WO2017061157A1 - 装置及び方法 - Google Patents

装置及び方法 Download PDF

Info

Publication number
WO2017061157A1
WO2017061157A1 PCT/JP2016/070324 JP2016070324W WO2017061157A1 WO 2017061157 A1 WO2017061157 A1 WO 2017061157A1 JP 2016070324 W JP2016070324 W JP 2016070324W WO 2017061157 A1 WO2017061157 A1 WO 2017061157A1
Authority
WO
WIPO (PCT)
Prior art keywords
lbt
group
unit frequency
frequency band
unit
Prior art date
Application number
PCT/JP2016/070324
Other languages
English (en)
French (fr)
Inventor
高野 裕昭
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201680057242.1A priority Critical patent/CN108141865B/zh
Priority to JP2017544392A priority patent/JP6894842B2/ja
Priority to US15/751,977 priority patent/US10764923B2/en
Priority to EP23163226.6A priority patent/EP4221431A1/en
Priority to BR112018006432A priority patent/BR112018006432A2/pt
Priority to EP16853312.3A priority patent/EP3361808B1/en
Publication of WO2017061157A1 publication Critical patent/WO2017061157A1/ja
Priority to US16/995,824 priority patent/US20200404707A1/en
Priority to US17/829,393 priority patent/US20220304052A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to an apparatus and a method.
  • small cell enhancement a technique for utilizing a small cell.
  • the small cell is a concept that can include various types of cells (for example, femtocells, nanocells, picocells, microcells, and the like) that are arranged overlapping the macrocells and are smaller than the macrocells.
  • the use of a frequency band of 6 GHz or more called a millimeter wave band is being studied.
  • the millimeter wave band is expected to be used in a small cell smaller than a macro cell because of its strong straightness and large radio wave propagation attenuation.
  • the millimeter wave band is vast, it is difficult to assume that all frequency bands are licensed bands, and an unlicensed band that allows secondary use of a considerable number of frequency bands. It is assumed that
  • Patent Document 1 As a technology related to secondary use of frequency, in Patent Document 1 below, whether or not a frequency band of a certain operator can be used by exchanging information with a plurality of networks operated by different operators is different. A mechanism for enabling operators to know is disclosed.
  • an apparatus including a processing unit that estimates an LBT result for each unit frequency band.
  • FIG. 1 is an explanatory diagram for describing an overview of a system according to an embodiment of the present disclosure.
  • FIG. It is explanatory drawing for demonstrating a component carrier. It is a block diagram which shows an example of a structure of the base station which concerns on the same embodiment. It is a block diagram which shows an example of a structure of the terminal device which concerns on the same embodiment. It is explanatory drawing for demonstrating the technical feature of 1st Embodiment. It is explanatory drawing for demonstrating the technical feature of the embodiment. It is explanatory drawing for demonstrating the technical feature of the embodiment. It is explanatory drawing for demonstrating the technical feature of the embodiment. It is explanatory drawing for demonstrating the technical feature of the embodiment. It is a flowchart which shows an example of the flow of the LBT process performed in the terminal device which concerns on the same embodiment.
  • elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numerals.
  • a plurality of elements having substantially the same functional configuration are differentiated as necessary, such as the base stations 10A, 10B, and 10C.
  • the base stations 10A, 10B, and 10C are simply referred to as the base station 10.
  • FIG. 1 is an explanatory diagram for describing an overview of a system 1 according to an embodiment of the present disclosure.
  • the system 1 includes a base station 10, a terminal device 20, and a communication control device 30.
  • the communication control device 30 is a macro cell base station.
  • the macro cell base station 30 provides a radio communication service to one or more terminal devices 20 located inside the macro cell 31.
  • the macrocell base station 30 is connected to the core network 15.
  • the core network 15 is connected to a packet data network (PDN) 16 via a gateway device (not shown).
  • PDN packet data network
  • the macro cell 31 is, for example, any wireless communication method such as LTE (Long Term Evolution), LTE-A (LTE-Advanced), GSM (registered trademark), UMTS, W-CDMA, CDMA200, WiMAX, WiMAX2, or IEEE 802.16. May be operated according to Note that the present invention is not limited to the example of FIG.
  • the control node in the core network 15 or the PDN 16 may have a function of cooperatively controlling radio communication in the macro cell and the small cell.
  • the macro cell base station may also be referred to as Macro eNodeB.
  • the base station 10 ⁇ / b> A is a small cell base station that operates the small cell 11.
  • the small cell base station 10A typically has the authority to allocate radio resources to the terminal device 20 connected to its own device. However, radio resource allocation may be at least partially delegated to the communication control device 30 for coordinated control.
  • the base station 10 may be a small cell base station that is fixedly installed as shown in FIG. 1 or a dynamic AP (access point) that dynamically operates the small cell 11. Note that the small cell base station may also be referred to as a pico eNB or a Femto eNB.
  • the base station 10B is an AP that operates a Wi-Fi network. The AP 10B performs wireless communication with the terminal device 20 connected to the own device. Between the small cell base station 10A or the macro cell base station 30 and the AP 10B, the frequency to be used may overlap due to the use of an unlicensed band described later.
  • the terminal device 20 is connected to the macro cell base station 30, the small cell base station 10A, or the AP 10B and enjoys a wireless communication service.
  • the terminal device 20 connected to the small cell base station 10 receives a control signal from the macro cell base station 30 and receives a data signal from the small cell base station 10.
  • the terminal device 20 is also called a user.
  • the user may also be referred to as user equipment (UE).
  • the UE here may be a UE defined in LTE or LTE-A, and may more generally mean a communication device.
  • Component carrier Carrier aggregation is a technique for improving communication throughput by forming a communication channel between a base station and a terminal device by integrating a plurality of unit frequency bands supported in LTE, for example. .
  • Each unit frequency band included in one communication channel formed by carrier aggregation is referred to as a component carrier (CC).
  • the CC here may be a CC defined in LTE or LTE-A, and may more generally mean a unit frequency band.
  • each CC integrated may be arrange
  • which CC is integrated and used can be set for each terminal device.
  • PCC Primary Component Carrier
  • SCC Secondary Component Carrier
  • FIG. 2 is an explanatory diagram for explaining the component carrier.
  • a state is shown in which two UEs are using a part of five CCs in an integrated manner.
  • UE1 uses CC1, CC2, and CC3 in an integrated manner
  • UE2 uses CC2 and CC4 in an integrated manner.
  • the PCC of UE1 is CC2.
  • the PCC of UE2 is CC4.
  • the selection of PCC is implementation-dependent.
  • the SCC is changed by deleting the SCC and adding another SCC. That is, it is difficult to directly change the SCC.
  • Connection establishment This procedure is a procedure started with a request from the terminal device side as a trigger.
  • PCC is changed by a procedure called Connection Reconfiguration.
  • the procedure includes sending and receiving a handover message. This procedure is started from the base station side.
  • Deletion of SCC is performed by a procedure called Connection Reconfiguration. This procedure is started from the base station side. In this procedure, the specific SCC specified in the message is deleted. Note that the deletion of the SCC is also performed by a procedure called Connection Re-establishment. This procedure is a procedure started from the terminal device side. According to this procedure, all SCCs are deleted. Deleting an SCC is also referred to as deactivating the SCC.
  • PCC Physical Uplink Control Channel
  • the uplink control signal includes, for example, an ACK or NACK indicating successful or unsuccessful reception of data transmitted on the downlink, a scheduling request, and the like.
  • the procedure from the detection of the radio link failure to the connection re-establishment is also performed only by the PCC.
  • LTE Release 12 a scenario in which different frequencies are used in a macro cell base station and a small cell base station is shown.
  • a macro cell base station can be assigned a frequency of about 2 GHz
  • a small cell base station can be assigned a high frequency such as 5 GHz.
  • a radio wave of 3 GHz to 30 GHz (that is, a wavelength of 1 cm to 10 cm) is also called a centimeter wave.
  • a radio wave of 30 GHz to 300 GHz (that is, a wavelength of 1 cm to 1 mm) is also referred to as a millimeter wave.
  • Radio waves of 10 GHz to 30 GHz are also called quasi-millimeter waves.
  • the millimeter wave band in this specification refers to a frequency band of 6 GHz or more among these. That is, the millimeter wave in this specification is a concept including a general centimeter wave.
  • the millimeter wave band has vast frequency resources. Therefore, in the millimeter wave band, it is assumed that the CC bandwidth, which was 20 MHz in LTE Release 10, can be changed to a wider bandwidth such as 40 MHz, 80 MHz, or 160 MHz.
  • Radio wave propagation loss for each frequency band typically, radio wave propagation loss (that is, path loss) increases as the frequency squares, and radio waves attenuate.
  • radio wave propagation loss that is, path loss
  • the 20 GHz band has a larger 12 dB attenuation than the 5 GHz band.
  • the 60 GHz band has a greater 22 dB attenuation than the 5 GHz band.
  • the millimeter wave band spans a vast band from, for example, about 6 GHz to 60 GHz. Compared to the fact that the 2 GHz band is used in the current LTE, it can be said that the millimeter wave band has a vast band.
  • the properties of radio waves in the millimeter wave band are not uniform due to their large size, and the radio waves belonging to the same millimeter wave band may differ greatly in properties.
  • the millimeter wave band has resources in a wide range from 6 GHz to 60 GHz. Therefore, even if it is going to control this wide range resource using 2 GHz band CC, the resource of CC of 2 GHz band may run short.
  • the subcarrier spacing of OFDM (Orthogonal Frequency Division Multiplexing) in LTE at the time of 3GPP Release 12 is 15 kHz.
  • the width of 15 kHz is defined to be flat fading in units of subcarriers. Therefore, as a whole (for example, 20 MHz width), even if frequency selective fading occurs, flat fading occurs in subcarrier units. Thus, the width of 15 kHz brings about the merit that the characteristic deterioration at the time of reception is small.
  • the frequency width in which the occurrence of this flat fading can be expected is increased.
  • the subcarrier interval which was 15 kHz in the 2 GHz band, to 150 kHz in the 20 GHz band.
  • the subcarrier interval can be changed to, for example, about four stages of 15 kHz, 30 kHz, 60 kHz, and 120 kHz. This is because even if it is further refined, it is considered that the effect is low for a large change in specifications.
  • the table below shows an example of settings when the subcarrier interval can be changed in four stages.
  • LBT is a technique for wireless devices to autonomously acquire data transmission rights. Specifically, with LBT, after confirming that there is no device (terminal, access point, base station, etc.) that has already performed transmission using the frequency to be used for transmission before transmission. Is a process of transmitting. LBT may also be referred to as carrier sense or CSMA / CA (Carrier Sense Multiple Access / Collision Avoidance).
  • CSMA Carrier Sense Multiple Access / Collision Avoidance
  • each wireless device waits in the reception mode and measures received power in order to confirm whether or not a signal is transmitted by another wireless device in the channel to be used.
  • the wireless device determines that the channel is in an idle state and signal transmission by another wireless device is not performed.
  • the wireless device determines that the channel is busy and signal transmission by another wireless device is being performed.
  • the wireless device waits for a time determined by random numbers within a certain time (for example, random numbers according to a uniform distribution between 0 and 1000 ⁇ s) and then receives again.
  • the reception power can be measured by waiting at Such an operation is also referred to as a random backoff.
  • the wireless device waits in a random time reception mode, and if the channel is idle during that time, it performs transmission by assuming that the transmission right has been acquired. On the other hand, the wireless device waits in a random time reception mode, and suppresses transmission if the channel is not idle during that time.
  • Unlicensed band in the millimeter wave band The license band is a band used by a mobile phone operator or the like under license.
  • the unlicensed band is a band that can be used without a license such as Wi-Fi.
  • the millimeter wave band includes not only the license band but also the unlicensed band. This is because it is more efficient to accommodate various radio access technologies simultaneously.
  • the millimeter wave band has vast resources from 6 GHz to 300 GHz. Therefore, for the convenience of management, it is assumed that the vast frequency resource is managed in units of CC.
  • CCs having various bandwidths such as CCs having a bandwidth of 20 MHz, CCs having a frequency of 40 MHz, CCs having a frequency of 80 MHz, and hundreds of Hz are mixed is assumed. That is, when the millimeter wave band is used, the number of usable CCs and the bandwidth of the CC are greatly increased as compared with the case where the millimeter wave band is not used.
  • a device using an unlicensed band performs LBT and confirms the availability of a frequency band before transmission. Even when the millimeter wave band is used, if the LBT framework described above is followed, the wireless device performs LBT on all the CCs scheduled to be used. In that case, the number and bandwidth of CCs to be subjected to LBT are greatly increased compared to the case where the millimeter wave band is not used. Therefore, there is a concern that the LBT becomes complicated, the processing load and the power consumption increase, and the transmission opportunity decreases.
  • LAA Licensed-Assisted Access
  • a contention basis for example, carrier sense operation such as LBT. Therefore, a stable channel does not always exist between the eNB and the UE. Therefore, it is assumed that the CC of the license band is used to control the UE, such as a channel for feeding back ACK / NACK indicating success / failure of downlink data reception.
  • the second caution is that CCs with various bandwidths are mixed. Some UEs may only use a 20 MHz bandwidth. It is not clear how such a UE should behave for a CC with a bandwidth of 200 MHz.
  • the third point of caution is the generation of a request to use multiple CCs simultaneously.
  • the UE can use a vast frequency, and it is expected to improve the maximum transmission speed during data transmission by using a plurality of CCs simultaneously.
  • LBT low-power Bluetooth
  • FIG. 3 is a block diagram illustrating an exemplary configuration of the base station 10 according to an embodiment of the present disclosure.
  • the base station 10 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
  • Antenna unit 110 The antenna unit 110 radiates a signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
  • the wireless communication unit 120 transmits and receives signals.
  • the radio communication unit 120 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
  • the network communication unit 130 transmits and receives information.
  • the network communication unit 130 transmits information to other nodes and receives information from other nodes.
  • the other nodes include other base stations and core network nodes.
  • Storage unit 140 The storage unit 140 temporarily or permanently stores a program for operating the base station 10 and various data.
  • Processing unit 150 provides various functions of the base station 10.
  • the processing unit 150 includes a communication processing unit 151, an LBT processing unit 153, and a setting unit 155.
  • the processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
  • the operations of the communication processing unit 151, the LBT processing unit 153, and the setting unit 155 will be described in detail later.
