WO2018177077A1 - 用于无线通信的网络控制端和网络节点的电子设备和方法 - Google Patents

用于无线通信的网络控制端和网络节点的电子设备和方法 Download PDF

Info

Publication number
WO2018177077A1
WO2018177077A1 PCT/CN2018/077981 CN2018077981W WO2018177077A1 WO 2018177077 A1 WO2018177077 A1 WO 2018177077A1 CN 2018077981 W CN2018077981 W CN 2018077981W WO 2018177077 A1 WO2018177077 A1 WO 2018177077A1
Authority
WO
WIPO (PCT)
Prior art keywords
network node
retransmission
data
window
transmission
Prior art date
Application number
PCT/CN2018/077981
Other languages
English (en)
French (fr)
Inventor
党建
褚炜雯
吕本舜
Original Assignee
索尼公司
党建
褚炜雯
吕本舜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 党建, 褚炜雯, 吕本舜 filed Critical 索尼公司
Priority to CN201880010976.3A priority Critical patent/CN110291742A/zh
Priority to AU2018246672A priority patent/AU2018246672A1/en
Priority to CA3056963A priority patent/CA3056963A1/en
Priority to US16/491,160 priority patent/US11777669B2/en
Publication of WO2018177077A1 publication Critical patent/WO2018177077A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/187Details of sliding window management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • H04W74/0841Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
    • H04W74/085Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • Embodiments of the present invention generally relate to the field of wireless communications, and in particular to random access and collision resolution techniques, and more particularly to an electronic device and method for a network control terminal for wireless communication and a network node for wireless communication Electronic equipment and methods.
  • the current 5G application scenarios can be divided into three categories: enhanced mobile broadband (eMBB), massive machine type communication (mMTC), and ultra-reliable low-latency communication (uRLLC). These three application scenarios have different requirements.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • uRLLC ultra-reliable low-latency communication
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • uRLLC ultra-reliable low-latency communication
  • an electronic device for a network control terminal for wireless communication including processing circuitry configured to: determine a manner in which a transmission resource for wireless communication is divided on a predetermined domain, and the divided transmission The resources are respectively used for data initial transmission of the network node and data retransmission of the network node; and configuration information for generating information including the division manner.
  • an electronic device for a network node for wireless communication comprising: processing circuitry configured to: acquire information including a division manner of a transmission resource for wireless communication on a predetermined domain Configuration information, wherein the divided transmission resources are respectively used for data initial transmission of the network node and data retransmission of the network node; and data initial transmission or data retransmission based on the configuration information.
  • a method for a network control terminal for wireless communication includes: determining a division manner of a transmission resource for wireless communication on a predetermined domain, and the divided transmission resources are respectively used for a network node Data initial transmission and data retransmission of the network node; and configuration information for generating information including the division mode.
  • a method for a network node for wireless communication comprising: acquiring configuration information including information on a division manner of a transmission resource for wireless communication on a predetermined domain, wherein, after division The transmission resources are respectively used for data initial transmission of the network node and data retransmission of the network node; and data initial transmission or data retransmission based on the configuration information.
  • the electronic device and method according to the present application effectively increases the number of successfully transmitted network nodes by dividing the transmission resource into a portion for data initial transmission of the network node and a portion for data retransmission of the network node, thereby enabling Supports bursty user access.
  • FIG. 1 is a functional block diagram showing an electronic device of a network control terminal for wireless communication according to an embodiment of the present application
  • FIG. 2 is a schematic diagram showing an example of a double window on a time domain according to an embodiment of the present application
  • FIG. 3 is a schematic diagram showing an application scenario of a non-orthogonal multiple access technique
  • FIG. 4 is a schematic diagram showing an example of a dual window on a time domain in accordance with an embodiment of the present application
  • FIG. 5 is a diagram showing an example of a retransmission window before and after an update
  • FIG. 6 is a diagram showing an example of a case where a retransmission window is canceled
  • FIG. 7 is a diagram showing an example of a case where a retransmission window is canceled
  • FIG. 8 is a diagram showing an example of a case where a retransmission window is canceled
  • FIG. 9 is a functional block diagram showing an electronic device of a network node for wireless communication in accordance with one embodiment of the present application.
  • FIG. 10 is a diagram showing an example of selection of a retransmission window based on a priority of a network node
  • Figure 11 is a diagram showing the flow of information between the network control terminal and the network node
  • Figure 12 shows the manner in which a new user enters a window in a single window and a dual window scheme, respectively;
  • Figures 13-20 show graphs of simulation results
  • 21 is a flow chart showing a method for a network console of wireless communication in accordance with one embodiment of the present application.
  • 22 is a flowchart showing a method of a network node for wireless communication in accordance with one embodiment of the present application
  • FIG. 23 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • 24 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • 25 is a block diagram showing an example of a schematic configuration of a smartphone that can apply the technology of the present disclosure
  • 26 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied;
  • FIG. 27 is a block diagram of an exemplary structure of a general purpose personal computer in which a method and/or apparatus and/or system in accordance with an embodiment of the present invention may be implemented.
  • FIG. 1 shows a functional block diagram of an electronic device 100 for a network control terminal for wireless communication, as shown in FIG. 1, the electronic device 100 includes a determining unit 101 configured to determine for use in accordance with an embodiment of the present application.
  • the transmission resource of the wireless communication is divided in a predetermined domain, and the divided transmission resource is used for data initial transmission of the network node and data retransmission of the network node, respectively; and the generating unit 102 is configured to generate information including the division manner Configuration information.
  • the determining unit 101 and the generating unit 102 can be implemented by one or more processing circuits, which can be implemented, for example, as a chip.
  • the network control terminal refers to an entity in the communication system for implementing functions such as setting, control, and communication resource allocation of communication activities, such as a base station in a cellular communication system, and a C-RAN (Cloud-RAN/Centralized-RAN) structure.
  • a baseband cloud device (which may not have a cell concept), such as any BBU in a BBU pool that is in high-speed communication with each other under the C-RAN architecture.
  • a network node refers to an entity in a communication system that uses communication resources to achieve its communication purposes, such as various user equipment (such as mobile terminals with cellular communication capabilities, smart vehicles, smart wearable devices, etc.) or network infrastructure such as small cell base stations. Wait.
  • the network node and the network control end perform data transmission on a specific transmission resource to achieve communication purposes. For example, when the network control terminal does not correctly receive data from the network node, the network node performs data retransmission.
  • multiple network nodes may be respectively transmitted on mutually orthogonal transmission resources, that is, using Orthogonal Multiple Access (OMA); data may also be transmitted using non-orthogonal transmission resources. Transmission, that is, using Non-orthogonal Multiple Access (NOMA).
  • OMA Orthogonal Multiple Access
  • NOMA Non-orthogonal Multiple Access
  • the data transmission between the network node and the network control end may be based on a grant-based, that is, the network control end schedules the transmission resource for the network node and authorizes the use of the transmission resource, or may be an unauthorized license.
  • unlicensed scheduling and NOMA may be more suitable for mMTC scenarios. Therefore, in the following, the scenario of applying the unlicensed scheduling and the NOMA will be mainly described, but it should be understood that the technology of the present application is not limited thereto, and may be suitably applied to a scenario employing authorization scheduling and/or OMA.
  • the determining unit 101 divides the transmission resources into two categories on a predetermined domain for data initial transmission of the network node and data retransmission of the network node. This can avoid the accumulation of retransmitted data, thereby increasing the probability of successful transmission of the network node.
  • transmission resources for data transmission of a network node and transmission resources for data retransmission of network nodes may be alternately distributed over a predetermined domain.
  • the generating unit 102 generates information on how the transmission resources are divided into configuration information, which is provided to the network node, so that the network node performs data initial transmission and data retransmission according to the configuration information.
  • the electronic device 100 may further include: a transceiver unit 103 configured to send configuration information to the network node.
  • the transceiver unit 103 can be implemented, for example, as a transceiver or an antenna, its associated components, and the like.
  • the transceiver unit 103 can transmit configuration information to each network node by means of broadcast.
  • the transceiver unit 103 can perform transmission by using system information broadcast, such as System Information Blocks (SIB) or Broadcast Channel (BCH), where the SIB can be in a Downlink Share Channel (DL-SCH).
  • SIB System Information Blocks
  • BCH Broadcast Channel
  • the DL-SCH and the BCH may be respectively mapped to a Physical Downlink Share Channel (PDSCH) and a Physical Broadcast Channel (PBCH).
  • PDSCH Physical Downlink Share Channel
  • PBCH Physical Broadcast Channel
  • the network node will perform data transmission according to the configuration information, for example, using the transmission resource for data initial transmission for the first transmission of data, and using the transmission resource for data retransmission for retransmission after the first transmission failure of the data.
  • the predetermined domain may include one of a time domain, a frequency domain, and a code domain.
  • the predetermined domain is one of the domains on which the transmission resource is distributed.
  • the predetermined domain is a time domain
  • the determining unit 101 is configured to divide the time-frequency resource into multiple dual windows in the time domain, each dual window including a transmission window for data initial transmission of the network node and The retransmission window of the data retransmission of the network node, where the retransmission window is used to transmit the failed network node in the current dual window transmission window for data retransmission.
  • the retransmission window can also be used for data retransmission by retransmitting at least a portion of the failed network node in the previous retransmission window. Therefore, in this example, the retransmission window is a time window for retransmitting data after the network node that failed the transmission performs backoff.
  • the transmission resource that can be used by the network node is called a resource pool, and the resource pool can be divided into multiple minimum time-frequency resource units (hereinafter referred to as Resource Units (RUs)), and the network node can select the RU to perform data. transmission.
  • RUs Resource Units
  • Each RU is independent of each other, occupies part of the subframe in the time domain, and occupies part of the subcarriers in the frequency domain, as shown by the square in FIG.
  • the size of the RU is pre-configured by the network control terminal.
  • each RU can support multiple network nodes, as shown in FIG. Four RUs are shown in Figure 3, with different network nodes distributed across each RU (an example of a user equipment UE as a network node in Figure 3).
  • the number of network nodes that each RU can support depends, for example, on the characteristics of the non-orthogonal multiple access technique employed. For example, in an Interleave division multiple access system (IDMA), the longer the spreading length or the larger the number of receiving antennas, the more the number of network nodes that can be supported under the same SNR condition. Therefore, for the same non-orthogonal multiple access technique, the size of the transmission window and retransmission window determines the number of network nodes that can be supported. For example, in the example of FIG. 3, if each RU can support two network nodes, then three UEs using RU 1 at the same time will collide or collide resulting in retransmission of data.
  • IDMA Interleave division multiple access system
  • the determining unit 101 may determine the configuration of the minimum time-frequency resource unit in the transmission window and the retransmission window, such as the number of minimum time-frequency resource units respectively included in the transmission window and the retransmission window, wherein the network node is randomly
  • the minimum time-frequency resource unit in the transmission window is selected for data initial transmission or the minimum time-frequency resource unit in the random selection retransmission window is used for data retransmission.
  • the above configuration is provided to the network node in the configuration information generated by the generating unit 102.
  • the determining unit 101 may determine the configuration of the minimum time-frequency resource unit in the transmission window and the retransmission window according to the average number of network nodes, and the configuration may be fixed.
  • the determining unit 101 may also change the configuration according to a change in the number of network nodes in real time or a requirement of the network node, the generating unit 102 correspondingly generates updated configuration information, and the transceiver unit 103 will update the configuration information, for example, by means of broadcasting. Send to the network node.
  • only the size of the retransmission window may be updated, while the size of the transmission window is set to be fixed. The setting of the double window and the update of the retransmission window will be described below by way of specific examples.
  • the retransmission window for data retransmission and the transmission window for data initial transmission are separated in the time domain.
  • 2 shows a schematic diagram of an example of a dual window on the time domain in accordance with an embodiment of the present application.
  • the square filled with diagonal lines represents the transmission window (TxW), and the blank square represents the back-off window (BoW).
  • TxW transmission window
  • BoW back-off window
  • the transmission window and the retransmission window are alternately distributed, and for a dual window, the transmission window is in front and the retransmission window is in the back.
  • the size of the transmission window and the retransmission window is determined by the determining unit 101, which is merely an example and is not limiting.
  • a user equipment (UE) is taken as an example of a network node
  • BS base station
  • the UE that first accesses the data of the access network transmits new data on the randomly selected RU.
  • the UE includes the new data in a data packet for transmission, and the data packet further includes dedicated information for decoding, which is determined by the non-orthogonal multiple access technology used, for example, in the case of using IDMA.
  • the decoding specific information may include interleaver information.
  • the base station detects whether there is a user on each RU through energy detection, and if there is a user, uses a blind detection algorithm to detect the data and the number of users on each RU, and demodulates the received data.
  • the base station can correctly demodulate data from a certain UE, the data transmission of the UE is successful, otherwise the transmission fails, the UE needs to perform data retransmission, and the transmission failure may be caused, for example, by collision or overload.
  • successful transmission if the UE still has new data to transmit, the new data transmission starts in the next transmission window, and if there is no new data to be transmitted, it can go to the sleep state.
  • the UE reselects the RU for data transmission. As shown in FIG. 2, the UE performs data retransmission in the retransmission window BoW.
  • the UE may select the RU of the same frequency or different frequency as the RU used in the initial transmission to perform data retransmission.
  • the generating unit 102 generates indication information specific to the network node group according to the demodulation result of the data from the network node, for notifying whether the network node data transmission in the network node group is successful, wherein the same is used.
  • the network nodes that perform data transmission at the lowest frequency resource unit constitute a network node group. If there is a network node in the network node group where the data is not successfully demodulated, the generating unit 102 generates an indication information NACK indicating that the data transmission is unsuccessful, which is specific to the network node group, and otherwise generates an indication data transmission specific to the network node group. Successful indication message ACK.
  • the NACK or ACK sent by the network control end is RU-specific, rather than specific to a certain network node.
  • the transceiver unit 103 transmits the NACK or ACK specific to the RU to the network node by way of broadcast, for example, on the DL-SCH through the SIB, and the network node using the RU will receive the corresponding NACK or ACK.
  • the network node in the network node group performs data retransmission in the retransmission window.
  • the retransmission window described herein may be a retransmission window of the current transmission window, or may be a retransmission window of a subsequent dual window.
  • UE1, UE2, and UE3 using the same RU constitute a user group (ie, a network node group) whose transmission fails, for example, due to collision or overload
  • the user group needs to retransmit in the retransmission window BoW after the transmission window.
  • a retransmission scheme using frequency reselection is shown in FIG. 2, that is, UE1, UE2, and UE3 may select RUs of different frequencies for retransmission, for example, the UE's selection of the frequency of the RU is random and may also be equal probability. of.
  • the UE1 selects the upper RU in the BoW shown in FIG.
  • UE1, UE2, and UE3 may also use the same frequency as the frequency used in TxW in the BoW.
  • UE1 retransmission is successful, and UE2 and UE3 retransmission using the same RU fail. Therefore, UE2 and UE3 need to perform retransmission again in the next retransmission window, that is, the BoW of DW k+1 .
