由控制器851实现。例如,控制器851可以通过执行生成单元201和提供单元202的功能来向UE指示能够接入的非授权频段的上行免调度时域资源的多个起始位置,通过执行获取单元203的功能来确定UE实际接入的上行免调度时域资源的起始位置。
[关于用户设备的应用示例]
(第一应用示例)
图12是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图12所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图12示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例, 但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图12所示,智能电话900可以包括多个天线916。虽然图12示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图12所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图12所示的智能电话900中,电子设备100的收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行获取单元101和确定单元102的功能来确定UE能够接入的非授权频段的上行免调度时域资源的多个起始位置,从而以更高成功率和更低时延执行非授权频段的免调度上行传输。
(第二应用示例)
图13是示出可以应用本公开内容的技术的汽车导航设备920的示意 性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图13所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图13示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类 型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图13所示,汽车导航设备920可以包括多个天线937。虽然图13示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图13所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图13示出的汽车导航设备920中,电子设备100的收发器或发送单元可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行获取单元101和确定单元102的功能来确定UE能够接入的非授权频段的上行免调度时域资源的多个起始位置,从而以更高成功率和更低时延执行非授权频段的免调度上行传输。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现, 这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图14所示的通用计算机1400)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图14中,中央处理单元(CPU)1401根据只读存储器(ROM)1402中存储的程序或从存储部分1408加载到随机存取存储器(RAM)1403的程序执行各种处理。在RAM 1403中,也根据需要存储当CPU 1401执行各种处理等等时所需的数据。CPU 1401、ROM 1402和RAM 1403经由总线1404彼此连接。输入/输出接口1405也连接到总线1404。
下述部件连接到输入/输出接口1405:输入部分1406(包括键盘、鼠标等等)、输出部分1407(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1408(包括硬盘等)、通信部分1409(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1409经由网络比如因特网执行通信处理。根据需要,驱动器1410也可连接到输入/输出接口1405。可移除介质1411比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1410上,使得从中读出的计算机程序根据需要被安装到存储部分1408中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质1411安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图14所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1411。可移除介质1411的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是 ROM 1402、存储部分1408中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (31)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    获取来自基站的控制信息;以及
    基于所述控制信息确定用户设备能够接入的非授权频段的上行免调度时域资源的多个起始位置。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为基于所述控制信息确定一个时隙中作为所述多个起始位置的符号的位置。
  3. 根据权利要求2所述的电子设备,其中,所述控制信息包括比特图,所述处理电路被配置为基于所述比特图的每一位确定所述一个时隙中的每一个符号是否作为起始位置。
  4. 根据权利要求2所述的电子设备,其中,所述控制信息包括标记位,所述处理电路被配置为基于该标记位来确定一个时隙中作为所述多个起始位置的特定符号的集合。
  5. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为针对每一个起始位置,将所述上行免调度时域资源的大小确定为从该起始位置起至所述一个时隙结束的长度。
  6. 根据权利要求2所述的电子设备,其中,所述控制信息包括在无线资源控制信令和下行控制信息中的至少一个中。
  7. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为基于所述控制信息确定一个时隙中所述上行免调度时域资源之后还能够用于所述用户设备的上行传输的与所述上行免调度时域资源具有相同大小的时域资源的个数,并至少基于所述个数确定所述多个起始位置。