  • FIG. 4 is a block diagram illustrating an exemplary configuration of the terminal device 20 according to an embodiment of the present disclosure.
  • the terminal device 20 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
  • Antenna unit 210 The antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
  • the wireless communication unit 220 transmits and receives signals.
  • the radio communication unit 220 receives a downlink signal from the base station and transmits an uplink signal to the base station.
  • Storage unit 230 The storage unit 230 temporarily or permanently stores a program for operating the terminal device 20 and various data.
  • the processing unit 240 provides various functions of the terminal device 20.
  • the processing unit 240 includes a communication processing unit 241, an LBT processing unit 243, and a setting unit 245. Note that the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than the operations of these components.
  • CCs a group consisting of some CCs among a plurality of CCs that can be used by the base station 10 is defined.
  • This group includes at least one (typically, multiple) CCs.
  • this group is also referred to as an LBT group.
  • One LBT group includes at least one LBT primary CC. Further, the number of CCs included in the LBT group is set as the level of the LBT group. An example of the LBT group is shown in FIGS.
  • FIG. 5 shows an example of a level 2 LBT group formed by two CCs, and CC1 is an LBT primary CC.
  • FIG. 6 shows an example of a level 4 LBT group formed by four CCs, and CC1 is an LBT primary CC.
  • FIG. 7 shows an example of a level 1 LBT group formed by one CC, and CC1 is the LBT primary CC.
  • various levels of LBT groups can coexist.
  • the LBT primary CC corresponds to the first unit frequency band
  • CCs other than the LBT primary CC included in the LBT group correspond to the second unit frequency band.
  • the number of CCs included in one LBT group is arbitrary.
  • wireless apparatus selects the LBT group used as the object of LBT based on the number of CC contained in an LBT group. For example, the wireless device selects an LBT group including a number of CCs that are desired to be used simultaneously. As a result, the radio apparatus can selectively set the LBT group including the number of CCs desired to be used simultaneously as an LBT target.
  • the number of CCs included in the LBT group is preferably a power of two. This is because the operation is facilitated when a plurality of LBT groups form a hierarchical structure, as will be described later in the second embodiment.
  • the wireless device (for example, the LBT processing unit 153 of the base station 10 or the LBT processing unit 243 of the terminal device 20) performs LBT in units of LBT groups.
  • the radio apparatus estimates the LBT result for CCs other than the LBT primary CC included in the LBT group based on the LBT result for the LBT primary CC. Specifically, the radio apparatus estimates that the LBT result regarding CCs other than the LBT primary CC included in the LBT group is the same as the LBT result of the LBT primary CC. For example, when the LBT primary CC is in an idle state, the wireless device estimates that the entire LBT group is in an idle state. Thereby, the wireless device can use all CCs included in the LBT group for a predetermined time (for example, 4 ms (milliseconds)). On the other hand, when the LBT primary CC is busy, the radio apparatus estimates that the entire LBT group is busy.
  • the radio device may perform LBT only for the LBT primary CC.
  • wireless apparatus can suppress the number of CC used as implementation object of LBT, and it becomes possible to implement LBT efficiently.
  • the fact that the LBT primary CC is in an idle state does not prevent the implementation of LBT for other CCs included in the LBT group. Even if it is confirmed that the LBT primary CC is in an idle state, the wireless device may perform LBT related to the other CC before performing communication using another CC included in the LBT group. As a result, collision avoidance and interference suppression are reliably realized.
  • the wireless device (for example, the communication processing unit 151 of the base station 10 or the communication processing unit 241 of the terminal device 20) performs communication based on the LBT result.
  • the wireless device determines whether to perform communication using CC in units of LBT groups. Specifically, the wireless device performs communication using an LBT group estimated to be in an idle state. At this time, the wireless device communicates with other devices using at least the LBT primary CC. As a result, when the LBT is performed by another wireless device, it is determined that the LBT primary CC is busy, so that a collision is avoided.
  • the wireless device (for example, the setting unit 155 of the base station 10 or the setting unit 245 of the terminal device 20) sets the LBT group and the LBT primary CC of each LBT group.
  • the wireless device acquires information indicating a plurality of CCs included in each LBT group (that is, information indicating which CC belongs to which LBT group).
  • group information information indicating which CC belongs to which LBT group.
  • the wireless device acquires information indicating the LBT primary CC in each LBT group (that is, information indicating which CC is the LBT primary CC).
  • primary information information indicating which CC is the LBT primary CC.
  • the small cell base station 10A acquires group information and primary information from the mobile phone operator.
  • the base station 10A may acquire through an interface such as O & M (Operation & Maintenance).
  • the AP 10B acquires (that is, inputs) group information and primary information at the time of factory shipment, for example.
  • the terminal device 20 acquires group information and primary information from the small cell base station 10A, the macro cell base station 30, or the AP 10B, for example. From the opposite viewpoint, it can also be said that the radio apparatus (small cell base station 10A, macrocell base station 30 or AP 10B) notifies the terminal apparatus 20 of group information and primary information.
  • this group information and primary information are common to all wireless communication systems included in the system 1. More specifically, it is desirable that group information and primary information are common between different operators and between networks of other communication standards such as a cellular system and a Wi-Fi system.
  • FIG. 9 is a flowchart showing an example of the flow of LBT processing executed in the terminal device 20 according to the present embodiment.
  • the terminal device 20 determines the number (ie, level) of CCs that are desired to be used simultaneously (step S102).
  • the terminal device 20 selects an LBT group corresponding to the number of CCs desired to be used (step S104). For example, the terminal device 20 preferentially selects an LBT group in which the number of CCs desired to be used matches the number of CCs included.
  • the terminal device 20 (for example, the LBT processing unit 243) measures the received power at the LBT primary CC of the selected LBT group, and determines whether or not it is in an idle state (step S106).
  • the terminal device 20 determines that the entire CC of the selected LBT group is in the idle state (step S108). Thereafter, the terminal device 20 (for example, the communication processing unit 241) transmits a signal using all CCs included in the selected LBT group at the same time (step S110).
  • the terminal device 20 determines that the entire CC of the selected LBT group is busy (step S112). ). In this case, the terminal device 20 returns to step S104 again, selects a different LBT group, and can repeat the subsequent processing.
  • the terminal device 20 has been described as the main subject of processing, but the base station 10 may be the main subject of processing.
  • FIG. 10 is a sequence diagram showing an example of the flow of communication processes executed in the system 1 according to the present embodiment.
  • the base station 10 and the terminal device 20 are involved. This sequence is an example when the terminal device 20 performs LBT.
  • the base station 10 acquires group information and primary information (step S202). Next, the base station 10 notifies the terminal device 20 of group information (step S204), and notifies the terminal device 20 of primary information (step S206).
  • the terminal device 20 selects an LBT group corresponding to the number of CCs desired to be used simultaneously (step S208).
  • the terminal device 20 performs LBT with the primary CC of the selected LBT group (step S210).
  • the terminal device 20 notifies the base station 10 of information indicating the LBT result (step S212).
  • the base station 10 can formulate an uplink schedule and / or a downlink schedule based on information indicating the LBT result.
  • the base station 10 and the terminal device 20 transmit and receive data using the CC belonging to the LBT group to which the LBT primary CC determined to be in the idle state belongs (step S214).
  • FIG. 11 is a sequence diagram showing an example of the flow of communication processing executed in the system 1 according to the present embodiment.
  • the base station 10 and the terminal device 20 are involved. This sequence is an example when the base station 10 performs LBT.
  • the base station 10 acquires group information and primary information (step S302).
  • the base station 10 notifies the terminal device 20 of group information (step S304), and notifies the terminal device 20 of primary information (step S306).
  • the base station 10 selects an LBT group corresponding to the number of CCs desired to be used (step S308). Next, the base station 10 performs LBT with the primary CC of the selected LBT group (step S310).
  • the base station 10 and the terminal device 20 transmit and receive data using the CC included in the LBT group to which the LBT primary CC determined to be in the idle state belongs (step S312).
  • Second Embodiment >> ⁇ 4.1.
  • Technical issues> There may be a case where the number of CCs desired to be used simultaneously differs for each wireless device due to various factors such as a capability limitation of the wireless device or a transmission data capacity.
  • radio apparatuses having different numbers of CCs that are desired to be used simultaneously are mixed. Even in such a case, it is desirable to provide a mechanism for efficiently implementing LBT.
  • the level 2 LBT group is used intensively, the level 2 LBT group is depleted and the level 4 LBT group is used instead. Is assumed. In this case, although two CCs are originally sufficient, four CCs are occupied, which can be said to be inefficient. Therefore, it is desirable to realize efficient grouping of CCs.
  • an LBT group is formed by a set of lower-order LBT groups that include fewer CCs. That is, the LBT group according to the present embodiment has a hierarchical structure in which the upper LBT group is a set of lower LBT groups. An example of the hierarchical structure is shown in FIG.
  • a level 2 LBT group consisting of CC1 to CC4 is formed by a level 2 LBT group consisting of CC1 and CC2 and a level 2 LBT group consisting of CC3 and CC4.
  • Such a hierarchical structure realizes flexible grouping such that four CCs are handled as one LBT group at level 4 or two LBT groups at level 2, enabling efficient use of resources. .
  • the LBT primary CC of the upper LBT group coincides with the LBT primary CC of at least one lower LBT group.
  • the LBT primary CC in the level 2 LBT group consisting of CC1 and CC2 is CC1.
  • the LBT primary CC in the level 2 LBT group consisting of CC3 and CC4 is CC3.
  • the LBT primary CC in the level 4 LBT group consisting of CC1 to CC4 is CC1.
  • CC1 is the LBT primary CC for the level 2 LBT group and also the LBT primary CC for the level 4 LBT group. This coincidence realizes efficient LBT implementation as will be described later.
  • CC1 and CC2 are not used.
  • CC3 and CC4 may be used. This is because the presence of other wireless devices using CC3 and CC4 as the level 2 LBT group is difficult to detect with the LBT targeting CC1.
  • CC1 to CC4 may be used, and only CC1 and CC2 may be used, and CC3 and CC4 may not be used.
  • CC3 and CC4 are not used.
  • CC1 and CC2 may be used.
  • the wireless device preferentially selects the LBT primary CC that matches the higher group as a target of LBT.
  • the wireless device when the wireless device desires to use a level 2 LBT group, the wireless device sets CC1 that is also an LBT primary CC for the level 4 LBT group as an LBT target. If the LBT result CC1 is busy, the radio apparatus can consider that CC3 is also busy and can omit the LBT at CC3. Also, when the LBT result CC1 is in an idle state, the radio apparatus can use CC1 and CC2 without performing LBT in CC3.
  • LBT pilot resource In the present embodiment, the usage status of each CC included in the LBT group is reproduced in the LBT primary CC. More specifically, a signal indicating whether or not communication using each CC included in the LBT group is performed in each resource included in the LBT primary CC is transmitted.
  • the LBT primary CC will be described in detail with reference to FIGS.
  • CCs form an LBT group
  • CC1 is an LBT primary CC.
  • a signal indicating whether each CC included in the LBT group is in an idle state or a busy state is transmitted in each of the eight resources included in CC1.
  • a resource to which a signal indicating whether a CC included in the LBT group is in an idle state or a busy state is transmitted is also referred to as an LBT pilot resource.
  • the LBT pilot resources are preferably orthogonal resources that are orthogonal to each other. In the example shown in FIG. 13, eight LBT pilot resources are secured.
  • the LBT pilot resource may be a resource obtained by dividing the LBT primary CC in the time domain (that is, a resource in TDM (Time Division Multiplexing)).
  • one LBT pilot resource divided in the time domain corresponds to one CC, and a signal indicating whether the CC is in an idle state or a busy state is transmitted using the LBT pilot resource.
  • An example of the resource configuration of CC1 when divided in the time domain is shown in FIG. In FIG. 14, radio resources are divided by resource blocks including 12 subcarriers and 7 OFDM (Orthogonal Frequency Division Multiplexing) symbols.
  • the bandwidth of the resource block is 180 KHz, and the time length is 0.5 ms.
  • the bandwidth of CC1 is 20 MHz.
  • resource blocks in different time zones are used for different CCs.
  • the LBT pilot resource may be a resource obtained by dividing the LBT primary CC in the frequency domain (that is, a resource in FDM (Frequency Division Multiplexing)).
  • one LBT pilot resource divided in the frequency domain corresponds to one CC, and a signal indicating whether the CC is in an idle state or a busy state is transmitted using the LBT pilot resource.
  • An example of the resource configuration of CC1 when divided in the frequency domain is shown in FIG.
  • radio resources are divided by resource blocks including 12 subcarriers and 7 OFDM symbols.
  • the bandwidth of the resource block is 180 KHz, and the time length is 0.5 ms.
  • the bandwidth of CC1 is 20 MHz.
  • resource blocks of different frequency bands are used for different CCs.
  • the TDM system is considered desirable. This is because in the TDM system, the wireless device only needs to measure the received power over the entire CC bandwidth, and LBT can be performed immediately after the AD converter, thereby simplifying the circuit configuration.
  • the wireless device (for example, the setting unit 155 of the base station 10 or the setting unit 245 of the terminal device 20) sets LBT pilot resources in the LBT primary CC.
  • the radio apparatus acquires information indicating the correspondence relationship between the LBT pilot resource included in the LBT primary CC and the CC (information indicating which LBT pilot resource corresponds to which CC).
  • information indicating which LBT pilot resource corresponds to which CC is also referred to as pilot resource information.
  • pilot resource information it can be said that the wireless device notifies pilot resource information to other devices. It is desirable that the pilot resource information is shared in all wireless communication systems included in the system 1.
  • the wireless device (for example, the LBT processing unit 153 of the base station 10 or the LBT processing unit 243 of the terminal device 20) performs LBT on the LBT pilot resource. Then, the radio apparatus estimates that the LBT result for each LBT pilot resource is the LBT result for each corresponding CC. For example, in the example shown in FIG. 13, when only the LBT pilot resources 2 and 3 among the LBT pilot resources 1 to 8 are in the idle state, the wireless devices CC2 and CC3 are not used by other wireless devices. It is determined that it can be used. In this way, the wireless device can grasp the usage status of other CCs included in the LBT group only by performing LBT related to the LBT primary CC.