  • a retransmission scheme of frequency reselection is still employed.
  • the network nodes that failed to retransmit in the BoW of DW k are retransmitted again in the next retransmission window, that is, the BoW of DW k+1 .
  • these network nodes may also select a retransmission window to be retransmitted again, that is, a retransmission scheme using time-frequency reselection.
  • Fig. 4 shows a schematic diagram of an example of a dual window employing this scheme. As can be seen, the difference between FIG. 4 and FIG. 2 is that, in the BoW DW k retransmission of the failed UE2 and UE3 respectively selected DW k + BoW and DW k 2 + BoW 1 performs the data retransmission.
  • the generating unit 102 is further configured to generate a maximum backoff window length for the network node group for the network node group in which the data transmission is unsuccessful in the retransmission window, the maximum backoff window length indicating the network node group The maximum number of retransmission windows that the network node can retreat.
  • the information of the maximum backoff window length may be sent to the corresponding network node along with the NACK, which may be performed by means of a broadcast, such as by BCH broadcast or system information broadcast by DL-SCH.
  • the network node may select the number of retransmission windows to be retired within the range of the maximum retreat window length, and the selection may be performed randomly or according to the priority of the network node, so that the retransmission network node may be retransmitted. Disperse into multiple retransmission windows to avoid data accumulation and increase the probability of successful retransmission.
  • the maximum backoff window length can be set to be positively correlated with the number of network nodes in the retransmission window where data transmission is unsuccessful. In this way, when there are many network nodes whose data transmission is unsuccessful in the retransmission window, a large maximum backoff window length can be set, so that the transmission of these network nodes can be distributed over a longer time range. Moreover, the setting of the maximum back-off window length can also ensure that the network node does not wait for a long time.
  • the determining unit 101 can also be configured to dynamically adjust the size of the retransmission window. For example, the determining unit 101 can adjust the size of the retransmission window according to the number of network nodes in the current retransmission window to be retransmitted.
  • the network node to perform data retransmission includes network nodes that fail to transmit in the current transmission window. The number of these network nodes reflects the load size in the retransmission window, so that the size of the retransmission window can be adjusted according to the number.
  • the network node to be retransmitted may also include a network node that has failed to retransmit to the current retransmission window in the previous retransmission window.
  • the size of the retransmission window may be appropriately increased, that is, the amount of transmission resources used for retransmission is increased; otherwise, the size of the retransmission window is appropriately reduced. That is, the amount of transmission resources used for retransmission is reduced.
  • the determining unit 101 can also adjust the size of the retransmission window according to the requirements of the network node.
  • the information of the demand of the network node is included, for example, in a data packet sent by the network node to the network control terminal.
  • the requirements of the network node include, for example, the need to transmit data as quickly as possible, and the low tolerance to delay.
  • the determining unit 101 can appropriately increase the size of the retransmission window, thereby increasing the probability of successful retransmission of such a network node.
  • the generating unit 102 After the determining unit 101 adjusts the size of the retransmission window, the generating unit 102 generates corresponding updated configuration information, and the transceiving unit 103 transmits the updated configuration information to the network node.
  • the updated configuration information is used to update the size of the current retransmission window.
  • the updated configuration information is for example transmitted in the current transmission window and can be transmitted by means of a broadcast, for example by BCH broadcast or by system information broadcast via the DL-SCH.
  • FIG. 5 shows a diagram of an example of the retransmission window before and after the update
  • the determination unit 101 can similarly adjust the size of the transmission window TxW if necessary.
  • the size of the retransmission window becomes 1 after the next double window, DW 2 and thereafter.
  • This can be implemented by the transceiver unit 103 transmitting the corresponding configuration information again, or by automatically performing the operation of restoring to the initial setting by the network node.
  • the determining unit 101 may set the size of the retransmission window to 0. That is to cancel the retransmission window.
  • Fig. 6 shows a schematic diagram of a retransmission scheme using frequency reselection in this case
  • Fig. 7 shows a schematic diagram of a retransmission scheme using time-frequency reselection in this case.
  • all time slots are used as transmission windows.
  • the UE that failed to transmit reselects the RU for retransmission in the next slot.
  • the UE that failed to transmit may select the RU in one of the subsequent slots to retransmit.
  • Figures 6 and 7 the retransmission window is cancelled, for example until the network node receives the configuration information for the new set retransmission window.
  • the determination unit 101 it is also possible to set the size of the retransmission window to 0 only for the current double window. In this case, the double window after the current double window moves forward one or more time slots accordingly.
  • the determining unit 101 may divide the transmission resource in the frequency domain into a portion for data initial transmission of the network node and a portion for data retransmission of the network node, for example, divided into a plurality of double windows according to frequency. Network nodes of different transmission windows can work in parallel, randomly selecting different times for data transmission. When a collision or overload occurs, the retransmission window is retracted for data retransmission.
  • the retransmission window described herein may include a retransmission window of the current dual window, and may also include retransmission windows of other dual windows.
  • the predetermined domain is a code domain
  • the above technique can be similarly applied, except that the double window is a double window on the code domain.
  • the electronic device 100 improves the number of network nodes for successful transmission by dividing the transmission resource into a portion for data initial transmission and a portion for data retransmission on a predetermined domain, thereby being capable of supporting bursty A large number of users access.
  • FIG. 9 is a functional block diagram of an electronic device 200 for a network node for wireless communication according to an embodiment of the present application.
  • the electronic device 200 includes: an obtaining unit 201 configured to acquire The configuration information of the information of the division manner of the transmission resource of the wireless communication on the predetermined domain, wherein the divided transmission resource is used for data initial transmission of the network node and data retransmission of the network node, respectively; and the transmission unit 202 is configured Data initial transmission or data retransmission based on the configuration information.
  • the obtaining unit 201 and the transmitting unit 202 can be implemented by one or more processing circuits, which can be implemented, for example, as a chip.
  • the obtaining unit 201 acquires the above configuration information from the network control terminal.
  • the electronic device 200 may further include: a transceiver unit 203 configured to receive configuration information via one of: system information broadcast of the downlink shared channel DL-SCH, and broadcast channel BCH .
  • the transceiver unit 203 can be implemented, for example, as a transceiver or an antenna and its related components.
  • the transmission resources for data transmission of the network node and the transmission resources for data retransmission of the network node may be alternately distributed on a predetermined domain.
  • the predetermined domain may include one of a time domain, a frequency domain, and a code domain.
  • the predetermined domain is a time domain
  • the time-frequency resource is divided into multiple dual windows in the time domain, each dual window including a transmission window for data initial transmission of the network node and data retransmission for the network node.
  • the retransmission window, the transmission unit 202 randomly selects the minimum time-frequency resource unit in the transmission window to perform initial data transmission, or randomly selects the minimum time-frequency resource unit in the retransmission window to perform data retransmission.
  • the network node randomly selects the RU in the transmission window, and the data to be transmitted is included in the data packet, and the data packet is sent to the network control end on the RU, as described in the first embodiment, when the network control terminal is
  • an acknowledgment message such as an ACK is sent to the network node in the network node group corresponding to the RU to indicate that the data transmission is successful. Otherwise, a NACK is sent to it to indicate that its data transmission failed.
  • the transmission unit 202 can also be configured to perform data retransmission in the retransmission window in the current dual window in the case where the initial transmission of data in the transmission window in the current dual window fails.
  • the obtaining unit 201 is further configured to acquire an indication of an adjustment retransmission window from the network control end, such as increasing or decreasing the size of the retransmission window, the indication being transmitted, for example, by the network control terminal by means of a broadcast, for example System information broadcast via BCH broadcast or through DL-SCH.
  • a broadcast for example System information broadcast via BCH broadcast or through DL-SCH.
  • the transmission unit 202 can retransmit in the transmission window or retransmission window of the next dual window; On the one hand, if such cancellation continues until a new configuration information location is received, the transmission unit can randomly select a subsequent transmission window for data retransmission.
  • the transmission unit 202 may be further configured to perform backoff in the event that data retransmission in the retransmission window fails to perform data retransmission in a retransmission window after a period of time has elapsed.
  • transmission unit 202 can be configured to back off to the next retransmission window for data retransmission.
  • transmission unit 202 can be configured to retrace to a retransmission window for data retransmission.
  • the transmission unit 202 can be configured to determine a retransmission window to be retired based on information from the maximum backoff window length of the network control end.
  • the transceiver unit 203 can receive the information of the maximum backoff window length while receiving the NACK.
  • the maximum backoff window length may be determined by the network control end according to the number of network nodes to be retransmitted or the requirements of the network node. For example, when the number of network nodes to be retransmitted is larger, the maximum backoff window length is larger; when the network node has a demand for transmitting data as soon as possible, the maximum backoff window length is increased.
  • the maximum backoff window length may also be a fixed value determined according to the average value of the number of network nodes to be retransmitted. In this case, the network control terminal only needs to notify the network node at the initial time.
  • the transmission unit 202 can randomly select the number of retransmission windows to be retired within the range of the maximum backoff window length.
  • the window is retransmitted. More generally, assuming that the current retransmission window is BoW n , the network node whose number of retransmission windows to be retired is CW B will be retired to the retransmission window. Perform data retransmission.
  • multiple network nodes that fail to retransmit can be equally probablely distributed into CW max retransmission windows, effectively avoiding data accumulation and improving the probability of successful retransmission.
  • the setting of the maximum backoff window length can also prevent the network node from waiting for a long time.
  • the transmission unit 202 may select the number of retransmission windows to be retired according to the priority of the network node. For example, the transmission unit 202 can select a smaller number of retransmission windows to be retired for the higher priority network node. In other words, the higher priority network node can prioritize data retransmission.
  • the priority of a network node may increase as the number of retransmissions increases.
  • the initial priority user priority of the network node is set to 0.
  • the priority user priority is incremented by 1, and the number of retransmission windows to be backed off by the user is set to CW.
  • B CW max -user priority. If the user priority is greater than or equal to CW max , CW B can be set to 1.
  • FIG. 10 shows a schematic diagram of one example of selection of a retransmission window based on the priority of a network node.
  • the retransmission of UE1 to UE3 fails in the retransmission window BoW 2 , and needs to be retransmitted after retracting.
  • frequency reselection can also be performed at the same time.
  • the network node may randomly select a certain RU in the retransmission window for data retransmission with equal probability.
  • the network node can also select the RU with the same frequency in the previous transmission window for data retransmission, or use other methods for RU selection, which is not restrictive.
  • the transmission unit 202 may be further configured to include the requirement information of the network node in the data packet sent by the network node to the network control end, so that the network control end adjusts the division manner according to the requirement information. For example, when the demand information indicates a need to transmit data as soon as possible, the network console can increase the size of the retransmission window to meet the demand.
  • the above is described in detail by taking the time domain as an example, the descriptions can be similarly applied to the frequency domain or the code domain, that is, setting a double window in the frequency domain or the code domain, so that the network node performs data in the transmission window.
  • Initial transmission, and data retransmission in the retransmission window are described in detail by taking the time domain as an example, the descriptions can be similarly applied to the frequency domain or the code domain, that is, setting a double window in the frequency domain or the code domain, so that the network node performs data in the transmission window. Initial transmission, and data retransmission in the retransmission window.
  • the electronic device 200 performs data initial transmission and data retransmission in the transmission window and the retransmission window determined according to the configuration information, respectively, which can effectively avoid data accumulation and improve the probability of successful data transmission.
  • FIG. 11 shows a diagram of the flow of information between the network control end and the network node.
  • the network node obtains initial configuration information such as the size of the transmission window and the retransmission window from the network control terminal. Then, the network node transmits new data to the network control end in the transmission window, for example, through a Physical Uplink Share Channel (PUSCH).
  • the network control terminal demodulates the received data, and in the process can estimate the density of the load in real time such as the number of network nodes that have not successfully received their data. For a network node group that successfully receives its data, the network control end sends an ACK to the network node therein; and for a network node group that does not successfully receive its data, the network control end sends a NACK to the network node therein.
  • PUSCH Physical Uplink Share Channel
  • the network control end may further adjust the size of the retransmission window according to the estimated number of network nodes to be retransmitted, and the adjusted instruction is sent to the network node by means of broadcast.
  • the transmission of both ACK and NACK can be performed through the DL-SCH or the BCH.
  • the unsuccessfully transmitted network node After receiving the instruction to adjust the BoW, the unsuccessfully transmitted network node performs dual window update and retransmits the updated BoW through the PUSCH.
  • the network control end determines the maximum backoff window length CW max according to the number of network nodes for the network node group whose retransmission is unsuccessful in the BoW, and sends the CW max together with the NACK to the network node of the network node group; A successful network node group is transmitted, and the network control end sends an ACK to it.
  • the network node After receiving the ACK, the network node enters a sleep state if there is no new data transmission, and if there is new data transmission, the above process is repeated.
  • simulations will be performed for the following five scenarios: a) SW with frequency reselection (refer to FIG. 6); b) SW with time-frequency reselection (refer to FIG. 7); c) DW with frequency reselection (Refer to Figure 2); d) DW using time-frequency reselection (refer to Figure 4), wherein the selection of the number of back-off retransmission windows is random; and e) DW using time-frequency reselection (refer to Figure 4) ), wherein the selection of the number of back-off retransmission windows is based on user priority.
  • the BoW size is fixed, and the TxW is one time slot.
  • the number of new users entering a certain TxW is K, and K obeys the Poisson distribution, that is, K to P( ⁇ ). Assuming that the average number of new users entering TxW is ⁇ , the probability of K new users entering TxW is observed as
  • Figure 12 shows the manner in which new users enter the window in the SW and DW scenarios, respectively.
  • K users are first transmitted in TxW, and users entering BoW are retransmitted users.
  • each TxW only The number of users entering ensures that the number of new users entering the two scenarios is equal.
  • the simulation parameters are set as follows: the number of RUs that can be used by the user in an authorization-free manner in each time slot is 16, and the number of users that can be simultaneously processed by each RU is 3, and the average number of new users entering TxW in each DW is ⁇ . 24, 48 and 72, the maximum retract window length is limited to 5.
  • 13 to 15 respectively show graphs of the throughput of the five schemes as a function of time window in the case of different new user numbers ⁇ , where the horizontal axis is the index of DW and the vertical axis is throughput. It can be seen that the performance of the various schemes of SW and DW is not much different when the number of users entering each TxW is small (for example, 24). Since the number of users is much smaller than the total number of users that the RU in a time slot can support, the data is retransmitted with a small probability. Most of the above five schemes can successfully transmit data and be demodulated by the base station.
  • the average user that cannot be successfully demodulated in a single window or dual window under the SW and DW schemes is compared in the case where the number of RUs and the number of users L that each RU can carry are the same.
