WO2022161441A1 - 无线通信系统中的电子设备和方法 - Google Patents

无线通信系统中的电子设备和方法 Download PDF

Info

Publication number
WO2022161441A1
WO2022161441A1 PCT/CN2022/074369 CN2022074369W WO2022161441A1 WO 2022161441 A1 WO2022161441 A1 WO 2022161441A1 CN 2022074369 W CN2022074369 W CN 2022074369W WO 2022161441 A1 WO2022161441 A1 WO 2022161441A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal device
intermediate device
terminal
beams
Prior art date
Application number
PCT/CN2022/074369
Other languages
English (en)
French (fr)
Inventor
许威
朱书含
吴志坤
孙晨
Original Assignee
索尼集团公司
许威
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 许威 filed Critical 索尼集团公司
Priority to CN202280011077.1A priority Critical patent/CN116803175A/zh
Publication of WO2022161441A1 publication Critical patent/WO2022161441A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/305Handover due to radio link failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure

Definitions

  • the present disclosure relates to an electronic device and method in a wireless communication system, and in particular, to an electronic device and method for recovering communication when a transmission failure occurs in a link in the wireless communication system.
  • URLLC Quality of Service
  • millimeter-wave and massive input-output technologies are being extensively studied.
  • the large-scale input and output technology with large degrees of freedom ensures high energy efficiency and spectral efficiency, while providing a wider usable bandwidth in the millimeter wave frequency band.
  • a large number of antenna arrays can be equipped to form highly directional beams, thus making large-scale input-output systems feasible.
  • Link recovery and cell reselection are common problems in modern communication systems, especially in high-mobility communication networks and high-frequency link connection scenarios, where link transmission failures often occur.
  • link transmission failures often occur.
  • the present disclosure provides an electronic device and method in a wireless communication system, which can improve link recovery and reconstruction after transmission failure occurs in the wireless communication system.
  • An aspect of the present disclosure relates to an electronic device for a base station side, the electronic device comprising: a processing circuit configured to: determine that a link between the base station and a terminal device fails in transmission; respond to the base station and the terminal device A transmission failure occurs in the link between the devices, and a new link is established for retransmission based on the available and interfering beams for the terminal device, wherein the new link utilizes one of the following: The beam between the base station and the intermediate device and the spare beam between the intermediate device and the terminal device; or the beam between the base station and the second intermediate device and the beam between the second intermediate device and the terminal device.
  • the electronic device includes: a processing circuit configured to: after a transmission failure occurs in a link between a base station and a terminal device, communicate with the base station establishing a new link for retransmission, where the new link is established by the base station from the available and interfering beams for the terminal device, and where the new link utilizes one of the following: the base station and the terminal The beam between the devices; the beam between the base station and the intermediate device and the spare beam between the intermediate device and the terminal device; or the beam between the base station and the second intermediate device and the beam between the second intermediate device and the terminal device.
  • Another aspect of the present disclosure relates to a method for a base station, comprising: determining that a transmission failure occurs in a link between the base station and a terminal device; in response to the transmission failure occurring in the link between the base station and the terminal device, available and interfering beams to establish a new link for retransmission, where the new link utilizes one of the following: a beam between a base station and a terminal device; a beam between a base station and an intermediate device, and an intermediate The spare beam between the device and the terminal device; or the beam between the base station and the second intermediate device and the beam between the second intermediate device and the terminal device.
  • Yet another aspect of the present disclosure relates to a method for a terminal device, comprising: after a transmission failure occurs in a link between a base station and a terminal device, establishing a new link with the base station for retransmission, wherein the new link is established by the base station from the available and interfering beams for the terminal device, and wherein the new link utilizes one of the following: a beam between the base station and the terminal device; a beam between the base station and an intermediate device, and The spare beam between the intermediate device and the terminal device; or the beam between the base station and the second intermediate device and the beam between the second intermediate device and the terminal device.
  • Another aspect of the present disclosure relates to a computer-readable storage medium storing one or more instructions that, when executed by one or more processing circuits of an electronic device, cause the electronic device to perform as before the method described.
  • Another aspect of the present disclosure relates to a computer program product comprising a computer program which, when executed by a processor, implements the steps of a method as previously described.
  • FIG. 1 shows a schematic diagram of a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 2 shows a schematic block diagram of a base station side electronic device according to an embodiment of the present disclosure.
  • FIG. 3 shows a flowchart of a method for a base station side electronic device according to an embodiment of the present disclosure.
  • FIG. 4 shows a schematic block diagram of a terminal-side electronic device according to an embodiment of the present disclosure.
  • FIG. 5 shows a flowchart of a method for a terminal-side electronic device according to an embodiment of the present disclosure.
  • FIG. 6 shows a schematic signaling diagram for transmission failure recovery between a base station-side electronic device and a terminal-side electronic device according to an embodiment of the present disclosure.
  • FIG. 7A shows a schematic diagram of a scenario in which communication is performed through an intermediate device-assisted link in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 7B illustrates an exemplary list of available beams and a list of interfering beams according to an embodiment of the present disclosure.
  • FIG. 9 shows a flowchart of a method for establishing a new link when a transmission failure occurs on the link according to an embodiment of the present disclosure.
  • FIGS. 10A and 10B are schematic diagrams illustrating a scenario in which a base station determines a beam where transmission failure occurs, according to an embodiment of the present disclosure.
  • 11A and 11B illustrate schematic diagrams of scenarios in which a beam in which transmission failure occurs is determined by an intermediate device according to an embodiment of the present disclosure.
  • FIG. 12 shows a schematic signaling diagram of a communication process for determining a beam in which transmission failure occurs by an intermediate device according to an embodiment of the present disclosure.
  • FIG. 13 shows a schematic diagram of a scenario in which a terminal device performs cell reselection according to an embodiment of the present disclosure.
  • FIG. 14 is a block diagram schematically showing an example structure of a personal computer of an information processing apparatus that can be employed in an embodiment of the present disclosure
  • 15 is a block diagram illustrating a first example of a schematic configuration of an eNB to which techniques of the present disclosure may be applied;
  • 16 is a block diagram illustrating a second example of a schematic configuration of an eNB to which techniques of the present disclosure may be applied;
  • 17 is a block diagram showing an example of a schematic configuration of a communication device to which the technology of the present disclosure can be applied.
  • FIG. 18 is a block diagram showing an example of a schematic configuration of a car navigation apparatus to which the technology of the present disclosure can be applied.
  • intermediate devices include, but are not limited to, reflector antenna arrays, relay devices, roadside units (RSUs), and the like.
  • RSUs roadside units
  • reflective antenna arrays or called large-scale antenna arrays, smart reflective surfaces, etc.
  • the reflective antenna array contains a large number of passive reflection elements, each of which can independently adjust the phase and amplitude of the incident electromagnetic wave, thereby controlling the propagation environment of the electromagnetic wave.
  • the introduction of reflector arrays brings a new link to the communication system, which is conducive to making the signal from the base station (eg, gNB) bypass the obstruction to reach the terminal equipment, thereby improving the service quality of the terminal equipment and the coverage of the communication network, while at the same time
  • a new transmission link update and recovery approach is also provided.
  • the occurrence of link transmission failure may be caused by the beam between the base station and the reflective antenna array, or may be caused by the beam between the reflective antenna array and the terminal device.
  • beams of different reflector antenna arrays may utilize the same communication resources (eg, frequency, time slot, etc.) when serving different terminal devices, thereby causing interference. It should be understood that although the above discussion takes the reflection antenna array as an example, similar problems may exist in scenarios where other intermediate devices are used to assist communication.
  • the terminal device In the existing beam failure detection, when the L1-RSRP is lower than a certain threshold for many times, the beam is considered to fail.
  • the terminal device periodically performs beam detection through a synchronization signal and a PBCH block (Synchronization Signal and PBCH block, SSB block for short), maintains only one spare beam, and informs the base station of the spare beam.
  • PBCH block Synchronization Signal and PBCH block, SSB block for short
  • the base station can update it to a new transmission beam.
  • the length of the beam detection period is generally 5ms to 160ms. If it is applied to URLLC communication, the longer detection period may affect the communication quality of the terminal device.
  • the communication between the base station and the terminal equipment utilizes the direct link between the base station and the terminal equipment, wherein different beams of the base station occupy different communication resources, and there is no need to consider the interference problem between the beams.
  • the reflective antenna array is used for auxiliary communication, the possible interference between the beams of different reflective antenna arrays will lead to a sharp drop in the communication quality.
  • cell reselection may be required when channel conditions are so poor that beam switching cannot resolve transmission link failures.
  • URLLC communication frequent cell handover may bring about problems such as loss of transmission resources and delay.
  • FIG. 1 shows a schematic diagram of a wireless communication system 100 according to an embodiment of the present disclosure.
  • the wireless communication system 100 may include a base station (eg, gNB) 110 , terminal devices (eg, mobile phones, tablet computers, etc.) 120 and intermediate devices 130 , 140 .
  • a base station eg, gNB
  • terminal devices eg, mobile phones, tablet computers, etc.
  • intermediate devices 130 , 140 may be any other device capable of reflecting (or relaying) signals transmitted by the base station to the terminal device.
  • the wireless communication system 100 may also include any other suitable number of intermediate devices.
  • three transmission paths may exist between the base station 110 and the terminal device 120 .
  • the base station 110 transmits the communication data to the intermediate device 130 using the beam 111 , and then the intermediate device 130 transmits the communication data to the terminal device 120 using the beam 131 .
  • the base station 110 directly transmits the communication data to the terminal device 120 through the beam 112 .
  • the base station 110 transmits the communication data to the intermediate device 140 using the beam 113 , and then the intermediate device 140 transmits the communication data to the terminal device 120 using the beam 141 .
  • the first transmission path and the third transmission path are intermediate device-assisted transmission paths, and the second transmission path is a direct transmission path.
  • the intermediary devices 130 and 140 may utilize multiple beams to transmit communication data, such as by adjusting the reflector, not limited to the beam 131 or the beam 141 .
  • the beams 111-113, 131, and 141 shown in FIG. 1 are transmit beams, it can be understood that there may also be corresponding receive beams, thereby forming a relationship between the base station and the terminal equipment, the base station and the intermediate equipment, or the intermediate equipment and the terminal equipment. beam pair between.
  • the description is given by taking the transmitting beam as an example, but it should be understood that the method of the present invention is also applicable to the scenario of using beam pairs, and is applicable to uplink and downlink.
  • the introduction of middleware brings new challenges and opportunities to communication networks. For example, when there is an obstruction between the base station 110 and the terminal device 120, if only the direct transmission path is used, regardless of whether the base station 110 transmits using beams 111, 112 or 113, the received signal quality of the terminal device 120 will be poor. Intermediate devices provide new transmission paths that may avoid obstructions for efficient communication.
  • the base station 110 can use the beam 111 between the base station 110 and the intermediate device 130 and the beam 131 between the intermediate device 130 and the terminal device 120 to establish a new link, or the base station 110 can use the beam 111 between the base station 110 and the intermediate device 140 to establish a new link beam 113 and beam 141 between the intermediate device 140 and the terminal device 120 to establish a new link.
  • transmissions utilizing intermediary assisted links may also fail, and there are multiple complications because there is either or both of the beam between the base station and the intermediary and the beam between the intermediary and the terminal. Transmission failure may occur. Therefore, it is necessary to analyze and judge the specific situation of the transmission failure, and determine a fast and effective beam recovery method, so as to minimize the delay and performance loss caused by the transmission failure.
  • FIG. 2 shows a schematic block diagram of a base station-side electronic device 200 according to an embodiment of the present disclosure.
  • the base station side electronic device 200 may correspond to the base station 110 in FIG. 1 , and may communicate with intermediate devices or terminal devices in a wireless communication system, or the base station side electronic device 200 may be used to control the operation of the base station 110 in FIG. 1 .
  • the base station side electronic device 200 may include a processing circuit 220 . The function of the processing circuit 220 will be described below in conjunction with the scenario of FIG. 1 as an example.
  • the processing circuit 220 may be configured to: determine that a transmission failure occurs in the link between the base station 110 and the terminal device 120; in response to the transmission failure in the link between the base station 110 and the terminal device 120, according to The available and interfering beams of terminal device 120 to establish a new link for retransmission, wherein the new link utilizes one of the following: a beam between base station 110 and terminal device 120 (eg, beam 112 ) ; a beam (eg, beam 111) between the base station 110 and the intermediate device (eg, the intermediate device 130) and a spare beam (eg, other beams of the intermediate device 130) between the intermediate device and the terminal device 120 (eg, other beams of the intermediate device 130, not shown in FIG. 1 ) ); or a beam (eg, beam 113 ) between the base station 110 and a second intermediate device (eg, intermediate device 140 ) and a beam (eg, beam 141 ) between the second intermediate device and the terminal device 120 ).
  • the processing circuit 220 may be in the form of a general-purpose processor, or may be a special-purpose processing circuit, such as an ASIC.
  • the processing circuit 220 can be constructed of a circuit (hardware) or a central processing device such as a central processing unit (CPU).
  • a program (software) for operating the circuit (hardware) or a central processing device may be carried on the processing circuit 220 .
  • the program can be stored in a memory such as arranged in a memory or an external storage medium connected from the outside, and downloaded via a network such as the Internet.
  • the processing circuit 220 may include various units for implementing the above-mentioned functions, such as a transmission failure determination unit 222 configured to determine that a transmission failure occurs in the link between the base station 110 and the terminal device 120, and configured In response to a transmission failure of the link between the base station 110 and the terminal device 120, the new link establishment unit 224 establishes a new link for retransmission according to the available beam and the interfering beam for the terminal device 120.
  • a transmission failure determination unit 222 configured to determine that a transmission failure occurs in the link between the base station 110 and the terminal device 120
  • the new link establishment unit 224 establishes a new link for retransmission according to the available beam and the interfering beam for the terminal device 120.
