WO2019007262A1 - 无线通信方法和无线通信设备 - Google Patents

无线通信方法和无线通信设备 Download PDF

Info

Publication number
WO2019007262A1
WO2019007262A1 PCT/CN2018/093527 CN2018093527W WO2019007262A1 WO 2019007262 A1 WO2019007262 A1 WO 2019007262A1 CN 2018093527 W CN2018093527 W CN 2018093527W WO 2019007262 A1 WO2019007262 A1 WO 2019007262A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
subchannel
signature domain
broadcast
user equipment
Prior art date
Application number
PCT/CN2018/093527
Other languages
English (en)
French (fr)
Inventor
左惠玲
李娜
王好伟
崔焘
解宇瑄
王松
Original Assignee
索尼公司
左惠玲
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 左惠玲 filed Critical 索尼公司
Priority to KR1020207003167A priority Critical patent/KR102586481B1/ko
Priority to US16/614,383 priority patent/US11277818B2/en
Priority to JP2019563400A priority patent/JP7131571B2/ja
Priority to CN201880025123.7A priority patent/CN110521240B/zh
Priority to AU2018297503A priority patent/AU2018297503B2/en
Priority to EP18828089.5A priority patent/EP3651501B1/en
Publication of WO2019007262A1 publication Critical patent/WO2019007262A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA

