WO2017061157A1 - 装置及び方法 - Google Patents
装置及び方法 Download PDFInfo
- Publication number
- WO2017061157A1 WO2017061157A1 PCT/JP2016/070324 JP2016070324W WO2017061157A1 WO 2017061157 A1 WO2017061157 A1 WO 2017061157A1 JP 2016070324 W JP2016070324 W JP 2016070324W WO 2017061157 A1 WO2017061157 A1 WO 2017061157A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lbt
- group
- unit frequency
- frequency band
- unit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 62
- 238000012545 processing Methods 0.000 claims abstract description 102
- 230000006854 communication Effects 0.000 claims description 174
- 238000004891 communication Methods 0.000 claims description 168
- 230000005540 biological transmission Effects 0.000 claims description 35
- 230000007246 mechanism Effects 0.000 abstract description 7
- 230000006870 function Effects 0.000 description 27
- 238000010586 diagram Methods 0.000 description 24
- 230000008569 process Effects 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 11
- 230000010267 cellular communication Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 5
- 238000004220 aggregation Methods 0.000 description 5
- 230000008054 signal transmission Effects 0.000 description 5
- 238000005562 fading Methods 0.000 description 4
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 2
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 230000001151 other effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0808—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
Definitions
- the present disclosure relates to an apparatus and a method.
- small cell enhancement a technique for utilizing a small cell.
- the small cell is a concept that can include various types of cells (for example, femtocells, nanocells, picocells, microcells, and the like) that are arranged overlapping the macrocells and are smaller than the macrocells.
- the use of a frequency band of 6 GHz or more called a millimeter wave band is being studied.
- the millimeter wave band is expected to be used in a small cell smaller than a macro cell because of its strong straightness and large radio wave propagation attenuation.
- the millimeter wave band is vast, it is difficult to assume that all frequency bands are licensed bands, and an unlicensed band that allows secondary use of a considerable number of frequency bands. It is assumed that
- Patent Document 1 As a technology related to secondary use of frequency, in Patent Document 1 below, whether or not a frequency band of a certain operator can be used by exchanging information with a plurality of networks operated by different operators is different. A mechanism for enabling operators to know is disclosed.
- an apparatus including a processing unit that estimates an LBT result for each unit frequency band.
- FIG. 1 is an explanatory diagram for describing an overview of a system according to an embodiment of the present disclosure.
- FIG. It is explanatory drawing for demonstrating a component carrier. It is a block diagram which shows an example of a structure of the base station which concerns on the same embodiment. It is a block diagram which shows an example of a structure of the terminal device which concerns on the same embodiment. It is explanatory drawing for demonstrating the technical feature of 1st Embodiment. It is explanatory drawing for demonstrating the technical feature of the embodiment. It is explanatory drawing for demonstrating the technical feature of the embodiment. It is explanatory drawing for demonstrating the technical feature of the embodiment. It is explanatory drawing for demonstrating the technical feature of the embodiment. It is a flowchart which shows an example of the flow of the LBT process performed in the terminal device which concerns on the same embodiment.
- elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numerals.
- a plurality of elements having substantially the same functional configuration are differentiated as necessary, such as the base stations 10A, 10B, and 10C.
- the base stations 10A, 10B, and 10C are simply referred to as the base station 10.
- FIG. 1 is an explanatory diagram for describing an overview of a system 1 according to an embodiment of the present disclosure.
- the system 1 includes a base station 10, a terminal device 20, and a communication control device 30.
- the communication control device 30 is a macro cell base station.
- the macro cell base station 30 provides a radio communication service to one or more terminal devices 20 located inside the macro cell 31.
- the macrocell base station 30 is connected to the core network 15.
- the core network 15 is connected to a packet data network (PDN) 16 via a gateway device (not shown).
- PDN packet data network
- the macro cell 31 is, for example, any wireless communication method such as LTE (Long Term Evolution), LTE-A (LTE-Advanced), GSM (registered trademark), UMTS, W-CDMA, CDMA200, WiMAX, WiMAX2, or IEEE 802.16. May be operated according to Note that the present invention is not limited to the example of FIG.
- the control node in the core network 15 or the PDN 16 may have a function of cooperatively controlling radio communication in the macro cell and the small cell.
- the macro cell base station may also be referred to as Macro eNodeB.
- the base station 10 ⁇ / b> A is a small cell base station that operates the small cell 11.
- the small cell base station 10A typically has the authority to allocate radio resources to the terminal device 20 connected to its own device. However, radio resource allocation may be at least partially delegated to the communication control device 30 for coordinated control.
- the base station 10 may be a small cell base station that is fixedly installed as shown in FIG. 1 or a dynamic AP (access point) that dynamically operates the small cell 11. Note that the small cell base station may also be referred to as a pico eNB or a Femto eNB.
- the base station 10B is an AP that operates a Wi-Fi network. The AP 10B performs wireless communication with the terminal device 20 connected to the own device. Between the small cell base station 10A or the macro cell base station 30 and the AP 10B, the frequency to be used may overlap due to the use of an unlicensed band described later.
- the terminal device 20 is connected to the macro cell base station 30, the small cell base station 10A, or the AP 10B and enjoys a wireless communication service.
- the terminal device 20 connected to the small cell base station 10 receives a control signal from the macro cell base station 30 and receives a data signal from the small cell base station 10.
- the terminal device 20 is also called a user.
- the user may also be referred to as user equipment (UE).
- the UE here may be a UE defined in LTE or LTE-A, and may more generally mean a communication device.
- Component carrier Carrier aggregation is a technique for improving communication throughput by forming a communication channel between a base station and a terminal device by integrating a plurality of unit frequency bands supported in LTE, for example. .
- Each unit frequency band included in one communication channel formed by carrier aggregation is referred to as a component carrier (CC).
- the CC here may be a CC defined in LTE or LTE-A, and may more generally mean a unit frequency band.
- each CC integrated may be arrange
- which CC is integrated and used can be set for each terminal device.
- PCC Primary Component Carrier
- SCC Secondary Component Carrier
- FIG. 2 is an explanatory diagram for explaining the component carrier.
- a state is shown in which two UEs are using a part of five CCs in an integrated manner.
- UE1 uses CC1, CC2, and CC3 in an integrated manner
- UE2 uses CC2 and CC4 in an integrated manner.
- the PCC of UE1 is CC2.
- the PCC of UE2 is CC4.
- the selection of PCC is implementation-dependent.
- the SCC is changed by deleting the SCC and adding another SCC. That is, it is difficult to directly change the SCC.
- Connection establishment This procedure is a procedure started with a request from the terminal device side as a trigger.
- PCC is changed by a procedure called Connection Reconfiguration.
- the procedure includes sending and receiving a handover message. This procedure is started from the base station side.
- Deletion of SCC is performed by a procedure called Connection Reconfiguration. This procedure is started from the base station side. In this procedure, the specific SCC specified in the message is deleted. Note that the deletion of the SCC is also performed by a procedure called Connection Re-establishment. This procedure is a procedure started from the terminal device side. According to this procedure, all SCCs are deleted. Deleting an SCC is also referred to as deactivating the SCC.
- PCC Physical Uplink Control Channel
- the uplink control signal includes, for example, an ACK or NACK indicating successful or unsuccessful reception of data transmitted on the downlink, a scheduling request, and the like.
- the procedure from the detection of the radio link failure to the connection re-establishment is also performed only by the PCC.
- LTE Release 12 a scenario in which different frequencies are used in a macro cell base station and a small cell base station is shown.
- a macro cell base station can be assigned a frequency of about 2 GHz
- a small cell base station can be assigned a high frequency such as 5 GHz.
- a radio wave of 3 GHz to 30 GHz (that is, a wavelength of 1 cm to 10 cm) is also called a centimeter wave.
- a radio wave of 30 GHz to 300 GHz (that is, a wavelength of 1 cm to 1 mm) is also referred to as a millimeter wave.
- Radio waves of 10 GHz to 30 GHz are also called quasi-millimeter waves.
- the millimeter wave band in this specification refers to a frequency band of 6 GHz or more among these. That is, the millimeter wave in this specification is a concept including a general centimeter wave.
- the millimeter wave band has vast frequency resources. Therefore, in the millimeter wave band, it is assumed that the CC bandwidth, which was 20 MHz in LTE Release 10, can be changed to a wider bandwidth such as 40 MHz, 80 MHz, or 160 MHz.
- Radio wave propagation loss for each frequency band typically, radio wave propagation loss (that is, path loss) increases as the frequency squares, and radio waves attenuate.
- radio wave propagation loss that is, path loss
- the 20 GHz band has a larger 12 dB attenuation than the 5 GHz band.
- the 60 GHz band has a greater 22 dB attenuation than the 5 GHz band.
- the millimeter wave band spans a vast band from, for example, about 6 GHz to 60 GHz. Compared to the fact that the 2 GHz band is used in the current LTE, it can be said that the millimeter wave band has a vast band.
