JP6894842B2 - 無線装置及び方法 - Google Patents

無線装置及び方法 Download PDF

Info

Publication number
JP6894842B2
JP6894842B2 JP2017544392A JP2017544392A JP6894842B2 JP 6894842 B2 JP6894842 B2 JP 6894842B2 JP 2017544392 A JP2017544392 A JP 2017544392A JP 2017544392 A JP2017544392 A JP 2017544392A JP 6894842 B2 JP6894842 B2 JP 6894842B2
Authority
JP
Japan
Prior art keywords
lbt
unit frequency
group
frequency band
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017544392A
Other languages
English (en)
Other versions
JPWO2017061157A1 (ja
Inventor
高野 裕昭
裕昭 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Sony Group Corp
Original Assignee
Sony Corp
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, Sony Group Corp filed Critical Sony Corp
Publication of JPWO2017061157A1 publication Critical patent/JPWO2017061157A1/ja
Application granted granted Critical
Publication of JP6894842B2 publication Critical patent/JP6894842B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Physical Water Treatments (AREA)

Description

本開示は、装置及び方法に関する。
近年の無線通信環境は、データトラフィックの急激な増加という問題に直面している。そこで、3GPPでは、マクロセル内にスモールセルを多数設置してネットワーク密度を高めることにより、トラフィックを分散させることを検討している。このようにスモールセルを活用する技術を、スモールセルエンハンスメントという。なお、スモールセルは、マクロセルと重複して配置される、マクロセルよりも小さい様々な種類のセル(例えば、フェムトセル、ナノセル、ピコセル及びマイクロセルなど)を含み得る概念である。
また、無線リソースの拡充策の一つとして、ミリ波帯と呼ばれる6GHz以上の周波数帯域の活用が検討されている。ただし、ミリ波帯は、直進性が強く、電波伝搬減衰が大きいことから、マクロセルよりも小さいスモールセルでの活用が期待されている。また、ミリ波帯は広大であるため、すべての周波数帯がライセンスバンド(Licensed Band)とされることは想定しにくく、相当数の周波数帯が二次利用可能なアンライセンスバンド(Unlicensed Band)とされることが想定される。
例えば、周波数の二次利用に関する技術として、下記特許文献1では、異なる事業者により運用される複数のネットワークとの間で情報のやり取りを行い、ある事業者の周波数帯域を使用できるかを別の事業者が知ることを可能にするための仕組みが開示されている。
国際公開第2013/183331号
アンライセンスバンドを利用する装置は、LBT(Listen Before Talk)を行って、送信前に周波数帯の空きを確認することが想定される。ただし、ミリ波帯は広大であるため、LBTが効率的に実施可能になる仕組みが提供されることが望ましい。
本開示によれば、複数の単位周波数帯域を含むグループに含まれる少なくともひとつの第1の単位周波数帯域に関するLBTの結果に基づいて、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域に関するLBTの結果を推定する処理部、を備える装置が提供される。
また、本開示によれば、複数の単位周波数帯域を含むグループに含まれる少なくともひとつの第1の前記単位周波数帯域に関するLBTの結果に基づいて、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域に関するLBTの結果をプロセッサにより推定すること、を含む方法が提供される。
以上説明したように本開示によれば、LBTが効率的に実施可能になる仕組みが提供される。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態に係るシステムの概要について説明するための説明図である。 コンポーネントキャリアについて説明するための説明図である。 同実施形態に係る基地局の構成の一例を示すブロック図である。 同実施形態に係る端末装置の構成の一例を示すブロック図である。 第1の実施形態の技術的特徴を説明するための説明図である。 同実施形態の技術的特徴を説明するための説明図である。 同実施形態の技術的特徴を説明するための説明図である。 同実施形態の技術的特徴を説明するための説明図である。 同実施形態に係る端末装置において実行されるLBT処理の流れの一例を示すフローチャートである。 同実施形態に係るシステムにおいて実行される通信処理の流れの一例を示すシーケンス図である。 同実施形態に係るシステムにおいて実行される通信処理の流れの一例を示すシーケンス図である。 第2の実施形態の技術的特徴を説明するための説明図である。 第3の実施形態の技術的特徴を説明するための説明図である。 同実施形態の技術的特徴を説明するための説明図である。 同実施形態の技術的特徴を説明するための説明図である。 同実施形態に係る端末装置において実行される信号送信処理の流れの一例を示すフローチャートである。 同実施形態に係るシステムにおいて実行される通信処理の流れの一例を示すシーケンス図である。 同実施形態に係るシステムにおいて実行される通信処理の流れの一例を示すシーケンス図である。 eNBの概略的な構成の第1の例を示すブロック図である。 eNBの概略的な構成の第2の例を示すブロック図である。 スマートフォンの概略的な構成の一例を示すブロック図である。 カーナビゲーション装置の概略的な構成の一例を示すブロック図である。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
また、本明細書及び図面において、実質的に同一の機能構成を有する要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の要素を、必要に応じて基地局10A、10B及び10Cのように区別する。ただし、実質的に同一の機能構成を有する複数の要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、基地局10A、10B及び10Cを特に区別する必要が無い場合には、単に基地局10と称する。
なお、説明は以下の順序で行うものとする。
1.はじめに
1.1.スモールセル
1.2.キャリアアグリゲーション
1.3.ミリ波帯に関する考察
1.4.LBT
1.5.アンライセンスバンドに関する考察
1.6.ミリ波帯の導入に際しての注意点のまとめ
2.構成例
2.1.基地局の構成例
2.2.端末装置の構成例
3.第1の実施形態
3.1.技術的課題
3.2.技術的特徴
3.3.処理の流れ
4.第2の実施形態
4.1.技術的課題
4.2.技術的特徴
5.第3の実施形態
5.1.技術的課題
5.2.技術的特徴
5.3.処理の流れ
6.応用例
7.まとめ
<<1.はじめに>>
<1.1.スモールセル>
図1は、本開示の一実施形態に係るシステム1の概要について説明するための説明図である。図1に示すように、システム1は、基地局10、端末装置20及び通信制御装置30を含む。
図1の例では、通信制御装置30は、マクロセル基地局である。マクロセル基地局30は、マクロセル31の内部に位置する1つ以上の端末装置20へ無線通信サービスを提供する。マクロセル基地局30は、コアネットワーク15に接続される。コアネットワーク15は、ゲートウェイ装置(図示せず)を介してパケットデータネットワーク(PDN)16に接続される。マクロセル31は、例えば、LTE(Long Term Evolution)、LTE−A(LTE-Advanced)、GSM(登録商標)、UMTS、W−CDMA、CDMA200、WiMAX、WiMAX2又はIEEE802.16などの任意の無線通信方式に従って運用されてよい。なお、図1の例に限定されず、コアネットワーク15又はPDN16内の制御ノード(マクロセル基地局の上位ノード)が、マクロセル及びスモールセルにおける無線通信を協調的に制御する機能を有していてもよい。なお、マクロセル基地局は、Macro eNodeBとも称され得る。
基地局10Aは、スモールセル11を運用するスモールセル基地局である。スモールセル基地局10Aは、典型的には、自装置に接続する端末装置20へ無線リソースを割当てる権限を有する。但し、無線リソースの割当ては、協調的な制御のために、少なくとも部分的に通信制御装置30へ委任されてもよい。基地局10は、図1に示したような固定的に設置されるスモールセル基地局であってもよいし、スモールセル11を動的に運用するダイナミックAP(アクセスポイント)であってもよい。なお、スモールセル基地局は、pico eNB又はFemto eNBとも称され得る。基地局10Bは、Wi−Fiネットワークを運用するAPである。AP10Bは、自装置に接続する端末装置20との間で無線通信を行う。スモールセル基地局10A又はマクロセル基地局30とAP10Bとの間では、後述するアンライセンスバンドの利用により、使用する周波数が重複する場合がある。
端末装置20は、マクロセル基地局30、スモールセル基地局10A又はAP10Bに接続して、無線通信サービスを享受する。例えば、スモールセル基地局10に接続する端末装置20は、マクロセル基地局30から制御信号を受信し、スモールセル基地局10からデータ信号を受信する。端末装置20は、ユーザとも呼ばれる。当該ユーザは、ユーザ機器(User Equipment:UE)とも呼ばれ得る。ここでのUEは、LTE又はLTE−Aにおいて定義されているUEであってもよく、より一般的に通信機器を意味してもよい。
<1.2.キャリアアグリゲーション>
以下では、LTEリリース10(即ち、3GPPリリース10)において規定されたキャリアアグリゲーションに関する技術について説明する。
(1)コンポーネントキャリア
キャリアアグリゲーションとは、基地局と端末装置との間の通信チャネルを、例えばLTEにおいてサポートされる単位周波数帯域を複数統合することにより形成し、通信のスループットを向上させる技術である。キャリアアグリゲーションにより形成される1つの通信チャネルに含まれる個々の単位周波数帯域を、コンポーネントキャリア(CC:Component Carrier)という。ここでのCCは、LTE又はLTE−Aにおいて定義されているCCであってもよく、より一般的に単位周波数帯域を意味していてもよい。
LTEリリース10においては、最大5つのCCを統合することが可能となっている。また、1つのCCは、20MHz幅である。なお、統合される各々のCCは、周波数軸上に連続して配置されていてもよいし、離れて配置されていてもよい。また、どのCCを統合して用いるかは、端末装置ごとに設定することができる。