  • the processing circuit 220 may optionally include a beam communication quality measurement unit 226 configured to transmit to the terminal device 120 a reference signal for measuring the communication quality of the beam and to receive beam quality measurements from the terminal device 120 .
  • the beam communication quality measurement unit 226 is drawn with a dotted line, which is intended to illustrate that the unit is not necessarily included in the processing circuit. As an example, the unit may be in the base station side electronic device 200 and outside the processing circuit 220, or may even be located in the processing circuit 220. Outside the base station side electronic device 200.
  • the units included in the processing circuit 220 may be communicatively coupled to each other (not shown). It should be noted that although each unit is shown as a separate unit in FIG. 2 , one or more of these units may also be combined into one unit, or split into multiple units.
  • each of the above-mentioned units may be implemented as independent physical entities, or may also be implemented by a single entity (eg, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • the above-mentioned respective units are shown with dotted lines in the drawings to indicate that these units may not actually exist, and the operations/functions implemented by them may be implemented by the processing circuit itself.
  • the processing circuit 220 may be implemented to include one or more other components in the base station side electronic equipment, or may be implemented as the base station side electronic equipment. In actual implementation, the processing circuit 220 may be implemented as a chip (such as an integrated circuit module including a single wafer), a hardware component, or a complete product.
  • FIG. 2 is only a schematic structural configuration of the electronic device on the base station side, and the electronic device 200 on the base station side may also include other possible components (eg, memory, etc.).
  • the base station-side electronic device 200 may further include other components not shown, such as memory, radio frequency link, baseband processing unit, network interface, controller, and the like.
  • the processing circuit may be associated with the memory and/or the antenna.
  • processing circuitry may be coupled directly or indirectly (eg, with other components intervening) to memory for accessing data.
  • the processing circuit may be directly or indirectly connected to the antenna to transmit and receive radio signals via the communication unit.
  • the memory may store various information generated by the processing circuit 220 (eg, link configuration information, available beam and interfering beam information, etc.), programs and data for the operation of the base station side electronic equipment, data to be transmitted by the base station side electronic equipment Wait.
  • the memory may also be located within the base station side electronics but outside the processing circuitry, or even outside the base station side electronics.
  • the memory may be volatile memory and/or non-volatile memory.
  • memory may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), flash memory.
  • the intermediate device, the second intermediate device may include a reflective antenna array.
  • the beam communication quality measurement unit 226 may be configured to transmit a reference signal for measuring the communication quality of the beam to the terminal device 120 and receive a beam quality measurement result from the terminal device 120 .
  • the beam communication quality measurement unit 226 may transmit a reference signal for measuring the communication quality of the beam to the terminal device 120 in response to receiving the beam measurement request signal from the terminal device 120 .
  • the terminal device 120 may trigger to send the beam measurement request signal to the base station 110 when the communication quality is poor, or send the beam measurement request signal to the base station 110 periodically.
  • the beam communication quality measurement unit 226 may spontaneously transmit a reference signal for measuring the communication quality of the beam to the terminal device 120, for example, the beam communication quality measurement unit 226 may periodically transmit (eg, every fixed time) segment transmission) reference signal.
  • the beam quality measurements received from the terminal device 120 may include a list of available beams and a list of interfering beams for the terminal device 120 .
  • an available beam for terminal device 120 may be a beam with a communication quality (eg, reference signal received power (RSRP)) higher than a first threshold
  • an interfering beam for terminal device 120 may be a beam with a communication quality higher than a second Threshold beams, where the first threshold is greater than the second threshold.
  • RSRP reference signal received power
  • Terminal device 120 may receive the reference signal through a beam between base station 110 and terminal device 120 (eg, beam 112 ) or a beam between an intermediate device and terminal device 120 (eg, beams 131 , 141 ).
  • the terminal device 120 is aware of the presence of the intermediary device, and thus, the terminal device 120 can determine whether the available beams and interfering beams are the beams of the base station 110 or the intermediary device's beams and the corresponding beam IDs.
  • the list of available beams may include the ID of the intermediate device and the ID of the beam of the intermediate device
  • the list of interfering beams may include the ID of the intermediate device and the ID of the beam of the intermediate device.
  • the terminal device 120 does not know the existence of the intermediate device. It only knows the beam ID named by the base station 110, and cannot determine whether the beam comes from the base station 110 or an intermediate device. In this case, the base station 110 can determine the source and specific information of the beam according to the beam ID received from the terminal device 120 .
  • the list of available beams may include IDs of the available beams
  • the beam communication quality measurement unit 226 may be further configured to: determine the available beams as between the base station 110 and the terminal device 120 based on the ID of each available beam and in response to determining that the available beam is a beam between the intermediate device and the terminal device 120, determining the ID of the intermediate device and the intermediate device corresponding to the available beam based on the ID of the available beam ID of the beam.
  • the list of interfering beams may include the IDs of the interfering beams
  • the beam communication quality measurement unit 226 may be further configured to: determine the IDs of the intermediate devices and the beams of the intermediate devices corresponding to the interfering beams based on the IDs of the interfering beams id. It should be noted that, as described above, since different beams of the base station occupy different communication resources, the interference beam does not include the beam of the base station, but may only include the beam between the intermediate device and the terminal device 120 .
  • the terminal device maintains only one spare beam, and informs the base station of the spare beam. If the backup beam is occupied, interfered, or becomes unavailable, beam measurements may need to be re-measured, thereby severely increasing the transmission delay and affecting the quality of service. Therefore, according to an embodiment of the present invention, the list of available beams may include IDs of a plurality of available beams. In a system where the intermediate device is transparent, in order to require the terminal device to report multiple available beams after measurement, an explicit or implicit trigger mechanism can be used to ensure the reporting of multiple beams.
  • the beam communication quality measurement unit 226 may be configured to send signaling to the terminal device 120, the signaling including information instructing the terminal device to report a plurality of available beams.
  • the information can be any 1-bit command information, which can be embedded in any suitable existing downlink signaling (eg, DCI), or can be sent as separate signaling.
  • This mechanism may be referred to as an explicit multi-beam reporting trigger mechanism.
  • the terminal device 120 After receiving the signaling, the terminal device 120 can determine that multiple available beams need to be reported, and measure and report accordingly.
  • the beam communication quality measurement unit 226 may be configured to send signaling to the terminal device 120 at a predetermined time slot, the predetermined time slot corresponding to a mode in which the terminal device reports a plurality of available beams.
  • the corresponding relationship between the time slot and the mode may be pre-agreed by the base station 110 and the terminal device 120 (for example, in the registration process).
  • the terminal device 120 can determine that multiple available beams need to be reported, regardless of the content of the signaling. This mechanism may be referred to as an implicit multi-beam reporting trigger mechanism.
  • the terminal device 120 reports the available beams through the intermediate device. Since the intermediate device generally has multiple beams and the resource sharing among the beams is complicated, the terminal device 120 is generally required to report multiple available beams by default, and no additional trigger mechanism is required.
  • the new link establishment unit 224 may be configured to establish a new link for retransmission according to the available beams and the interfering beams for the terminal device 120 .
  • the new link is established Unit 224 may be configured to utilize a beam (eg, beam 111 or 113 ) between base station 110 and an intermediate device (eg, intermediate device 130 or 140 ) and a beam (eg, beam 131 or 113 ) between the intermediate device and terminal device 120 141) Establish a new link. That is, if the intermediate device-assisted link is not used for transmission when a transmission failure occurs, a new link can be established using the intermediate-device-assisted link for retransmission.
  • the link in response to a transmission failure in the link between the base station 110 and the terminal device 120, the link utilizes a beam (eg, beam 111 or 113) between the base station 110 and the intermediate device and the intermediate device and the terminal device the beam between the device 120 (eg, beam 131 or 141 ), the new link establishment unit 224 may be configured to determine whether the transmission failure occurred on the beam between the base station 110 and the intermediate device or between the intermediate device and the terminal device 120 on the beam.
  • a beam eg, beam 111 or 113
  • the new link establishment unit 224 may be configured to determine whether the transmission failure occurred on the beam between the base station 110 and the intermediate device or between the intermediate device and the terminal device 120 on the beam.
  • the new link establishment unit 224 may determine whether the transmission failure occurs on the beam between the base station 110 and the intermediate device or the intermediate device and the intermediate device based on the communication quality of other terminal devices communicating with the base station 110 through the same intermediate device on the beam between terminal devices 120. For example, this can occur when the intermediate device is passive (eg, a passive reflective antenna array, which only has the ability to reflect electromagnetic waves but does not have the ability to make logical judgments and actively transmit signals). Of course, when the intermediate device is active, the new link establishing unit 224 can also determine whether the transmission failure occurs on the beam between the base station 110 and the intermediate device or the beam between the intermediate device and the terminal device 120 .
  • the intermediate device is passive (eg, a passive reflective antenna array, which only has the ability to reflect electromagnetic waves but does not have the ability to make logical judgments and actively transmit signals).
  • the new link establishing unit 224 can also determine whether the transmission failure occurs on the beam between the base station 110 and the intermediate device or the beam between the intermediate device and the terminal device 120 .
  • the communication quality feedback of other terminal equipment needs to be valid at the current moment (for example, the channel is flat in the time interval from the moment when the communication quality is fed back to the current moment).
  • the communication quality of other terminal devices may be fed back (eg, ACK/NACK or channel estimation result, etc.) by other terminal devices in a period when the channel is flat. If the base station 110 does not have the communication quality feedback information from other terminal equipments that is valid at the current moment, the base station 110 may send reference signals to other terminal equipments to measure the current communication quality of the other terminal equipments. According to one embodiment, the communication quality of the other terminal equipment is measured based on the reference signal sent by the base station 110 to the other terminal equipment.
  • the new link establishment unit 224 may determine that the transmission failure occurred between the intermediate device and the terminal device 120 between the beams. According to one embodiment, the new link establishment unit 224 may determine that the transmission failure occurred on the beam between the base station 110 and the intermediate device in response to the communication quality of other terminal devices communicating with the base station 110 through the intermediate device are all below the threshold.
  • the intermediate device may not only have the ability to reflect electromagnetic waves, but also have the ability to logically judge (for example, the ability to judge whether the signal power is lower than the threshold value) and the ability to actively transmit signals.
  • the intermediary device may compare the signal quality (eg, received signal power) received from the base station 110 with a valid signal threshold.
  • the intermediate device may send feedback information to the base station 110 indicating that the signal quality received by the intermediate device is lower than the valid signal threshold; if the signal quality is greater than or equal to the valid signal threshold, the intermediate device may send a message to the base station 110 110 sends feedback information indicating that the signal quality received by the intermediate device is greater than or equal to a valid signal threshold or does not send any feedback information to the base station 110 .
  • the base station 110 can determine the beam in which the transmission failure occurs based on the feedback information from the intermediate device.
  • the new link establishment unit 224 may determine whether the transmission failure occurs on the beam between the base station 110 and the intermediate device or the beam between the intermediate device and the terminal device 120 based on the feedback information received from the intermediate device. According to one embodiment, in response to the received feedback information indicating that the signal quality received by the intermediate device is below a valid signal threshold, the new link establishment unit 224 may determine that the transmission failure occurred on the beam between the base station 110 and the intermediate device.
  • the new link establishment unit 224 may determine that the transmission failure occurred on the beam between the intermediate device and the terminal device 120 .
  • the new link establishment unit 224 may utilize the base station 110 and the second intermediate device (eg, the intermediate device 130). , the beam (eg, beam 113 ) between the intermediate device 140 ) and the beam (eg, beam 141 ) between the second intermediate device and the terminal device 120 to establish a new link. That is, another intermediary device may be utilized to establish a new link for communication.
  • the new link establishment unit 224 may utilize the base station 110 A new link is established with the beam between the intermediate device (eg, beam 111 ) and the spare beam between the intermediate device and the terminal device 120 (eg, other beams of the intermediate device 130 other than beam 131 ). That is, a new link can be established by switching different beams of the same intermediate device. This can be achieved by the base station 110 instructing the intermediate device to perform beam switching.
  • the link in response to a transmission failure in the link between the base station 110 and the terminal device 120, the link utilizes the beam between the base station 110 and the intermediate device (eg, the intermediate device 130) and the intermediate device With the beam between the terminal device 120, the new link establishment unit 224 may utilize the beam (eg, beam 113) between the base station 110 and the second intermediate device (eg, the intermediate device 140) and the second intermediate device and the terminal device 120 A new link is established between beams (eg, beam 141).
  • the advantage of this is that the judgment task of the base station or the intermediate device is reduced, but it may result in a reduction in the number of available beams and additional signaling overhead.
  • the spare beam between the intermediate device and the terminal device 120 used during beam recovery may be the beam with the best communication quality among the available beams between the intermediate device and the terminal device 120 .
  • the terminal device 120 may rank the available beams based on received signal quality (eg, RSRP), or the base station 110 may rank the available beams based on the received signal quality fed back by the terminal device 120 .
  • the list and ranking of available beams may be updated after periodic measurements or measurements in response to triggering events have concluded.
  • the spare beam between the intermediate device and the terminal device 120 used during beam recovery is not an interference beam for other terminal devices, so that interference to the communication of other terminal devices can be avoided.
  • the spare beam between the intermediate device and the terminal device 120 utilized during beam recovery may be the available beams between the intermediate device and the terminal device 120 for communication after excluding interfering beams for other terminal devices The best quality beam.
  • the communication can be continued by using the new link.
  • the retransmission using the new link fails, it can be determined whether the criteria for cell reselection (for example, whether the number of retransmission failures exceeds a threshold) is satisfied.
  • the beam communication quality measurement unit 226 may send a measurement beam to the terminal device 120 Reference signal for communication quality to redo beam measurement and beam switching.
  • the base station 110 may instruct the terminal device 120 to perform cell reselection.
  • the signal transmission path of the cell includes not only the direct path from the base station to the terminal device, but also the auxiliary transmission path of the intermediate device.
  • the communication quality of the direct path and the intermediate device-assisted transmission path can be measured separately during cell reselection.