  • the number of failnum The number of defined RUs is RUnum, and the number of users that can be processed simultaneously by each RU is L.
  • the number of users k is selected based on the maximum number of users that can be transmitted based on scheduling authorization.
  • g(g(k)) is the number of users that have not been successfully demodulated under the DW scheme. That is, the number of users that have not been successfully demodulated in the first time slot under the SW scheme. Regardless of whether these users are retransmitted in the second time slot of the SW, the number of failed users that have not successfully demodulated must be greater than which is
  • the number of users is That is, H, g(g(k)) shown in FIG. 16 is G shown in the figure, and the SW scheme in the former is unsuccessfully solved regardless of whether the H users that are not successfully demodulated are retransmitted in the next slot of the SW.
  • the number of users adjusted must be greater than G.
  • Figures 17-18 show the same geometric relationship and properties, so it can be proved that the number of unsuccessfully demodulated users of the DW scheme is less than that of the SW scheme.
  • the DW scheme (where the selection of the number of retransmitted retransmission windows is random) is simulated to consider the throughput under different user loads, where the user load refers to the number of users and the number of resources. The ratio, expressed here as a percentage.
  • the simulation result is shown in FIG. 19, in which the number of RUs that can be used by the user in an unauthorized manner in each time slot is 16, and the number of users that can be simultaneously processed by each RU is three. It can be seen that the DW scheme can still pass a small number of users when the user is overloaded by 150%.
  • Figure 20 also shows the simulation results of the throughput of the DW scheme under different RU bearer forces, i.e., the maximum number of users that the RU can support, where the number of RUs that can be used by the user in an unlicensed manner in each time slot.
  • the maximum number of users that each RU can support is represented by the variable L, and the number of new users entering a certain TxW is K to P (64). It can be seen that the greater the carrying capacity of the RU, the smaller the probability of collision, and the more users the base station can successfully demodulate.
  • the method of the network console and the method of the network node for wireless communication may be implemented entirely by a computer-executable program, although these methods may also employ an electronic device for network control of wireless communication and a network node for wireless communication. Hardware and/or firmware of the electronic device.
  • 21 illustrates a method for a network control terminal for wireless communication according to an embodiment of the present application, including the steps of determining a division manner of a transmission resource for wireless communication on a predetermined domain (S11), the divided transmission
  • the resources are respectively used for data initial transmission of the network node and data retransmission of the network node; and configuration information for generating information including the division manner (S12).
  • the predetermined domain may include one of a time domain, a frequency domain, and a code domain.
  • the transmission resources for the initial transmission of data of the network node and the transmission resources for data retransmission of the network node may be alternately distributed on a predetermined domain.
  • the above method may further include step S13: transmitting the configuration information to the network node.
  • the transmission may be performed via one of the following: system information broadcast of the downlink shared channel DL-SCH, and broadcast channel BCH.
  • the predetermined domain is a time domain
  • the time-frequency resource is divided into multiple dual windows in the time domain in step S11, each dual window including a transmission window for data initial transmission of the network node and for the network
  • the retransmission window of the data retransmission of the node wherein the retransmission window is used to transmit the failed network node in the current dual window transmission window for data retransmission.
  • the retransmission window can also be used for data retransmission by retransmitting at least a portion of the failed network node in the previous retransmission window.
  • the size of the retransmission window may also be adjusted according to at least one of the following: the number of network nodes in the current retransmission window to perform data retransmission, and the requirements of the network node.
  • the configuration of the minimum time-frequency resource unit in the transmission window and the retransmission window may be determined in step S11, where the network node randomly selects the minimum time-frequency resource unit in the transmission window to perform initial data transmission or random selection in the retransmission window.
  • the minimum time-frequency resource unit performs data retransmission.
  • step S12 according to the demodulation result of the data from the network node, the indication information specific to the network node group is generated for notifying whether the network node data transmission in the network node group is successful, wherein the same minimum time-frequency resource is used.
  • the network node that performs data transmission by the unit constitutes a network node group. If there is a network node in the network node group where the data is not successfully demodulated, an indication information NACK indicating that the data transmission is unsuccessful is generated, which is specific to the network node group, otherwise generating a specific An indication information ACK indicating that the data transmission is successful in the network node group.
  • a maximum backoff window length for the network node group may also be generated in step S12, the maximum backoff window length indicating that the network node in the network node group can be backed off The maximum number of retransmission windows.
  • the maximum backoff window length is positively correlated with the number of network nodes in the retransmission window where data transmission is unsuccessful.
  • FIG. 22 illustrates a method for a network node for wireless communication according to an embodiment of the present application, including the steps of: acquiring configuration information including information on a division manner of a transmission resource for wireless communication on a predetermined domain (S21) And the divided transmission resources are respectively used for data initial transmission of the network node and data retransmission of the network node; and data initial transmission or data retransmission is performed based on the configuration information (S22).
  • the predetermined domain may include one of a time domain, a frequency domain, and a code domain.
  • the transmission resources for the initial transmission of data of the network node and the transmission resources for data retransmission of the network node may be alternately distributed on a predetermined domain.
  • step S21 configuration information may be received via one of: a system information broadcast of the downlink shared channel DL-SCH, and a broadcast channel BCH.
  • the predetermined domain is a time domain
  • the time-frequency resource is divided into multiple dual windows in the time domain, each dual window including a transmission window for data initial transmission of the network node and data retransmission for the network node.
  • the retransmission window randomly selects the minimum time-frequency resource unit in the transmission window to perform initial data transmission in step S22, or randomly selects the minimum time-frequency resource unit in the retransmission window to perform data retransmission.
  • data retransmission is performed in the retransmission window in the current dual window.
  • backoff is performed in the case where data retransmission in the retransmission window fails, to perform data retransmission in a retransmission window after a period of time.
  • the next retransmission window of the current retransmission window can be retired for data retransmission.
  • the retransmission window to be retired may be determined based on the information of the maximum backoff window length from the network control terminal in step S22. For example, the number of retransmission windows to be retired is randomly selected within the range of the maximum retreat window length, or the number of retransmission windows to be retired is selected according to the priority of the network node.
  • the priority of the network node can be set to increase as the number of retransmissions increases, and the number of retransmission windows to be retired is selected for the higher priority network node.
  • the data packet sent by the network node to the network control terminal may further include user requirement information of the network node, so that the network control terminal adjusts the division manner according to the user requirement information.
  • the above method improves the number of successful transmission network nodes by dividing the transmission resources into a portion for data initial transmission and a portion for data retransmission on a predetermined domain, thereby being capable of supporting bursty large-scale user access.
  • the technology of the present disclosure can be applied to various products.
  • the above mentioned base stations can be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • RRHs remote wireless headends
  • various types of user equipments to be described below can operate as a base station by performing base station functions temporarily or semi-persistently.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • eNB 800 can include multiple antennas 810.
  • multiple antennas 810 can be compatible with multiple frequency bands used by eNB 800.
  • FIG. 23 illustrates an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 820. For example, controller 821 generates data packets based on data in signals processed by wireless communication interface 825 and communicates the generated packets via network interface 823. Controller 821 can bundle data from multiple baseband processors to generate bundled packets and pass the generated bundled packets. The controller 821 can have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 823 is a communication interface for connecting base station device 820 to core network 824. Controller 821 can communicate with a core network node or another eNB via network interface 823. In this case, the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 823 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 823 is a wireless communication interface, network interface 823 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to terminals located in cells of the eNB 800 via the antenna 810.
  • Wireless communication interface 825 may typically include, for example, a baseband (BB) processor 826 and RF circuitry 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 826 may have some or all of the above described logic functions.
  • the BB processor 826 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 826 to change.
  • the module can be a card or blade that is inserted into a slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 810.
  • the wireless communication interface 825 can include a plurality of BB processors 826.
  • multiple BB processors 826 can be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 can include a plurality of RF circuits 827.
  • multiple RF circuits 827 can be compatible with multiple antenna elements.
  • FIG. 23 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the transceiving unit 103 described with reference to Fig. 1 can be implemented by the radio communication interface 825. At least a portion of the functionality can also be implemented by controller 821.
  • the controller 821 can perform determination of the division manner of the transmission resource on the predetermined domain and generation of the configuration information by performing the functions of the determining unit 101 and the generating unit 102.
  • the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 can include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 24 illustrates an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • Wireless communication interface 855 can generally include, for example, BB processor 856.
  • the BB processor 856 is identical to the BB processor 826 described with reference to FIG. 24 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 can include a plurality of BB processors 856.
  • multiple BB processors 856 can be compatible with multiple frequency bands used by eNB 830.
  • FIG. 24 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 can also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communicating the base station device 850 (wireless communication interface 855) to the above-described high speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 can also be a communication module for communication in the above high speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • Wireless communication interface 863 can typically include, for example, RF circuitry 864.
  • the RF circuit 864 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 can include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 24 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the transceiving unit 103 described with reference to FIG. 1 can be implemented by the wireless communication interface 855 and/or the wireless communication interface 863. At least a portion of the functionality can also be implemented by controller 851.
  • the controller 851 can perform determination of the division manner of the transmission resource on the predetermined domain and generation of the configuration information by performing the functions of the determining unit 101 and the generating unit 102.
  • FIG. 25 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, an imaging device 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more An antenna switch 915, one or more antennas 916, a bus 917, a battery 918, and an auxiliary controller 919.
  • the processor 901 can be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smart phone 900.
  • the memory 902 includes a RAM and a ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 907 can include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from a user.
  • the display device 910 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 912 may generally include, for example, BB processor 913 and RF circuitry 914.
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • RF circuitry 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 916.
  • the wireless communication interface 912 can be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG.
  • the wireless communication interface 912 can include a plurality of BB processors 913 and a plurality of RF circuits 914.
  • FIG. 25 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • wireless communication interface 912 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 can include a BB processor 913 and RF circuitry 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 912, such as circuits for different wireless communication schemes.
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 912 to transmit and receive wireless signals.
  • the RF link may be connected to the plurality of antenna elements by a plurality of phase shifters, respectively.
  • smart phone 900 can include multiple antennas 916.
  • FIG. 25 shows an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may also include a single antenna 916.
  • smart phone 900 can include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900.
  • the bus 917 sets the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. connection.
  • Battery 918 provides power to various blocks of smart phone 900 shown in FIG. 25 via a feeder, which is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary function of the smartphone 900, for example, in a sleep mode.
  • the transceiving unit 203 described with reference to FIG. 9 can be implemented by the wireless communication interface 912. At least a portion of the functionality can also be implemented by processor 901 or auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 can perform acquisition of configuration information and data transfer by performing functions of the acquisition unit 201 and the generation unit 202.
  • FIG. 26 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and a wireless device.
  • the processor 921 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 920.
  • the memory 922 includes a RAM and a ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 measures the position of the car navigation device 920 (such as latitude, longitude, and altitude) using GPS signals received from GPS satellites.
  • Sensor 925 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935.
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 937.
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 26 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • car navigation device 920 can include a plurality of antennas 937.
  • FIG. 26 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • car navigation device 920 can include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 can be omitted from the configuration of the car navigation device 920.
  • Battery 938 provides power to various blocks of car navigation device 920 shown in Figure 26 via feeders, which are shown partially as dashed lines in the figure. Battery 938 accumulates power supplied from the vehicle.
  • the transceiving unit 203 described with reference to FIG. 9 can be implemented by the wireless communication interface 933. At least a portion of the functionality can also be implemented by processor 921.
  • the processor 921 can perform acquisition of configuration information and data transfer by performing functions of the acquisition unit 201 and the generation unit 202.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 940 that includes one or more of the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941.
  • the present invention also proposes a program product for storing an instruction code readable by a machine.
  • the instruction code is read and executed by a machine, the above-described method according to an embodiment of the present invention can be performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 2700 shown in FIG. 27), which is installed with various programs. At the time, it is possible to perform various functions and the like.
  • a central processing unit (CPU) 2701 executes various processes in accordance with a program stored in a read only memory (ROM) 2702 or a program loaded from a storage portion 2708 to a random access memory (RAM) 2703.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 2701 executes various processes and the like is also stored as needed.
  • the CPU 2701, the ROM 2702, and the RAM 2703 are connected to each other via a bus 2704.
  • Input/output interface 2705 is also coupled to bus 2704.
  • the following components are connected to the input/output interface 2705: an input portion 2706 (including a keyboard, a mouse, etc.), an output portion 2707 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.),
  • the storage portion 2708 (including a hard disk or the like), the communication portion 2709 (including a network interface card such as a LAN card, a modem, etc.).
  • the communication section 2709 performs communication processing via a network such as the Internet.
  • the driver 2710 can also be connected to the input/output interface 2705 as needed.
  • a removable medium 2711 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 2710 as needed, so that the computer program read therefrom is installed into the storage portion 2708 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 2711.
  • such a storage medium is not limited to the removable medium 2711 shown in FIG. 27 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the removable medium 2711 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered) Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 2702, a hard disk included in the storage portion 2708, and the like, in which programs are stored, and distributed to the user together with the device containing them.