統合される複数のCCは、1つのPCC(Primary Component Carrier)と、それ以外のSCC(Secondary Component Carrier)とに分類される。端末装置ごとに、PCCは異なる。PCCは、最も重要なCCであるため、通信品質が一番安定しているCCが選ばれることが望ましい。
図2は、コンポーネントキャリアについて説明するための説明図である。図2に示した例では、5つのCCの一部を、2つのUEが統合して使用している様子を示している。詳しくは、UE1がCC1、CC2及びCC3を統合して使用し、UE2がCC2及びCC4を統合して使用している。また、UE1のPCCは、CC2である。UE2のPCCは、CC4である。
ここで、PCCの選択は実装依存である。SCCの変更は、SCC削除して別のSCCを追加することにより行われる。即ち、SCCの変更を直接行うことは困難である。
(2)PCCの形成及び変更
端末装置が、RRC Idle状態からRRC Connected状態に遷移する場合に、最初に接続を確立するCCがPCCである。PCCの変更は、ハンドオーバと同様の手続きにより行われる。
PCCの形成は、Connection establishmentと呼ばれる手続により行われる。本手続は、端末装置側からのリクエストをトリガとして開始される手続である。
PCCの変更は、Connection Reconfigurationと呼ばれる手続により行われる。本手続は、ハンドオーバのメッセージを送受信することを含む。本手続は、基地局側から開始される手続きである。
(3)SCCの追加
SCCの追加は、Connection Reconfigurationと呼ばれる手続により行われる。本手続は、基地局側から開始される手続きである。SCCは、PCCに追加され、PCCに従属することとなる。SCCを追加することは、SCCをアクティベートするとも称される。
(4)SCCの削除
SCCの削除は、Connection Reconfigurationと呼ばれる手続により行われる。本手続は、基地局側から開始される手続きである。本手続においては、メッセージの中で指定された特定のSCCが削除される。なお、SCCの削除は、Connection Re−establishmentと呼ばれる手続によっても行われる。本手続は、端末装置側から開始される手続である。本手続によれば、全てのSCCが削除される。SCCを削除することは、SCCをディアクティベートするとも称される。
(5)PCCの特別な役割
PCCは、SCCとは異なる特別な役割を有する。例えば、Connection establishmentにおけるNAS signalingの送受信は、PCCでのみ行われる。また、PUCCH(Physical Uplink Control Channel)の伝送は、PCCでのみ行われる。なお、アップリンクの制御信号には、例えば、ダウンリンクで送信されたデータに対する受信成功又は失敗を示すACK又はNACK、及びスケジューリングリクエスト等がある。また、Radio Link Failureの検出からConnection Re−establishmentの手続きも、PCCでのみ行われる。
(6)LTEリリース12
LTEリリース12においては、マクロセル基地局とスモールセル基地局とでは、別々の周波数を用いるシナリオが示されている。例えば、マクロセル基地局には2GHz程度の周波数が割り当てられ、スモールセル基地局には5GHz等の高い周波数が割り当てられ得る。
<1.3.ミリ波帯に関する考察>
以下では、ミリ波帯に関する考察について説明する。
(1)定義
一般的には、3GHz〜30GHz(即ち、波長1cm〜10cm)の電波はセンチメートル波とも称される。また、30GHz〜300GHz(即ち、波長1cm〜1mm)の電波はミリ波とも称される。また、10GHz〜30GHzの電波は準ミリ波とも称される。本明細書におけるミリ波帯とは、これらのうち6GHz以上の周波数帯域を指すものとする。即ち、本明細書におけるミリ波とは、一般的なセンチメートル波も含む概念である。
(2)コンポーネントキャリアとの関係
ミリ波帯には広大な周波数リソースがある。そのため、ミリ波帯においては、LTEリリース10では20MHzとされていたCCの帯域幅を、例えば40MHZ、80MHz又は160MHzといったより広い帯域幅にも変更可能になると想定される。
(3)見通し内通信
周波数が高くなるにしたがって、電波のまわり込みがなくなり、直進性が強くなる。また、周波数が高くなるにしたがって、反射時の減衰も大きくなる。そのため、ミリ波帯のうち特に10GHz以上の電波は、基本的に、見通し内通信での使用を想定すべきであると言える。
(4)周波数帯ごとの電波伝搬ロス
典型的には、周波数の二乗に応じて電波伝搬ロス(即ち、パスロス)が大きくなり、電波は減衰していく。例えば、20GHz帯は、5GHz帯に比べて12dB減衰が大きくなる。60GHz帯は、5GHz帯に比べて22dB減衰が大きくなる。
ミリ波帯は、例えば6GHzから60GHz程度まで、広大な帯域にまたがっている。現状のLTEでは2GHz帯が使用されていることと比較しても、ミリ波帯は広大な帯域を有すると言える。そして、ミリ波帯における電波の性質は、その広大さ故に均一でなく、同じミリ波帯に属する電波同士でも性質が大きく異なる場合がある。
6GHz以上の周波数においては、周波数が高くなるほどに電波が届きにくくなることが知られている。従って、UEとeNBとの間のリンクにミリ波帯の電波が使用される場合、安定的にリンクが維持されることは保障されない。そのため、より低い周波数の電波を使用して、より高い周波数の電波に関する制御を行うことが想定される。実際に、LTEリリース12におけるスモールセルに関する検討では、2GHz帯のCCを使用して、5GHz帯のCCの制御を行う技術に関し議論がなされた。
ミリ波帯は6GHz〜60GHz程度まで、広範囲にリソースが存在している。そのため、この広範囲のリソースを2GHz帯のCCを用いて制御しようとしても、2GHz帯のCCのリソースが不足してしまい得る。
(5)サブキャリア間隔の変更
3GPPリリース12の時点でのLTEにおけるOFDM(Orthogonal Frequency Division Multiplexing)のサブキャリア間隔(Subcarrier spacing)は、15kHzである。この15kHzという幅は、サブキャリア単位ではフラットフェージングとなるよう定義されている。そのため、全体(例えば、20MHz幅)としては、周波数選択制フェージングが発生していても、サブキャリア単位ではフラットフェージングが発生することとなる。このように、15kHzという幅は、受信時の特性劣化が少ないというメリットをもたらす。
10GHz〜60GHzの周波数帯においては、このフラットフェージングの発生を見込むことができる周波数幅が大きくなると予測される。例えば、2GHz帯では15kHzだったサブキャリア間隔を、20GHz帯では150kHzに変更することも可能であると考えられる。
ただし、このサブキャリア間隔の変更は、LTEの仕様に非常に大きなインパクトを与えるため、無段階に変更可能になることは想定されにくい。そのため、サブキャリア間隔は、例えば15kHz、30kHz、60kHz及び120kHzの4段階程度に変更可能となることが望ましいと考えられる。それ以上細かくしても、仕様の変更が大きい割に効果が低いと考えられるためである。下記の表に、サブキャリア間隔を4段階に変更可能にした場合の設定の一例を示した。
Figure 0006894842
しかし、4段階程度にOFDMのサブキャリア間隔が変更可能になっても、低い周波数帯(例えば、2GHz帯)のCCの負担が増大するという問題は、依然として解決されない。ミリ波帯には広大な周波数リソースがあり、必要とされる制御信号は多いためである。上記表1を参照すると、ミリ波帯に含まれる制御対象のCCの数が多いことが分かる。
なお、60GHz以上でもOFDMが採用されるか否かは疑問が残る。しかし、使う周波数帯に合わせて扱う信号スケールを変える場合であっても、広大な周波数リソースがあり、制御対象が多いということには疑問の余地はない。
<1.4.LBT>
LBTは、無線装置同士が自律的にデータの送信権を獲得し合うための技術である。具体的には、LBTとは、送信前に、送信に使用する予定の周波数を使用した送信をすでに行っているデバイス(端末、アクセスポイント又は基地局等)が周囲にいないことを確認した上で、送信する処理である。LBTは、キャリアセンス、又はCSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)とも称され得る。
詳しくは、まず、各無線装置は、使用するチャネルにおいて、他の無線装置により信号が送信されているか否かを確認するために、受信モードで待機して受信電力を測定する。無線装置は、受信モードでの待機中に測定した受信電力が閾値よりも低い場合、チャネルがアイドル状態であり、他の無線装置による信号送信が行われていないと判定する。一方で、無線装置は、受信モードでの待機中に測定した受信電力が閾値よりも高い場合、チャネルがビジー状態であり、他の無線装置による信号送信が行われていると判定する。他の無線装置の送信を確認した場合、無線装置は、一定時間内の乱数で定められた時間(例えば0〜1000μ秒の間の一様分布に従った乱数等)待機してから再度受信モードで待機して受信電力を測定し得る。このような動作は、というランダムバックオフ(Random Backoff)とも称される。
無線装置は、ランダムな時間受信モードで待機し、その間チャネルがアイドルであれば、送信権を獲得したとみなして送信を行う。一方で、無線装置は、ランダムな時間受信モードで待機し、その間チャネルがアイドルでなければ、送信を抑制する。無線ネットワークでは、このような仕組みをとることにより、複数の無線端末が同時に同じ周波数帯でデータを送信することにより生じる衝突を減らすことができ、干渉を抑制することが可能となる。
以上説明した、受信電力を測定して空きを確認等する一連の手続きを実施することを、以下ではLBTを実施するとも称する。
<1.5.アンライセンスバンドに関する考察>
(1)ミリ波帯でのアンライセンスバンド
ライセンスバンドは、携帯電話オペレータ等がライセンスを受けて使用する帯域ある。
アンライセンスバンドは、Wi−Fi等のライセンスなしに使用可能な帯域である。上述したように、ミリ波帯には、ライセンスバンドだけでなくアンライセンスバンドが含まれると想定される。様々な無線アクセス技術を同時に収容する方が、効率的であるためである。また、アンライセンスバンドの場合には、オペレータ間でリソースの融通を効かせ易い、という利点もある。
ミリ波帯は、6GHzから300GHzまでの広大なリソースを有する。そのため、管理の都合上、その広大な周波数リソースはCC単位で管理されることが想定される。また、帯域幅が20MHzのCC、40MHzのCC、80MHzのCC、及び数100Hz等の、多様な帯域幅を有する数100個のCCが混在する環境が想定される。即ち、ミリ波帯を使用する場合、使用可能なCCの数もCCの帯域幅も、ミリ波帯を使用しない場合と比較して大幅に増加する。
アンライセンスバンドを利用する装置は、LBTを行って、送信前に周波数帯の空きを確認することが想定される。ミリ波帯を使用する場合においても上述したLBTの枠組みを踏襲する場合、無線装置は、使用予定のCCのすべてでLBTを実施することになる。その場合、LBTの実施対象となるCCの数も帯域幅も、ミリ波帯を使用しない場合と比較して大幅に増加する。そのため、LBTが煩雑になる上、処理負荷及び消費電力が増加し、且つ送信機会が減少することが懸念される。
(2)LAA(Licensed-Assisted Access)