- the properties of radio waves in the millimeter wave band are not uniform due to their large size, and the radio waves belonging to the same millimeter wave band may differ greatly in properties.
- the millimeter wave band has resources in a wide range from 6 GHz to 60 GHz. Therefore, even if it is going to control this wide range resource using 2 GHz band CC, the resource of CC of 2 GHz band may run short.
- the subcarrier spacing of OFDM (Orthogonal Frequency Division Multiplexing) in LTE at the time of 3GPP Release 12 is 15 kHz.
- the width of 15 kHz is defined to be flat fading in units of subcarriers. Therefore, as a whole (for example, 20 MHz width), even if frequency selective fading occurs, flat fading occurs in subcarrier units. Thus, the width of 15 kHz brings about the merit that the characteristic deterioration at the time of reception is small.
- the frequency width in which the occurrence of this flat fading can be expected is increased.
- the subcarrier interval which was 15 kHz in the 2 GHz band, to 150 kHz in the 20 GHz band.
- the subcarrier interval can be changed to, for example, about four stages of 15 kHz, 30 kHz, 60 kHz, and 120 kHz. This is because even if it is further refined, it is considered that the effect is low for a large change in specifications.
- the table below shows an example of settings when the subcarrier interval can be changed in four stages.
- LBT is a technique for wireless devices to autonomously acquire data transmission rights. Specifically, with LBT, after confirming that there is no device (terminal, access point, base station, etc.) that has already performed transmission using the frequency to be used for transmission before transmission. Is a process of transmitting. LBT may also be referred to as carrier sense or CSMA / CA (Carrier Sense Multiple Access / Collision Avoidance).
- CSMA Carrier Sense Multiple Access / Collision Avoidance
- each wireless device waits in the reception mode and measures received power in order to confirm whether or not a signal is transmitted by another wireless device in the channel to be used.
- the wireless device determines that the channel is in an idle state and signal transmission by another wireless device is not performed.
- the wireless device determines that the channel is busy and signal transmission by another wireless device is being performed.
- the wireless device waits for a time determined by random numbers within a certain time (for example, random numbers according to a uniform distribution between 0 and 1000 ⁇ s) and then receives again.
- the reception power can be measured by waiting at Such an operation is also referred to as a random backoff.
- the wireless device waits in a random time reception mode, and if the channel is idle during that time, it performs transmission by assuming that the transmission right has been acquired. On the other hand, the wireless device waits in a random time reception mode, and suppresses transmission if the channel is not idle during that time.
- Unlicensed band in the millimeter wave band The license band is a band used by a mobile phone operator or the like under license.
- the unlicensed band is a band that can be used without a license such as Wi-Fi.
- the millimeter wave band includes not only the license band but also the unlicensed band. This is because it is more efficient to accommodate various radio access technologies simultaneously.
- the millimeter wave band has vast resources from 6 GHz to 300 GHz. Therefore, for the convenience of management, it is assumed that the vast frequency resource is managed in units of CC.
- CCs having various bandwidths such as CCs having a bandwidth of 20 MHz, CCs having a frequency of 40 MHz, CCs having a frequency of 80 MHz, and hundreds of Hz are mixed is assumed. That is, when the millimeter wave band is used, the number of usable CCs and the bandwidth of the CC are greatly increased as compared with the case where the millimeter wave band is not used.
- a device using an unlicensed band performs LBT and confirms the availability of a frequency band before transmission. Even when the millimeter wave band is used, if the LBT framework described above is followed, the wireless device performs LBT on all the CCs scheduled to be used. In that case, the number and bandwidth of CCs to be subjected to LBT are greatly increased compared to the case where the millimeter wave band is not used. Therefore, there is a concern that the LBT becomes complicated, the processing load and the power consumption increase, and the transmission opportunity decreases.
- LAA Licensed-Assisted Access
- a contention basis for example, carrier sense operation such as LBT. Therefore, a stable channel does not always exist between the eNB and the UE. Therefore, it is assumed that the CC of the license band is used to control the UE, such as a channel for feeding back ACK / NACK indicating success / failure of downlink data reception.
- the second caution is that CCs with various bandwidths are mixed. Some UEs may only use a 20 MHz bandwidth. It is not clear how such a UE should behave for a CC with a bandwidth of 200 MHz.
- the third point of caution is the generation of a request to use multiple CCs simultaneously.
- the UE can use a vast frequency, and it is expected to improve the maximum transmission speed during data transmission by using a plurality of CCs simultaneously.
- LBT low-power Bluetooth
- FIG. 3 is a block diagram illustrating an exemplary configuration of the base station 10 according to an embodiment of the present disclosure.
- the base station 10 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
- Antenna unit 110 The antenna unit 110 radiates a signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
- the wireless communication unit 120 transmits and receives signals.
- the radio communication unit 120 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
- the network communication unit 130 transmits and receives information.
- the network communication unit 130 transmits information to other nodes and receives information from other nodes.
- the other nodes include other base stations and core network nodes.
- Storage unit 140 The storage unit 140 temporarily or permanently stores a program for operating the base station 10 and various data.
- Processing unit 150 provides various functions of the base station 10.
- the processing unit 150 includes a communication processing unit 151, an LBT processing unit 153, and a setting unit 155.
- the processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
- the operations of the communication processing unit 151, the LBT processing unit 153, and the setting unit 155 will be described in detail later.
- FIG. 4 is a block diagram illustrating an exemplary configuration of the terminal device 20 according to an embodiment of the present disclosure.
- the terminal device 20 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
- Antenna unit 210 The antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
- the wireless communication unit 220 transmits and receives signals.
- the radio communication unit 220 receives a downlink signal from the base station and transmits an uplink signal to the base station.
- Storage unit 230 The storage unit 230 temporarily or permanently stores a program for operating the terminal device 20 and various data.
- the processing unit 240 provides various functions of the terminal device 20.
- the processing unit 240 includes a communication processing unit 241, an LBT processing unit 243, and a setting unit 245. Note that the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than the operations of these components.
- CCs a group consisting of some CCs among a plurality of CCs that can be used by the base station 10 is defined.
- This group includes at least one (typically, multiple) CCs.
- this group is also referred to as an LBT group.
- One LBT group includes at least one LBT primary CC. Further, the number of CCs included in the LBT group is set as the level of the LBT group. An example of the LBT group is shown in FIGS.
- FIG. 5 shows an example of a level 2 LBT group formed by two CCs, and CC1 is an LBT primary CC.
- FIG. 6 shows an example of a level 4 LBT group formed by four CCs, and CC1 is an LBT primary CC.
- FIG. 7 shows an example of a level 1 LBT group formed by one CC, and CC1 is the LBT primary CC.
- various levels of LBT groups can coexist.
- the LBT primary CC corresponds to the first unit frequency band
- CCs other than the LBT primary CC included in the LBT group correspond to the second unit frequency band.
- the number of CCs included in one LBT group is arbitrary.
- wireless apparatus selects the LBT group used as the object of LBT based on the number of CC contained in an LBT group. For example, the wireless device selects an LBT group including a number of CCs that are desired to be used simultaneously. As a result, the radio apparatus can selectively set the LBT group including the number of CCs desired to be used simultaneously as an LBT target.
- the number of CCs included in the LBT group is preferably a power of two. This is because the operation is facilitated when a plurality of LBT groups form a hierarchical structure, as will be described later in the second embodiment.
- the wireless device (for example, the LBT processing unit 153 of the base station 10 or the LBT processing unit 243 of the terminal device 20) performs LBT in units of LBT groups.
- the radio apparatus estimates the LBT result for CCs other than the LBT primary CC included in the LBT group based on the LBT result for the LBT primary CC. Specifically, the radio apparatus estimates that the LBT result regarding CCs other than the LBT primary CC included in the LBT group is the same as the LBT result of the LBT primary CC. For example, when the LBT primary CC is in an idle state, the wireless device estimates that the entire LBT group is in an idle state. Thereby, the wireless device can use all CCs included in the LBT group for a predetermined time (for example, 4 ms (milliseconds)). On the other hand, when the LBT primary CC is busy, the radio apparatus estimates that the entire LBT group is busy.
- the radio device may perform LBT only for the LBT primary CC.
- wireless apparatus can suppress the number of CC used as implementation object of LBT, and it becomes possible to implement LBT efficiently.
- the fact that the LBT primary CC is in an idle state does not prevent the implementation of LBT for other CCs included in the LBT group. Even if it is confirmed that the LBT primary CC is in an idle state, the wireless device may perform LBT related to the other CC before performing communication using another CC included in the LBT group. As a result, collision avoidance and interference suppression are reliably realized.
- the wireless device (for example, the communication processing unit 151 of the base station 10 or the communication processing unit 241 of the terminal device 20) performs communication based on the LBT result.
- the wireless device determines whether to perform communication using CC in units of LBT groups. Specifically, the wireless device performs communication using an LBT group estimated to be in an idle state. At this time, the wireless device communicates with other devices using at least the LBT primary CC. As a result, when the LBT is performed by another wireless device, it is determined that the LBT primary CC is busy, so that a collision is avoided.
