WO2021208417A1 - 电子设备、无线通信方法和计算机可读存储介质 - Google Patents

电子设备、无线通信方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2021208417A1
WO2021208417A1 PCT/CN2020/129263 CN2020129263W WO2021208417A1 WO 2021208417 A1 WO2021208417 A1 WO 2021208417A1 CN 2020129263 W CN2020129263 W CN 2020129263W WO 2021208417 A1 WO2021208417 A1 WO 2021208417A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
resource
user equipment
service data
information
Prior art date
Application number
PCT/CN2020/129263
Other languages
English (en)
French (fr)
Inventor
吴志坤
孙晨
Original Assignee
索尼集团公司
吴志坤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 吴志坤 filed Critical 索尼集团公司
Priority to CN202080097217.2A priority Critical patent/CN115136705A/zh
Publication of WO2021208417A1 publication Critical patent/WO2021208417A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies

Definitions

  • the embodiments of the present disclosure generally relate to the field of wireless communication, and specifically relate to electronic devices, wireless communication methods, and computer-readable storage media. More specifically, the present disclosure relates to an electronic device as a user equipment in a wireless communication system, an electronic device as a resource management device in a wireless communication system, and a wireless communication performed by a user equipment in a wireless communication system. Method, a wireless communication method executed by a resource management device in a wireless communication system, and a computer-readable storage medium.
  • the base station scheduling UE (User Equipment) mainly includes dynamic scheduling and semi-persistent scheduling (Semi-Persistent Scheduling, SPS).
  • SPS Semi-Persistent Scheduling
  • SR Scheduling Request
  • BSR Buffer Status Report
  • the base station can obtain the size and period of the UE’s service through observation and statistics, and then can schedule multiple uplink resources for the UE to send uplink data.
  • the time interval between different uplink resources can be set through RRC (Radio Resource Control, radio resource control) signaling to indicate.
  • RRC Radio Resource Control, radio resource control
  • This scheduling method is called semi-persistent scheduling. Since the size of the element indicating the time interval in the RRC signaling is limited, the number of time intervals that can be carried is limited.
  • the NR (New Radio) communication system provides communication support for more and more services
  • the diversity of transmission requirements for these services also poses certain challenges to the current NR communication system.
  • the Ultra-reliable and Low Latency Communications (uRLLC) service puts high demands on the delay and reliability of data transmission.
  • the UE needs to periodically transmit some control information in a uRLLC manner.
  • This type of transmission is usually uplink transmission, and the amount of data transmitted each time is small. Due to the limited time interval supported by the existing standards, the period for configuring the uplink resources will not match the actual period of the service, which will result in a larger transmission delay and a waste of resources.
  • the transmission frequency of some information of the UE is an integer but the transmission period is not an integer, and the time interval in RRC can only indicate a limited number of resource allocation periods. Therefore, the period of configuring the uplink resources may be different from the actual frequency of the service. Matching, which leads to a larger transmission delay, and at the same time causes a waste of resources.
  • the purpose of the present disclosure is to provide an electronic device, a wireless communication method, and a computer-readable storage medium to support more types of cycles, thereby reducing the transmission delay of periodic data, and using resources more effectively.
  • an electronic device including a processing circuit, configured to receive resource allocation information from a resource management device, the resource allocation information explicitly or implicitly indicating that the resource management device is The period during which the electronic device allocates resources or the frequency with which the resource management device allocates resources to the electronic device; and the period during which the resource management device allocates resources to the electronic device is determined according to the resource allocation information.
  • an electronic device including a processing circuit, configured to generate resource allocation information, the resource allocation information explicitly or implicitly instructing the electronic device to allocate resources for user equipment Or the frequency at which the electronic device allocates resources to the user equipment; and sending the resource allocation information to the user equipment.
  • a wireless communication method performed by an electronic device, including: receiving resource allocation information from a resource management device, the resource allocation information explicitly or implicitly indicating the resource management device The period during which the resource is allocated to the electronic device or the frequency at which the resource management device allocates the resource to the electronic device; and the period during which the resource management device allocates the resource to the electronic device is determined according to the resource allocation information.
  • a wireless communication method executed by an electronic device, including: generating resource allocation information, the resource allocation information explicitly or implicitly instructing the electronic device to allocate resources for a user equipment Or the frequency at which the electronic device allocates resources to the user equipment; and sending the resource allocation information to the user equipment.
  • a computer-readable storage medium including executable computer instructions that, when executed by a computer, cause the computer to execute the wireless communication method according to the present disclosure.
  • a computer program that, when executed by a computer, causes the computer to execute the wireless communication method according to the present disclosure.
  • the resource allocation information may explicitly or implicitly indicate the period or frequency at which the resource management device allocates resources to the electronic device.
  • resource allocation can support cycle and frequency. Therefore, the cycle at which the electronic device allocates resources matches the actual cycle or frequency of the service, thereby reducing the transmission delay of periodic services and improving resource utilization.
  • FIG. 1 is a block diagram showing an example of the configuration of an electronic device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram showing the content of service flow information according to an embodiment of the present disclosure
  • FIG. 3 is a signaling flowchart showing a user equipment requesting uplink resources and sending data according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing the content of a first cache status report according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram showing the content of a first cache status report according to an embodiment of the present disclosure
  • Fig. 6 is a signaling flowchart showing a user equipment requesting uplink resources and sending data according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram showing a situation where the user equipment cannot select a suitable resource to send data
  • FIG. 8 is a schematic diagram showing resources to be occupied by user equipment broadcasting in advance according to an embodiment of the present disclosure
  • FIG. 9 is a block diagram showing an example of the configuration of an electronic device according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart showing a wireless communication method performed by an electronic device according to an embodiment of the present disclosure
  • FIG. 11 is a flowchart showing a wireless communication method performed by an electronic device according to an embodiment of the present disclosure
  • FIG. 12 is a flowchart showing a wireless communication method performed by an electronic device according to an embodiment of the present disclosure
  • FIG. 13 is a flowchart showing a wireless communication method performed by an electronic device according to another embodiment of the present disclosure.
  • FIG. 14 is a flowchart showing a wireless communication method performed by an electronic device according to another embodiment of the present disclosure.
  • 15 is a flowchart showing a wireless communication method performed by an electronic device according to another embodiment of the present disclosure.
  • Fig. 16 is a block diagram showing a first example of a schematic configuration of an eNB (Evolved Node B);
  • FIG. 17 is a block diagram showing a second example of the schematic configuration of an eNB
  • FIG. 18 is a block diagram showing an example of a schematic configuration of a smart phone.
  • FIG. 19 is a block diagram showing an example of a schematic configuration of a car navigation device.
  • Example embodiments are provided so that this disclosure will be thorough and will fully convey its scope to those skilled in the art. Numerous specific details such as examples of specific components, devices, and methods are described to provide a detailed understanding of the embodiments of the present disclosure. It will be obvious to those skilled in the art that specific details do not need to be used, the example embodiments can be implemented in many different forms, and none of them should be construed as limiting the scope of the present disclosure. In some example embodiments, well-known processes, well-known structures, and well-known technologies are not described in detail.
  • the frequency of sending service data is 60 Hz (that is, the period of sending service data is 16.67 ms), and existing standards support resource allocation periods of 10 ms and 20 ms.
  • the resource management device sets the resource allocation period to 10 ms. Then, the data arrival time, the time domain location where the allocated resources are located, and the data transmission delay are shown in the following table.
  • the data arrives at 16.67ms, but because the allocated resources are at the positions of 10ms and 20ms, there is no data sent at the position of 10ms, which causes a waste of resources and is sent at the position of 20ms.
  • the data arrived at 16.67ms, thus causing a delay of 3.33ms.
  • the data arrives at 33.34ms, but because the allocated resources are at the positions of 30ms and 40ms, no data is sent at the 30ms position, which causes a waste of resources, and it is sent at the 33.34th position at the 40ms position.
  • the data arrived in ms, which caused a delay of 6.66 ms.
  • the resource allocation period does not match the actual period of the service, resulting in a waste of resources, thereby reducing resource utilization and increasing the delay of data transmission. .
  • the present disclosure proposes an electronic device in a wireless communication system, a wireless communication method executed by the electronic device in the wireless communication system, and a computer-readable storage medium for such a scenario to support more kinds of cycles, thereby reducing the periodicity Data transmission time delay, and more effective use of resources.
  • the resource management device may be a network side device, which performs resource management on user equipment within a coverage area.
  • the resource management device may also be a user equipment, which performs resource management on other user equipment.
  • the resource management device may be a cluster head device of a cluster composed of multiple user devices, and perform resource management on other user devices in the cluster.
  • the wireless communication system according to the present disclosure may be an NR communication system.
  • the network side device can be any type of TRP (Transmit and Receive Port), or a base station device, such as an eNB, or a gNB (base station in the 5th generation communication system) .
  • TRP Transmit and Receive Port
  • a base station device such as an eNB, or a gNB (base station in the 5th generation communication system) .
  • the user equipment may be a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device) ).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • FIG. 1 is a block diagram showing an example of the configuration of an electronic device 100 according to an embodiment of the present disclosure.
  • the electronic device 100 here can be used as a user equipment in a wireless communication system.
  • the electronic device 100 may include a determining unit 130 and a communication unit 140.
  • each unit of the electronic device 100 may be included in the processing circuit.
  • the electronic device 100 may include one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different titles may be implemented by the same physical entity.
  • the electronic device 100 may receive resource allocation information from the resource management device through the communication unit 140, and the resource allocation information explicitly or implicitly indicates the period or the resource management device for the resource management device to allocate resources to the electronic device 100 The frequency at which resources are allocated to the electronic device 100.
  • the resource management device is used to manage the resources of the electronic device 100, including allocating resources for sending data to the electronic device 100.
  • the resource management device may be, for example, a network side device or other user equipment.
  • the determining unit 130 may determine a period during which the resource management device allocates resources to the electronic device 100 according to the resource allocation information.
  • the resource allocation information may explicitly or implicitly indicate the period or frequency at which the resource management device allocates resources to the electronic device 100.
  • resource allocation can support cycle and frequency. Therefore, the cycle at which the electronic device 100 allocates resources and the actual cycle or frequency of the service can match each other, thereby reducing the transmission delay of periodic services and improving resource utilization.
  • resource allocation information implicitly indicates the period or frequency of resource allocation for the electronic device 100 by the resource management device.
  • the electronic device 100 may include a service flow information generating unit 110 and a decoding unit 120.
  • the service flow information generating unit 110 is configured to generate service flow information of the electronic device 100, and the service flow information includes periodic information of the service data sent by the electronic device 100.
  • the electronic device 100 may send the service flow information generated by the service flow generating unit 110 to the resource management device through the communication unit 140.
  • the decoding unit 120 may descramble a part of the resource allocation information, so as to obtain the resource allocation information when the descrambling is successful.
  • the determining unit 130 may generate the unit 110 according to the service flow information.
  • the periodic information included in the generated service flow information determines the period or frequency at which the resource management device allocates resources to the electronic device 100.
  • the electronic device 100 can send periodic information of service data to the resource management device, and when the resource allocation information is successfully descrambled using a specific RNTI, the resource management can be determined
  • the period or frequency at which the device allocates resources to the electronic device 100 is determined according to the period information. That is, the period or frequency at which the resource management device allocates resources to the electronic device 100 is the period or frequency included in the periodic information. That is, the electronic device 100 does not need to receive from the resource management device the period or frequency at which the resource management device allocates resources to the electronic device 100, that is, the resource management device implicitly indicates the period or frequency at which resources are allocated to the electronic device 100.
  • the periodic information reported by the electronic device 100 can support more types of periods or frequencies, the period of the resource allocation of the electronic device 100 matches the actual period or frequency of the service, thereby reducing the transmission of periodic services. Delay, improve resource utilization.
  • the service flow information generating unit 110 may generate service flow information, and may send the service flow information to the resource management device through the communication unit 140.
  • the electronic device 100 may further include a scheduling request information generating unit 150 for generating scheduling request information.
  • the scheduling request information generating unit 150 may generate scheduling request information, and the electronic device 100 may send the generated schedule to the resource management device through the communication unit 140 Request information.
  • the scheduling request information can be used to request resources for sending service flow information.
  • the electronic device 100 may receive, from the resource management device through the communication unit 140, the resource allocated by the resource management device in response to the scheduling request information for transmitting service flow information. Next, the electronic device 100 can use the resource for sending the service flow information to send the service flow information to the resource management device.
  • the scheduling request information is sent to the resource management device only when there is service data to be sent in the logical channel.
  • the resource management device can only obtain periodic information of the service data sent by the electronic device based on observation and statistics. If the resource management device does not receive the request sent by the electronic device, the electronic device needs to repeatedly send the scheduling request until the resource management device allocates the corresponding resource, which causes a long time delay.
  • scheduling request information and service flow information can be sent to the resource management device when there is no service data to be sent in the logical channel.
  • the electronic device 100 can actively report the periodic information of the service data it sends. In this way, before there is service data to be sent in the logical channel, the resource management device can allocate resources to the electronic device 100 according to the periodic information of the service data sent by the electronic device 100, thereby reducing the time delay.
  • the electronic device 100 may use MAC (Media Access Control, Media Access Control) CE (Control Element) to carry service flow information.
  • MAC Media Access Control, Media Access Control
  • CE Control Element
  • the electronic device 100 may carry service flow information in a BSR (Buffer Status Report, Buffer Status Report) in the MAC CE.
  • BSR Buffer Status Report, Buffer Status Report
  • the periodicity information may indicate the period of the service data sent by the electronic device 100, for example, may include the period of the service data sent by the electronic device 100 or the frequency of the service data sent by the electronic device 100.
  • the period may be the reciprocal of the frequency, so the period of sending the service data can be calculated according to the frequency of sending the service data.
  • the electronic device 100 can select the parameter that is an integer from the period and the frequency, and use the parameter as periodic information. For example, assuming that the period of a service is 33.333 ms and the frequency is 3 Hz, the electronic device 100 includes the frequency of 3 Hz as periodic information in the service flow information.
  • the electronic device 100 may support any integer period in the range of 1-1023 ms, or any integer frequency in the range of 1-1023 Hz as periodic information.
  • the service flow information may further include indication information indicating whether the periodic information is a period or a frequency. For example, 1 bit may be used to represent the indication information. When the indication information is 1, it means that the periodic information is a period, and when the indication information is 0, it means that the periodic information is a frequency.
  • the service flow information may also include size information of cached service data.
  • the size of the buffered service data may be zero.
  • the electronic device 100 may further include an estimation unit 160 for estimating the arrival time of service data.
  • the electronic device 100 can estimate the time when the service data is about to arrive based on the size and period of the service data to be sent.
  • the service flow information may also include the arrival time information of the service data predicted by the estimating unit 160.
  • the service flow information may include periodic information of the service data sent by the electronic device 100.
  • the service flow information further includes at least one of the following: indication information indicating whether the periodic information is a period or a frequency, information about the size of the buffered service data, and information about the expected arrival time of the service data.
  • FIG. 2 is a schematic diagram showing the content of service flow information according to an embodiment of the present disclosure.
  • the 1-bit indication information indicates whether the service flow information includes period or frequency
  • the first part of the 7-bit frequency/period indicates the content of the first part of the frequency or period
  • the 8-bit frequency/period The second part represents the second part of the frequency or period, that is, up to 15 bits can be used to represent the frequency or period
  • the 4-bit arrival time information represents the arrival time information of the service data estimated by the estimating unit 160
  • the 4-bit size information represents The size of the cached business data.
  • the electronic device 100 may receive resource allocation information from a resource management device through DCI (Downlink Control Information) and RRC.
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • the DCI sent by the resource management device includes at least the frequency domain resources allocated for the electronic device 100 to send service data in each cycle and the first transmission service data allocated for the electronic device 100. Time domain resources.
  • the resource management device may also send to the electronic device 100 RRC signaling including periodic information for allocating resources to the electronic device 100. In other words, the resource management device uses an explicit way to indicate the period of resource allocation.
  • the resource management device may use the RNTI corresponding to the SPS scheduling mode to scramble the DCI, and the electronic device 100 may use the corresponding RNTI to descramble the DCI to determine that the scheduling mode is SPS and obtain the content in the DCI.
  • the electronic device 100 can determine to send the service data in each cycle through the frequency domain resources included in the DCI for sending service data in each cycle, the time domain resources for sending the service data for the first time, and the periodic information included in the RRC signaling. H.
  • the RRC signaling sent by the resource management device may not include periodic information for allocating resources to the electronic device 100.
  • the resource management device uses an implicit way to indicate the period of resource allocation.
  • the resource management device can use a specific RNTI to scramble the DCI.
  • This specific RNTI is a newly set RNTI, which is different from the RNTI corresponding to the SPS scheduling mode in the existing scheme. In other words, this specific RNTI corresponds to the resource allocation information in the SPS scheduling mode when the RRC signaling does not include periodic information.
  • the electronic device 100 may receive RRC signaling that includes periodic information that the resource management device allocates resources to the electronic device 100, or it may receive the electronic device 100 that does not include the resource management device.
  • RRC signaling for periodic information allocation of resources. Therefore, after the electronic device 100 receives the resource allocation information, it can use the RNTI (the second RNTI in Table 2) pair corresponding to the resource allocation information in the SPS scheduling mode when the RRC signaling includes periodic information.
  • the resource allocation information is descrambled, and the RNTI (the third RNTI in Table 2) corresponding to the resource allocation information in the SPS scheduling mode when the RRC signaling does not include periodic information can also be used to allocate the resource Information is descrambled.
  • the electronic device 100 may perform the descrambling of the resource allocation information according to the information included in the RRC signaling.
  • Periodic information determines the period for the resource management device to allocate resources for it; the electronic device 100 successfully descrambles the resource allocation information by using the RNTI corresponding to the resource allocation information in the case where periodic information is not included in the RRC signaling
  • the electronic device 100 may determine the period for the resource management device to allocate resources to it according to the periodic information included in the service flow information.
  • the RNTI for scrambling resource allocation information may have the following three types:
  • the first type of RNTI and the second type of RNTI are RNTIs in the existing scheme
  • the third type of RNTI is a newly added RNTI in the present disclosure, which is used for SPS scheduling mode in which RRC signaling does not include periodicity.
  • the resource allocation information is scrambled and descrambled.
  • the number of supported periods is limited.
  • the RRC signaling since the resources indicating the periodic information in the RRC signaling are limited and can only indicate the period of resource allocation, the number of supported periods is limited.
  • the RRC signaling does not include periodic information, since the period of resource allocation can be implicitly indicated, a large number of periods can be supported. That is, the number of cycles supported in the case where the periodic information is not included in the RRC signaling is different from the number of cycles supported in the case where the periodic information is included in the RRC signaling. More specifically, the number of cycles supported in the case where the periodic information is not included in the RRC signaling is greater than the number of cycles supported in the case where the periodic information is included in the RRC signaling.
  • the resource allocation information explicitly indicates the period during which the resource management device allocates resources to the electronic device 100 or the frequency at which the resource management device allocates resources to the electronic device.
  • the resource allocation information may include a period in which the resource management device allocates resources to the electronic device 100 or a frequency in which the resource management device allocates resources to the electronic device 100.
  • the electronic device 100 may receive such resource allocation information through RRC signaling. That is, the resource allocation information received by the electronic device 100 may include resource allocation information carried by RRC and resource allocation information carried by DCI.
  • DCI includes at least frequency domain resources allocated to the electronic device 100 to send service data in each cycle and time domain resources allocated to the electronic device 100 to send service data for the first time
  • RRC includes at least the resource management device being the electronic device 100 The period of allocating resources or the frequency of allocating resources for the electronic device 100 by the resource management device.
  • the electronic device 100 may further include a storage unit 180 for storing a resource allocation list.
  • the resource allocation list includes the period and/or the resource allocation period supported by the resource management device for the electronic device 100 A list of frequencies for allocating resources to the electronic device 100.
  • the determining unit 130 may determine the period or frequency at which the resource management device allocates resources to the electronic device 100 according to the resource allocation list and the resource allocation information.
  • the resource allocation information may include an identification of the period or frequency at which the resource management device allocates resources to the electronic device 100
  • the resource allocation list may include the period and frequency of resource allocation for the electronic device 100 supported by the resource management device. /Or the mapping relationship between each frequency and the identifier for allocating resources to the electronic device 100.
  • the determining unit 130 can look up the resource allocation list according to the identifier included in the resource allocation information to determine the period or frequency at which the resource management device allocates resources to the electronic device 100.
  • the determining unit 130 may determine that the resource management device is an electronic device
  • the frequency at which 100 resources are allocated is 60 Hz.
  • the support period and frequency of the resource allocation list are taken as an example for description, and the resource allocation list may also only include frequencies.
  • the resource allocation information may also include: indication information indicating that the resource allocation information includes a period during which the resource management device allocates resources to the electronic device 100 or the frequency at which the resource management device allocates resources to the electronic device 100.
  • the resource allocation information may include 1-bit indication information. When the indication information is 0, it means that the resource allocation information includes a period, and when the indication information is 1, it means that the resource allocation information includes a frequency.
  • the resource allocation information may include indication information and an identification of period or frequency.
  • the resource allocation list may include various cycles supported by the resource management device for allocating resources to the electronic device 100 and/or mapping relationships between frequencies and identifications for allocating resources to the electronic device 100.
  • the determining unit 130 can determine whether the resource management device allocates resources in a periodic or frequency manner according to the instruction information, and then look up the resource allocation list according to the identifier included in the resource allocation information to determine the resource management device allocates resources to the electronic device 100 Period or frequency.
  • the determining unit 130 may determine that the period for the resource management device to allocate resources to the electronic device 100 is 20 ms.