Definitions

  • the present invention relates to a wireless communication method and a wireless communication device, and in particular to a method and apparatus for supporting non-orthogonal multiple access on an unlicensed frequency band.
  • multiple access (MA) signatures are used at the transmitting end to distinguish different user equipments, that is, each user equipment uses a unique MA signature to transmit signals.
  • the MA signature can be, for example, in the form of a codebook, a sequence, and the like.
  • the present invention proposes a technical solution capable of implementing uplink non-orthogonal multiple access on an unlicensed frequency band.
  • a wireless communication device comprising processing circuitry configured to: detect broadcast information on a particular subchannel of an unlicensed frequency band; and when the broadcast information is not successfully detected, Time information is broadcast on the particular subchannel, wherein an end time of occupancy of the particular subchannel by the wireless communication device can be determined based on the time information.
  • a wireless communication device comprising processing circuitry configured to: detect broadcast information on a particular subchannel of an unlicensed band; when successful on the particular subchannel When detecting the broadcast information, one signature domain resource is selected from one or more available signature domain resources to perform uplink transmission.
  • a wireless communication method performed by a terminal device, comprising: detecting broadcast information on a specific subchannel of an unlicensed frequency band; successfully detecting the broadcast information on the specific subchannel When a signature domain resource is selected from one or more available signature domain resources to perform uplink transmission.
  • a wireless communication method performed by a base station comprising: receiving uplink transmission and time information on a specific subchannel of an unlicensed frequency band, wherein a specific terminal device pair can be determined according to the time information.
  • a computer readable storage medium storing a program, which when executed, causes a computer to implement the wireless communication method as described above.
  • Figure 1B shows a process flow diagram in accordance with a first embodiment of the present invention.
  • Fig. 2 schematically shows a signaling interaction diagram in accordance with a first embodiment of the present invention.
  • Figure 3 shows a process flow diagram in accordance with a second embodiment of the present invention.
  • Fig. 4 schematically shows a signaling interaction diagram in accordance with a second embodiment of the present invention.
  • Fig. 6 shows a schematic configuration block diagram of an example of a base station.
  • FIG. 1B shows in detail the processing performed by the user equipment in accordance with the first embodiment of the present invention.
  • the user equipment UE selects one or more subchannels in the unlicensed frequency band, and attempts to detect the broadcast information on the selected subchannel, as shown in step S110. Show.
  • the user equipment UE randomly selects one or more subchannels in the unlicensed band.
  • the subchannel is not selected by the user equipment UE but is semi-statically assigned by the base station to the user equipment UE.
  • step S120 After the user equipment UE determines in step S120 that the broadcast information is not successfully detected on the subchannel, the user equipment may further determine whether the subchannel is idle, and therefore the process proceeds to step S130.
  • step S150 the user equipment further selects a certain MA signature in the MA signature resource pool, and transmits a signal to the base station on the subchannel by using the selected MA signature.
  • the user equipment UE may arbitrarily select a MA signature in the MA signature resource pool for signal transmission.
  • the user equipment UE determines in step S140 that the subchannel is not an idle subchannel (e.g., the signal energy is greater than a certain threshold), it indicates that there is a signal transmitted by the other user equipment on the subchannel.
  • the process returns to step S130, and the user equipment UE continues to execute "After Listening" (LBT).
  • step S120 determines in step S120 that the broadcast information has been successfully detected on the subchannel (including successfully decoding the broadcast information), although this means that other user equipments already occupy the subchannel, the user equipment The UE can still access the subchannel, so the process proceeds to step S160.
  • the user equipment UE obtains the MA signature available on the subchannel by decoding the broadcast information from the base station.
  • the base station can broadcast the MA signature available on the subchannel on the licensed band.
  • the base station can periodically broadcast the available MA signatures.
  • the first user equipment UE that accesses a certain subchannel of the unlicensed frequency band performs broadcast, and other user equipments that intend to access the subchannel can successfully decode the broadcast information of the user equipment UE. It is determined that it can continue to access the subchannel. Subsequently, the other user equipment performs uplink transmission on the subchannel by obtaining the MA signature from the base station, that is, sharing the subchannel with the user equipment UE. Thereby, uplink non-orthogonal multiple access on the unlicensed band is achieved. On the contrary, if other user equipments that intend to access the subchannel cannot successfully decode the broadcast information of the user equipment UE, the other user equipment cannot access the subchannel according to the conventional first listening mechanism.
  • the broadcast information sent by the user equipment UE can only be decoded by other user equipments belonging to the same system, and thus can be allowed to belong to the same as the user equipment UE.
  • Other user equipments of the system access the subchannel and share the subchannel with the user equipment UE, thus improving spectrum efficiency.
  • Other user equipment belonging to different systems cannot access the subchannel because they cannot decode the broadcast signal.
  • the maximum channel occupation time of the user equipment is uniform, thereby ensuring fair coexistence of the respective systems.
  • the systems herein may include an NR system and a WiFi system.
  • the maximum number of user equipments transmitting on the same subchannel can be controlled by adjusting the broadcast power of the user equipment UE.
  • the broadcast power can be determined based on the communication scenario. For example, in large-scale machine type communication (mMTC), the broadcast power can be set higher so that more user equipments can share the same subchannel, while in ultra-high reliability low latency communication (URLLC), The broadcast power is set lower to limit the number of user equipments sharing the subchannel, thereby ensuring the reliability of the communication.
  • mMTC large-scale machine type communication
  • URLLC ultra-high reliability low latency communication
  • FIG. 2 shows a signaling interaction diagram between a user equipment and a base station in accordance with a first embodiment of the present invention.
  • the user equipment UE1 is determined as the first user equipment accessing a certain subchannel of the unlicensed frequency band according to the processing of FIG. 1, and the user equipment UE2 and UE3 are able to access the user equipment UE1 after the user equipment UE1.
  • User equipment for the subchannel it is assumed that the user equipment UE1 is determined as the first user equipment accessing a certain subchannel of the unlicensed frequency band according to the processing of FIG. 1, and the user equipment UE2 and UE3 are able to access the user equipment UE1 after the user equipment UE1.
  • User equipment for the subchannel User equipment for the subchannel.
  • the user equipment UE1 sends an uplink signal to the base station gNB by using a certain MA signature on the subchannel after determining that it is the first user equipment occupying the subchannel, as shown in step S201.
  • the user equipment UE1 broadcasts on the subchannel in step S202, and the broadcasted information includes the occupation end time of the subchannel by the user equipment UE1.
  • the broadcasted information may include the access time and maximum channel occupancy time of the user equipment UE1. It should be noted that the order of execution of steps S201 and S202 is not limited to the order shown in the drawings, and may be performed in the reverse order or simultaneously.
  • the base station gNB can learn the MA signature used by the user equipment UE1 by receiving the uplink signal from the user equipment UE1, and then the base station gNB determines the available MA signature by removing the MA signature used by the user equipment UE1 from the MA signature resource pool. The base station gNB broadcasts the determined available MA signature to each user equipment in step S203.
  • the user equipment UE2 determines that it can access the subchannel by successfully detecting the broadcast information of the user equipment UE1, it obtains the MA signature available on the subchannel by receiving the broadcast information of the base station, and signs from the obtained available MA.
  • a MA signature is selected for uplink transmission, as shown in step S204.
  • the base station gNB learns the MA signature used by the user equipment UE2 by receiving the signal from the user equipment UE2, and removes the MA signature used by the user equipment UE2 from the available MA signature, thereby updating the available MA signature, as shown in step S205. Show. Subsequently, the base station gNB broadcasts the updated available MA signature to each user equipment in step S206.
  • the user equipment UE3 determines that it can access the subchannel itself, it obtains the MA signature currently available on the subchannel by decoding the broadcast information of the base station, and selects a MA signature for uplink transmission. , as shown in step S208.
  • the base station gNB may broadcast the MA signature available on the subchannel on the licensed frequency band, for example via a Physical Broadcast Channel (PBCH).
  • PBCH Physical Broadcast Channel
  • step S211 shows that the user equipment UE1 broadcasts the end time again.
  • the user equipment UE1 may periodically broadcast the channel occupation end time, and the base station gNB may periodically update the available MA signature and broadcast the updated available MA signature to each user equipment.
  • the periodic processing of the user equipment UE1 and the base station gNB are independent of each other, and may have periods different from each other.
  • the solution of the present invention is not limited thereto, that is, There is no order between the steps S207 and the steps performed by the base station gNB.
  • the present invention does not limit the temporal relationship between the periodic broadcast of the user equipment UE1 and the periodic update of the base station gNB.
  • the base station gNB updates the available MA signature every time the uplink signal of the user equipment (UE2, UE3) is received
  • the solution of the present invention is not limited thereto. Since in the actual communication system, the base station gNB may receive a large number of uplink signals in a very short time, the available MA signatures are not necessarily updated for each uplink signal reception, but may be performed in a longer period. Update the available MA signatures.
  • FIG. 3 shows a process performed by a user equipment in accordance with a second embodiment of the present invention.
  • the user equipment UE selects one or more subchannels in the unlicensed frequency band, and detects broadcast information on the selected subchannel, as shown in step S310.
  • the user equipment UE may randomly select a subchannel, or the base station may semi-statically allocate a subchannel for the user equipment UE.
  • step S320 After the user equipment UE determines in step S320 that the broadcast information is not successfully detected on the subchannel, the user equipment may further determine whether the subchannel is idle, and therefore the process proceeds to step S330.
  • step S330 the user equipment UE performs "listen before listening" to determine whether the subchannel is an idle subchannel. Similar to the first embodiment, for example, the user equipment UE can determine whether the subchannel is idle by detecting signal energy on the subchannel. When it is determined in step S340 that the subchannel is idle (e.g., the signal energy is less than a certain threshold), the processing of the user equipment UE proceeds to step S350.
  • step S320 determines in step S320 that the broadcast information has been successfully detected (decoded) on the subchannel, although this means that other user equipments already transmit on the subchannel, the user equipment UE determines that it is still The subchannel can continue to be accessed, so the process proceeds to step S360.
  • the user equipment UE can obtain the currently available MA signature by decoding the broadcast information. Thus, in step S360, the user equipment UE selects one MA signature in the obtained available MA signatures for uplink transmission.
  • the first user equipment UE that occupies the subchannel broadcasts on the subchannel, and other user equipments that intend to access the subchannel subsequently successfully decode the user equipment UE.
  • the broadcast information can continue to access the subchannel, that is, share the subchannel with the user equipment UE. Thereby, uplink non-orthogonal multiple access on the unlicensed band is achieved. Conversely, other user equipments that subsequently intend to access the subchannel cannot access the subchannel if they cannot successfully decode the broadcast information.
  • FIG. 4 shows a signaling interaction diagram between a user equipment and a base station in accordance with a second embodiment of the present invention.
  • the user equipment UE1 is the first user equipment occupying a certain subchannel of the unlicensed frequency band
  • the user equipment UE2 and UE3 are user equipments that can access the subchannel after the user equipment UE1.
  • the first user equipment UE1 occupying the subchannel transmits an uplink signal to the base station gNB using a MA signature selected from the MA signature resource pool in step S401.
  • the user equipment UE1 broadcasts on the subchannel in step S402, the broadcasted information including the occupation end time of the user equipment UE1 and the MA signature available on the subchannel.
  • the broadcastable available MA signature is determined by the user equipment UE1 by removing its own selected MA signature from the MA signature resource pool. It should be noted that the order of execution of steps S401 and S402 is not limited to the order shown in the drawings, and may be performed in the reverse order or simultaneously.
  • the base station gNB can learn the MA signature used by the user equipment UE1 by receiving the uplink signal from the user equipment UE1. Therefore, even if the base station gNB does not receive the broadcast information of the user equipment UE1 on the subchannel, the base station gNB can also sign from the MA.
  • the MA signature used by the user equipment UE1 is removed from the resource library to determine the available MA signature.
  • the user equipment UE2 obtains the available MA signature by decoding the broadcast information of the user equipment UE1, and selects one MA signature from the obtained available MA signatures for uplink transmission, as shown in step S403.
  • the base station gNB learns the MA signature used by the user equipment UE2 by receiving the signal from the user equipment UE2, and removes the MA signature used by the user equipment UE2 from the previously determined available MA signature, thereby updating the available MA signature, and The updated available MA signature is sent to the user equipment UE1 as shown in step S404.
  • the user equipment UE1 After receiving the re-updated available MA signature from the base station gNB, the user equipment UE1 broadcasts the received available MA signature again in step S408. Preferably, the user equipment UE1 broadcasts the available MA signature together with the occupation end time.
  • the base station gNB updates the available MA signature every time the uplink signal of the user equipment (UE2, UE3) is received
  • the solution of the present invention is not limited thereto.
  • the base station gNB may not have to update the available MA signature for each uplink transmission, but instead update the available MA signature with a longer period (eg, multiple uplink transmissions may be received during the period).
  • the present invention is not limited thereto.
  • the periodic broadcast of the user equipment UE1 and the periodic update of the base station gNB can be operated independently of each other by the MA signature.