  • the terminal device 120 can perform cell reselection by the following operations: First, the terminal device 120 can measure the communication quality transmitted through the beam between the base station 110 and the terminal device 120 . The terminal device 120 may also measure the quality of communications transmitted over the beam between the second base station and the terminal device 120.
  • terminal device 120 may not perform a cell handover. In response to determining that the quality of communication transmitted through the beam between the base station 110 and the terminal device 120 is less than the cell access threshold, the terminal device 120 may further measure the transmission through the beam between the base station 110 and the intermediate device 120 and between the intermediate device and the terminal device 120 The communication quality of the beam for transmission. According to one embodiment, the terminal device 120 may not perform a cell handover in response to determining that the quality of communication transmitted over the beam between the base station 110 and the intermediate device and the beam between the intermediate device and the terminal device 120 is greater than or equal to the cell access threshold .
  • the terminal device 120 in response to determining that the quality of communication transmitted through the beam between the base station 110 and the intermediate device and the beam between the intermediate device and the terminal device 120 is less than the cell access threshold, and the communication between the second base station and the terminal device 120 is If the communication quality transmitted by the inter-beam (eg, the direct path between the second base station and the terminal device 120 or the intermediate device-assisted transmission path) is greater than or equal to the cell access threshold, the terminal device 120 can switch to the cell of the second base station.
  • the inter-beam eg, the direct path between the second base station and the terminal device 120 or the intermediate device-assisted transmission path
  • the terminal device 120 can perform cell reselection through the following operations: First, the terminal device 120 can measure the passing beam between the base station 110 and the intermediate device and the beam and the passing beam between the intermediate device and the terminal device 120. The beam synchronization between the base station 110 and the terminal device 120 transmits the communication quality.
  • the terminal device 120 in response to determining that the quality of communication transmitted through the beam between the base station 110 and the intermediate device and the beam between the intermediate device and the terminal device 120 and through the beam synchronization between the base station 110 and the terminal device 120 is less than the cell connection communications that are transmitted over the beam between the second base station and the terminal device 120 (eg, using one of the direct path between the second base station and the terminal device 120 and the intermediate device assisted transmission path, or using both simultaneously) If the quality is greater than or equal to the cell access threshold, the terminal device 120 may switch to the cell of the second base station.
  • the terminal device 120 may not perform cell handover. Therefore, in the process of cell reselection, the mechanism of the present invention can preferentially select the auxiliary path of the intermediate equipment as much as possible or use the direct path and the auxiliary path of the intermediate equipment for synchronous transmission, so as to reduce the signaling loss and delay caused by the cell handover as much as possible. .
  • FIG. 3 shows a flowchart of a method 300 for a base station-side electronic device according to an embodiment of the present disclosure.
  • the communication method 300 will be described below with reference to FIG. 1 and FIG. 2 , where the base station side electronic device may be, for example, the base station 110 shown in FIG. 1 or the base station side electronic device 200 shown in FIG. 2 .
  • step S310 it is determined that a transmission failure occurs in the link between the base station 110 and the terminal device 120.
  • This step S310 may be performed, for example, by the transmission failure determination unit 222 in FIG. 2 .
  • Step S320 Steps S320 and S330 are depicted with dashed boxes to indicate that they are optional. Furthermore, steps S320 and S330 may occur periodically, not necessarily in response to step S310.
  • a reference signal for measuring the communication quality of the beam is sent to the terminal device 120. This step S320 may be performed, for example, by the beam communication quality measuring unit 226 in FIG. 2 . Various implementations of transmitting the reference signal have been described above, and are not repeated here.
  • step S330 beam quality measurement results may be received from the terminal device 120. This step S330 may be performed, for example, by the beam communication quality measuring unit 226 in FIG. 2 . Various examples of beam quality measurement results have been described above and will not be repeated here.
  • step S340 a new link may be established for retransmission according to the available beam and the interfering beam for the terminal device 120.
  • This step S340 may be performed, for example, by the new link establishment unit 224 in FIG. 2 .
  • the new link establishment unit 224 in FIG. 2 may be performed, for example, by the new link establishment unit 224 in FIG. 2 .
  • step S350 it may be determined whether the link retransmission between the base station 110 and the terminal device 120 fails. If the retransmission is successful, the flow may proceed to step S360, and the base station 110 and the terminal device 120 may continue to communicate using the new link. If the retransmission fails, the flow may proceed to step S370 to further determine whether the number of retransmission failures exceeds the threshold. If the number of retransmission failures does not exceed the threshold, the flow may return to step S320 to re-measure the beam quality and re-establish a new link. If the number of retransmission failures exceeds the threshold, the flow may proceed to step S380. At step S380, the terminal device 120 may be instructed to perform cell reselection. Various implementations of cell reselection have been described above and will not be repeated here.
  • FIG. 4 shows a schematic block diagram of a terminal-device-side electronic device 400 according to an embodiment of the present disclosure.
  • the terminal device side electronic device 400 may correspond to the terminal device 120 in FIG. 1 , which may communicate with a base station or an intermediate device in a wireless communication system, or the terminal device side electronic device 400 may be used to control the terminal device 120 in FIG. 1 operation.
  • the terminal-device-side electronic device 400 may include a processing circuit 420 .
  • the function of the processing circuit 420 will be described below in conjunction with the scenario of Figure 1 as an example.
  • the processing circuit 420 may be configured to establish a new link with the base station 110 for retransmission after a transmission failure occurs in the link between the base station 110 and the terminal device 120 .
  • the new link is established by the base station 110 from the available and interfering beams for the terminal device 120, and wherein the new link utilizes one of the following: a beam between the base station 110 and the terminal device 120 ( For example, beam 112); beams (eg, beam 111) between the base station 110 and the intermediate device (eg, the intermediate device 130) and spare beams between the intermediate device and the terminal device 120 (eg, other beams of the intermediate device 130, 1 ); or a beam (eg, beam 113 ) between the base station 110 and a second intermediate device (eg, intermediate device 140 ) and a beam (eg, beam 141 ) between the second intermediate device and the terminal device 120 ).
  • a beam between the base station 110 and the terminal device 120 For example, beam 112
  • beams eg, beam 111 between the
  • the processing circuit 420 may be in the form of a general-purpose processor, or may be a special-purpose processing circuit, such as an ASIC.
  • the processing circuit 420 can be constructed of a circuit (hardware) or a central processing device such as a central processing unit (CPU).
  • a program (software) for operating the circuit (hardware) or a central processing device may be carried on the processing circuit 420 .
  • the program can be stored in a memory such as arranged in a memory or an external storage medium connected from the outside, and downloaded via a network such as the Internet.
  • the processing circuit 420 may include various units for implementing the above-mentioned functions, such as a new link establishing unit 422 configured to establish a new link with the base station 110 for retransmission.
  • the processing circuit 420 may optionally include a beam communication quality measurement unit 424 configured to receive a reference signal from the base station 110 for measuring the communication quality of the beam and to transmit the beam quality measurement result to the base station 110 .
  • the processing circuit 420 may optionally also include a cell reselection unit 426 configured to perform cell reselection.
  • the beam communication quality measurement unit 424 and the cell reselection unit 426 are drawn with dotted lines, which are intended to illustrate that they are not necessarily included in the processing circuit. As an example, these two units may be processed in the terminal device side electronic device 400. Outside the circuit 420, it may even be located outside the electronic device 400 on the terminal device side.
  • the units included in the processing circuit 420 may be communicatively coupled to each other (not shown). It should be noted that although each unit is shown as a separate unit in FIG. 4 , one or more of these units may also be combined into one unit, or split into multiple units.
  • each of the above-mentioned units may be implemented as independent physical entities, or may also be implemented by a single entity (eg, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • the above-mentioned respective units are shown with dotted lines in the drawings to indicate that these units may not actually exist, and the operations/functions implemented by them may be implemented by the processing circuit itself.
  • the processing circuit 420 may be implemented to include one or more other components in the terminal-side electronics, or may be implemented as the terminal-side electronics. In actual implementation, the processing circuit 420 may be implemented as a chip (such as an integrated circuit module including a single wafer), a hardware component, or a complete product.
  • FIG. 4 is only a schematic structural configuration of the terminal-device-side electronic device, and the terminal-device-side electronic device 400 may also include other possible components (eg, memory, etc.).
  • the terminal-device-side electronic device 400 may further include other components not shown, such as a memory, a radio frequency link, a baseband processing unit, a network interface, a controller, and the like.
  • the processing circuit may be associated with the memory and/or the antenna.
  • processing circuitry may be connected directly or indirectly (eg, with other components interposed therebetween) to memory for access to data.
  • the processing circuit may be directly or indirectly connected to the antenna to transmit and receive radio signals via the communication unit.
  • the memory may store various information generated by the processing circuit 420 (eg, beam quality measurements, available beam and interfering beam information, etc.), programs and data for the operation of the terminal-side electronic equipment, to be transmitted by the terminal-side electronic equipment data etc.
  • the memory may also be located within the end-device-side electronics but outside the processing circuitry, or even outside the end-device-side electronics.
  • the memory may be volatile memory and/or non-volatile memory.
  • memory may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), flash memory.
  • the intermediate device, the second intermediate device may include a reflective antenna array.
  • the beam communication quality measurement unit 424 may be configured to receive a reference signal for measuring the communication quality of the beam from the base station 110 and transmit the beam quality measurement result to the base station 110 .
  • the meaning, type, etc. of the beam quality measurement result may be as described above, and will not be described in detail here.
  • the processing circuit 420 may comprise means for receiving signaling from the base station instructing the terminal device to report a plurality of available beams.
  • the signaling may include information instructing the terminal device to report the plurality of available beams, or the signaling may be sent at a predetermined time slot corresponding to the mode in which the terminal device reports the plurality of available beams.
  • the specific definition and the like of the signaling may be as described above, and will not be described in detail here.
  • the new link establishment unit 422 may be configured to establish a new link with the base station 110 for retransmission.
  • the new link establishment unit 422 may receive the new link configuration sent by the base station 110, and adjust its receiver configuration accordingly (eg, switch to a specific receive beam, etc.).
  • the specific way of establishing the new link and so on may be as described above, and will not be described in detail here.
  • the cell reselection unit 426 may be configured to perform cell reselection in response to the number of failed retransmissions using the new link exceeding a threshold. According to one embodiment, the cell reselection unit 426 may perform cell reselection spontaneously in response to the number of failed retransmissions using the new link exceeding a threshold. According to one embodiment, the cell reselection unit 426 may perform cell reselection in response to receiving the instruction of the base station 110 . The specific manner, operation, etc. of the cell reselection can be as described above, and will not be described in detail here.
  • FIG. 5 shows a flowchart of a method 500 for a terminal-device-side electronic device according to an embodiment of the present disclosure.
  • the communication method 500 will be described below with reference to FIG. 1 and FIG. 2 , where the terminal device-side electronic device may be, for example, the terminal device 120 shown in FIG. 1 or the terminal device-side electronic device 400 shown in FIG. 4 .
  • a reference signal for measuring the communication quality of the beam is received from the base station 110.
  • terminal device 120 may send a beam measurement request signal to base station 110 (eg, when communication quality is poor or periodically).
  • the base station 110 transmits a reference signal to the terminal device 120 in response to receiving the beam measurement request signal from the terminal device 120 .
  • This step S510 may be performed, for example, by the beam communication quality measuring unit 424 in FIG. 4 .
  • step S520 the flow proceeds to step S520.
  • Steps S510 and S520 are depicted with dashed boxes to indicate that they are optional. Furthermore, steps S510 and S520 may occur periodically.
  • the beam quality measurement result is sent to the base station 110. This step S520 may be performed by, for example, the beam communication quality measuring unit 424 in FIG. 4 . Various examples of beam quality measurement results have been described above and will not be repeated here.
  • step S530 a new link may be established with the base station 110 for retransmission.
  • This step S530 may be performed, for example, by the new link establishment unit 422 in FIG. 4 .
  • Various implementations of establishing a new link have been described above, and will not be repeated here.
  • step S540 it may be determined whether the link retransmission between the base station 110 and the terminal device 120 fails. If the retransmission is successful, the flow may proceed to step S550, where the base station 110 and the terminal device 120 may continue to communicate using the new link. If the retransmission fails, the flow may proceed to step S560 to further determine whether the number of retransmission failures exceeds the threshold. If the number of retransmission failures does not exceed the threshold, the flow may return to step S510 to re-measure the beam quality and re-establish a new link. If the number of retransmission failures exceeds the threshold, the flow may proceed to step S570. At step S570, the terminal device 120 may perform cell reselection. Various implementations of cell reselection have been described above and will not be repeated here.
  • FIG. 6 shows a schematic signaling diagram 600 for transmission failure recovery between a base station-side electronic device and a terminal-side electronic device according to an embodiment of the present disclosure.
  • the base station side electronic device here may be, for example, the base station 110 in FIG. 1 or the base station side electronic device 200 in FIG. 2
  • the terminal side electronic device here may be, for example, the terminal device 120 in FIG. 1 or the terminal side in FIG. 4 .
  • Electronic device 400 .
  • the electronic device on the base station side may send a reference signal for measuring the communication quality of the multiple beams to the electronic device on the terminal device side. This step may occur in response to determining that a transmission failure occurs in the link between the electronic device on the base station side and the electronic device on the terminal device side, or may occur periodically.
  • step 602 the electronic device on the base station side may send a signaling indicating reporting of multiple available beams to the electronic device on the terminal device side. It should be understood that steps 601 and 602 do not necessarily have to occur in the order shown, but may alternate the order or occur simultaneously.
  • the terminal device side electronic device may send the beam quality measurement result obtained based on the reference signal received in step 601 to the base station side electronic device.
  • the beam quality measurement result may include a list of available beams and a list of interfering beams for the terminal-device-side electronic device.
  • the base station side electronic device may send the new link configuration determined based on the available beams and the interference beams of the terminal device to the terminal device side electronic device.