  • the resource allocation information may not include the above-mentioned indication information.
  • the electronic device 100 may receive such a resource allocation list from the resource management device through the communication unit 140.
  • the electronic device 100 may receive such a resource allocation list from the resource management device through RRC signaling.
  • the electronic device 100 and the resource management device may also pre-configure such a resource allocation list.
  • the resource allocation information when the resource allocation information explicitly indicates the period or frequency at which the resource management device allocates resources to the electronic device 100, due to the manner in which the resource allocation information supports frequency, some transmissions can be supported.
  • the frequency is an integer and the transmission period is not an integer, the frequency of resource allocation matches the frequency of the electronic device 100 sending service data, which reduces data transmission delay and improves resource utilization.
  • the resource allocation information explicitly or implicitly indicates the period or frequency at which the resource management device allocates resources to the electronic device 100 is described in detail above.
  • the determining unit 130 also needs to allocate resources to the electronic device 100 according to the resource management device.
  • the frequency determines the period in which the resource management device allocates resources to the electronic device 100.
  • the determining unit 130 may also determine the resource for the electronic device 100 to send service data in each period according to the resource allocation information and the period during which the resource management device allocates resources to the electronic device 100.
  • the resource allocation information may include frequency domain resources for the electronic device 100 to send service data in each cycle and time domain resources for the electronic device 100 to send service data for the first time. Therefore, the determining unit 130 may determine the frequency domain resources in each cycle according to the resource allocation information. Frequency domain resources for periodically sending service data and time domain resources for sending service data for the first time.
  • the determining unit 130 may determine the time domain resource for sending the service data in each period according to the time domain resource for sending the service data for the first time and the period during which the resource management device allocates resources to the electronic device 100.
  • the determining unit 130 can determine the time domain resource and the frequency domain resource for the electronic device 100 to send service data in each cycle.
  • the determining unit 130 may determine the period of sending service data in each period according to the following formula: Time domain resources:
  • tn represents the time domain resource for sending service data in the nth (n is a positive integer) cycle, in ms
  • t1 represents the time domain resource for sending service data for the first time, in ms, which can be obtained from resource allocation information.
  • T represents the period for the resource management device to allocate resources to the electronic device 100, and the unit is ms.
  • the period calculated from the frequency may not be an integer multiple of the minimum unit of time domain resources allocated by the resource management device. For example, if the frequency at which the resource management device allocates resources to the electronic device 100 is 60 GHz, the period of time that the resource management device allocates resources to the electronic device 100 calculated according to this frequency is 16.666 ms, and the resource management device allocates the smallest unit of time domain resources It is 1ms, so 16.666ms is not an integer multiple of 1ms.
  • the determining unit 130 may adjust the time domain resources for transmitting service data in each period to the minimum unit. Integer multiples.
  • the determining unit 130 may determine the time to transmit the service data in each cycle according to the time domain resource for first transmitting the service data and the cycle of the resource allocation, and adjust the time to be by rounding up the time. Integer multiples of the smallest unit.
  • the determining unit 130 may determine the time domain resource for sending service data in each cycle according to the following formula:
  • tn represents the time domain resource for sending service data in the nth (n is a positive integer) cycle, in ms
  • t1 represents the time domain resource for sending service data for the first time, in ms, which can be obtained from resource allocation information.
  • f represents the frequency at which the resource management device allocates resources to the electronic device 100, and the unit is GHz. 1000/f represents the period for the resource management device to allocate resources to the electronic device 100, and the unit is ms.
  • cell represents the rounding up operation.
  • t1 is an integer, the above formula can also be written as:
  • t1+1000/f ⁇ (n-1) indicates that the determining unit 130 determines the time to send the service data in each cycle according to the time domain resource for first sending the service data and the cycle of allocating resources, and the determining unit 130 increases the time by Round to adjust the time to an integer multiple of the smallest unit.
  • t1 1ms
  • t2 18ms
  • t3 35ms
  • t4 51ms, and so on.
  • the determining unit 130 may first determine the time to send the service data in each cycle according to the time domain resource for first sending the service data and the cycle of the resource allocation, and then adjust the time to the smallest unit. Integer multiples.
  • the resources allocated by the resource management device to the electronic device 100 are not strictly periodic resources, and may be slightly deviated. For example, in the above example, the interval between t1 and t2 is 17ms, the interval between t2 and t3 is 17ms, and the interval between t3 and t4 is 16ms.
  • the determining unit 130 may also adjust the period to an integer multiple of the minimum unit by rounding up the period of the allocated resource, and then determine the time domain based on the time domain resource of the first transmission of service data and the adjusted period. Time domain resources for sending service data in each cycle.
  • the determining unit 130 may determine the time domain resource for sending service data in each cycle according to the following formula:
  • tn represents the time domain resource for sending service data in the nth (n is a positive integer) cycle, in ms
  • t1 represents the time domain resource for sending service data for the first time, in ms, which can be obtained from the resource allocation information.
  • f represents the frequency at which the resource management device allocates resources to the electronic device 100, and the unit is GHz. 1000/f represents the period for the resource management device to allocate resources to the electronic device 100, and the unit is ms.
  • cell represents the rounding up operation.
  • cell(1000/f) represents the period obtained by the determining unit 130 by rounding up the period of the allocated resources, which is an integer multiple of the smallest unit, and then the determining unit 130 is based on the time domain resources of the first transmission of service data and The adjusted period determines the time domain resources for sending service data in each period.
  • the determining unit 130 since the determining unit 130 first adjusts the period of resource allocation to an integer multiple of the minimum unit, and then calculates the time domain resources for sending service data in each period, the resources allocated by the resource management device to the electronic device 100 are strictly periodical. Sexual resources.
  • the electronic device 100 can agree with the resource management device that the service will be sent in each period.
  • the time domain resource of the data is adjusted to an integer multiple of the minimum unit of time domain resource allocation, so that the resource allocated to the electronic device 100 determined by the electronic device 100 is consistent with the resource allocated to the electronic device 100 determined by the resource management device. In this way, the electronic device 100 can also determine the resources allocated to it in a manner consistent with the resource management device.
  • the electronic device 100 may further include a data generating unit 170 for generating service data to be sent. Further, when there is service data to be sent in the logical channel, the electronic device 100 may send the service data through the communication unit 140 according to the resource determined by the determining unit 130 for the electronic device 100 to send the service data in each cycle.
  • Fig. 3 is a signaling flowchart showing a user equipment requesting uplink resources and sending data according to an embodiment of the present disclosure.
  • the UE may be implemented by the electronic device 100.
  • step S301 when the service data has not yet reached the logical channel, the UE sends scheduling request information to the resource management device.
  • step S302 the resource management device may allocate uplink resources for sending service flow information to the UE.
  • step S303 the UE uses the uplink resources allocated by the resource management device to send service flow information.
  • step S304 the resource management device allocates resources for sending uplink data to the UE, for example, through resource allocation information, so that the UE can determine the resources for sending service data in each cycle through the embodiments of the present disclosure.
  • step S305 when the service data reaches the logical channel, the UE sends uplink data to the resource management device according to the determined resources for sending the service data in each cycle.
  • FIG. 3 shows a situation where the UE sends uplink data to the resource management device, in fact, the UE may also send uplink data to other devices.
  • the electronic device 100 may also send a BSR (hereinafter referred to as the first BSR) to the resource management device to notify the resource management device of the electronic
  • the device 100 expects to apply for resources in advance for data that has not yet reached the logical channel.
  • FIG. 4 is a schematic diagram showing the content of a first cache status report according to an embodiment of the present disclosure.
  • Figure 4 shows a short BSR (that is, there is only one logical channel).
  • the logical channel ID indicates the identification of the logical channel targeted by the BSR
  • the buffer size indicates the size of the buffered service data. Since the service data has not yet reached the logical channel, it can be 0 here.
  • FIG. 5 is a schematic diagram showing the content of a first cache status report according to an embodiment of the present disclosure.
  • Figure 5 shows a long BSR (that is, there are multiple logical channels).
  • LCG 0 -LCG 7 respectively indicate whether there is data transmission in the corresponding logical channel among the 8 logical channels.
  • Buffer size 1, buffer size 2, ... Buffer size m represents the size of the buffer data in each logical channel with data transmission, and m represents the number of 1 in LCG 0 -LCG 7.
  • buffer size 1 represents the buffered data in the logical channel numbered 0
  • Buffer size 2 represents the size of the buffered data in the logical channel numbered 1
  • buffer size 3 represents the size of the buffered data in the logical channel numbered 2
  • buffer size 4 represents the buffered data in the logical channel numbered 5
  • all buffer sizes can be set to 0 and LCG 0 -LCG 7 can also be set to 0, or all buffer sizes can be set to 0 and LCG 0 -LCG 7 can be set to 1.
  • the resource management device when the resource management device receives the first BSR shown in FIG. 4 or FIG. Request resources. In this case, the resource management device may continue to allocate the uplink resource for sending the second BSR to the electronic device 100.
  • the second BSR here may include, for example, the service flow information described in the foregoing, that is, the example shown in FIG. 2.
  • Fig. 6 is a signaling flowchart showing a user equipment requesting uplink resources and sending data according to an embodiment of the present disclosure.
  • the UE may be implemented by the electronic device 100.
  • step S601 when the service data has not reached the logical channel, the UE sends scheduling request information to the resource management device.
  • step S602 the resource management device allocates resources for sending the first buffer status report to the UE.
  • step S603 the UE uses the resources allocated by the resource management device to send a first buffer status report to the resource management device (for example, the example shown in FIG. 4 or FIG. 5).
  • the resource management device allocates resources for sending the second buffer status report to the UE.
  • step S605 the UE sends a second buffer status report to the resource management device (for example, the example shown in FIG. 2).
  • the resource management device allocates resources for sending uplink data to the UE.
  • the UE uses the resources allocated by the resource management device to send uplink data.
  • FIG. 6 shows a situation where the UE sends uplink data to the resource management device, in fact, the UE may also send uplink data to other devices.
  • the UE may first send the first buffer status report to the resource management device, and then send the second buffer status report including service flow information to the resource management device.
  • the first cache status report is compatible with the cache status report in the existing standard, so periodic information reporting can be implemented with minor changes to the existing standard.
  • the above describes the embodiment in which the electronic device 100 applies for resources for sending service data in advance when there is a resource management device in the wireless communication network.
  • the following describes an embodiment in which the electronic device 100 applies for resources for sending service data in advance when there is no resource management device in the wireless communication network.
  • V2X vehicle and other devices
  • mode 2 mode 2
  • a vehicle as a user equipment needs to send service data
  • it can broadcast the occupation of subsequent resources on a specific time-frequency resource, and then use the pre-occupied resource to send the service data within a predetermined time frame.
  • This occupancy can include single occupancy or periodic occupancy.
  • the predetermined time range is determined according to the constraints on the delay, so the delay requirements are compared. High, that is, when the predetermined time range is relatively small, the vehicle may not be able to select appropriate resources.
  • FIG. 7 is a schematic diagram showing a situation where the user equipment cannot select a suitable resource to send data.
  • the service data that UE1 needs to send reaches the logical channel, and k represents a predetermined time range, that is, UE1 must send the service data before time t1+k.
  • k is relatively small, such as 1 ms, UE1 may not have time to select a suitable resource.
  • the time-frequency resource selected by UE1 exceeds time t1+k, and therefore cannot meet the time delay requirement.
  • the electronic device 100 may send occupancy information of the resource used for sending the service data before the service data arrives in the logical channel, and the occupancy information may include the time domain and frequency domain location of the resource.
  • the electronic device 100 may broadcast such occupancy information.
  • the occupation information may also include periodic information of resource occupation, for example, may include the period of resource occupation or the frequency of resource occupation.
  • the electronic device 100 may use the resource included in the occupancy information to transmit the service data.
  • Fig. 8 is a schematic diagram showing a user equipment broadcasting in advance a resource to be occupied according to an embodiment of the present disclosure.
  • the UE1 may be implemented by the electronic device 100.
  • time t1 is the time when the service data arrives on the logical channel.
  • UE1 sends occupancy signaling, which may include the location of the time-frequency resource selected by UE1.
  • the UE1 uses the selected time-frequency resource to send service data.
  • the electronic device 100 can broadcast resource occupancy information before the service data reaches the logical channel, the resource can be occupied in advance, thereby ensuring that the service data is sent within a predetermined time range to meet the time delay. Require.
  • an electronic device that needs to send data can send data to the resource management device when there is no service data to be sent in the logical channel. Periodic information of the business data it sends. In this way, before there is service data to be sent in the logical channel, the resource management device can allocate resources to the electronic device according to the periodic information of the service data sent by the electronic device, thereby reducing the time delay.
  • the electronic device that needs to send data can broadcast resource occupancy information before the service data reaches the logical channel, thereby ensuring that it is within a predetermined time range. Send business data to meet the delay requirements.
  • FIG. 9 is a block diagram showing the structure of an electronic device 900 serving as a resource management device in a wireless communication system according to an embodiment of the present disclosure.
  • the electronic device 900 is an electronic device capable of performing a resource management function.
  • the electronic device 900 may be a network-side device, which manages the resources of the user equipment within its coverage.
  • the electronic device 900 may also be a user equipment, which manages resources of other user equipment.
  • the electronic device 900 may be a cluster head device of a cluster composed of multiple user devices, and manage the resources of other user devices in the cluster.
  • the electronic device 900 may include a communication unit 930 and a generating unit 940.
  • each unit of the electronic device 900 may be included in the processing circuit.
  • the electronic device 900 may include one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different titles may be implemented by the same physical entity.
  • the generating unit 940 may generate resource allocation information, which explicitly or implicitly indicates the period of the electronic device 900 allocating resources to the user equipment or the frequency of the electronic device 900 allocating resources to the user equipment.
  • the electronic device 900 may carry resource allocation information through DCI and RRC.
  • the electronic device 900 may send resource allocation information to the user equipment through the communication unit 930.
  • the resource allocation information implicitly indicates the period of the electronic device 900 allocating resources to the user equipment or the frequency of the electronic device 900 allocating resources to the user equipment.
  • the electronic device 900 may further include a determination unit 910, an allocation unit 920, and an encoding unit 950.
  • the electronic device 900 may receive service flow information of the user equipment from the user equipment through the communication unit 930, and the service flow information includes periodic information of the service data sent by the user equipment.
  • the determining unit 910 may determine the period or frequency of allocating resources for the user equipment according to the periodicity information. Specifically, the determining unit 910 may determine the period or frequency included in the periodicity information as the period or frequency for allocating resources to the user equipment.
  • the allocating unit 920 may allocate resources to the user equipment according to the period determined by the determining unit 910.
  • the encoding unit 950 may encode, for example, scramble, the resource allocation information generated by the generating unit 940.
  • the encoding unit 950 may use the resource allocation information corresponding to the resource allocation information in the SPS scheduling mode when the RRC signaling does not include periodic information.
  • the RNTI ie, a specific RNTI
  • the encoding unit 950 can use the RNTI corresponding to the resource allocation information in the case where the RRC signaling includes periodic information in the SPS scheduling mode.
  • the resource allocation information is scrambled.
  • the electronic device 900 can determine the period or frequency of allocating resources for the user equipment according to the period or frequency of sending service data reported by the user equipment. Further, the electronic device 900 may indicate the period or frequency of allocating resources for the user equipment in an implicit manner. In this way, since the periodic information reported by the user equipment can support more types of periods, the period of resource allocation matches the actual period or frequency of the user equipment’s service, thereby reducing the transmission delay of the periodic service. Improve resource utilization.
  • the resource allocation information (DCI) generated by the generating unit 940 may be It includes frequency domain resources allocated to the user equipment for sending service data in each period and time domain resources allocated for the user equipment to send service data for the first time, and the electronic device 900 does not need to send periodic information about allocating resources for the user equipment to the user equipment.
  • the resource allocation information (DCI) generated by the generating unit 940 may include the allocation for the user equipment The frequency domain resources for sending service data in each cycle and the time domain resources for sending service data for the first time allocated to the user equipment, and the resource allocation information (RRC) also includes periodic information for allocating resources to the user equipment.
  • the electronic device 900 may also receive scheduling request information from the user equipment through the communication unit 930. Further, the allocation unit 920 may allocate resources for sending service flow information to the user equipment in response to the scheduling request information.
  • service flow information can be carried by MAC CE.
  • the service flow information can be included in the BSR in the MAC CE.
  • the periodicity information may include the period of the service data sent by the user equipment or the frequency of the service data sent by the user equipment.
  • the determining unit 910 may determine the period of the service data sent by the user equipment or the frequency of the service data sent by the user equipment according to the periodic information included in the service flow information. Further, in a case where the periodicity information includes the frequency of the service data sent by the user equipment, the determining unit 910 may determine the period according to the frequency, for example, the period according to the reciprocal of the frequency.
  • the service flow information may further include at least one of the following: indication information indicating whether the periodic information is a period or a frequency, information about the size of the service data buffered by the user equipment, and information about the service data expected by the user equipment. Arrival time information.
  • the determining unit 910 may determine the period of the service data sent by the user equipment according to the indication information and the periodic information, and the allocating unit 920 may allocate resources to the user equipment according to the estimated arrival time information of the service data of the user equipment.
  • the electronic device 900 when the electronic device 900 receives the first BSR as shown in FIG. 4 or FIG. 5, the electronic device 900 may also allocate uplink resources for sending the second BSR to the user equipment, and pass The second BSR obtains service flow information.
  • the resource allocation information implicitly indicates the period of the electronic device 900 allocating resources to the user equipment or the frequency of the electronic device 900 allocating resources to the user equipment.
  • the resource allocation information generated by the generating unit 940 includes a period during which the electronic device 900 allocates resources to the user equipment or the frequency at which the electronic device 900 allocates resources to the user equipment.
  • the resource allocation information may include an identification of the period or frequency at which the electronic device 900 allocates resources to the user equipment.
  • the electronic device 900 may further include a generating unit 960 for generating a resource allocation list, and the resource allocation list includes a list of periods and/or frequencies supported by the electronic device 900 for allocating resources to the user equipment.
  • the resource allocation list may include the mapping relationship between the list of each period and/or each frequency supported by the electronic device 900 for allocating resources to the user equipment and the identifier of each period or each frequency.
  • the electronic device 900 may send the resource allocation list to the user equipment through the communication unit 930.
  • the electronic device 900 may carry such a resource allocation list through RRC signaling.
  • the electronic device 900 and the user equipment may also pre-configure such a resource allocation list.
  • the resource allocation information generated by the generating unit 960 may further include: indication information indicating that the resource allocation information includes the period of the electronic device 900 allocating resources to the user equipment or the frequency of the electronic device 900 allocating resources to the user equipment .
  • the resource allocation information may include 1-bit indication information. When the indication information is 0, it means that the resource allocation information includes a period, and when the indication information is 1, it means that the resource allocation information includes a frequency.
  • the resource allocation information may include indication information and an identification of period or frequency.
  • the resource allocation list may include each cycle supported by the resource management device for allocating resources to the electronic device 100 and/or the mapping relationship between each frequency and identification for allocating resources to the electronic device 100.
  • the resource allocation information when the resource allocation information explicitly indicates the period or frequency at which the electronic device 900 allocates resources for the user equipment, due to the manner in which the resource allocation information supports frequencies, some transmission frequencies may be supported. It is an integer and the transmission period is not an integer, so that the frequency of resource allocation matches the frequency of the user equipment sending service data, which reduces data transmission delay and improves resource utilization.
  • the allocation unit 920 needs to determine the electronic device 900 according to the frequency at which the electronic device 900 allocates resources to the user equipment. The period during which the device 900 allocates resources to the user equipment. Further, the allocating unit 920 may determine the time domain resource for the user equipment to send the service data in each cycle according to the time domain resource for the user equipment to send the service data for the first time and the period during which the electronic device 900 allocates the resource for the user equipment.
  • the allocating unit 920 may adjust the time domain resources for the user equipment to transmit service data in each period to a minimum. Integer multiples of the unit.
  • the allocating unit 920 can determine the time when the user equipment sends the service data in each cycle according to the time domain resource of the user equipment first sending the service data and the cycle of the resource allocation, and rounds the time up to round the time. Adjusted to an integer multiple of the smallest unit.
  • the allocating unit 920 may also adjust the period to an integer multiple of the minimum unit by rounding up the period of the allocated resource, and the allocation unit 920 may also adjust the period to an integer multiple of the minimum unit according to the first time domain resource of the user equipment sending service data and the adjusted period. Determine the time domain resources for the user equipment to send service data in each cycle.
  • the allocation unit 920 determines the time domain resource of the user equipment to send service data in each cycle according to the time domain resource of the user equipment sending the service data for the first time and the cycle of the electronic device 900 allocating resources to the user equipment.
  • the determination method of the determining unit 130 is similar, and will not be repeated here.
  • the electronic device 900 should agree with the user equipment a way to determine the resources for sending service data in each cycle, and determine the resources allocated to the user equipment in a manner consistent with the user equipment.
  • the electronic device 900 can indicate the cycle of allocating resources to the user equipment in an explicit or implicit manner, thereby supporting a wide variety of cycles, so that the cycle of allocating resources is consistent with the service of the user equipment.
  • the actual cycles match each other, thereby reducing the transmission delay of periodic services and improving resource utilization.
  • FIG. 10 is a flowchart illustrating a wireless communication method performed by the electronic device 100 as a user equipment in a wireless communication system according to an embodiment of the present disclosure.
  • step S1010 the resource allocation information is received from the resource management device, and the resource allocation information explicitly or implicitly indicates the period during which the resource management device allocates resources to the electronic device 100 or the resource management device is the electronic device 100 The frequency with which resources are allocated.
  • step S1020 the period during which the resource management device allocates resources to the electronic device 100 is determined according to the resource allocation information.
  • FIG. 11 is a flowchart illustrating a wireless communication method performed by the electronic device 100 as a user equipment in a wireless communication system according to an embodiment of the present disclosure.
  • the resource allocation information implicitly indicates the period or frequency at which the resource management device allocates resources to the electronic device 100.
  • step S1110 the service flow information of the electronic device is sent to the resource management device, and the service flow information includes periodic information of the service data sent by the electronic device.
  • step S1120 resource allocation information is received from the resource management device.
  • step S1130 in the case where the resource allocation information is successfully descrambled using the specific wireless network temporary identifier RNTI, the period or frequency at which the resource management device allocates resources to the electronic device is determined according to the periodic information.