Abstract

本公开提供了用于无线通信的网络控制端的电子设备和方法以及用于无线通信的网络节点的电子设备和方法。用于无线通信的网络控制端的电子设备,包括处理电路,被配置为:确定用于无线通信的传输资源在预定域上的划分方式,划分后的传输资源分别用于网络节点的数据初传和网络节点的数据重传;以及生成包含该划分方式的信息的配置信息。

Description

用于无线通信的网络控制端和网络节点的电子设备和方法
本申请要求于2017年3月27日提交中国专利局、申请号为201710188913.4、发明名称为“用于无线通信的网络控制端和网络节点的电子设备和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明的实施例总体上涉及无线通信领域,具体地涉及随机接入和碰撞解决技术,更具体地涉及一种用于无线通信的网络控制端的电子设备和方法以及用于无线通信的网络节点的电子设备和方法。
背景技术
目前的5G应用场景可以被划分成三大类:增强移动宽带(eMBB)、海量机器类通信(mMTC)和超可靠低时延通信(uRLLC)。这三种应用场景有不同的需求,比如eMBB场景要求低延迟和高频谱效率,而mMTC场景要求处理大量接入的终端和实现低功耗。在mMTC场景下,由于大量用户的随机接入,如何解决碰撞和重传问题变得非常重要。
发明内容
在下文中给出了关于本申请的简要概述,以便提供关于本申请的某些方面的基本理解。应当理解,这个概述并不是关于本申请的穷举性概述。它并不是意图确定本申请的关键或重要部分,也不是意图限定本申请的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的网络控制端的电子设备,包括处理电路,被配置为:确定用于无线通信的传输资源在预定域上的划分方式,划分后的传输资源分别用于网络节点的数据初传和网络节点的数据重传;以及生成包含该划分方式的信息的配置信息。
根据本申请的另一个方面,提供了一种用于无线通信的网络节点的 电子设备,包括:处理电路,被配置为:获取包含用于无线通信的传输资源在预定域上的划分方式的信息的配置信息,其中,划分后的传输资源分别用于网络节点的数据初传和网络节点的数据重传;以及基于该配置信息进行数据初传或数据重传。
根据本申请的另一个方面,提供了一种用于无线通信的网络控制端的方法,包括:确定用于无线通信的传输资源在预定域上的划分方式,划分后的传输资源分别用于网络节点的数据初传和网络节点的数据重传;以及生成包含该划分方式的信息的配置信息。
根据本申请的另一个方面,提供了一种用于无线通信的网络节点的方法,包括:获取包含用于无线通信的传输资源在预定域上的划分方式的信息的配置信息,其中,划分后的传输资源分别用于网络节点的数据初传和网络节点的数据重传;以及基于该配置信息进行数据初传或数据重传。
依据本申请的其它方面,还提供了用于实现上述方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述方法的计算机程序代码的计算机可读存储介质。
根据本申请的电子设备和方法通过将传输资源划分为用于网络节点的数据初传的部分和用于网络节点的数据重传的部分,有效地提高了成功传输的网络节点的数量,从而能够支持突发性的大量用户接入。
通过以下结合附图对本申请的优选实施例的详细说明,本申请的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1是示出了根据本申请的一个实施例的用于无线通信的网络控制端的电子设备的功能模块框图;
图2是示出了根据本申请的实施例的时域上的双窗口的示例的示意图;
图3是示出了非正交多址技术的应用场景的示意图;
图4是示出了根据本申请的实施例的时域上的双窗口的示例的示意图;
图5是示出了重传窗在更新前后的一个示例的图;
图6是示出了重传窗被取消的情形的示例的图;
图7是示出了重传窗被取消的情形的示例的图;
图8是示出了重传窗被取消的情形的示例的图;
图9是示出了根据本申请的一个实施例的用于无线通信的网络节点的电子设备的功能模块框图;
图10示出了基于网络节点的优先级进行重传窗的选择的一个示例的示意图;
图11示出了网络控制端与网络节点之间的信息流程的图;
图12分别示出了单窗口和双窗口方案中新用户进入窗口的方式;
图13-20示出了仿真结果的曲线图;
图21是示出了根据本申请的一个实施例的用于无线通信的网络控制端的方法的流程图;
图22是示出了根据本申请的一个实施例的用于无线通信的网络节点的方法的流程图;
图23是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图;
图24是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图;
图25是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图26是示出可以应用本公开内容的技术的汽车导航设备的示意性 配置的示例的框图;以及
图27是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
如前所述,在mMTC场景中,可能存在大量网络节点随机接入网络控制端的情况。在这种应用场景中,出现碰撞从而需要重传的概率较高。因此,如何处理碰撞问题对于通信质量的提高非常关键。本实施例提供了一种减少碰撞并且增加成功传输的网络节点数的技术。但是,应该理解,本实施例的技术的应用场景并不限于mMTC,而是可以应用于任何具有类似需求的场合,mMTC仅是为了理解的需要而给出的示例。
图1示出了根据本申请的实施例的用于无线通信的网络控制端的电子设备100的功能模块框图,如图1所示,该电子设备100包括:确定单元101,被配置为确定用于无线通信的传输资源在预定域上的划分方式,划分后的传输资源分别用于网络节点的数据初传和网络节点的数据重传;以及生成单元102,被配置为生成包含该划分方式的信息的配置信 息。
其中,确定单元101和生成单元102可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。
网络控制端指的是通信系统中用于实现通信活动的相关设置、控制、通信资源分配等功能的实体,比如蜂窝通信系统中的基站,C-RAN(Cloud-RAN/Centralized-RAN)结构下(可能不存在小区概念)的基带云设备,例如C-RAN架构下的彼此高速连通的BBU池中的任一BBU等。网络节点指的是通信系统中使用通信资源以实现其通信目的的实体,比如各种用户设备(诸如具有蜂窝通信能力的移动终端、智能车辆、智能穿戴设备等)或者网络基础设施比如小小区基站等。
一般地,网络节点与网络控制端在特定传输资源上进行数据传输以实现通信的目的,例如,当网络控制端没有正确接收到来自该网络节点的数据时,网络节点进行数据重传。在不同的通信方案中,多个网络节点可以分别在相互正交的传输资源上进行传输,即采用正交多址技术(Orthogonal Multiple Access,OMA);也可以使用非正交的传输资源进行数据传输,即采用非正交多址技术(Non-orthogonal Multiple Access,NOMA)。另一方面,网络节点和网络控制端之间的数据传输可以是基于调度授权(grant-based)的,即网络控制端为网络节点调度传输资源并授权其使用该传输资源,也可以是免授权调度(grant-free)的,即网络节点不需要网络控制端的授权而直接进行数据传输。根据待传输数据的特性,免授权调度和NOMA可能更适用于mMTC场景。因此,在下文中将主要针对应用免授权调度和NOMA的场景进行描述,但是应该理解,本申请的技术并不限于此,也可以适当地应用于采用授权调度和/或OMA的场景。
在该实施例中,确定单元101将传输资源在预定域上分为两类,分别用于网络节点的数据初传和网络节点的数据重传。这样可以避免重传数据的堆积,从而提高网络节点成功传输的概率。作为示例,用于网络节点的数据初传的传输资源和用于网络节点的数据重传的传输资源可以在预定域上交替分布。生成单元102将传输资源如何划分的信息生成为配置信息,该配置信息被提供给网络节点,以使得网络节点根据该配置信息进行数据初传和数据重传。
对应地,如图1中的虚线框所示,电子设备100还可以包括:收发单元103,被配置为将配置信息发送给网络节点。收发单元103例如可以实现为收发器或天线及其相关部件等。
收发单元103可以通过广播的方式将配置信息发送给各个网络节点。例如,收发单元103可以通过系统信息广播比如系统信息块(System Information Blocks,SIB)或广播信道(Broadcast channel,BCH)来执行发送,其中SIB可以在下行共享信道(Downlink share channel,DL-SCH)上发送,DL-SCH和BCH可以分别映射到物理下行共享信道(Physical Downlink Share Channel,PDSCH)和物理广播信道(Physical Broadcast Channel,PBCH)。接下来,网络节点将根据该配置信息进行数据传输,例如使用用于数据初传的传输资源进行数据的首次传输,以及使用用于数据重传的传输资源进行数据首次传输失败之后的重新传输。
其中,预定域可以包括时域、频域、码域之一。换言之,预定域是传输资源在其上分布的域中的一个。通过在预定域上对传输资源进行划分,可以对初传数据和重传数据在该预定域上进行区分,降低来自不同网络节点的数据发生碰撞或过载的概率,从而有效增加成功传输的网络节点数。
在一个示例中,预定域为时域,确定单元101被配置为将时频资源在时域上划分为多个双窗口,每一个双窗口包括用于网络节点的数据初传的传输窗和用于网络节点的数据重传的重传窗,其中,重传窗用于在当前双窗口的传输窗中传输失败的网络节点进行数据重传。此外,重传窗还可用于如下网络节点进行数据重传:在在前的重传窗中重传失败的网络节点的至少一部分。因此,在该示例中,重传窗是传输失败的网络节点进行退避之后重新传输数据的时间窗口。
其中,网络节点可以使用的传输资源被称为资源池,资源池可以被划分为多个最小时频资源单元(下文中简称为资源单元(Resource Unit,RU)),网络节点可以选择RU进行数据传输。每个RU是相互独立的,在时域上占用部分子帧,在频域上占用部分子载波,如图2中用方格所示。其中,RU的大小是由网络控制端预先配置的。
在上行NOMA系统中,每个RU可以支持多个网络节点,如图3所 示。图3中示出了四个RU,其中每个RU上分布有不同的网络节点(图3中将用户设备UE作为网络节点的示例)。每个RU所能支持的网络节点数例如取决于所采用的非正交多址技术的特性。例如,在IDMA(Interleave division multiple access)系统中,在相同的信噪比条件下,扩频长度越长或接收天线数越多,能够支持的网络节点数越多。因此,对于同一非正交多址技术而言,传输窗和重传窗的大小决定了可以支持的网络节点数的数量。例如,在图3的示例中,如果每个RU可以支持两个网络节点,则同时使用RU 1的三个UE将会发生冲突或碰撞从而导致数据的重传。
在该示例中,确定单元101可以确定传输窗和重传窗中的最小时频资源单元的配置,例如传输窗和重传窗中分别包含的最小时频资源单元的数量,其中,网络节点随机选择传输窗中的最小时频资源单元进行数据初传或随机选择重传窗中的最小时频资源单元进行数据重传。上述配置包含在生成单元102所生成的配置信息中提供给网络节点。
例如,确定单元101可以根据平均网络节点数量来确定传输窗和重传窗中的最小时频资源单元的配置,并且该配置可以是固定的。此外,确定单元101也可以根据实时的网络节点数量的变化或者网络节点的需求来改变该配置,生成单元102相应地生成更新的配置信息,并且收发单元103例如通过广播的方式将更新的配置信息发送给网络节点。在某些示例中,可以仅更新重传窗的大小,而将传输窗的大小设置为固定不变的。在下文中将通过具体示例来描述双窗口的设置以及重传窗的更新。
在本实施例中,用于数据重传的重传窗和用于数据初传的传输窗在时域上是分离的。图2示出了根据本申请的实施例的时域上的双窗口的示例的示意图。其中,用斜线填充的方格代表传输窗(Transmission Window,TxW),空白的方格代表重传窗(Back-off Window,BoW)。可以看出,传输窗和重传窗交替分布,且对于一个双窗口而言,传输窗在前,重传窗在后。如前所述,传输窗和重传窗的大小由确定单元101确定,图2仅是一个示例,并不是限制性的。在图2中,以用户设备(UE)作为网络节点的示例,以基站(BS)作为网络控制端的示例。
如图2所示,在传输窗TxW中,接入网络的首次传输数据的UE在随机选择的RU上传输新的数据。例如,UE将该新的数据包含在数据包 中进行传输,并且该数据包中还包括用于解码的专用信息,这些专用信息由所采用的非正交多址技术决定,比如在采用IDMA的情况下,解码专用信息可以包括交织器信息。基站通过能量检测探知每个RU上是否存在用户,如果存在用户则采用盲检测算法对每个RU上的数据和用户数目进行检测,并对接收到的数据进行解调。
当基站能够正确解调来自某个UE的数据时,该UE的数据传输成功,否则传输失败,该UE需要进行数据重传,传输失败例如可能由于碰撞或过载引起。在传输成功的情况下,UE如果还有新的数据要传输,则在下一个传输窗开始新数据的传输,如果没有新的数据要传输则可以转入休眠状态。在传输失败的情况下,UE重新选择RU进行数据传输。如图2所示,此时UE在重传窗BoW中进行数据重传,其中,UE可以选择与初传时采用的RU同频或不同频的RU来进行数据重传。
在一个示例中,生成单元102根据对来自网络节点的数据的解调结果,生成特定于网络节点组的指示信息,以用于通知网络节点组中的网络节点数据传输是否成功,其中,使用同一最小时频资源单元进行数据传输的网络节点构成网络节点组。如果网络节点组中存在数据未被成功解调的网络节点,则生成单元102生成特定于该网络节点组的指示数据传输不成功的指示信息NACK,否则生成特定于该网络节点组的指示数据传输成功的指示信息ACK。
由于在免授权通信系统中,网络控制端和网络节点之间并没有建立连接,因此,网络控制端所发送的NACK或ACK是特定于RU的,而不是特定于某个网络节点的。收发单元103将特定于RU的NACK或ACK通过广播的方式发送给网络节点,例如通过SIB在DL-SCH上进行传输,使用该RU的网络节点将接收到相应的NACK或ACK。在接收到NACK的情况下,网络节点组中的网络节点在重传窗中进行数据重传。应该理解,这里所述的重传窗可以是当前传输窗的重传窗,也可以是后续双窗口的重传窗。
仍然参照图2进行说明,在双窗口DW k的传输窗TxW中,使用同一RU的UE1、UE2和UE3构成用户组(即,网络节点组),其传输比如由于发生碰撞或过载而失败,则该用户组需要在传输窗之后的重传窗BoW中进行重传。图2中示出了采用频率重选的重传方案,即,UE1、 UE2和UE3可以选择不同频率的RU进行重传,例如,UE对于RU的频率的选择是随机的并且还可以是等概率的。其中,UE1选择了图2中所示的BoW中的上方的RU进行重传,UE2和UE3选择了图2中所示的BoW中的下方的RU进行重传。应该理解,这并不是限制性的,UE1、UE2和UE3中的一个或多个在BoW中也可能采用与在TxW中使用的频率相同的频率。
在BoW中,UE1重传成功,而使用同一RU的UE2和UE3重传失败。因此,UE2和UE3需要在下一个重传窗、即DW k+1的BoW中再次进行重传。在图2的示例中,仍然采用了频率重选的重传方案。