  • the electronic device on the terminal device side can adjust its receiver configuration accordingly to establish a new link with the electronic device on the base station side.
  • step 605 the electronic device on the base station side can send communication data to the electronic device on the terminal device side by using the new link.
  • FIG. 7A shows a schematic diagram of a scenario in which communication is performed through an intermediate device-assisted link in a wireless communication system 700A according to an embodiment of the present disclosure.
  • the wireless communication system 700A may include a base station 710 , terminal devices 701 - 704 , and intermediate devices 720 and 730 .
  • the intermediary device 720 can communicate with the end devices using the beams 721-726, and the intermediary device 730 can communicate with the end devices using the beams 731-736.
  • the intermediate device may have any suitable number of beams.
  • a reflector array can adjust the number and width of its beams by dividing the reflector elements.
  • the intermediate devices 720 and 730 may receive communication data through the beam between the base station 710 and them, and transmit it to the terminal device. For clarity, the beams between the base station 710 and the intermediate device are not shown in Figure 7A.
  • An available beam for a terminal device may be defined as a beam with a communication quality (eg, RSRP) above a first threshold (eg, a valid signal threshold), and an interfering beam for a terminal device may be defined as a communication quality (eg, RSRP) Beams above a second threshold (eg, an interfering signal threshold), where the first threshold is greater than the second threshold.
  • a communication quality eg, RSRP
  • end device 703 is receiving communication data from intermediary device 720 via beam 726 and end device 704 is receiving communication data from intermediary device 730 via beam 731
  • Beam 726 between device 720 and terminal device 703 shares the same resources, so beam 731 can cause interference to terminal device 703 .
  • Beam 731 is the interfering beam of terminal device 703 .
  • the beam 731 is also an available beam for the terminal device 703 with respect to receiving data from the intermediate device 730 . If a transmission failure occurs, it is switched to the interference beam of other terminal equipment, which will affect the communication of other terminal equipment.
  • the terminal device can determine the available beam and the interfering beam according to the beam measurement result based on the reference signal.
  • the terminal device may also transmit the beam measurement results to the base station, and the base station determines the available beams and the interfering beams.
  • the terminal device is aware of the presence of the intermediary and can determine whether the available beams and interfering beams are the beams of the base station or that of the intermediary and the corresponding intermediary ID and beam ID.
  • FIG. 7B illustrates an exemplary list of available beams and a list of interfering beams 700B in accordance with an embodiment of the present disclosure.
  • the list of available beams and the list of interference beams 700B may be obtained by the terminal device based on the communication scenario shown in FIG. 7A , for example.
  • the available beams from the intermediate device 730 are 734 and 733, there is no available beam from the intermediate device 720, and the interfering beams from the intermediate device 730 are 734, 733 and 735, and there are no available beams from the intermediate device 730. Interfering beams of device 720.
  • the available beam from intermediate device 730 is 736, there is no available beam from intermediate device 720, and the interfering beams from intermediate device 730 are 736 and 735, and there are no interfering beams from intermediate device 720.
  • the available beams from intermediate device 730 are 731, 732, the available beam from intermediate device 720 is 726, and the interfering beams from intermediate device 730 are 731 and 732, and the interfering beams from intermediate device 720 are 726 and 725.
  • the available beams from intermediate device 730 are 731, 732, there is no available beam from intermediate device 720, and the interfering beams from intermediate device 730 are 731, 732, and 733, and the interfering beam from intermediate device 720 is 725 .
  • the terminal device does not know the existence of the intermediate device. It only knows the beam ID named by the base station, and cannot determine whether the beam comes from the base station or an intermediate device. In this case, the base station can determine the source and specific information of the beam according to the beam ID received from the terminal device.
  • the list of available beams may include IDs of available beams
  • the base station may be configured to: determine, based on the ID of each available beam, whether the available beam is a beam between the base station and a terminal device or an intermediate device and a terminal device and in response to determining that the available beam is the beam between the intermediate device and the terminal device, determining the ID of the intermediate device and the ID of the beam of the intermediate device corresponding to the available beam based on the ID of the available beam.
  • FIG. 8 is a list 800 illustrating the correspondence between the IDs of available beams and the IDs of devices and the IDs of device beams, according to an embodiment of the present disclosure.
  • the base station can determine the source and specific information of the beam based on the available beam IDs received from the terminal device according to the list 800 .
  • the available beam IDs may include 000, 001, 010, 011, 100, and 101.
  • the device ID can include 0, 1, and 2, where device ID 0 represents the base station, device ID 1 represents the intermediate device A, and device ID 2 represents the intermediate device B. Therefore, if the received available beam ID is 000, it can be determined that the available beam is beam 1 of the base station; if the received available beam ID is 011, it can be determined that the available beam is beam 2 of the intermediate device A.
  • the correspondence between the ID of the interfering beam and the ID of the intermediate device and the ID of the intermediate device beam can be achieved in a similar manner.
  • the ID encoding method and the corresponding relationship shown in FIG. 8 are only an example, and the present invention is not limited to this, and the base station can parse the device ID and The ID of the device beam.
  • FIG. 9 shows a flowchart of a method 900 for establishing a new link when a transmission failure occurs on the link according to an embodiment of the present disclosure.
  • the method 900 may be performed, for example, by the base station 110 of FIG. 1 .
  • the method of FIG. 9 will be described below with reference to FIG. 1 .
  • the base station 110 may determine that a transmission failure occurs in the link between the base station 110 and the terminal device 120.
  • the base station 110 may determine whether the link utilizes the beam between the base station 110 and the intermediate device and the beam between the intermediate device and the terminal device 120 . That is, the base station 110 can determine whether the intermediate device participates in the transmission when a transmission failure occurs on the link.
  • a new link may be established using the beam between the base station 110 and the intermediate device (eg, the intermediate device 130 or 140 ) and the beam between the intermediate device and the terminal device 120 .
  • step S904 the base station 110 may determine whether the transmission failure occurs on the beam between the base station 110 and the intermediate device. Alternatively, at S904, the base station 110 may not make the determination, but directly use the beam between the base station 110 and the second intermediate device (eg, the intermediate device 140) and the beam between the second intermediate device and the terminal device 120. The beam establishes a new link. How to implement step S904 will be further described below with reference to FIG. 10A , FIG. 10B , FIG. 11A , and FIG. 11B .
  • step S905 a new link is established using the beam between the base station 110 and the second intermediate device (eg, the intermediate device 140) and the beam between the second intermediate device and the terminal device 120.
  • step S906 utilize the beam between the base station 110 and the intermediate device (eg, the intermediate device 130) and the spare beam between the intermediate device and the terminal device 120 (eg, other beams of the intermediate device 130 except for the beam 131) Establish a new link.
  • 10A and 10B illustrate schematic diagrams of scenarios 1000A and 1000B in which a base station determines a beam where transmission failure occurs, according to an embodiment of the present disclosure.
  • the base station may be determined by the base station whether the transmission failure occurs on the beam between the base station and the intermediate device or the beam between the intermediate device and the terminal device based on the communication quality of other terminal devices communicating with the base station through the same intermediate device . For example, this can occur when the intermediate device is passive (eg, a passive reflective antenna array, which only has the ability to reflect electromagnetic waves but does not have the ability to make logical judgments and actively transmit signals).
  • the base station may also determine whether the transmission failure occurs on the beam between the base station and the intermediate device or on the beam between the intermediate device and the terminal device.
  • the base station 1010 sends communication data to the four terminal devices 1020 , 1022 , 1024 and 1026 through the intermediate device 1030 .
  • the beams between the base station 1010 and the intermediate device 1030 are omitted from the figure.
  • the transmission from the base station 1010 to the terminal device 1020 fails, for example, the base station 1010 does not receive an ACK signal from the terminal device 1020 within a certain period of time.
  • the base station 1010 receives ACK signals from all of the terminal devices 1022, 1024, and 1026, or from at least some of the terminal devices 1022, 1024, and 1026.
  • the communication quality of at least a portion of the terminal devices served by the intermediate device 1030 is good, so that the base station 1010 can determine that the transmission failure occurs on the beam (eg, beam 1031 ) between the intermediate device 1030 and the terminal device 1020 .
  • the base station 1010 can determine that the transmission failure occurs between the base station 1010 and the intermediate device 1030. Bes in between (eg, beam 1012).
  • the base station 1010 can send reference signals to the terminal devices 1022, 1024 and 1026 respectively to measure the current communication quality of these terminal devices. Subsequent methods for determining beam failure are similar, and details are not repeated here.
  • 11A and 11B illustrate schematic diagrams of scenarios 1100A and 1100B in which a beam in which a transmission failure occurs is determined by an intermediary device according to an embodiment of the present disclosure.
  • the intermediate device when the intermediate device is active, for example, the intermediate device is an active reflective antenna array, the intermediate device may not only have the ability to reflect electromagnetic waves, but also have the ability to make logical judgments (for example, to determine whether the signal power is lower than the threshold). value) and the ability to actively transmit signals. At this point, the intermediate device may compare the signal quality (eg, received signal power) received from the base station with a valid signal threshold.
  • the signal quality eg, received signal power
  • the intermediate device may send feedback information to the base station indicating that the signal quality received by the intermediate device is lower than the valid signal threshold; if the signal quality is greater than or equal to the valid signal threshold, the intermediate device may send to the base station Indicates the feedback information that the signal quality received by the intermediate device is greater than or equal to the effective signal threshold or does not send any feedback information to the base station.
  • the base station can determine the beam where the transmission failure occurs based on the feedback information from the intermediate device.
  • the base station 1110 sends communication data to the terminal device 1120 through the intermediate device 1130 .
  • the transmission from the base station 1110 to the terminal device 1120 fails, for example, the base station 1110 does not receive an ACK signal from the terminal device 1120 within a certain period of time, and the base station 1110 receives from the intermediate device 1130 indicating the quality of the signal received by the intermediate device 1130 Feedback information 1114 below the valid signal threshold.
  • the base station 1110 can determine that the transmission failure occurred on the beam (eg, beam 1112 ) between the base station 1110 and the intermediate device 1130 .
  • the base station 1110 may determine The transmission failure does not occur on the beam between the base station 1110 and the intermediate device 1130, but on the beam (eg, beam 1131) between the intermediate device 1130 and the terminal device 1120.
  • FIG. 12 shows a schematic signaling diagram 1200 of a communication process for determining, by an intermediate device, a beam in which a transmission failure occurs, according to an embodiment of the present disclosure. It should be understood that the middleware 1230 is the active middleware described above.
  • the base station 1210 may transmit communication data to the intermediate device 1230 through a beam between the base station 1210 and the intermediate device 1230 .
  • the intermediate device 1230 may transmit the communication data received from the base station 1210 to the terminal device 1220 through a beam between the intermediate device 1230 and the terminal device 1220.
  • step 1203 the intermediate device 1230 may determine whether the received signal quality is lower than the valid signal threshold. Note that steps 1203 and 1202 do not necessarily occur in the order shown, but may occur in the reverse order.
  • the intermediate device 1230 may send feedback information indicating that the signal quality received by the intermediate device 1230 is lower than the effective signal threshold or feedback information indicating that the signal quality received by the intermediate device 1230 is greater than or equal to the effective signal threshold to the base station 1210. Alternatively, when the signal quality received by the intermediate device 1230 is greater than or equal to the valid signal threshold, the intermediate device 1230 may also not send feedback information to the base station 1210 .
  • the base station 1210 may determine the specific beam in which the transmission failure occurred based on the feedback information received from the intermediate device 1230 in step 1204 (or based on no feedback information being received).
  • An example of a specific judgment manner has been described above, and will not be repeated here.
  • FIG. 13 shows a schematic diagram of a scenario 1300 in which a terminal device performs cell reselection according to an embodiment of the present disclosure.
  • the terminal device if the retransmission using the new link is successful and the terminal device successfully receives the communication data, it can continue the communication using the new link. However, if the retransmission using the new link fails, it can be determined whether the criteria for cell reselection (for example, whether the number of retransmission failures exceeds a threshold) is satisfied. If the cell reselection criteria are met, the base station may instruct the terminal device to perform cell reselection, or the terminal device may perform cell reselection spontaneously.
  • the criteria for cell reselection for example, whether the number of retransmission failures exceeds a threshold
  • the wireless communication system includes a terminal device 1320 , two base stations 1310 and 1312 and intermediate devices 1330 and 1340 .
  • the intermediate device 1330 is in the cell 1351 of the base station 1310
  • the intermediate device 1340 is in the cell 1352 of the base station 1312 . Therefore, the signal transmission paths in the two cells include not only the direct path from the base station to the terminal equipment 1320, but also the auxiliary transmission path of the intermediate equipment. Assume that terminal device 1320 starts communicating with base station 1310 and encounters a transmission failure.
  • the terminal device 1320 may first measure the communication quality transmitted through the beam between the base station 1310 and the terminal device 1320 .
  • Terminal device 1320 may also measure the quality of communications transmitted over the beam between base station 1312 and terminal device 1320.
  • the terminal device 1320 may not perform a cell handover.
  • terminal device 1320 may further measure the beam passing between base station 1310 and intermediate device 1330 and the intermediate device 1330 and terminal device 1320 Communication quality between beams for transmission. According to one embodiment, in response to determining that the quality of communication transmitted over the beam between the base station 1310 and the intermediate device 1330 and the beam between the intermediate device 1330 and the terminal device 1320 is greater than or equal to the cell access threshold, the terminal device 1320 may not Cell handover.
  • the terminal device 1320 in response to determining that the quality of communication transmitted over the beam between the base station 1310 and the intermediate device 1330 and the beam between the intermediate device 1330 and the terminal device 1320 is less than the cell access threshold, and the communication between the base station 1312 and the terminal device 1320 If the communication quality of the transmission between the beams is greater than or equal to the cell access threshold, the terminal device 1320 can switch to the cell accessing the base station 1312 . If the communication quality transmitted by the beam between the base station 1312 and the terminal device 1320 is also less than the cell access threshold, the terminal device 1320 can measure the beam passing between the base station 1312 and the intermediate device 1340 and between the intermediate device 1340 and the terminal device 1320 The communication quality of the beam for transmission.