- the wireless device (for example, the setting unit 155 of the base station 10 or the setting unit 245 of the terminal device 20) sets the LBT group and the LBT primary CC of each LBT group.
- the wireless device acquires information indicating a plurality of CCs included in each LBT group (that is, information indicating which CC belongs to which LBT group).
- group information information indicating which CC belongs to which LBT group.
- the wireless device acquires information indicating the LBT primary CC in each LBT group (that is, information indicating which CC is the LBT primary CC).
- primary information information indicating which CC is the LBT primary CC.
- the small cell base station 10A acquires group information and primary information from the mobile phone operator.
- the base station 10A may acquire through an interface such as O & M (Operation & Maintenance).
- the AP 10B acquires (that is, inputs) group information and primary information at the time of factory shipment, for example.
- the terminal device 20 acquires group information and primary information from the small cell base station 10A, the macro cell base station 30, or the AP 10B, for example. From the opposite viewpoint, it can also be said that the radio apparatus (small cell base station 10A, macrocell base station 30 or AP 10B) notifies the terminal apparatus 20 of group information and primary information.
- this group information and primary information are common to all wireless communication systems included in the system 1. More specifically, it is desirable that group information and primary information are common between different operators and between networks of other communication standards such as a cellular system and a Wi-Fi system.
- FIG. 9 is a flowchart showing an example of the flow of LBT processing executed in the terminal device 20 according to the present embodiment.
- the terminal device 20 determines the number (ie, level) of CCs that are desired to be used simultaneously (step S102).
- the terminal device 20 selects an LBT group corresponding to the number of CCs desired to be used (step S104). For example, the terminal device 20 preferentially selects an LBT group in which the number of CCs desired to be used matches the number of CCs included.
- the terminal device 20 (for example, the LBT processing unit 243) measures the received power at the LBT primary CC of the selected LBT group, and determines whether or not it is in an idle state (step S106).
- the terminal device 20 determines that the entire CC of the selected LBT group is in the idle state (step S108). Thereafter, the terminal device 20 (for example, the communication processing unit 241) transmits a signal using all CCs included in the selected LBT group at the same time (step S110).
- the terminal device 20 determines that the entire CC of the selected LBT group is busy (step S112). ). In this case, the terminal device 20 returns to step S104 again, selects a different LBT group, and can repeat the subsequent processing.
- the terminal device 20 has been described as the main subject of processing, but the base station 10 may be the main subject of processing.
- FIG. 10 is a sequence diagram showing an example of the flow of communication processes executed in the system 1 according to the present embodiment.
- the base station 10 and the terminal device 20 are involved. This sequence is an example when the terminal device 20 performs LBT.
- the base station 10 acquires group information and primary information (step S202). Next, the base station 10 notifies the terminal device 20 of group information (step S204), and notifies the terminal device 20 of primary information (step S206).
- the terminal device 20 selects an LBT group corresponding to the number of CCs desired to be used simultaneously (step S208).
- the terminal device 20 performs LBT with the primary CC of the selected LBT group (step S210).
- the terminal device 20 notifies the base station 10 of information indicating the LBT result (step S212).
- the base station 10 can formulate an uplink schedule and / or a downlink schedule based on information indicating the LBT result.
- the base station 10 and the terminal device 20 transmit and receive data using the CC belonging to the LBT group to which the LBT primary CC determined to be in the idle state belongs (step S214).
- FIG. 11 is a sequence diagram showing an example of the flow of communication processing executed in the system 1 according to the present embodiment.
- the base station 10 and the terminal device 20 are involved. This sequence is an example when the base station 10 performs LBT.
- the base station 10 acquires group information and primary information (step S302).
- the base station 10 notifies the terminal device 20 of group information (step S304), and notifies the terminal device 20 of primary information (step S306).
- the base station 10 selects an LBT group corresponding to the number of CCs desired to be used (step S308). Next, the base station 10 performs LBT with the primary CC of the selected LBT group (step S310).
- the base station 10 and the terminal device 20 transmit and receive data using the CC included in the LBT group to which the LBT primary CC determined to be in the idle state belongs (step S312).
- Second Embodiment >> ⁇ 4.1.
- Technical issues> There may be a case where the number of CCs desired to be used simultaneously differs for each wireless device due to various factors such as a capability limitation of the wireless device or a transmission data capacity.
- radio apparatuses having different numbers of CCs that are desired to be used simultaneously are mixed. Even in such a case, it is desirable to provide a mechanism for efficiently implementing LBT.
- the level 2 LBT group is used intensively, the level 2 LBT group is depleted and the level 4 LBT group is used instead. Is assumed. In this case, although two CCs are originally sufficient, four CCs are occupied, which can be said to be inefficient. Therefore, it is desirable to realize efficient grouping of CCs.
- an LBT group is formed by a set of lower-order LBT groups that include fewer CCs. That is, the LBT group according to the present embodiment has a hierarchical structure in which the upper LBT group is a set of lower LBT groups. An example of the hierarchical structure is shown in FIG.
- a level 2 LBT group consisting of CC1 to CC4 is formed by a level 2 LBT group consisting of CC1 and CC2 and a level 2 LBT group consisting of CC3 and CC4.
- Such a hierarchical structure realizes flexible grouping such that four CCs are handled as one LBT group at level 4 or two LBT groups at level 2, enabling efficient use of resources. .
- the LBT primary CC of the upper LBT group coincides with the LBT primary CC of at least one lower LBT group.
- the LBT primary CC in the level 2 LBT group consisting of CC1 and CC2 is CC1.
- the LBT primary CC in the level 2 LBT group consisting of CC3 and CC4 is CC3.
- the LBT primary CC in the level 4 LBT group consisting of CC1 to CC4 is CC1.
- CC1 is the LBT primary CC for the level 2 LBT group and also the LBT primary CC for the level 4 LBT group. This coincidence realizes efficient LBT implementation as will be described later.
- CC1 and CC2 are not used.
- CC3 and CC4 may be used. This is because the presence of other wireless devices using CC3 and CC4 as the level 2 LBT group is difficult to detect with the LBT targeting CC1.
- CC1 to CC4 may be used, and only CC1 and CC2 may be used, and CC3 and CC4 may not be used.
- CC3 and CC4 are not used.
- CC1 and CC2 may be used.
- the wireless device preferentially selects the LBT primary CC that matches the higher group as a target of LBT.
- the wireless device when the wireless device desires to use a level 2 LBT group, the wireless device sets CC1 that is also an LBT primary CC for the level 4 LBT group as an LBT target. If the LBT result CC1 is busy, the radio apparatus can consider that CC3 is also busy and can omit the LBT at CC3. Also, when the LBT result CC1 is in an idle state, the radio apparatus can use CC1 and CC2 without performing LBT in CC3.
- LBT pilot resource In the present embodiment, the usage status of each CC included in the LBT group is reproduced in the LBT primary CC. More specifically, a signal indicating whether or not communication using each CC included in the LBT group is performed in each resource included in the LBT primary CC is transmitted.
- the LBT primary CC will be described in detail with reference to FIGS.
- CCs form an LBT group
- CC1 is an LBT primary CC.
- a signal indicating whether each CC included in the LBT group is in an idle state or a busy state is transmitted in each of the eight resources included in CC1.
- a resource to which a signal indicating whether a CC included in the LBT group is in an idle state or a busy state is transmitted is also referred to as an LBT pilot resource.
- the LBT pilot resources are preferably orthogonal resources that are orthogonal to each other. In the example shown in FIG. 13, eight LBT pilot resources are secured.
- the LBT pilot resource may be a resource obtained by dividing the LBT primary CC in the time domain (that is, a resource in TDM (Time Division Multiplexing)).
- one LBT pilot resource divided in the time domain corresponds to one CC, and a signal indicating whether the CC is in an idle state or a busy state is transmitted using the LBT pilot resource.
- An example of the resource configuration of CC1 when divided in the time domain is shown in FIG. In FIG. 14, radio resources are divided by resource blocks including 12 subcarriers and 7 OFDM (Orthogonal Frequency Division Multiplexing) symbols.
- the bandwidth of the resource block is 180 KHz, and the time length is 0.5 ms.
- the bandwidth of CC1 is 20 MHz.
- resource blocks in different time zones are used for different CCs.
- the LBT pilot resource may be a resource obtained by dividing the LBT primary CC in the frequency domain (that is, a resource in FDM (Frequency Division Multiplexing)).
- one LBT pilot resource divided in the frequency domain corresponds to one CC, and a signal indicating whether the CC is in an idle state or a busy state is transmitted using the LBT pilot resource.
- An example of the resource configuration of CC1 when divided in the frequency domain is shown in FIG.
- radio resources are divided by resource blocks including 12 subcarriers and 7 OFDM symbols.
- the bandwidth of the resource block is 180 KHz, and the time length is 0.5 ms.
- the bandwidth of CC1 is 20 MHz.