  8. 根据权利要求7所述的电子设备,其中,所述控制信息包括无线资源控制信令或下行控制信息中的新加字段,所述处理电路被配置为基于所述新加字段确定所述个数。
  9. 根据权利要求8所述的电子设备,其中,所述新加字段包括在所述无线资源控制信令的PUSCH-TimeDomainResourceAllocation中。
  10. 根据权利要求7所述的电子设备,其中,所述控制信息包括无线资源控制信令中的SLIV字段,所述处理电路还被配置为基于所述SLIV字段确定所述多个起始位置中的第一起始位置和所述上行免调度时域资源的大小,以及至少基于所述第一起始位置和所述上行免调度时域资源的大小确定所述多个起始位置中的其他起始位置。
  11. 根据权利要求1所述的电子设备,其中,所述控制信息包括无线资源控制信令中的SLIV字段,所述处理电路被配置为基于所述SLIV字段来确定一个时隙中作为所述多个起始位置的符号的位置。
  12. 根据权利要求11所述的电子设备,其中,所述SLIV字段的取值为所述SLIV字段的所有取值中先前未占用取值中的一个或多个。
  13. 根据权利要求7所述的电子设备,其中,所述处理电路被配置为在所述相同大小的时域资源上发送相同传输块或不同传输块。
  14. 根据权利要求11所述的电子设备,其中,所述处理电路被配置为针对每一个起始位置,将所述上行免调度时域资源的大小确定为从该起始位置起至所述一个时隙结束的长度。
  15. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为将实际接入的上行免调度时域资源的起始位置的信息包括在免调度上行控制信息中,以提供给所述基站。
  16. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    生成控制信息,所述控制信息指示用户设备能够接入的非授权频段的上行免调度时域资源的多个起始位置;以及
    将所述控制信息提供给所述用户设备。
  17. 根据权利要求16所述的电子设备,其中,所述处理电路被配置为经由无线资源控制信令和下行控制信息中的至少一个提供所述控制信息。
  18. 根据权利要求16所述的电子设备,其中,所述控制信息指示一个时隙中作为所述多个起始位置的符号的位置。
  19. 根据权利要求18所述的电子设备,其中,所述控制信息包括比特图,所述比特图的每一位确定所述一个时隙中的每一个符号是否作为起始位置。
  20. 根据权利要求18所述的电子设备,其中,所述控制信息包括标记位,所述标记位在取特定值时指示一个时隙中作为所述多个起始位置的特定符号的集合。
  21. 根据权利要求16所述的电子设备,其中,所述控制信息包括无线资源控制信令中的SLIV字段,用于指示一个时隙中作为所述多个起始位置的符号的位置。
  22. 根据权利要求21所述的电子设备,其中,所述SLIV字段的取值为所述SLIV字段的所有取值中先前未占用取值中的一个或多个。
  23. 根据权利要求16所述的电子设备,其中,所述控制信息还包括如下字段:该字段指示一个时隙中所述上行免调度时域资源之后还能够用于所述用户设备的上行传输的与所述上行免调度时域资源具有相同大小的时域资源的个数。
  24. 根据权利要求23所述的电子设备,其中,所述控制信息还包括SLIV字段,用于指示所述多个起始位置中的第一起始位置以及所述上行免调度时域资源的大小。
  25. 根据权利要求23所述的电子设备,其中,所述控制信息包括无线资源控制信令或下行控制信息中的新加字段以用于指示所述个数。
  26. 根据权利要求25所述的电子设备,其中,所述新加字段包括在所述无线资源控制信令的PUSCH-TimeDomainResourceAllocation中。
  27. 根据权利要求23所述的电子设备,其中,所述处理电路还被配置为在一个时隙中所述上行免调度资源之后的能够用于所述用户设备的上行传输的与所述上行免调度时域资源具有相同大小的时域资源的起始处进行监听。
  28. 根据权利要求16所述的电子设备,其中,所述处理电路还被配置为从所述用户设备获取免调度上行控制信息,所述免调度上行控制信息包括所述用户设备实际接入的上行免调度时域资源的起始位置的信息。
  29. 一种用于无线通信的方法,包括:
    获取来自基站的控制信息;以及
    基于所述控制信息确定用户设备能够接入的非授权频段的上行免调度时域资源的多个起始位置。
  30. 一种用于无线通信的方法,包括:
    生成控制信息,所述控制信息指示用户设备能够接入的非授权频段的上行免调度时域资源的多个起始位置;以及
    将所述控制信息提供给所述用户设备。
  31. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据权利要求29或30所述的用于无线通信的方法。
PCT/CN2020/107689 2019-08-16 2020-08-07 用于无线通信的电子设备和方法、计算机可读存储介质 WO2021031881A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20854275.3A EP4012964A4 (en) 2019-08-16 2020-08-07 ELECTRONIC WIRELESS COMMUNICATION DEVICE AND METHOD AND COMPUTER READABLE STORAGE MEDIUM
CN202080056549.6A CN114208103B (zh) 2019-08-16 2020-08-07 用于无线通信的电子设备和方法、计算机可读存储介质
US17/632,792 US20220295536A1 (en) 2019-08-16 2020-08-07 Electronic device and method for wireless communication, and computer readable storage medium
KR1020227003442A KR20220047971A (ko) 2019-08-16 2020-08-07 무선 통신을 위한 전자 디바이스 및 방법, 및 컴퓨터 판독가능 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910759087.3A CN112399577A (zh) 2019-08-16 2019-08-16 用于无线通信的电子设备和方法、计算机可读存储介质
CN201910759087.3 2019-08-16