  • the terminal device 1320 may switch to the cell accessing the base station 1312 , communicate using a link assisted by the intermediary device 1340 .
  • the embodiment of the present invention it is possible not to switch cells as much as possible. Only when the direct path and the auxiliary path of the intermediate equipment do not meet the communication requirements, the cell is switched, so as to reduce the signaling loss and delay caused by the cell switching as much as possible.
  • the communication quality of the direct path and the intermediate device-assisted transmission path can be synchronously measured during cell reselection.
  • the signal power received by the terminal device 1320 will be the sum of the signal power of the direct path and the auxiliary transmission path of the intermediate device.
  • the terminal device 1320 may measure the beam passing between the base station 1310 and the intermediate device 1330, the beam between the intermediate device 1330 and the terminal device 1320, and the beam passing between the base station 1310 and the terminal device 1320 Communication quality for simultaneous transmission.
  • the terminal device 1320 in response to determining that the quality of communication transmitted over the beam between the base station 1310 and the intermediate device 1330 and the beam between the intermediate device 1330 and the terminal device 1320 and through the beam synchronization between the base station 1310 and the terminal device 1320 is less than
  • the cell access threshold that the terminal device 1320 can measure through the beam between the base station 1312 and the terminal device 1320 eg, using one of the direct path and the intermediate device assisted transmission path between the base station 1312 and the terminal device 1320 or using both simultaneously.
  • the terminal device 1320 can handover to the cell of the base station 1312.
  • the terminal device 1320 in response to determining that the quality of communication transmitted over the beam between the base station 1310 and the intermediate device 1330 and the beam between the intermediate device 1330 and the terminal device 1320 and through the beam synchronization between the base station 1310 and the terminal device 1320 is greater than or equal to the cell access threshold, the terminal device 1320 may not perform cell handover.
  • Embodiments of the electronic device and method for recovering communication when a link in a wireless communication system fails transmission according to the present disclosure are described above.
  • the embodiments of the present disclosure by maintaining a plurality of available beams, in the event of a link failure, it is possible to switch to a backup beam in time, thereby reducing the time delay and ensuring user experience.
  • the communication quality of the intermediary-assisted link can be guaranteed.
  • the signaling loss and delay caused by the cell handover can be reduced as much as possible.
  • machine-executable instructions in a machine-readable storage medium or program product may be configured to perform operations corresponding to the above-described apparatus and method embodiments.
  • the embodiments of the machine-readable storage medium or program product will be apparent to those skilled in the art, and thus the description will not be repeated.
  • Machine-readable storage media and program products for carrying or including the above-described machine-executable instructions are also within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • FIG. 14 is a block diagram showing an example structure of a personal computer of an information processing apparatus that can be employed in an embodiment of the present disclosure.
  • the personal computer may correspond to the above-described exemplary transmitting device or terminal-side electronic device according to the present disclosure.
  • a central processing unit (CPU) 1401 executes various processes according to a program stored in a read only memory (ROM) 1402 or a program loaded from a storage section 1408 to a random access memory (RAM) 1403.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1401 executes various processes and the like is also stored as needed.
  • the CPU 1401, ROM 1402, and RAM 1403 are connected to each other via a bus 1404.
  • Input/output interface 1405 is also connected to bus 1404 .
  • the following components are connected to the input/output interface 1405: an input section 1406, including a keyboard, a mouse, etc.; an output section 1407, including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; a storage section 1408 , including a hard disk, etc.; and a communication section 1409, including a network interface card such as a LAN card, a modem, and the like.
  • the communication section 1409 performs communication processing via a network such as the Internet.
  • a driver 1410 is also connected to the input/output interface 1405 as required.
  • a removable medium 1411 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc. is mounted on the drive 1410 as needed, so that a computer program read therefrom is installed into the storage section 1408 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 1411 .
  • such a storage medium is not limited to the removable medium 1411 shown in FIG. 14 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable medium 1411 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including minidiscs (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be the ROM 1402, a hard disk contained in the storage section 1408, or the like, in which programs are stored and distributed to users together with the devices containing them.
  • control-side electronic device may be implemented as or included in various control devices/base stations.
  • transmitting apparatus and the terminal apparatus according to the embodiments of the present disclosure may be implemented as or included in various terminal apparatuses.
  • control device/base station mentioned in the present disclosure may be implemented as any type of base station, eg eNB, such as macro eNB and small eNB.
  • Small eNBs may be eNBs covering cells smaller than macro cells, such as pico eNBs, micro eNBs, and home (femto) eNBs.
  • gNBs such as macro gNBs and small gNBs.
  • Small gNBs may be gNBs covering cells smaller than macro cells, such as pico gNBs, micro gNBs, and home (femto) gNBs.
  • the base station may be implemented as any other type of base station, such as a NodeB and a Base Transceiver Station (BTS).
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (Remote Radio Heads, RRHs) disposed at a place different from the main body.
  • RRHs Remote Radio Heads
  • various types of terminals to be described below can each operate as a base station by temporarily or semi-persistently performing a base station function.
  • the terminal devices mentioned in this disclosure may in some embodiments be implemented as mobile terminals such as smartphones, tablet personal computers (PCs), notebook PCs, portable game terminals, portable/dongle-type mobile routers, and digital camera) or in-vehicle terminals (such as car navigation devices).
  • the terminal device may also be implemented as a terminal that performs machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the terminal device may be a wireless communication module (such as an integrated circuit module including a single die) mounted on each of the above-mentioned terminals.
  • base station in this disclosure has the full breadth of its ordinary meaning and includes at least a wireless communication station used as a wireless communication system or part of a radio system to facilitate communication.
  • Examples of base stations may be, for example, but not limited to the following:
  • a base station may be one or both of a base transceiver station (BTS) and a base station controller (BSC) in a GSM system, or a radio network controller in a WCDMA system
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • Node B which may be eNBs in LTE and LTE-Advanced systems, or may be corresponding network nodes in future communication systems (such as gNB, eLTE that may appear in 5G communication systems) eNB, etc.).
  • Some functions in the base station of the present disclosure may also be implemented as entities with control functions for communication in D2D, M2M and V2V communication scenarios, or as entities with spectrum coordination functions in cognitive radio communication scenarios.
  • gNB 1500 is a block diagram showing a first example of a schematic configuration of a gNB to which the techniques of the present disclosure may be applied.
  • gNB 1500 includes multiple antennas 1510 and base station equipment 1520.
  • the base station apparatus 1520 and each antenna 1510 may be connected to each other via an RF cable.
  • the gNB 1500 (or the base station device 1520) here may correspond to the above-mentioned control-side electronic device.
  • Each of the antennas 1510 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used for the base station apparatus 1520 to transmit and receive wireless signals.
  • gNB 1500 may include multiple antennas 1510.
  • multiple antennas 1510 may be compatible with multiple frequency bands used by gNB 1500.
  • the base station apparatus 1520 includes a controller 1521 , a memory 1522 , a network interface 1517 , and a wireless communication interface 1525 .
  • the controller 1521 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 1520 . For example, the controller 1521 determines the location of the target terminal device in the at least one terminal device according to the positioning information of the at least one terminal device on the terminal side in the wireless communication system and the specific location configuration information of the at least one terminal device acquired by the wireless communication interface 1525. location information.
  • the controller 1521 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, access control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 1522 includes RAM and ROM, and stores programs executed by the controller 1521 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1523 is a communication interface for connecting the base station apparatus 1520 to the core network 1524 .
  • Controller 1521 may communicate with core network nodes or additional gNBs via network interface 1517 .
  • gNB 1500 and core network nodes or other gNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 1523 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 1523 is a wireless communication interface, the network interface 1523 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1525 .
  • Wireless communication interface 1525 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in the cell of gNB 1500 via antenna 1510.
  • Wireless communication interface 1525 may generally include, for example, a baseband (BB) processor 1526 and RF circuitry 1527 .
  • the BB processor 1526 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) various types of signal processing.
  • the BB processor 1526 may have some or all of the above-described logical functions.
  • the BB processor 1526 may be a memory storing a communication control program, or a module including a processor and associated circuitry configured to execute the program.
  • the update procedure may cause the functionality of the BB processor 1526 to change.
  • the module may be a card or blade that is inserted into a slot in the base station device 1520. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1527 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1510 .
  • FIG. 15 shows an example in which one RF circuit 1527 is connected to one antenna 1510, the present disclosure is not limited to this illustration, but one RF circuit 1527 may connect multiple antennas 1510 at the same time.
  • the wireless communication interface 1525 may include multiple BB processors 1526 .
  • multiple BB processors 1526 may be compatible with multiple frequency bands used by gNB 1500.
  • the wireless communication interface 1525 may include a plurality of RF circuits 1527 .
  • multiple RF circuits 1527 may be compatible with multiple antenna elements.
  • FIG. 15 shows an example in which the wireless communication interface 1525 includes multiple BB processors 1526 and multiple RF circuits 1527 , the wireless communication interface 1525 may also include a single BB processor 1526 or a single RF circuit 1527 .
  • gNB 1600 includes multiple antennas 1610, RRH 1620, and base station equipment 1630.
  • the RRH 1620 and each antenna 1610 may be connected to each other via RF cables.
  • the base station apparatus 1630 and the RRH 1620 may be connected to each other via high-speed lines such as fiber optic cables.
  • the gNB 1600 (or the base station device 1630) here may correspond to the above-mentioned control-side electronic device.
  • Each of the antennas 1610 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1620 to transmit and receive wireless signals.
  • gNB 1600 may include multiple antennas 1610.
  • multiple antennas 1610 may be compatible with multiple frequency bands used by gNB 1600.
  • the base station apparatus 1630 includes a controller 1631 , a memory 1632 , a network interface 1633 , a wireless communication interface 1634 , and a connection interface 1636 .
  • the controller 1631 , the memory 1632 and the network interface 1633 are the same as the controller 1521 , the memory 1522 and the network interface 1523 described with reference to FIG. 15 .
  • Wireless communication interface 1634 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication via RRH 1620 and antenna 1610 to terminals located in a sector corresponding to RRH 1620.
  • Wireless communication interface 1634 may generally include, for example, BB processor 1635.
  • the BB processor 1635 is the same as the BB processor 1526 described with reference to FIG. 15, except that the BB processor 1635 is connected to the RF circuit 1622 of the RRH 1620 via the connection interface 1636.
  • the wireless communication interface 1634 may include multiple BB processors 1635.
  • multiple BB processors 1635 may be compatible with multiple frequency bands used by gNB 1600.
  • FIG. 16 shows an example in which the wireless communication interface 1634 includes multiple BB processors 1635 , the wireless communication interface 1634 may include a single BB processor 1635 .
  • connection interface 1636 is an interface for connecting the base station apparatus 1630 (the wireless communication interface 1634) to the RRH 1620.
  • the connection interface 1636 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station device 1630 (the wireless communication interface 1634) to the RRH 1620.
  • RRH 1620 includes connection interface 1623 and wireless communication interface 1621.
  • connection interface 1623 is an interface for connecting the RRH 1620 (the wireless communication interface 1621) to the base station apparatus 1630.
  • the connection interface 1623 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1621 transmits and receives wireless signals via the antenna 1610 .
  • Wireless communication interface 1621 may typically include RF circuitry 1622, for example.
  • RF circuitry 1622 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 1610 .
  • FIG. 16 shows an example in which one RF circuit 1622 is connected to one antenna 1610 , the present disclosure is not limited to this illustration, but one RF circuit 1622 may connect multiple antennas 1610 at the same time.
  • the wireless communication interface 1621 may include a plurality of RF circuits 1622 .
  • multiple RF circuits 1622 may support multiple antenna elements.
  • FIG. 16 shows an example in which the wireless communication interface 1621 includes a plurality of RF circuits 1622 , the wireless communication interface 1621 may include a single RF circuit 1622 .
  • the communication device 1700 includes a processor 1701, a memory 1702, a storage device 1703, an external connection interface 1704, a camera device 1706, a sensor 1707, a microphone 1708, an input device 1709, a display device 1710, a speaker 1711, a wireless communication interface 1712, one or more Antenna switch 1715 , one or more antennas 1716 , bus 1717 , battery 1718 , and auxiliary controller 1719 .
  • the communication device 1700 (or the processor 1701 ) here may correspond to the above-mentioned transmitting device or terminal-side electronic device.
  • the processor 1701 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the communication device 1700 .
  • the memory 1702 includes RAM and ROM, and stores data and programs executed by the processor 1701 .
  • the storage device 1703 may include storage media such as semiconductor memories and hard disks.
  • the external connection interface 1704 is an interface for connecting external devices such as memory cards and Universal Serial Bus (USB) devices to the communication apparatus 1700 .
  • the camera 1706 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 1707 may include a set of sensors, such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 1708 converts the sound input to the communication device 1700 into an audio signal.
  • the input device 1709 includes, for example, a touch sensor, keypad, keyboard, button, or switch configured to detect a touch on the screen of the display device 1710, and receives operations or information input from a user.
  • the display device 1710 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the communication device 1700.
  • the speaker 1711 converts the audio signal output from the communication device 1700 into sound.
  • the wireless communication interface 1712 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 1712 may typically include, for example, BB processor 1713 and RF circuitry 1714.
  • the BB processor 1713 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1714 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 1716 .
  • the wireless communication interface 1712 may be a chip module on which the BB processor 1713 and the RF circuit 1714 are integrated. As shown in FIG.
  • the wireless communication interface 1712 may include a plurality of BB processors 1713 and a plurality of RF circuits 1714 .
  • FIG. 17 shows an example in which the wireless communication interface 1712 includes multiple BB processors 1713 and multiple RF circuits 1714 , the wireless communication interface 1712 may include a single BB processor 1713 or a single RF circuit 1714 .
  • the wireless communication interface 1712 may support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1712 may include a BB processor 1713 and an RF circuit 1714 for each wireless communication scheme.