- resource blocks of different frequency bands are used for different CCs.
- the TDM system is considered desirable. This is because in the TDM system, the wireless device only needs to measure the received power over the entire CC bandwidth, and LBT can be performed immediately after the AD converter, thereby simplifying the circuit configuration.
- the wireless device (for example, the setting unit 155 of the base station 10 or the setting unit 245 of the terminal device 20) sets LBT pilot resources in the LBT primary CC.
- the radio apparatus acquires information indicating the correspondence relationship between the LBT pilot resource included in the LBT primary CC and the CC (information indicating which LBT pilot resource corresponds to which CC).
- information indicating which LBT pilot resource corresponds to which CC is also referred to as pilot resource information.
- pilot resource information it can be said that the wireless device notifies pilot resource information to other devices. It is desirable that the pilot resource information is shared in all wireless communication systems included in the system 1.
- the wireless device (for example, the LBT processing unit 153 of the base station 10 or the LBT processing unit 243 of the terminal device 20) performs LBT on the LBT pilot resource. Then, the radio apparatus estimates that the LBT result for each LBT pilot resource is the LBT result for each corresponding CC. For example, in the example shown in FIG. 13, when only the LBT pilot resources 2 and 3 among the LBT pilot resources 1 to 8 are in the idle state, the wireless devices CC2 and CC3 are not used by other wireless devices. It is determined that it can be used. In this way, the wireless device can grasp the usage status of other CCs included in the LBT group only by performing LBT related to the LBT primary CC.
- a wireless device that does not employ the technology of the present embodiment may perform LBT individually for each CC. Therefore, it can be said that the technique of this embodiment is a technique having backward compatibility.
- a wireless device for example, the communication processing unit 151 of the base station 10 or the communication processing unit 241 of the terminal device 20 transmits a signal using a CC
- the signal is transmitted using a corresponding LBT pilot resource.
- This signal may be any signal as long as a signal having the same power density (dBm / Hz) as that obtained when LBT (that is, energy detection) is performed on a real CC in another wireless device is detected. It may be a signal.
- this signal is also referred to as an LBT pilot signal.
- the wireless device transmits an LBT pilot signal using LBT pilot resources 2 and 3. Accordingly, when the LBT is performed by another wireless device, it is determined that the LBT pilot resource is busy, and thus collision is avoided.
- the wireless device may transmit the LBT pilot signal with transmission power corresponding to the radio wave propagation characteristics of the corresponding CC.
- the propagation propagation loss of each CC may be greatly different.
- uniform transmission power is used in such a case, there is a possibility that the result of the LBT for the LBT pilot resource (that is, the reception power) and the result of the LBT for the real CC are different. Because.
- the radio apparatus selects a CC having the lowest frequency among CCs included in the LBT group, and allocates a reference transmission power. And a radio
- CC2 has a radio wave propagation loss that is 10 dB larger than CC1
- the radio apparatus makes the transmission power of CC1 in LBT pilot resource 2 10 dB smaller than LBT pilot resource 1.
- LBT pilot resource it is possible to reproduce the usage status of each CC in consideration of the radio wave propagation loss.
- FIG. 16 is a flowchart illustrating an example of a signal transmission process executed in the terminal device 20 according to the present embodiment.
- the terminal device 20 sets the radio wave propagation adjustment coefficient of the CC included in the LBT group (step S402).
- the terminal device 20 (for example, the LBT processing unit 243) performs LBT on the LBT pilot resource (step S404).
- the terminal device 20 (for example, the communication processing unit 241) transmits data using the CC corresponding to the LBT pilot resource determined to be in the idle state (step S406).
- the terminal device 20 (for example, the communication processing unit 241) transmits an LBT pilot signal with transmission power based on the radio wave propagation adjustment coefficient of the CC in the LBT pilot resource corresponding to the CC used for data transmission in step S406. (Step S408).
- the terminal device 20 has been described as the main subject of processing, but the base station 10 may be the main subject of processing.
- FIG. 17 is a sequence diagram illustrating an example of the flow of communication processes executed in the system 1 according to the present embodiment.
- the base station 10 and the terminal device 20 are involved. This sequence is an example when the terminal device 20 performs LBT.
- the base station 10 acquires group information, primary information, and pilot resource information (step S502).
- the base station 10 notifies the terminal device 20 of group information (step S504), and notifies the terminal device 20 of primary information and pilot resource information (step S506).
- the terminal device 20 selects an LBT group corresponding to the number of CCs that are desired to be used simultaneously (step S508).
- the terminal device 20 performs LBT for each LBT pilot resource of the primary CC of the selected LBT group (step S510). Thereafter, the terminal device 20 notifies the base station 10 of information indicating the result of the LBT (step S512).
- the base station 10 and the terminal device 20 transmit and receive data using the CC corresponding to the LBT pilot resource determined to be in the idle state (step S514). Further, the base station 10 or the terminal device 20 (specifically, the data transmission source) transmits an LBT pilot signal in the LBT pilot resource corresponding to the CC used for data transmission (step S516).
- FIG. 18 is a sequence diagram showing an example of the flow of communication processing executed in the system 1 according to the present embodiment.
- the base station 10 and the terminal device 20 are involved. This sequence is an example when the base station 10 performs LBT.
- the base station 10 acquires group information, primary information, and pilot resource information (step S602).
- the base station 10 notifies the terminal device 20 of group information (step S604), and notifies the terminal device 20 of primary information and pilot resource information (step S606).
- the base station 10 selects an LBT group corresponding to the number of CCs desired to be used simultaneously (step S608).
- the base station 10 performs LBT for each LBT pilot resource of the primary CC of the selected LBT group (step S610).
- the base station 10 and the terminal device 20 transmit and receive data using the CC corresponding to the LBT pilot resource determined to be in the idle state (step S612). Further, the base station 10 or the terminal device 20 (specifically, the data transmission source) transmits an LBT pilot signal in the LBT pilot resource corresponding to the CC used for data transmission (step S614).
- the base station 10 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
- the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
- the base station 10 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
- the base station 10 may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body.
- a main body also referred to as a base station apparatus
- RRHs Remote Radio Heads
- Various types of terminals to be described later may operate as the base station 10 by temporarily or semipermanently executing the base station function.
- at least some components of the base station 10 may be realized in a base station device or a module for the base station device.
- the terminal device 20 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as. Further, the terminal device 20 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication. Furthermore, at least some of the components of the terminal device 20 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
- MTC Machine Type Communication
- FIG. 19 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
- the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
- Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
- the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 19, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example.
- FIG. 19 illustrates an example in which the eNB 800 includes a plurality of antennas 810, the eNB 800 may include a single antenna 810.
- the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
- the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
- the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
- the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
- the controller 821 may communicate with the core network node or other eNB via the network interface 823.
- the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
- the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
- the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
- the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
- the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
- the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
- Various signal processing of Packet Data Convergence Protocol
- Packet Data Convergence Protocol is executed.
- the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
- the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
- the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
- the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
- the radio communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 19, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Further, the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 19, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements, respectively.
- FIG. 19 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827. However, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
- the eNB 800 illustrated in FIG. 19 one or more components (communication processing unit 151, LBT processing unit 153, and / or setting unit 155) included in the processing unit 150 described with reference to FIG. It may be implemented at 825. Alternatively, at least some of these components may be implemented in the controller 821.
- the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the one or more components are mounted in the module. Good.
- the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed.
- a program for causing a processor to function as the one or more components is installed in the eNB 800, and the radio communication interface 825 (eg, the BB processor 826) and / or the controller 821 executes the program.
- the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
- a readable recording medium in which the program is recorded may be provided.
- the wireless communication unit 120 described with reference to FIG. 3 may be implemented in the wireless communication interface 825 (for example, the RF circuit 827). Further, the antenna unit 110 may be mounted on the antenna 810.
- the network communication unit 130 may be implemented in the controller 821 and / or the network interface 823.
- the storage unit 140 may be implemented in the memory 822.
- FIG. 20 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
- the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
- Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
- the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 20, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example.
- 20 illustrates an example in which the eNB 830 includes a plurality of antennas 840, but the eNB 830 may include a single antenna 840.
- the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
- the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
- the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
- the wireless communication interface 855 may typically include a BB processor 856 and the like.
- the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 19 except that it is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
- the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG. 20, and the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example.
- 20 illustrates an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
- connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
- the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
- the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
- connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
- the connection interface 861 may be a communication module for communication on the high-speed line.
- the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
- the wireless communication interface 863 may typically include an RF circuit 864 and the like.
- the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
- the wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 20, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively.
- 20 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
- the eNB 830 illustrated in FIG. 20 one or more components (communication processing unit 151, LBT processing unit 153, and / or setting unit 155) included in the processing unit 150 described with reference to FIG. 855 and / or wireless communication interface 863 may be implemented. Alternatively, at least some of these components may be implemented in the controller 851.