  • a wireless device that does not employ the technology of the present embodiment may perform LBT individually for each CC. Therefore, it can be said that the technique of this embodiment is a technique having backward compatibility.
  • a wireless device for example, the communication processing unit 151 of the base station 10 or the communication processing unit 241 of the terminal device 20 transmits a signal using a CC
  • the signal is transmitted using a corresponding LBT pilot resource.
  • This signal may be any signal as long as a signal having the same power density (dBm / Hz) as that obtained when LBT (that is, energy detection) is performed on a real CC in another wireless device is detected. It may be a signal.
  • this signal is also referred to as an LBT pilot signal.
  • the wireless device transmits an LBT pilot signal using LBT pilot resources 2 and 3. Accordingly, when the LBT is performed by another wireless device, it is determined that the LBT pilot resource is busy, and thus collision is avoided.
  • the wireless device may transmit the LBT pilot signal with transmission power corresponding to the radio wave propagation characteristics of the corresponding CC.
  • the propagation propagation loss of each CC may be greatly different.
  • uniform transmission power is used in such a case, there is a possibility that the result of the LBT for the LBT pilot resource (that is, the reception power) and the result of the LBT for the real CC are different. Because.
  • the radio apparatus selects a CC having the lowest frequency among CCs included in the LBT group, and allocates a reference transmission power. And a radio
  • CC2 has a radio wave propagation loss that is 10 dB larger than CC1
  • the radio apparatus makes the transmission power of CC1 in LBT pilot resource 2 10 dB smaller than LBT pilot resource 1.
  • LBT pilot resource it is possible to reproduce the usage status of each CC in consideration of the radio wave propagation loss.
  • FIG. 16 is a flowchart illustrating an example of a signal transmission process executed in the terminal device 20 according to the present embodiment.
  • the terminal device 20 sets the radio wave propagation adjustment coefficient of the CC included in the LBT group (step S402).
  • the terminal device 20 (for example, the LBT processing unit 243) performs LBT on the LBT pilot resource (step S404).
  • the terminal device 20 (for example, the communication processing unit 241) transmits data using the CC corresponding to the LBT pilot resource determined to be in the idle state (step S406).
  • the terminal device 20 (for example, the communication processing unit 241) transmits an LBT pilot signal with transmission power based on the radio wave propagation adjustment coefficient of the CC in the LBT pilot resource corresponding to the CC used for data transmission in step S406. (Step S408).
  • the terminal device 20 has been described as the main subject of processing, but the base station 10 may be the main subject of processing.
  • FIG. 17 is a sequence diagram illustrating an example of the flow of communication processes executed in the system 1 according to the present embodiment.
  • the base station 10 and the terminal device 20 are involved. This sequence is an example when the terminal device 20 performs LBT.
  • the base station 10 acquires group information, primary information, and pilot resource information (step S502).
  • the base station 10 notifies the terminal device 20 of group information (step S504), and notifies the terminal device 20 of primary information and pilot resource information (step S506).
  • the terminal device 20 selects an LBT group corresponding to the number of CCs that are desired to be used simultaneously (step S508).
  • the terminal device 20 performs LBT for each LBT pilot resource of the primary CC of the selected LBT group (step S510). Thereafter, the terminal device 20 notifies the base station 10 of information indicating the result of the LBT (step S512).
  • the base station 10 and the terminal device 20 transmit and receive data using the CC corresponding to the LBT pilot resource determined to be in the idle state (step S514). Further, the base station 10 or the terminal device 20 (specifically, the data transmission source) transmits an LBT pilot signal in the LBT pilot resource corresponding to the CC used for data transmission (step S516).
  • FIG. 18 is a sequence diagram showing an example of the flow of communication processing executed in the system 1 according to the present embodiment.
  • the base station 10 and the terminal device 20 are involved. This sequence is an example when the base station 10 performs LBT.
  • the base station 10 acquires group information, primary information, and pilot resource information (step S602).
  • the base station 10 notifies the terminal device 20 of group information (step S604), and notifies the terminal device 20 of primary information and pilot resource information (step S606).
  • the base station 10 selects an LBT group corresponding to the number of CCs desired to be used simultaneously (step S608).
  • the base station 10 performs LBT for each LBT pilot resource of the primary CC of the selected LBT group (step S610).
  • the base station 10 and the terminal device 20 transmit and receive data using the CC corresponding to the LBT pilot resource determined to be in the idle state (step S612). Further, the base station 10 or the terminal device 20 (specifically, the data transmission source) transmits an LBT pilot signal in the LBT pilot resource corresponding to the CC used for data transmission (step S614).
  • the base station 10 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
  • the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
  • the base station 10 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • the base station 10 may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body.
  • a main body also referred to as a base station apparatus
  • RRHs Remote Radio Heads
  • Various types of terminals to be described later may operate as the base station 10 by temporarily or semipermanently executing the base station function.
  • at least some components of the base station 10 may be realized in a base station device or a module for the base station device.
  • the terminal device 20 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as. Further, the terminal device 20 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication. Furthermore, at least some of the components of the terminal device 20 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • MTC Machine Type Communication
  • FIG. 19 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
  • the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 19, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example.
  • FIG. 19 illustrates an example in which the eNB 800 includes a plurality of antennas 810, the eNB 800 may include a single antenna 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or other eNB via the network interface 823.
  • the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
  • the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
  • the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
  • Various signal processing of Packet Data Convergence Protocol
  • Packet Data Convergence Protocol is executed.
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
  • the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
  • the radio communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 19, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Further, the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 19, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements, respectively.
  • FIG. 19 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827. However, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
  • the eNB 800 illustrated in FIG. 19 one or more components (communication processing unit 151, LBT processing unit 153, and / or setting unit 155) included in the processing unit 150 described with reference to FIG. It may be implemented at 825. Alternatively, at least some of these components may be implemented in the controller 821.
  • the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the one or more components are mounted in the module. Good.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the eNB 800, and the radio communication interface 825 (eg, the BB processor 826) and / or the controller 821 executes the program.
  • the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 120 described with reference to FIG. 3 may be implemented in the wireless communication interface 825 (for example, the RF circuit 827). Further, the antenna unit 110 may be mounted on the antenna 810.
  • the network communication unit 130 may be implemented in the controller 821 and / or the network interface 823.
  • the storage unit 140 may be implemented in the memory 822.
  • FIG. 20 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
  • the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 20, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example.
  • 20 illustrates an example in which the eNB 830 includes a plurality of antennas 840, but the eNB 830 may include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 and the like.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 19 except that it is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG. 20, and the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example.
  • 20 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 and the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 20, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively.
  • 20 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
  • the eNB 830 illustrated in FIG. 20 one or more components (communication processing unit 151, LBT processing unit 153, and / or setting unit 155) included in the processing unit 150 described with reference to FIG. 855 and / or wireless communication interface 863 may be implemented. Alternatively, at least some of these components may be implemented in the controller 851.
  • the eNB 830 includes a module including a part (for example, the BB processor 856) or the whole of the wireless communication interface 855 and / or the controller 851, and the one or more components are mounted in the module. Good.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the eNB 830, and the wireless communication interface 855 (eg, the BB processor 856) and / or the controller 851 executes the program.
  • the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 120 described with reference to FIG. 3 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864).
  • the antenna unit 110 may be mounted on the antenna 840.
  • the network communication unit 130 may be implemented in the controller 851 and / or the network interface 853.
  • the storage unit 140 may be mounted in the memory 852.
  • FIG. 21 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
  • One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
  • the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG. 21 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
  • the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
  • a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
  • the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. 21 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication method.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other.
  • the battery 918 supplies electric power to each block of the smartphone 900 shown in FIG. 21 through a power supply line partially shown by a broken line in the drawing.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
  • one or more components included in the processing unit 240 described with reference to FIG. It may be implemented at interface 912. Alternatively, at least some of these components may be implemented in the processor 901 or the auxiliary controller 919.
  • the smartphone 900 includes a module including a part (for example, the BB processor 913) or the whole of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the one or more components in the module. May be implemented.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the smartphone 900, and the wireless communication interface 912 (eg, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is The program may be executed.
  • the smartphone 900 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components may be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 220 described with reference to FIG. 4 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
  • the antenna unit 210 may be mounted on the antenna 916.
  • the storage unit 230 may be mounted in the memory 902.
  • FIG. 22 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
  • the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 931 outputs the navigation function or the audio of the content to be played back.
  • the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 22 illustrates an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
  • the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
  • a BB processor 934 and an RF circuit 935 may be included for each communication method.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
  • the car navigation device 920 may have a plurality of antennas 937 as shown in FIG. 22 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication method.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 22 through a power supply line partially shown by a broken line in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the car navigation apparatus 920 includes a module including a part (for example, the BB processor 934) or the whole of the wireless communication interface 933 and / or the processor 921, and the one or more components are mounted in the module. May be.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the car navigation device 920, and the wireless communication interface 933 (eg, the BB processor 934) and / or the processor 921 executes the program. May be.
  • the car navigation apparatus 920 or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components may be provided. Good.
  • a readable recording medium in which the program is recorded may be provided.
  • the antenna unit 210 may be mounted on the antenna 937.
  • the storage unit 230 may be implemented in the memory 922.
  • the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, the in-vehicle system (or vehicle) 940 may be provided as a device including the communication processing unit 241, the LBT processing unit 243, and the setting unit 245.
  • the vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • the radio apparatus (for example, the base station 10 or the terminal apparatus 20) according to the present embodiment is based on the LBT result regarding at least one LBT primary CC included in the LBT group including a plurality of CCs. Estimate the LBT results for CCs other than the LBT primary CC included in the LBT group. As a result, it is possible to omit the implementation of the LBT for other CCs included in the same LBT group only by performing the LBT for the primary CC, and the efficiency of the LBT is realized. Accordingly, it becomes possible for the wireless device to efficiently use the millimeter wave band CC, and the traffic accommodation efficiency in the cellular network can be improved.
  • a processing unit for estimating the LBT result for the unit frequency band A device comprising: (2) The apparatus according to (1), wherein the processing unit acquires information indicating a plurality of unit frequency bands included in the group. (3) The apparatus according to (1) or (2), wherein the processing unit acquires information indicating the first unit frequency band in the group. (4) The processing unit estimates that the result of the LBT related to the second unit frequency band is the same as the result of the LBT of the first unit frequency band, according to any one of (1) to (3).
  • the device described in 1. The apparatus according to any one of (1) to (4), wherein the processing unit determines whether to perform communication using the unit frequency band in the group unit. (6) The device according to (5), wherein the processing unit communicates with another device using at least the first unit frequency band. (7) The apparatus according to (5) or (6), wherein the processing unit performs LBT related to the second unit frequency band before performing communication using the second unit frequency band. (8) The number of the unit frequency bands included in the group is arbitrary, The apparatus according to any one of (1) to (7), wherein the processing unit selects the group to be subjected to LBT based on the number of the unit frequency bands included in the group.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Physical Water Treatments (AREA)