  • the broadcast period of the user equipment UE1 may be longer or shorter than the update period of the base station.
  • the user equipment UE1 may broadcast the last available available MA signature after receiving the updated available MA signature twice.
  • the solution of the present invention can also be applied to scenarios of uplink grant-free transmission.
  • the uplink unlicensed transmission means that the user equipment can perform uplink transmission immediately after the data is ready, without sending a scheduling request to the base station and waiting to receive an uplink scheduling grant from the base station.
  • the advantage of the uplink grant-free transmission scheme is that the signaling overhead related to scheduling requests and uplink scheduling grants can be reduced (this advantage is especially significant when there is little data to be transmitted), and scheduling requests and uplink scheduling can be avoided.
  • the transmission delay generated by the authorization is incurred in the authorization.
  • the base station in the above embodiment may include a 5G base station (gNB), a 4G base station (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the network side device or base station may also include any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • BTS base transceiver station
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • a body also referred to as a base station device
  • RRHs remote wireless headends
  • various types of terminal devices can also operate as base stations by performing base station functions temporarily or semi-persistently.
  • the user equipment in the above embodiment can be implemented, for example, as a communication terminal device (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device).
  • a communication terminal device such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device.
  • an in-vehicle terminal device such as a car navigation device
  • M2M machine-to-machine
  • MTC machine type communication
  • the terminal device or user equipment may also be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the above terminals.
  • the implementation of the user equipment is described below with reference to FIG. 5 with a smartphone as an example.
  • Fig. 5 shows a block diagram of a schematic configuration of a smartphone.
  • the smart phone 2500 includes a processor 2501, a memory 2502, a storage device 2503, an external connection interface 2504, an imaging device 2506, a sensor 2507, a microphone 2508, an input device 2509, a display device 2510, a speaker 2511, and a wireless communication interface. 2512, one or more antenna switches 2515, one or more antennas 2516, a bus 2517, a battery 2518, and an auxiliary controller 2519.
  • the image pickup device 2506 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 2507 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 2508 converts the sound input to the smartphone 2500 into an audio signal.
  • the input device 2509 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 2510, and receives an operation or information input from a user.
  • the display device 2510 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2500.
  • the speaker 2511 converts the audio signal output from the smartphone 2500 into a sound.
  • the wireless communication interface 2512 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 2512 may generally include, for example, a baseband (BB) processor 2513 and radio frequency (RF) circuitry 2514.
  • the BB processor 2513 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 2514 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2516.
  • the wireless communication interface 2512 may be a chip module on which the BB processor 2513 and the RF circuit 2514 are integrated. As shown in FIG. 5, the wireless communication interface 2512 can include a plurality of BB processors 2513 and a plurality of RF circuits 2514. However, the wireless communication interface 2512 can also include a single BB processor 2513 or a single RF circuit
  • wireless communication interface 2512 can also support other types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 2512 can include a BB processor 2513 and RF circuitry 2514 for each wireless communication scheme.
  • Each of the antennas 2516 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 2512 to transmit and receive wireless signals.
  • smart phone 2500 can include multiple antennas 2516.
  • smart phone 2500 can also include a single antenna 2516.
  • the bus 2517 has a processor 2501, a memory 2502, a storage device 2503, an external connection interface 2504, an imaging device 2506, a sensor 2507, a microphone 2508, an input device 2509, a display device 2510, a speaker 2511, a wireless communication interface 2512, and an auxiliary controller 2519. connection.
  • Battery 2518 provides power to various components of smart phone 2500 via feeders, which are shown partially as dashed lines in the figure.
  • the secondary controller 2519 operates the minimum required function of the smartphone 2500, for example, in a sleep mode.
  • the transceiver of the terminal device can be implemented by the wireless communication interface 2512. At least a portion of the functions of the functional units of the terminal device may also be implemented by the processor 2501 or the auxiliary controller 2519. For example, the power consumption of the battery 2518 can be reduced by performing a portion of the functions of the processor 2501 by the auxiliary controller 2519. Further, the processor 2501 or the auxiliary controller 2519 can perform at least a part of the functions of the respective functional units of the terminal device by executing the program stored in the memory 2502 or the storage device 2503.
  • Each of the antennas 2310 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 2320 to transmit and receive wireless signals.
  • base station 2300 can include multiple antennas 2310.
  • multiple antennas 2310 can be compatible with multiple frequency bands used by base station 2300.
  • FIG. 6 shows an example in which the base station 2300 includes a plurality of antennas 2310, the base station 2300 may also include a single antenna 2310.
  • the base station device 2320 includes a controller 2321, a memory 2322, a network interface 2323, and a wireless communication interface 2325.
  • the controller 2321 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 2320. For example, controller 2321 generates data packets based on data in signals processed by wireless communication interface 2325 and delivers the generated packets via network interface 2323. The controller 2321 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 2321 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby base stations or core network nodes.
  • the memory 2322 includes a RAM and a ROM, and stores programs executed by the controller 2321 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 2323 is a communication interface for connecting the base station device 2320 to the core network 2324. Controller 2321 can communicate with a core network node or another base station via network interface 2323. In this case, the base station 2300 and the core network node or other base stations can be connected to each other through a logical interface such as an S1 interface and an X2 interface.
  • the network interface 2323 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If the network interface 2323 is a wireless communication interface, the network interface 2323 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 2325.
  • the wireless communication interface 2325 supports any cellular communication schemes, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the base station 2300 via the antenna 2310.
  • Wireless communication interface 2325 can typically include, for example, BB processor 2326 and RF circuitry 2327.
  • the BB processor 2326 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 2326 may have some or all of the above described logic functions.
  • the BB processor 2326 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the functionality of the BB processor 2326 to change.
  • the module can be a card or blade that is inserted into the slot of the base station device 2320. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 2327 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2310.
  • the wireless communication interface 2325 can include a plurality of BB processors 2326.
  • multiple BB processors 2326 can be compatible with multiple frequency bands used by base station 2300.
  • the wireless communication interface 2325 can include a plurality of RF circuits 2327.
  • multiple RF circuits 2327 can be compatible with multiple antenna elements.
  • FIG. 6 illustrates an example in which the wireless communication interface 2325 includes a plurality of BB processors 2326 and a plurality of RF circuits 2327, the wireless communication interface 2325 may also include a single BB processor 2326 or a single RF circuit 2327.
  • FIG. 7 is a block diagram showing an example configuration of computer hardware that executes the scheme of the present invention in accordance with a program.
  • a central processing unit (CPU) 701, a read only memory (ROM) 702, and a random access memory (RAM) 703 are connected to each other through a bus 704.
  • Input/output interface 705 is further coupled to bus 704.
  • the input/output interface 705 is connected to an input unit 706 formed by a keyboard, a mouse, a microphone, or the like; an output unit 707 formed of a display, a speaker, or the like; a storage unit 708 formed of a hard disk, a nonvolatile memory, or the like;
  • a communication unit 709 formed of a network interface card (such as a local area network (LAN) card, a modem, etc.); and a drive 710 that drives the removable medium 711, such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • LAN local area network
  • the CPU 701 loads the program stored in the storage unit 708 into the RAM 703 via the input/output interface 705 and the bus 704, and executes the program to execute the above processing.
  • a program to be executed by a computer (CPU 701) may be recorded on a removable medium 711 as a package medium such as a magnetic disk (including a floppy disk), an optical disk (including a compact disk-read only memory (CD-ROM)), A digital versatile disc (DVD) or the like, a magneto-optical disc, or a semiconductor memory is formed. Further, a program to be executed by a computer (CPU 701) can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the storage unit 708 via the input/output interface 705.
  • the program can be received by the communication unit 709 via a wired or wireless transmission medium, and the program is installed in the storage unit 708.
  • the program may be pre-installed in the ROM 702 or the storage unit 708.
  • the program to be executed by the computer may be a program that performs processing in accordance with the order described in this specification, or may be a program that executes processing in parallel or performs processing when needed, such as when called.
  • a wireless communication device comprising processing circuitry configured to: detect broadcast information on a particular subchannel of an unlicensed frequency band; and broadcast time on the particular subchannel when the broadcast information is not successfully detected Information, wherein an end time of occupancy of the particular subchannel by the wireless communication device can be determined based on the time information.
  • the processing circuit is further configured to: when the broadcast information is not successfully detected, select a signature domain resource to perform uplink transmission on the particular subchannel.
  • the processing circuit is further configured to: when the broadcast information is not successfully detected, detect signal energy on the particular subchannel to determine whether the particular subchannel is idle; and when it is determined that the particular subchannel is idle, broadcast The time information and the uplink transmission are performed using the selected signature domain resource.
  • the broadcast time information includes: periodically broadcasting the time information before an end time indicated by the time information.
  • the processing circuit is further configured to: determine an available signature domain resource by removing the selected signature domain resource from the signature domain resource repository; and broadcast the available signature domain resource.
  • the processing circuit is further configured to: receive an updated available signature domain resource from the base station before the end time indicated by the time information; and broadcast the updated available signature domain resource.
  • a wireless communication device comprising processing circuitry configured to: detect broadcast information on a particular subchannel of an unlicensed frequency band; when successfully detecting the broadcast information on the particular subchannel, from one or One of the plurality of available signature domain resources is selected to perform uplink transmission.
  • the processing circuit is further configured to: acquire the one or more available signature domain resources from a base station, or determine the one or more available signature domain resources based on the broadcast information.
  • a wireless communication method performed by a terminal device comprising: detecting broadcast information on a specific subchannel of an unlicensed frequency band; and broadcasting broadcast time information on the specific subchannel when the broadcast information is not successfully detected, wherein The time information can determine an end time of occupation of the specific subchannel by the terminal device.
  • the method also includes selecting a signature domain resource to perform an uplink transmission on the particular subchannel when the broadcast information is not successfully detected.
  • the method further includes detecting signal energy on the particular subchannel to determine whether the particular subchannel is idle when the broadcast information is not successfully detected, and broadcasting the time when it is determined that the particular subchannel is idle The information is transmitted using the selected signature domain resource.
  • the method also includes periodically broadcasting the time information prior to an end time indicated by the time information.
  • the method also includes determining an available signature domain resource by removing the selected signature domain resource from the signature domain resource repository; and broadcasting the available signature domain resource.
  • the method also includes receiving an updated available signature domain resource from the base station prior to the end time indicated by the time information; and broadcasting the updated available signature domain resource.
  • a wireless communication method performed by a terminal device comprising: detecting broadcast information on a specific subchannel of an unlicensed frequency band; and when successfully detecting the broadcast information on the specific subchannel, from one or more available signature domains Select a signature domain resource from the resource to perform uplink transmission.
  • the method also includes obtaining the one or more available signature domain resources from a base station, or determining the one or more available signature domain resources based on the broadcast information.
  • a wireless communication device comprising processing circuitry configured to: receive uplink transmissions and time information on a particular subchannel of an unlicensed frequency band, wherein the particular terminal device can be determined to be specific to the particular sub The end time of the occupation of the channel; before the end time, the available signature domain resources are updated according to the signature domain resources used by the uplink transmission.
  • the processing circuit is further configured to broadcast the updated available signature domain resources on the licensed frequency band prior to the end time.
  • the processing circuit is further configured to: send the updated available signature domain resource to the particular terminal device on the licensed frequency band prior to the end time.
  • a method of wireless communication performed by a base station comprising: receiving uplink transmissions and time information on a specific subchannel of an unlicensed frequency band, wherein an end time of occupation of the specific subchannel by a specific terminal device can be determined according to the time information Before the end time, the available signature domain resources are updated according to the signature domain resources used by the uplink transmission.
  • the method also includes broadcasting the updated available signature domain resources on the licensed frequency band prior to the end time.
  • the method further includes transmitting the updated available signature domain resource to the specific terminal device on the licensed frequency band before the end time.
  • a computer readable storage medium storing a program that, when executed, causes a computer to implement the wireless communication method as described above.