  • sending the service flow information further includes: sending the service flow information to the resource management device when there is no service data to be sent in the logical channel.
  • the wireless communication method further includes: when there is no service data to be sent in the logical channel, sending scheduling request information to the resource management device; receiving the resource for sending service flow information from the resource management device; and using The resource that sends the service flow information sends the service flow information to the resource management device.
  • the periodic information includes the period of the service data sent by the electronic device or the frequency of the service data sent by the electronic device.
  • the service flow information further includes at least one of the following: indication information indicating whether the periodic information is a period or a frequency, information about the size of the buffered service data, and information about the expected arrival time of the service data.
  • sending service flow information further includes: using MAC CE to carry service flow information.
  • FIG. 12 is a flowchart illustrating a wireless communication method performed by the electronic device 100 as a user equipment in a wireless communication system according to an embodiment of the present disclosure.
  • the resource allocation information explicitly indicates the period or frequency at which the resource management device allocates resources to the electronic device 100.
  • step S1210 the resource allocation information is received from the resource management device, the resource allocation information includes the period during which the resource management device allocates resources to the electronic device 100 or the frequency at which the resource management device allocates resources to the electronic device 100.
  • step S1220 the period during which the resource management device allocates resources to the electronic device 100 is determined according to the resource allocation information.
  • the resource allocation information includes: indication information indicating that the resource allocation information includes a period during which the resource management device allocates resources to the electronic device 100 or the frequency at which the resource management device allocates resources to the electronic device 100.
  • the wireless communication method further includes: determining, according to the resource allocation list and the resource allocation information, the period during which the resource management device allocates resources to the electronic device 100 or the frequency at which the resource management device allocates resources to the electronic device 100, and wherein the resource allocation list includes resources
  • the management device supports a list of the period for allocating resources to the electronic device 100 and/or the list of the frequencies for allocating resources to the electronic device 100.
  • the wireless communication method further includes: receiving a resource allocation list or a pre-configured resource allocation list from the resource management device.
  • the wireless communication method further includes: determining the period during which the resource management device allocates resources to the electronic device according to the frequency at which the resource management device allocates resources to the electronic device; and according to the resource allocation information and the resource management device The period of the electronic device's resource allocation determines the resource of the electronic device to send service data in each period.
  • determining the resource for the electronic device to send the service data in each period further includes: determining the frequency domain resource for sending the service data in each period and the time domain resource for the first sending of the service data according to the resource allocation information; and according to the time when the service data is sent for the first time
  • the domain resources and the cycle of resource allocation for the electronic device by the resource management device determine the time domain resources for sending service data in each cycle.
  • determining the resource for the electronic device to send the service data in each cycle further includes: in the case that the resource allocation cycle is not an integer multiple of the minimum unit of the time domain resource allocated by the resource management device, the time domain for sending the service data in each cycle The resource is adjusted to an integer multiple of the smallest unit.
  • adjusting the time domain resource for sending service data in each cycle to an integer multiple of a minimum unit includes: determining the time for sending service data in each cycle according to the time domain resource for sending the service data for the first time and the period of resource allocation; and Round up the time to adjust the time to an integer multiple of the smallest unit.
  • adjusting the time domain resources for sending service data in each period to an integer multiple of the minimum unit includes: adjusting the period to an integer multiple of the minimum unit by rounding up the period of the allocated resource; and according to the first transmission of the service data
  • the time domain resource and the adjusted cycle determine the time domain resource for sending service data in each cycle.
  • the wireless communication method further includes: when there is service data to be sent in the logical channel, sending the service data according to the resource of the electronic device for sending the service data in each cycle.
  • the resource management device is a network side device or user equipment.
  • the subject that executes the above method may be the electronic device 100 according to the embodiment of the present disclosure, so all the foregoing embodiments regarding the electronic device 100 are applicable to this.
  • FIG. 13 is a flowchart illustrating a wireless communication method performed by an electronic device 900 as a resource management device in a wireless communication system according to an embodiment of the present disclosure.
  • step S1310 resource allocation information is generated, and the resource allocation information explicitly or implicitly indicates the period during which the electronic device 900 allocates resources to the user equipment or the frequency at which the electronic device 900 allocates resources to the user equipment.
  • step S1320 resource allocation information is sent to the user equipment.
  • FIG. 14 is a flowchart illustrating a wireless communication method performed by an electronic device 900 as a resource management device in a wireless communication system according to an embodiment of the present disclosure.
  • the resource allocation information implicitly indicates the period or frequency at which the electronic device 900 allocates resources for the user equipment.
  • step S1410 the service flow information of the user equipment is received from the user equipment, and the service flow information includes periodic information of the service data sent by the user equipment.
  • step S1420 the period or frequency of allocating resources for the user equipment is determined according to the periodicity information, and the resources are allocated for the user equipment.
  • step S1430 the resource allocation information is scrambled by using a specific wireless network temporary identifier RNTI to indicate that the period or frequency of allocating resources for the user equipment is determined according to the periodicity information.
  • the wireless communication method further includes: receiving scheduling request information from the user equipment; and in response to the scheduling request information, allocating resources for the user equipment to send service flow information.
  • the periodicity information includes the period of the service data sent by the user equipment or the frequency of the service data sent by the user equipment.
  • the service flow information further includes at least one of the following: indication information indicating whether the periodicity information is a period or a frequency, information about the size of the service data buffered by the user equipment, and information about the arrival time of the service data predicted by the user equipment.
  • receiving service flow information further includes: using MAC CE to receive service flow information.
  • FIG. 15 is a flowchart illustrating a wireless communication method performed by an electronic device 900 as a resource management device in a wireless communication system according to an embodiment of the present disclosure.
  • the resource allocation information explicitly indicates the period or frequency at which the electronic device 900 allocates resources for the user equipment.
  • step S1510 resource allocation information is generated.
  • the resource allocation information includes the period of the electronic device 900 allocating resources to the user equipment or the frequency of the electronic device 900 allocating resources to the user equipment.
  • step S1520 the resource allocation information is sent to the user equipment.
  • the resource allocation information includes: indication information indicating that the resource allocation information includes a period during which the electronic device 900 allocates resources to the user equipment or the frequency at which the electronic device 900 allocates resources to the user equipment.
  • the wireless communication method further includes: generating a resource allocation list, the resource allocation list including a list of periods for allocating resources for the user equipment and/or frequencies for allocating resources for the user equipment supported by the electronic device 900; and sending the resource allocation to the user equipment List.
  • the resource allocation information includes frequency domain resources for the user equipment to transmit service data in each cycle and time domain resources for the first transmission of service data.
  • the wireless communication method further includes: determining the period for the electronic device 900 to allocate resources to the user equipment according to the frequency at which the electronic device 900 allocates resources to the user equipment; The period of allocating resources determines the time domain resources for the user equipment to send service data in each period.
  • determining the time domain resource for the user equipment to send the service data in each period includes: in the case where the period of the resource allocation is not an integer multiple of the smallest unit of the time domain resource allocated by the electronic device, the user equipment sends the service data in each period.
  • the time domain resource is adjusted to an integer multiple of the smallest unit.
  • adjusting the time domain resource for the user equipment to send service data in each period to an integer multiple of the minimum unit includes: determining the user equipment to send the service in each period according to the time domain resource for the user equipment to send the service data for the first time and the resource allocation period The time of the data; and the time is adjusted to an integer multiple of the smallest unit by rounding up the time.
  • adjusting the time domain resource for the user equipment to send service data in each period to an integer multiple of the minimum unit includes: adjusting the period to an integer multiple of the minimum unit by rounding up the period of the allocated resource; and according to the user equipment for the first time
  • the time domain resource for sending the service data and the adjusted period are used to determine the time domain resource for sending the service data by the user equipment in each period.
  • the electronic device is a network side device or other user equipment other than the user equipment.
  • the subject that executes the above method may be the electronic device 900 according to the embodiment of the present disclosure, so all the foregoing embodiments regarding the electronic device 900 are applicable to this.
  • the electronic device 100 may be implemented as a user equipment
  • the electronic device 900 may be implemented as a network-side device that provides services to the electronic device 100, or as a user equipment that can manage the resources of the electronic device 100.
  • the network side device can be implemented as any type of TRP.
  • the TRP may have sending and receiving functions, for example, it can receive information from user equipment and base station equipment, and can also send information to user equipment and base station equipment.
  • TRP can provide services for user equipment and is controlled by base station equipment.
  • the TRP may have a structure similar to that of the base station device described below, or may only have a structure related to the transmission and reception of information in the base station device.
  • the network side equipment can also be implemented as any type of base station equipment, such as a macro eNB and a small eNB, and can also be implemented as any type of gNB (base station in a 5G system).
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) arranged in a different place from the main body.
  • RRH remote radio heads
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the above-mentioned user equipment.
  • FIG. 16 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1200 includes one or more antennas 1210 and a base station device 1220.
  • the base station device 1220 and each antenna 1210 may be connected to each other via an RF cable.
  • Each of the antennas 1210 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 1220 to transmit and receive wireless signals.
  • the eNB 1200 may include multiple antennas 1210.
  • multiple antennas 1210 may be compatible with multiple frequency bands used by eNB 1200.
  • FIG. 16 shows an example in which the eNB 1200 includes multiple antennas 1210, the eNB 1200 may also include a single antenna 1210.
  • the base station device 1220 includes a controller 1221, a memory 1222, a network interface 1223, and a wireless communication interface 1225.
  • the controller 1221 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1220. For example, the controller 1221 generates a data packet based on the data in the signal processed by the wireless communication interface 1225, and transmits the generated packet via the network interface 1223. The controller 1221 may bundle data from multiple baseband processors to generate a bundled packet, and transfer the generated bundled packet. The controller 1221 may have a logic function for performing control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1222 includes RAM and ROM, and stores programs executed by the controller 1221 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 1223 is a communication interface for connecting the base station device 1220 to the core network 1224.
  • the controller 1221 may communicate with a core network node or another eNB via a network interface 1223.
  • the eNB 1200 and the core network node or other eNBs may be connected to each other through a logical interface (such as an S1 interface and an X2 interface).
  • the network interface 1223 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1223 is a wireless communication interface, the network interface 1223 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1225.
  • the wireless communication interface 1225 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connection to terminals located in the cell of the eNB 1200 via the antenna 1210.
  • the wireless communication interface 1225 may generally include, for example, a baseband (BB) processor 1226 and an RF circuit 1227.
  • the BB processor 1226 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • the BB processor 1226 may have a part or all of the above-mentioned logical functions.
  • the BB processor 1226 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 1226.
  • the module may be a card or a blade inserted into the slot of the base station device 1220. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1227 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1210.
  • the wireless communication interface 1225 may include a plurality of BB processors 1226.
  • multiple BB processors 1226 may be compatible with multiple frequency bands used by the eNB 1200.
  • the wireless communication interface 1225 may include a plurality of RF circuits 1227.
  • multiple RF circuits 1227 may be compatible with multiple antenna elements.
  • FIG. 16 shows an example in which the wireless communication interface 1225 includes a plurality of BB processors 1226 and a plurality of RF circuits 1227, the wireless communication interface 1225 may also include a single BB processor 1226 or a single RF circuit 1227.
  • FIG. 17 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1330 includes one or more antennas 1340, base station equipment 1350, and RRH 1360.
  • the RRH 1360 and each antenna 1340 may be connected to each other via an RF cable.
  • the base station device 1350 and the RRH 1360 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 1340 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 1360 to transmit and receive wireless signals.
  • the eNB 1330 may include multiple antennas 1340.
  • multiple antennas 1340 may be compatible with multiple frequency bands used by the eNB 1330.
  • FIG. 17 shows an example in which the eNB 1330 includes multiple antennas 1340, the eNB 1330 may also include a single antenna 1340.
  • the base station device 1350 includes a controller 1351, a memory 1352, a network interface 1353, a wireless communication interface 1355, and a connection interface 1357.
  • the controller 1351, the memory 1352, and the network interface 1353 are the same as the controller 1221, the memory 1222, and the network interface 1223 described with reference to FIG. 16.
  • the network interface 1353 is a communication interface for connecting the base station device 1350 to the core network 1354.
  • the wireless communication interface 1355 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 1360 via the RRH 1360 and the antenna 1340.
  • the wireless communication interface 1355 may generally include, for example, a BB processor 1356.
  • the BB processor 1356 is the same as the BB processor 1226 described with reference to FIG. 16 except that the BB processor 1356 is connected to the RF circuit 1364 of the RRH 1360 via the connection interface 1357.
  • the wireless communication interface 1355 may include a plurality of BB processors 1356.
  • multiple BB processors 1356 may be compatible with multiple frequency bands used by the eNB 1330.
  • FIG. 17 shows an example in which the wireless communication interface 1355 includes a plurality of BB processors 1356, the wireless communication interface 1355 may also include a single BB processor 1356.
  • connection interface 1357 is an interface for connecting the base station device 1350 (wireless communication interface 1355) to the RRH 1360.
  • the connection interface 1357 may also be a communication module for connecting the base station device 1350 (wireless communication interface 1355) to the communication in the above-mentioned high-speed line of the RRH 1360.
  • the RRH 1360 includes a connection interface 1361 and a wireless communication interface 1363.
  • connection interface 1361 is an interface for connecting the RRH 1360 (wireless communication interface 1363) to the base station device 1350.
  • the connection interface 1361 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1363 transmits and receives wireless signals via the antenna 1340.
  • the wireless communication interface 1363 may generally include, for example, an RF circuit 1364.
  • the RF circuit 1364 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1340.
  • the wireless communication interface 1363 may include a plurality of RF circuits 1364.
  • multiple RF circuits 1364 may support multiple antenna elements.
  • FIG. 17 shows an example in which the wireless communication interface 1363 includes a plurality of RF circuits 1364, the wireless communication interface 1363 may include a single RF circuit 1364.
  • the controller 1221 and/or The controller 1351 is implemented. At least part of the functions may also be implemented by the controller 1221 and the controller 1351.
  • the controller 1221 and/or the controller 1351 may execute the functions of determining the cycle of resource allocation, allocating resources, generating resource allocation information, encoding resource allocation information, and generating a resource allocation list by executing instructions stored in the corresponding memory. .
  • FIG. 18 is a block diagram showing an example of a schematic configuration of a smart phone 1400 to which the technology of the present disclosure can be applied.
  • the smart phone 1400 includes a processor 1401, a memory 1402, a storage device 1403, an external connection interface 1404, a camera 1406, a sensor 1407, a microphone 1408, an input device 1409, a display device 1410, a speaker 1411, a wireless communication interface 1412, one or more An antenna switch 1415, one or more antennas 1416, a bus 1417, a battery 1418, and an auxiliary controller 1419.
  • the processor 1401 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the smart phone 1400.
  • the memory 1402 includes RAM and ROM, and stores data and programs executed by the processor 1401.
  • the storage device 1403 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1404 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smart phone 1400.
  • USB universal serial bus
  • the imaging device 1406 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 1407 may include a group of sensors, such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1408 converts the sound input to the smart phone 1400 into an audio signal.
  • the input device 1409 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1410, and receives an operation or information input from the user.
  • the display device 1410 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1400.
  • the speaker 1411 converts the audio signal output from the smart phone 1400 into sound.
  • the wireless communication interface 1412 supports any cellular communication scheme (such as LTE and LTE-Advanced), and performs wireless communication.
  • the wireless communication interface 1412 may generally include, for example, a BB processor 1413 and an RF circuit 1414.
  • the BB processor 1413 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1414 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1416.
  • the wireless communication interface 1412 may be a chip module on which the BB processor 1413 and the RF circuit 1414 are integrated. As shown in FIG.
  • the wireless communication interface 1412 may include a plurality of BB processors 1413 and a plurality of RF circuits 1414.
  • FIG. 18 shows an example in which the wireless communication interface 1412 includes a plurality of BB processors 1413 and a plurality of RF circuits 1414, the wireless communication interface 1412 may also include a single BB processor 1413 or a single RF circuit 1414.
  • the wireless communication interface 1412 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 1412 may include a BB processor 1413 and an RF circuit 1414 for each wireless communication scheme.
  • Each of the antenna switches 1415 switches the connection destination of the antenna 1416 among a plurality of circuits included in the wireless communication interface 1412 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 1416 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1412 to transmit and receive wireless signals.
  • the smart phone 1400 may include multiple antennas 1416.
  • FIG. 18 shows an example in which the smart phone 1400 includes a plurality of antennas 1416, the smart phone 1400 may also include a single antenna 1416.
  • the smart phone 1400 may include an antenna 1416 for each wireless communication scheme.
  • the antenna switch 1415 may be omitted from the configuration of the smart phone 1400.
  • the bus 1417 connects the processor 1401, the memory 1402, the storage device 1403, the external connection interface 1404, the camera device 1406, the sensor 1407, the microphone 1408, the input device 1409, the display device 1410, the speaker 1411, the wireless communication interface 1412, and the auxiliary controller 1419 to each other. connect.
  • the battery 1418 supplies power to each block of the smart phone 1400 shown in FIG. 18 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the auxiliary controller 1419 operates the minimum necessary functions of the smartphone 1400 in the sleep mode, for example.
  • the smart phone 1400 shown in FIG. 18 by using the service flow information generating unit 110, the decoding unit 120, the determining unit 130, the scheduling request information generating unit 150, the estimating unit 160, and the data generating unit 170 described in FIG. 1, and
  • the determination unit 910, the allocation unit 920, the generation unit 940, the encoding unit 950, and the generation unit 960 described in FIG. 9 may be implemented by the processor 1401 or the auxiliary controller 1419. At least part of the function may also be implemented by the processor 1401 or the auxiliary controller 1419.
  • the processor 1401 or the auxiliary controller 1419 may execute the instructions stored in the memory 1402 or the storage device 1403 to generate service flow information, decode resource allocation information, determine the period of resource allocation by the resource management device, and generate scheduling request information. , Estimate the arrival time of service data, generate data, allocate resources for other user equipment, determine the cycle of allocating resources for other user equipment, generate resource allocation information, encode resource allocation information, and generate a resource allocation list.
  • FIG. 19 is a block diagram showing an example of a schematic configuration of a car navigation device 1520 to which the technology of the present disclosure can be applied.
  • the car navigation device 1520 includes a processor 1521, a memory 1522, a global positioning system (GPS) module 1524, a sensor 1525, a data interface 1526, a content player 1527, a storage medium interface 1528, an input device 1529, a display device 1530, a speaker 1531, a wireless A communication interface 1533, one or more antenna switches 1536, one or more antennas 1537, and a battery 1538.
  • GPS global positioning system
  • the processor 1521 may be, for example, a CPU or SoC, and controls the navigation function and other functions of the car navigation device 1520.
  • the memory 1522 includes RAM and ROM, and stores data and programs executed by the processor 1521.
  • the GPS module 1524 uses GPS signals received from GPS satellites to measure the position (such as latitude, longitude, and altitude) of the car navigation device 1520.
  • the sensor 1525 may include a group of sensors, such as a gyroscope sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 1526 is connected to, for example, an in-vehicle network 1541 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 1527 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 1528.
  • the input device 1529 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1530, and receives an operation or information input from the user.
  • the display device 1530 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 1531 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1533 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 1533 may generally include, for example, a BB processor 1534 and an RF circuit 1535.
  • the BB processor 1534 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 1535 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1537.
  • the wireless communication interface 1533 may also be a chip module on which the BB processor 1534 and the RF circuit 1535 are integrated. As shown in FIG.
  • the wireless communication interface 1533 may include a plurality of BB processors 1534 and a plurality of RF circuits 1535.
  • FIG. 19 shows an example in which the wireless communication interface 1533 includes a plurality of BB processors 1534 and a plurality of RF circuits 1535, the wireless communication interface 1533 may also include a single BB processor 1534 or a single RF circuit 1535.
  • the wireless communication interface 1533 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1533 may include a BB processor 1534 and an RF circuit 1535 for each wireless communication scheme.
  • Each of the antenna switches 1536 switches the connection destination of the antenna 1537 among a plurality of circuits included in the wireless communication interface 1533, such as circuits for different wireless communication schemes.
  • Each of the antennas 1537 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1533 to transmit and receive wireless signals.
  • the car navigation device 1520 may include a plurality of antennas 1537.
  • FIG. 19 shows an example in which the car navigation device 1520 includes a plurality of antennas 1537, the car navigation device 1520 may also include a single antenna 1537.
  • the car navigation device 1520 may include an antenna 1537 for each wireless communication scheme.
  • the antenna switch 1536 may be omitted from the configuration of the car navigation device 1520.
  • the battery 1538 supplies power to each block of the car navigation device 1520 shown in FIG. 19 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the battery 1538 accumulates electric power supplied from the vehicle.
  • the determination unit 910, the allocation unit 920, the generation unit 940, the encoding unit 950, and the generation unit 960 described in FIG. 9 may be implemented by the processor 1521. At least part of the functions may also be implemented by the processor 1521.
  • the processor 1521 may execute the instructions stored in the memory 1522 to generate service flow information, decode resource allocation information, determine the period of resource allocation by the resource management device, generate scheduling request information, estimate the arrival time of service data, and generate The functions of data, allocating resources for other user equipment, determining the period of allocating resources for other user equipment, generating resource allocation information, encoding resource allocation information, and generating a resource allocation list.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1540 including one or more blocks in a car navigation device 1520, an in-vehicle network 1541, and a vehicle module 1542.
  • vehicle module 1542 generates vehicle data (such as vehicle speed, engine speed, and failure information), and outputs the generated data to the in-vehicle network 1541.
  • the units shown in dashed boxes in the functional block diagram shown in the drawings all indicate that the functional unit is optional in the corresponding device, and each optional functional unit can be combined in an appropriate manner to achieve the required function .
  • a plurality of functions included in one unit in the above embodiments may be realized by separate devices.
  • the multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions can be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only processing performed in time series in the described order, but also processing performed in parallel or individually rather than necessarily in time series.
  • the order can be changed appropriately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及电子设备、无线通信方法和计算机可读存储介质。根据本公开的电子设备包括处理电路,被配置为:从资源管理设备接收资源分配信息,所述资源分配信息显性地或者隐性地指示所述资源管理设备为所述电子设备分配资源的周期或者所述资源管理设备为所述电子设备分配资源的频率;以及根据所述资源分配信息确定所述资源管理设备为所述电子设备分配资源的周期。使用根据本公开的电子设备、无线通信方法和计算机可读存储介质,可以支持更多种类的时间间隔,从而降低周期性数据的传输时延,并且更加有效地利用资源。