- the eNB 830 includes a module including a part (for example, the BB processor 856) or the whole of the wireless communication interface 855 and / or the controller 851, and the one or more components are mounted in the module. Good.
- the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
- the program may be executed.
- a program for causing a processor to function as the one or more components is installed in the eNB 830, and the wireless communication interface 855 (eg, the BB processor 856) and / or the controller 851 executes the program.
- the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
- a readable recording medium in which the program is recorded may be provided.
- the wireless communication unit 120 described with reference to FIG. 3 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864).
- the antenna unit 110 may be mounted on the antenna 840.
- the network communication unit 130 may be implemented in the controller 851 and / or the network interface 853.
- the storage unit 140 may be mounted in the memory 852.
- FIG. 21 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
- the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
- One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
- the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
- the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
- the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
- the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
- the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
- the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
- the microphone 908 converts sound input to the smartphone 900 into an audio signal.
- the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
- the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
- the speaker 911 converts an audio signal output from the smartphone 900 into audio.
- the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
- the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
- the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
- the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
- the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
- the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG. 21 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
- the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
- a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
- Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
- Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
- the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. 21 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
- the smartphone 900 may include an antenna 916 for each wireless communication method.
- the antenna switch 915 may be omitted from the configuration of the smartphone 900.
- the bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other.
- the battery 918 supplies electric power to each block of the smartphone 900 shown in FIG. 21 through a power supply line partially shown by a broken line in the drawing.
- the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
- one or more components included in the processing unit 240 described with reference to FIG. It may be implemented at interface 912. Alternatively, at least some of these components may be implemented in the processor 901 or the auxiliary controller 919.
- the smartphone 900 includes a module including a part (for example, the BB processor 913) or the whole of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the one or more components in the module. May be implemented.
- the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
- the program may be executed.
- a program for causing a processor to function as the one or more components is installed in the smartphone 900, and the wireless communication interface 912 (eg, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is The program may be executed.
- the smartphone 900 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components may be provided.
- a readable recording medium in which the program is recorded may be provided.
- the wireless communication unit 220 described with reference to FIG. 4 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
- the antenna unit 210 may be mounted on the antenna 916.
- the storage unit 230 may be mounted in the memory 902.
- FIG. 22 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
- the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
- the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
- the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
- the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
- the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
- the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
- the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
- the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
- the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
- the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
- the speaker 931 outputs the navigation function or the audio of the content to be played back.
- the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
- the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
- the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
- the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
- the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
- the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 22 illustrates an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
- the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
- a BB processor 934 and an RF circuit 935 may be included for each communication method.
- Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
- Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
- the car navigation device 920 may have a plurality of antennas 937 as shown in FIG. 22 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may include a single antenna 937.
- the car navigation device 920 may include an antenna 937 for each wireless communication method.
- the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
- the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 22 through a power supply line partially shown by a broken line in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
- the car navigation apparatus 920 includes a module including a part (for example, the BB processor 934) or the whole of the wireless communication interface 933 and / or the processor 921, and the one or more components are mounted in the module. May be.
- the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
- the program may be executed.
- a program for causing a processor to function as the one or more components is installed in the car navigation device 920, and the wireless communication interface 933 (eg, the BB processor 934) and / or the processor 921 executes the program. May be.
- the car navigation apparatus 920 or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components may be provided. Good.