Abstract

公开了无线通信方法和无线通信设备。该无线通信设备包括处理电路,所述处理电路被配置为:在非授权频段的特定子信道上检测广播信息;以及当未能成功检测广播信息时,在所述特定子信道上广播时间信息,其中,根据所述时间信息能够确定所述无线通信设备对所述特定子信道的占用的结束时间。

Description

无线通信方法和无线通信设备 技术领域
本发明涉及无线通信方法和无线通信设备,具体地,涉及在非授权频带上支持非正交多址接入的方法和设备。
背景技术
对于第五代(5G)无线通信网络而言,非正交多址接入(NOMA)是一种非常具有前景的多址接入技术。在传统的正交多址接入技术(OMA)中,一个传输资源(例如频率资源或时间资源)只能被分配给一个用户设备,而在NOMA中可以将一个资源分配给多个用户设备使用。NOMA技术的基本思想是在发送端采用非正交传输,主动引入干扰信息,在接收端通过串行干扰消除来实现正确解调。因此,相比于传统的OMA,NOMA具有更高的频谱效率和用户公平性。在NOMA中,由于不同的用户设备可以使用相同的传输资源,因此在发送端采用多址接入(MA)签名来区分不同的用户设备,即,每个用户设备利用唯一的MA签名来发送信号。MA签名例如可以是码本、序列等形式。
针对在授权频带上的上行传输,可以由5G新空口(NR)来支持NOMA,即,多个用户设备可以使用相同的资源块来发送上行信号。然而,在非授权频带上,由于现行的先听后说(Listen Before Talk,LBT)机制,无法在上行链路上实现NOMA。
因此,存在着针对非授权频带上的上行传输实现NOMA的需求。
发明内容
为此,本发明提出了能够在非授权频带上实现上行非正交多址接入的技术方案。
根据本发明的一个方面,提供了一种无线通信设备,包括处理电路,所述处理电路被配置为:在非授权频段的特定子信道上检测广播信息;以及当未能成功检测广播信息时,在所述特定子信道上广播时间信息,其中, 根据所述时间信息能够确定所述无线通信设备对所述特定子信道的占用的结束时间。
根据本发明的另一个方面,提供了一种无线通信设备,包括处理电路,所述处理电路被配置为:在非授权频段的特定子信道上检测广播信息;当在所述特定子信道上成功检测所述广播信息时,从一个或多个可用签名域资源中选择一个签名域资源以执行上行传输。
根据本发明的另一个方面,提供了一种由终端设备执行的无线通信方法,包括:在非授权频段的特定子信道上检测广播信息;以及当未能成功检测广播信息时,在所述特定子信道上广播时间信息,其中,根据所述时间信息能够确定所述终端设备对所述特定子信道的占用的结束时间。
根据本发明的另一个方面,提供了一种由终端设备执行的无线通信方法,包括:在非授权频段的特定子信道上检测广播信息;当在所述特定子信道上成功检测所述广播信息时,从一个或多个可用签名域资源中选择一个签名域资源以执行上行传输。
根据本发明的另一个方面,提供了一种无线通信设备,包括处理电路,所述处理电路被配置为:在非授权频段的特定子信道上接收上行传输以及时间信息,其中根据所述时间信息能够确定特定终端设备对所述特定子信道的占用的结束时间;在所述结束时间之前,根据所述上行传输所使用的签名域资源来更新可用签名域资源。
根据本发明的另一个方面,提供了一种由基站执行的无线通信方法,包括:在非授权频段的特定子信道上接收上行传输以及时间信息,其中根据所述时间信息能够确定特定终端设备对所述特定子信道的占用的结束时间;在所述结束时间之前,根据所述上行传输所使用的签名域资源来更新可用签名域资源。
根据本发明的另一个方面,提供了一种存储有程序的计算机可读存储介质,所述程序在被执行时使计算机实现如上所述的无线通信方法。
附图说明
可以通过参考下文中结合附图所给出的描述来更好地理解本发明,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分,而且用来进一步说明本发明的优选实施例和解释本发明的原理和 优点。在附图中:
图1A概括性地示出了本发明的实施例提供的电子设备的无线通信方法的流程图。
图1B示出了根据本发明的第一实施例的处理流程图。
图2示意地示出了根据本发明的第一实施例的信令交互图。
图3示出了根据本发明的第二实施例的处理流程图。
图4示意地示出了根据本发明的第二实施例的信令交互图。
图5示出了用户设备的一个示例的示意性配置框图。
图6示出了基站的一个示例的示意性配置框图。
图7示出了计算机硬件的示意性配置框图。
具体实施方式
图1A概要性地示出了根据本发明的由用户设备执行的处理。如图1A所示,当用户设备UE的上行传输数据准备就绪时,用户设备UE在步骤S10在非授权频带中的一个或多个子信道上尝试检测广播信息。然后在步骤S20,针对某一子信道,用户设备UE确定未成功检测到广播信息。在本文中,“成功检测广播信息”表示在该子信道上存在广播信息并且用户设备成功解码广播信息的情况,“未成功检测广播信息”包括在该子信道上不存在广播信息的情况以及存在广播信息但用户设备不能成功解码广播信息的情况。在用户设备UE未成功检测广播信息的情况下,用户设备UE可以在步骤S30确定自身是第一个接入该子信道的设备,并在该子信道上进行广播,所广播的信息包括该用户设备UE能够占用该子信道的时间段的结束时间。
图1B详细地示出了根据本发明第一实施例的由用户设备执行的处理。如图1B所示,当用户设备UE的上行传输数据准备就绪时,用户设备UE选择非授权频带中的一个或多个子信道,并在所选择的子信道上尝试检测广播信息,如步骤S110所示。作为一个示例,用户设备UE随机地选择非授权频带中的一个或多个子信道。作为另一示例,该子信道不是由用户设备UE选择的,而是由基站半静态地分配给用户设备UE的。
当用户设备UE在步骤S120中确定在该子信道上未能成功检测到广 播信息后,用户设备可以进一步确定该子信道是否空闲,因此处理进行至步骤S130。
在步骤S130,用户设备UE执行“先听后说”(LBT),以判断该子信道是否为空闲子信道。例如,用户设备UE可以通过检测该子信道上的信号能量来确定该子信道是否空闲。当在步骤S140中确定该子信道为空闲(例如,信号能量小于特定阈值)时,处理进行至步骤S150。
在步骤S150,用户设备UE在该子信道上进行广播,所广播的信息包括用户设备UE能够占用该子信道的时间段的结束时间。例如,该结束时间可以表示为结束时间点,结束子帧、结束符号等等。作为另一个示例,用户设备UE广播的信息可以包括用户设备UE的接入时间以及最大信道占用时间(MCOT)。由此,接收到广播信息的其它用户设备可以根据该广播信息来确定用户设备UE对该子信道的占用的结束时间。此外,如下文结合图2将描述的,在该结束时间之前,用户设备UE可以周期性地在该子信道上广播该结束时间。
此外,在步骤S150,用户设备进一步在MA签名资源库中选择某一MA签名,并利用所选择的MA签名在该子信道上向基站发送信号。特别地,用户设备UE可以在MA签名资源库中任意地地选择一个MA签名以用于信号传输。
另一方面,当用户设备UE在步骤S140中确定该子信道不是空闲子信道(例如,信号能量大于特定阈值)时,说明该子信道上存在着由其它用户设备发送的信号。作为一个特例,该子信道上可能存在着由其它用户设备发送的、用户设备UE不能解码的广播信号。由于子信道已被其它用户设备占用,因此用户设备UE将不能接入该子信道。因此,处理返回至步骤S130,用户设备UE继续执行“先听后说”(LBT)。
另一方面,如果在步骤S120中用户设备UE确定在该子信道上已经成功检测到广播信息(包括成功解码该广播信息),尽管这意味着已有其它用户设备占用该子信道,但用户设备UE仍可以接入该子信道,因此处理进行至步骤S160。
在步骤S160处,用户设备UE通过解码来自基站的广播信息而获得在该子信道上可用的MA签名。例如,基站可以在授权频带上广播该子信道上可用的MA签名。更进一步地,基站可以周期性地广播可用的MA签名。
然后在步骤S170,用户设备UE从所获得的可用MA签名中选择一个MA签名,以便在该子信道上进行上行传输。
在本实施例中,第一个接入非授权频带的某一子信道的用户设备UE进行广播,后续意图接入该子信道的其它用户设备如果能够成功解码用户设备UE的广播信息,则可以确定自身可继续接入该子信道。随后,该其它用户设备通过从基站获得MA签名而在该子信道上进行上行传输,即,与用户设备UE共享该子信道。由此,实现了非授权频带上的上行链路非正交多址接入。相反,后续意图接入该子信道的其它用户设备如果不能成功地解码用户设备UE的广播信息,则根据传统的先听后说机制,该其它用户设备不能接入该子信道。
作为本发明的一个应用示例,在子信道初次被用户设备UE占用的情况下,用户设备UE所发送的广播信息仅能被属于同一系统的其它用户设备解码,因此可以允许与用户设备UE属于同一系统的其它用户设备接入子信道,与用户设备UE共享该子信道,因此提高了频谱效率。而属于不同系统的其它用户设备由于不能解码广播信号而无法接入该子信道。此外,优选地,对于要占用子信道的各个系统的用户设备而言,用户设备的最大信道占用时间是统一的,由此可以保证各个系统的公平共存。此外,例如,本文中的系统可以包括NR系统和WiFi系统。
可以通过调节用户设备UE的广播功率来控制在同一子信道上进行传输的用户设备的最大数目。可以基于通信场景来确定广播功率。例如,在大规模机器类型通信(mMTC)中,可以将广播功率设置为较高,以使得更多的用户设备能够共享同一子信道,而在超高可靠低时延通信(URLLC)中,可以将广播功率设置得较低,以限制共享子信道的用户设备的数目,从而保证通信的可靠性。
图2示出了根据本发明第一实施例的在用户设备和基站之间的信令交互图。在图2中,假设用户设备UE1是根据图1的处理而确定为第一个接入非授权频带的某一子信道的用户设备,用户设备UE2和UE3是在用户设备UE1之后能够接入该子信道的用户设备。
如图2所示,用户设备UE1在确定自身是第一个占用子信道的用户设备之后,在该子信道上利用某一MA签名向基站gNB发送上行信号,如步骤S201所示。此外,用户设备UE1在步骤S202在该子信道上进行广播,所广播的信息包括用户设备UE1对该子信道的占用结束时间。或者如上所述,所广播的信息可以包括用户设备UE1的接入时间和最大信 道占用时间。需要说明的是,步骤S201和S202的执行顺序不限于图中所示的顺序,也可以以相反顺序来执行,或同时执行。
基站gNB通过接收来自用户设备UE1的上行信号可以得知用户设备UE1所使用的MA签名,然后基站gNB通过从MA签名资源库中去除用户设备UE1所使用的MA签名,来确定可用的MA签名。基站gNB在步骤S203将所确定的可用MA签名广播至各个用户设备。
当用户设备UE2由于成功检测用户设备UE1的广播信息而确定自身可以接入子信道时,其通过接收基站的广播信息而获得在该子信道上可用的MA签名,并从所获得的可用MA签名中选择一个MA签名来进行上行传输,如步骤S204所示。
基站gNB通过接收来自用户设备UE2的信号而得知用户设备UE2所使用的MA签名,并且从可用的MA签名中去除用户设备UE2所使用的MA签名,从而更新可用的MA签名,如步骤S205所示。随后,基站gNB在步骤S206将更新后的可用MA签名广播至各个用户设备。
在用户设备UE1的占用结束时间之前,用户设备UE1可以在子信道上周期性地广播结束时间,如步骤S207所示。
与用户设备UE2类似地,当用户设备UE3确定自身可以接入子信道时,其通过解码基站的广播信息而获得在该子信道上当前可用的MA签名,并从中选择一个MA签名来进行上行传输,如步骤S208所示。
基站gNB通过接收来自用户设备UE3的信号而得知用户设备UE3所使用的MA签名,并且从可用的MA签名中去除用户设备UE3所使用的MA签名,从而再次更新可用的MA签名,如步骤S209所示。随后,基站gNB在步骤S210将再次更新后的可用MA签名广播至各个用户设备。
优选地,在步骤S203,S206和S210中,基站gNB可以在授权频带上广播该子信道上可用的MA签名,例如经由物理广播信道(PBCH)。通过由基站gNB广播可用的MA签名,可以减少用户设备的MA签名冲突的可能性,并且可以减小接收机的复杂度。