Description

电子设备、无线通信方法和计算机可读存储介质
本申请要求于2020年4月17日提交中国专利局、申请号为202010304595.5、发明名称为“电子设备、无线通信方法和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开的实施例总体上涉及无线通信领域,具体地涉及电子设备、无线通信方法和计算机可读存储介质。更具体地,本公开涉及一种作为无线通信系统中的用户设备的电子设备、一种作为无线通信系统中的资源管理设备的电子设备、一种由无线通信系统中的用户设备执行的无线通信方法、一种由无线通信系统中的资源管理设备执行的无线通信方法以及一种计算机可读存储介质。
背景技术
在LTE系统中,基站对UE(User Equipment,用户设备)进行调度的方式主要有动态调度和半持续调度(Semi-Persistent Scheduling,SPS)。在动态调度方案中,当UE需要发送数据且没有上行资源时,会发送调度请求(Scheduling Request,SR),以通知基站其有上行数据需要发送,基站接收到SR后会调度相关资源,供UE反馈缓存状态报告(Buffer Status Report,BSR),然后基站根据UE发送的BSR调度相应的上行资源给UE发送数据。针对周期性的小包业务,基站可以通过观察统计得到UE的业务的大小和周期,然后可以调度多个上行资源给UE用于发送上行数据,不同上行资源之间的时间间隔可以通过RRC(Radio Resource Control,无线资源控制)信令来指示。这种调度方式被称为半持续调度。由于RRC信令中指示时间间隔的元素的大小有限,因此可以携带的时间间隔数量有限。
随着NR(New Radio,新无线)通信系统对越来越多的业务提供通信支持,这些业务传输需求的多样性也对目前的NR通信系统提出了一定的挑战。例如,超可靠低时延通信(Ultra-reliable and Low Latency Communications,uRLLC)业务对数据传输的时延和可靠性提出了很高的 需求。UE需要以uRLLC的方式周期性传输一些控制信息,这类传输通常是上行传输,且每次传输数据量较小。由于现有的标准支持的时间间隔有限,因此将造成配置上行资源的周期与业务的实际周期不匹配,从而导致较大的传输时延,同时造成资源的浪费。此外,UE的一些信息的传输频率是整数而传输周期不是整数,而RRC中的时间间隔仅能够指示有限的若干个资源分配的周期,因此也会造成配置上行资源的周期与业务的实际频率不匹配,从而导致较大的传输时延,同时造成资源的浪费。
因此,有必要提出一种技术方案,以支持更多种类的周期,从而降低周期性数据的传输时延,并且更加有效地利用资源。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种电子设备、无线通信方法和计算机可读存储介质,以支持更多种类的周期,从而降低周期性数据的传输时延,并且更加有效地利用资源。
根据本公开的一方面,提供了一种电子设备,包括处理电路,被配置为:从资源管理设备接收资源分配信息,所述资源分配信息显性地或者隐性地指示所述资源管理设备为所述电子设备分配资源的周期或者所述资源管理设备为所述电子设备分配资源的频率;以及根据所述资源分配信息确定所述资源管理设备为所述电子设备分配资源的周期。
根据本公开的另一方面,提供了一种电子设备,包括处理电路,被配置为:生成资源分配信息,所述资源分配信息显性地或者隐性地指示所述电子设备为用户设备分配资源的周期或者所述电子设备为所述用户设备分配资源的频率;以及向所述用户设备发送所述资源分配信息。
根据本公开的另一方面,提供了一种由电子设备执行的无线通信方法,包括:从资源管理设备接收资源分配信息,所述资源分配信息显性地或者隐性地指示所述资源管理设备为所述电子设备分配资源的周期或者所述资源管理设备为所述电子设备分配资源的频率;以及根据所述资源分配信息确定所述资源管理设备为所述电子设备分配资源的周期。
根据本公开的另一方面,提供了一种由电子设备执行的无线通信方法,包括:生成资源分配信息,所述资源分配信息显性地或者隐性地指示 所述电子设备为用户设备分配资源的周期或者所述电子设备为所述用户设备分配资源的频率;以及向所述用户设备发送所述资源分配信息。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
根据本公开的另一方面,提供了一种计算机程序,所述计算机程序当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
使用根据本公开的电子设备、无线通信方法和计算机可读存储介质,资源分配信息可以显性地或者隐性地指示资源管理设备为电子设备分配资源的周期或者频率。也就是说,资源分配可以支持周期和频率,因此电子设备分配资源的周期与业务的实际周期或频率互相匹配,从而可以减小周期性业务的传输时延,提高资源的利用率。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出根据本公开的实施例的电子设备的配置的示例的框图;
图2是示出根据本公开的实施例的业务流量信息的内容的示意图;
图3是示出根据本公开的实施例的由用户设备请求上行资源并发送数据的信令流程图;
图4是示出根据本公开的实施例的第一缓存状态报告的内容的示意图;
图5是示出根据本公开的实施例的第一缓存状态报告的内容的示意图;
图6是示出根据本公开的实施例的由用户设备请求上行资源并发送数据的信令流程图;
图7是示出用户设备无法选择合适的资源发送数据的情况的示意图;
图8是示出根据本公开的实施例的用户设备提前广播要占用的资源的示意图;
图9是示出根据本公开的实施例的电子设备的配置的示例的框图;
图10是示出根据本公开的实施例的由电子设备执行的无线通信方法的流程图;
图11是示出根据本公开的实施例的由电子设备执行的无线通信方法的流程图;
图12是示出根据本公开的实施例的由电子设备执行的无线通信方法的流程图;
图13是示出根据本公开的另一个实施例的由电子设备执行的无线通信方法的流程图;
图14是示出根据本公开的另一个实施例的由电子设备执行的无线通信方法的流程图;
图15是示出根据本公开的另一个实施例的由电子设备执行的无线通信方法的流程图;
图16是示出eNB(Evolved Node B,演进型节点B)的示意性配置的第一示例的框图;
图17是示出eNB的示意性配置的第二示例的框图;
图18是示出智能电话的示意性配置的示例的框图;以及
图19是示出汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域 技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.综述;
2.用户设备的配置示例;
3.资源管理设备的配置示例;
4.方法实施例;
5.应用示例。
<1.综述>
前文中提到,对于传输时间量小且对传输时延要求高的周期性上行传输,由于现有的标准支持的时间间隔有限,因此将造成配置上行资源的周期与业务的实际周期不匹配,从而导致较大的传输时延,同时造成资源的浪费。
例如,发送业务数据的频率为60Hz(即发送业务数据的周期为16.67ms),现有的标准中支持10ms和20ms的资源分配周期。这里,假定资源管理设备将资源分配周期设置为10ms。那么,数据到达时间、被分配的资源所在的时域位置以及数据发送的时延如下表所示。
表1
Figure PCTCN2020129263-appb-000001
从上表可以看出,数据在16.67ms到达,但是由于被分配的资源在 10ms和20ms的位置处,因此在10ms的位置处没有数据发送,造成了资源的浪费,在第20ms的位置处发送在第16.67ms到达的数据,因此造成了3.33ms的时延。类似地,数据在33.34ms到达,但是由于被分配的资源在30ms和40ms的位置处,因此在第30ms的位置处没有数据发送,造成了资源的浪费,在第40ms的位置处发送在第33.34ms到达的数据,因此造成了6.66ms的时延。
由此可见,由于现有的标准中支持的周期有限,所以资源的分配周期与业务的实际周期不匹配,造成了资源的浪费,从而降低了资源利用率,同时增大了数据传输的时延。
本公开针对这样的场景提出了一种无线通信系统中的电子设备、由无线通信系统中的电子设备执行的无线通信方法以及计算机可读存储介质,以支持更多种类的周期,从而降低周期性数据的传输时延,并且更加有效地利用资源。
根据本公开的资源管理设备可以是网络侧设备,其对覆盖范围内的用户设备进行资源管理。此外,资源管理设备也可以是用户设备,其对其他用户设备进行资源管理。例如,资源管理设备可以是由多个用户设备组成的簇的簇头设备,对簇内的其他用户设备进行资源管理。
根据本公开的无线通信系统可以是NR通信系统。
根据本公开的网络侧设备可以是任何类型的TRP(Transmit and Receive Port,发送和接收端口),也可以是基站设备,例如可以是eNB,也可以是gNB(第5代通信系统中的基站)。
根据本公开的用户设备可以是移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<2.用户设备的配置示例>
图1是示出根据本公开的实施例的电子设备100的配置的示例的框图。这里的电子设备100可以作为无线通信系统中的用户设备。
如图1所示,电子设备100可以包括确定单元130和通信单元140。
这里,电子设备100的各个单元都可以包括在处理电路中。需要说明的是,电子设备100既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,电子设备100可以通过通信单元140从资源管理设备接收资源分配信息,资源分配信息显性地或者隐性地指示资源管理设备为电子设备100分配资源的周期或者资源管理设备为电子设备100分配资源的频率。
这里,资源管理设备用于对电子设备100的资源进行管理,包括向电子设备100分配用于发送数据的资源。资源管理设备例如可以是网络侧设备或者其他用户设备。
根据本公开的实施例,确定单元130可以根据资源分配信息确定资源管理设备为电子设备100分配资源的周期。
由此可见,根据本公开的实施例,资源分配信息可以显性地或者隐性地指示资源管理设备为电子设备100分配资源的周期或者频率。也就是说,资源分配可以支持周期和频率,因此电子设备100分配资源的周期与业务的实际周期或频率可以互相匹配,从而可以减小周期性业务的传输时延,提高资源的利用率。
下面将详细描述资源分配信息隐性地指示资源管理设备为电子设备100分配资源的周期或者频率的情形。
如图1所示,电子设备100可以包括业务流量信息生成单元110和解码单元120。
根据本公开的实施例,业务流量信息生成单元110用于生成电子设备100的业务流量信息,业务流量信息包括电子设备100发送的业务数据的周期性信息。
根据本公开的实施例,电子设备100可以通过通信单元140将业务流量生成单元110生成的业务流量信息发送至资源管理设备。
根据本公开的实施例,解码单元120可以对资源分配信息的一部分进行解扰,从而在解扰成功的情况下获取资源分配信息。
根据本公开的实施例,在解码单元120利用特定的RNTI(Radio  Network Tempory Identity,无线网络临时标识)对资源分配信息的一部分解扰成功的情况下,确定单元130可以根据业务流量信息生成单元110生成的业务流量信息中包括的周期性信息确定资源管理设备为电子设备100分配资源的周期或者频率。
由此可见,根据本公开的实施例的电子设备100,可以向资源管理设备发送业务数据的周期性信息,并在利用特定的RNTI对资源分配信息进行解扰成功的情况下,可以确定资源管理设备为电子设备100分配资源的周期或者频率是根据周期性信息确定的。也就是说,资源管理设备为电子设备100分配资源的周期或频率为周期性信息中包括的周期或频率。也就是说,电子设备100无需从资源管理设备接收资源管理设备为电子设备100分配资源的周期或频率,即资源管理设备用隐性的方式指示为电子设备100分配资源的周期或频率。这样一来,由于电子设备100上报的周期性信息可以支持较多种类的周期或频率,因此电子设备100分配资源的周期与业务的实际周期或频率互相匹配,从而可以减小周期性业务的传输时延,提高资源的利用率。
根据本公开的实施例,在逻辑信道中没有待发送的业务数据的情况下,业务流量信息生成单元110就可以生成业务流量信息,并且可以通过通信单元140向资源管理设备发送业务流量信息。
根据本公开的实施例,如图1所示,电子设备100还可以包括调度请求信息生成单元150,用于生成调度请求信息。
根据本公开的实施例,在逻辑信道中没有待发送的业务数据的情况下,调度请求信息生成单元150可以生成调度请求信息,并且电子设备100可以通过通信单元140向资源管理设备发送生成的调度请求信息。这里,调度请求信息可以用于请求用于发送业务流量信息的资源。
根据本公开的实施例,电子设备100可以通过通信单元140从资源管理设备接收资源管理设备响应于调度请求信息分配的用于发送业务流量信息的资源。接下来,电子设备100可以利用用于发送业务流量信息的资源向资源管理设备发送业务流量信息。
在现有的技术中,在逻辑信道中有待发送的业务数据的情况下才会向资源管理设备发送调度请求信息。并且资源管理设备只能根据观察统计得到电子设备发送业务数据的周期性信息。如果资源管理设备没有收到电子设备发送的请求,电子设备需要重复发送调度请求直到资源管理设备分 配相应的资源,从而导致时延很长。
根据本公开的实施例,可以在逻辑信道中没有待发送的业务数据的情况下就向资源管理设备发送调度请求信息和业务流量信息。此外,电子设备100可以主动地上报其发送的业务数据的周期性信息。这样一来,在逻辑信道中有待发送的业务数据之前,资源管理设备就可以根据电子设备100发送的业务数据的周期性信息为电子设备100分配资源,从而降低时延。
根据本公开的实施例,电子设备100可以利用MAC(Media Access Control,媒体接入控制)CE(Control Element,控制元素)承载业务流量信息。例如,电子设备100可以在MAC CE中的BSR(Buffer Status Report,缓存状态报告)中携带业务流量信息。
根据本公开的实施例,周期性信息可以表示电子设备100发送的业务数据的周期,例如可以包括电子设备100发送的业务数据的周期或者电子设备100发送的业务数据的频率。这里,周期可以是频率的倒数,因此根据发送业务数据的频率可以推算出发送业务数据的周期。
根据本公开的实施例,针对任意一个业务,电子设备100可以从周期和频率中选取是整数的那个参数,并将该参数作为周期性信息。例如,假定一个业务的周期是33.333ms,频率是3Hz,则电子设备100将频率3Hz作为周期性信息包括在业务流量信息中。
根据本公开的实施例,在利用周期性信息携带周期或频率的情况下,可以支持较多的周期或频率的数目。例如,电子设备100可以支持将1-1023ms范围内的任何整数周期、或者1-1023Hz范围内的任何整数频率作为周期性信息。
根据本公开的实施例,业务流量信息还可以包括表示周期性信息是周期还是频率的指示信息。例如,可以用1比特来表示该指示信息,当指示信息为1时表示周期性信息是周期,而指示信息为0时表示周期性信息是频率。
根据本公开的实施例,业务流量信息还可以包括缓存的业务数据的大小信息。这里,由于电子设备100可以在逻辑信道中没有待发送的业务数据的情况下就发送业务流量信息,因此缓存的业务数据的大小可以为0。
根据本公开的实施例,如图1所示,电子设备100还可以包括估计单元160,用于估计业务数据的到达时间。例如,电子设备100可以根据 即将发送的业务数据的大小和周期来估计业务数据即将到达的时间。进一步,业务流量信息还可以包括估计单元160预计的业务数据的到达时间信息。
如上所述,业务流量信息可以包括电子设备100发送的业务数据的周期性信息。可选地,业务流量信息还包括以下中的至少一种:表示周期性信息是周期还是频率的指示信息、缓存的业务数据的大小信息、以及预计的业务数据的到达时间信息。
图2是示出根据本公开的实施例的业务流量信息的内容的示意图。如图2所示,1比特的指示信息表示业务流量信息中包括的是周期还是频率,7比特的频率/周期的第1部分表示频率或者周期的第1部分内容,8比特的频率/周期的第2部分表示频率或者周期的第2部分内容,即最多可以用15比特来表示频率或者周期,4比特的到达时间信息表示估计单元160估计的业务数据的到达时间信息,4比特的大小信息表示缓存的业务数据的大小。
根据本公开的实施例,电子设备100可以通过DCI(Downlink Control Information,下行控制信息)和RRC从资源管理设备接收资源分配信息。
在现有的方案中,在SPS调度方式中,资源管理设备发送的DCI中至少包括为电子设备100分配的在各个周期发送业务数据的频域资源以及为电子设备100分配的首次发送业务数据的时域资源。此外,资源管理设备还可以向电子设备100发送包括为电子设备100分配资源的周期性信息的RRC信令。也就是说,资源管理设备利用显性的方式指示分配资源的周期。此外,资源管理设备可以利用与SPS调度方式相对应的RNTI对DCI进行加扰,电子设备100可以利用相应的RNTI对该DCI进行解扰从而确定调度方式为SPS并且获取DCI中的内容。这样一来,电子设备100可以通过DCI中包括的在各个周期发送业务数据的频域资源和首次发送业务数据的时域资源、以及RRC信令中包括的周期性信息确定在各个周期发送业务数据的资源。
根据本公开的实施例,资源管理设备发送的RRC信令中可以不包括为电子设备100分配资源的周期性信息。也就是说,资源管理设备利用隐性的方式指示分配资源的周期。此外,资源管理设备可以利用特定的RNTI对DCI进行加扰。这种特定的RNTI是新设置的RNTI,不同于现有的方案中的与SPS调度方式相对应的RNTI。也就是说,这种特定的RNTI对应于SPS调度方式中在RRC信令不包括周期性信息的情况下的资源分配 信息。
根据本公开的实施例,对于SPS调度方式,电子设备100可能收到包括资源管理设备为电子设备100分配资源的周期性信息的RRC信令,也可能收到不包括资源管理设备为电子设备100分配资源的周期性信息的RRC信令。因此,在电子设备100收到资源分配信息之后,可以利用与SPS调度方式中在RRC信令包括周期性信息的情况下的资源分配信息相对应的RNTI(表2中的第二种RNTI)对该资源分配信息进行解扰,也可以利用与SPS调度方式中在RRC信令不包括周期性信息的情况下的资源分配信息相对应的RNTI(表2中的第三种RNTI)对该资源分配信息进行解扰。在电子设备100利用与在RRC信令中包括周期性信息的情况下的资源分配信息相对应的RNTI对该资源分配信息进行解扰成功的情况下,电子设备100可以根据RRC信令中包括的周期性信息确定资源管理设备为其分配资源的周期;在电子设备100利用与在RRC信令中不包括周期性信息的情况下的资源分配信息相对应的RNTI对该资源分配信息进行解扰成功的情况下,电子设备100可以根据业务流量信息中包括的周期性信息确定资源管理设备为其分配资源的周期。
根据本公开的实施例,对资源分配信息进行加扰的RNTI可能有以下三种:
表2
Figure PCTCN2020129263-appb-000002
在表2中,第一种RNTI和第二种RNTI为现有的方案中的RNTI,而第三种RNTI是本公开新增的RNTI,用于对SPS调度方式下在RRC信令不包括周期性信息的情况下的资源分配信息进行加扰和解扰。
如上所述,在RRC信令包括周期性信息的情况下,由于RRC信令中指示周期性信息的资源有限并且仅能够指示资源分配的周期,因此支持的周期的数目有限。在RRC信令不包括周期性信息的情况下,由于可以 隐性地指示资源分配的周期,因此可以支持很大数目的周期。也就是说,在RRC信令中不包括周期性信息的情况下支持的周期的数目不同于在RRC信令中包括周期性信息的情况下支持的周期的数目。更具体地,在RRC信令中不包括周期性信息的情况下支持的周期的数目大于在RRC信令中包括周期性信息的情况下支持的周期的数目。
下面将详细描述资源分配信息显性地指示资源管理设备为电子设备100分配资源的周期或者资源管理设备为电子设备分配资源的频率的情形。
根据本公开的实施例,资源分配信息可以包括资源管理设备为电子设备100分配资源的周期或者资源管理设备为电子设备100分配资源的频率。
在这个实施例中,电子设备100可以通过RRC信令来接收这样的资源分配信息。也就是说,电子设备100接收到的资源分配信息可以包括通过RRC承载的资源分配信息和通过DCI承载的资源分配信息。其中,DCI中至少包括为电子设备100分配的在各个周期发送业务数据的频域资源以及为电子设备100分配的首次发送业务数据的时域资源,而RRC中至少包括资源管理设备为电子设备100分配资源的周期或者资源管理设备为电子设备100分配资源的频率。
根据本公开的实施例,如图1所示,电子设备100还可以包括存储单元180,用于存储资源分配列表,资源分配列表包括资源管理设备支持的为电子设备100分配资源的周期和/或为电子设备100分配资源的频率的列表。
根据本公开的实施例,确定单元130可以根据资源分配列表和资源分配信息确定资源管理设备为电子设备100分配资源的周期或者频率。
根据本公开的实施例,资源分配信息可以包括资源管理设备为电子设备100分配资源的周期或者频率的标识,并且资源分配列表中可以包括资源管理设备支持的为电子设备100分配资源的各个周期和/或为电子设备100分配资源的各个频率与标识的映射关系。这样一来,确定单元130可以根据资源分配信息中包括的标识查找资源分配列表从而确定资源管理设备为电子设备100分配资源的周期或者频率。
例如,资源分配列表中包括10ms、20ms、30Hz和60Hz,标识分别为00、01、10和11,则在资源分配信息中包括标识11的情况下,确定单 元130可以确定资源管理设备为电子设备100分配资源的频率是60Hz。这里以资源分配列表支持周期和频率为例进行了说明,资源分配列表还可以仅仅包括频率。
根据本公开的实施例,资源分配信息也可以包括:表示资源分配信息包括资源管理设备为电子设备100分配资源的周期还是资源管理设备为电子设备100分配资源的频率的指示信息。例如,资源分配信息中可以包括1比特的指示信息,当指示信息为0时表示资源分配信息中包括的是周期,而当指示信息为1时表示资源分配信息中包括的是频率。在这个实施例中,资源分配信息可以包括指示信息、以及周期或者频率的标识。资源分配列表中可以包括资源管理设备支持的为电子设备100分配资源的各个周期和/或为电子设备100分配资源的各个频率与标识的映射关系。这样一来,确定单元130可以根据指示信息确定资源管理设备以周期还是频率的方式分配资源资源,再根据资源分配信息中包括的标识查找资源分配列表从而确定资源管理设备为电子设备100分配资源的周期或者频率。
例如,资源分配列表中包括10ms、20ms、30Hz和60Hz,标识分别为0、1、0和1,则在资源分配信息中包括指示信息0并且资源分配信息中包括标识1的情况下,确定单元130可以确定资源管理设备为电子设备100分配资源的周期是20ms。
此外,根据本公开的实施例,在资源分配列表仅仅支持频率或者仅仅支持周期的情况下,资源分配信息也可以不包括上述指示信息。
根据本公开的实施例,电子设备100可以通过通信单元140从资源管理设备接收这样的资源分配列表。例如,电子设备100可以通过RRC信令从资源管理设备接收这样的资源分配列表。此外,电子设备100和资源管理设备也可以预配置这样的资源分配列表。
如上所述,根据本公开的实施例,在资源分配信息显性地指示资源管理设备为电子设备100分配资源的周期或者频率的情况下,由于资源分配信息支持频率的方式,因此可以支持一些发送频率是整数而发送周期不是整数的情形,从而使得资源分配的频率与电子设备100发送业务数据的频率相匹配,减少数据传输时延,提高资源利用率。
如上详细描述了资源分配信息显性地或者隐性地指示资源管理设备为电子设备100分配资源的周期或者频率的实施例。根据本公开的实施例,在资源分配信息显性地或者隐性地指示资源管理设备为电子设备100 分配资源的频率的情况下,确定单元130还需要根据资源管理设备为电子设备100分配资源的频率确定资源管理设备为电子设备100分配资源的周期。进一步,确定单元130还可以根据资源分配信息以及资源管理设备为电子设备100分配资源的周期来确定电子设备100在各个周期发送业务数据的资源。