- a readable recording medium in which the program is recorded may be provided.
- the antenna unit 210 may be mounted on the antenna 937.
- the storage unit 230 may be implemented in the memory 922.
- the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, the in-vehicle system (or vehicle) 940 may be provided as a device including the communication processing unit 241, the LBT processing unit 243, and the setting unit 245.
- the vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
- the radio apparatus (for example, the base station 10 or the terminal apparatus 20) according to the present embodiment is based on the LBT result regarding at least one LBT primary CC included in the LBT group including a plurality of CCs. Estimate the LBT results for CCs other than the LBT primary CC included in the LBT group. As a result, it is possible to omit the implementation of the LBT for other CCs included in the same LBT group only by performing the LBT for the primary CC, and the efficiency of the LBT is realized. Accordingly, it becomes possible for the wireless device to efficiently use the millimeter wave band CC, and the traffic accommodation efficiency in the cellular network can be improved.
- a processing unit for estimating the LBT result for the unit frequency band A device comprising: (2) The apparatus according to (1), wherein the processing unit acquires information indicating a plurality of unit frequency bands included in the group. (3) The apparatus according to (1) or (2), wherein the processing unit acquires information indicating the first unit frequency band in the group. (4) The processing unit estimates that the result of the LBT related to the second unit frequency band is the same as the result of the LBT of the first unit frequency band, according to any one of (1) to (3).
- the device described in 1. The apparatus according to any one of (1) to (4), wherein the processing unit determines whether to perform communication using the unit frequency band in the group unit. (6) The device according to (5), wherein the processing unit communicates with another device using at least the first unit frequency band. (7) The apparatus according to (5) or (6), wherein the processing unit performs LBT related to the second unit frequency band before performing communication using the second unit frequency band. (8) The number of the unit frequency bands included in the group is arbitrary, The apparatus according to any one of (1) to (7), wherein the processing unit selects the group to be subjected to LBT based on the number of the unit frequency bands included in the group.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
1.はじめに
1.1.スモールセル
1.2.キャリアアグリゲーション
1.3.ミリ波帯に関する考察
1.4.LBT
1.5.アンライセンスバンドに関する考察
1.6.ミリ波帯の導入に際しての注意点のまとめ
2.構成例
2.1.基地局の構成例
2.2.端末装置の構成例
3.第1の実施形態
3.1.技術的課題
3.2.技術的特徴
3.3.処理の流れ
4.第2の実施形態
4.1.技術的課題
4.2.技術的特徴
5.第3の実施形態
5.1.技術的課題
5.2.技術的特徴
5.3.処理の流れ
6.応用例
7.まとめ
<1.1.スモールセル>
図1は、本開示の一実施形態に係るシステム1の概要について説明するための説明図である。図1に示すように、システム1は、基地局10、端末装置20及び通信制御装置30を含む。
以下では、LTEリリース10(即ち、3GPPリリース10)において規定されたキャリアアグリゲーションに関する技術について説明する。
キャリアアグリゲーションとは、基地局と端末装置との間の通信チャネルを、例えばLTEにおいてサポートされる単位周波数帯域を複数統合することにより形成し、通信のスループットを向上させる技術である。キャリアアグリゲーションにより形成される1つの通信チャネルに含まれる個々の単位周波数帯域を、コンポーネントキャリア(CC:Component Carrier)という。ここでのCCは、LTE又はLTE-Aにおいて定義されているCCであってもよく、より一般的に単位周波数帯域を意味していてもよい。
端末装置が、RRC Idle状態からRRC Connected状態に遷移する場合に、最初に接続を確立するCCがPCCである。PCCの変更は、ハンドオーバと同様の手続きにより行われる。
SCCの追加は、Connection Reconfigurationと呼ばれる手続により行われる。本手続は、基地局側から開始される手続きである。SCCは、PCCに追加され、PCCに従属することとなる。SCCを追加することは、SCCをアクティベートするとも称される。
SCCの削除は、Connection Reconfigurationと呼ばれる手続により行われる。本手続は、基地局側から開始される手続きである。本手続においては、メッセージの中で指定された特定のSCCが削除される。なお、SCCの削除は、Connection Re-establishmentと呼ばれる手続によっても行われる。本手続は、端末装置側から開始される手続である。本手続によれば、全てのSCCが削除される。SCCを削除することは、SCCをディアクティベートするとも称される。
PCCは、SCCとは異なる特別な役割を有する。例えば、Connection establishmentにおけるNAS signalingの送受信は、PCCでのみ行われる。また、PUCCH(Physical Uplink Control Channel)の伝送は、PCCでのみ行われる。なお、アップリンクの制御信号には、例えば、ダウンリンクで送信されたデータに対する受信成功又は失敗を示すACK又はNACK、及びスケジューリングリクエスト等がある。また、Radio Link Failureの検出からConnection Re-establishmentの手続きも、PCCでのみ行われる。
LTEリリース12においては、マクロセル基地局とスモールセル基地局とでは、別々の周波数を用いるシナリオが示されている。例えば、マクロセル基地局には2GHz程度の周波数が割り当てられ、スモールセル基地局には5GHz等の高い周波数が割り当てられ得る。
以下では、ミリ波帯に関する考察について説明する。
一般的には、3GHz~30GHz(即ち、波長1cm~10cm)の電波はセンチメートル波とも称される。また、30GHz~300GHz(即ち、波長1cm~1mm)の電波はミリ波とも称される。また、10GHz~30GHzの電波は準ミリ波とも称される。本明細書におけるミリ波帯とは、これらのうち6GHz以上の周波数帯域を指すものとする。即ち、本明細書におけるミリ波とは、一般的なセンチメートル波も含む概念である。
ミリ波帯には広大な周波数リソースがある。そのため、ミリ波帯においては、LTEリリース10では20MHzとされていたCCの帯域幅を、例えば40MHZ、80MHz又は160MHzといったより広い帯域幅にも変更可能になると想定される。
周波数が高くなるにしたがって、電波のまわり込みがなくなり、直進性が強くなる。また、周波数が高くなるにしたがって、反射時の減衰も大きくなる。そのため、ミリ波帯のうち特に10GHz以上の電波は、基本的に、見通し内通信での使用を想定すべきであると言える。
典型的には、周波数の二乗に応じて電波伝搬ロス(即ち、パスロス)が大きくなり、電波は減衰していく。例えば、20GHz帯は、5GHz帯に比べて12dB減衰が大きくなる。60GHz帯は、5GHz帯に比べて22dB減衰が大きくなる。
3GPPリリース12の時点でのLTEにおけるOFDM(Orthogonal Frequency Division Multiplexing)のサブキャリア間隔(Subcarrier spacing)は、15kHzである。この15kHzという幅は、サブキャリア単位ではフラットフェージングとなるよう定義されている。そのため、全体(例えば、20MHz幅)としては、周波数選択制フェージングが発生していても、サブキャリア単位ではフラットフェージングが発生することとなる。このように、15kHzという幅は、受信時の特性劣化が少ないというメリットをもたらす。
LBTは、無線装置同士が自律的にデータの送信権を獲得し合うための技術である。具体的には、LBTとは、送信前に、送信に使用する予定の周波数を使用した送信をすでに行っているデバイス(端末、アクセスポイント又は基地局等)が周囲にいないことを確認した上で、送信する処理である。LBTは、キャリアセンス、又はCSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)とも称され得る。
(1)ミリ波帯でのアンライセンスバンド
ライセンスバンドは、携帯電話オペレータ等がライセンスを受けて使用する帯域ある。
アンライセンスバンドは、Wi-Fi等のライセンスなしに使用可能な帯域である。上述したように、ミリ波帯には、ライセンスバンドだけでなくアンライセンスバンドが含まれると想定される。様々な無線アクセス技術を同時に収容する方が、効率的であるためである。また、アンライセンスバンドの場合には、オペレータ間でリソースの融通を効かせ易い、という利点もある。
アンライセンスバンドでは、コンテンションベース(例えば、LBT等のキャリアセンス動作)でリソースを確保することが求められるので、常に安定したチャネルがeNBとUEとの間に存在するわけではない。そのため、ライセンスバンドのCCが、例えばダウンリンクデータ受信の成功/失敗を示すACK/NACKをフィードバックするためのチャネル等の、UEを制御するために使用されることが想定される。
第1の注意点は、CCの数が増加することである。ミリ波帯が導入された場合、無線装置がLBTの対象とするCCが膨大になり得る。
<2.1.基地局の構成例>
続いて、図3を参照して、本開示の一実施形態に係る基地局10の構成を説明する。図3は、本開示の一実施形態に係る基地局10の構成の一例を示すブロック図である。図3を参照すると、基地局10は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部150を備える。
アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
無線通信部120は、信号を送受信する。例えば、無線通信部120は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
記憶部140は、基地局10の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
処理部150は、基地局10の様々な機能を提供する。処理部150は、通信処理部151、LBT処理部153及び設定部155を含む。なお、処理部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部150は、これらの構成要素の動作以外の動作も行い得る。
続いて、図4を参照して、本開示の実施形態に係る端末装置20の構成の一例を説明する。図4は、本開示の一実施形態に係る端末装置20の構成の一例を示すブロック図である。図4を参照すると、端末装置20は、アンテナ部210、無線通信部220、記憶部230及び処理部240を備える。
アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
無線通信部220は、信号を送受信する。例えば、無線通信部220は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
記憶部230は、端末装置20の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
処理部240は、端末装置20の様々な機能を提供する。処理部240は、通信処理部241、LBT処理部243及び設定部245を含む。なお、処理部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、これらの構成要素の動作以外の動作も行い得る。
<3.1.技術的課題>
ミリ波帯を使用する場合、LBTの実施対象となるCCの数が膨大になり得る。また、LBTの結果、使用予定の周波数が他の装置によりすでに使用されていることが判明した場合、待機する又はさらに別の使用可能なCCを探索することが要されるので、同時に数多くのCCの使用権を確保することが困難であった。
(1)CCのグループ化
本実施形態では、基地局10が使用可能な複数のCCのうち一部のCCから成るグループが定義される。このグループは、少なくともひとつ(典型的には、複数)のCCを含む。このグループを、以下ではLBTグループとも称する。1つのLBTグループは、少なくとも1つのLBTプライマリCCを含む。また、LBTグループが含むCCの数を、そのLBTグループのレベルとする。LBTグループの一例を、図5~図8に示した。