Publications (1)

Publication Number Publication Date
WO2021031881A1 true WO2021031881A1 (zh) 2021-02-25

Family

ID=74601980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107689 WO2021031881A1 (zh) 2019-08-16 2020-08-07 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (5)

Country Link
US (1) US20220295536A1 (zh)
EP (1) EP4012964A4 (zh)
KR (1) KR20220047971A (zh)
CN (2) CN112399577A (zh)
WO (1) WO2021031881A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024067976A1 (en) * 2022-09-29 2024-04-04 Huawei Technologies Co., Ltd. Methods and devices for transmission or reception of data in a time-slotted unlicensed sidelink radio channel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574559A (zh) * 2017-03-13 2018-09-25 电信科学技术研究院 一种传输方法和装置
US20190230706A1 (en) * 2018-01-23 2019-07-25 Samsung Electronics Co., Ltd Listen-before-talk for wideband operations of nr unlicensed spectrum
WO2020063408A1 (en) * 2018-09-28 2020-04-02 Huawei Technologies Co., Ltd. Resource allocation for transmission with configured grant in unlicensed spectrum
CN111182643A (zh) * 2018-12-25 2020-05-19 维沃移动通信有限公司 一种非授权调度配置的方法、终端及网络侧设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109788427A (zh) * 2017-11-10 2019-05-21 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质
US10904909B2 (en) * 2018-01-23 2021-01-26 Huawei Technologies Co., Ltd. System and method for time domain grant-free PUSCH resource allocation
US11503639B2 (en) * 2018-08-09 2022-11-15 Lg Electronics Inc. Method for performing action according to LBT type in unlicensed band in wireless communication system and user equipment using same
CN109565686B (zh) * 2018-11-01 2023-11-28 北京小米移动软件有限公司 传输信息的方法、装置、基站及终端
US11411690B2 (en) * 2018-11-21 2022-08-09 Electronics And Telecommunications Research Institute Method for transmitting and receiving data channel based on a plurality of physical uplink shared channels in communication system and apparatus for the same
WO2020138777A1 (en) * 2018-12-27 2020-07-02 Lg Electronics Inc. Method of transmitting/receiving data unit, and device therefor
US11405907B2 (en) * 2018-12-28 2022-08-02 Samsung Electronics Co., Ltd. Method and device for grant-free data transmission in wireless communication system
KR20200109857A (ko) * 2019-03-15 2020-09-23 삼성전자주식회사 무선 통신 시스템에서 우선 순위 기반 제어 및 데이터 정보 전송 방법 및 장치
EP3735074B1 (en) * 2019-04-30 2022-05-11 ASUSTek Computer Inc. Method and apparatus for handling retransmission indication for configured grant in sidelink in a wireless communication system
KR20210011282A (ko) * 2019-07-22 2021-02-01 삼성전자주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
KR20210017748A (ko) * 2019-08-09 2021-02-17 삼성전자주식회사 무선 통신 시스템에서 상향링크 전송 자원을 결정하기 위한 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574559A (zh) * 2017-03-13 2018-09-25 电信科学技术研究院 一种传输方法和装置
US20190230706A1 (en) * 2018-01-23 2019-07-25 Samsung Electronics Co., Ltd Listen-before-talk for wideband operations of nr unlicensed spectrum
WO2020063408A1 (en) * 2018-09-28 2020-04-02 Huawei Technologies Co., Ltd. Resource allocation for transmission with configured grant in unlicensed spectrum
CN111182643A (zh) * 2018-12-25 2020-05-19 维沃移动通信有限公司 一种非授权调度配置的方法、终端及网络侧设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Enhancements to configured grants for NR-unlicensed", 3GPP DRAFT; R1-1906788- INTEL - CONFIGURED GRANT FOR NR-UNLICENSED, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, Nevada, USA; 20190513 - 20190517, 4 May 2019 (2019-05-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051708824 *
See also references of EP4012964A4
VIVO: "Outcome of offline discussion on Configured grant enhancement", 3GPP DRAFT; R1-1903476, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 1 March 2019 (2019-03-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 15, XP051601141 *

Also Published As

Publication number Publication date
CN114208103A (zh) 2022-03-18
KR20220047971A (ko) 2022-04-19
EP4012964A1 (en) 2022-06-15
CN114208103B (zh) 2024-09-03
EP4012964A4 (en) 2022-09-14
CN112399577A (zh) 2021-02-23
US20220295536A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
US11765600B2 (en) Electronic device and method for wireless communication and computer-readable storage medium
US12120699B2 (en) Base station-side and user equipment-side apparatuses and methods, and wireless communication system
WO2021169904A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021031880A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230345530A1 (en) Electronic device and method for use in radio communication, and computer-readable storage medium
WO2020140836A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US12015931B2 (en) Electronic device and method for wireless communication, and computer readable storage medium
WO2021031881A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
EP4266792A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2021244359A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2020143522A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20240155647A1 (en) Electronic device, wireless communication method, and computer-readable storage medium
EP4351059A1 (en) Electronic device, wireless communication method, and computer-readable storage medium
WO2021068880A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021147746A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021160076A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
EP4016911A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
WO2021204108A1 (zh) 电子设备、通信方法和存储介质
US20230180289A1 (en) Electronic device for use in radio communication, method, and computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020854275

Country of ref document: EP

Effective date: 20220307