Abstract

【課題】ミリ波帯においてLBT(Listen Before Talk)が効率的に実施可能になる仕組みを提供する。 【解決手段】複数の単位周波数帯域を含むグループに含まれる少なくともひとつの第1の単位周波数帯域に関するLBTの結果に基づいて、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域に関するLBTの結果を推定する処理部、を備える装置。

Description

装置及び方法
 本開示は、装置及び方法に関する。
 近年の無線通信環境は、データトラフィックの急激な増加という問題に直面している。そこで、3GPPでは、マクロセル内にスモールセルを多数設置してネットワーク密度を高めることにより、トラフィックを分散させることを検討している。このようにスモールセルを活用する技術を、スモールセルエンハンスメントという。なお、スモールセルは、マクロセルと重複して配置される、マクロセルよりも小さい様々な種類のセル(例えば、フェムトセル、ナノセル、ピコセル及びマイクロセルなど)を含み得る概念である。
 また、無線リソースの拡充策の一つとして、ミリ波帯と呼ばれる6GHz以上の周波数帯域の活用が検討されている。ただし、ミリ波帯は、直進性が強く、電波伝搬減衰が大きいことから、マクロセルよりも小さいスモールセルでの活用が期待されている。また、ミリ波帯は広大であるため、すべての周波数帯がライセンスバンド(Licensed Band)とされることは想定しにくく、相当数の周波数帯が二次利用可能なアンライセンスバンド(Unlicensed Band)とされることが想定される。
 例えば、周波数の二次利用に関する技術として、下記特許文献1では、異なる事業者により運用される複数のネットワークとの間で情報のやり取りを行い、ある事業者の周波数帯域を使用できるかを別の事業者が知ることを可能にするための仕組みが開示されている。
国際公開第2013/183331号
 アンライセンスバンドを利用する装置は、LBT(Listen Before Talk)を行って、送信前に周波数帯の空きを確認することが想定される。ただし、ミリ波帯は広大であるため、LBTが効率的に実施可能になる仕組みが提供されることが望ましい。
 本開示によれば、複数の単位周波数帯域を含むグループに含まれる少なくともひとつの第1の単位周波数帯域に関するLBTの結果に基づいて、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域に関するLBTの結果を推定する処理部、を備える装置が提供される。
 また、本開示によれば、複数の単位周波数帯域を含むグループに含まれる少なくともひとつの第1の前記単位周波数帯域に関するLBTの結果に基づいて、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域に関するLBTの結果をプロセッサにより推定すること、を含む方法が提供される。
 以上説明したように本開示によれば、LBTが効率的に実施可能になる仕組みが提供される。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態に係るシステムの概要について説明するための説明図である。 コンポーネントキャリアについて説明するための説明図である。 同実施形態に係る基地局の構成の一例を示すブロック図である。 同実施形態に係る端末装置の構成の一例を示すブロック図である。 第1の実施形態の技術的特徴を説明するための説明図である。 同実施形態の技術的特徴を説明するための説明図である。 同実施形態の技術的特徴を説明するための説明図である。 同実施形態の技術的特徴を説明するための説明図である。 同実施形態に係る端末装置において実行されるLBT処理の流れの一例を示すフローチャートである。 同実施形態に係るシステムにおいて実行される通信処理の流れの一例を示すシーケンス図である。 同実施形態に係るシステムにおいて実行される通信処理の流れの一例を示すシーケンス図である。 第2の実施形態の技術的特徴を説明するための説明図である。 第3の実施形態の技術的特徴を説明するための説明図である。 同実施形態の技術的特徴を説明するための説明図である。 同実施形態の技術的特徴を説明するための説明図である。 同実施形態に係る端末装置において実行される信号送信処理の流れの一例を示すフローチャートである。 同実施形態に係るシステムにおいて実行される通信処理の流れの一例を示すシーケンス図である。 同実施形態に係るシステムにおいて実行される通信処理の流れの一例を示すシーケンス図である。 eNBの概略的な構成の第1の例を示すブロック図である。 eNBの概略的な構成の第2の例を示すブロック図である。 スマートフォンの概略的な構成の一例を示すブロック図である。 カーナビゲーション装置の概略的な構成の一例を示すブロック図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能構成を有する要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の要素を、必要に応じて基地局10A、10B及び10Cのように区別する。ただし、実質的に同一の機能構成を有する複数の要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、基地局10A、10B及び10Cを特に区別する必要が無い場合には、単に基地局10と称する。
 なお、説明は以下の順序で行うものとする。
  1.はじめに
   1.1.スモールセル
   1.2.キャリアアグリゲーション
   1.3.ミリ波帯に関する考察
   1.4.LBT
   1.5.アンライセンスバンドに関する考察
   1.6.ミリ波帯の導入に際しての注意点のまとめ
  2.構成例
   2.1.基地局の構成例
   2.2.端末装置の構成例
  3.第1の実施形態
   3.1.技術的課題
   3.2.技術的特徴
   3.3.処理の流れ
  4.第2の実施形態
   4.1.技術的課題
   4.2.技術的特徴
  5.第3の実施形態
   5.1.技術的課題
   5.2.技術的特徴
   5.3.処理の流れ
  6.応用例
  7.まとめ
 <<1.はじめに>>
  <1.1.スモールセル>
 図1は、本開示の一実施形態に係るシステム1の概要について説明するための説明図である。図1に示すように、システム1は、基地局10、端末装置20及び通信制御装置30を含む。
 図1の例では、通信制御装置30は、マクロセル基地局である。マクロセル基地局30は、マクロセル31の内部に位置する1つ以上の端末装置20へ無線通信サービスを提供する。マクロセル基地局30は、コアネットワーク15に接続される。コアネットワーク15は、ゲートウェイ装置(図示せず)を介してパケットデータネットワーク(PDN)16に接続される。マクロセル31は、例えば、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、GSM(登録商標)、UMTS、W-CDMA、CDMA200、WiMAX、WiMAX2又はIEEE802.16などの任意の無線通信方式に従って運用されてよい。なお、図1の例に限定されず、コアネットワーク15又はPDN16内の制御ノード(マクロセル基地局の上位ノード)が、マクロセル及びスモールセルにおける無線通信を協調的に制御する機能を有していてもよい。なお、マクロセル基地局は、Macro eNodeBとも称され得る。
 基地局10Aは、スモールセル11を運用するスモールセル基地局である。スモールセル基地局10Aは、典型的には、自装置に接続する端末装置20へ無線リソースを割当てる権限を有する。但し、無線リソースの割当ては、協調的な制御のために、少なくとも部分的に通信制御装置30へ委任されてもよい。基地局10は、図1に示したような固定的に設置されるスモールセル基地局であってもよいし、スモールセル11を動的に運用するダイナミックAP(アクセスポイント)であってもよい。なお、スモールセル基地局は、pico eNB又はFemto eNBとも称され得る。基地局10Bは、Wi-Fiネットワークを運用するAPである。AP10Bは、自装置に接続する端末装置20との間で無線通信を行う。スモールセル基地局10A又はマクロセル基地局30とAP10Bとの間では、後述するアンライセンスバンドの利用により、使用する周波数が重複する場合がある。
 端末装置20は、マクロセル基地局30、スモールセル基地局10A又はAP10Bに接続して、無線通信サービスを享受する。例えば、スモールセル基地局10に接続する端末装置20は、マクロセル基地局30から制御信号を受信し、スモールセル基地局10からデータ信号を受信する。端末装置20は、ユーザとも呼ばれる。当該ユーザは、ユーザ機器(User Equipment:UE)とも呼ばれ得る。ここでのUEは、LTE又はLTE-Aにおいて定義されているUEであってもよく、より一般的に通信機器を意味してもよい。
  <1.2.キャリアアグリゲーション>
 以下では、LTEリリース10(即ち、3GPPリリース10)において規定されたキャリアアグリゲーションに関する技術について説明する。
  (1)コンポーネントキャリア
 キャリアアグリゲーションとは、基地局と端末装置との間の通信チャネルを、例えばLTEにおいてサポートされる単位周波数帯域を複数統合することにより形成し、通信のスループットを向上させる技術である。キャリアアグリゲーションにより形成される1つの通信チャネルに含まれる個々の単位周波数帯域を、コンポーネントキャリア(CC:Component Carrier)という。ここでのCCは、LTE又はLTE-Aにおいて定義されているCCであってもよく、より一般的に単位周波数帯域を意味していてもよい。
 LTEリリース10においては、最大5つのCCを統合することが可能となっている。また、1つのCCは、20MHz幅である。なお、統合される各々のCCは、周波数軸上に連続して配置されていてもよいし、離れて配置されていてもよい。また、どのCCを統合して用いるかは、端末装置ごとに設定することができる。
 統合される複数のCCは、1つのPCC(Primary Component Carrier)と、それ以外のSCC(Secondary Component Carrier)とに分類される。端末装置ごとに、PCCは異なる。PCCは、最も重要なCCであるため、通信品質が一番安定しているCCが選ばれることが望ましい。
 図2は、コンポーネントキャリアについて説明するための説明図である。図2に示した例では、5つのCCの一部を、2つのUEが統合して使用している様子を示している。詳しくは、UE1がCC1、CC2及びCC3を統合して使用し、UE2がCC2及びCC4を統合して使用している。また、UE1のPCCは、CC2である。UE2のPCCは、CC4である。
 ここで、PCCの選択は実装依存である。SCCの変更は、SCC削除して別のSCCを追加することにより行われる。即ち、SCCの変更を直接行うことは困難である。
  (2)PCCの形成及び変更
 端末装置が、RRC Idle状態からRRC Connected状態に遷移する場合に、最初に接続を確立するCCがPCCである。PCCの変更は、ハンドオーバと同様の手続きにより行われる。
 PCCの形成は、Connection establishmentと呼ばれる手続により行われる。本手続は、端末装置側からのリクエストをトリガとして開始される手続である。
 PCCの変更は、Connection Reconfigurationと呼ばれる手続により行われる。本手続は、ハンドオーバのメッセージを送受信することを含む。本手続は、基地局側から開始される手続きである。
  (3)SCCの追加
 SCCの追加は、Connection Reconfigurationと呼ばれる手続により行われる。本手続は、基地局側から開始される手続きである。SCCは、PCCに追加され、PCCに従属することとなる。SCCを追加することは、SCCをアクティベートするとも称される。
  (4)SCCの削除
 SCCの削除は、Connection Reconfigurationと呼ばれる手続により行われる。本手続は、基地局側から開始される手続きである。本手続においては、メッセージの中で指定された特定のSCCが削除される。なお、SCCの削除は、Connection Re-establishmentと呼ばれる手続によっても行われる。本手続は、端末装置側から開始される手続である。本手続によれば、全てのSCCが削除される。SCCを削除することは、SCCをディアクティベートするとも称される。
  (5)PCCの特別な役割
 PCCは、SCCとは異なる特別な役割を有する。例えば、Connection establishmentにおけるNAS signalingの送受信は、PCCでのみ行われる。また、PUCCH(Physical Uplink Control Channel)の伝送は、PCCでのみ行われる。なお、アップリンクの制御信号には、例えば、ダウンリンクで送信されたデータに対する受信成功又は失敗を示すACK又はNACK、及びスケジューリングリクエスト等がある。また、Radio Link Failureの検出からConnection Re-establishmentの手続きも、PCCでのみ行われる。
  (6)LTEリリース12
 LTEリリース12においては、マクロセル基地局とスモールセル基地局とでは、別々の周波数を用いるシナリオが示されている。例えば、マクロセル基地局には2GHz程度の周波数が割り当てられ、スモールセル基地局には5GHz等の高い周波数が割り当てられ得る。
  <1.3.ミリ波帯に関する考察>
 以下では、ミリ波帯に関する考察について説明する。
  (1)定義
 一般的には、3GHz~30GHz(即ち、波長1cm~10cm)の電波はセンチメートル波とも称される。また、30GHz~300GHz(即ち、波長1cm~1mm)の電波はミリ波とも称される。また、10GHz~30GHzの電波は準ミリ波とも称される。本明細書におけるミリ波帯とは、これらのうち6GHz以上の周波数帯域を指すものとする。即ち、本明細書におけるミリ波とは、一般的なセンチメートル波も含む概念である。
  (2)コンポーネントキャリアとの関係
 ミリ波帯には広大な周波数リソースがある。そのため、ミリ波帯においては、LTEリリース10では20MHzとされていたCCの帯域幅を、例えば40MHZ、80MHz又は160MHzといったより広い帯域幅にも変更可能になると想定される。
  (3)見通し内通信
 周波数が高くなるにしたがって、電波のまわり込みがなくなり、直進性が強くなる。また、周波数が高くなるにしたがって、反射時の減衰も大きくなる。そのため、ミリ波帯のうち特に10GHz以上の電波は、基本的に、見通し内通信での使用を想定すべきであると言える。
  (4)周波数帯ごとの電波伝搬ロス
 典型的には、周波数の二乗に応じて電波伝搬ロス(即ち、パスロス)が大きくなり、電波は減衰していく。例えば、20GHz帯は、5GHz帯に比べて12dB減衰が大きくなる。60GHz帯は、5GHz帯に比べて22dB減衰が大きくなる。
 ミリ波帯は、例えば6GHzから60GHz程度まで、広大な帯域にまたがっている。現状のLTEでは2GHz帯が使用されていることと比較しても、ミリ波帯は広大な帯域を有すると言える。そして、ミリ波帯における電波の性質は、その広大さ故に均一でなく、同じミリ波帯に属する電波同士でも性質が大きく異なる場合がある。
 6GHz以上の周波数においては、周波数が高くなるほどに電波が届きにくくなることが知られている。従って、UEとeNBとの間のリンクにミリ波帯の電波が使用される場合、安定的にリンクが維持されることは保障されない。そのため、より低い周波数の電波を使用して、より高い周波数の電波に関する制御を行うことが想定される。実際に、LTEリリース12におけるスモールセルに関する検討では、2GHz帯のCCを使用して、5GHz帯のCCの制御を行う技術に関し議論がなされた。
 ミリ波帯は6GHz~60GHz程度まで、広範囲にリソースが存在している。そのため、この広範囲のリソースを2GHz帯のCCを用いて制御しようとしても、2GHz帯のCCのリソースが不足してしまい得る。
  (5)サブキャリア間隔の変更
 3GPPリリース12の時点でのLTEにおけるOFDM(Orthogonal Frequency Division Multiplexing)のサブキャリア間隔(Subcarrier spacing)は、15kHzである。この15kHzという幅は、サブキャリア単位ではフラットフェージングとなるよう定義されている。そのため、全体(例えば、20MHz幅)としては、周波数選択制フェージングが発生していても、サブキャリア単位ではフラットフェージングが発生することとなる。このように、15kHzという幅は、受信時の特性劣化が少ないというメリットをもたらす。