無線装置(例えば、基地局10のLBT処理部153又は端末装置20のLBT処理部243)は、LBTグループ単位でLBTを実施する。
無線装置(例えば、基地局10の通信処理部151又は端末装置20の通信処理部241)は、LBTの結果に基づいて通信を行う。
無線装置(例えば、基地局10の設定部155又は端末装置20の設定部245)は、LBTグループの設定、及び各々のLBTグループのLBTプライマリCCの設定を行う。
(1)LBTの流れ
図9は、本実施形態に係る端末装置20において実行されるLBT処理の流れの一例を示すフローチャートである。
図10は、本実施形態に係るシステム1において実行される通信処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局10及び端末装置20が関与する。本シーケンスは、端末装置20がLBTを行う場合の例である。
<4.1.技術的課題>
無線装置の能力的な制限又は送信データの容量等の各種要因により、無線装置ごとに同時使用を希望するCCの数が異なるケースが考えられる。また、同時使用を希望するCCの数が異なる無線装置が混在するケースも考えられる。このようなケースにおいても、効率的にLBTを実施するための仕組みが提供されることが望ましい。
(1)階層構造
本実施形態では、LBTグループは、含むCCの数がより少ない下位のLBTグループの集合により形成される。即ち、本実施形態に係るLBTグループは、上位のLBTグループが下位のLBTグループの集合から成る、階層構造を有する。階層構造の例を、図12に示した。
このような階層構造を有するLBTグループを対象としたLBTを想定して、以下の考察を行う。
<5.1.技術的課題>
第2の実施形態によれば、LBTを実施する回数を削減可能ではあるものの、各々のCCが使用されているか否かを把握するためには複数回の実施が必要になるケースがある。このことは、CCの利用効率を低下させる一因となり得る。そのため、どのような階層構造が形成されたとしても、1回のLBTで各々のCCが使用されているか否かを把握可能になる仕組みが提供されることが望ましい。
(1)LBTパイロットリソース
本実施形態では、LBTプライマリCCにおいて、LBTグループに含まれる各々のCCの使用状況が再現される。より詳しくは、LBTプライマリCCに含まれる各々のリソースにおいて、LBTグループに含まれる各々のCCを用いた通信が行われているか否かを示す信号が送信される。以下、図13~図15を参照してLBTプライマリCCについて詳細に説明する。
無線装置(例えば、基地局10の設定部155又は端末装置20の設定部245)は、LBTプライマリCCにおけるLBTパイロットリソースの設定を行う。
無線装置(例えば、基地局10のLBT処理部153又は端末装置20のLBT処理部243)は、LBTパイロットリソースを対象としてLBTを行う。そして、無線装置は、各々のLBTパイロットリソースに関するLBTの結果が、対応する各々のCCに関するLBTの結果であると推定する。例えば、図13に示した例において、LBTパイロットリソース1~8のうち、LBTパイロットリソース2及び3のみアイドル状態であった場合、無線装置は、CC2及びCC3は他の無線装置により使用されておらず、使用可能であると判定する。このように、無線装置は、LBTプライマリCCに関するLBTを実施するだけで、LBTグループに含まれる他のCCの使用状況を把握することが可能となる。
無線装置(例えば、基地局10の通信処理部151又は端末装置20の通信処理部241)は、CCを用いて信号を送信する場合、対応するLBTパイロットリソースを用いて信号を送信する。この信号は、他の無線装置において、本当のCCを対象としてLBT(即ち、energy detection)を実施した場合と同じ電力密度(dBm/Hz)の信号が検出されるものであれば、どのような信号であってもよい。この信号を、以下ではLBTパイロット信号とも称する。例えば、図13に示した例において、CC2及びCC3を用いて信号を送信する場合、無線装置は、LBTパイロットリソース2及び3を用いてLBTパイロット信号を送信する。これにより、他の無線装置によりLBTが実施された際、当該LBTパイロットリソースはビジー状態であると判定されるので、衝突が回避される。
(1)信号送信の流れ
図16は、本実施形態に係る端末装置20において実行される信号送信処理の流れの一例を示すフローチャートである。
図17は、本実施形態に係るシステム1において実行される通信処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局10及び端末装置20が関与する。本シーケンスは、端末装置20がLBTを行う場合の例である。
本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局10は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局10は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局10は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局10として動作してもよい。さらに、基地局10の少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。
(第1の応用例)
図19は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
図20は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
(第1の応用例)
図21は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
図22は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
以上、図1~図22を参照して、本開示の一実施形態について詳細に説明した。上記説明したように、本実施形態に係る無線装置(例えば、基地局10又は端末装置20)は、複数のCCを含むLBTグループに含まれる少なくともひとつのLBTプライマリCCに関するLBTの結果に基づいて、LBTグループに含まれるLBTプライマリCC以外の他のCCに関するLBTの結果を推定する。これにより、プライマリCCに関するLBTを実施するだけで、同一のLBTグループに含まれる他のCCに関するLBTの実施を省略することが可能となり、LBTの効率化が実現される。これに伴い、無線装置がミリ波帯のCCを効率的に使用することが可能となり、セルラーネットワークにおけるトラフィックの収容効率を向上させることができる。
(1)
複数の単位周波数帯域を含むグループに含まれる少なくともひとつの第1の単位周波数帯域に関するLBT(Listen Before Talk)の結果に基づいて、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域に関するLBTの結果を推定する処理部、
を備える装置。
(2)
前記処理部は、前記グループに含まれる複数の前記単位周波数帯域を示す情報を取得する、前記(1)に記載の装置。
(3)
前記処理部は、前記グループにおける前記第1の単位周波数帯域を示す情報を取得する、前記(1)又は(2)に記載の装置。
(4)
前記処理部は、前記第2の単位周波数帯域に関するLBTの結果は、前記第1の単位周波数帯域のLBTの結果と同じであると推定する、前記(1)~(3)のいずれか一項に記載の装置。
(5)
前記処理部は、前記グループ単位で前記単位周波数帯域を用いた通信を行うか否かを判定する、前記(1)~(4)のいずれか一項に記載の装置。
(6)
前記処理部は、少なくとも前記第1の単位周波数帯域を用いて他の装置との間で通信する、前記(5)に記載の装置。
(7)
前記処理部は、前記第2の単位周波数帯域を用いた通信を行う前に、前記第2の単位周波数帯域に関するLBTを行う、前記(5)又は(6)に記載の装置。
(8)
前記グループに含まれる前記単位周波数帯域の数は任意であり、
前記処理部は、前記グループに含まれる前記単位周波数帯域の数に基づいてLBTの対象となる前記グループを選択する、前記(1)~(7)のいずれか一項に記載の装置。
(9)
前記グループに含まれる前記単位周波数帯域の数は2のべき乗である、前記(8)に記載の装置。
(10)
前記グループは、含む前記単位周波数帯域の数がより少ない下位の前記グループの集合により形成される、前記(1)~(9)のいずれか一項に記載の装置。
(11)
上位の前記グループの前記第1の単位周波数帯域は、少なくともひとつの下位の前記グループの前記第1の単位周波数帯域と一致する、前記(10)に記載の装置。
(12)
前記処理部は、より上位の前記グループと一致する前記第1の単位周波数帯域を優先的にLBTの対象とする、前記(11)に記載の装置。
(13)
前記第1の単位周波数帯域に含まれる各々のリソースにおいて、前記グループに含まれる各々の前記単位周波数帯域を用いた通信が行われているか否かを示す信号が送信され、
前記処理部は、各々の前記リソースに関するLBTの結果が、対応する各々の前記単位周波数帯域に関するLBTの結果であると推定する、前記(1)~(12)のいずれか一項に記載の装置。
(14)
前記リソースは、前記第1の単位周波数帯域が時間領域で分割されたリソースである、前記(13)に記載の装置。
(15)
前記リソースは、前記第1の単位周波数帯域が周波数領域で分割されたリソースである、前記(13)又は(14)に記載の装置。
(16)
前記リソースにおいて送信される信号は、対応する前記単位周波数帯域の電波伝搬特性に応じた送信電力で送信される、前記(13)~(15)のいずれか一項に記載の装置。
(17)
前記グループは、基地局が使用可能な複数の前記単位周波数帯域のうち一部の前記単位周波数帯域から成る、前記(1)~(16)のいずれか一項に記載の装置。
(18)
前記単位周波数帯域は、コンポーネントキャリアである、前記(1)~(17)のいずれか一項に記載の装置。
(19)
前記単位周波数帯域は、周波数が6GHz以上である、前記(1)~(18)のいずれか一項に記載の装置。
(20)
複数の単位周波数帯域を含むグループに含まれる少なくともひとつの第1の前記単位周波数帯域に関するLBTの結果に基づいて、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域に関するLBTの結果をプロセッサにより推定すること、
を含む方法。
10 基地局
11 スモールセル
15 コアネットワーク
16 パケットデータネットワーク
20 端末装置
30 通信制御装置
31 マクロセル
110 アンテナ部
120 無線通信部
130 ネットワーク通信部
140 記憶部
150 処理部
151 通信処理部
153 LBT処理部
155 設定部
210 アンテナ部
220 無線通信部
230 記憶部
240 処理部
241 通信処理部
243 LBT処理部
245 設定部
Claims (20)
- 複数の単位周波数帯域を含むグループに含まれる少なくともひとつの第1の単位周波数帯域に関するLBT(Listen Before Talk)の結果に基づいて、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域に関するLBTの結果を推定する処理部、
を備える装置。 - 前記処理部は、前記グループに含まれる複数の前記単位周波数帯域を示す情報を取得する、請求項1に記載の装置。
- 前記処理部は、前記グループにおける前記第1の単位周波数帯域を示す情報を取得する、請求項1に記載の装置。
- 前記処理部は、前記第2の単位周波数帯域に関するLBTの結果は、前記第1の単位周波数帯域のLBTの結果と同じであると推定する、請求項1に記載の装置。
- 前記処理部は、前記グループ単位で前記単位周波数帯域を用いた通信を行うか否かを判定する、請求項1に記載の装置。
- 前記処理部は、少なくとも前記第1の単位周波数帯域を用いて他の装置との間で通信する、請求項5に記載の装置。
- 前記処理部は、前記第2の単位周波数帯域を用いた通信を行う前に、前記第2の単位周波数帯域に関するLBTを行う、請求項5に記載の装置。
- 前記グループに含まれる前記単位周波数帯域の数は任意であり、
前記処理部は、前記グループに含まれる前記単位周波数帯域の数に基づいてLBTの対象となる前記グループを選択する、請求項1に記載の装置。 - 前記グループに含まれる前記単位周波数帯域の数は2のべき乗である、請求項8に記載の装置。
- 前記グループは、含む前記単位周波数帯域の数がより少ない下位の前記グループの集合により形成される、請求項1に記載の装置。
- 上位の前記グループの前記第1の単位周波数帯域は、少なくともひとつの下位の前記グループの前記第1の単位周波数帯域と一致する、請求項10に記載の装置。
- 前記処理部は、より上位の前記グループと一致する前記第1の単位周波数帯域を優先的にLBTの対象とする、請求項11に記載の装置。
- 前記第1の単位周波数帯域に含まれる各々のリソースにおいて、前記グループに含まれる各々の前記単位周波数帯域を用いた通信が行われているか否かを示す信号が送信され、
前記処理部は、各々の前記リソースに関するLBTの結果が、対応する各々の前記単位周波数帯域に関するLBTの結果であると推定する、請求項1に記載の装置。 - 前記リソースは、前記第1の単位周波数帯域が時間領域で分割されたリソースである、請求項13に記載の装置。
- 前記リソースは、前記第1の単位周波数帯域が周波数領域で分割されたリソースである、請求項13に記載の装置。
- 前記リソースにおいて送信される信号は、対応する前記単位周波数帯域の電波伝搬特性に応じた送信電力で送信される、請求項13に記載の装置。
- 前記グループは、基地局が使用可能な複数の前記単位周波数帯域のうち一部の前記単位周波数帯域から成る、請求項1に記載の装置。
- 前記単位周波数帯域は、コンポーネントキャリアである、請求項1に記載の装置。
- 前記単位周波数帯域は、周波数が6GHz以上である、請求項1に記載の装置。
- 複数の単位周波数帯域を含むグループに含まれる少なくともひとつの第1の前記単位周波数帯域に関するLBTの結果に基づいて、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域に関するLBTの結果をプロセッサにより推定すること、
を含む方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680057242.1A CN108141865B (zh) | 2015-10-06 | 2016-07-08 | 装置和方法 |
JP2017544392A JP6894842B2 (ja) | 2015-10-06 | 2016-07-08 | 無線装置及び方法 |
US15/751,977 US10764923B2 (en) | 2015-10-06 | 2016-07-08 | Apparatus and method for listen-before-talk in a frequency band |
EP23163226.6A EP4221431A1 (en) | 2015-10-06 | 2016-07-08 | Listen-before-talk in the millimeter wave band |
BR112018006432A BR112018006432A2 (pt) | 2015-10-06 | 2016-07-08 | aparelho, e, método. |