アンライセンスバンドでは、コンテンションベース(例えば、LBT等のキャリアセンス動作)でリソースを確保することが求められるので、常に安定したチャネルがeNBとUEとの間に存在するわけではない。そのため、ライセンスバンドのCCが、例えばダウンリンクデータ受信の成功/失敗を示すACK/NACKをフィードバックするためのチャネル等の、UEを制御するために使用されることが想定される。
<1.6.ミリ波帯の導入に際しての注意点のまとめ>
第1の注意点は、CCの数が増加することである。ミリ波帯が導入された場合、無線装置がLBTの対象とするCCが膨大になり得る。
第2の注意点は、多様な帯域幅を有するCCが混在することである。UEによっては、20MHzの帯域幅しか使用できないこともあり得る。そのようなUEが、200MHzの帯域幅を有するCCに対してどのようにふるまうべきか、は定かではない。
第3の注意点は、複数のCCを同時に使用したいという要求の発生である。ミリ波帯の導入により、UEは、広大な周波数を使用可能となるので、複数のCCを同時に使用することでデータ送信時の最大送信速度を向上させることが期待される。しかし、それぞれのCCを対象として別々にLBTを実施することが必要となる場合、上述した懸念により、UEが同時に数多くのCCを使用する可能性はそれほど高くはならないと考えられる。
<<2.構成例>>
<2.1.基地局の構成例>
続いて、図3を参照して、本開示の一実施形態に係る基地局10の構成を説明する。図3は、本開示の一実施形態に係る基地局10の構成の一例を示すブロック図である。図3を参照すると、基地局10は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部150を備える。
(1)アンテナ部110
アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
(2)無線通信部120
無線通信部120は、信号を送受信する。例えば、無線通信部120は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
(3)ネットワーク通信部130
ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
(4)記憶部140
記憶部140は、基地局10の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
(5)処理部150
処理部150は、基地局10の様々な機能を提供する。処理部150は、通信処理部151、LBT処理部153及び設定部155を含む。なお、処理部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部150は、これらの構成要素の動作以外の動作も行い得る。
通信処理部151、LBT処理部153及び設定部155の動作は、後に詳細に説明する。
<2.2.端末装置の構成例>
続いて、図4を参照して、本開示の実施形態に係る端末装置20の構成の一例を説明する。図4は、本開示の一実施形態に係る端末装置20の構成の一例を示すブロック図である。図4を参照すると、端末装置20は、アンテナ部210、無線通信部220、記憶部230及び処理部240を備える。
(1)アンテナ部210
アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
(2)無線通信部220
無線通信部220は、信号を送受信する。例えば、無線通信部220は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
(3)記憶部230
記憶部230は、端末装置20の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
(4)処理部240
処理部240は、端末装置20の様々な機能を提供する。処理部240は、通信処理部241、LBT処理部243及び設定部245を含む。なお、処理部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、これらの構成要素の動作以外の動作も行い得る。
通信処理部241、LBT処理部243及び設定部245の動作は、後に詳細に説明する。
<<3.第1の実施形態>>
<3.1.技術的課題>
ミリ波帯を使用する場合、LBTの実施対象となるCCの数が膨大になり得る。また、LBTの結果、使用予定の周波数が他の装置によりすでに使用されていることが判明した場合、待機する又はさらに別の使用可能なCCを探索することが要されるので、同時に数多くのCCの使用権を確保することが困難であった。
<3.2.技術的特徴>
(1)CCのグループ化
本実施形態では、基地局10が使用可能な複数のCCのうち一部のCCから成るグループが定義される。このグループは、少なくともひとつ(典型的には、複数)のCCを含む。このグループを、以下ではLBTグループとも称する。1つのLBTグループは、少なくとも1つのLBTプライマリCCを含む。また、LBTグループが含むCCの数を、そのLBTグループのレベルとする。LBTグループの一例を、図5〜図8に示した。
図5では、2つのCCにより形成されるレベル2のLBTグループの一例を示しており、CC1がLBTプライマリCCである。図6では、4つのCCにより形成されるレベル4のLBTグループの一例を示しており、CC1がLBTプライマリCCである。図7では、1つのCCにより形成されるレベル1のLBTグループの一例を示しており、CC1がLBTプライマリCCである。図8に示すように、多様なレベルのLBTグループが混在し得る。なお、LBTプライマリCCは第1の単位周波数帯域に相当し、LBTグループに含まれるLBTプライマリCC以外のCCは第2の単位周波数帯域に相当する。
1つのLBTグループに含まれるCCの数は任意である。そして、無線装置(例えば、基地局10のLBT処理部153又は端末装置20のLBT処理部243)は、LBTグループに含まれるCCの数に基づいて、LBTの対象となるLBTグループを選択する。例えば、無線装置は、同時使用を希望する数のCCを含むLBTグループを選択する。これにより、無線装置は、同時使用を希望する数のCCを含むLBTグループを、選択的にLBTの対象とすることが可能である。
図5〜図8に示したように、LBTグループに含まれるCCの数は2のべき乗であることが望ましい。これは、第2の実施形態において後述するように、複数のLBTグループが階層構造を形成する場合に、運用が容易になるためである。
(2)LBT
無線装置(例えば、基地局10のLBT処理部153又は端末装置20のLBT処理部243)は、LBTグループ単位でLBTを実施する。
詳しくは、無線装置は、LBTプライマリCCに関するLBTの結果に基づいて、LBTグループに含まれるLBTプライマリCC以外のCCに関するLBTの結果を推定する。具体的には、無線装置は、LBTグループに含まれるLBTプライマリCC以外のCCに関するLBTの結果は、LBTプライマリCCのLBTの結果と同じであると推定する。例えば、無線装置は、LBTプライマリCCがアイドル状態である場合、LBTグループ全体がアイドル状態であると推定する。これにより、無線装置は、そのLBTグループに含まれるCC全てを所定時間(例えば、4ms(ミリ秒))使用することが可能となる。一方で、無線装置は、LBTプライマリCCがビジー状態である場合、LBTグループ全体がビジー状態であると推定する。無線装置は、LBTグループに含まれる複数のCCを使用する場合、LBTプライマリCCのみを対象としてLBTを実施すればよい。これにより、無線装置は、LBTの実施対象となるCCの数を抑制することができ、効率的にLBTを実施することが可能となる。
ただし、LBTプライマリCCがアイドル状態であることは、LBTグループに含まれる他のCCを対象としたLBTの実施を妨げるものではない。無線装置は、LBTプライマリCCがアイドル状態であることを確認しても、LBTグループに含まれる他のCCを用いた通信を行う前に、当該他のCCに関するLBTを行ってもよい。これにより、衝突回避及び干渉抑制が確実に実現されることとなる。
(3)通信
無線装置(例えば、基地局10の通信処理部151又は端末装置20の通信処理部241)は、LBTの結果に基づいて通信を行う。
例えば、無線装置は、LBTグループ単位でCCを用いた通信を行うか否かを判定する。具体的には、無線装置は、アイドル状態であることが推定されたLBTグループを用いて通信を行う。この際、無線装置は、少なくともLBTプライマリCCを用いて他の装置との間で通信する。これにより、他の無線装置によりLBTが実施された際、当該LBTプライマリCCはビジー状態であると判定されるので、衝突が回避される。
(4)設定
無線装置(例えば、基地局10の設定部155又は端末装置20の設定部245)は、LBTグループの設定、及び各々のLBTグループのLBTプライマリCCの設定を行う。
そのために、無線装置は、各々のLBTグループに含まれる複数のCCを示す情報(即ち、どのCCがどのLBTグループに属するかを示す情報)を取得する。以下では、このような情報をグループ情報とも称する。また、無線装置は、各々のLBTグループにおけるLBTプライマリCCを示す情報(即ち、どのCCがLBTプライマリCCであるかを示す情報)を取得する。以下では、このような情報をプライマリ情報とも称する。無線装置は、グループ情報及びプライマリ情報を取得することで、LBTグループの設定、及び各々のLBTグループのLBTプライマリCCの設定を行うことが可能となる。
例えば、スモールセル基地局10Aは、携帯電話オペレータからグループ情報及びプライマリ情報を取得する。他に、基地局10Aは、O&M(Operation & Maintenance)等のインタフェースを介して取得してもよい。また、AP10Bは、例えば工場出荷時にグループ情報及びプライマリ情報を取得する(即ち、入力される)。また、端末装置20は、例えばスモールセル基地局10A、マクロセル基地局30又はAP10Bからグループ情報及びプライマリ情報を取得する。逆の観点から言えば、無線装置(スモールセル基地局10A、マクロセル基地局30又はAP10B)は、端末装置20へグループ情報及びプライマリ情報を通知する、とも言える。
このグループ情報及びプライマリ情報は、システム1が含むすべての無線通信システムにおいて共通であることが望ましい。より具体的には、異なる事業者間で、及びセルラーシステムとWi−Fiシステム等の他の通信規格のネットワークとの間で、グループ情報及びプライマリ情報が共通であることが望ましい。
以上、本実施形態の技術的特徴を説明した。
<3.3.処理の流れ>
(1)LBTの流れ
図9は、本実施形態に係る端末装置20において実行されるLBT処理の流れの一例を示すフローチャートである。
図9に示すように、まず、端末装置20(例えば、通信処理部241)は、同時使用を希望するCCの数(即ち、レベル)を決定する(ステップS102)。
次いで、端末装置20(例えば、LBT処理部243)は、使用を希望するCCの数に対応するLBTグループを選択する(ステップS104)。例えば、端末装置20は、使用を希望するCCの数が、含むCCの数と一致するLBTグループを、優先的に選択する。
次に、端末装置20(例えば、LBT処理部243)は、選択したLBTグループのLBTプライマリCCでの受信電力を測定し、アイドル状態であるか否かを判定する(ステップS106)。
アイドル状態であると判定された場合(ステップS106/YES)、端末装置20(例えば、LBT処理部243)は、選択したLBTグループのCC全体がアイドル状態であると判定する(ステップS108)。その後、端末装置20(例えば、通信処理部241)は、選択したLBTグループに含まれる全CCを同時に使用して信号を送信する(ステップS110)。