 10GHz~60GHzの周波数帯においては、このフラットフェージングの発生を見込むことができる周波数幅が大きくなると予測される。例えば、2GHz帯では15kHzだったサブキャリア間隔を、20GHz帯では150kHzに変更することも可能であると考えられる。
 ただし、このサブキャリア間隔の変更は、LTEの仕様に非常に大きなインパクトを与えるため、無段階に変更可能になることは想定されにくい。そのため、サブキャリア間隔は、例えば15kHz、30kHz、60kHz及び120kHzの4段階程度に変更可能となることが望ましいと考えられる。それ以上細かくしても、仕様の変更が大きい割に効果が低いと考えられるためである。下記の表に、サブキャリア間隔を4段階に変更可能にした場合の設定の一例を示した。
Figure JPOXMLDOC01-appb-T000001
 しかし、4段階程度にOFDMのサブキャリア間隔が変更可能になっても、低い周波数帯(例えば、2GHz帯)のCCの負担が増大するという問題は、依然として解決されない。ミリ波帯には広大な周波数リソースがあり、必要とされる制御信号は多いためである。上記表1を参照すると、ミリ波帯に含まれる制御対象のCCの数が多いことが分かる。
 なお、60GHz以上でもOFDMが採用されるか否かは疑問が残る。しかし、使う周波数帯に合わせて扱う信号スケールを変える場合であっても、広大な周波数リソースがあり、制御対象が多いということには疑問の余地はない。
  <1.4.LBT>
 LBTは、無線装置同士が自律的にデータの送信権を獲得し合うための技術である。具体的には、LBTとは、送信前に、送信に使用する予定の周波数を使用した送信をすでに行っているデバイス(端末、アクセスポイント又は基地局等)が周囲にいないことを確認した上で、送信する処理である。LBTは、キャリアセンス、又はCSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)とも称され得る。
 詳しくは、まず、各無線装置は、使用するチャネルにおいて、他の無線装置により信号が送信されているか否かを確認するために、受信モードで待機して受信電力を測定する。無線装置は、受信モードでの待機中に測定した受信電力が閾値よりも低い場合、チャネルがアイドル状態であり、他の無線装置による信号送信が行われていないと判定する。一方で、無線装置は、受信モードでの待機中に測定した受信電力が閾値よりも高い場合、チャネルがビジー状態であり、他の無線装置による信号送信が行われていると判定する。他の無線装置の送信を確認した場合、無線装置は、一定時間内の乱数で定められた時間(例えば0~1000μ秒の間の一様分布に従った乱数等)待機してから再度受信モードで待機して受信電力を測定し得る。このような動作は、というランダムバックオフ(Random Backoff)とも称される。
 無線装置は、ランダムな時間受信モードで待機し、その間チャネルがアイドルであれば、送信権を獲得したとみなして送信を行う。一方で、無線装置は、ランダムな時間受信モードで待機し、その間チャネルがアイドルでなければ、送信を抑制する。無線ネットワークでは、このような仕組みをとることにより、複数の無線端末が同時に同じ周波数帯でデータを送信することにより生じる衝突を減らすことができ、干渉を抑制することが可能となる。
 以上説明した、受信電力を測定して空きを確認等する一連の手続きを実施することを、以下ではLBTを実施するとも称する。
  <1.5.アンライセンスバンドに関する考察>
  (1)ミリ波帯でのアンライセンスバンド
 ライセンスバンドは、携帯電話オペレータ等がライセンスを受けて使用する帯域ある。
アンライセンスバンドは、Wi-Fi等のライセンスなしに使用可能な帯域である。上述したように、ミリ波帯には、ライセンスバンドだけでなくアンライセンスバンドが含まれると想定される。様々な無線アクセス技術を同時に収容する方が、効率的であるためである。また、アンライセンスバンドの場合には、オペレータ間でリソースの融通を効かせ易い、という利点もある。
 ミリ波帯は、6GHzから300GHzまでの広大なリソースを有する。そのため、管理の都合上、その広大な周波数リソースはCC単位で管理されることが想定される。また、帯域幅が20MHzのCC、40MHzのCC、80MHzのCC、及び数100Hz等の、多様な帯域幅を有する数100個のCCが混在する環境が想定される。即ち、ミリ波帯を使用する場合、使用可能なCCの数もCCの帯域幅も、ミリ波帯を使用しない場合と比較して大幅に増加する。
 アンライセンスバンドを利用する装置は、LBTを行って、送信前に周波数帯の空きを確認することが想定される。ミリ波帯を使用する場合においても上述したLBTの枠組みを踏襲する場合、無線装置は、使用予定のCCのすべてでLBTを実施することになる。その場合、LBTの実施対象となるCCの数も帯域幅も、ミリ波帯を使用しない場合と比較して大幅に増加する。そのため、LBTが煩雑になる上、処理負荷及び消費電力が増加し、且つ送信機会が減少することが懸念される。
  (2)LAA(Licensed-Assisted Access)
 アンライセンスバンドでは、コンテンションベース(例えば、LBT等のキャリアセンス動作)でリソースを確保することが求められるので、常に安定したチャネルがeNBとUEとの間に存在するわけではない。そのため、ライセンスバンドのCCが、例えばダウンリンクデータ受信の成功/失敗を示すACK/NACKをフィードバックするためのチャネル等の、UEを制御するために使用されることが想定される。
  <1.6.ミリ波帯の導入に際しての注意点のまとめ>
 第1の注意点は、CCの数が増加することである。ミリ波帯が導入された場合、無線装置がLBTの対象とするCCが膨大になり得る。
 第2の注意点は、多様な帯域幅を有するCCが混在することである。UEによっては、20MHzの帯域幅しか使用できないこともあり得る。そのようなUEが、200MHzの帯域幅を有するCCに対してどのようにふるまうべきか、は定かではない。
 第3の注意点は、複数のCCを同時に使用したいという要求の発生である。ミリ波帯の導入により、UEは、広大な周波数を使用可能となるので、複数のCCを同時に使用することでデータ送信時の最大送信速度を向上させることが期待される。しかし、それぞれのCCを対象として別々にLBTを実施することが必要となる場合、上述した懸念により、UEが同時に数多くのCCを使用する可能性はそれほど高くはならないと考えられる。
 <<2.構成例>>
  <2.1.基地局の構成例>
 続いて、図3を参照して、本開示の一実施形態に係る基地局10の構成を説明する。図3は、本開示の一実施形態に係る基地局10の構成の一例を示すブロック図である。図3を参照すると、基地局10は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部150を備える。
 (1)アンテナ部110
 アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
 (2)無線通信部120
 無線通信部120は、信号を送受信する。例えば、無線通信部120は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
 (3)ネットワーク通信部130
 ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
 (4)記憶部140
 記憶部140は、基地局10の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
 (5)処理部150
 処理部150は、基地局10の様々な機能を提供する。処理部150は、通信処理部151、LBT処理部153及び設定部155を含む。なお、処理部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部150は、これらの構成要素の動作以外の動作も行い得る。
 通信処理部151、LBT処理部153及び設定部155の動作は、後に詳細に説明する。
  <2.2.端末装置の構成例>
 続いて、図4を参照して、本開示の実施形態に係る端末装置20の構成の一例を説明する。図4は、本開示の一実施形態に係る端末装置20の構成の一例を示すブロック図である。図4を参照すると、端末装置20は、アンテナ部210、無線通信部220、記憶部230及び処理部240を備える。
 (1)アンテナ部210
 アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
 (2)無線通信部220
 無線通信部220は、信号を送受信する。例えば、無線通信部220は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
 (3)記憶部230
 記憶部230は、端末装置20の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
 (4)処理部240
 処理部240は、端末装置20の様々な機能を提供する。処理部240は、通信処理部241、LBT処理部243及び設定部245を含む。なお、処理部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、これらの構成要素の動作以外の動作も行い得る。
 通信処理部241、LBT処理部243及び設定部245の動作は、後に詳細に説明する。
 <<3.第1の実施形態>>
  <3.1.技術的課題>
 ミリ波帯を使用する場合、LBTの実施対象となるCCの数が膨大になり得る。また、LBTの結果、使用予定の周波数が他の装置によりすでに使用されていることが判明した場合、待機する又はさらに別の使用可能なCCを探索することが要されるので、同時に数多くのCCの使用権を確保することが困難であった。
  <3.2.技術的特徴>
  (1)CCのグループ化
 本実施形態では、基地局10が使用可能な複数のCCのうち一部のCCから成るグループが定義される。このグループは、少なくともひとつ(典型的には、複数)のCCを含む。このグループを、以下ではLBTグループとも称する。1つのLBTグループは、少なくとも1つのLBTプライマリCCを含む。また、LBTグループが含むCCの数を、そのLBTグループのレベルとする。LBTグループの一例を、図5~図8に示した。
 図5では、2つのCCにより形成されるレベル2のLBTグループの一例を示しており、CC1がLBTプライマリCCである。図6では、4つのCCにより形成されるレベル4のLBTグループの一例を示しており、CC1がLBTプライマリCCである。図7では、1つのCCにより形成されるレベル1のLBTグループの一例を示しており、CC1がLBTプライマリCCである。図8に示すように、多様なレベルのLBTグループが混在し得る。なお、LBTプライマリCCは第1の単位周波数帯域に相当し、LBTグループに含まれるLBTプライマリCC以外のCCは第2の単位周波数帯域に相当する。
 1つのLBTグループに含まれるCCの数は任意である。そして、無線装置(例えば、基地局10のLBT処理部153又は端末装置20のLBT処理部243)は、LBTグループに含まれるCCの数に基づいて、LBTの対象となるLBTグループを選択する。例えば、無線装置は、同時使用を希望する数のCCを含むLBTグループを選択する。これにより、無線装置は、同時使用を希望する数のCCを含むLBTグループを、選択的にLBTの対象とすることが可能である。
 図5~図8に示したように、LBTグループに含まれるCCの数は2のべき乗であることが望ましい。これは、第2の実施形態において後述するように、複数のLBTグループが階層構造を形成する場合に、運用が容易になるためである。
  (2)LBT
 無線装置(例えば、基地局10のLBT処理部153又は端末装置20のLBT処理部243)は、LBTグループ単位でLBTを実施する。
 詳しくは、無線装置は、LBTプライマリCCに関するLBTの結果に基づいて、LBTグループに含まれるLBTプライマリCC以外のCCに関するLBTの結果を推定する。具体的には、無線装置は、LBTグループに含まれるLBTプライマリCC以外のCCに関するLBTの結果は、LBTプライマリCCのLBTの結果と同じであると推定する。例えば、無線装置は、LBTプライマリCCがアイドル状態である場合、LBTグループ全体がアイドル状態であると推定する。これにより、無線装置は、そのLBTグループに含まれるCC全てを所定時間(例えば、4ms(ミリ秒))使用することが可能となる。一方で、無線装置は、LBTプライマリCCがビジー状態である場合、LBTグループ全体がビジー状態であると推定する。無線装置は、LBTグループに含まれる複数のCCを使用する場合、LBTプライマリCCのみを対象としてLBTを実施すればよい。これにより、無線装置は、LBTの実施対象となるCCの数を抑制することができ、効率的にLBTを実施することが可能となる。
 ただし、LBTプライマリCCがアイドル状態であることは、LBTグループに含まれる他のCCを対象としたLBTの実施を妨げるものではない。無線装置は、LBTプライマリCCがアイドル状態であることを確認しても、LBTグループに含まれる他のCCを用いた通信を行う前に、当該他のCCに関するLBTを行ってもよい。これにより、衝突回避及び干渉抑制が確実に実現されることとなる。
  (3)通信
 無線装置(例えば、基地局10の通信処理部151又は端末装置20の通信処理部241)は、LBTの結果に基づいて通信を行う。
 例えば、無線装置は、LBTグループ単位でCCを用いた通信を行うか否かを判定する。具体的には、無線装置は、アイドル状態であることが推定されたLBTグループを用いて通信を行う。この際、無線装置は、少なくともLBTプライマリCCを用いて他の装置との間で通信する。これにより、他の無線装置によりLBTが実施された際、当該LBTプライマリCCはビジー状態であると判定されるので、衝突が回避される。
  (4)設定
 無線装置(例えば、基地局10の設定部155又は端末装置20の設定部245)は、LBTグループの設定、及び各々のLBTグループのLBTプライマリCCの設定を行う。
 そのために、無線装置は、各々のLBTグループに含まれる複数のCCを示す情報(即ち、どのCCがどのLBTグループに属するかを示す情報)を取得する。以下では、このような情報をグループ情報とも称する。また、無線装置は、各々のLBTグループにおけるLBTプライマリCCを示す情報(即ち、どのCCがLBTプライマリCCであるかを示す情報)を取得する。以下では、このような情報をプライマリ情報とも称する。無線装置は、グループ情報及びプライマリ情報を取得することで、LBTグループの設定、及び各々のLBTグループのLBTプライマリCCの設定を行うことが可能となる。
 例えば、スモールセル基地局10Aは、携帯電話オペレータからグループ情報及びプライマリ情報を取得する。他に、基地局10Aは、O&M(Operation & Maintenance)等のインタフェースを介して取得してもよい。また、AP10Bは、例えば工場出荷時にグループ情報及びプライマリ情報を取得する(即ち、入力される)。また、端末装置20は、例えばスモールセル基地局10A、マクロセル基地局30又はAP10Bからグループ情報及びプライマリ情報を取得する。逆の観点から言えば、無線装置(スモールセル基地局10A、マクロセル基地局30又はAP10B)は、端末装置20へグループ情報及びプライマリ情報を通知する、とも言える。
 このグループ情報及びプライマリ情報は、システム1が含むすべての無線通信システムにおいて共通であることが望ましい。より具体的には、異なる事業者間で、及びセルラーシステムとWi-Fiシステム等の他の通信規格のネットワークとの間で、グループ情報及びプライマリ情報が共通であることが望ましい。
 以上、本実施形態の技術的特徴を説明した。
  <3.3.処理の流れ>
  (1)LBTの流れ
 図9は、本実施形態に係る端末装置20において実行されるLBT処理の流れの一例を示すフローチャートである。
 図9に示すように、まず、端末装置20(例えば、通信処理部241)は、同時使用を希望するCCの数(即ち、レベル)を決定する(ステップS102)。
 次いで、端末装置20(例えば、LBT処理部243)は、使用を希望するCCの数に対応するLBTグループを選択する(ステップS104)。例えば、端末装置20は、使用を希望するCCの数が、含むCCの数と一致するLBTグループを、優先的に選択する。
 次に、端末装置20(例えば、LBT処理部243)は、選択したLBTグループのLBTプライマリCCでの受信電力を測定し、アイドル状態であるか否かを判定する(ステップS106)。