根据本公开的实施例,资源分配信息可以包括电子设备100在各个周期发送业务数据的频域资源以及电子设备100首次发送业务数据的时域资源,因此确定单元130可以根据资源分配信息确定在各个周期发送业务数据的频域资源以及首次发送业务数据的时域资源。
根据本公开的实施例,确定单元130可以根据首次发送业务数据的时域资源以及资源管理设备为电子设备100分配资源的周期来确定在各个周期发送业务数据的时域资源。由此,确定单元130可以确定电子设备100在各个周期发送业务数据的时域资源和频域资源。
根据本公开的实施例,在资源分配信息显性地或者隐性地指示资源管理设备为电子设备100分配资源的周期的情况下,确定单元130可以根据以下公式来确定在各个周期发送业务数据的时域资源:
tn=t1+T×(n-1)
其中,tn表示在第n(n为正整数)个周期发送业务数据的时域资源,单位为ms,t1表示首次发送业务数据的时域资源,单位为ms,可以从资源分配信息得到。T表示资源管理设备为电子设备100分配资源的周期,单位为ms。
在资源分配信息显性地或者隐性地指示资源管理设备为电子设备100分配资源的频率的情况下,由该频率计算出的周期可能不是资源管理设备分配时域资源的最小单位的整数倍。例如,资源管理设备为电子设备100分配资源的频率为60GHz,则根据该频率计算出的资源管理设备为电子设备100分配资源的的周期为16.666ms,而资源管理设备分配时域资源的最小单位为1ms,因此16.666ms不是1ms的整数倍。
根据本公开的实施例,在分配资源的周期不是资源管理设备分配时域资源的最小单位的整数倍的情况下,确定单元130可以将在各个周期发送业务数据的时域资源调整为最小单位的整数倍。
根据本公开的实施例,确定单元130可以根据首次发送业务数据的时域资源以及分配资源的周期来确定在各个周期发送业务数据的时间,并 且通过将该时间向上取整来将该时间调整为最小单位的整数倍。
例如,确定单元130可以根据下述公式来确定在各个周期发送业务数据的时域资源:
tn=t1+cell(1000/f×(n-1))
其中,tn表示在第n(n为正整数)个周期发送业务数据的时域资源,单位为ms,t1表示首次发送业务数据的时域资源,单位为ms,可以从资源分配信息得到。f表示资源管理设备为电子设备100分配资源的频率,单位为GHz。1000/f表示资源管理设备为电子设备100分配资源的周期,单位为ms。cell表示向上取整操作。这里,由于t1是整数,因此上述公式也可以写为:
tn=cell(t1+1000/f×(n-1))
其中,t1+1000/f×(n-1)表示确定单元130根据首次发送业务数据的时域资源以及分配资源的周期确定的在各个周期发送业务数据的时间,确定单元130通过将该时间向上取整来将该时间调整为最小单位的整数倍。
例如,假定f=60GHz,t1=1ms,则t2=18ms,t3=35ms,t4=51ms,以此类推。
如上所述,根据本公开的实施例,确定单元130可以先根据首次发送业务数据的时域资源以及分配资源的周期确定在各个周期发送业务数据的时间,然后再将该时间调整为最小单位的整数倍。这样一来,资源管理设备为电子设备100分配的资源就不是严格的周期性资源,可能略有偏差。例如,在上面的示例中,t1与t2的间隔为17ms,t2与t3的间隔为17ms,而t3与t4的间隔为16ms。
根据本公开的实施例,确定单元130也可以通过将分配资源的周期向上取整来将周期调整为最小单位的整数倍,然后根据首次发送业务数据的时域资源以及调整后的周期来确定在各个周期发送业务数据的时域资源。
例如,确定单元130可以根据下述公式来确定在各个周期发送业务数据的时域资源:
tn=t1+(n-1)×cell(1000/f)
类似地,tn表示在第n(n为正整数)个周期发送业务数据的时域资源,单位为ms,t1表示首次发送业务数据的时域资源,单位为ms,可以 从资源分配信息得到。f表示资源管理设备为电子设备100分配资源的频率,单位为GHz。1000/f表示资源管理设备为电子设备100分配资源的周期,单位为ms。cell表示向上取整操作。
在上述公式中,cell(1000/f)表示确定单元130通过将分配资源的周期向上取整获得的为最小单位的整数倍的周期,然后确定单元130再根据首次发送业务数据的时域资源以及调整后的周期来确定在各个周期发送业务数据的时域资源。
例如,假定f=60GHz,t1=1ms,则调整后的周期为17ms,因此t2=18ms,t3=35ms,t4=52ms,以此类推。
如上所述,由于确定单元130先将分配资源的周期调整为最小单位的整数倍,再计算在各个周期发送业务数据的时域资源,因此资源管理设备为电子设备100分配的资源是严格的周期性资源。
如上所述,根据本公开的实施例,在分配资源的周期不是资源管理设备分配时域资源的最小单位的整数倍的情况下,电子设备100可以与资源管理设备约定好将在各个周期发送业务数据的时域资源调整为分配时域资源的最小单位的整数倍的方式,从而使得电子设备100确定的为电子设备100分配的资源和资源管理设备确定的为电子设备100分配的资源保持一致。这样一来,电子设备100也能够以与资源管理设备一致的方式确定出为其分配的资源。
根据本公开的实施例,如图1所示,电子设备100还可以包括数据生成单元170,用于生成要发送的业务数据。进一步,在逻辑信道中有待发送的业务数据的情况下,电子设备100可以根据确定单元130确定的电子设备100在各个周期发送业务数据的资源、通过通信单元140来发送业务数据。
图3是示出根据本公开的实施例的由用户设备请求上行资源并发送数据的信令流程图。在图3中,UE可以由电子设备100来实现。如图3所示,在步骤S301中,在业务数据尚未到达逻辑信道的情况下,UE向资源管理设备发送调度请求信息。接下来,在步骤S302中,资源管理设备可以向UE分配用于发送业务流量信息的上行资源。接下来,在步骤S303中,UE利用资源管理设备分配的上行资源发送业务流量信息。接下来,在步骤S304中,资源管理设备例如通过资源分配信息向UE分配用于发送上行数据的资源,从而UE可以通过本公开的实施例确定在各个周期发 送业务数据的资源。接下来,在步骤S305中,在业务数据到达逻辑信道的情况下,UE根据确定的各个周期发送业务数据的资源向资源管理设备发送上行数据。这里,虽然图3示出了UE向资源管理设备发送上行数据的情形,实际上UE也可以向其他设备发送上行数据。
根据本公开的实施例,在电子设备100向资源管理设备发送业务流量信息之前,电子设备100还可以向资源管理设备发送BSR(在下文中被称为第一BSR),以向资源管理设备通知电子设备100期望对尚未到达逻辑信道的数据预先申请资源。
图4是示出根据本公开的实施例的第一缓存状态报告的内容的示意图。图4示出了短BSR(即仅有一个逻辑信道)的情形。在图4中,逻辑信道ID表示该BSR针对的逻辑信道的标识,缓存大小表示缓存的业务数据的大小。由于业务数据尚未到达逻辑信道,因此这里可以为0。
图5是示出根据本公开的实施例的第一缓存状态报告的内容的示意图。图5示出了长BSR(即有多个逻辑信道)的情形。在图5中,LCG 0-LCG 7分别表示8个逻辑信道中的相应逻辑信道中是否有数据传输。例如,LCG 0=1表示编号为0的逻辑信道中有数据传输,LCG 1=0表示编号为1的逻辑信道中没有数据传输,依次类推。缓存大小1、缓存大小2、…缓存大小m表示有数据传输的各个逻辑信道中的缓存数据的大小,m表示LCG 0-LCG 7中为1的数目。例如,假定LCG 0、LCG 1、LCG 2、LCG 5为1,LCG 3、LCG 4、LCG 6、LCG 7为0,则m=4,缓存大小1表示编号为0的逻辑信道中的缓存数据的大小,缓存大小2表示编号为1的逻辑信道中的缓存数据的大小,缓存大小3表示编号为2的逻辑信道中的缓存数据的大小,缓存大小4表示编号为5的逻辑信道中的缓存数据的大小。由于业务数据尚未到达逻辑信道,因此可以将所有的缓存大小设置为0,LCG 0-LCG 7也设置为0,或者可以将所有的缓存大小设置为0,LCG 0-LCG 7设置为1。
根据本公开的实施例,资源管理设备在收到图4或者图5所示的第一BSR的情况下,并不认为出现了异常,而是可以确定电子设备100期望为即将到来的业务数据预先申请资源。在这种情况下,资源管理设备可以继续为电子设备100分配用于发送第二BSR的上行资源。这里的第二BSR例如可以包括前文中所述的业务流量信息,即如图2所示的示例。
图6是示出根据本公开的实施例的由用户设备请求上行资源并发送数据的信令流程图。在图6中,UE可以由电子设备100来实现。如图6所示,在步骤S601中,在业务数据尚未到达逻辑信道的情况下,UE向资 源管理设备发送调度请求信息。接下来,在步骤S602中,资源管理设备向UE分配用于发送第一缓存状态报告的资源。接下来,在步骤S603中,UE利用资源管理设备分配的资源向资源管理设备发送第一缓存状态报告(例如图4或者图5所示的示例)。接下来,在步骤S604中,资源管理设备向UE分配用于发送第二缓存状态报告的资源。接下来,在步骤S605中,UE向资源管理设备发送第二缓存状态报告(例如图2所示的示例)。接下来,在步骤S606中,资源管理设备向UE分配用于发送上行数据的资源。接下来,在业务数据到达逻辑信道的情况下,UE利用资源管理设备分配的资源发送上行数据。这里,虽然图6示出了UE向资源管理设备发送上行数据的情形,实际上UE也可以向其他设备发送上行数据。
如上所述,根据本公开的实施例,UE可以先向资源管理设备发送第一缓存状态报告,再向资源管理设备发送包括业务流量信息的第二缓存状态报告。这里,第一缓存状态报告与现有标准中的缓存状态报告兼容,因此可以在对现有标准改动较小的情况下实现周期性信息的上报。
以上描述了在无线通信网络中具有资源管理设备的情况下电子设备100预先申请用于发送业务数据的资源的实施例。下面将描述在无线通信网络中没有资源管理设备的情况下电子设备100预先申请用于发送业务数据的资源的实施例。
考虑以下的场景:在V2X(车辆与其他设备)mode 2(模式2)的通信场景中,不存在资源分配设备,作为用户设备的车辆之间自行协调资源。例如,在作为用户设备的车辆需要发送业务数据的情况下,可以在数据到达之后,在特定的时频资源上广播对后续资源的占用,然后在预定时间范围内利用提前占用的资源发送业务数据。这种占用可以包括单次的占用,也可以包括周期性的占用。
在现有的方案中,由于作为用户设备的车辆只能够在预定时间范围内选择要占用的资源并且发送业务数据,其中预定时间范围是根据对时延的约束确定的,因此在时延要求比较高,即预定时间范围比较小的情况下,车辆就有可能无法选取合适的资源。
图7是示出用户设备无法选择合适的资源发送数据的情况的示意图。如图7所示,在时刻t1,UE1需要发送的业务数据到达逻辑信道,k表示预定时间范围,即UE1必须在时刻t1+k之前将业务数据发送出去。在k比较小,例如1ms的情况下,UE1可能来不及选取合适的资源。如图7所示,UE1选取的时频资源超出了时刻t1+k,因此无法满足时延的要求。
根据本公开的实施例,电子设备100可以在业务数据到达逻辑信道之前,发送对发送该业务数据所使用的资源的占用信息,该占用信息可以包括资源的时域和频域位置。优选地,电子设备100可以广播发送这样的占用信息。可选地,如果电子设备100想周期性占用资源,占用信息还可以包括资源占用的周期性信息,例如可以包括资源占用的周期或者资源占用的频率。进一步,在业务数据到达逻辑信道之后并且在预定时间范围内,电子设备100可以利用占用信息中包括的资源发送业务数据。
图8是示出根据本公开的实施例的用户设备提前广播要占用的资源的示意图。在图8中,UE1可以由电子设备100来实现。如图8所示,时刻t1为业务数据到达逻辑信道的时刻。在业务数据到达逻辑信道之前,UE1发送占用信令,该信令可以包括UE1选择的时频资源的位置。然后在t1+k时刻以内(包括t1+k时刻),UE1利用选择的时频资源发送业务数据。
如上所述,根据本公开的实施例,由于电子设备100在业务数据到达逻辑信道之前可以广播资源的占用信息,因此可以提前占用资源,从而确保在预定时间范围内发送业务数据,满足时延的要求。
由此可见,根据本公开的实施例,在无线通信网络中包括资源管理设备的情况下,需要发送数据的电子设备可以在逻辑信道中没有待发送的业务数据的情况下就向资源管理设备发送其发送的业务数据的周期性信息。这样一来,在逻辑信道中有待发送的业务数据之前,资源管理设备就可以根据电子设备发送的业务数据的周期性信息为电子设备分配资源,从而降低时延。此外,根据本公开的实施例,在无线通信网络中不包括资源管理设备的情况下,需要发送数据的电子设备可以在业务数据到达逻辑信道之前广播资源的占用信息,从而确保在预定时间范围内发送业务数据,满足时延的要求。
<3.资源管理设备的配置示例>
图9是示出根据本公开的实施例的无线通信系统中的用作资源管理设备的电子设备900的结构的框图。这里,电子设备900是能够执行资源管理功能的电子设备。例如,电子设备900可以是网络侧设备,管理其覆盖范围内的用户设备的资源。再如,电子设备900也可以是用户设备,管理其他用户设备的资源。在这种情况下,电子设备900可以是由多个用户设备构成的簇的簇头设备,管理该簇内的其他用户设备的资源。
如图9所示,电子设备900可以包括通信单元930和生成单元940。
这里,电子设备900的各个单元都可以包括在处理电路中。需要说明的是,电子设备900既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,生成单元940可以生成资源分配信息,资源分配信息显性地或者隐性地指示电子设备900为用户设备分配资源的周期或者电子设备900为用户设备分配资源的频率。例如,电子设备900可以通过DCI和RRC来承载资源分配信息。
根据本公开的实施例,电子设备900可以通过通信单元930向用户设备发送资源分配信息。
下面将详细描述资源分配信息隐性地指示电子设备900为用户设备分配资源的周期或者电子设备900为用户设备分配资源的频率的情形。
根据本公开的实施例,电子设备900还可以包括确定单元910、分配单元920和编码单元950。
根据本公开的实施例,电子设备900可以通过通信单元930从用户设备接收用户设备的业务流量信息,业务流量信息包括用户设备发送的业务数据的周期性信息。
根据本公开的实施例,确定单元910可以根据周期性信息确定为用户设备分配资源的周期或者频率。具体地,确定单元910可以将周期性信息中包括的周期或者频率确定为为用户设备分配资源的周期或者频率。
根据本公开的实施例,分配单元920可以根据确定单元910确定的周期为用户设备分配资源。
根据本公开的实施例,编码单元950可以对生成单元940生成的资源分配信息进行编码,例如加扰。
这里,在SPS调度方式中,在RRC信令不包括周期性信息的情况下,编码单元950可以利用与SPS调度方式下在RRC信令不包括周期性信息的情况下的资源分配信息相对应的RNTI(即特定的RNTI)对该资源分配信息进行加扰,以指示为用户设备分配资源的周期或者频率是根据周期性信息确定的。
而在SPS调度方式中,在RRC信令包括周期性信息的情况下,编码单元950可以利用与在SPS调度方式下RRC信令包括周期性信息的情况下的资源分配信息相对应的RNTI对该资源分配信息进行加扰。
由此可见,根据本公开的实施例的电子设备900,可以根据用户设备上报的发送业务数据的周期或频率来确定为用户设备分配资源的周期或频率。进一步,电子设备900可以用隐性的方式指示为用户设备分配资源的周期或频率。这样一来,由于用户设备上报的周期性信息可以支持较多种类的周期,因此分配资源的周期与用户设备的业务的实际周期或频率互相匹配,从而可以减小周期性业务的传输时延,提高资源的利用率。
这里,在电子设备900收到了来自用户设备的业务流量信息并根据业务流量信息中包括的周期性信息确定为用户设备分配资源的周期的情况下,生成单元940生成的资源分配信息(DCI)可以包括为用户设备分配的在各个周期发送业务数据的频域资源和为用户设备分配的首次发送业务数据的时域资源,而电子设备900无需向用户设备发送为用户设备分配资源的周期性信息。
此外,在电子设备900没有收到来自用户设备的业务流量信息并且通过观察统计确定出为用户设备分配资源的周期的情况下,生成单元940生成的资源分配信息(DCI)可以包括为用户设备分配的在各个周期发送业务数据的频域资源和为用户设备分配的首次发送业务数据的时域资源,并且资源分配信息(RRC)还包括为用户设备分配资源的周期性信息。
根据本公开的实施例,如图9所示,根据本公开的实施例,电子设备900还可以通过通信单元930从用户设备接收调度请求信息。进一步,分配单元920可以响应于调度请求信息,为用户设备分配用于发送业务流量信息的资源。
根据本公开的实施例,业务流量信息可以通过MAC CE来承载。具体地,业务流量信息可以被包括在MAC CE中的BSR中。
根据本公开的实施例,周期性信息可以包括用户设备发送的业务数据的周期或者用户设备发送的业务数据的频率。确定单元910可以根据业务流量信息中包括的周期性信息确定用户设备发送的业务数据的周期或者用户设备发送的业务数据的频率。进一步,在周期性信息包括用户设备发送的业务数据的频率的情况下,确定单元910可以根据频率确定周期,例如根据频率的倒数确定周期。
根据本公开的实施例,业务流量信息还可以包括以下中的至少一种:表示周期性信息是周期还是频率的指示信息、用户设备缓存的业务数据的大小信息、以及用户设备预计的业务数据的到达时间信息。确定单元910可以根据指示信息以及周期性信息来确定用户设备发送的业务数据的周期,分配单元920可以根据用户设备预计的业务数据的到达时间信息来为用户设备分配资源。
根据本公开的实施例,在电子设备900接收到如图4或图5所示的第一BSR的情况下,电子设备900还可以为用户设备分配用于发送第二BSR的上行资源,并通过第二BSR来获取业务流量信息。
下面将详细描述资源分配信息隐性地指示电子设备900为用户设备分配资源的周期或者电子设备900为用户设备分配资源的频率的情形。
根据本公开的实施例,生成单元940生成的资源分配信息包括电子设备900为用户设备分配资源的周期或者电子设备900为所述用户设备分配资源的频率。例如,资源分配信息可以包括电子设备900为用户设备分配资源的周期或者频率的标识。
根据本公开的实施例,电子设备900还可以包括生成单元960,用于生成资源分配列表,资源分配列表包括电子设备900支持的为用户设备分配资源的周期和/或频率的列表。具体地,资源分配列表可以包括电子设备900支持的为用户设备分配资源的各个周期和/或各个频率的列表与各个周期或者各个频率的标识之间的映射关系。进一步,电子设备900可以通过通信单元930向用户设备发送资源分配列表。例如,电子设备900可以通过RRC信令承载这样的资源分配列表。
根据本公开的实施例,电子设备900和用户设备也可以预配置这样的资源分配列表。
根据本公开的实施例,生成单元960生成的资源分配信息还可以包括:表示资源分配信息包括电子设备900为用户设备分配资源的周期还是电子设备900为所述用户设备分配资源的频率的指示信息。例如,资源分配信息中可以包括1比特的指示信息,当指示信息为0时表示资源分配信息中包括的是周期,而当指示信息为1时表示资源分配信息中包括的是频率。在这个实施例中,资源分配信息可以包括指示信息、以及周期或者频率的标识。资源分配列表中可以包括资源管理设备支持的为电子设备100分配资源的各个周期和/或为电子设备100分配资源的各个频率与标识的 映射关系。
如上所述,根据本公开的实施例,在资源分配信息显性地指示电子设备900为用户设备分配资源的周期或者频率的情况下,由于资源分配信息支持频率的方式,因此可以支持一些发送频率是整数而发送周期不是整数的情形,从而使得资源分配的频率与用户设备发送业务数据的频率相匹配,减少数据传输时延,提高资源利用率。
如上详细描述了资源分配信息显性地或者隐性地指示电子设备900为用户设备分配资源的周期或者频率的实施例。根据本公开的实施例,在资源分配信息显性地或者隐性地指示电子设备900为用户设备分配资源的频率的情况下,分配单元920需要根据电子设备900为用户设备分配资源的频率确定电子设备900为用户设备分配资源的周期。进一步,分配单元920可以根据用户设备首次发送业务数据的时域资源以及电子设备900为用户设备分配资源的周期来确定用户设备在各个周期发送业务数据的时域资源。
根据本公开的实施例,在分配资源的周期不是电子设备900分配时域资源的最小单位的整数倍的情况下,分配单元920可以将用户设备在各个周期发送业务数据的时域资源调整为最小单位的整数倍。
根据本公开的实施例,分配单元920可以根据用户设备首次发送业务数据的时域资源以及分配资源的周期来确定用户设备在各个周期发送业务数据的时间,并且通过将时间向上取整来将时间调整为最小单位的整数倍。
根据本公开的实施例,分配单元920也可以通过将分配资源的周期向上取整来将周期调整为最小单位的整数倍,并且根据用户设备首次发送业务数据的时域资源以及调整后的周期来确定用户设备在各个周期发送业务数据的时域资源。
这里,分配单元920根据用户设备首次发送业务数据的时域资源以及电子设备900为用户设备分配资源的周期来确定用户设备在各个周期发送业务数据的时域资源的方式可以与电子设备100中的确定单元130确定的方式类似,在此不再赘述。也就是说,电子设备900应当与用户设备约定好确定在各个周期发送业务数据的资源的方式,以与用户设备一致的方式来确定为用户设备分配的资源。
如上所述,根据本公开的实施例,电子设备900可以用显性或者隐 性的方式指示为用户设备分配资源的周期,从而支持较多种类的周期,使得分配资源的周期与用户设备的业务的实际周期互相匹配,从而可以减小周期性业务的传输时延,提高资源的利用率。
<4.方法实施例>
接下来将详细描述根据本公开实施例的由无线通信系统中的作为用户设备的电子设备100执行的无线通信方法。
图10是示出根据本公开的实施例的由无线通信系统中的作为用户设备的电子设备100执行的无线通信方法的流程图。
如图10所示,在步骤S1010中,从资源管理设备接收资源分配信息,资源分配信息显性地或者隐性地指示资源管理设备为电子设备100分配资源的周期或者资源管理设备为电子设备100分配资源的频率。
接下来,在步骤S1020中,根据资源分配信息确定资源管理设备为电子设备100分配资源的周期。
图11是示出根据本公开的实施例的由无线通信系统中的作为用户设备的电子设备100执行的无线通信方法的流程图。在图11中,资源分配信息隐性地指示资源管理设备为电子设备100分配资源的周期或者频率。
如图11所示,在步骤S1110中,向资源管理设备发送电子设备的业务流量信息,业务流量信息包括电子设备发送的业务数据的周期性信息。
接下来,在步骤S1120中,从资源管理设备接收资源分配信息。
接下来,在步骤S1130中,在利用特定的无线网络临时标识RNTI对资源分配信息解扰成功的情况下,根据周期性信息确定资源管理设备为电子设备分配资源的周期或频率。
优选地,发送业务流量信息还包括:在逻辑信道中没有待发送的业务数据的情况下,向资源管理设备发送业务流量信息。
优选地,无线通信方法还包括:在逻辑信道中没有待发送的业务数据的情况下,向资源管理设备发送调度请求信息;从资源管理设备接收用于发送业务流量信息的资源;以及利用用于发送业务流量信息的资源向资源管理设备发送业务流量信息。
优选地,周期性信息包括电子设备发送的业务数据的周期或者电子设备发送的业务数据的频率。
优选地,业务流量信息还包括以下中的至少一种:表示周期性信息是周期还是频率的指示信息、缓存的业务数据的大小信息、以及预计的业务数据的到达时间信息。
优选地,发送业务流量信息还包括:利用MAC CE承载业务流量信息。
图12是示出根据本公开的实施例的由无线通信系统中的作为用户设备的电子设备100执行的无线通信方法的流程图。在图12中,资源分配信息显性地指示资源管理设备为电子设备100分配资源的周期或者频率。
在步骤S1210中,从资源管理设备接收资源分配信息,资源分配信息包括资源管理设备为电子设备100分配资源的周期或者资源管理设备为电子设备100分配资源的频率。
接下来,在步骤S1220中,根据资源分配信息确定资源管理设备为电子设备100分配资源的周期。