一方で、ビジー状態であると判定された場合(ステップS106/NO)、端末装置20(例えば、LBT処理部243)は、選択したLBTグループのCC全体がビジー状態であると判定する(ステップS112)。この場合、端末装置20は、再度ステップS104に戻って異なるLBTグループを選択し、その後の処理を繰り返し得る。
以上により、処理は終了する。なお、上記では端末装置20が処理の主体であるものとして説明したが、基地局10が処理の主体であってもよい。
(2)全体的な処理の流れ
図10は、本実施形態に係るシステム1において実行される通信処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局10及び端末装置20が関与する。本シーケンスは、端末装置20がLBTを行う場合の例である。
図10に示すように、まず、基地局10は、グループ情報及びプライマリ情報を取得する(ステップS202)。次いで、基地局10は、グループ情報を端末装置20へ通知し(ステップS204)、プライマリ情報を端末装置20へ通知する(ステップS206)。
次に、端末装置20は、同時使用を希望するCCの数に対応するLBTグループを選択する(ステップS208)。次いで、端末装置20は、選択したLBTグループのプライマリCCでLBTを実施する(ステップS210)。その後、端末装置20は、LBTの結果を示す情報を基地局10へ通知する(ステップS212)。基地局10は、LBTの結果を示す情報に基づいて、アップリンクスケジュール及び/又はダウンリンクスケジュールを策定することが可能となる。
そして、基地局10及び端末装置20は、アイドル状態であると判定されたLBTプライマリCCが属するLBTグループに属するCCを用いて、データを送受信する(ステップS214)。
以上により、処理は終了する。
図11は、本実施形態に係るシステム1において実行される通信処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局10及び端末装置20が関与する。本シーケンスは、基地局10がLBTを行う場合の例である。
図11に示すように、まず、基地局10は、グループ情報及びプライマリ情報を取得する(ステップS302)。次いで、基地局10は、グループ情報を端末装置20へ通知し(ステップS304)、プライマリ情報を端末装置20へ通知する(ステップS306)。
次に、基地局10は、使用を希望するCCの数に対応するLBTグループを選択する(ステップS308)。次いで、基地局10は、選択したLBTグループのプライマリCCでLBTを実施する(ステップS310)。
そして、基地局10及び端末装置20は、アイドル状態であると判定されたLBTプライマリCCが属するLBTグループに含まれるCCを用いて、データを送受信する(ステップS312)。
以上により、処理は終了する。
<<4.第2の実施形態>>
<4.1.技術的課題>
無線装置の能力的な制限又は送信データの容量等の各種要因により、無線装置ごとに同時使用を希望するCCの数が異なるケースが考えられる。また、同時使用を希望するCCの数が異なる無線装置が混在するケースも考えられる。このようなケースにおいても、効率的にLBTを実施するための仕組みが提供されることが望ましい。
また、ミリ波帯が広大であるとはいえ、例えばレベル2のLBTグループが集中的に使用されると、レベル2のLBTグループが枯渇して、代わりにレベル4のLBTグループが使用されるケースが想定される。このケースでは、本来2個のCCで足りるにも関わらず、4個のCCが専有されることとなり、非効率的であると言える。そのため、CCの効率的なグループ分けが実現されることが望ましい。
<4.2.技術的特徴>
(1)階層構造
本実施形態では、LBTグループは、含むCCの数がより少ない下位のLBTグループの集合により形成される。即ち、本実施形態に係るLBTグループは、上位のLBTグループが下位のLBTグループの集合から成る、階層構造を有する。階層構造の例を、図12に示した。
図12に示した例では、CC1及びCC2から成るレベル2のLBTグループと、CC3及びCC4から成るレベル2のLBTグループとで、CC1〜CC4から成るレベル4のLBTグループが形成されている。このような階層構造により、4つのCCが、レベル4のLBTグループ1つ又はレベル2のLBTグループ2つとして取り扱われる、といった柔軟なグループ分けが実現され、リソースの効率的な活用が可能となる。
ここで、上位のLBTグループのLBTプライマリCCは、少なくともひとつの下位のLBTグループのLBTプライマリCCと一致する。図12に示した例では、CC1及びCC2から成るレベル2のLBTグループにおけるLBTプライマリCCは、CC1である。CC3及びCC4から成るレベル2のLBTグループにおけるLBTプライマリCCは、CC3である。CC1〜CC4から成るレベル4のLBTグループにおけるLBTプライマリCCは、CC1である。以上から、CC1は、レベル2のLBTグループにとってのLBTプライマリCCであり、レベル4のLBTグループにとってのLBTプライマリCCでもある。この一致により、後述するように効率的なLBTの実施が実現される。
(2)LBT
このような階層構造を有するLBTグループを対象としたLBTを想定して、以下の考察を行う。
CC1でLBTを実施した結果アイドル状態であれば、CC1及びCC2は使用されていないことが分かる。一方で、CC3及びCC4は、使用されている可能性がある。レベル2のLBTグループとして、CC3及びCC4を使用している他の無線装置の存在は、CC1を対象としたLBTでは検出することが困難であるためである。
CC1でLBTを実施した結果ビジー状態であれば、CC1〜CC4の全てが使用されている可能性と、CC1及びCC2のみが使用されていて、CC3及びCC4は使用されていない可能性がある。
CC3でLBTを実施した結果アイドル状態であれば、CC3及びCC4は使用されていないことが分かる。一方で、CC1及びCC2は、使用されている可能性がある。
CC3でLBTを実施した結果ビジー状態であれば、CC1〜CC4の全てが使用されている可能性と、CC3及びCC4のみが使用されていて、CC1及びCC2は使用されていない可能性がある。そのため、再度CC1でLBTを実施する必要性が生じる。
以上から、レベル2のLBTグループの使用を希望する場合、CC1でLBTを実施する方が、CC3でLBTを実施するよりも効率的であると言える。また、レベル4のLBTグループを確保しつつ、そのうち一部(例えば、CC1及びCC2)のみを使用するケースも想定されるので、CC3がアイドル状態であるからと言ってCC3が確実に使用可能であるとは言い難い。そのため、レベル2のLBTグループの使用を希望する場合、CC1でLBTを実施する方が、CC3でLBTを実施するよりも効率的であると言える。
よって、無線装置(例えば、基地局10のLBT処理部153又は端末装置20のLBT処理部243)は、より上位の前記グループと一致するLBTプライマリCCを優先的にLBTの対象とする。図12に示した例に関して言えば、無線装置は、レベル2のLBTグループの使用を希望する場合、レベル4のLBTグループにとってのLBTプライマリCCでもあるCC1を、LBTの対象とする。LBTの結果CC1がビジー状態である場合、無線装置は、CC3もビジー状態であるとみなして、CC3でのLBTを省略することが可能となる。また、LBTの結果CC1がアイドル状態である場合、無線装置は、CC3でのLBTを行うことなく、CC1及びCC2を使用することが可能となる。
<<5.第3の実施形態>>
<5.1.技術的課題>
第2の実施形態によれば、LBTを実施する回数を削減可能ではあるものの、各々のCCが使用されているか否かを把握するためには複数回の実施が必要になるケースがある。このことは、CCの利用効率を低下させる一因となり得る。そのため、どのような階層構造が形成されたとしても、1回のLBTで各々のCCが使用されているか否かを把握可能になる仕組みが提供されることが望ましい。
<5.2.技術的特徴>
(1)LBTパイロットリソース
本実施形態では、LBTプライマリCCにおいて、LBTグループに含まれる各々のCCの使用状況が再現される。より詳しくは、LBTプライマリCCに含まれる各々のリソースにおいて、LBTグループに含まれる各々のCCを用いた通信が行われているか否かを示す信号が送信される。以下、図13〜図15を参照してLBTプライマリCCについて詳細に説明する。
図13に示す例では、8個のCCがLBTグループを形成しており、CC1がLBTプライマリCCである。そして、CC1に含まれる8個のリソースの各々で、LBTグループに含まれる各々のCCがアイドル状態であるかビジー状態であるかを示す信号が送信される。以下では、LBTグループに含まれるCCがアイドル状態であるかビジー状態であるかを示す信号が送信されるリソースを、LBTパイロットリソースとも称する。LBTパイロットリソースは、互いに直交する直交リソースであることが望ましい。図13に示した例では、8個のLBTパイロットリソースが確保されている。
LBTパイロットリソースは、LBTプライマリCCが時間領域で分割されたリソース(即ち、TDM(Time Division Multiplexing)におけるリソース)であってもよい。この場合、時間領域で分割されたひとつのLBTパイロットリソースがひとつのCCに対応し、当該CCがアイドル状態であるかビジー状態であるかを示す信号が、当該LBTパイロットリソースを用いて送信される。時間領域で分割される場合のCC1のリソース構成の一例を、図14に示した。図14では、無線リソースが12サブキャリア及び7OFDM(Orthogonal Frequency Division Multiplexing)シンボルから成るリソースブロックにより分割されている。リソースブロックの帯域幅は180KHzであり、時間長は0.5msである。CC1の帯域幅は20MHzである。図14に示した例では、異なる時間帯のリソースブロックが異なるCCのために使用される。
LBTパイロットリソースは、LBTプライマリCCが周波数領域で分割されたリソース(即ち、FDM(Frequency Division Multiplexing)におけるリソース)であってもよい。この場合、周波数領域で分割されたひとつのLBTパイロットリソースがひとつのCCに対応し、当該CCがアイドル状態であるかビジー状態であるかを示す信号が、当該LBTパイロットリソースを用いて送信される。周波数領域で分割される場合のCC1のリソース構成の一例を、図15に示した。図15では、無線リソースが12サブキャリア及び7OFDMシンボルから成るリソースブロックにより分割されている。リソースブロックの帯域幅は180KHzであり、時間長は0.5msである。CC1の帯域幅は20MHzである。図15に示した例では、異なる周波数帯のリソースブロックが異なるCCのために使用される。
他に、符号領域で分割することも考えられるが、LBTの基本的な手法であるenergy detection(即ち、受信電力に基づく判定)の使用を想定した場合に適切とは言えない。TDM方式とFDM方式とを比較すると、TDM方式が望ましいと考えられる。TDM方式では、無線装置はCCの帯域幅の全部で受信電力を測定すればよく、AD変換器の直後でLBTを実施可能となり、回路構成が最も簡易になるためである。
(2)設定
無線装置(例えば、基地局10の設定部155又は端末装置20の設定部245)は、LBTプライマリCCにおけるLBTパイロットリソースの設定を行う。
そのために、無線装置は、LBTプライマリCCに含まれるLBTパイロットリソースとCCとの対応関係を示す情報(どのLBTパイロットリソースがどのCCと対応するかを示す情報)を取得する。以下では、このような情報をパイロットリソース情報とも称する。逆の観点から言えば、無線装置は、他の装置へパイロットリソース情報を通知する、とも言える。パイロットリソース情報は、システム1が含むすべての無線通信システムにおいて共有されていることが望ましい。