 アイドル状態であると判定された場合(ステップS106/YES)、端末装置20(例えば、LBT処理部243)は、選択したLBTグループのCC全体がアイドル状態であると判定する(ステップS108)。その後、端末装置20(例えば、通信処理部241)は、選択したLBTグループに含まれる全CCを同時に使用して信号を送信する(ステップS110)。
 一方で、ビジー状態であると判定された場合(ステップS106/NO)、端末装置20(例えば、LBT処理部243)は、選択したLBTグループのCC全体がビジー状態であると判定する(ステップS112)。この場合、端末装置20は、再度ステップS104に戻って異なるLBTグループを選択し、その後の処理を繰り返し得る。
 以上により、処理は終了する。なお、上記では端末装置20が処理の主体であるものとして説明したが、基地局10が処理の主体であってもよい。
  (2)全体的な処理の流れ
 図10は、本実施形態に係るシステム1において実行される通信処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局10及び端末装置20が関与する。本シーケンスは、端末装置20がLBTを行う場合の例である。
 図10に示すように、まず、基地局10は、グループ情報及びプライマリ情報を取得する(ステップS202)。次いで、基地局10は、グループ情報を端末装置20へ通知し(ステップS204)、プライマリ情報を端末装置20へ通知する(ステップS206)。
 次に、端末装置20は、同時使用を希望するCCの数に対応するLBTグループを選択する(ステップS208)。次いで、端末装置20は、選択したLBTグループのプライマリCCでLBTを実施する(ステップS210)。その後、端末装置20は、LBTの結果を示す情報を基地局10へ通知する(ステップS212)。基地局10は、LBTの結果を示す情報に基づいて、アップリンクスケジュール及び/又はダウンリンクスケジュールを策定することが可能となる。
 そして、基地局10及び端末装置20は、アイドル状態であると判定されたLBTプライマリCCが属するLBTグループに属するCCを用いて、データを送受信する(ステップS214)。
 以上により、処理は終了する。
 図11は、本実施形態に係るシステム1において実行される通信処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局10及び端末装置20が関与する。本シーケンスは、基地局10がLBTを行う場合の例である。
 図11に示すように、まず、基地局10は、グループ情報及びプライマリ情報を取得する(ステップS302)。次いで、基地局10は、グループ情報を端末装置20へ通知し(ステップS304)、プライマリ情報を端末装置20へ通知する(ステップS306)。
 次に、基地局10は、使用を希望するCCの数に対応するLBTグループを選択する(ステップS308)。次いで、基地局10は、選択したLBTグループのプライマリCCでLBTを実施する(ステップS310)。
 そして、基地局10及び端末装置20は、アイドル状態であると判定されたLBTプライマリCCが属するLBTグループに含まれるCCを用いて、データを送受信する(ステップS312)。
 以上により、処理は終了する。
 <<4.第2の実施形態>>
  <4.1.技術的課題>
 無線装置の能力的な制限又は送信データの容量等の各種要因により、無線装置ごとに同時使用を希望するCCの数が異なるケースが考えられる。また、同時使用を希望するCCの数が異なる無線装置が混在するケースも考えられる。このようなケースにおいても、効率的にLBTを実施するための仕組みが提供されることが望ましい。
 また、ミリ波帯が広大であるとはいえ、例えばレベル2のLBTグループが集中的に使用されると、レベル2のLBTグループが枯渇して、代わりにレベル4のLBTグループが使用されるケースが想定される。このケースでは、本来2個のCCで足りるにも関わらず、4個のCCが専有されることとなり、非効率的であると言える。そのため、CCの効率的なグループ分けが実現されることが望ましい。
  <4.2.技術的特徴>
  (1)階層構造
 本実施形態では、LBTグループは、含むCCの数がより少ない下位のLBTグループの集合により形成される。即ち、本実施形態に係るLBTグループは、上位のLBTグループが下位のLBTグループの集合から成る、階層構造を有する。階層構造の例を、図12に示した。
 図12に示した例では、CC1及びCC2から成るレベル2のLBTグループと、CC3及びCC4から成るレベル2のLBTグループとで、CC1~CC4から成るレベル4のLBTグループが形成されている。このような階層構造により、4つのCCが、レベル4のLBTグループ1つ又はレベル2のLBTグループ2つとして取り扱われる、といった柔軟なグループ分けが実現され、リソースの効率的な活用が可能となる。
 ここで、上位のLBTグループのLBTプライマリCCは、少なくともひとつの下位のLBTグループのLBTプライマリCCと一致する。図12に示した例では、CC1及びCC2から成るレベル2のLBTグループにおけるLBTプライマリCCは、CC1である。CC3及びCC4から成るレベル2のLBTグループにおけるLBTプライマリCCは、CC3である。CC1~CC4から成るレベル4のLBTグループにおけるLBTプライマリCCは、CC1である。以上から、CC1は、レベル2のLBTグループにとってのLBTプライマリCCであり、レベル4のLBTグループにとってのLBTプライマリCCでもある。この一致により、後述するように効率的なLBTの実施が実現される。
  (2)LBT
 このような階層構造を有するLBTグループを対象としたLBTを想定して、以下の考察を行う。
 CC1でLBTを実施した結果アイドル状態であれば、CC1及びCC2は使用されていないことが分かる。一方で、CC3及びCC4は、使用されている可能性がある。レベル2のLBTグループとして、CC3及びCC4を使用している他の無線装置の存在は、CC1を対象としたLBTでは検出することが困難であるためである。
 CC1でLBTを実施した結果ビジー状態であれば、CC1~CC4の全てが使用されている可能性と、CC1及びCC2のみが使用されていて、CC3及びCC4は使用されていない可能性がある。
 CC3でLBTを実施した結果アイドル状態であれば、CC3及びCC4は使用されていないことが分かる。一方で、CC1及びCC2は、使用されている可能性がある。
 CC3でLBTを実施した結果ビジー状態であれば、CC1~CC4の全てが使用されている可能性と、CC3及びCC4のみが使用されていて、CC1及びCC2は使用されていない可能性がある。そのため、再度CC1でLBTを実施する必要性が生じる。
 以上から、レベル2のLBTグループの使用を希望する場合、CC1でLBTを実施する方が、CC3でLBTを実施するよりも効率的であると言える。また、レベル4のLBTグループを確保しつつ、そのうち一部(例えば、CC1及びCC2)のみを使用するケースも想定されるので、CC3がアイドル状態であるからと言ってCC3が確実に使用可能であるとは言い難い。そのため、レベル2のLBTグループの使用を希望する場合、CC1でLBTを実施する方が、CC3でLBTを実施するよりも効率的であると言える。
 よって、無線装置(例えば、基地局10のLBT処理部153又は端末装置20のLBT処理部243)は、より上位の前記グループと一致するLBTプライマリCCを優先的にLBTの対象とする。図12に示した例に関して言えば、無線装置は、レベル2のLBTグループの使用を希望する場合、レベル4のLBTグループにとってのLBTプライマリCCでもあるCC1を、LBTの対象とする。LBTの結果CC1がビジー状態である場合、無線装置は、CC3もビジー状態であるとみなして、CC3でのLBTを省略することが可能となる。また、LBTの結果CC1がアイドル状態である場合、無線装置は、CC3でのLBTを行うことなく、CC1及びCC2を使用することが可能となる。
 <<5.第3の実施形態>>
  <5.1.技術的課題>
 第2の実施形態によれば、LBTを実施する回数を削減可能ではあるものの、各々のCCが使用されているか否かを把握するためには複数回の実施が必要になるケースがある。このことは、CCの利用効率を低下させる一因となり得る。そのため、どのような階層構造が形成されたとしても、1回のLBTで各々のCCが使用されているか否かを把握可能になる仕組みが提供されることが望ましい。
  <5.2.技術的特徴>
  (1)LBTパイロットリソース
 本実施形態では、LBTプライマリCCにおいて、LBTグループに含まれる各々のCCの使用状況が再現される。より詳しくは、LBTプライマリCCに含まれる各々のリソースにおいて、LBTグループに含まれる各々のCCを用いた通信が行われているか否かを示す信号が送信される。以下、図13~図15を参照してLBTプライマリCCについて詳細に説明する。
 図13に示す例では、8個のCCがLBTグループを形成しており、CC1がLBTプライマリCCである。そして、CC1に含まれる8個のリソースの各々で、LBTグループに含まれる各々のCCがアイドル状態であるかビジー状態であるかを示す信号が送信される。以下では、LBTグループに含まれるCCがアイドル状態であるかビジー状態であるかを示す信号が送信されるリソースを、LBTパイロットリソースとも称する。LBTパイロットリソースは、互いに直交する直交リソースであることが望ましい。図13に示した例では、8個のLBTパイロットリソースが確保されている。
 LBTパイロットリソースは、LBTプライマリCCが時間領域で分割されたリソース(即ち、TDM(Time Division Multiplexing)におけるリソース)であってもよい。この場合、時間領域で分割されたひとつのLBTパイロットリソースがひとつのCCに対応し、当該CCがアイドル状態であるかビジー状態であるかを示す信号が、当該LBTパイロットリソースを用いて送信される。時間領域で分割される場合のCC1のリソース構成の一例を、図14に示した。図14では、無線リソースが12サブキャリア及び7OFDM(Orthogonal Frequency Division Multiplexing)シンボルから成るリソースブロックにより分割されている。リソースブロックの帯域幅は180KHzであり、時間長は0.5msである。CC1の帯域幅は20MHzである。図14に示した例では、異なる時間帯のリソースブロックが異なるCCのために使用される。
 LBTパイロットリソースは、LBTプライマリCCが周波数領域で分割されたリソース(即ち、FDM(Frequency Division Multiplexing)におけるリソース)であってもよい。この場合、周波数領域で分割されたひとつのLBTパイロットリソースがひとつのCCに対応し、当該CCがアイドル状態であるかビジー状態であるかを示す信号が、当該LBTパイロットリソースを用いて送信される。周波数領域で分割される場合のCC1のリソース構成の一例を、図15に示した。図15では、無線リソースが12サブキャリア及び7OFDMシンボルから成るリソースブロックにより分割されている。リソースブロックの帯域幅は180KHzであり、時間長は0.5msである。CC1の帯域幅は20MHzである。図15に示した例では、異なる周波数帯のリソースブロックが異なるCCのために使用される。
 他に、符号領域で分割することも考えられるが、LBTの基本的な手法であるenergy detection(即ち、受信電力に基づく判定)の使用を想定した場合に適切とは言えない。TDM方式とFDM方式とを比較すると、TDM方式が望ましいと考えられる。TDM方式では、無線装置はCCの帯域幅の全部で受信電力を測定すればよく、AD変換器の直後でLBTを実施可能となり、回路構成が最も簡易になるためである。
  (2)設定
 無線装置(例えば、基地局10の設定部155又は端末装置20の設定部245)は、LBTプライマリCCにおけるLBTパイロットリソースの設定を行う。
 そのために、無線装置は、LBTプライマリCCに含まれるLBTパイロットリソースとCCとの対応関係を示す情報(どのLBTパイロットリソースがどのCCと対応するかを示す情報)を取得する。以下では、このような情報をパイロットリソース情報とも称する。逆の観点から言えば、無線装置は、他の装置へパイロットリソース情報を通知する、とも言える。パイロットリソース情報は、システム1が含むすべての無線通信システムにおいて共有されていることが望ましい。
  (3)LBT
 無線装置(例えば、基地局10のLBT処理部153又は端末装置20のLBT処理部243)は、LBTパイロットリソースを対象としてLBTを行う。そして、無線装置は、各々のLBTパイロットリソースに関するLBTの結果が、対応する各々のCCに関するLBTの結果であると推定する。例えば、図13に示した例において、LBTパイロットリソース1~8のうち、LBTパイロットリソース2及び3のみアイドル状態であった場合、無線装置は、CC2及びCC3は他の無線装置により使用されておらず、使用可能であると判定する。このように、無線装置は、LBTプライマリCCに関するLBTを実施するだけで、LBTグループに含まれる他のCCの使用状況を把握することが可能となる。
 ここで、本実施形態の技術を採用していない無線装置は、各々のCCを対象に個別にLBTを実施すればよい。従って、本実施形態の技術は、バックワードコンパチビリティを有する技術であると言える。
  (4)通信
 無線装置(例えば、基地局10の通信処理部151又は端末装置20の通信処理部241)は、CCを用いて信号を送信する場合、対応するLBTパイロットリソースを用いて信号を送信する。この信号は、他の無線装置において、本当のCCを対象としてLBT(即ち、energy detection)を実施した場合と同じ電力密度(dBm/Hz)の信号が検出されるものであれば、どのような信号であってもよい。この信号を、以下ではLBTパイロット信号とも称する。例えば、図13に示した例において、CC2及びCC3を用いて信号を送信する場合、無線装置は、LBTパイロットリソース2及び3を用いてLBTパイロット信号を送信する。これにより、他の無線装置によりLBTが実施された際、当該LBTパイロットリソースはビジー状態であると判定されるので、衝突が回避される。
 無線装置(例えば、基地局10の通信処理部151又は端末装置20の通信処理部241)は、LBTパイロット信号を、対応するCCの電波伝搬特性に応じた送信電力で送信してもよい。LBTグループに含まれるCCの周波数が互いに離れている場合、各々のCCの伝搬伝搬ロスは大きく異なる場合がある。そのような場合に一様な送信電力が用いられる場合、LBTパイロットリソースを対象としたLBTの結果(即ち、受信電力)と、本当のCCを対象としたLBTの結果とが相違するおそれがあるためである。
 具体的には、無線装置は、LBTグループに含まれるCCのうち最も周波数が低いCCを選択して、基準の送信電力を割当てる。そして、無線装置は、周波数が高いCCほど、基準の送信電力よりも低い送信電力を割当てる。例えば、CC2がCC1と比較して電波伝搬ロスが10dB大きい場合、無線装置は、CC1のLBTパイロットリソース2における送信電力を、LBTパイロットリソース1よりも10dB小さくする。これにより、LBTパイロットリソースにおいて、電波伝搬ロスも加味して各々のCCの使用状況を再現することが可能となる。
  <5.3.処理の流れ>
  (1)信号送信の流れ
 図16は、本実施形態に係る端末装置20において実行される信号送信処理の流れの一例を示すフローチャートである。
 図16に示すように、端末装置20(例えば、設定部245)は、LBTグループに含まれるCCの電波伝搬調整係数を設定する(ステップS402)。
 次いで、端末装置20(例えば、LBT処理部243)は、LBTパイロットリソースを対象としてLBTを実施する(ステップS404)。
 次に、端末装置20(例えば、通信処理部241)は、アイドル状態であると判定されたLBTパイロットリソースに対応するCCを使用してデータを送信する(ステップS406)。
 そして、端末装置20(例えば、通信処理部241)は、ステップS406でデータ送信に使用したCCに対応するLBTパイロットリソースにおいて、当該CCの電波伝搬調整係数に基づく送信電力でLBTパイロット信号を送信する(ステップS408)。
 以上により、処理は終了する。なお、上記では端末装置20が処理の主体であるものとして説明したが、基地局10が処理の主体であってもよい。
  (2)全体的な処理の流れ
 図17は、本実施形態に係るシステム1において実行される通信処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局10及び端末装置20が関与する。本シーケンスは、端末装置20がLBTを行う場合の例である。