优选地,资源分配信息包括:表示资源分配信息包括资源管理设备为电子设备100分配资源的周期还是资源管理设备为电子设备100分配资源的频率的指示信息。
优选地,无线通信方法还包括:根据资源分配列表和资源分配信息确定资源管理设备为电子设备100分配资源的周期或者资源管理设备为电子设备100分配资源的频率,并且其中,资源分配列表包括资源管理设备支持的为电子设备100分配资源的周期和/或为电子设备100分配资源的频率的列表。
优选地,无线通信方法还包括:从资源管理设备接收资源分配列表或者预配置资源分配列表。
优选地,无线通信方法还包括:根据所述资源管理设备为所述电子设备分配资源的频率确定所述资源管理设备为所述电子设备分配资源的周期;以及根据资源分配信息以及资源管理设备为电子设备分配资源的周期来确定电子设备在各个周期发送业务数据的资源。
优选地,确定电子设备在各个周期发送业务数据的资源还包括:根据资源分配信息确定在各个周期发送业务数据的频域资源以及首次发送业务数据的时域资源;以及根据首次发送业务数据的时域资源以及资源管理设备为电子设备分配资源的周期来确定在各个周期发送业务数据的时域资源。
优选地,确定电子设备在各个周期发送业务数据的资源还包括:在分配资源的周期不是资源管理设备分配时域资源的最小单位的整数倍的情况下,将在各个周期发送业务数据的时域资源调整为最小单位的整数倍。
优选地,将在各个周期发送业务数据的时域资源调整为最小单位的整数倍包括:根据首次发送业务数据的时域资源以及分配资源的周期来确定在各个周期发送业务数据的时间;以及通过将时间向上取整来将时间调整为最小单位的整数倍。
优选地,将在各个周期发送业务数据的时域资源调整为最小单位的整数倍包括:通过将分配资源的周期向上取整来将周期调整为最小单位的整数倍;以及根据首次发送业务数据的时域资源以及调整后的周期来确定在各个周期发送业务数据的时域资源。
优选地,无线通信方法还包括:在逻辑信道中有待发送的业务数据的情况下,根据电子设备在各个周期发送业务数据的资源来发送业务数据。
优选地,资源管理设备为网络侧设备或者用户设备。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备100,因此前文中关于电子设备100的全部实施例均适用于此。
接下来将详细描述根据本公开实施例的由无线通信系统中的作为资源管理设备的电子设备900执行的无线通信方法。
图13是示出根据本公开的实施例的由无线通信系统中的作为资源管理设备的电子设备900执行的无线通信方法的流程图。
在步骤S1310中,生成资源分配信息,资源分配信息显性地或者隐性地指示电子设备900为用户设备分配资源的周期或者电子设备900为用户设备分配资源的频率。
接下来,在步骤S1320中,向用户设备发送资源分配信息。
图14是示出根据本公开的实施例的由无线通信系统中的作为资源管理设备的电子设备900执行的无线通信方法的流程图。在图14中,资源分配信息隐性地指示电子设备900为用户设备分配资源的周期或者频率。
如图14所示,在步骤S1410中,从用户设备接收用户设备的业务流 量信息,业务流量信息包括用户设备发送的业务数据的周期性信息。
接下来,在步骤S1420中,根据周期性信息确定为用户设备分配资源的周期或者频率并为用户设备分配资源。
接下来,在步骤S1430中,利用特定的无线网络临时标识RNTI对资源分配信息进行加扰,以指示为用户设备分配资源的周期或者频率是根据周期性信息确定的。
优选地,无线通信方法还包括:从用户设备接收调度请求信息;以及响应于调度请求信息,为用户设备分配用于发送业务流量信息的资源。
优选地,周期性信息包括用户设备发送的业务数据的周期或者用户设备发送的业务数据的频率。
优选地,业务流量信息还包括以下中的至少一种:表示周期性信息是周期还是频率的指示信息、用户设备缓存的业务数据的大小信息、以及用户设备预计的业务数据的到达时间信息。
优选地,接收业务流量信息还包括:利用MAC CE接收业务流量信息。
图15是示出根据本公开的实施例的由无线通信系统中的作为资源管理设备的电子设备900执行的无线通信方法的流程图。在图15中,资源分配信息显性地指示电子设备900为用户设备分配资源的周期或者频率。
在步骤S1510中,生成资源分配信息,资源分配信息包括电子设备900为用户设备分配资源的周期或者电子设备900为用户设备分配资源的频率。
在步骤S1520中,向所述用户设备发送所述资源分配信息。
优选地,资源分配信息包括:表示资源分配信息包括电子设备900为用户设备分配资源的周期还是电子设备900为用户设备分配资源的频率的指示信息。
优选地,无线通信方法还包括:生成资源分配列表,资源分配列表包括电子设备900支持的为用户设备分配资源的周期和/或为用户设备分配资源的频率的列表;以及向用户设备发送资源分配列表。
优选地,资源分配信息包括用户设备在各个周期发送业务数据的频域资源以及首次发送业务数据的时域资源。
优选地,无线通信方法还包括:根据电子设备900为用户设备分配资源的频率确定电子设备900为用户设备分配资源的周期;以及根据用户设备首次发送业务数据的时域资源以及电子设备为用户设备分配资源的周期来确定用户设备在各个周期发送业务数据的时域资源。
优选地,确定用户设备在各个周期发送业务数据的时域资源包括:在分配资源的周期不是电子设备分配时域资源的最小单位的整数倍的情况下,将用户设备在各个周期发送业务数据的时域资源调整为最小单位的整数倍。
优选地,将用户设备在各个周期发送业务数据的时域资源调整为最小单位的整数倍包括:根据用户设备首次发送业务数据的时域资源以及分配资源的周期来确定用户设备在各个周期发送业务数据的时间;以及通过将时间向上取整来将时间调整为最小单位的整数倍。
优选地,将用户设备在各个周期发送业务数据的时域资源调整为最小单位的整数倍包括:通过将分配资源的周期向上取整来将周期调整为最小单位的整数倍;以及根据用户设备首次发送业务数据的时域资源以及调整后的周期来确定用户设备在各个周期发送业务数据的时域资源。
优选地,电子设备为网络侧设备或者除用户设备以外的其他用户设备。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备900,因此前文中关于电子设备900的全部实施例均适用于此。
<5.应用示例>
本公开内容的技术能够应用于各种产品。例如,电子设备100可以被实现为用户设备,电子设备900可以被实现为向电子设备100提供服务的网络侧设备,或者被实现为可以管理电子设备100的资源的用户设备。
网络侧设备可以被实现为任何类型的TRP。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备和基站设备发送信息。在典型的示例中,TRP可以为用户设备提供服务,并且受基站设备的控制。进一步,TRP可以具备与如下所述的基站设备类似的结构,也可以仅具备基站设备中与发送和接收信息相关的结构。
网络侧设备也可以被实现为任何类型的基站设备,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB(5G系统中的基站)。小eNB可 以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<关于基站的应用示例>
(第一应用示例)
图16是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 1200包括一个或多个天线1210以及基站设备1220。基站设备1220和每个天线1210可以经由RF线缆彼此连接。
天线1210中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1220发送和接收无线信号。如图16所示,eNB 1200可以包括多个天线1210。例如,多个天线1210可以与eNB 1200使用的多个频带兼容。虽然图16示出其中eNB 1200包括多个天线1210的示例,但是eNB 1200也可以包括单个天线1210。
基站设备1220包括控制器1221、存储器1222、网络接口1223以及无线通信接口1225。
控制器1221可以为例如CPU或DSP,并且操作基站设备1220的较高层的各种功能。例如,控制器1221根据由无线通信接口1225处理的信号中的数据来生成数据分组,并经由网络接口1223来传递所生成的分组。控制器1221可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1221可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1222包括RAM和ROM,并且存储由控制器1221执行的程序和各种类型 的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1223为用于将基站设备1220连接至核心网1224的通信接口。控制器1221可以经由网络接口1223而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1200与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1223还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1223为无线通信接口,则与由无线通信接口1225使用的频带相比,网络接口1223可以使用较高频带用于无线通信。
无线通信接口1225支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1210来提供到位于eNB 1200的小区中的终端的无线连接。无线通信接口1225通常可以包括例如基带(BB)处理器1226和RF电路1227。BB处理器1226可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1221,BB处理器1226可以具有上述逻辑功能的一部分或全部。BB处理器1226可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1226的功能改变。该模块可以为插入到基站设备1220的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1227可以包括例如混频器、滤波器和放大器,并且经由天线1210来传送和接收无线信号。
如图16所示,无线通信接口1225可以包括多个BB处理器1226。例如,多个BB处理器1226可以与eNB 1200使用的多个频带兼容。如图16所示,无线通信接口1225可以包括多个RF电路1227。例如,多个RF电路1227可以与多个天线元件兼容。虽然图16示出其中无线通信接口1225包括多个BB处理器1226和多个RF电路1227的示例,但是无线通信接口1225也可以包括单个BB处理器1226或单个RF电路1227。
(第二应用示例)
图17是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 1330包括一个或多个天线1340、基站设备1350和RRH1360。RRH 1360和每个天线1340可以经由RF线缆而彼此连接。基站设备1350和RRH 1360可以经由诸如光纤线缆的高速线路而彼此连接。
天线1340中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1360发送和接收无线信号。如图17所示,eNB 1330可以包括多个天线1340。例如,多个天线1340可以与eNB 1330使用的多个频带兼容。虽然图17示出其中eNB 1330包括多个天线1340的示例,但是eNB 1330也可以包括单个天线1340。
基站设备1350包括控制器1351、存储器1352、网络接口1353、无线通信接口1355以及连接接口1357。控制器1351、存储器1352和网络接口1353与参照图16描述的控制器1221、存储器1222和网络接口1223相同。网络接口1353为用于将基站设备1350连接至核心网1354的通信接口。
无线通信接口1355支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1360和天线1340来提供到位于与RRH 1360对应的扇区中的终端的无线通信。无线通信接口1355通常可以包括例如BB处理器1356。除了BB处理器1356经由连接接口1357连接到RRH 1360的RF电路1364之外,BB处理器1356与参照图16描述的BB处理器1226相同。如图17所示,无线通信接口1355可以包括多个BB处理器1356。例如,多个BB处理器1356可以与eNB 1330使用的多个频带兼容。虽然图17示出其中无线通信接口1355包括多个BB处理器1356的示例,但是无线通信接口1355也可以包括单个BB处理器1356。
连接接口1357为用于将基站设备1350(无线通信接口1355)连接至RRH 1360的接口。连接接口1357还可以为用于将基站设备1350(无线通信接口1355)连接至RRH 1360的上述高速线路中的通信的通信模块。
RRH 1360包括连接接口1361和无线通信接口1363。
连接接口1361为用于将RRH 1360(无线通信接口1363)连接至基站设备1350的接口。连接接口1361还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1363经由天线1340来传送和接收无线信号。无线通信接口1363通常可以包括例如RF电路1364。RF电路1364可以包括例如混频器、滤波器和放大器,并且经由天线1340来传送和接收无线信号。如图17所示,无线通信接口1363可以包括多个RF电路1364。例如,多个RF电路1364可以支持多个天线元件。虽然图17示出其中无线通信接口1363包括多个RF电路1364的示例,但是无线通信接口1363也可以包 括单个RF电路1364。
在图16和图17所示的eNB 1200和eNB 1330中,通过使用图9所描述的确定单元910、分配单元920、生成单元940、编码单元950和生成单元960可以由控制器1221和/或控制器1351实现。功能的至少一部分也可以由控制器1221和控制器1351实现。例如,控制器1221和/或控制器1351可以通过执行相应的存储器中存储的指令而执行确定分配资源的周期、分配资源、生成资源分配信息、对资源分配信息进行编码以及生成资源分配列表的功能。
<关于终端设备的应用示例>
(第一应用示例)
图18是示出可以应用本公开内容的技术的智能电话1400的示意性配置的示例的框图。智能电话1400包括处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412、一个或多个天线开关1415、一个或多个天线1416、总线1417、电池1418以及辅助控制器1419。
处理器1401可以为例如CPU或片上系统(SoC),并且控制智能电话1400的应用层和另外层的功能。存储器1402包括RAM和ROM,并且存储数据和由处理器1401执行的程序。存储装置1403可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1404为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1400的接口。
摄像装置1406包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1407可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1408将输入到智能电话1400的声音转换为音频信号。输入装置1409包括例如被配置为检测显示装置1410的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1410包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1400的输出图像。扬声器1411将从智能电话1400输出的音频信号转换为声音。
无线通信接口1412支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1412通常可以包括例如BB处理器1413 和RF电路1414。BB处理器1413可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1414可以包括例如混频器、滤波器和放大器,并且经由天线1416来传送和接收无线信号。无线通信接口1412可以为其上集成有BB处理器1413和RF电路1414的一个芯片模块。如图18所示,无线通信接口1412可以包括多个BB处理器1413和多个RF电路1414。虽然图18示出其中无线通信接口1412包括多个BB处理器1413和多个RF电路1414的示例,但是无线通信接口1412也可以包括单个BB处理器1413或单个RF电路1414。
此外,除了蜂窝通信方案之外,无线通信接口1412可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1412可以包括针对每种无线通信方案的BB处理器1413和RF电路1414。
天线开关1415中的每一个在包括在无线通信接口1412中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1416的连接目的地。
天线1416中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1412传送和接收无线信号。如图18所示,智能电话1400可以包括多个天线1416。虽然图18示出其中智能电话1400包括多个天线1416的示例,但是智能电话1400也可以包括单个天线1416。
此外,智能电话1400可以包括针对每种无线通信方案的天线1416。在此情况下,天线开关1415可以从智能电话1400的配置中省略。
总线1417将处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412以及辅助控制器1419彼此连接。电池1418经由馈线向图18所示的智能电话1400的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1419例如在睡眠模式下操作智能电话1400的最小必需功能。
在图18所示的智能电话1400中,通过使用图1所描述的业务流量信息生成单元110、解码单元120、确定单元130、调度请求信息生成单元150、估计单元160和数据生成单元170,以及通过使用图9所描述的确 定单元910、分配单元920、生成单元940、编码单元950和生成单元960可以由处理器1401或辅助控制器1419实现。功能的至少一部分也可以由处理器1401或辅助控制器1419实现。例如,处理器1401或辅助控制器1419可以通过执行存储器1402或存储装置1403中存储的指令而执行生成业务流量信息、对资源分配信息进行解码、确定资源管理设备分配资源的周期、生成调度请求信息、估计业务数据的到达时间、生成数据、为其他用户设备分配资源、确定为其他用户设备分配资源的周期、生成资源分配信息、对资源分配信息进行编码以及生成资源分配列表的功能。
(第二应用示例)
图19是示出可以应用本公开内容的技术的汽车导航设备1520的示意性配置的示例的框图。汽车导航设备1520包括处理器1521、存储器1522、全球定位系统(GPS)模块1524、传感器1525、数据接口1526、内容播放器1527、存储介质接口1528、输入装置1529、显示装置1530、扬声器1531、无线通信接口1533、一个或多个天线开关1536、一个或多个天线1537以及电池1538。
处理器1521可以为例如CPU或SoC,并且控制汽车导航设备1520的导航功能和另外的功能。存储器1522包括RAM和ROM,并且存储数据和由处理器1521执行的程序。
GPS模块1524使用从GPS卫星接收的GPS信号来测量汽车导航设备1520的位置(诸如纬度、经度和高度)。传感器1525可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1526经由未示出的终端而连接到例如车载网络1541,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1527再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1528中。输入装置1529包括例如被配置为检测显示装置1530的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1530包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1531输出导航功能的声音或再现的内容。
无线通信接口1533支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1533通常可以包括例如BB处理器1534和RF电路1535。BB处理器1534可以执行例如编码/解码、调制/解调以 及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1535可以包括例如混频器、滤波器和放大器,并且经由天线1537来传送和接收无线信号。无线通信接口1533还可以为其上集成有BB处理器1534和RF电路1535的一个芯片模块。如图19所示,无线通信接口1533可以包括多个BB处理器1534和多个RF电路1535。虽然图19示出其中无线通信接口1533包括多个BB处理器1534和多个RF电路1535的示例,但是无线通信接口1533也可以包括单个BB处理器1534或单个RF电路1535。
此外,除了蜂窝通信方案之外,无线通信接口1533可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1533可以包括BB处理器1534和RF电路1535。
天线开关1536中的每一个在包括在无线通信接口1533中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1537的连接目的地。
天线1537中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1533传送和接收无线信号。如图19所示,汽车导航设备1520可以包括多个天线1537。虽然图19示出其中汽车导航设备1520包括多个天线1537的示例,但是汽车导航设备1520也可以包括单个天线1537。
此外,汽车导航设备1520可以包括针对每种无线通信方案的天线1537。在此情况下,天线开关1536可以从汽车导航设备1520的配置中省略。
电池1538经由馈线向图19所示的汽车导航设备1520的各个块提供电力,馈线在图中被部分地示为虚线。电池1538累积从车辆提供的电力。
在图19示出的汽车导航设备1520中,通过使用图1所描述的业务流量信息生成单元110、解码单元120、确定单元130、调度请求信息生成单元150、估计单元160和数据生成单元170,以及通过使用图9所描述的确定单元910、分配单元920、生成单元940、编码单元950和生成单元960可以由处理器1521实现。功能的至少一部分也可以由处理器1521实现。例如,处理器1521可以通过执行存储器1522中存储的指令而执行生成业务流量信息、对资源分配信息进行解码、确定资源管理设备分配资 源的周期、生成调度请求信息、估计业务数据的到达时间、生成数据、为其他用户设备分配资源、确定为其他用户设备分配资源的周期、生成资源分配信息、对资源分配信息进行编码以及生成资源分配列表的功能。
本公开内容的技术也可以被实现为包括汽车导航设备1520、车载网络1541以及车辆模块1542中的一个或多个块的车载系统(或车辆)1540。车辆模块1542生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1541。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (67)