此外,由于用户设备UE1在子信道上周期性地广播占用结束时间,因此步骤S211示出了用户设备UE1再次广播该结束时间。
在本实施例中,用户设备UE1可以周期性地广播信道占用结束时间,基站gNB可以周期性地更新可用MA签名并将更新后的可用MA签名广播至各个用户设备。用户设备UE1和基站gNB的周期性处理是彼此独立 的,并且可以具有彼此不同的周期。例如,虽然图中示出了在基站广播更新后的可用MA签名(步骤S206)之后,用户设备UE1再次广播占用结束时间(步骤S207),但本发明的方案并不限于此,也就是说,步骤S207与基站gNB所执行的步骤之间并无先后顺序。本发明并不限定用户设备UE1的周期性广播和基站gNB的周期性更新之间的时间关系。
此外,还需要说明的是,虽然图中示出了基站gNB在每次接收到用户设备(UE2,UE3)的上行信号之后更新可用的MA签名,但本发明的方案不限于此。由于在实际通信系统中,基站gNB在极短的时间内即可能接收到大量的上行信号,因此不一定针对每个上行信号的接收来更新可用的MA签名,而是可以以更长的周期来更新可用的MA签名。
图3示出了根据本发明第二实施例的由用户设备执行的处理。如图3所示,用户设备UE在上行传输数据准备就绪时,选择非授权频带中的一个或多个子信道,并在所选择的子信道上检测广播信息,如步骤S310所示。特别地,用户设备UE可以随机地选择子信道,或者可以由基站为用户设备UE半静态地分配子信道。
当用户设备UE在步骤S320中确定在该子信道上未能成功检测到广播信息后,用户设备可以进一步确定该子信道是否空闲,因此处理进行至步骤S330。
在步骤S330,用户设备UE执行“先听后说”,以判断该子信道是否为空闲子信道。与第一实施例中类似地,例如,用户设备UE可以通过检测该子信道上的信号能量来确定该子信道是否空闲。当在步骤S340中确定该子信道为空闲(例如,信号能量小于特定阈值)时,用户设备UE的处理进行至步骤S350。
在步骤S350,用户设备UE在该子信道上进行广播,广播信息可以包括用户设备UE对该子信道的占用结束时间,或者包括用户设备UE的接入时间以及最大信道占用时间。此外,用户设备UE在MA签名库中选择某一MA签名,并利用所选择的MA签名在该子信道上进行上行传输。特别地,由于是第一个接入该子信道的用户设备,用户设备UE可以在MA签名库中任意地选择一个MA签名。这些与第一实施例中的处理相同。
本实施例与第一实施例的区别在于,第一个接入该子信道的用户设备UE在步骤S350还进一步在该子信道上广播当前可用的MA签名,当前可用的MA签名可以通过从MA签名库中去除由用户设备UE选择的MA 签名而获得。或者,如结合图4将在后文描述的,可用的MA签名可以是由基站通知的。在这种情况下,由基站周期性地更新可用的MA签名并将更新后的签名通知给用户设备UE,而用户设备UE周期性地在子信道上广播当前可用的MA签名。
另一方面,当用户设备UE在步骤S340中确定该子信道不是空闲子信道(例如,信号能量大于特定阈值)时,说明该子信道上存在着由其它用户设备发送的信号。作为一个特例,该子信道上可能存在着由其它用户设备发送的、用户设备UE不能解码的广播信号。由于该子信道已被其它用户设备占用,因此用户设备UE将不能接入该子信道。因此,处理返回至步骤S330,用户设备UE继续执行“先听后说”。
另一方面,如果用户设备UE在步骤S320中确定在子信道上已经成功检测(解码)广播信息,尽管这意味着已有其它用户设备在该子信道上进行传输,但用户设备UE确定自身仍可继续接入该子信道,因此处理进行至步骤S360。
由于广播信息包含在该子信道上可用的MA签名,因此,用户设备UE通过解码该广播信息可以获得当前可用的MA签名。从而,在步骤S360,用户设备UE在所获得的可用MA签名中选择一个MA签名,以进行上行传输。
与第一实施例类似地,在本实施例中,第一个占用子信道的用户设备UE在子信道上进行广播,后续意图接入该子信道的其它用户设备如果能够成功解码用户设备UE的广播信息,则能够继续接入该子信道,即,与用户设备UE共享该子信道。由此,实现了非授权频带上的上行链路非正交多址接入。相反,后续意图接入该子信道的其它用户设备如果不能成功解码广播信息,则无法接入该子信道。
图4示出了根据本发明第二实施例的在用户设备和基站之间的信令交互图。在图4中,假设用户设备UE1是第一个占用非授权频带的某一子信道的用户设备,用户设备UE2和UE3是在用户设备UE1之后能够接入该子信道的用户设备。
如图4所示,第一个占用子信道的用户设备UE1在步骤S401利用从MA签名资源库中选择的一个MA签名向基站gNB发送上行信号。此外,用户设备UE1在步骤S402在该子信道上进行广播,所广播的信息包括用户设备UE1的占用结束时间以及在该子信道上可用的MA签名。所广播 的可用MA签名是由用户设备UE1通过从MA签名资源库中去除自身所选择的MA签名而确定的。需要说明的是,步骤S401和S402的执行顺序不限于图中所示的顺序,也可以以相反顺序来执行,或同时执行。
基站gNB通过接收来自用户设备UE1的上行信号可以得知用户设备UE1所使用的MA签名,因此,即使基站gNB并不在该子信道上接收用户设备UE1的广播信息,基站gNB也可以通过从MA签名资源库中去除用户设备UE1所使用的MA签名来确定可用的MA签名。
随后,用户设备UE2通过解码用户设备UE1的广播信息而获得可用的MA签名,并从所获得的可用MA签名中选择一个MA签名来进行上行传输,如步骤S403所示。
基站gNB通过接收来自用户设备UE2的信号而得知用户设备UE2所使用的MA签名,并从先前确定的可用MA签名中去除用户设备UE2所使用的MA签名,从而更新可用的MA签名,并将更新后的可用MA签名发送至用户设备UE1,如步骤S404所示。
用户设备UE1在从基站gNB接收到更新后的可用MA签名后,可以在子信道上再次进行广播,如步骤S405所示。优选地,用户设备UE1可以将更新后的可用MA签名与占用结束时间一同进行广播。
随后,与用户设备UE2类似地,用户设备UE3通过解码用户设备UE1的广播信息而获得可用的MA签名,并从可用的MA签名中选择一个MA签名来向基站gNB发送上行信号,如步骤S406所示。
基站gNB通过接收来自用户设备UE3的信号而得知用户设备UE3所使用的MA签名,并且从可用的MA签名中去除用户设备UE3所使用的MA签名,从而再次更新可用的MA签名,并将再次更新后的可用MA签名发送至用户设备UE1,如步骤S407所示。优选地,在步骤S404和S407中,基站gNB可以在授权频带上发送更新后的可用MA签名,例如经由物理下行控制信道(PDCCH)。
用户设备UE1在从基站gNB接收到再次更新的可用MA签名后,在步骤S408再次广播所接收的可用MA签名。优选地,用户设备UE1将可用MA签名与占用结束时间一同进行广播。
需要说明的是,虽然图中示出了基站gNB在每次接收到用户设备(UE2,UE3)的上行信号之后更新可用的MA签名,但本发明的方案不限于此。基站gNB可以不必针对每次上行传输都更新可用的MA签名, 而是以更长的周期(例如在该周期中可能接收到多次上行传输)来更新可用的MA签名。
此外,虽然图中示出了用户设备UE1在每次接收到由基站gNB发送的更新后的可用MA签名之后进行广播,但本发明不限于此。在本发明中,用户设备UE1的周期性广播与基站gNB的周期性更新可用MA签名是彼此独立的操作。用户设备UE1的广播周期可以比基站的更新周期更长或更短。例如,用户设备UE1可以在接收到两次更新的可用MA签名后才广播最后一次接收到的可用MA签名。
根据以上描述的实施例,本发明提供了在非授权频带上实现上行非正交多址接入(NOMA)的方案。本发明的方案能够提高频谱效率,并且保证各个系统在非授权频带上的公平共存。在上文中,将NR系统和WiFi系统作为系统的示例,但本发明不限于NR系统和WiFi系统。随着技术的发展,本领域技术人员易于将本发明应用于其它系统。
此外,本发明的方案也能够适用于上行免授权(grant-free)传输的场景。上行免授权传输是指用户设备在数据就绪后就可以立刻进行上行传输,而不需要向基站发送调度请求以及等待接收来自基站的上行调度授权。上行免授权传输方案的优势在于:可以减小与调度请求和上行调度授权有关的信令开销(当要传送的数据很少时,这一优势尤为显著),以及可以避免由调度请求和上行调度授权产生的传输时延。
本发明能够应用于各种产品。例如,上述实施例中的基站可以包括5G基站(gNB)、4G基站(eNB),诸如宏eNB和小eNB。小eNB可以是覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,该网络侧设备或基站也可以包括任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的终端设备也可以通过暂时地或半持久性地执行基站功能而作为基站工作。
另一方面,上述实施例中的用户设备例如可以被实现为通信终端设备(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端设备(诸如汽车导航设备),还可以被实现为执行机器对机器(M2M)通信的终端设备,也称为机器类型通信(MTC)终端设备。此外,该终端设备或用户设备也可以是安装在上述终端中的每个终端上的无线通信模块(诸如包括单 个晶片的集成电路模块)。
以下结合图5以智能电话作为一个示例来描述用户设备的实现。
图5示出了智能电话的示意性配置的框图。如图5所示,智能电话2500包括处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512、一个或多个天线开关2515、一个或多个天线2516、总线2517、电池2518以及辅助控制器2519。
处理器2501可以为例如CPU或片上系统(SoC),并且控制智能电话2500的应用层和另外层的功能。存储器2502包括RAM和ROM,并且存储数据和由处理器2501执行的程序。存储装置2503可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2504为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2500的接口。
摄像装置2506包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2507可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2508将输入到智能电话2500的声音转换为音频信号。输入装置2509包括例如被配置为检测显示装置2510的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2510包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2500的输出图像。扬声器2511将从智能电话2500输出的音频信号转换为声音。
无线通信接口2512支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2512通常可以包括例如基带(BB)处理器2513和射频(RF)电路2514。BB处理器2513可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2514可以包括例如混频器、滤波器和放大器,并且经由天线2516来传送和接收无线信号。无线通信接口2512可以是其上集成有BB处理器2513和RF电路2514的一个芯片模块。如图5所示,无线通信接口2512可以包括多个BB处理器2513和多个RF电路2514。但是,无线通信接口2512也可以包括单个BB处理器2513或单个RF电路2514。
此外,除了蜂窝通信方案之外,无线通信接口2512还可以支持另外 类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2512可以包括针对每种无线通信方案的BB处理器2513和RF电路2514。