 図17に示すように、まず、基地局10は、グループ情報、プライマリ情報、及びパイロットリソース情報を取得する(ステップS502)。次いで、基地局10は、グループ情報を端末装置20へ通知し(ステップS504)、プライマリ情報及びパイロットリソース情報を端末装置20へ通知する(ステップS506)。
 次に、端末装置20は、同時使用を希望するCCの数に対応するLBTグループを選択する(ステップS508)。次いで、端末装置20は、選択したLBTグループのプライマリCCのLBTパイロットリソース毎にLBTを実施する(ステップS510)。その後、端末装置20は、LBTの結果を示す情報を基地局10へ通知する(ステップS512)。
 そして、基地局10及び端末装置20は、アイドル状態であると判定されたLBTパイロットリソースに対応するCCを用いて、データを送受信する(ステップS514)。また、基地局10又は端末装置20(詳しくは、データの送信元)は、データの送信に使用しているCCに対応するLBTパイロットリソースにおいてLBTパイロット信号を送信する(ステップS516)。
 以上により、処理は終了する。
 図18は、本実施形態に係るシステム1において実行される通信処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局10及び端末装置20が関与する。本シーケンスは、基地局10がLBTを行う場合の例である。
 図18に示すように、まず、基地局10は、グループ情報、プライマリ情報、及びパイロットリソース情報を取得する(ステップS602)。次いで、基地局10は、グループ情報を端末装置20へ通知し(ステップS604)、プライマリ情報及びパイロットリソース情報を端末装置20へ通知する(ステップS606)。
 次に、基地局10は、同時使用を希望するCCの数に対応するLBTグループを選択する(ステップS608)。次いで、基地局10は、選択したLBTグループのプライマリCCのLBTパイロットリソース毎にLBTを実施する(ステップS610)。
 そして、基地局10及び端末装置20は、アイドル状態であると判定されたLBTパイロットリソースに対応するCCを用いて、データを送受信する(ステップS612)。また、基地局10又は端末装置20(詳しくは、データの送信元)は、データの送信に使用しているCCに対応するLBTパイロットリソースにおいてLBTパイロット信号を送信する(ステップS614)。
 以上により、処理は終了する。
 <<6.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局10は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局10は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局10は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局10として動作してもよい。さらに、基地局10の少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。
 また、例えば、端末装置20は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置20は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置20の少なくとも一部の構成要素は、これら端末に搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール)において実現されてもよい。
  <6.1.基地局に関する応用例>
 (第1の応用例)
 図19は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図19に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図19にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
 無線通信インタフェース825は、図19に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図19に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図19には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
 図19に示したeNB800において、図3を参照して説明した処理部150に含まれる1つ以上の構成要素(通信処理部151、LBT処理部153及び/又は設定部155)は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図19に示したeNB800において、図3を参照して説明した無線通信部120は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、アンテナ部110は、アンテナ810において実装されてもよい。また、ネットワーク通信部130は、コントローラ821及び/又はネットワークインタフェース823において実装されてもよい。また、記憶部140は、メモリ822において実装されてもよい。
 (第2の応用例)
 図20は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図20に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図20にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図19を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図19を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図20に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図20には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図20に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図20には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。
 図20に示したeNB830において、図3を参照して説明した処理部150に含まれる1つ以上の構成要素(通信処理部151、LBT処理部153及び/又は設定部155)は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図20に示したeNB830において、例えば、図3を参照して説明した無線通信部120は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、アンテナ部110は、アンテナ840において実装されてもよい。また、ネットワーク通信部130は、コントローラ851及び/又はネットワークインタフェース853において実装されてもよい。また、記憶部140は、メモリ852において実装されてもよい。
  <6.2.端末装置に関する応用例>
 (第1の応用例)
 図21は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
 無線通信インタフェース912は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図21に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図21には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図21に示したように複数のアンテナ916を有してもよい。なお、図21にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図21に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
 図21に示したスマートフォン900において、図4を参照して説明した処理部240に含まれる1つ以上の構成要素(通信処理部241、LBT処理部243及び/又は設定部245)は、無線通信インタフェース912において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図21に示したスマートフォン900において、例えば、図4を参照して説明した無線通信部220は、無線通信インタフェース912(例えば、RF回路914)において実装されてもよい。また、アンテナ部210は、アンテナ916において実装されてもよい。また、記憶部230は、メモリ902において実装されてもよい。
 (第2の応用例)
 図22は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
 無線通信インタフェース933は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図22に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図22には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図22に示したように複数のアンテナ937を有してもよい。なお、図22にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図22に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
 図22に示したカーナビゲーション装置920において、図4を参照して説明した処理部240に含まれる1つ以上の構成要素(通信処理部241、LBT処理部243及び/又は設定部245)は、無線通信インタフェース933において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図22に示したカーナビゲーション装置920において、例えば、図4を参照して説明した無線通信部220は、無線通信インタフェース933(例えば、RF回路935)において実装されてもよい。また、アンテナ部210は、アンテナ937において実装されてもよい。また、記憶部230は、メモリ922において実装されてもよい。
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。即ち、通信処理部241、LBT処理部243及び設定部245を備える装置として車載システム(又は車両)940が提供されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
 <<7.まとめ>>
 以上、図1~図22を参照して、本開示の一実施形態について詳細に説明した。上記説明したように、本実施形態に係る無線装置(例えば、基地局10又は端末装置20)は、複数のCCを含むLBTグループに含まれる少なくともひとつのLBTプライマリCCに関するLBTの結果に基づいて、LBTグループに含まれるLBTプライマリCC以外の他のCCに関するLBTの結果を推定する。これにより、プライマリCCに関するLBTを実施するだけで、同一のLBTグループに含まれる他のCCに関するLBTの実施を省略することが可能となり、LBTの効率化が実現される。これに伴い、無線装置がミリ波帯のCCを効率的に使用することが可能となり、セルラーネットワークにおけるトラフィックの収容効率を向上させることができる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 例えば、本開示の各実施形態は適宜組み合わせることが可能である。
 また、本明細書においてフローチャート及びシーケンス図を用いて説明した処理は、必ずしも図示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 複数の単位周波数帯域を含むグループに含まれる少なくともひとつの第1の単位周波数帯域に関するLBT(Listen Before Talk)の結果に基づいて、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域に関するLBTの結果を推定する処理部、
を備える装置。
(2)
 前記処理部は、前記グループに含まれる複数の前記単位周波数帯域を示す情報を取得する、前記(1)に記載の装置。
(3)
 前記処理部は、前記グループにおける前記第1の単位周波数帯域を示す情報を取得する、前記(1)又は(2)に記載の装置。
(4)
 前記処理部は、前記第2の単位周波数帯域に関するLBTの結果は、前記第1の単位周波数帯域のLBTの結果と同じであると推定する、前記(1)~(3)のいずれか一項に記載の装置。
(5)
 前記処理部は、前記グループ単位で前記単位周波数帯域を用いた通信を行うか否かを判定する、前記(1)~(4)のいずれか一項に記載の装置。
(6)
 前記処理部は、少なくとも前記第1の単位周波数帯域を用いて他の装置との間で通信する、前記(5)に記載の装置。
(7)
 前記処理部は、前記第2の単位周波数帯域を用いた通信を行う前に、前記第2の単位周波数帯域に関するLBTを行う、前記(5)又は(6)に記載の装置。
(8)
 前記グループに含まれる前記単位周波数帯域の数は任意であり、
 前記処理部は、前記グループに含まれる前記単位周波数帯域の数に基づいてLBTの対象となる前記グループを選択する、前記(1)~(7)のいずれか一項に記載の装置。
(9)
 前記グループに含まれる前記単位周波数帯域の数は2のべき乗である、前記(8)に記載の装置。
(10)
 前記グループは、含む前記単位周波数帯域の数がより少ない下位の前記グループの集合により形成される、前記(1)~(9)のいずれか一項に記載の装置。
(11)
 上位の前記グループの前記第1の単位周波数帯域は、少なくともひとつの下位の前記グループの前記第1の単位周波数帯域と一致する、前記(10)に記載の装置。
(12)
 前記処理部は、より上位の前記グループと一致する前記第1の単位周波数帯域を優先的にLBTの対象とする、前記(11)に記載の装置。
(13)
 前記第1の単位周波数帯域に含まれる各々のリソースにおいて、前記グループに含まれる各々の前記単位周波数帯域を用いた通信が行われているか否かを示す信号が送信され、
 前記処理部は、各々の前記リソースに関するLBTの結果が、対応する各々の前記単位周波数帯域に関するLBTの結果であると推定する、前記(1)~(12)のいずれか一項に記載の装置。
(14)
 前記リソースは、前記第1の単位周波数帯域が時間領域で分割されたリソースである、前記(13)に記載の装置。
(15)
 前記リソースは、前記第1の単位周波数帯域が周波数領域で分割されたリソースである、前記(13)又は(14)に記載の装置。
(16)
 前記リソースにおいて送信される信号は、対応する前記単位周波数帯域の電波伝搬特性に応じた送信電力で送信される、前記(13)~(15)のいずれか一項に記載の装置。
(17)
 前記グループは、基地局が使用可能な複数の前記単位周波数帯域のうち一部の前記単位周波数帯域から成る、前記(1)~(16)のいずれか一項に記載の装置。
(18)
 前記単位周波数帯域は、コンポーネントキャリアである、前記(1)~(17)のいずれか一項に記載の装置。
(19)
 前記単位周波数帯域は、周波数が6GHz以上である、前記(1)~(18)のいずれか一項に記載の装置。
(20)
 複数の単位周波数帯域を含むグループに含まれる少なくともひとつの第1の前記単位周波数帯域に関するLBTの結果に基づいて、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域に関するLBTの結果をプロセッサにより推定すること、
を含む方法。
 1   システム
 10  基地局
 11  スモールセル
 15  コアネットワーク
 16  パケットデータネットワーク
 20  端末装置
 30  通信制御装置
 31  マクロセル
 110  アンテナ部
 120  無線通信部
 130  ネットワーク通信部
 140  記憶部
 150  処理部
 151  通信処理部
 153  LBT処理部
 155  設定部
 210  アンテナ部
 220  無線通信部
 230  記憶部
 240  処理部
 241  通信処理部
 243  LBT処理部
 245  設定部