  1. 一种电子设备,包括处理电路,被配置为:
    从资源管理设备接收资源分配信息,所述资源分配信息显性地或者隐性地指示所述资源管理设备为所述电子设备分配资源的周期或者所述资源管理设备为所述电子设备分配资源的频率;以及
    根据所述资源分配信息确定所述资源管理设备为所述电子设备分配资源的周期。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    向所述资源管理设备发送所述电子设备的业务流量信息,所述业务流量信息包括所述电子设备发送的业务数据的周期性信息;以及
    在利用特定的无线网络临时标识RNTI对所述资源分配信息的一部分解扰成功的情况下,根据所述周期性信息确定所述资源管理设备为所述电子设备分配资源的周期或者所述资源管理设备为所述电子设备分配资源的频率。
  3. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为:
    在逻辑信道中没有待发送的业务数据的情况下,向所述资源管理设备发送所述业务流量信息。
  4. 根据权利要求3所述的电子设备,其中,所述处理电路还被配置为:
    在逻辑信道中没有待发送的业务数据的情况下,向所述资源管理设备发送调度请求信息;
    从所述资源管理设备接收用于发送所述业务流量信息的资源;以及
    利用用于发送所述业务流量信息的资源向所述资源管理设备发送所述业务流量信息。
  5. 根据权利要求2所述的电子设备,其中,所述周期性信息包括所述电子设备发送的业务数据的周期或者所述电子设备发送的业务数据的频率。
  6. 根据权利要求5所述的电子设备,其中,所述业务流量信息还包括以下中的至少一种:表示所述周期性信息是周期还是频率的指示信息、缓存的业务数据的大小信息、以及预计的业务数据的到达时间信息。
  7. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为:
    利用MAC CE承载所述业务流量信息。
  8. 根据权利要求1所述的电子设备,其中,所述资源分配信息包括:所述资源管理设备为所述电子设备分配资源的周期或者所述资源管理设备为所述电子设备分配资源的频率。
  9. 根据权利要求8所述的电子设备,其中,所述资源分配信息包括:表示所述资源分配信息包括所述资源管理设备为所述电子设备分配资源的周期还是所述资源管理设备为所述电子设备分配资源的频率的指示信息。
  10. 根据权利要求8所述的电子设备,其中,所述处理电路还被配置为:
    根据资源分配列表和所述资源分配信息确定所述资源管理设备为所述电子设备分配资源的周期或者所述资源管理设备为所述电子设备分配资源的频率,并且
    其中,所述资源分配列表包括所述资源管理设备支持的为所述电子设备分配资源的周期和/或为所述电子设备分配资源的频率的列表。
  11. 根据权利要求10所述的电子设备,其中,所述处理电路还被配置为:
    从所述资源管理设备接收所述资源分配列表或者预配置所述资源分配列表。
  12. 根据权利要求2或8所述的电子设备,其中,所述处理电路还被配置为:
    根据所述资源管理设备为所述电子设备分配资源的频率确定所述资源管理设备为所述电子设备分配资源的周期;以及
    根据所述资源分配信息以及所述资源管理设备为所述电子设备分配资源的周期来确定所述电子设备在各个周期发送业务数据的资源。
  13. 根据权利要求12所述的电子设备,其中,所述处理电路还被配置为:
    根据所述资源分配信息确定在各个周期发送业务数据的频域资源以及首次发送业务数据的时域资源;以及
    根据首次发送业务数据的时域资源以及所述资源管理设备为所述电子设备分配资源的周期来确定在各个周期发送业务数据的时域资源。
  14. 根据权利要求13所述的电子设备,其中,所述处理电路还被配置为:
    在所述分配资源的周期不是所述资源管理设备分配时域资源的最小单位的整数倍的情况下,将在各个周期发送业务数据的时域资源调整为所述最小单位的整数倍。
  15. 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为:
    根据所述首次发送业务数据的时域资源以及所述分配资源的周期来确定在各个周期发送业务数据的时间;以及
    通过将所述时间向上取整来将所述时间调整为所述最小单位的整数倍。
  16. 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为:
    通过将所述分配资源的周期向上取整来将所述周期调整为所述最小单位的整数倍;以及
    根据所述首次发送业务数据的时域资源以及调整后的周期来确定在各个周期发送业务数据的时域资源。
  17. 根据权利要求12所述的电子设备,其中,所述处理电路还被配置为:
    在逻辑信道中有待发送的业务数据的情况下,根据所述电子设备在各个周期发送业务数据的资源来发送业务数据。
  18. 根据权利要求1-11和13-17中任一项所述的电子设备,其中,所述资源管理设备为网络侧设备或者用户设备。
  19. 一种电子设备,包括处理电路,被配置为:
    生成资源分配信息,所述资源分配信息显性地或者隐性地指示所述电子设备为用户设备分配资源的周期或者所述电子设备为所述用户设备分配资源的频率;以及
    向所述用户设备发送所述资源分配信息。
  20. 根据权利要求19所述的电子设备,其中,所述处理电路还被配置为:
    从所述用户设备接收所述用户设备的业务流量信息,所述业务流量信息包括所述用户设备发送的业务数据的周期性信息;
    根据所述周期性信息确定为所述用户设备分配资源的周期或者为所述用户设备分配资源的频率、并为所述用户设备分配资源;以及
    利用特定的无线网络临时标识RNTI对所述资源分配信息进行加扰,以指示为所述用户设备分配资源的周期或者频率是根据所述周期性信息确定的。
  21. 根据权利要求20所述的电子设备,其中,所述处理电路还被配置为:
    从所述用户设备接收调度请求信息;以及
    响应于所述调度请求信息,为所述用户设备分配用于发送所述业务流量信息的资源。
  22. 根据权利要求20所述的电子设备,其中,所述周期性信息包括所述用户设备发送的业务数据的周期或者所述用户设备发送的业务数据的频率。
  23. 根据权利要求22所述的电子设备,其中,所述业务流量信息还包括以下中的至少一种:表示所述周期性信息是周期还是频率的指示信息、所述用户设备缓存的业务数据的大小信息、以及所述用户设备预计的业务数据的到达时间信息。
  24. 根据权利要求20所述的电子设备,其中,所述处理电路还被配置为:
    利用MAC CE接收所述业务流量信息。
  25. 根据权利要求19所述的电子设备,其中,所述资源分配信息包括所述电子设备为所述用户设备分配资源的周期或者所述电子设备为所 述用户设备分配资源的频率。
  26. 根据权利要求25所述的电子设备,其中,所述资源分配信息包括:表示所述资源分配信息包括所述电子设备为所述用户设备分配资源的周期还是所述电子设备为所述用户设备分配资源的频率的指示信息。
  27. 根据权利要求25所述的电子设备,其中,所述处理电路还被配置为:
    生成资源分配列表,所述资源分配列表包括所述电子设备支持的为所述用户设备分配资源的周期和/或为所述用户设备分配资源的频率的列表;以及
    向所述用户设备发送所述资源分配列表。
  28. 根据权利要求20或25所述的电子设备,其中,所述资源分配信息包括所述用户设备在各个周期发送业务数据的频域资源以及首次发送业务数据的时域资源。
  29. 根据权利要求28所述的电子设备,其中,所述处理电路还被配置为:
    根据所述电子设备为所述用户设备分配资源的频率确定所述电子设备为所述用户设备分配资源的周期;以及
    根据所述用户设备首次发送业务数据的时域资源以及所述电子设备为所述用户设备分配资源的周期来确定所述用户设备在各个周期发送业务数据的时域资源。
  30. 根据权利要求29所述的电子设备,其中,所述处理电路还被配置为:
    在所述分配资源的周期不是所述电子设备分配时域资源的最小单位的整数倍的情况下,将所述用户设备在各个周期发送业务数据的时域资源调整为所述最小单位的整数倍。
  31. 根据权利要求30所述的电子设备,其中,所述处理电路还被配置为:
    根据所述用户设备首次发送业务数据的时域资源以及所述分配资源的周期来确定所述用户设备在各个周期发送业务数据的时间;以及
    通过将所述时间向上取整来将所述时间调整为所述最小单位的整数 倍。
  32. 根据权利要求30所述的电子设备,其中,所述处理电路还被配置为:
    通过将所述分配资源的周期向上取整来将所述周期调整为所述最小单位的整数倍;以及
    根据所述用户设备首次发送业务数据的时域资源以及调整后的周期来确定所述用户设备在各个周期发送业务数据的时域资源。
  33. 根据权利要求19-27和29-32中任一项所述的电子设备,其中,所述电子设备为网络侧设备或者除所述用户设备以外的其他用户设备。
  34. 一种由电子设备执行的无线通信方法,包括:
    从资源管理设备接收资源分配信息,所述资源分配信息显性地或者隐性地指示所述资源管理设备为所述电子设备分配资源的周期或者所述资源管理设备为所述电子设备分配资源的频率;以及
    根据所述资源分配信息确定所述资源管理设备为所述电子设备分配资源的周期。
  35. 根据权利要求34所述的无线通信方法,其中,所述无线通信方法还包括:
    向所述资源管理设备发送所述电子设备的业务流量信息,所述业务流量信息包括所述电子设备发送的业务数据的周期性信息;以及
    在利用特定的无线网络临时标识RNTI对所述资源分配信息的一部分解扰成功的情况下,根据所述周期性信息确定所述资源管理设备为所述电子设备分配资源的周期或者所述资源管理设备为所述电子设备分配资源的频率。
  36. 根据权利要求35所述的无线通信方法,其中,发送业务流量信息还包括:
    在逻辑信道中没有待发送的业务数据的情况下,向所述资源管理设备发送所述业务流量信息。
  37. 根据权利要求36所述的无线通信方法,其中,所述无线通信方法还包括:
    在逻辑信道中没有待发送的业务数据的情况下,向所述资源管理设备 发送调度请求信息;
    从所述资源管理设备接收用于发送所述业务流量信息的资源;以及
    利用用于发送所述业务流量信息的资源向所述资源管理设备发送所述业务流量信息。
  38. 根据权利要求35所述的无线通信方法,其中,所述周期性信息包括所述电子设备发送的业务数据的周期或者所述电子设备发送的业务数据的频率。
  39. 根据权利要求38所述的无线通信方法,其中,所述业务流量信息还包括以下中的至少一种:表示所述周期性信息是周期还是频率的指示信息、缓存的业务数据的大小信息、以及预计的业务数据的到达时间信息。
  40. 根据权利要求35所述的无线通信方法,其中,发送所述业务流量信息还包括:
    利用MAC CE承载所述业务流量信息。
  41. 根据权利要求34所述的无线通信方法,其中,所述资源分配信息包括:所述资源管理设备为所述电子设备分配资源的周期或者所述资源管理设备为所述电子设备分配资源的频率。
  42. 根据权利要求41所述的无线通信方法,其中,所述资源分配信息包括:表示所述资源分配信息包括所述资源管理设备为所述电子设备分配资源的周期还是所述资源管理设备为所述电子设备分配资源的频率的指示信息。
  43. 根据权利要求41所述的无线通信方法,其中,所述无线通信方法还包括:
    根据资源分配列表和所述资源分配信息确定所述资源管理设备为所述电子设备分配资源的周期或者所述资源管理设备为所述电子设备分配资源的频率,并且
    其中,所述资源分配列表包括所述资源管理设备支持的为所述电子设备分配资源的周期和/或为所述电子设备分配资源的频率的列表。
  44. 根据权利要求43所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述资源管理设备接收所述资源分配列表或者预配置所述资源分 配列表。
  45. 根据权利要求35或41所述的无线通信方法,其中,所述无线通信方法还包括:
    根据所述资源管理设备为所述电子设备分配资源的频率确定所述资源管理设备为所述电子设备分配资源的周期;以及
    根据所述资源分配信息以及所述资源管理设备为所述电子设备分配资源的周期来确定所述电子设备在各个周期发送业务数据的资源。
  46. 根据权利要求45所述的无线通信方法,其中,确定所述电子设备在各个周期发送业务数据的资源还包括:
    根据所述资源分配信息确定在各个周期发送业务数据的频域资源以及首次发送业务数据的时域资源;以及
    根据首次发送业务数据的时域资源以及所述资源管理设备为所述电子设备分配资源的周期来确定在各个周期发送业务数据的时域资源。
  47. 根据权利要求46所述的无线通信方法,其中,确定所述电子设备在各个周期发送业务数据的资源还包括:
    在所述分配资源的周期不是所述资源管理设备分配时域资源的最小单位的整数倍的情况下,将在各个周期发送业务数据的时域资源调整为所述最小单位的整数倍。
  48. 根据权利要求47所述的无线通信方法,其中,将在各个周期发送业务数据的时域资源调整为所述最小单位的整数倍包括:
    根据所述首次发送业务数据的时域资源以及所述分配资源的周期来确定在各个周期发送业务数据的时间;以及
    通过将所述时间向上取整来将所述时间调整为所述最小单位的整数倍。
  49. 根据权利要求47所述的无线通信方法,其中,将在各个周期发送业务数据的时域资源调整为所述最小单位的整数倍包括:
    通过将所述分配资源的周期向上取整来将所述周期调整为所述最小单位的整数倍;以及
    根据所述首次发送业务数据的时域资源以及调整后的周期来确定在各个周期发送业务数据的时域资源。
  50. 根据权利要求45所述的无线通信方法,其中,所述无线通信方法还包括:
    在逻辑信道中有待发送的业务数据的情况下,根据所述电子设备在各个周期发送业务数据的资源来发送业务数据。
  51. 根据权利要求34-44和46-50中任一项所述的无线通信方法,其中,所述资源管理设备为网络侧设备或者用户设备。
  52. 一种由电子设备执行的无线通信方法,包括:
    生成资源分配信息,所述资源分配信息显性地或者隐性地指示所述电子设备为用户设备分配资源的周期或者所述电子设备为所述用户设备分配资源的频率;以及
    向所述用户设备发送所述资源分配信息。
  53. 根据权利要求52所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述用户设备接收所述用户设备的业务流量信息,所述业务流量信息包括所述用户设备发送的业务数据的周期性信息;
    根据所述周期性信息确定为所述用户设备分配资源的周期或者为所述用户设备分配资源的频率、并为所述用户设备分配资源;以及
    利用特定的无线网络临时标识RNTI对所述资源分配信息进行加扰,以指示为所述用户设备分配资源的周期或者频率是根据所述周期性信息确定的。
  54. 根据权利要求53所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述用户设备接收调度请求信息;以及
    响应于所述调度请求信息,为所述用户设备分配用于发送所述业务流量信息的资源。
  55. 根据权利要求53所述的无线通信方法,其中,所述周期性信息包括所述用户设备发送的业务数据的周期或者所述用户设备发送的业务数据的频率。
  56. 根据权利要求55所述的无线通信方法,其中,所述业务流量信息还包括以下中的至少一种:表示所述周期性信息是周期还是频率的指示 信息、所述用户设备缓存的业务数据的大小信息、以及所述用户设备预计的业务数据的到达时间信息。
  57. 根据权利要求53所述的无线通信方法,其中,接收所述业务流量信息还包括:
    利用MAC CE接收所述业务流量信息。
  58. 根据权利要求52所述的无线通信方法,其中,所述资源分配信息包括所述电子设备为所述用户设备分配资源的周期或者所述电子设备为所述用户设备分配资源的频率。
  59. 根据权利要求58所述的无线通信方法,其中,所述资源分配信息包括:表示所述资源分配信息包括所述电子设备为所述用户设备分配资源的周期还是所述电子设备为所述用户设备分配资源的频率的指示信息。
  60. 根据权利要求58所述的无线通信方法,其中,所述无线通信方法还包括:
    生成资源分配列表,所述资源分配列表包括所述电子设备支持的为所述用户设备分配资源的周期和/或为所述用户设备分配资源的频率的列表;以及
    向所述用户设备发送所述资源分配列表。
  61. 根据权利要求53或58所述的无线通信方法,其中,所述资源分配信息包括所述用户设备在各个周期发送业务数据的频域资源以及首次发送业务数据的时域资源。
  62. 根据权利要求61所述的无线通信方法,其中,所述无线通信方法还包括:
    根据所述电子设备为所述用户设备分配资源的频率确定所述电子设备为所述用户设备分配资源的周期;以及
    根据所述用户设备首次发送业务数据的时域资源以及所述电子设备为所述用户设备分配资源的周期来确定所述用户设备在各个周期发送业务数据的时域资源。
  63. 根据权利要求62所述的无线通信方法,其中,确定所述用户设备在各个周期发送业务数据的时域资源包括:
    在所述分配资源的周期不是所述电子设备分配时域资源的最小单位 的整数倍的情况下,将所述用户设备在各个周期发送业务数据的时域资源调整为所述最小单位的整数倍。
  64. 根据权利要求63所述的无线通信方法,其中,将所述用户设备在各个周期发送业务数据的时域资源调整为所述最小单位的整数倍包括:
    根据所述用户设备首次发送业务数据的时域资源以及所述分配资源的周期来确定所述用户设备在各个周期发送业务数据的时间;以及
    通过将所述时间向上取整来将所述时间调整为所述最小单位的整数倍。
  65. 根据权利要求63所述的无线通信方法,其中,将所述用户设备在各个周期发送业务数据的时域资源调整为所述最小单位的整数倍包括:
    通过将所述分配资源的周期向上取整来将所述周期调整为所述最小单位的整数倍;以及
    根据所述用户设备首次发送业务数据的时域资源以及调整后的周期来确定所述用户设备在各个周期发送业务数据的时域资源。
  66. 根据权利要求52-60和62-65中任一项所述的无线通信方法,其中,所述电子设备为网络侧设备或者除所述用户设备以外的其他用户设备。
  67. 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求34-66中任一项所述的无线通信方法。
PCT/CN2020/129263 2020-04-17 2020-11-17 电子设备、无线通信方法和计算机可读存储介质 WO2021208417A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080097217.2A CN115136705A (zh) 2020-04-17 2020-11-17 电子设备、无线通信方法和计算机可读存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010304595.5A CN113543349A (zh) 2020-04-17 2020-04-17 电子设备、无线通信方法和计算机可读存储介质
CN202010304595.5 2020-04-17