(3)LBT
無線装置(例えば、基地局10のLBT処理部153又は端末装置20のLBT処理部243)は、LBTパイロットリソースを対象としてLBTを行う。そして、無線装置は、各々のLBTパイロットリソースに関するLBTの結果が、対応する各々のCCに関するLBTの結果であると推定する。例えば、図13に示した例において、LBTパイロットリソース1〜8のうち、LBTパイロットリソース2及び3のみアイドル状態であった場合、無線装置は、CC2及びCC3は他の無線装置により使用されておらず、使用可能であると判定する。このように、無線装置は、LBTプライマリCCに関するLBTを実施するだけで、LBTグループに含まれる他のCCの使用状況を把握することが可能となる。
ここで、本実施形態の技術を採用していない無線装置は、各々のCCを対象に個別にLBTを実施すればよい。従って、本実施形態の技術は、バックワードコンパチビリティを有する技術であると言える。
(4)通信
無線装置(例えば、基地局10の通信処理部151又は端末装置20の通信処理部241)は、CCを用いて信号を送信する場合、対応するLBTパイロットリソースを用いて信号を送信する。この信号は、他の無線装置において、本当のCCを対象としてLBT(即ち、energy detection)を実施した場合と同じ電力密度(dBm/Hz)の信号が検出されるものであれば、どのような信号であってもよい。この信号を、以下ではLBTパイロット信号とも称する。例えば、図13に示した例において、CC2及びCC3を用いて信号を送信する場合、無線装置は、LBTパイロットリソース2及び3を用いてLBTパイロット信号を送信する。これにより、他の無線装置によりLBTが実施された際、当該LBTパイロットリソースはビジー状態であると判定されるので、衝突が回避される。
無線装置(例えば、基地局10の通信処理部151又は端末装置20の通信処理部241)は、LBTパイロット信号を、対応するCCの電波伝搬特性に応じた送信電力で送信してもよい。LBTグループに含まれるCCの周波数が互いに離れている場合、各々のCCの伝搬伝搬ロスは大きく異なる場合がある。そのような場合に一様な送信電力が用いられる場合、LBTパイロットリソースを対象としたLBTの結果(即ち、受信電力)と、本当のCCを対象としたLBTの結果とが相違するおそれがあるためである。
具体的には、無線装置は、LBTグループに含まれるCCのうち最も周波数が低いCCを選択して、基準の送信電力を割当てる。そして、無線装置は、周波数が高いCCほど、基準の送信電力よりも低い送信電力を割当てる。例えば、CC2がCC1と比較して電波伝搬ロスが10dB大きい場合、無線装置は、CC1のLBTパイロットリソース2における送信電力を、LBTパイロットリソース1よりも10dB小さくする。これにより、LBTパイロットリソースにおいて、電波伝搬ロスも加味して各々のCCの使用状況を再現することが可能となる。
<5.3.処理の流れ>
(1)信号送信の流れ
図16は、本実施形態に係る端末装置20において実行される信号送信処理の流れの一例を示すフローチャートである。
図16に示すように、端末装置20(例えば、設定部245)は、LBTグループに含まれるCCの電波伝搬調整係数を設定する(ステップS402)。
次いで、端末装置20(例えば、LBT処理部243)は、LBTパイロットリソースを対象としてLBTを実施する(ステップS404)。
次に、端末装置20(例えば、通信処理部241)は、アイドル状態であると判定されたLBTパイロットリソースに対応するCCを使用してデータを送信する(ステップS406)。
そして、端末装置20(例えば、通信処理部241)は、ステップS406でデータ送信に使用したCCに対応するLBTパイロットリソースにおいて、当該CCの電波伝搬調整係数に基づく送信電力でLBTパイロット信号を送信する(ステップS408)。
以上により、処理は終了する。なお、上記では端末装置20が処理の主体であるものとして説明したが、基地局10が処理の主体であってもよい。
(2)全体的な処理の流れ
図17は、本実施形態に係るシステム1において実行される通信処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局10及び端末装置20が関与する。本シーケンスは、端末装置20がLBTを行う場合の例である。
図17に示すように、まず、基地局10は、グループ情報、プライマリ情報、及びパイロットリソース情報を取得する(ステップS502)。次いで、基地局10は、グループ情報を端末装置20へ通知し(ステップS504)、プライマリ情報及びパイロットリソース情報を端末装置20へ通知する(ステップS506)。
次に、端末装置20は、同時使用を希望するCCの数に対応するLBTグループを選択する(ステップS508)。次いで、端末装置20は、選択したLBTグループのプライマリCCのLBTパイロットリソース毎にLBTを実施する(ステップS510)。その後、端末装置20は、LBTの結果を示す情報を基地局10へ通知する(ステップS512)。
そして、基地局10及び端末装置20は、アイドル状態であると判定されたLBTパイロットリソースに対応するCCを用いて、データを送受信する(ステップS514)。また、基地局10又は端末装置20(詳しくは、データの送信元)は、データの送信に使用しているCCに対応するLBTパイロットリソースにおいてLBTパイロット信号を送信する(ステップS516)。
以上により、処理は終了する。
図18は、本実施形態に係るシステム1において実行される通信処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局10及び端末装置20が関与する。本シーケンスは、基地局10がLBTを行う場合の例である。
図18に示すように、まず、基地局10は、グループ情報、プライマリ情報、及びパイロットリソース情報を取得する(ステップS602)。次いで、基地局10は、グループ情報を端末装置20へ通知し(ステップS604)、プライマリ情報及びパイロットリソース情報を端末装置20へ通知する(ステップS606)。
次に、基地局10は、同時使用を希望するCCの数に対応するLBTグループを選択する(ステップS608)。次いで、基地局10は、選択したLBTグループのプライマリCCのLBTパイロットリソース毎にLBTを実施する(ステップS610)。
そして、基地局10及び端末装置20は、アイドル状態であると判定されたLBTパイロットリソースに対応するCCを用いて、データを送受信する(ステップS612)。また、基地局10又は端末装置20(詳しくは、データの送信元)は、データの送信に使用しているCCに対応するLBTパイロットリソースにおいてLBTパイロット信号を送信する(ステップS614)。
以上により、処理は終了する。
<<6.応用例>>
本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局10は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局10は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局10は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局10として動作してもよい。さらに、基地局10の少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。
また、例えば、端末装置20は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置20は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置20の少なくとも一部の構成要素は、これら端末に搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール)において実現されてもよい。
<6.1.基地局に関する応用例>
(第1の応用例)
図19は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図19に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図19にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。
基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE−Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
無線通信インタフェース825は、図19に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図19に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図19には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
図19に示したeNB800において、図3を参照して説明した処理部150に含まれる1つ以上の構成要素(通信処理部151、LBT処理部153及び/又は設定部155)は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
また、図19に示したeNB800において、図3を参照して説明した無線通信部120は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、アンテナ部110は、アンテナ810において実装されてもよい。また、ネットワーク通信部130は、コントローラ821及び/又はネットワークインタフェース823において実装されてもよい。また、記憶部140は、メモリ822において実装されてもよい。
(第2の応用例)
図20は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図20に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図20にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。
基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図19を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。
無線通信インタフェース855は、LTE又はLTE−Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図19を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図20に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図20には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。
接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。
また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。
接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。