Claims (20)

  1.  複数の単位周波数帯域を含むグループに含まれる少なくともひとつの第1の単位周波数帯域に関するLBT(Listen Before Talk)の結果に基づいて、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域に関するLBTの結果を推定する処理部、
    を備える装置。
  2.  前記処理部は、前記グループに含まれる複数の前記単位周波数帯域を示す情報を取得する、請求項1に記載の装置。
  3.  前記処理部は、前記グループにおける前記第1の単位周波数帯域を示す情報を取得する、請求項1に記載の装置。
  4.  前記処理部は、前記第2の単位周波数帯域に関するLBTの結果は、前記第1の単位周波数帯域のLBTの結果と同じであると推定する、請求項1に記載の装置。
  5.  前記処理部は、前記グループ単位で前記単位周波数帯域を用いた通信を行うか否かを判定する、請求項1に記載の装置。
  6.  前記処理部は、少なくとも前記第1の単位周波数帯域を用いて他の装置との間で通信する、請求項5に記載の装置。
  7.  前記処理部は、前記第2の単位周波数帯域を用いた通信を行う前に、前記第2の単位周波数帯域に関するLBTを行う、請求項5に記載の装置。
  8.  前記グループに含まれる前記単位周波数帯域の数は任意であり、
     前記処理部は、前記グループに含まれる前記単位周波数帯域の数に基づいてLBTの対象となる前記グループを選択する、請求項1に記載の装置。
  9.  前記グループに含まれる前記単位周波数帯域の数は2のべき乗である、請求項8に記載の装置。
  10.  前記グループは、含む前記単位周波数帯域の数がより少ない下位の前記グループの集合により形成される、請求項1に記載の装置。
  11.  上位の前記グループの前記第1の単位周波数帯域は、少なくともひとつの下位の前記グループの前記第1の単位周波数帯域と一致する、請求項10に記載の装置。
  12.  前記処理部は、より上位の前記グループと一致する前記第1の単位周波数帯域を優先的にLBTの対象とする、請求項11に記載の装置。
  13.  前記第1の単位周波数帯域に含まれる各々のリソースにおいて、前記グループに含まれる各々の前記単位周波数帯域を用いた通信が行われているか否かを示す信号が送信され、
     前記処理部は、各々の前記リソースに関するLBTの結果が、対応する各々の前記単位周波数帯域に関するLBTの結果であると推定する、請求項1に記載の装置。
  14.  前記リソースは、前記第1の単位周波数帯域が時間領域で分割されたリソースである、請求項13に記載の装置。
  15.  前記リソースは、前記第1の単位周波数帯域が周波数領域で分割されたリソースである、請求項13に記載の装置。
  16.  前記リソースにおいて送信される信号は、対応する前記単位周波数帯域の電波伝搬特性に応じた送信電力で送信される、請求項13に記載の装置。
  17.  前記グループは、基地局が使用可能な複数の前記単位周波数帯域のうち一部の前記単位周波数帯域から成る、請求項1に記載の装置。
  18.  前記単位周波数帯域は、コンポーネントキャリアである、請求項1に記載の装置。
  19.  前記単位周波数帯域は、周波数が6GHz以上である、請求項1に記載の装置。
  20.  複数の単位周波数帯域を含むグループに含まれる少なくともひとつの第1の前記単位周波数帯域に関するLBTの結果に基づいて、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域に関するLBTの結果をプロセッサにより推定すること、
    を含む方法。
PCT/JP2016/070324 2015-10-06 2016-07-08 装置及び方法 WO2017061157A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201680057242.1A CN108141865B (zh) 2015-10-06 2016-07-08 装置和方法
JP2017544392A JP6894842B2 (ja) 2015-10-06 2016-07-08 無線装置及び方法
US15/751,977 US10764923B2 (en) 2015-10-06 2016-07-08 Apparatus and method for listen-before-talk in a frequency band
EP23163226.6A EP4221431A1 (en) 2015-10-06 2016-07-08 Listen-before-talk in the millimeter wave band
BR112018006432A BR112018006432A2 (pt) 2015-10-06 2016-07-08 aparelho, e, método.
EP16853312.3A EP3361808B1 (en) 2015-10-06 2016-07-08 Device and method for listen-before-talk in the millimeter wave band
US16/995,824 US20200404707A1 (en) 2015-10-06 2020-08-18 Apparatus and method for listen-before-talk in a frequency band
US17/829,393 US20220304052A1 (en) 2015-10-06 2022-06-01 Apparatus and method for listen-before-talk in a frequency band

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015198325 2015-10-06
JP2015-198325 2015-10-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/751,977 A-371-Of-International US10764923B2 (en) 2015-10-06 2016-07-08 Apparatus and method for listen-before-talk in a frequency band
US16/995,824 Continuation US20200404707A1 (en) 2015-10-06 2020-08-18 Apparatus and method for listen-before-talk in a frequency band

Publications (1)

Publication Number Publication Date
WO2017061157A1 true WO2017061157A1 (ja) 2017-04-13

Family

ID=58487450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070324 WO2017061157A1 (ja) 2015-10-06 2016-07-08 装置及び方法

Country Status (6)

Country Link
US (3) US10764923B2 (ja)
EP (2) EP3361808B1 (ja)
JP (1) JP6894842B2 (ja)
CN (1) CN108141865B (ja)
BR (1) BR112018006432A2 (ja)
WO (1) WO2017061157A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031507A1 (ja) * 2017-08-08 2019-02-14 シャープ株式会社 通信装置および通信方法
JP2020522961A (ja) * 2017-06-09 2020-07-30 華為技術有限公司Huawei Technologies Co.,Ltd. 信号送信方法、関連装置、及びシステム
JP2020534743A (ja) * 2017-09-19 2020-11-26 クアルコム,インコーポレイテッド ミリメートル波システムのためのリッスンビフォアトークおよびチャネル予約
CN112136353A (zh) * 2018-05-21 2020-12-25 高通股份有限公司 共享毫米波射频频谱中的说前先听技术
JP2021516008A (ja) * 2018-03-01 2021-06-24 クアルコム,インコーポレイテッド ニューラジオアンライセンスト(nr−u)におけるサブバンドアクセスのための帯域幅部分(bwp)構成
US12126573B2 (en) 2017-06-09 2024-10-22 Huawei Technologies Co., Ltd. Signal transmission method, related device, and system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10736114B2 (en) 2018-01-10 2020-08-04 Charter Communications Operating, Llc RF channel analysis and improved usage of wireless channels in a wireless network
US11272539B2 (en) * 2018-08-09 2022-03-08 Ofinno, Llc Channel access and bandwidth part switching
CN109075878B (zh) * 2018-08-10 2021-01-26 北京小米移动软件有限公司 监听方法、装置、设备及存储介质
US11533752B2 (en) * 2020-02-07 2022-12-20 Qualcomm Incorporated Unlicensed medium access without listen before talk for millimeter wave

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104380779B (zh) 2012-06-05 2019-04-09 索尼公司 通信控制设备、基站、终端设备以及通信控制方法
JP6201997B2 (ja) * 2012-08-13 2017-09-27 ソニー株式会社 通信制御装置、端末装置及び通信制御方法
US10110355B2 (en) * 2014-03-10 2018-10-23 Apple Inc. Uplink transmission on unlicensed radio frequency band component carriers
US10306479B2 (en) * 2015-03-13 2019-05-28 Telefonaktiebolaget Lm Ericsson (Publ) Technique for communicating on unlicensed spectrum
JP6608051B2 (ja) * 2015-07-10 2019-11-20 エルジー エレクトロニクス インコーポレイティド 非免許帯域及びキャリア結合を支援する無線接続システムにおいてデータバースト送信方法及び装置
CN106452708B (zh) * 2015-08-07 2021-07-06 中兴通讯股份有限公司 一种非授权多载波先听后说执行方法和装置
EP3352522B1 (en) * 2015-09-17 2023-11-01 LG Electronics Inc. Method and device for performing lbt process on multiple carriers in wireless access system supporting unlicensed band

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Design of DL LBT", 3GPP TSG-RAN WG1#82 R1-154750, 19 August 2015 (2015-08-19), XP051039560, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGP1_82/Docs/Rl-154750.zip> [retrieved on 20160726] *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020522961A (ja) * 2017-06-09 2020-07-30 華為技術有限公司Huawei Technologies Co.,Ltd. 信号送信方法、関連装置、及びシステム
JP7091371B2 (ja) 2017-06-09 2022-06-27 華為技術有限公司 信号送信方法、関連装置、及びシステム
US11387969B2 (en) 2017-06-09 2022-07-12 Huawei Technologies Co., Ltd. Signal transmission method, related device, and system
US12126573B2 (en) 2017-06-09 2024-10-22 Huawei Technologies Co., Ltd. Signal transmission method, related device, and system
WO2019031507A1 (ja) * 2017-08-08 2019-02-14 シャープ株式会社 通信装置および通信方法
JP2020534743A (ja) * 2017-09-19 2020-11-26 クアルコム,インコーポレイテッド ミリメートル波システムのためのリッスンビフォアトークおよびチャネル予約
JP7313340B2 (ja) 2017-09-19 2023-07-24 クアルコム,インコーポレイテッド ミリメートル波システムのためのリッスンビフォアトークおよびチャネル予約
JP2021516008A (ja) * 2018-03-01 2021-06-24 クアルコム,インコーポレイテッド ニューラジオアンライセンスト(nr−u)におけるサブバンドアクセスのための帯域幅部分(bwp)構成
US11678367B2 (en) 2018-03-01 2023-06-13 Qualcomm Incorporated Bandwidth part (BWP) configuration for subband access in new radio-unlicensed (NR-U)
JP7334175B2 (ja) 2018-03-01 2023-08-28 クアルコム,インコーポレイテッド ニューラジオアンライセンスト(nr-u)におけるサブバンドアクセスのための帯域幅部分(bwp)構成
CN112136353A (zh) * 2018-05-21 2020-12-25 高通股份有限公司 共享毫米波射频频谱中的说前先听技术
CN112136353B (zh) * 2018-05-21 2024-04-05 高通股份有限公司 共享毫米波射频频谱中的说前先听技术

Also Published As

Publication number Publication date
EP3361808B1 (en) 2023-04-05
US20220304052A1 (en) 2022-09-22
CN108141865A (zh) 2018-06-08
JP6894842B2 (ja) 2021-06-30
US20200404707A1 (en) 2020-12-24
EP4221431A1 (en) 2023-08-02
US10764923B2 (en) 2020-09-01
BR112018006432A2 (pt) 2018-12-11
JPWO2017061157A1 (ja) 2018-07-26
EP3361808A1 (en) 2018-08-15
EP3361808A4 (en) 2019-05-01
CN108141865B (zh) 2023-02-07
US20180242359A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
US11218216B2 (en) Communication apparatus and communication method
CN106452705B (zh) 无线通信系统中的电子设备和无线通信方法
WO2017061157A1 (ja) 装置及び方法
US10827497B2 (en) Apparatus and method for beam selection in downlink transmission
RU2767170C2 (ru) Устройство радиосвязи, способ радиосвязи и компьютерная программа
US20240334442A1 (en) Downlink quality improvement method and apparatus
US10880893B2 (en) Transmission of discovery signal in small cells while in off state

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544392

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15751977

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018006432

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018006432

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180329