天线开关2515中的每一个在包括在无线通信接口2512中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线2516的连接目的地。
天线2516中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2512传送和接收无线信号。如图5所示,智能电话2500可以包括多个天线2516。但是,智能电话2500也可以包括单个天线2516。
此外,智能电话2500可以包括针对每种无线通信方案的天线2516。在此情况下,可以从智能电话2500的配置中省略天线开关2515。
总线2517将处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512以及辅助控制器2519彼此连接。电池2518经由馈线向智能电话2500的各个部件提供电力,馈线在图中被部分地示为虚线。辅助控制器2519例如在睡眠模式下操作智能电话2500的最小必需功能。
在图5所示的智能电话2500中,终端设备的收发装置可以由无线通信接口2512实现。终端设备的各功能单元的功能的至少一部分也可以由处理器2501或辅助控制器2519实现。例如,可以通过由辅助控制器2519执行处理器2501的部分功能而减少电池2518的电力消耗。此外,处理器2501或辅助控制器2519可以通过执行存储器2502或存储装置2503中存储的程序而执行终端设备的各功能单元的功能的至少一部分。
以下结合图6来描述基站的实现。
图6示出了基站的示意性配置的框图。如图6所示,基站2300包括一个或多个天线2310以及基站设备2320。基站设备2320和每个天线2310可以经由射频(RF)线缆彼此连接。
天线2310中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备2320发送和接收无线信号。如图6所示,基站2300可以包括多个天线2310。例如,多个天线2310可以与基站2300使用的多个频带兼容。虽然图6示 出基站2300包括多个天线2310的示例,但是基站2300也可以包括单个天线2310。
基站设备2320包括控制器2321、存储器2322、网络接口2323以及无线通信接口2325。
控制器2321可以为例如CPU或DSP,并且操作基站设备2320的较高层的各种功能。例如,控制器2321根据由无线通信接口2325处理的信号中的数据来生成数据分组,并经由网络接口2323来传递所生成的分组。控制器2321可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器2321可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的基站或核心网节点来执行。存储器2322包括RAM和ROM,并且存储由控制器2321执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口2323为用于将基站设备2320连接至核心网2324的通信接口。控制器2321可以经由网络接口2323与核心网节点或另外的基站进行通信。在此情况下,基站2300与核心网节点或其他基站可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口2323还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口2323为无线通信接口,则与无线通信接口2325所使用的频带相比,网络接口2323可以使用较高频带以用于无线通信。
无线通信接口2325支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线2310来提供到位于基站2300的小区中的终端的无线连接。无线通信接口2325通常可以包括例如BB处理器2326和RF电路2327。BB处理器2326可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器2321,BB处理器2326可以具有上述逻辑功能的一部分或全部。BB处理器2326可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器2326的功能改变。该模块可以为插入到基站设备2320的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路2327可以包括例如混频器、滤波器和放大器,并且经由天线2310来传送和接收无线信号。
如图6所示,无线通信接口2325可以包括多个BB处理器2326。例如,多个BB处理器2326可以与基站2300使用的多个频带兼容。如图6所示,无线通信接口2325可以包括多个RF电路2327。例如,多个RF电路2327可以与多个天线元件兼容。虽然图6示出无线通信接口2325包括多个BB处理器2326和多个RF电路2327的示例,但是无线通信接口2325也可以包括单个BB处理器2326或单个RF电路2327。
在图6所示的基站2300中,基站侧设备的收发装置可以由无线通信接口2325实现。各单元的功能的至少一部分也可以由控制器2321执行。例如,控制器2321可以通过执行存储在存储器2322中的程序而执行各单元的功能的至少一部分。
本文中所描述的各个设备或单元仅是逻辑意义上的,并不严格对应于物理设备或实体。例如,本文所描述的每个单元的功能可能由多个物理实体来实现,或者,本文所描述的多个单元的功能可能由单个物理实体来实现。此外需要说明的是,在一个实施例中描述的特征、部件、元素、步骤等并不局限于该实施例,而是也可应用于其它实施例,例如替代其它实施例中的特定特征、部件、元素、步骤等,或者与其相结合。
图7是示出了根据程序执行本发明的方案的计算机硬件的示例配置框图。
在计算机700中,中央处理单元(CPU)701、只读存储器(ROM)702以及随机存取存储器(RAM)703通过总线704彼此连接。
输入/输出接口705进一步与总线704连接。输入/输出接口705连接有以下组件:以键盘、鼠标、麦克风等形成的输入单元706;以显示器、扬声器等形成的输出单元707;以硬盘、非易失性存储器等形成的存储单元708;以网络接口卡(诸如局域网(LAN)卡、调制解调器等)形成的通信单元709;以及驱动移动介质711的驱动器710,该移动介质711诸如是磁盘、光盘、磁光盘或半导体存储器。
在具有上述结构的计算机中,CPU 701将存储在存储单元708中的程序经由输入/输出接口705和总线704加载到RAM 703中,并且执行该程序,以便执行上述处理。
要由计算机(CPU 701)执行的程序可以被记录在作为封装介质的移动介质711上,该封装介质以例如磁盘(包括软盘)、光盘(包括压缩光盘-只读存储器(CD-ROM))、数字多功能光盘(DVD)等)、磁光盘、或 半导体存储器来形成。此外,要由计算机(CPU 701)执行的程序也可以经由诸如局域网、因特网、或数字卫星广播的有线或无线传输介质来提供。
当移动介质711安装在驱动器710中时,可以将程序经由输入/输出接口705安装在存储单元708中。另外,可以经由有线或无线传输介质由通信单元709来接收程序,并且将程序安装在存储单元708中。可替选地,可以将程序预先安装在ROM 702或存储单元708中。
要由计算机执行的程序可以是根据本说明书中描述的顺序来执行处理的程序,或者可以是并行地执行处理或当需要时(诸如,当调用时)执行处理的程序。
以上已经结合附图详细描述了本发明的实施例以及技术效果,但是本发明的范围不限于此。本领域普通技术人员应该理解的是,取决于设计要求和其他因素,在不偏离本发明的原理和精神的情况下,可以对本文中所讨论的实施方式进行各种修改或变化。本发明的范围由所附权利要求或其等同方案来限定。
此外,本发明也可以被配置如下。
一种无线通信设备,包括处理电路,所述处理电路被配置为:在非授权频段的特定子信道上检测广播信息;以及当未能成功检测广播信息时,在所述特定子信道上广播时间信息,其中,根据所述时间信息能够确定所述无线通信设备对所述特定子信道的占用的结束时间。
所述处理电路还被配置为:当未能成功检测广播信息时,选择签名域资源以在所述特定子信道上执行上行传输。
所述处理电路还被配置为:当未能成功检测广播信息时,检测所述特定子信道上的信号能量以确定所述特定子信道是否空闲;以及当确定所述特定子信道空闲时,广播所述时间信息以及利用所选择的签名域资源执行上行传输。
其中,广播时间信息包括:在所述时间信息指示的结束时间之前,周期性地广播所述时间信息。
所述处理电路还被配置为:通过从签名域资源库中去除所选择的签名域资源来确定可用签名域资源;以及广播所述可用签名域资源。
所述处理电路还被配置为:在所述时间信息指示的结束时间之前,从基站接收更新的可用签名域资源;以及广播所述更新的可用签名域资源。
一种无线通信设备,包括处理电路,所述处理电路被配置为:在非授权频段的特定子信道上检测广播信息;当在所述特定子信道上成功检测所述广播信息时,从一个或多个可用签名域资源中选择一个签名域资源以执行上行传输。
所述处理电路还被配置为:从基站获取所述一个或多个可用签名域资源,或者基于所述广播信息来确定所述一个或多个可用签名域资源。
一种由终端设备执行的无线通信方法,包括:在非授权频段的特定子信道上检测广播信息;以及当未能成功检测广播信息时,在所述特定子信道上广播时间信息,其中,根据所述时间信息能够确定所述终端设备对所述特定子信道的占用的结束时间。
所述方法还包括:当未能成功检测广播信息时,选择签名域资源以在所述特定子信道上执行上行传输。
所述方法还包括:当未能成功检测广播信息时,检测所述特定子信道上的信号能量以确定所述特定子信道是否空闲;以及当确定所述特定子信道空闲时,广播所述时间信息以及利用所选择的签名域资源执行上行传输。
所述方法还包括:在所述时间信息指示的结束时间之前,周期性地广播所述时间信息。
所述方法还包括:通过从签名域资源库中去除所选择的签名域资源来确定可用签名域资源;以及广播所述可用签名域资源。
所述方法还包括:在所述时间信息指示的结束时间之前,从基站接收更新的可用签名域资源;以及广播所述更新的可用签名域资源。
一种由终端设备执行的无线通信方法,包括:在非授权频段的特定子信道上检测广播信息;当在所述特定子信道上成功检测所述广播信息时,从一个或多个可用签名域资源中选择一个签名域资源以执行上行传输。
所述方法还包括:从基站获取所述一个或多个可用签名域资源,或者基于所述广播信息来确定所述一个或多个可用签名域资源。
一种无线通信设备,包括处理电路,所述处理电路被配置为:在非授权频段的特定子信道上接收上行传输以及时间信息,其中根据所述时间信息能够确定特定终端设备对所述特定子信道的占用的结束时间;在所述结束时间之前,根据所述上行传输所使用的签名域资源来更新可用签名域资 源。
所述处理电路还被配置为:通过从签名域资源库中去除所述上行传输所使用的签名域资源来确定更新后的可用签名域资源。
所述处理电路还被配置为:在所述结束时间之前,在授权频段上广播更新后的可用签名域资源。
所述处理电路还被配置为:在所述结束时间之前,在授权频段上将更新后的可用签名域资源发送给所述特定终端设备。
一种由基站执行的无线通信方法,包括:在非授权频段的特定子信道上接收上行传输以及时间信息,其中根据所述时间信息能够确定特定终端设备对所述特定子信道的占用的结束时间;在所述结束时间之前,根据所述上行传输所使用的签名域资源来更新可用签名域资源。
所述方法还包括:通过从签名域资源库中去除所述上行传输所使用的签名域资源来确定更新后的可用签名域资源。
所述方法还包括:在所述结束时间之前,在授权频段上广播更新后的可用签名域资源。
所述方法还包括:在所述结束时间之前,在授权频段上将更新后的可用签名域资源发送给所述特定终端设备。
一种存储有程序的计算机可读存储介质,所述程序在被执行时使计算机实现如上所述的无线通信方法。