  • Each of the antenna switches 1715 switches the connection destination of the antenna 1716 between a plurality of circuits included in the wireless communication interface 1712 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 1716 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1712 to transmit and receive wireless signals.
  • the communication device 1700 may include multiple antennas 1716 .
  • FIG. 17 shows an example in which the communication device 1700 includes multiple antennas 1716 , the communication device 1700 may also include a single antenna 1716 .
  • the communication device 1700 may include an antenna 1716 for each wireless communication scheme.
  • the antenna switch 1715 may be omitted from the configuration of the communication device 1700 .
  • the bus 1717 connects the processor 1701, the memory 1702, the storage device 1703, the external connection interface 1704, the camera device 1706, the sensor 1707, the microphone 1708, the input device 1709, the display device 1710, the speaker 1711, the wireless communication interface 1712, and the auxiliary controller 1719 to each other connect.
  • the battery 1718 provides power to the various blocks of the communication device 1700 shown in FIG. 17 via feeders, which are partially shown in phantom in the figure.
  • the auxiliary controller 1719 operates the minimum necessary functions of the communication device 1700, eg, in sleep mode.
  • FIG. 18 is a block diagram showing an example of a schematic configuration of a car navigation apparatus 1800 to which the technology of the present disclosure can be applied.
  • the car navigation device 1800 includes a processor 1801, a memory 1802, a global positioning system (GPS) module 1804, a sensor 1805, a data interface 1806, a content player 1807, a storage medium interface 1808, an input device 1809, a display device 1810, a speaker 1811, a wireless Communication interface 1813 , one or more antenna switches 1816 , one or more antennas 1817 , and battery 1818 .
  • the car navigation device 1800 (or the processor 1801 ) here may correspond to a transmitting device or a terminal-side electronic device.
  • the processor 1801 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 1800 .
  • the memory 1802 includes RAM and ROM, and stores data and programs executed by the processor 1801 .
  • the GPS module 1804 measures the position (such as latitude, longitude, and altitude) of the car navigation device 1800 using GPS signals received from GPS satellites.
  • Sensors 1805 may include a set of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 1806 is connected to, for example, the in-vehicle network 1821 via a terminal not shown, and acquires data generated by the vehicle, such as vehicle speed data.
  • the content player 1807 reproduces content stored in storage media such as CDs and DVDs, which are inserted into the storage media interface 1808 .
  • the input device 1809 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1810, and receives operations or information input from a user.
  • the display device 1810 includes a screen such as an LCD or OLED display, and displays images or reproduced content of a navigation function.
  • the speaker 1811 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1813 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 1813 may generally include, for example, BB processor 1814 and RF circuitry 1815.
  • the BB processor 1814 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1815 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1817 .
  • the wireless communication interface 1813 can also be a chip module on which the BB processor 1814 and the RF circuit 1815 are integrated. As shown in FIG.
  • the wireless communication interface 1813 may include a plurality of BB processors 1814 and a plurality of RF circuits 1815 .
  • FIG. 18 shows an example in which the wireless communication interface 1813 includes multiple BB processors 1814 and multiple RF circuits 1815
  • the wireless communication interface 1813 may include a single BB processor 1814 or a single RF circuit 1815 .
  • the wireless communication interface 1813 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1813 may include the BB processor 1814 and the RF circuit 1815 for each wireless communication scheme.
  • Each of the antenna switches 1816 switches the connection destination of the antenna 1817 among a plurality of circuits included in the wireless communication interface 1813, such as circuits for different wireless communication schemes.
  • Each of the antennas 1817 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1813 to transmit and receive wireless signals.
  • the car navigation device 1800 may include a plurality of antennas 1817 .
  • FIG. 18 shows an example in which the car navigation device 1800 includes a plurality of antennas 1817 , the car navigation device 1800 may also include a single antenna 1817 .
  • the car navigation device 1800 may include an antenna 1817 for each wireless communication scheme.
  • the antenna switch 1816 may be omitted from the configuration of the car navigation apparatus 1800 .
  • the battery 1818 provides power to the various blocks of the car navigation device 1800 shown in FIG. 18 via feeders, which are partially shown as dashed lines in the figure.
  • the battery 1818 accumulates power provided from the vehicle.
  • the techniques of this disclosure may also be implemented as an in-vehicle system (or vehicle) 1820 that includes one or more blocks of a car navigation device 1800 , an in-vehicle network 1821 , and a vehicle module 1822 .
  • the vehicle module 1822 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 1821 .
  • machine-executable instructions in a machine-readable storage medium or program product may be configured to perform operations corresponding to the above-described apparatus and method embodiments.
  • the embodiments of the machine-readable storage medium or program product will be apparent to those skilled in the art, and thus the description will not be repeated.
  • Machine-readable storage media and program products for carrying or including the above-described machine-executable instructions are also within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processing performed in time series in the stated order, but also processing performed in parallel or individually rather than necessarily in time series. Furthermore, even in the steps processed in time series, needless to say, the order can be appropriately changed.
  • An electronic device for a base station side comprising:
  • a processing circuit configured to:
  • a new link is established for retransmission based on the available beams and interfering beams for the terminal device, wherein the new link utilizes one of the following: one of:
  • the beam between the base station and the second intermediate device and the beam between the second intermediate device and the terminal device is the beam between the base station and the second intermediate device and the terminal device.
  • Exemplary Embodiment 2 The electronic device of Exemplary Embodiment 1, wherein the intermediate device, the second intermediate device comprises a reflective antenna array.
  • Exemplary Embodiment 3 The electronic device of exemplary embodiment 1, wherein the processing circuit is further configured to:
  • Beam quality measurements are received from the terminal device.
  • Exemplary Embodiment 4 The electronic device of Exemplary Embodiment 3, wherein the beam quality measurement result includes a list of available beams and a list of interfering beams for the terminal device.
  • Exemplary Embodiment 5 The electronic device of Exemplary Embodiment 4, wherein the list of available beams includes IDs of available beams, and the processing circuit is further configured to:
  • each available beam is a beam between the base station and the terminal device or a beam between an intermediate device and the terminal device based on the ID of each available beam
  • the ID of the intermediate device and the ID of the beam of the intermediate device corresponding to the available beam are determined based on the ID of the available beam.
  • Exemplary Embodiment 6 The electronic device of Exemplary Embodiment 4, wherein the list of interfering beams includes IDs of interfering beams, and the processing circuit is further configured to:
  • the ID of the intermediary device and the ID of the beam of the intermediary device corresponding to the interfering beam are determined based on the ID of the interfering beam.
  • Exemplary Embodiment 7 The electronic device of Exemplary Embodiment 4, wherein the list of available beams includes an ID of an intermediate device and an ID of a beam of the intermediate device, and the list of interfering beams includes an ID of the intermediate device and the ID of the beam of the intermediate device.
  • Exemplary Embodiment 8 The electronic device of Exemplary Embodiment 4, wherein the list of available beams includes IDs of a plurality of available beams.
  • Exemplary Embodiment 9 The electronic device according to Exemplary Embodiment 8, wherein the processing circuit is further configured to send signaling to the terminal device, where the signaling includes instructing the terminal device to report a plurality of available beams Information.
  • Exemplary Embodiment 10 The electronic device of Exemplary Embodiment 8, wherein the processing circuit is further configured to send signaling to the terminal device at a predetermined time slot, the predetermined time slot corresponding to the terminal device Reports the mode of multiple available beams.
  • Exemplary Embodiment 11 The electronic device of Exemplary Embodiment 1, wherein the available beam for the terminal device is a beam with a communication quality higher than a first threshold, and the interference for the terminal device The beam is a beam with a communication quality higher than a second threshold, where the first threshold is greater than the second threshold.
  • Exemplary Embodiment 12 The electronic device of exemplary embodiment 1, wherein in response to a transmission failure occurring in the link between the base station and the terminal device, the link utilizes only the The beam between the base station and the terminal device, and the new link is established by using the beam between the base station and the intermediate device and the beam between the intermediate device and the terminal device.
  • Exemplary Embodiment 13 The electronic device of exemplary embodiment 1, wherein in response to a transmission failure on the link between the base station and the terminal device, the link utilizes the base station The beam between the base station and the second intermediate device and the beam between the intermediate device and the terminal device, and the beam between the base station and the second intermediate device and the beam between the second intermediate device and the terminal device are used. The beam establishes the new link.
  • Exemplary Embodiment 14 The electronic device of Exemplary Embodiment 1, wherein the processing circuit is further configured to:
  • the link In response to a transmission failure occurring in the link between the base station and the terminal device, the link utilizes beams between the base station and the intermediate device and between the intermediate device and the terminal device and determine whether the transmission failure occurs on the beam between the base station and the intermediate device or on the beam between the intermediate device and the terminal device.
  • Exemplary Embodiment 15 The electronic device according to Exemplary Embodiment 14,
  • Exemplary Embodiment 16 The electronic device of Exemplary Embodiment 14, wherein it is determined that the transmission failure occurs when the base station communicates with the base station based on communication quality of other terminal devices communicating with the base station through the intermediate device.
  • the beam between the intermediate devices is also the beam between the intermediate device and the terminal device.
  • Exemplary Embodiment 17 The electronic device according to Exemplary Embodiment 16, wherein the communication quality of the other terminal device is fed back by the other terminal device in a period when the channel is flat.
  • Exemplary Embodiment 18 The electronic device according to Exemplary Embodiment 16, wherein the communication quality of the other terminal device is measured based on a reference signal sent by the base station to the other terminal device.
  • the transmission failure is determined to occur on a beam between the base station and the intermediate device in response to the communication quality of other terminal devices communicating with the base station through the intermediate device being lower than a threshold.
  • Exemplary Embodiment 20 The electronic device of Exemplary Embodiment 14, wherein determining whether the transmission failure occurred on the beam between the base station and the intermediate device or whether the transmission failure occurred is based on feedback information received from the intermediate device. on the beam between the intermediate device and the terminal device.
  • Exemplary Embodiment 21 The electronic device according to Exemplary Embodiment 20,
  • Exemplary Embodiment 22 The electronic device of Exemplary Embodiment 1, wherein the spare beam between the intermediate device and the terminal device is an available in-beam communication between the intermediate device and the terminal device The best quality beam.
  • Exemplary Embodiment 23 The electronic device of Exemplary Embodiment 1, wherein the spare beam between the intermediate device and the terminal device is not an interfering beam for other terminal devices.
  • Exemplary Embodiment 24 The electronic device of exemplary embodiment 1, wherein the processing circuit is further configured to:
  • the terminal device In response to the number of failed retransmissions using the new link exceeding the threshold, the terminal device is instructed to perform cell reselection.
  • Exemplary Embodiment 25 The electronic device of Exemplary Embodiment 24, wherein the terminal device performs cell reselection by:
  • the quality of communication transmitted through the beam between the base station and the intermediate device and the beam between the intermediate device and the terminal device is less than a cell access threshold, and communicate through the second base station and the terminal device
  • the communication quality of the transmission between the beams is greater than or equal to the cell access threshold, and handover to the cell of the second base station;
  • no cell handover is performed.
  • Exemplary Embodiment 26 The electronic device of Exemplary Embodiment 24, wherein the terminal device performs cell reselection by:
  • the quality of communications transmitted through the beam between the base station and the intermediate device and the beam between the intermediate device and the terminal device and through the beam synchronization between the base station and the terminal device is less than the cell an access threshold, and the communication quality transmitted through the beam between the second base station and the terminal device is greater than or equal to the cell access threshold, and handover to the cell of the second base station;
  • An electronic device for a terminal device side comprising:
  • a processing circuit configured to:
  • the new link is established by the base station from available and interfering beams for the terminal device, and wherein the new link utilizes one of:
  • the beam between the base station and the second intermediate device and the beam between the second intermediate device and the terminal device is the beam between the base station and the second intermediate device and the terminal device.
  • Exemplary Embodiment 28 The electronic device of Exemplary Embodiment 27, wherein the intermediate device, the second intermediate device comprises a reflective antenna array.
  • Exemplary Embodiment 29 The electronic device of Exemplary Embodiment 27, wherein the processing circuit is further configured to:
  • Exemplary Embodiment 30 The electronic device of Exemplary Embodiment 29, wherein the beam quality measurement results include a list of available beams and a list of interfering beams for the terminal device.
  • Exemplary Embodiment 31 The electronic device of Exemplary Embodiment 30, wherein:
  • the list of available beams includes IDs of available beams
  • the base station determines, based on the ID of each available beam, whether the available beam is a beam between the base station and the terminal device or a beam between an intermediate device and the terminal device;
  • the base station determines the ID of the intermediate device and the ID of the beam of the intermediate device corresponding to the available beam based on the ID of the available beam.
  • Exemplary Embodiment 32 The electronic device of Exemplary Embodiment 30, wherein:
  • the interfering beam list includes IDs of interfering beams.
  • the base station determines the ID of the intermediate device and the ID of the beam of the intermediate device corresponding to the interference beam based on the ID of the interfering beam.
  • Exemplary Embodiment 33 The electronic device of Exemplary Embodiment 30, wherein the list of available beams includes an ID of an intermediate device and an ID of a beam of the intermediate device, and the list of interfering beams includes an ID of the intermediate device and the ID of the beam of the intermediate device.
  • Exemplary Embodiment 34 The electronic device of Exemplary Embodiment 30, wherein the list of available beams includes IDs of a plurality of available beams.
  • Exemplary Embodiment 35 The electronic device according to Exemplary Embodiment 34, wherein the processing circuit is further configured to receive signaling from the base station, the signaling including instructing the terminal device to report a plurality of available beams; information.
  • Exemplary Embodiment 36 The electronic device of Exemplary Embodiment 34, wherein the processing circuit is further configured to receive, from the base station, signaling sent at a predetermined time slot, the predetermined time slot corresponding to the terminal The device reports the mode of multiple available beams.