無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図20に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図20には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。
図20に示したeNB830において、図3を参照して説明した処理部150に含まれる1つ以上の構成要素(通信処理部151、LBT処理部153及び/又は設定部155)は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
また、図20に示したeNB830において、例えば、図3を参照して説明した無線通信部120は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、アンテナ部110は、アンテナ840において実装されてもよい。また、ネットワーク通信部130は、コントローラ851及び/又はネットワークインタフェース853において実装されてもよい。また、記憶部140は、メモリ852において実装されてもよい。
<6.2.端末装置に関する応用例>
(第1の応用例)
図21は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
無線通信インタフェース912は、LTE又はLTE−Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図21に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図21には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。
さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。
アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。
アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図21に示したように複数のアンテナ916を有してもよい。なお、図21にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。
さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。
バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図21に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
図21に示したスマートフォン900において、図4を参照して説明した処理部240に含まれる1つ以上の構成要素(通信処理部241、LBT処理部243及び/又は設定部245)は、無線通信インタフェース912において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
また、図21に示したスマートフォン900において、例えば、図4を参照して説明した無線通信部220は、無線通信インタフェース912(例えば、RF回路914)において実装されてもよい。また、アンテナ部210は、アンテナ916において実装されてもよい。また、記憶部230は、メモリ902において実装されてもよい。
(第2の応用例)
図22は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
無線通信インタフェース933は、LTE又はLTE−Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図22に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図22には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。
さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。
アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。
アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図22に示したように複数のアンテナ937を有してもよい。なお、図22にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。
さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。
バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図22に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
図22に示したカーナビゲーション装置920において、図4を参照して説明した処理部240に含まれる1つ以上の構成要素(通信処理部241、LBT処理部243及び/又は設定部245)は、無線通信インタフェース933において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
また、図22に示したカーナビゲーション装置920において、例えば、図4を参照して説明した無線通信部220は、無線通信インタフェース933(例えば、RF回路935)において実装されてもよい。また、アンテナ部210は、アンテナ937において実装されてもよい。また、記憶部230は、メモリ922において実装されてもよい。
また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。即ち、通信処理部241、LBT処理部243及び設定部245を備える装置として車載システム(又は車両)940が提供されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
<<7.まとめ>>
以上、図1〜図22を参照して、本開示の一実施形態について詳細に説明した。上記説明したように、本実施形態に係る無線装置(例えば、基地局10又は端末装置20)は、複数のCCを含むLBTグループに含まれる少なくともひとつのLBTプライマリCCに関するLBTの結果に基づいて、LBTグループに含まれるLBTプライマリCC以外の他のCCに関するLBTの結果を推定する。これにより、プライマリCCに関するLBTを実施するだけで、同一のLBTグループに含まれる他のCCに関するLBTの実施を省略することが可能となり、LBTの効率化が実現される。これに伴い、無線装置がミリ波帯のCCを効率的に使用することが可能となり、セルラーネットワークにおけるトラフィックの収容効率を向上させることができる。
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
例えば、本開示の各実施形態は適宜組み合わせることが可能である。
また、本明細書においてフローチャート及びシーケンス図を用いて説明した処理は、必ずしも図示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。
また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
なお、以下のような構成も本開示の技術的範囲に属する。
(1)
複数の単位周波数帯域を含むグループに含まれる少なくともひとつの第1の単位周波数帯域に関するLBT(Listen Before Talk)の結果に基づいて、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域に関するLBTの結果を推定する処理部、
を備える装置。
(2)
前記処理部は、前記グループに含まれる複数の前記単位周波数帯域を示す情報を取得する、前記(1)に記載の装置。
(3)
前記処理部は、前記グループにおける前記第1の単位周波数帯域を示す情報を取得する、前記(1)又は(2)に記載の装置。
(4)
前記処理部は、前記第2の単位周波数帯域に関するLBTの結果は、前記第1の単位周波数帯域のLBTの結果と同じであると推定する、前記(1)〜(3)のいずれか一項に記載の装置。
(5)
前記処理部は、前記グループ単位で前記単位周波数帯域を用いた通信を行うか否かを判定する、前記(1)〜(4)のいずれか一項に記載の装置。
(6)
前記処理部は、少なくとも前記第1の単位周波数帯域を用いて他の装置との間で通信する、前記(5)に記載の装置。
(7)
前記処理部は、前記第2の単位周波数帯域を用いた通信を行う前に、前記第2の単位周波数帯域に関するLBTを行う、前記(5)又は(6)に記載の装置。
(8)
前記グループに含まれる前記単位周波数帯域の数は任意であり、
前記処理部は、前記グループに含まれる前記単位周波数帯域の数に基づいてLBTの対象となる前記グループを選択する、前記(1)〜(7)のいずれか一項に記載の装置。
(9)
前記グループに含まれる前記単位周波数帯域の数は2のべき乗である、前記(8)に記載の装置。
(10)
前記グループは、含む前記単位周波数帯域の数がより少ない下位の前記グループの集合により形成される、前記(1)〜(9)のいずれか一項に記載の装置。
(11)
上位の前記グループの前記第1の単位周波数帯域は、少なくともひとつの下位の前記グループの前記第1の単位周波数帯域と一致する、前記(10)に記載の装置。
(12)
前記処理部は、より上位の前記グループと一致する前記第1の単位周波数帯域を優先的にLBTの対象とする、前記(11)に記載の装置。
(13)
前記第1の単位周波数帯域に含まれる各々のリソースにおいて、前記グループに含まれる各々の前記単位周波数帯域を用いた通信が行われているか否かを示す信号が送信され、
前記処理部は、各々の前記リソースに関するLBTの結果が、対応する各々の前記単位周波数帯域に関するLBTの結果であると推定する、前記(1)〜(12)のいずれか一項に記載の装置。
(14)
前記リソースは、前記第1の単位周波数帯域が時間領域で分割されたリソースである、前記(13)に記載の装置。
(15)
前記リソースは、前記第1の単位周波数帯域が周波数領域で分割されたリソースである、前記(13)又は(14)に記載の装置。
(16)
前記リソースにおいて送信される信号は、対応する前記単位周波数帯域の電波伝搬特性に応じた送信電力で送信される、前記(13)〜(15)のいずれか一項に記載の装置。
(17)
前記グループは、基地局が使用可能な複数の前記単位周波数帯域のうち一部の前記単位周波数帯域から成る、前記(1)〜(16)のいずれか一項に記載の装置。
(18)
前記単位周波数帯域は、コンポーネントキャリアである、前記(1)〜(17)のいずれか一項に記載の装置。
(19)
前記単位周波数帯域は、周波数が6GHz以上である、前記(1)〜(18)のいずれか一項に記載の装置。
(20)
複数の単位周波数帯域を含むグループに含まれる少なくともひとつの第1の前記単位周波数帯域に関するLBTの結果に基づいて、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域に関するLBTの結果をプロセッサにより推定すること、
を含む方法。
1 システム
10 基地局
11 スモールセル
15 コアネットワーク
16 パケットデータネットワーク
20 端末装置
30 通信制御装置
31 マクロセル
110 アンテナ部
120 無線通信部
130 ネットワーク通信部
140 記憶部
150 処理部
151 通信処理部
153 LBT処理部
155 設定部
210 アンテナ部
220 無線通信部
230 記憶部
240 処理部
241 通信処理部
243 LBT処理部
245 設定部