在图2的示例中,在DW k的BoW中重传失败的网络节点均在下一个重传窗、即DW k+1的BoW中再次进行重传。但是,这并不是限制性的,这些网络节点还可以选择要再次进行重传的重传窗,即采用时频重选的重传方案。图4示出了采用该方案的双窗口的示例的示意图。可以看出,图4与图2的区别在于,在DW k的BoW中重传失败的UE2和UE3分别选择了DW k+2的BoW和DW k+1的BoW进行数据重传。
在一个示例中,生成单元102还被配置为对于在重传窗中数据传输不成功的网络节点组,生成针对该网络节点组的最大退避窗长,该最大退避窗长指示该网络节点组中的网络节点能够退避的重传窗的最大数目。该最大退避窗长的信息可以连同NACK一起发送给相应的网络节点,该发送可以通过广播的方式进行,例如通过BCH广播或通过DL-SCH的系统信息广播。
网络节点例如可以在该最大退避窗长的范围内选择要退避的重传窗的数目,该选择可以是随机进行的,也可以是根据网络节点的优先级进行的,这样可以将重传网络节点分散到多个重传窗中,从而避免数据的堆积,提高重传成功的概率。
例如,最大退避窗长可以被设置为与重传窗中数据传输不成功的网络节点的数量正相关。这样,当重传窗中数据传输不成功的网络节点较多时,可以设置较大的最大退避窗长,从而可以将这些网络节点的传输分布在更长的时间范围内。并且,最大退避窗长的设置也可以保证网络节点不会等待过长的时间。
此外,如前所述,确定单元101还可以被配置为动态地调整重传窗的大小。例如,确定单元101可以根据当前的重传窗中要进行数据重传的网络节点的数量来调整重传窗的大小。要进行数据重传的网络节点包括当前传输窗中传输失败的网络节点,这些网络节点的数量反映了重传窗中的负载大小,从而可以根据该数量来调整重传窗的大小。在其他示例中,要进行数据重传的网络节点还可以包括之前的重传窗中重传失败而退避到当前重传窗的网络节点。可以理解,当要进行数据重传的网络节点的数量较多时,可以适当地增加重传窗的大小,即增加用于重传的传输资源的量;反之则适当地减小重传窗的大小,即减小用于重传的传输资源的量。
替选地或者补充地,确定单元101还可以根据网络节点的需求来调整重传窗的大小。网络节点的需求的信息例如包括在网络节点发送给网络控制端的数据包中。网络节点的需求例如指需要尽快地传输数据、对时延的忍耐度较低等。当存在这类有特殊需求的网络节点时,确定单元101可以适当地增加重传窗的大小,从而提高这类网络节点成功重传的概率。
当确定单元101调整了重传窗的大小之后,生成单元102生成相应的更新的配置信息,并且收发单元103将更新的配置信息发送给网络节点。其中,该更新的配置信息用于更新当前重传窗的大小。在这种情况下,该更新的配置信息例如在当前传输窗中发送,可以通过广播的方式发送,例如通过BCH广播或通过DL-SCH的系统信息广播。
图5示出了重传窗在更新前后的一个示例的图,图5的左图示出了更新前的传输窗TxW和重传窗BoW,其中TxW持续一个时隙、即一个RU的时间长度,表示为TxW=1,BoW同样持续一个RU的时间长度,表示为BoW=1。图5的右图示出了更新后的重传窗BoW=3,传输窗TxW保持不变。可以看出,如果更新前的重传窗中有N个可选的RU,则更新后的重传窗中有3N个可选的RU,可用RU数量增多,从而可以有效缓解由于资源争用导致的碰撞问题。应该理解,如果需要,确定单元101也可以类似地调整传输窗TxW的大小。
此外,在图5中,在下一个双窗口即DW 2及之后,重传窗的大小变为1。这可以通过收发单元103再次发送相应的配置信息实现,也可以通 过网络节点自动执行恢复到初始设置的操作来实现。或者,网络节点也可以设置为如果未接收到新的配置信息,则按照最近接收到的配置信息指示的配置来进行数据传输,在图5的示例中,例如可以保持BoW=3。
在一个示例中,在重传窗中要进行重传的网络节点数非常少比如少于单个RU能支持的最大网络节点数的情况下,确定单元101可以将重传窗的大小设置为0,即取消重传窗。图6示出了在这种情况下采用频率重选的重传方案的示意图,图7示出了在这种情况下采用时频重选的重传方案的示意图。在图6和图7中,所有的时隙均用作传输窗。在图6中,传输失败的UE在下一个时隙中重新选择RU进行重传,在图7中,传输失败的UE可以选择随后若干个时隙中的一个时隙中的RU进行重传。
在图6和图7中,重传窗被取消,例如直到网络节点接收到新的设置重传窗的配置信息。但是,也可以设置为确定单元101将重传窗的大小设置为0的操作仅对当前双窗口有效。在这种情况下,当前双窗口之后的双窗口相应地向前移动一个或多个时隙。图8示出了在当前重传窗被取消时的双窗口的示意图,其中,初始的重传窗BoW=1。可以看出,双窗口DW k的BoW被取消。后续的双窗口依次向前移动一个时隙。在DW k的TxW中传输失败的UE1和UE2退避到DW k+1的BoW中进行重传。应该理解,UE1和UE2也可以退避到DW k+1的TxW中进行重传,或者退避到DW k+1之后的双窗口的BoW中进行重传,这不是限制性的,图8仅是一个示例。
以上详细描述了预定域为时域的情形,根据时域和频域的对偶性,本申请提出的技术方案同样适用于预定域为频域的情形。具体地,确定单元101可以将传输资源在频域上划分为用于网络节点的数据初传的部分和用于网络节点的数据重传的部分,例如,按照频率划分为多个双窗口。不同传输窗的网络节点可以以并行的方式工作,随机选择不同的时间进行数据传输。当发生碰撞或过载时,退避到重传窗进行数据重传,这里所述的重传窗可以包括当前双窗口的重传窗,也可以包括其他双窗口的重传窗。
此外,在预定域为码域的情况下,上述技术也可以类似地应用,只是双窗口为在码域上的双窗口。
根据本实施例的电子设备100通过将传输资源在预定域上划分为用于数据初传的部分和用于数据重传的部分,提高了成功传输的网络节点数,从而能够支持突发性的大量用户接入。
<第二实施例>
图9示出了根据本申请的一个实施例的用于无线通信的网络节点的电子设备200的功能模块框图,如图9所示,电子设备200包括:获取单元201,被配置为获取包含用于无线通信的传输资源在预定域上的划分方式的信息的配置信息,其中,划分后的传输资源分别用于网络节点的数据初传和网络节点的数据重传;以及传输单元202,被配置为基于该配置信息进行数据初传或数据重传。
其中,获取单元201和传输单元202可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。
例如,获取单元201从网络控制端获取上述配置信息。对应地,如图9中的虚线框所示,电子设备200还可以包括:收发单元203,被配置为经由如下之一来接收配置信息:下行共享信道DL-SCH的系统信息广播、广播信道BCH。收发单元203例如可以实现为收发器或天线及其相关部件。
与第一实施例中类似,用于网络节点的数据初传的传输资源和用于网络节点的数据重传的传输资源在预定域上可以交替分布。例如,预定域可以包括时域、频域、码域之一。
在一个示例中,预定域为时域,时频资源在时域上划分为多个双窗口,每一个双窗口包括用于网络节点的数据初传的传输窗和用于网络节点的数据重传的重传窗,传输单元202随机选择传输窗中的最小时频资源单元进行数据初传,或随机选择重传窗中的最小时频资源单元进行数据重传。
例如,网络节点随机选择传输窗中的RU,将要传输的数据包括在数据包中并将该数据包在该RU上发送至网络控制端,如第一实施例中所述,当网络控制端对使用该RU传输的数据解调成功时,将向该RU对应的网络节点组中的网络节点发送确认信息比如ACK,以指示其数据传 输成功。否则,向其发送NACK,以指示其数据传输失败。
因此,传输单元202还可以被配置为在当前双窗口中的传输窗中数据初传失败的情况下在当前双窗口中的重传窗中进行数据重传。在一个示例中,获取单元201还被配置为获取来自网络控制端的调整重传窗的指示,例如增大或减小重传窗的大小,该指示例如由网络控制端通过广播的方式发送,例如通过BCH广播或通过DL-SCH的系统信息广播。在这种情况下,如果网络节点在当前双窗口中的传输窗中数据初传失败,则传输单元202在调整后的重传窗中进行数据重传。特别地,如果网络控制端取消了重传窗,一方面,如果这种取消是只针对当前双窗口的,则传输单元202可以在下一个双窗口的传输窗或重传窗中进行重传;另一方面,如果这种取消持续直到接收到新的配置信息位置,则传输单元可以随机选择后续的传输窗进行数据重传。
另外,传输单元202还可以被配置为在重传窗中的数据重传失败的情况下进行退避,以在过去一段时间后的一个重传窗中进行数据重传。例如,传输单元202可以被配置为退避到下一个重传窗进行数据重传。或者,传输单元202可以被配置为退避到某一个重传窗进行数据重传。
例如,传输单元202可以被配置为基于来自网络控制端的最大退避窗长的信息来确定要退避到的重传窗。例如,收发单元203可以在接收到NACK的同时接收该最大退避窗长的信息。其中,最大退避窗长可以由网络控制端根据要进行重传的网络节点的数目或者网络节点的需求来确定。例如,当要进行重传的网络节点的数目越多时,该最大退避窗长越大;当网络节点有尽快传输数据的需求时,增大最大退避窗长。此外,该最大退避窗长也可以是根据要重传的网络节点的数目的平均值确定的固定值,在这种情况下,网络控制端只需要在初始时通知网络节点即可。
例如,传输单元202可以在最大退避窗长的范围内随机选择要退避的重传窗的个数。当最大退避窗长为CW max时,传输单元202可以在[1,2,……,CW max]中等概率地随机选择一个数值CW B,例如如果选择CW B=1时,则在下一个重传窗进行重传。更一般地,假设当前的重传窗为BoW n,则要退避的重传窗的个数为CW B的网络节点将退避至重传窗
Figure PCTCN2018077981-appb-000001
进行数据重传。这样,重传失败的多个网络节点可以等概率地分布到CW max个重传窗中,有效地避免了数据的堆积,提高了重传成功的概率。另外,最大退避窗长的设置也可以防止网络节点等待过长的时间。
或者,传输单元202可以根据网络节点的优先级来选择要退避的重传窗的个数。例如,传输单元202可以为优先级较高的网络节点选择较小的要退避的重传窗的个数。换言之,优先级越高的网络节点可以优先进行数据重传。
在一个示例中,网络节点的优先级可以随着重传次数的增加而提高。例如,网络节点的初始的优先级user priority设置为0,每进行一次重传、即收到一次NACK,则将优先级user priority加1,而用户要退避的重传窗的个数设置为CW B=CW max-user priority。如果user priority大于等于CW max,则可以将CW B设置为1。图10示出了基于网络节点的优先级进行重传窗的选择的一个示例的示意图。其中,在重传窗BoW 2中UE1至UE3重传失败,需要退避后再次重传,最大退避窗长CW max=5,带箭头的曲线上标注的数字为对应的UE的优先级。例如,对于UE1,其优先级为4,则CW B=1,UE1应退避至BoW 3进行数据重传。
可以看出,通过这样设置,重传次数越多的网络节点将退避较少的重传窗,从而可以保证传输过程中的公平性。
此外,网络节点在选定的重传窗中进行重传时,还可以同时进行频率重选。例如,网络节点可以等概率地随机选择重传窗中的某个RU进行数据重传。当然,网络节点也可以仍选择与之前的传输窗中相同频率的RU进行数据重传,或者采用其他方式进行RU的选择,这都不是限制性的。
传输单元202还可以被配置为在网络节点向网络控制端发送的数据包中包括网络节点的需求信息,以使得网络控制端根据该需求信息调整划分方式。例如,在需求信息指示需要尽快传输数据的需求时,网络控制端可以增大重传窗的大小,以满足该需求。
此外,以上虽然以时域为例进行了详细描述,但是这些描述可以类似地应用于频域或者码域,即在频域或码域中设置双窗口,以使得网络 节点在传输窗中进行数据初传,而在重传窗中进行数据重传。
根据该实施例的电子设备200分别在根据配置信息确定的传输窗和重传窗中进行数据初传和数据重传,可以有效避免数据堆积,提高数据传输成功的概率。
为了便于理解,图11示出了网络控制端与网络节点之间的信息流程的图。
首先,网络节点从网络控制端获取初始配置信息例如传输窗和重传窗的大小等。然后,网络节点例如通过物理上行共享信道(Physical Uplink Share Channel,PUSCH)在传输窗中向网络控制端传输新的数据。网络控制端对接收到的数据进行解调,并且在该过程中可以实时地估计负载的密度比如未成功接收其数据的网络节点的数量。对于成功接收其数据的网络节点组,网络控制端向其中的网络节点发送ACK;而对于未成功接收其数据的网络节点组,网络控制端向其中的网络节点发送NACK。此外,网络控制端还可以根据所估计的要进行重传的网络节点的数量来调整重传窗的大小,并且该调整的指令通过广播的方式发送给网络节点。由图11中可以看出,ACK和NACK的发送均可以通过DL-SCH或BCH进行。
未成功传输的网络节点在接收到调整BoW的指令之后,进行双窗口的更新,并通过PUSCH在更新后的BoW中进行重传。网络控制端随后针对BoW中重传不成功的网络节点组根据其网络节点数量确定最大退避窗长CW max,并将CW max与NACK一起发送给该网络节点组的网络节点;而对于BoW中重传成功的网络节点组,网络控制端向其发送ACK。
网络节点在接收到ACK之后,如果没有新的数据发送,则进入休眠状态,如果有新的数据发送,则重复上述流程。
为了进一步说明本申请的技术方案所能实现的技术效果,以下还将给出作为示例的仿真结果。如前所述,重传窗的引入有助于提高成功传输的用户数,即经过若干个双窗口后能成功解调的用户数,下文中称为吞吐量。因此,将对图6和图7所示的没有重传窗(以下称为单窗口SW)的方案与图2和图4所示的双窗口DW的方案的性能进行对比。
具体地,将分别针对如下五种方案进行仿真:a)采用频率重选的 SW(参照图6);b)采用时频重选的SW(参照图7);c)采用频率重选的DW(参照图2);d)采用时频重选的DW(参照图4),其中,退避的重传窗的数目的选择是随机的;以及e)采用时频重选的DW(参照图4),其中,退避的重传窗的数目的选择是基于用户优先级的。
其中,在DW方案中,BoW大小固定,与TxW均为1个时隙,进入某一个TxW的新用户数为K,K服从泊松分布,即K~P(λ)。假设平均进入TxW的新用户数是λ,则观察到K个新用户进入TxW的概率为
Figure PCTCN2018077981-appb-000002
图12分别示出了SW和DW方案中新用户进入窗口的方式。DW方案中K个用户都首先在TxW中传输,进入BoW的用户都是重传用户。而对SW方案而言,每个TxW只有
Figure PCTCN2018077981-appb-000003
个用户进入,保证了两种方案每隔两个时隙进入的新用户数相等。
仿真参数设置如下:每个时隙中可由用户以免授权方式使用的RU数量为16,每个RU最多能同时处理的用户数为3,平均进入每个DW中的TxW的新用户数λ分别是24、48和72,最大退避窗长限定为5。
图13至图15分别示出了在不同的新用户数λ的情况下,五种方案的吞吐量随时间窗的变化的曲线图,其中,横轴为DW的索引,纵轴为吞吐量。可以看出,在平均进入每个TxW的用户数较少(例如,24)时,SW和DW的各种方案性能差别不大。由于用户数量远小于一个时隙内的RU所能支持的用户总数,所以数据会以较小的概率被重传。以上五种方案下大部分用户都能成功传输数据并被基站解调。
而在平均进入每个TxW的用户数较多(例如,48、72),即接近于或超过一个时隙内的RU所能支撑的用户总数时,由于数据能够被正确解码的概率降低,多数子帧会以很高的概率被重传。因此,设置了用于 重传的重传窗BoW的DW方案仍能工作,成功被解调的用户数接近50%,而SW方案在后期由于未重传用户的扎堆而无法工作。