Claims (22)

  1. 一种无线通信设备,包括处理电路,所述处理电路被配置为:
    在非授权频段的特定子信道上检测广播信息;以及
    当未能成功检测广播信息时,在所述特定子信道上广播时间信息,
    其中,根据所述时间信息能够确定所述无线通信设备对所述特定子信道的占用的结束时间。
  2. 根据权利要求1所述的无线通信设备,所述处理电路还被配置为:
    当未能成功检测广播信息时,选择签名域资源以在所述特定子信道上执行上行传输。
  3. 根据权利要求2所述的无线通信设备,所述处理电路还被配置为:
    当未能成功检测广播信息时,检测所述特定子信道上的信号能量以确定所述特定子信道是否空闲;以及
    当确定所述特定子信道空闲时,广播所述时间信息以及利用所选择的签名域资源执行上行传输。
  4. 根据权利要求1所述的无线通信设备,其中,广播时间信息包括:在所述时间信息指示的结束时间之前,周期性地广播所述时间信息。
  5. 根据权利要求2所述的无线通信设备,所述处理电路还被配置为:
    通过从签名域资源库中去除所选择的签名域资源来确定可用签名域资源;以及
    广播所述可用签名域资源。
  6. 根据权利要求5所述的无线通信设备,所述处理电路还被配置为: 在所述时间信息指示的结束时间之前,
    从基站接收更新的可用签名域资源;以及
    广播所述更新的可用签名域资源。
  7. 一种无线通信设备,包括处理电路,所述处理电路被配置为:
    在非授权频段的特定子信道上检测广播信息;
    当在所述特定子信道上成功检测所述广播信息时,从一个或多个可用签名域资源中选择一个签名域资源以执行上行传输。
  8. 根据权利要求7所述的无线通信设备,所述处理电路还被配置为:
    从基站获取所述一个或多个可用签名域资源,或者
    基于所述广播信息来确定所述一个或多个可用签名域资源。
  9. 一种由终端设备执行的无线通信方法,包括:
    在非授权频段的特定子信道上检测广播信息;以及
    当未能成功检测广播信息时,在所述特定子信道上广播时间信息,
    其中,根据所述时间信息能够确定所述终端设备对所述特定子信道的占用的结束时间。
  10. 根据权利要求9所述的无线通信方法,还包括:
    当未能成功检测广播信息时,选择签名域资源以在所述特定子信道上执行上行传输。
  11. 根据权利要求10所述的无线通信方法,还包括:
    当未能成功检测广播信息时,检测所述特定子信道上的信号能量以确定所述特定子信道是否空闲;以及
    当确定所述特定子信道空闲时,广播所述时间信息以及利用所选择的签名域资源执行上行传输。
  12. 一种由终端设备执行的无线通信方法,包括:
    在非授权频段的特定子信道上检测广播信息;
    当在所述特定子信道上成功检测所述广播信息时,从一个或多个可用签名域资源中选择一个签名域资源以执行上行传输。
  13. 根据权利要求12所述的无线通信方法,还包括:
    从基站获取所述一个或多个可用签名域资源,或者
    基于所述广播信息来确定所述一个或多个可用签名域资源。
  14. 一种无线通信设备,包括处理电路,所述处理电路被配置为:
    在非授权频段的特定子信道上接收上行传输以及时间信息,其中根据所述时间信息能够确定特定终端设备对所述特定子信道的占用的结束时间;
    在所述结束时间之前,根据所述上行传输所使用的签名域资源来更新可用签名域资源。
  15. 根据权利要求14所述的无线通信设备,所述处理电路还被配置为:
    通过从签名域资源库中去除所述上行传输所使用的签名域资源来确定更新后的可用签名域资源。
  16. 根据权利要求14所述的无线通信设备,所述处理电路还被配置为:
    在所述结束时间之前,在授权频段上广播更新后的可用签名域资源。
  17. 根据权利要求14所述的无线通信设备,所述处理电路还被配置为:
    在所述结束时间之前,在授权频段上将更新后的可用签名域资源发送给所述特定终端设备。
  18. 一种由基站执行的无线通信方法,包括:
    在非授权频段的特定子信道上接收上行传输以及时间信息,其中根据所述时间信息能够确定特定终端设备对所述特定子信道的占用的结束时间;
    在所述结束时间之前,根据所述上行传输所使用的签名域资源来更新可用签名域资源。
  19. 根据权利要求18所述的无线通信方法,还包括:
    通过从签名域资源库中去除所述上行传输所使用的签名域资源来确定更新后的可用签名域资源。
  20. 根据权利要求18所述的无线通信方法,还包括:
    在所述结束时间之前,在授权频段上广播更新后的可用签名域资源。
  21. 根据权利要求18所述的无线通信方法,还包括:
    在所述结束时间之前,在授权频段上将更新后的可用签名域资源发送给所述特定终端设备。
  22. 一种存储有程序的计算机可读存储介质,所述程序在被执行时使计算机实现权利要求9-13,18-21中任一项所述的无线通信方法。
PCT/CN2018/093527 2017-07-06 2018-06-29 无线通信方法和无线通信设备 WO2019007262A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207003167A KR102586481B1 (ko) 2017-07-06 2018-06-29 무선 통신 방법 및 무선 통신 디바이스
US16/614,383 US11277818B2 (en) 2017-07-06 2018-06-29 Wireless communication method and wireless communication device
JP2019563400A JP7131571B2 (ja) 2017-07-06 2018-06-29 無線通信方法及び無線通信装置
CN201880025123.7A CN110521240B (zh) 2017-07-06 2018-06-29 无线通信方法和无线通信设备
AU2018297503A AU2018297503B2 (en) 2017-07-06 2018-06-29 Wireless communication method and wireless communication device
EP18828089.5A EP3651501B1 (en) 2017-07-06 2018-06-29 Wireless communication method and wireless communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710546292.2A CN109219109A (zh) 2017-07-06 2017-07-06 无线通信方法和无线通信设备
CN201710546292.2 2017-07-06

Publications (1)

Publication Number Publication Date
WO2019007262A1 true WO2019007262A1 (zh) 2019-01-10

Family

ID=64949703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093527 WO2019007262A1 (zh) 2017-07-06 2018-06-29 无线通信方法和无线通信设备

Country Status (6)

Country Link
US (1) US11277818B2 (zh)
EP (1) EP3651501B1 (zh)
JP (1) JP7131571B2 (zh)
KR (1) KR102586481B1 (zh)
CN (2) CN109219109A (zh)
WO (1) WO2019007262A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109219109A (zh) * 2017-07-06 2019-01-15 索尼公司 无线通信方法和无线通信设备
US11392365B2 (en) 2020-12-14 2022-07-19 International Business Machines Corporation Optimizing device update scheduling
CN116470956B (zh) * 2023-06-19 2023-10-13 成都川美新技术股份有限公司 一种非引导方式下时频信号回溯的信道跟踪方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105281864A (zh) * 2014-05-30 2016-01-27 华为技术有限公司 一种数据传输方法和装置
WO2016032304A1 (en) * 2014-08-29 2016-03-03 Samsung Electronics Co., Ltd. Method and apparatus for communicating using unlicensed bands in mobile communication system
CN105578573A (zh) * 2015-05-28 2016-05-11 宇龙计算机通信科技(深圳)有限公司 一种非授权频段信道占用时间的配置方法及装置