Publications (1)

Publication Number Publication Date
WO2021208417A1 true WO2021208417A1 (zh) 2021-10-21

Family

ID=78083771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129263 WO2021208417A1 (zh) 2020-04-17 2020-11-17 电子设备、无线通信方法和计算机可读存储介质

Country Status (2)

Country Link
CN (2) CN113543349A (zh)
WO (1) WO2021208417A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160044653A1 (en) * 2014-08-06 2016-02-11 Futurewei Technologies, Inc. System and Method for Allocating Resources for Device-to-Device Communications
CN106211332A (zh) * 2015-05-05 2016-12-07 中兴通讯股份有限公司 资源分配的方法和装置
CN107040557A (zh) * 2016-02-03 2017-08-11 中兴通讯股份有限公司 资源申请、分配方法,ue及网络控制单元
CN107295646A (zh) * 2016-03-31 2017-10-24 华为技术有限公司 一种资源分配方法及网络设备
CN110830952A (zh) * 2018-08-10 2020-02-21 中兴通讯股份有限公司 车联网中直通链路的资源配置方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160044653A1 (en) * 2014-08-06 2016-02-11 Futurewei Technologies, Inc. System and Method for Allocating Resources for Device-to-Device Communications
CN106211332A (zh) * 2015-05-05 2016-12-07 中兴通讯股份有限公司 资源分配的方法和装置
CN107040557A (zh) * 2016-02-03 2017-08-11 中兴通讯股份有限公司 资源申请、分配方法,ue及网络控制单元
CN107295646A (zh) * 2016-03-31 2017-10-24 华为技术有限公司 一种资源分配方法及网络设备
CN110830952A (zh) * 2018-08-10 2020-02-21 中兴通讯股份有限公司 车联网中直通链路的资源配置方法及装置

Also Published As

Publication number Publication date
CN113543349A (zh) 2021-10-22
CN115136705A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
US11924878B2 (en) User equipment, network side device, wireless communication method and storage medium for channel occupancy time sharing
US11394509B2 (en) Apparatus and method in wireless communication system, and computer-readable storage medium
CN106452705B (zh) 无线通信系统中的电子设备和无线通信方法
KR102564327B1 (ko) 통신 장치 및 단말 장치
WO2018203443A1 (ja) 通信装置及び通信方法
JP6398970B2 (ja) 端末装置、通信制御方法及び通信制御装置
US10342003B2 (en) Device and method and program for performing radio communication
KR20170038820A (ko) 무선 통신 시스템에서의 장치 및 방법
CN112534923A (zh) 用于无线通信系统的电子设备、方法和存储介质
JP2018191104A (ja) 通信装置、基地局装置、方法及び記録媒体
KR20180080274A (ko) 기지국 측 및 사용자 장비 측 장치들 및 방법들과, 무선 통신 시스템
US11057918B2 (en) Electronic device and radio communication method
CN110651501A (zh) 电子装置、无线通信方法和计算机可读介质
WO2017061157A1 (ja) 装置及び方法
US20210136845A1 (en) Electronic device and method for wireless communications
WO2020066696A1 (ja) 通信装置、通信方法、及びプログラム
WO2018128029A1 (ja) 端末装置、基地局装置、方法及び記録媒体
US20190260562A1 (en) Apparatus for communicating using a frequency band with priority
US11096205B2 (en) Device and method for controlling communication of downlink data
WO2019007262A1 (zh) 无线通信方法和无线通信设备
WO2021208417A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US10440586B2 (en) Apparatus for frequency band allocation
US20240188131A1 (en) User equipment, network side device, wireless communication method and storage medium for channel occupancy time sharing
WO2022253070A1 (zh) 电子设备、无线通信方法以及计算机可读存储介质
CN116997000A (zh) 用于无线通信的方法和电子设备以及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930674

Country of ref document: EP

Kind code of ref document: A1