进一步地,针对给定资源块,在RU数目及每个RU能承载的用户数L相同的情况下,比较在SW和DW方案下在某个单窗口或双窗口中不能成功解调的平均用户数目failnum。定义RU数目为RUnum,每个RU最多能同时处理的用户数为L,用户数k的选取以基于调度授权的情况下所能传输的最大用户数为上界,即
k max≤RU num×L     (2)
[根据细则91更正 23.03.2018] 
图16中圆圈连线是仿真得到的未成功解调用户数随进入窗口的用户数的变化曲线,记为y 2=g(k)。可以发现,它是单调函数,且低于曲线
Figure PCTCN2018077981-appb-000004
根据该函数的这两个特殊性质,可以得到当
Figure PCTCN2018077981-appb-000005
g(k)单调递增,则
Figure PCTCN2018077981-appb-000006
其中,g(g(k))就是在DW方案下未成功解调的用户数,
Figure PCTCN2018077981-appb-000007
即为在SW方案下第一个时隙未成功解调的用户数。不管这些用户是否在SW的第二个时隙重传,未成功解调的失败用户数必大于
Figure PCTCN2018077981-appb-000008
Figure PCTCN2018077981-appb-000009
所以,
Figure PCTCN2018077981-appb-000010
根据图16中的几何关系,任取用户数为
Figure PCTCN2018077981-appb-000011
即图16中所示H,g(g(k))即图中所示G,在前者的SW方案不管未成功解调的H个用户是否在SW的下一个时隙重传,未成功解调的用户数必大于G。
当改变参数RUnum和L时,图17-18表现出相同的几何关系和性 质,因此可以证明DW方案的未成功解调用户数少于SW方案。
此外,还对DW方案(其中,退避的重传窗的数目的选择是随机的)进行仿真,分别考虑在不同用户负载,情况下的吞吐量,其中,用户负载是指用户数量和资源数量的比率,这里用百分比表示。仿真结果如图19所示,其中,每个时隙中可由用户以免授权方式使用的RU数量为16,每个RU最多能同时处理的用户数为3。可以看出,DW方案在用户过载150%时仍能通过少量用户。
图20还给出了在不同的RU承载力、即RU所能支持的最大用户数情况下的DW方案的吞吐量的仿真结果,其中,每个时隙中可由用户以免授权方式使用的RU数量为16,每个RU所能支持的最大用户数用变量L表示,进入某一个TxW的新用户数为K~P(64)。可以看出,RU的承载力越大,发生碰撞的概率越小,基站所能成功解调的用户数越多。
应该理解,以上仿真所采用的参数和设置以及仿真结果仅是为了说明的需要,并不对本发明构成限制。
<第三实施例>
在上文的实施方式中描述用于无线通信的网络控制端的电子设备和用于无线通信的网络节点的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的网络控制端的电子设备和用于无线通信的网络节点的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的网络控制端的电子设备和用于无线通信的网络节点的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的网络控制端的方法和用于无线通信的网络节点的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的网络控制端的电子设备和用于无线通信的网络节点的电子设备的硬件和/或固件。
图21示出了根据本申请的一个实施例的用于无线通信的网络控制端的方法,包括如下步骤:确定用于无线通信的传输资源在预定域上的 划分方式(S11),划分后的传输资源分别用于网络节点的数据初传和网络节点的数据重传;以及生成包含划分方式的信息的配置信息(S12)。
其中,预定域可以包括时域、频域、码域之一。用于网络节点的数据初传的传输资源和用于网络节点的数据重传的传输资源在预定域上可以交替分布。
如图21中的虚线框所示,上述方法还可以包括步骤S13:将配置信息发送给网络节点。例如,可以经由如下之一来执行该发送:下行共享信道DL-SCH的系统信息广播、广播信道BCH。
在一个示例中,预定域为时域,在步骤S11中将时频资源在时域上划分为多个双窗口,每一个双窗口包括用于网络节点的数据初传的传输窗和用于网络节点的数据重传的重传窗,其中,重传窗用于在当前双窗口的传输窗中传输失败的网络节点进行数据重传。此外,重传窗还可以用于如下网络节点进行数据重传:在在前的重传窗中重传失败的网络节点的至少一部分。
此外,在步骤S11中还可以根据至少如下之一来调整重传窗的大小:当前的重传窗中要进行数据重传的网络节点的数量,网络节点的需求。
其中,在步骤S11中可以确定传输窗和重传窗中的最小时频资源单元的配置,其中,网络节点随机选择传输窗中的最小时频资源单元进行数据初传或随机选择重传窗中的最小时频资源单元进行数据重传。
在步骤S12中根据对来自网络节点的数据的解调结果,生成特定于网络节点组的指示信息,以用于通知网络节点组中的网络节点数据传输是否成功,其中,使用同一最小时频资源单元进行数据传输的网络节点构成网络节点组,如果网络节点组中存在数据未被成功解调的网络节点,则生成特定于该网络节点组的指示数据传输不成功的指示信息NACK,否则生成特定于该网络节点组的指示数据传输成功的指示信息ACK。
对于在重传窗中数据传输不成功的网络节点组,在步骤S12中还可以生成针对该网络节点组的最大退避窗长,该最大退避窗长指示该网络节点组中的网络节点能够退避的重传窗的最大数目。
例如,最大退避窗长与重传窗中数据传输不成功的网络节点的数量正相关。
图22示出了根据本申请的一个实施例的用于无线通信的网络节点的方法,包括如下步骤:获取包含用于无线通信的传输资源在预定域上的划分方式的信息的配置信息(S21),其中,划分后的传输资源分别用于所述网络节点的数据初传和所述网络节点的数据重传;以及基于该配置信息进行数据初传或数据重传(S22)。
其中,预定域可以包括时域、频域、码域之一。用于网络节点的数据初传的传输资源和用于网络节点的数据重传的传输资源在预定域上可以交替分布。
在步骤S21中可以经由如下之一来接收配置信息:下行共享信道DL-SCH的系统信息广播、广播信道BCH。
在一个示例中,预定域为时域,时频资源在时域上划分为多个双窗口,每一个双窗口包括用于网络节点的数据初传的传输窗和用于网络节点的数据重传的重传窗,在步骤S22中随机选择所述传输窗中的最小时频资源单元进行数据初传,或随机选择所述重传窗中的最小时频资源单元进行数据重传。
例如,在当前双窗口中的传输窗中数据初传失败的情况下在当前双窗口中的重传窗中进行数据重传。此外,在重传窗中的数据重传失败的情况下进行退避,以在过去一段时间后的一个重传窗中进行数据重传。示例性地,可以退避到当前重传窗的下一个重传窗进行数据重传。
在步骤S22中可以基于来自网络控制端的最大退避窗长的信息来确定要退避到的重传窗。例如,在最大退避窗长的范围内随机选择要退避的重传窗的个数,或者根据网络节点的优先级来选择要退避的重传窗的个数。网络节点的优先级可以设置为随着重传次数的增加而提高,并且为优先级越高的网络节点选择更小的要退避的重传窗的个数。
此外,网络节点向网络控制端发送的数据包中还可以包括网络节点的用户需求信息,以使得网络控制端根据该用户需求信息调整划分方式。
上述方法通过将传输资源在预定域上划分为用于数据初传的部分和用于数据重传的部分,提高了成功传输的网络节点数,从而能够支持突发性的大量用户接入。
注意,上述各个方法可以结合或单独使用,其细节在第一至第二实 施例中已经进行了详细描述,在此不再重复。
<应用示例>
本公开内容的技术能够应用于各种产品。以上提到的基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
[关于基站的应用示例]
(第一应用示例)
图23是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图23所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图23示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功 能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图23所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图23所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图23示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图23所示的eNB 800中,参照图1所描述的收发单元103可以由 无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行确定单元101、生成单元102的功能来执行传输资源在预定域上的划分方式的确定以及配置信息的生成。
(第二应用示例)
图24是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 830包括一个或多个天线840、基站设备850和RRH860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图24所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图24示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图24描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图24描述的BB处理器826相同。如图24所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图24示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站 设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图24所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图24示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图24所示的eNB 830中,参照图1所描述的收发单元103可以由无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以控制器851实现。例如,控制器851可以通过执行确定单元101、生成单元102的功能来执行传输资源在预定域上的划分方式的确定以及配置信息的生成。
[关于用户设备的应用示例]
(第一应用示例)
图25是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度 传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图25所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图25示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。虽然图中未示出,但是在天线916包括多个天线元件的情况下,RF链路可以通过多个移相器分别与多个天线元件连接。如图25所示,智能电话900可以包括多个天线916。虽然图25示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图25所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图25所示的智能电话900中,参照图9所描述的收发单元203可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行获取单元201和生成单元202的功能来执行配置信息的获取以及数据传输。
(第二应用示例)
图26是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配 置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图26所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图26示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图26所示,汽车导航设备920可以包括多个天线937。虽然图26示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图26所示的汽车导航设备920的各个块提供电 力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图26示出的汽车导航设备920中,参照图9所描述的收发单元203可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行获取单元201和生成单元202的功能来执行配置信息的获取以及数据传输。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图27所示的通用计算机2700)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图27中,中央处理单元(CPU)2701根据只读存储器(ROM)2702中存储的程序或从存储部分2708加载到随机存取存储器(RAM)2703的程序执行各种处理。在RAM 2703中,也根据需要存储当CPU2701执行各种处理等等时所需的数据。CPU 2701、ROM 2702和RAM2703经由总线2704彼此连接。输入/输出接口2705也连接到总线2704。
下述部件连接到输入/输出接口2705:输入部分2706(包括键盘、鼠标等等)、输出部分2707(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分2708(包括硬盘等)、通信部分2709(包括网络接口卡比如LAN卡、调制解调器等)。通信部分2709经由网络比如因特网执行通信处理。根据需要,驱动器2710也可连接到输入/输出接口2705。可移除介质2711比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器2710上,使得从中读出的计算机程序根据需要被安装到存储部分2708中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质2711安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图27所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质2711。可移除介质2711的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 2702、存储部分2708中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。 对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (22)