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370805C (zh) * 2005-05-23 2008-02-20 华为技术有限公司 广播电视业务的接收端与源端同步的实现方法及系统
CN1937615B (zh) * 2005-09-20 2012-01-25 株式会社Ntt都科摩 无线分布式网络中的媒体接入控制方法和装置
US8014359B2 (en) * 2006-10-27 2011-09-06 Interdigital Technology Corporation Method and apparatus for assigning radio resources and controlling transmission parameters on a random access channel
US9844014B2 (en) * 2010-06-11 2017-12-12 Sprint Spectrum L.P. Alternatives to satellite signals for synchronization in macro network
US9264978B2 (en) * 2010-06-29 2016-02-16 Lg Electronics Inc. Apparatus and method for transmiting and receiving system information in a wireless communication system
US8885560B2 (en) * 2011-06-27 2014-11-11 Telefonaktiebolaget L M Ericsson (Publ) Cellular communication system support for limited bandwidth communication devices
KR102053395B1 (ko) * 2012-07-05 2019-12-06 한국전자통신연구원 슬롯 사용 제어 장치 및 방법
MX347159B (es) * 2012-10-18 2017-04-18 Lg Electronics Inc Método y aparato para acceso a canal en sistema inalámbrico de red de área local.
US20140208349A1 (en) * 2013-01-21 2014-07-24 Wipro Limited Method and system for uninterrupted broadcast content provisioning
US20140334462A1 (en) * 2013-05-08 2014-11-13 Telefonaktiebolaget L M Ericsson (Publ) Methods, apparatuses and computer program products for determining a resource index
US9307427B2 (en) * 2013-07-22 2016-04-05 Qualcomm Incorporated Method and apparatus for use of a relay schemed to facilitate efficient broadcast communication in device to device environment
US9992034B2 (en) * 2014-03-13 2018-06-05 Hewlett Packard Enterprise Development Lp Component multicast protocol
KR102087665B1 (ko) * 2014-04-10 2020-03-11 삼성전자주식회사 셀룰러 무선 통신 시스템에서 비인가 대역 채널을 사용하는 방법 및 장치
US10937286B2 (en) * 2014-06-10 2021-03-02 Pb Inc. Radiobeacon data sharing by forwarding low energy transmissions to a cloud host
EP3169029B1 (en) * 2014-07-07 2019-04-24 LG Electronics Inc. Method and apparatus for transceiving data in wireless communication system
CN105684488B (zh) * 2014-07-31 2019-10-15 华为技术有限公司 一种数据传输方法和通信设备
WO2016048067A2 (en) * 2014-09-25 2016-03-31 Samsung Electronics Co., Ltd. Synchronization procedure and resource control method and apparatus for communication in d2d system
KR102253866B1 (ko) * 2014-11-07 2021-05-20 삼성전자주식회사 비인가 주파수 대역을 사용하는 이동통신 시스템에서의 통신 방법 및 이를 위한 장치
US20160135109A1 (en) * 2014-11-12 2016-05-12 Qualcomm Incorporated Opportunistic ioe message delivery via wan-triggered forwarding
JP6284199B2 (ja) * 2015-02-02 2018-02-28 日本電信電話株式会社 無線通信システムおよび無線通信制御方法
US10362569B2 (en) * 2015-02-16 2019-07-23 Lg Electronics Inc. Method and apparatus for allocating uplink resource in wireless communication system
CA2978473C (en) 2015-03-03 2021-02-23 Huawei Technologies Co., Ltd. Uplink data transmission method and apparatus
US10116360B2 (en) * 2015-04-23 2018-10-30 Newracom, Inc. Method and apparatus for uplink multi-user transmission in a high efficiency wireless LAN
US10785751B2 (en) * 2015-09-11 2020-09-22 Qualcomm Incorporated Techniques for contending for access to channels of a shared radio frequency spectrum band for broadcast/multicast transmissions
US9860067B2 (en) * 2015-10-29 2018-01-02 At&T Intellectual Property I, L.P. Cryptographically signing an access point device broadcast message
US20170135115A1 (en) * 2015-11-10 2017-05-11 Lg Electronics Inc. Method and apparatus for transmitting and receiving data for mobile terminal in wireless communication system
US9913249B2 (en) * 2015-12-09 2018-03-06 At&T Intellectual Property I, L.P. Method and system for selective paging of wireless devices using a cellular broadcast service
GB2552319B (en) * 2016-07-18 2020-09-02 Samsung Electronics Co Ltd Resource arrangement
CN106793000B (zh) * 2016-08-12 2019-02-12 展讯通信(上海)有限公司 系统消息的更新方法、系统消息的获取方法及装置
WO2018058543A1 (en) * 2016-09-30 2018-04-05 Lenovo Innovations Limited (Hong Kong) Retransmission indication
WO2018070355A1 (ja) * 2016-10-11 2018-04-19 京セラ株式会社 移動通信システム
GB2555142B (en) * 2016-10-21 2019-09-04 Canon Kk Enhanced management of ACs in multi-user EDCA transmission mode in wireless networks
KR20180049784A (ko) * 2016-11-03 2018-05-11 삼성전자주식회사 무선 이동 통신 시스템에서 보행자 단말(p-ue)의 전송 차별화 방법 및 절차
WO2018093169A1 (en) * 2016-11-17 2018-05-24 Samsung Electronics Co., Ltd. Method and apparatus for activating/deactivating cells with scalable transmission time intervals in wireless communication system using cell aggregation
US10051462B2 (en) * 2016-12-16 2018-08-14 T-Mobile Usa, Inc. Hybrid transport for installed service updates
CN108633105A (zh) * 2017-03-23 2018-10-09 索尼公司 用于无线通信的电子设备和方法
US10667314B2 (en) * 2017-03-30 2020-05-26 Lg Electronics Inc. Method and apparatus for transmitting and receiving a signal in a wireless communication system supporting a relay UE
CN116801407A (zh) * 2017-05-04 2023-09-22 皇家飞利浦有限公司 Ue组,ue组管理者ue和ue组成员ue
US11184874B2 (en) * 2017-06-15 2021-11-23 Lg Electronics Inc. Methods and devices for transmitting and receiving paging channel in wireless communication system
CN110636457B (zh) * 2017-06-16 2021-01-29 华为技术有限公司 一种通信方法及装置
CN109219109A (zh) * 2017-07-06 2019-01-15 索尼公司 无线通信方法和无线通信设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105281864A (zh) * 2014-05-30 2016-01-27 华为技术有限公司 一种数据传输方法和装置
WO2016032304A1 (en) * 2014-08-29 2016-03-03 Samsung Electronics Co., Ltd. Method and apparatus for communicating using unlicensed bands in mobile communication system
CN105578573A (zh) * 2015-05-28 2016-05-11 宇龙计算机通信科技(深圳)有限公司 一种非授权频段信道占用时间的配置方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Discussion on NoMA Study for Rel-15 SI", 3GPP TSG RAN WGI NR AD-HOC MEETING RI -1711470, 17 June 2017 (2017-06-17), XP051305603 *

Also Published As

Publication number Publication date
US20200120639A1 (en) 2020-04-16
CN110521240A (zh) 2019-11-29
CN110521240B (zh) 2021-10-08
JP2020526056A (ja) 2020-08-27
KR102586481B1 (ko) 2023-10-11
KR20200021533A (ko) 2020-02-28
CN109219109A (zh) 2019-01-15
US11277818B2 (en) 2022-03-15
EP3651501A1 (en) 2020-05-13
EP3651501A4 (en) 2020-06-17
EP3651501B1 (en) 2022-04-27
JP7131571B2 (ja) 2022-09-06
AU2018297503A8 (en) 2022-10-13
AU2018297503A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
US11546778B2 (en) Electronic device and method for wireless communication and computer-readable storage medium
US20230262771A1 (en) Electronic device for wireless communication system, method and storage medium
JP2023078319A (ja) 端末装置、無線通信装置、無線通信方法及びコンピュータプログラム
EP3941104A1 (en) Electronic device, wireless communication method, and computer readable storage medium
WO2018137492A1 (zh) 无线通信方法和无线通信设备
CA2955113A1 (en) Apparatus and method in wireless communication system
CA3003951A1 (en) Base station-side and user equipment-side apparatuses and methods, and wireless communication system
US20230345530A1 (en) Electronic device and method for use in radio communication, and computer-readable storage medium
US11690093B2 (en) Electronic device and method for wireless communication, and computer readable storage medium
JP7131573B2 (ja) 電子装置及び無線通信方法
CN110521240B (zh) 无线通信方法和无线通信设备
US11457367B2 (en) Electronic apparatus, information processing device, and information processing method
US10674515B2 (en) User equipment and base station in wireless communications system, and wireless communications method
WO2019154352A1 (zh) 电子装置、无线通信方法以及计算机可读介质
KR20220047971A (ko) 무선 통신을 위한 전자 디바이스 및 방법, 및 컴퓨터 판독가능 저장 매체
WO2019218985A1 (zh) 电子装置、无线通信方法和计算机可读介质
US20230345533A1 (en) Electronic device, wireless communication method, and non-transitory computer-readable storage medium
WO2021208417A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2020108370A1 (zh) 电子装置、无线通信方法和计算机可读介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019563400

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207003167

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018828089

Country of ref document: EP

Effective date: 20200206

ENP Entry into the national phase

Ref document number: 2018297503

Country of ref document: AU

Date of ref document: 20180629

Kind code of ref document: A