  • Exemplary Embodiment 37 The electronic device of Exemplary Embodiment 27, wherein the available beam for the terminal device is a beam with a communication quality higher than a first threshold, and the interference for the terminal device The beam is a beam with a communication quality higher than a second threshold, where the first threshold is greater than the second threshold.
  • Exemplary Embodiment 38 The electronic device of Exemplary Embodiment 27, wherein in response to a transmission failure occurring in the link between the base station and the terminal device, the link utilizes only the The beam between the base station and the terminal device, and the new link is established by using the beam between the base station and the intermediate device and the beam between the intermediate device and the terminal device.
  • Exemplary Embodiment 39 The electronic device of Exemplary Embodiment 27, wherein in response to a transmission failure on the link between the base station and the terminal device, the link utilizes the base station The beam between the base station and the second intermediate device and the beam between the intermediate device and the terminal device, and the beam between the base station and the second intermediate device and the beam between the second intermediate device and the terminal device are used. The beam establishes the new link.
  • Exemplary Embodiment 40 The electronic device of Exemplary Embodiment 27, wherein in response to a transmission failure on the link between the base station and the terminal device, the link utilizes the base station the beam between the base station and the intermediate device and the beam between the intermediate device and the terminal device, the base station determines whether the transmission failure occurred on the beam between the base station and the intermediate device or the intermediate device and the terminal device. on the beam between the above-mentioned terminal equipment.
  • Exemplary Embodiment 41 The electronic device according to Exemplary Embodiment 40,
  • Exemplary Embodiment 42 The electronic device of Exemplary Embodiment 40, wherein it is determined that the transmission failure occurs when the base station communicates with the base station based on communication quality of other terminal devices communicating with the base station through the intermediate device.
  • the beam between the intermediate devices is also the beam between the intermediate device and the terminal device.
  • Exemplary Embodiment 43 The electronic device according to Exemplary Embodiment 42, wherein the communication quality of the other terminal device is fed back by the other terminal device in a period when the channel is flat.
  • Exemplary Embodiment 44 The electronic device according to Exemplary Embodiment 42, wherein the communication quality of the other terminal device is measured based on a reference signal sent by the base station to the other terminal device.
  • Exemplary Embodiment 45 The electronic device of Exemplary Embodiment 42,
  • the base station determines that the transmission failure occurred between the intermediate device and the terminal device on the beam between;
  • the base station determines that the transmission failure occurs on a beam between the base station and the intermediate device in response to the communication quality of other terminal devices communicating with the base station through the intermediate device being lower than a threshold.
  • Exemplary Embodiment 46 The electronic device of Exemplary Embodiment 40, wherein determining whether the transmission failure occurred on the beam between the base station and the intermediate device or whether the transmission failure occurred is based on feedback information received from the intermediate device. on the beam between the intermediate device and the terminal device.
  • Exemplary Embodiment 47 The electronic device of Exemplary Embodiment 46,
  • the base station determines that the transmission failure occurred on a beam between the base station and the intermediate device;
  • the base station in response to the feedback information indicating that the signal quality received by the intermediate device is equal to or higher than the valid signal threshold or not receiving feedback information indicating that the signal quality received by the intermediate device is lower than the valid signal threshold, the base station It is determined that the transmission failure occurred on the beam between the intermediate device and the terminal device.
  • Exemplary Embodiment 48 The electronic device of Exemplary Embodiment 27, wherein the spare beam between the intermediate device and the terminal device is an available in-beam communication between the intermediate device and the terminal device The best quality beam.
  • Exemplary Embodiment 49 The electronic device of Exemplary Embodiment 27, wherein the spare beam between the intermediate device and the terminal device is not an interfering beam for other terminal devices.
  • Exemplary Embodiment 50 The electronic device of Exemplary Embodiment 27, wherein the processing circuit is further configured to:
  • cell reselection is performed.
  • Exemplary Embodiment 51 The electronic device of Exemplary Embodiment 50, wherein performing cell reselection comprises:
  • the quality of communication transmitted through the beam between the base station and the intermediate device and the beam between the intermediate device and the terminal device is less than a cell access threshold, and communicate through the second base station and the terminal device
  • the communication quality of the transmission between the beams is greater than or equal to the cell access threshold, and handover to the cell of the second base station;
  • no cell handover is performed.
  • Exemplary Embodiment 52 The electronic device of Exemplary Embodiment 50, wherein performing cell reselection comprises:
  • the quality of communications transmitted through the beam between the base station and the intermediate device and the beam between the intermediate device and the terminal device and through the beam synchronization between the base station and the terminal device is less than the cell an access threshold, and the communication quality transmitted through the beam between the second base station and the terminal device is greater than or equal to the cell access threshold, and handover to the cell of the second base station;
  • a method for a base station comprising:
  • a new link is established for retransmission based on the available beams and interfering beams for the terminal device, wherein the new link utilizes one of the following: one of:
  • the beam between the base station and the second intermediate device and the beam between the second intermediate device and the terminal device is the beam between the base station and the second intermediate device and the terminal device.
  • Exemplary Embodiment 54 The method of Exemplary Embodiment 53, wherein the intermediate device, the second intermediate device comprises a reflective antenna array.
  • Exemplary Embodiment 55 The method of Exemplary Embodiment 53, further comprising:
  • Beam quality measurements are received from the terminal device.
  • Exemplary Embodiment 56 The method of Exemplary Embodiment 55, wherein the beam quality measurements include a list of available beams and a list of interfering beams for the terminal device.
  • Exemplary Embodiment 57 The method of Exemplary Embodiment 56, wherein the list of available beams includes IDs of available beams, and the method further comprises:
  • each available beam is a beam between the base station and the terminal device or a beam between an intermediate device and the terminal device based on the ID of each available beam
  • the ID of the intermediate device and the ID of the beam of the intermediate device corresponding to the available beam are determined based on the ID of the available beam.
  • Exemplary Embodiment 58 The method of Exemplary Embodiment 56, wherein the list of interfering beams includes IDs of interfering beams, and the method further comprises:
  • the ID of the intermediary device and the ID of the beam of the intermediary device corresponding to the interfering beam are determined based on the ID of the interfering beam.
  • Exemplary Embodiment 59 The method of Exemplary Embodiment 56, wherein the list of available beams includes an ID of an intermediate device and an ID of a beam of the intermediate device, and the list of interfering beams includes an ID of the intermediate device and The ID of the beam of the intermediate device.
  • Exemplary embodiment 60 The method of exemplary embodiment 56, wherein the list of available beams includes IDs of a plurality of available beams.
  • Exemplary Embodiment 61 The method of Exemplary Embodiment 60, further comprising:
  • Exemplary Embodiment 62 The method of Exemplary Embodiment 60, further comprising:
  • Signaling is sent to the terminal device at a predetermined time slot, the predetermined time slot corresponding to a mode in which the terminal device reports a plurality of available beams.
  • Exemplary Embodiment 63 The method of Exemplary Embodiment 53, wherein the available beam for the terminal device is a beam with a communication quality higher than a first threshold, and the interfering beam for the terminal device is is a beam whose communication quality is higher than a second threshold, where the first threshold is greater than the second threshold.
  • Exemplary Embodiment 64 The method of Exemplary Embodiment 53, wherein in response to a transmission failure on the link between the base station and the terminal device, the link utilizes only the base station A beam between the base station and the terminal device, and the new link is established by using the beam between the base station and the intermediate device and the beam between the intermediate device and the terminal device.
  • Exemplary Embodiment 65 The method of Exemplary Embodiment 53, wherein in response to a transmission failure on the link between the base station and the terminal device, the link utilizes the base station to communicate with the terminal device.
  • the beam between the intermediate device and the beam between the intermediate device and the terminal device, using the beam between the base station and the second intermediate device and the beam between the second intermediate device and the terminal device The new link is established.
  • Exemplary Embodiment 66 The method of Exemplary Embodiment 53, further comprising:
  • the link In response to a transmission failure occurring in the link between the base station and the terminal device, the link utilizes beams between the base station and the intermediate device and between the intermediate device and the terminal device and determine whether the transmission failure occurs on the beam between the base station and the intermediate device or on the beam between the intermediate device and the terminal device.
  • Exemplary Embodiment 67 The method of Exemplary Embodiment 66,
  • Exemplary Embodiment 68 The method of Exemplary Embodiment 66, wherein the transmission failure is determined to occur between the base station and the intermediate device based on communication quality of other terminal devices communicating with the base station through the intermediate device.
  • the beam between the devices is also the beam between the intermediate device and the terminal device.
  • Exemplary Embodiment 69 The method according to Exemplary Embodiment 68, wherein the communication quality of the other terminal equipment is fed back by the other terminal equipment in a period when the channel is flat.
  • Exemplary Embodiment 70 The method of Exemplary Embodiment 68, wherein the communication quality of the other terminal device is measured based on a reference signal sent by the base station to the other terminal device.
  • Exemplary Embodiment 71 The method of Exemplary Embodiment 68,
  • the transmission failure is determined to occur on a beam between the base station and the intermediate device in response to the communication quality of other terminal devices communicating with the base station through the intermediate device being lower than a threshold.
  • Exemplary Embodiment 72 The method of Exemplary Embodiment 66, wherein determining whether the transmission failure occurred on a beam between the base station and the intermediate device or the intermediate device is based on feedback information received from the intermediate device on the beam between the intermediate device and the terminal device.
  • Exemplary Embodiment 73 The method of Exemplary Embodiment 72,
  • Exemplary Embodiment 74 The method of Exemplary Embodiment 53, wherein the spare beam between the intermediate device and the terminal device is a quality of communication in an available beam between the intermediate device and the terminal device The best beam.
  • Exemplary Embodiment 75 The method of Exemplary Embodiment 53, wherein the spare beam between the intermediate device and the terminal device is not an interfering beam for other terminal devices.
  • Exemplary Embodiment 76 The method of Exemplary Embodiment 53, further comprising:
  • the terminal device In response to the number of failed retransmissions using the new link exceeding the threshold, the terminal device is instructed to perform cell reselection.
  • Exemplary Embodiment 77 The method of Exemplary Embodiment 76, wherein the terminal device performs cell reselection by:
  • the quality of communication transmitted through the beam between the base station and the intermediate device and the beam between the intermediate device and the terminal device is less than a cell access threshold, and communicate through the second base station and the terminal device
  • the communication quality of the transmission between the beams is greater than or equal to the cell access threshold, and handover to the cell of the second base station;
  • no cell handover is performed.
  • Exemplary Embodiment 78 The method of Exemplary Embodiment 76, wherein the terminal device performs cell reselection by:
  • the quality of communications transmitted through the beam between the base station and the intermediate device and the beam between the intermediate device and the terminal device and through the beam synchronization between the base station and the terminal device is less than the cell an access threshold, and the communication quality transmitted through the beam between the second base station and the terminal device is greater than or equal to the cell access threshold, and handover to the cell of the second base station;
  • a method for a terminal device comprising:
  • the new link is established by the base station from available and interfering beams for the terminal device, and wherein the new link utilizes one of:
  • the beam between the base station and the second intermediate device and the beam between the second intermediate device and the terminal device is the beam between the base station and the second intermediate device and the terminal device.
  • Exemplary Embodiment 80 The method of Exemplary Embodiment 79, wherein the intermediate device, the second intermediate device comprises a reflective antenna array.
  • Exemplary Embodiment 81 The method of Exemplary Embodiment 79, further comprising:
  • Exemplary Embodiment 82 The method of Exemplary Embodiment 81, wherein the beam quality measurements include a list of available beams and a list of interfering beams for the terminal device.
  • Exemplary Embodiment 83 The method of exemplary embodiment 82, wherein:
  • the list of available beams includes IDs of available beams
  • the base station determines, based on the ID of each available beam, whether the available beam is a beam between the base station and the terminal device or a beam between an intermediate device and the terminal device;
  • the base station determines the ID of the intermediate device and the ID of the beam of the intermediate device corresponding to the available beam based on the ID of the available beam.
  • Exemplary Embodiment 84 The method of exemplary embodiment 82, wherein:
  • the interfering beam list includes IDs of interfering beams.
  • the base station determines the ID of the intermediate device and the ID of the beam of the intermediate device corresponding to the interference beam based on the ID of the interfering beam.
  • Exemplary Embodiment 85 The method of Exemplary Embodiment 82, wherein the list of available beams includes an ID of an intermediate device and an ID of a beam of the intermediate device, and the list of interfering beams includes an ID of the intermediate device and The ID of the beam of the intermediate device.
  • Exemplary Embodiment 86 The method of exemplary embodiment 82, wherein the list of available beams includes IDs of a plurality of available beams.
  • Exemplary Embodiment 87 the method of Exemplary Embodiment 86, further comprising:
  • Receive signaling from the base station including information instructing the terminal device to report a plurality of available beams.
  • Exemplary Embodiment 88 the method of Exemplary Embodiment 86, further comprising:
  • Signaling sent at a predetermined time slot is received from the base station, the predetermined time slot corresponding to a mode in which the terminal device reports a plurality of available beams.
  • Exemplary Embodiment 89 The method of Exemplary Embodiment 79, wherein the available beam for the terminal device is a beam with a communication quality higher than a first threshold, and the interfering beam for the terminal device is is a beam whose communication quality is higher than a second threshold, where the first threshold is greater than the second threshold.
  • Exemplary Embodiment 90 The method of Exemplary Embodiment 79, wherein in response to a transmission failure on the link between the base station and the terminal device, the link utilizes only the base station A beam between the base station and the terminal device, and the new link is established by using the beam between the base station and the intermediate device and the beam between the intermediate device and the terminal device.
  • Exemplary Embodiment 91 The method of Exemplary Embodiment 79, wherein in response to a transmission failure on the link between the base station and the terminal device, the link utilizes the base station to communicate with the terminal device.
  • the beam between the intermediate device and the beam between the intermediate device and the terminal device, using the beam between the base station and the second intermediate device and the beam between the second intermediate device and the terminal device The new link is established.