  1. 一种用于无线通信的网络控制端的电子设备,包括:
    处理电路,被配置为:
    确定用于所述无线通信的传输资源在预定域上的划分方式,划分后的传输资源分别用于网络节点的数据初传和网络节点的数据重传;以及
    生成包含所述划分方式的信息的配置信息。
  2. 根据权利要求1所述的电子设备,其中,所述预定域包括时域、频域、码域之一。
  3. 根据权利要求1所述的电子设备,还包括:
    收发器,被配置为将所述配置信息发送给所述网络节点。
  4. 根据权利要求3所述的电子设备,其中,所述收发器被配置为经由如下之一来执行所述发送:下行共享信道DL-SCH的系统信息广播、广播信道BCH。
  5. 根据权利要求1所述的电子设备,其中,用于所述网络节点的数据初传的传输资源和用于所述网络节点的数据重传的传输资源在所述预定域上交替分布。
  6. 根据权利要求1所述的电子设备,其中,所述预定域为时域,所述处理电路被配置为将时频资源在时域上划分为多个双窗口,每一个双窗口包括用于网络节点的数据初传的传输窗和用于网络节点的数据重传的重传窗,其中,所述重传窗用于在当前双窗口的传输窗中传输失败的网络节点进行数据重传。
  7. 根据权利要求6所述的电子设备,其中所述重传窗还用于如下网络节点进行数据重传:在在前的重传窗中重传失败的网络节点的至少一部分。
  8. 根据权利要求6所述的电子设备,其中,所述处理电路还被配置为根据如下至少之一来调整所述重传窗的大小:当前的重传窗中要进行数据重传的网络节点的数量,所述网络节点的需求。
  9. 根据权利要求6所述的电子设备,其中,所述处理电路还被配置为确定所述传输窗和所述重传窗中的最小时频资源单元的配置,其中,所述网络节点随机选择所述传输窗中的最小时频资源单元进行数据初传或随机选择所述重传窗中的最小时频资源单元进行数据重传。
  10. 根据权利要求9所述的电子设备,其中,所述处理电路被配置为根据对来自网络节点的数据的解调结果,生成特定于网络节点组的指示信息,以用于通知所述网络节点组中的网络节点数据传输是否成功,其中,使用同一最小时频资源单元进行数据传输的网络节点构成所述网络节点组,如果所述网络节点组中存在数据未被成功解调的网络节点,则所述处理电路生成特定于该网络节点组的指示数据传输不成功的指示信息NACK,否则生成特定于该网络节点组的指示数据传输成功的指示信息ACK。
  11. 根据权利要求10所述的电子设备,其中,对于在重传窗中数据传输不成功的网络节点组,所述处理电路还被配置为生成针对该网络节点组的最大退避窗长,所述最大退避窗长指示该网络节点组中的网络节点能够退避的重传窗的最大数目。
  12. 根据权利要求11所述的电子设备,其中,所述最大退避窗长与所述重传窗中数据传输不成功的网络节点的数量正相关。
  13. 一种用于无线通信的网络节点的电子设备,包括:
    处理电路,被配置为:
    获取包含用于所述无线通信的传输资源在预定域上的划分方式的信息的配置信息,其中,划分后的传输资源分别用于所述网络节点的数据初传和所述网络节点的数据重传;以及
    基于该配置信息进行数据初传或数据重传。
  14. 根据权利要求13所述的电子设备,其中,所述预定域为时域,时频资源在时域上划分为多个双窗口,每一个双窗口包括用于所述网络节点的数据初传的传输窗和用于所述网络节点的数据重传的重传窗,所述处理电路随机选择所述传输窗中的最小时频资源单元进行数据初传,或随机选择所述重传窗中的最小时频资源单元进行数据重传。
  15. 根据权利要求14所述的电子设备,其中,所述处理电路被配置为在当前双窗口中的传输窗中数据初传失败的情况下在所述当前双窗口中的重传窗中进行数据重传,或者进行退避以在过去一段时间后的一个重传窗中进行数据重传。
  16. 根据权利要求15所述的电子设备,其中,所述处理电路被配置为基于来自网络控制端的最大退避窗长的信息来确定要退避到的重传窗。
  17. 根据权利要求16所述的电子设备,其中,所述处理电路被配置为在所述最大退避窗长的范围内随机选择要退避的重传窗的个数,或者根据所述网络节点的优先级来选择要退避的重传窗的个数。
  18. 根据权利要求17所述的电子设备,其中,所述网络节点的优先级随着重传次数的增加而提高,并且所述处理电路被配置成为优先级越高的网络节点选择更小的要退避的重传窗的个数。
  19. 根据权利要求15所述的电子设备,其中,所述处理电路被配置为退避到当前重传窗的下一个重传窗进行数据重传。
  20. 根据权利要求13所述的电子设备,其中,所述处理电路还被配置为在所述网络节点向网络控制端发送的数据包中包括所述网络节点的需求信息,以使得所述网络控制端根据该需求信息调整所述划分方式。
  21. 一种用于无线通信的网络控制端的方法,包括:
    确定用于所述无线通信的传输资源在预定域上的划分方式,划分后的传输资源分别用于网络节点的数据初传和网络节点的数据重传;以及
    生成包含所述划分方式的信息的配置信息。
  22. 一种用于无线通信的网络节点的方法,包括:
    获取包含用于所述无线通信的传输资源在预定域上的划分方式的信息的配置信息,其中,划分后的传输资源分别用于所述网络节点的数据初传和所述网络节点的数据重传;以及
    基于该配置信息进行数据初传或数据重传。
PCT/CN2018/077981 2017-03-27 2018-03-05 用于无线通信的网络控制端和网络节点的电子设备和方法 WO2018177077A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880010976.3A CN110291742A (zh) 2017-03-27 2018-03-05 用于无线通信的网络控制端和网络节点的电子设备和方法
AU2018246672A AU2018246672A1 (en) 2017-03-27 2018-03-05 Electronic apparatus and method for wireless communication network control end and network node
CA3056963A CA3056963A1 (en) 2017-03-27 2018-03-05 Electronic apparatus and method for wireless communication network control end and network node
US16/491,160 US11777669B2 (en) 2017-03-27 2018-03-05 Electronic apparatus and method for wireless communication network control end and network node