EP16853312.3A EP3361808B1 (en) | 2015-10-06 | 2016-07-08 | Device and method for listen-before-talk in the millimeter wave band |
US16/995,824 US20200404707A1 (en) | 2015-10-06 | 2020-08-18 | Apparatus and method for listen-before-talk in a frequency band |
US17/829,393 US20220304052A1 (en) | 2015-10-06 | 2022-06-01 | Apparatus and method for listen-before-talk in a frequency band |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015198325 | 2015-10-06 | ||
JP2015-198325 | 2015-10-06 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/751,977 A-371-Of-International US10764923B2 (en) | 2015-10-06 | 2016-07-08 | Apparatus and method for listen-before-talk in a frequency band |
US16/995,824 Continuation US20200404707A1 (en) | 2015-10-06 | 2020-08-18 | Apparatus and method for listen-before-talk in a frequency band |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017061157A1 true WO2017061157A1 (ja) | 2017-04-13 |
Family
ID=58487450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/070324 WO2017061157A1 (ja) | 2015-10-06 | 2016-07-08 | 装置及び方法 |
Country Status (6)
Country | Link |
---|---|
US (3) | US10764923B2 (ja) |
EP (2) | EP3361808B1 (ja) |
JP (1) | JP6894842B2 (ja) |
CN (1) | CN108141865B (ja) |
BR (1) | BR112018006432A2 (ja) |
WO (1) | WO2017061157A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019031507A1 (ja) * | 2017-08-08 | 2019-02-14 | シャープ株式会社 | 通信装置および通信方法 |
JP2020522961A (ja) * | 2017-06-09 | 2020-07-30 | 華為技術有限公司Huawei Technologies Co.,Ltd. | 信号送信方法、関連装置、及びシステム |
JP2020534743A (ja) * | 2017-09-19 | 2020-11-26 | クアルコム,インコーポレイテッド | ミリメートル波システムのためのリッスンビフォアトークおよびチャネル予約 |
CN112136353A (zh) * | 2018-05-21 | 2020-12-25 | 高通股份有限公司 | 共享毫米波射频频谱中的说前先听技术 |
JP2021516008A (ja) * | 2018-03-01 | 2021-06-24 | クアルコム,インコーポレイテッド | ニューラジオアンライセンスト(nr−u)におけるサブバンドアクセスのための帯域幅部分(bwp)構成 |
US12126573B2 (en) | 2017-06-09 | 2024-10-22 | Huawei Technologies Co., Ltd. | Signal transmission method, related device, and system |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10736114B2 (en) | 2018-01-10 | 2020-08-04 | Charter Communications Operating, Llc | RF channel analysis and improved usage of wireless channels in a wireless network |
US11272539B2 (en) * | 2018-08-09 | 2022-03-08 | Ofinno, Llc | Channel access and bandwidth part switching |
CN109075878B (zh) * | 2018-08-10 | 2021-01-26 | 北京小米移动软件有限公司 | 监听方法、装置、设备及存储介质 |
US11533752B2 (en) * | 2020-02-07 | 2022-12-20 | Qualcomm Incorporated | Unlicensed medium access without listen before talk for millimeter wave |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104380779B (zh) | 2012-06-05 | 2019-04-09 | 索尼公司 | 通信控制设备、基站、终端设备以及通信控制方法 |
JP6201997B2 (ja) * | 2012-08-13 | 2017-09-27 | ソニー株式会社 | 通信制御装置、端末装置及び通信制御方法 |
US10110355B2 (en) * | 2014-03-10 | 2018-10-23 | Apple Inc. | Uplink transmission on unlicensed radio frequency band component carriers |
US10306479B2 (en) * | 2015-03-13 | 2019-05-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Technique for communicating on unlicensed spectrum |
JP6608051B2 (ja) * | 2015-07-10 | 2019-11-20 | エルジー エレクトロニクス インコーポレイティド | 非免許帯域及びキャリア結合を支援する無線接続システムにおいてデータバースト送信方法及び装置 |
CN106452708B (zh) * | 2015-08-07 | 2021-07-06 | 中兴通讯股份有限公司 | 一种非授权多载波先听后说执行方法和装置 |
EP3352522B1 (en) * | 2015-09-17 | 2023-11-01 | LG Electronics Inc. | Method and device for performing lbt process on multiple carriers in wireless access system supporting unlicensed band |
-
2016
- 2016-07-08 WO PCT/JP2016/070324 patent/WO2017061157A1/ja active Application Filing
- 2016-07-08 EP EP16853312.3A patent/EP3361808B1/en active Active
- 2016-07-08 CN CN201680057242.1A patent/CN108141865B/zh active Active
- 2016-07-08 JP JP2017544392A patent/JP6894842B2/ja active Active
- 2016-07-08 BR BR112018006432A patent/BR112018006432A2/pt not_active Application Discontinuation
- 2016-07-08 US US15/751,977 patent/US10764923B2/en active Active
- 2016-07-08 EP EP23163226.6A patent/EP4221431A1/en active Pending
-
2020
- 2020-08-18 US US16/995,824 patent/US20200404707A1/en not_active Abandoned
-
2022
- 2022-06-01 US US17/829,393 patent/US20220304052A1/en active Pending
Non-Patent Citations (1)
Title |
---|
ZTE: "Design of DL LBT", 3GPP TSG-RAN WG1#82 R1-154750, 19 August 2015 (2015-08-19), XP051039560, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGP1_82/Docs/Rl-154750.zip> [retrieved on 20160726] * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020522961A (ja) * | 2017-06-09 | 2020-07-30 | 華為技術有限公司Huawei Technologies Co.,Ltd. | 信号送信方法、関連装置、及びシステム |
JP7091371B2 (ja) | 2017-06-09 | 2022-06-27 | 華為技術有限公司 | 信号送信方法、関連装置、及びシステム |
US11387969B2 (en) | 2017-06-09 | 2022-07-12 | Huawei Technologies Co., Ltd. | Signal transmission method, related device, and system |
US12126573B2 (en) | 2017-06-09 | 2024-10-22 | Huawei Technologies Co., Ltd. | Signal transmission method, related device, and system |
WO2019031507A1 (ja) * | 2017-08-08 | 2019-02-14 | シャープ株式会社 | 通信装置および通信方法 |
JP2020534743A (ja) * | 2017-09-19 | 2020-11-26 | クアルコム,インコーポレイテッド | ミリメートル波システムのためのリッスンビフォアトークおよびチャネル予約 |
JP7313340B2 (ja) | 2017-09-19 | 2023-07-24 | クアルコム,インコーポレイテッド | ミリメートル波システムのためのリッスンビフォアトークおよびチャネル予約 |
JP2021516008A (ja) * | 2018-03-01 | 2021-06-24 | クアルコム,インコーポレイテッド | ニューラジオアンライセンスト(nr−u)におけるサブバンドアクセスのための帯域幅部分(bwp)構成 |
US11678367B2 (en) | 2018-03-01 | 2023-06-13 | Qualcomm Incorporated | Bandwidth part (BWP) configuration for subband access in new radio-unlicensed (NR-U) |
JP7334175B2 (ja) | 2018-03-01 | 2023-08-28 | クアルコム,インコーポレイテッド | ニューラジオアンライセンスト(nr-u)におけるサブバンドアクセスのための帯域幅部分(bwp)構成 |
CN112136353A (zh) * | 2018-05-21 | 2020-12-25 | 高通股份有限公司 | 共享毫米波射频频谱中的说前先听技术 |
CN112136353B (zh) * | 2018-05-21 | 2024-04-05 | 高通股份有限公司 | 共享毫米波射频频谱中的说前先听技术 |
Also Published As
Publication number | Publication date |
---|---|
EP3361808B1 (en) | 2023-04-05 |
US20220304052A1 (en) | 2022-09-22 |
CN108141865A (zh) | 2018-06-08 |
JP6894842B2 (ja) | 2021-06-30 |
US20200404707A1 (en) | 2020-12-24 |
EP4221431A1 (en) | 2023-08-02 |
US10764923B2 (en) | 2020-09-01 |
BR112018006432A2 (pt) | 2018-12-11 |
JPWO2017061157A1 (ja) | 2018-07-26 |
EP3361808A1 (en) | 2018-08-15 |
EP3361808A4 (en) | 2019-05-01 |
CN108141865B (zh) | 2023-02-07 |
US20180242359A1 (en) | 2018-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11218216B2 (en) | Communication apparatus and communication method | |
CN106452705B (zh) | 无线通信系统中的电子设备和无线通信方法 | |
WO2017061157A1 (ja) | 装置及び方法 | |
US10827497B2 (en) | Apparatus and method for beam selection in downlink transmission | |
RU2767170C2 (ru) | Устройство радиосвязи, способ радиосвязи и компьютерная программа | |
US20240334442A1 (en) | Downlink quality improvement method and apparatus | |
US10880893B2 (en) | Transmission of discovery signal in small cells while in off state |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16853312 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017544392 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15751977 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018006432 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112018006432 Country of ref document: BR Kind code of ref document: A2 Effective date: 20180329 |