Claims (9)

  1. データの送信権の獲得に少なくともランダムバックオフを伴うLBT(Listen Before Talk)を実行する無線装置であって、
    つの第1の単位周波数帯域を含み、キャリアアグリゲーションにより形成される一つの通信チャネルに対応するグループに関する情報を取得し、該情報に基づいて前記第1の単位周波数帯域に関する前記LBTである第1のLBTを実行し、当該第1のLBTの実行結果が示す前記第1の単位周波数帯域の状態を、前記グループに含まれる全ての単位周波数帯域の状態であると判定する処理部、
    を備え
    前記処理部は、前記第1のLBTの実行結果が示す前記第1の単位周波数帯域の状態がビジー状態である場合には、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域に関する前記LBTである第2のLBTを実行せずとも、前記全ての単位周波数帯域のうちの少なくともいずれかを用いた前記送信権の獲得が不可であると判定し、
    前記処理部はさらに、前記第1の単位周波数帯域の状態がアイドル状態であり、かつ、前記第2の単位周波数帯域を用いて他の無線装置へデータを送信する場合には、前記第2のLBTを実行したうえで前記第2の単位周波数帯域を用いた前記送信権を獲得するように判定する、無線装置。
  2. 前記処理部は、前記第1のLBTの実行結果が示す前記第1の単位周波数帯域の状態がアイドル状態である場合に、前記グループに含まれる全ての前記単位周波数帯域を同時に使用してデータを送信する、請求項に記載の無線装置。
  3. 前記処理部は、前記同時の使用を希望する前記単位周波数帯域の数を決定し、決定した数の前記単位周波数帯域を含む前記グループを選択する、請求項に記載の無線装置。
  4. 前記単位周波数帯域の数は2のべき乗である、請求項に記載の無線装置。
  5. 前記単位周波数帯域の数は、前記グループのレベル値を表し、
    前記グループは、下位グループとなる前記グループの集合によって該下位グループのそれぞれの前記レベル値が合算された上位レベル値を有する上位グループを形成可能であって、
    前記下位グループのうちのいずれか一つの前記第1の単位周波数帯域は、前記上位グループの前記第1の単位周波数帯域を兼ねており、
    前記処理部は、任意の前記レベル値の前記グループの使用を希望し、当該グループが前記上位グループに属する前記下位グループである場合に、前記上位グループの前記第1の単位周波数帯域に関する前記第1のLBTを実行し、当該第1のLBTの実行結果が示す前記第1の単位周波数帯域の状態を、前記上位グループに属する全ての前記下位グループに含まれる全ての前記単位周波数帯域の状態であると判定する、請求項またはに記載の無線装置。
  6. 前記グループは、基地局が使用可能な複数の前記単位周波数帯域のうちの一部の前記単位周波数帯域から成る、請求項1〜のいずれか一つに記載の無線装置。
  7. 前記単位周波数帯域は、コンポーネントキャリアである、請求項1〜のいずれか一つに記載の無線装置。
  8. 前記単位周波数帯域は、周波数が6GHz以上である、請求項1〜のいずれか一つに記載の無線装置。
  9. データの送信権の獲得に少なくともランダムバックオフを伴うLBT(Listen Before Talk)を実行する無線装置を用いた方法であって、
    つの第1の単位周波数帯域を含み、キャリアアグリゲーションにより形成される一つの通信チャネルに対応するグループに関する情報を取得し、該情報に基づいて前記第1の単位周波数帯域に関する前記LBTである第1のLBTを実行し、当該第1のLBTの実行結果が示す前記第1の単位周波数帯域の状態を、前記グループに含まれる全ての単位周波数帯域の状態であるとプロセッサにより判定すること、
    を含み、
    前記判定することは、前記第1のLBTの実行結果が示す前記第1の単位周波数帯域の状態がビジー状態である場合には、前記グループに含まれる前記第1の単位周波数帯域以外の第2の単位周波数帯域に関する前記LBTである第2のLBTを実行せずとも、前記全ての単位周波数帯域のうちの少なくともいずれかを用いた前記送信権の獲得が不可であると判定し、
    前記判定することはさらに、前記第1の単位周波数帯域の状態がアイドル状態であり、かつ、前記第2の単位周波数帯域を用いて他の無線装置へデータを送信する場合には、前記第2のLBTを実行したうえで前記第2の単位周波数帯域を用いた前記送信権を獲得するように判定する、方法。
JP2017544392A 2015-10-06 2016-07-08 無線装置及び方法 Active JP6894842B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015198325 2015-10-06
JP2015198325 2015-10-06
PCT/JP2016/070324 WO2017061157A1 (ja) 2015-10-06 2016-07-08 装置及び方法