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710188913.4A CN108667570A (zh) 2017-03-27 2017-03-27 用于无线通信的网络控制端和网络节点的电子设备和方法
CN201710188913.4 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018177077A1 true WO2018177077A1 (zh) 2018-10-04

Family

ID=63674168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077981 WO2018177077A1 (zh) 2017-03-27 2018-03-05 用于无线通信的网络控制端和网络节点的电子设备和方法

Country Status (5)

Country Link
US (1) US11777669B2 (zh)
CN (2) CN108667570A (zh)
AU (1) AU2018246672A1 (zh)
CA (1) CA3056963A1 (zh)
WO (1) WO2018177077A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109525982B (zh) * 2018-10-30 2020-12-25 东莞理工学院 一种5g系统中的接入方法
US11134503B2 (en) * 2019-11-26 2021-09-28 T-Mobile Usa, Inc. Dynamic allocation of transmission slots based on UE information
CN114205908A (zh) * 2020-09-02 2022-03-18 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101682483A (zh) * 2007-04-30 2010-03-24 诺基亚公司 用于提供数据重传方案的方法和设备
CN105306177A (zh) * 2014-07-09 2016-02-03 普天信息技术有限公司 窄带传输的链路探测方法、通信设备和终端
WO2016163690A1 (ko) * 2015-04-09 2016-10-13 삼성전자 주식회사 비면허 주파수 대역을 사용하는 통신 시스템에서 harq를 지원하는 방법 및 이를 적용한 장치
CN106165482A (zh) * 2014-05-08 2016-11-23 英特尔Ip公司 用于灵活重传的系统、方法及设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3672137B1 (en) * 2007-09-11 2023-03-15 Wi-LAN Inc. Error correction for a persistent resource allocation
KR101375936B1 (ko) * 2008-02-01 2014-03-18 엘지전자 주식회사 시간동기 타이머의 만료 시 하향링크 harq의 동작 방법
US8306061B2 (en) * 2008-06-25 2012-11-06 Lg Electronics Inc. Method for retransmitting data unit using delivery status information
CN101657017B (zh) * 2008-09-22 2012-09-05 华为技术有限公司 一种资源调度方法、基站以及通信系统
CN101771503B (zh) * 2009-01-04 2013-04-24 华为技术有限公司 传输多a/n信息的方法和用户设备
US8964673B2 (en) * 2010-02-22 2015-02-24 Lg Electronics Inc. Method and apparatus for performing a hybrid automatic repeat request process for an uplink multi-codeword transmission in a wireless communication system which supports a multi-antenna transmission
CN102014516B (zh) * 2010-11-18 2013-08-14 北京邮电大学 Lte-a系统中的随机接入方法
EP2798891B1 (en) * 2011-12-29 2019-02-20 Telefonaktiebolaget LM Ericsson (publ) A user equipment and a radio network node, and methods therein
JP2016119496A (ja) * 2013-04-10 2016-06-30 シャープ株式会社 基地局装置、端末装置、無線通信システム及び集積回路
US10117205B2 (en) * 2014-04-10 2018-10-30 Lg Electronics Inc. Method and device for performing synchronization between terminals in wireless communication system
US10136462B2 (en) * 2014-04-17 2018-11-20 Lg Electronics Inc. Method for determining resource for transmitting signal in wireless communications system and apparatus therefor
CN105490789B (zh) * 2014-10-10 2019-08-16 电信科学技术研究院 一种数据传输方法及装置
US20160212768A1 (en) * 2015-01-15 2016-07-21 Qualcomm Incorporated Wi-fi compatible channel access
KR101685301B1 (ko) * 2015-08-28 2016-12-09 한국과학기술원 임의접속 과정을 통한 통신 장치 및 방법
WO2017066942A1 (zh) * 2015-10-21 2017-04-27 华为技术有限公司 一种数据传输方法和装置
CN107197528B (zh) * 2016-03-14 2020-12-25 华为技术有限公司 一种资源调度和分配的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101682483A (zh) * 2007-04-30 2010-03-24 诺基亚公司 用于提供数据重传方案的方法和设备
CN106165482A (zh) * 2014-05-08 2016-11-23 英特尔Ip公司 用于灵活重传的系统、方法及设备
CN105306177A (zh) * 2014-07-09 2016-02-03 普天信息技术有限公司 窄带传输的链路探测方法、通信设备和终端
WO2016163690A1 (ko) * 2015-04-09 2016-10-13 삼성전자 주식회사 비면허 주파수 대역을 사용하는 통신 시스템에서 harq를 지원하는 방법 및 이를 적용한 장치

Also Published As

Publication number Publication date
US20210409168A1 (en) 2021-12-30
CN110291742A (zh) 2019-09-27
AU2018246672A1 (en) 2019-11-14
CN108667570A (zh) 2018-10-16
US11777669B2 (en) 2023-10-03
CA3056963A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
US11039474B2 (en) Electronic device and method for wireless communication
WO2018137492A1 (zh) 无线通信方法和无线通信设备
US20220116147A1 (en) Electronic device, wireless communication method, and computer readable medium
US11496271B2 (en) Device that convey data for a block acknowledge (ACK)
US20230345530A1 (en) Electronic device and method for use in radio communication, and computer-readable storage medium
WO2018177077A1 (zh) 用于无线通信的网络控制端和网络节点的电子设备和方法
US11096205B2 (en) Device and method for controlling communication of downlink data
US11528585B2 (en) Scalable and reliable multicast protocols
WO2019007262A1 (zh) 无线通信方法和无线通信设备
US20210195598A1 (en) Electronic device, wireless communication method and computer readable medium
US20230180289A1 (en) Electronic device for use in radio communication, method, and computer-readable storage medium
CN113228724A (zh) 通信设备,通信方法和程序
EP4016911A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
US20230337007A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
WO2020108370A1 (zh) 电子装置、无线通信方法和计算机可读介质
WO2021204108A1 (zh) 电子设备、通信方法和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3056963

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018246672

Country of ref document: AU

Date of ref document: 20180305

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18774797

Country of ref document: EP

Kind code of ref document: A1