Publications (2)

Publication Number Publication Date
JPWO2017061157A1 JPWO2017061157A1 (ja) 2018-07-26
JP6894842B2 true JP6894842B2 (ja) 2021-06-30

Family

ID=58487450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017544392A Active JP6894842B2 (ja) 2015-10-06 2016-07-08 無線装置及び方法

Country Status (6)

Country Link
US (3) US10764923B2 (ja)
EP (2) EP3361808B1 (ja)
JP (1) JP6894842B2 (ja)
CN (1) CN108141865B (ja)
BR (1) BR112018006432A2 (ja)
WO (1) WO2017061157A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112737753B (zh) 2017-06-09 2022-02-15 华为技术有限公司 一种信号传输方法、相关设备及系统
JP2019033375A (ja) * 2017-08-08 2019-02-28 シャープ株式会社 通信装置および通信方法
US10863542B2 (en) * 2017-09-19 2020-12-08 Qualcomm Incorporated Listen-before-talk and channel reservation for millimeter wave systems
US10736114B2 (en) * 2018-01-10 2020-08-04 Charter Communications Operating, Llc RF channel analysis and improved usage of wireless channels in a wireless network
US11363630B2 (en) * 2018-03-01 2022-06-14 Qualcomm Incorporated Bandwidth part (BWP) configuration for subband access in new radio-unlicensed (NR-U)
US10841950B2 (en) * 2018-05-21 2020-11-17 Qualcomm Incorporated Listen before talk techniques in shared millimeter wave radio frequency spectrum
US11272539B2 (en) * 2018-08-09 2022-03-08 Ofinno, Llc Channel access and bandwidth part switching
EP3836433A4 (en) * 2018-08-10 2021-08-04 Beijing Xiaomi Mobile Software Co., Ltd. MONITORING METHOD AND DEVICE, DEVICE AND STORAGE MEDIUM
US11533752B2 (en) * 2020-02-07 2022-12-20 Qualcomm Incorporated Unlicensed medium access without listen before talk for millimeter wave

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2633375C2 (ru) 2012-06-05 2017-10-12 Сони Корпорейшн Устройство управления связью, базовая станция, оконечное устройство и способ управления связью
CN104521265A (zh) * 2012-08-13 2015-04-15 索尼公司 通信控制设备、终端设备和通信控制方法
US10110355B2 (en) * 2014-03-10 2018-10-23 Apple Inc. Uplink transmission on unlicensed radio frequency band component carriers
CN107535003A (zh) * 2015-03-13 2018-01-02 瑞典爱立信有限公司 用于在未许可频谱上通信的技术
US10772127B2 (en) * 2015-07-10 2020-09-08 Lg Electronics Inc. Method and device for transmitting data burst in wireless access system supporting unlicensed band and carrier aggregation
CN106452708B (zh) * 2015-08-07 2021-07-06 中兴通讯股份有限公司 一种非授权多载波先听后说执行方法和装置
WO2017047973A1 (ko) * 2015-09-17 2017-03-23 엘지전자 주식회사 비면허 대역을 지원하는 무선접속시스템에서 멀티 캐리어 상에서 lbt 과정을 수행하는 방법 및 장치

Also Published As

Publication number Publication date
US20200404707A1 (en) 2020-12-24
EP3361808A1 (en) 2018-08-15
WO2017061157A1 (ja) 2017-04-13
EP3361808B1 (en) 2023-04-05
EP4221431A1 (en) 2023-08-02
EP3361808A4 (en) 2019-05-01
JPWO2017061157A1 (ja) 2018-07-26
BR112018006432A2 (pt) 2018-12-11
CN108141865B (zh) 2023-02-07
CN108141865A (zh) 2018-06-08
US10764923B2 (en) 2020-09-01
US20180242359A1 (en) 2018-08-23
US20220304052A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
JP6894842B2 (ja) 無線装置及び方法
CN106452705B (zh) 无线通信系统中的电子设备和无线通信方法
KR102556656B1 (ko) 무선 통신 시스템에서의 전자 디바이스, 및 무선 통신 방법
US10827497B2 (en) Apparatus and method for beam selection in downlink transmission
US20240334442A1 (en) Downlink quality improvement method and apparatus
US10880893B2 (en) Transmission of discovery signal in small cells while in off state

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190515

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200908

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200908

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200918

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200923

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201016

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201020

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201208

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210302

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210406

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210511

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210604

R150 Certificate of patent or registration of utility model

Ref document number: 6894842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150