  • Exemplary Embodiment 92 The method of Exemplary Embodiment 79, wherein in response to a transmission failure on the link between the base station and the terminal device, the link utilizes the base station to communicate with the terminal device.
  • Exemplary Embodiment 93 The method of Exemplary Embodiment 92,
  • Exemplary Embodiment 94 The method of Exemplary Embodiment 92, wherein the transmission failure is determined to occur between the base station and the intermediate device based on communication quality of other terminal devices communicating with the base station through the intermediate device.
  • the beam between the devices is also the beam between the intermediate device and the terminal device.
  • Exemplary Embodiment 95 The method according to Exemplary Embodiment 94, wherein the communication quality of the other terminal equipment is fed back by the other terminal equipment in a period when the channel is flat.
  • Exemplary Embodiment 96 The method of Exemplary Embodiment 94, wherein the communication quality of the other terminal device is measured based on a reference signal sent by the base station to the other terminal device.
  • Exemplary Embodiment 97 The method of Exemplary Embodiment 94,
  • the base station determines that the transmission failure occurred between the intermediate device and the terminal device on the beam between;
  • the base station determines that the transmission failure occurs on a beam between the base station and the intermediate device in response to the communication quality of other terminal devices communicating with the base station through the intermediate device being lower than a threshold.
  • Exemplary Embodiment 98 The method of Exemplary Embodiment 92, wherein determining whether the transmission failure occurred on a beam between the base station and the intermediate device or the intermediate device is based on feedback information received from the intermediate device on the beam between the intermediate device and the terminal device.
  • Exemplary Embodiment 99 The method of Exemplary Embodiment 98,
  • the base station determines that the transmission failure occurred on a beam between the base station and the intermediate device;
  • the base station in response to the feedback information indicating that the signal quality received by the intermediate device is equal to or higher than the valid signal threshold or not receiving feedback information indicating that the signal quality received by the intermediate device is lower than the valid signal threshold, the base station It is determined that the transmission failure occurred on the beam between the intermediate device and the terminal device.
  • Exemplary Embodiment 100 The method of Exemplary Embodiment 79, wherein the spare beam between the intermediate device and the terminal device is a quality of communication in an available beam between the intermediate device and the terminal device The best beam.
  • Exemplary Embodiment 101 The method of Exemplary Embodiment 79, wherein the spare beam between the intermediate device and the terminal device is not an interfering beam for other terminal devices.
  • Exemplary Embodiment 102 the method of Exemplary Embodiment 79, further comprising:
  • cell reselection is performed.
  • Exemplary embodiment 103 The method of exemplary embodiment 102, wherein performing cell reselection comprises:
  • the quality of communication transmitted through the beam between the base station and the intermediate device and the beam between the intermediate device and the terminal device is less than a cell access threshold, and communicate through the second base station and the terminal device
  • the communication quality of the transmission between the beams is greater than or equal to the cell access threshold, and handover to the cell of the second base station;
  • no cell handover is performed.
  • Exemplary embodiment 104 The method of exemplary embodiment 102, wherein performing cell reselection comprises:
  • the quality of communications transmitted through the beam between the base station and the intermediate device and the beam between the intermediate device and the terminal device and through the beam synchronization between the base station and the terminal device is less than the cell an access threshold, and the communication quality transmitted through the beam between the second base station and the terminal device is greater than or equal to the cell access threshold, and handover to the cell of the second base station;
  • Exemplary Embodiment 105 A computer-readable storage medium storing one or more instructions that, when executed by one or more processing circuits of an electronic device, cause the electronic device to perform as shown in the example The method of any of Exemplary Embodiments 53-78, or the method of any of Exemplary Embodiments 79-104 is performed.
  • Exemplary Embodiment 106 A computer program product comprising a computer program that, when executed by a processor, implements the steps of the method of any of Exemplary Embodiments 53 to 78, or implements as an example The steps of the method of any one of sexual Embodiments 79-104.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信系统中的电子设备和方法。公开了用于基站侧的电子设备,该电子设备包括:处理电路,该处理电路被配置为:确定基站和终端设备之间的链路发生传输失败;响应于基站和终端设备之间的链路发生传输失败,根据针对终端设备的可用波束和干扰波束来建立新的链路以进行重传,其中新的链路利用以下各项中的一者:基站与终端设备之间的波束;基站与中间设备之间的波束以及中间设备与终端设备之间的备用波束;或者基站与第二中间设备之间的波束以及第二中间设备与终端设备之间的波束。

Description

无线通信系统中的电子设备和方法
本申请以中国申请号为202110126430.8,申请日为2021年1月29日的申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及一种无线通信系统中的电子设备和方法,并且具体而言,涉及用于在无线通信系统中的链路发生传输失败时恢复通信的电子设备和方法。
背景技术
随着通信技术的发展,对于通信中的可靠性以及延时的要求越来越高,超高可靠性低延时通信(URLLC)作为第五代通信系统中需要考虑的主要场景之一日益获得人们的关注。例如,在诸如自动驾驶、工业应用和控制、远程制造、远程培训、远程手术以及其他高度延迟敏感型业务之类的应用场景中,可以考虑应用URLLC服务以便满足其服务质量(QoS)要求。
为了实现符合URLLC要求的千兆比特级别的无线接入,毫米波和大规模输入输出技术正被广泛地研究。具有大自由度的大规模输入输出技术保证了较高的能效和谱效,同时在毫米波频段提供了更宽的可用带宽。另外,由于毫米波的波长较短,可以装备大量的天线阵列,以形成高方向性的波束,从而使大规模输入输出系统具有可实现性。
链路恢复和小区重选是现代通信系统中的常见问题,特别是在高移动性通信网和高频链路连接场景中,链路传输失败经常发生。在链路发生传输失败时,尽快建立新的链路以恢复通信对于通信系统中的业务(尤其是时延敏感型业务)而言是重要的。
发明内容
本公开提供了一种无线通信系统中的电子设备和方法,其能够改进无线通信系统中发生传输失败后的链路恢复和重建。
本公开的一方面涉及一种用于基站侧的电子设备,该电子设备包括:处理电路,该处理电路被配置为:确定基站和终端设备之间的链路发生传输失败;响应于基站和终端设备之间的链路发生传输失败,根据针对终端设备的可用波束和干扰波束来建立 新的链路以进行重传,其中新的链路利用以下各项中的一者:基站与终端设备之间的波束;基站与中间设备之间的波束以及中间设备与终端设备之间的备用波束;或者基站与第二中间设备之间的波束以及第二中间设备与终端设备之间的波束。
本公开的又一方面涉及一种用于终端设备侧的电子设备,该电子设备包括:处理电路,该处理电路被配置为:在基站和终端设备之间的链路发生传输失败后,与基站建立新的链路以进行重传,其中新的链路是由基站根据针对终端设备的可用波束和干扰波束来建立的,并且其中新的链路利用以下各项中的一者:基站与终端设备之间的波束;基站与中间设备之间的波束以及中间设备与终端设备之间的备用波束;或者基站与第二中间设备之间的波束以及第二中间设备与终端设备之间的波束。
本公开的另一方面涉及一种用于基站的方法,包括:确定基站和终端设备之间的链路发生传输失败;响应于基站和终端设备之间的链路发生传输失败,根据针对终端设备的可用波束和干扰波束来建立新的链路以进行重传,其中新的链路利用以下各项中的一者:基站与终端设备之间的波束;基站与中间设备之间的波束以及中间设备与终端设备之间的备用波束;或者基站与第二中间设备之间的波束以及第二中间设备与终端设备之间的波束。
本公开的再一方面涉及一种用于终端设备的方法,包括:在基站和终端设备之间的链路发生传输失败后,与基站建立新的链路以进行重传,其中新的链路是由基站根据针对终端设备的可用波束和干扰波束来建立的,并且其中新的链路利用以下各项中的一者:基站与终端设备之间的波束;基站与中间设备之间的波束以及中间设备与终端设备之间的备用波束;或者基站与第二中间设备之间的波束以及第二中间设备与终端设备之间的波束。
本公开的另一个方面涉及一种存储有一个或多个指令的计算机可读存储介质,该一个或多个指令在由电子设备的一个或多个处理电路执行时,使得该电子设备执行如前所述的方法。
本公开的另一个方面涉及一种计算机程序产品,包括计算机程序,该计算机程序在被处理器执行时实现如前所述的方法的步骤。
附图说明
下面结合具体的实施例,并参照附图,对本公开的上述和其它目的和优点做进一步的描述。在附图中,相同的或对应的技术特征或部件将采用相同或对应的附图标记 来表示。
图1示出了根据本公开的实施例的无线通信系统的示意性图。
图2示出了根据本公开的实施例的基站侧电子设备的示意性框图。
图3示出了根据本公开的实施例的用于基站侧电子设备的方法的流程图。
图4示出了根据本公开的实施例的终端侧电子设备的示意性框图。
图5示出了根据本公开的实施例的用于终端侧电子设备的方法的流程图。
图6示出了根据本公开的实施例的用于基站侧电子设备与终端侧电子设备之间的传输失败恢复的示意性信令图。
图7A示出了根据本公开的实施例的无线通信系统中通过中间设备辅助链路进行通信的场景的示意图。
图7B示出了根据本公开的实施例的示例性可用波束列表和干扰波束列表。
图8是示出了根据本公开的实施例的可用波束的ID与设备的ID和设备波束的ID之间的对应关系的列表。
图9示出了根据本公开的实施例的在链路发生传输失败时用于建立新的链路的方法的流程图。
图10A和图10B示出了根据本公开的实施例的通过基站确定传输失败发生的波束的场景的示意图。
图11A和图11B示出了根据本公开的实施例的通过中间设备确定传输失败发生的波束的场景的示意图。
图12示出了根据本公开的实施例的用于通过中间设备确定传输失败发生的波束的通信过程的示意性信令图。
图13示出了根据本公开的实施例的终端设备进行小区重选的场景的示意图。
图14是示意性地示出了根据本公开的实施例的中可采用的信息处理设备的个人计算机的示例结构的框图;
图15是示出可以应用本公开的技术的eNB的示意性配置的第一示例的框图;
图16是示出可以应用本公开的技术的eNB的示意性配置的第二示例的框图;
图17是示出可以应用本公开的技术的通讯设备的示意性配置的示例的框图,以及
图18是示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
虽然在本公开内容中所描述的实施例可能易于有各种修改和另选形式,但是其具 体实施例在附图中作为例子示出并且在本文中被详细描述。但是,应当理解,附图以及对其的详细描述不是要将实施例限定到所公开的特定形式,而是相反,目的是要涵盖属于权利要求的精神和范围内的所有修改、等同和另选方案。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实施例的所有特征。然而,应该了解,在对实施例进行实施的过程中必须做出很多特定于实施方式的设置,以便实现开发人员的具体目标,例如,符合与设备及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还应当注意,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与至少根据本公开的方案密切相关的处理步骤和/或设备结构,而省略了与本公开关系不大的其他细节。
一些中间设备的引入给通信网络带来了新的挑战和机遇。中间设备的示例包括但不限于:反射天线阵列、中继设备、路边单元(RSU)等。其中,反射天线阵列(或者称为大规模天线阵列、智能反射面等)是一项新兴的技术,其凭借较低的制造成本和能量消耗引起了广泛关注。反射天线阵列中包含了大量被动反射阵子,其中每一个阵子能够独立调节入射电磁波的相位和幅度,从而控制电磁波的传播环境。反射天线阵列的引入给通信系统带来了新链路,有利于使来自基站(例如,gNB)的信号绕过遮挡物到达终端设备,从而提高终端设备的服务质量和通信网络的覆盖能力,同时也提供了新的传输链路更新和恢复的途径。然而,在利用反射天线阵列辅助的链路进行通信的系统中也存在新的挑战。例如,链路传输失败的发生可能由于基站与反射天线阵列之间的波束导致,也可能由于反射天线阵列与终端设备之间的波束导致。此外,不同反射天线阵列的波束在服务不同的终端设备时可能利用相同的通信资源(例如,频率、时隙等),从而带来干扰。应当理解,虽然上述讨论以反射天线阵列为例,但是在利用其他中间设备辅助通信的场景中可能存在类似的问题。
在现有的波束失败检测中,当L1-RSRP多次低于一定门限值时,认为波束失败。终端设备通过同步信号和PBCH块(Synchronization Signal and PBCH block,简称SSB块)周期性地进行波束检测并仅维护一个备用波束,并且将该备用波束告知基站。 在发生波束失败时,如果备用波束可靠,则基站可以将其更新为新的传输波束。然而,在现有机制中,波束检测的周期长度一般为5ms~160ms,如果应用于URLLC通信由于其较长的检测周期可能会影响终端设备的通信质量。此外,现有通信系统中,基站与终端设备之间的通信利用基站与终端设备之间的直接链路,其中基站的不同波束占用不同的通信资源,不需要考虑波束之间的干扰问题。然而,在利用反射天线阵列进行辅助通信时,不同反射天线阵列的波束之间可能存在的干扰会导致通信质量锐减。此外,当信道条件较差以至于波束切换无法解决传输链路失败时,可能需要进行小区重选。而在URLLC通信中,频繁的小区切换可能会带来传输资源的损失、时延等问题。
因此,期望一种改进无线通信系统中发生传输失败后的链路恢复和小区重选的电子设备和方法。
以下将参照附图来描述本公开的无线通信系统的基本技术构思以及示例性实施例。
图1示出了根据本公开的实施例的无线通信系统100的示意性图。无线通信系统100可以包括基站(例如,gNB)110、终端设备(例如,移动电话、平板电脑等)120和中间设备130、140。应理解,虽然在图1中的中间设备130、140被描绘为反射天线阵列,但是中间设备130、140可以是能够反射(或中继)基站传输给终端设备的信号的任意其他设备。此外,虽然图1中仅示出了两个中间设备,但是应理解,无线通信系统100还可以包括其他任意合适数量的中间设备。
在图1中,基站110和终端设备120之间可以存在三条传输路径。在第一条传输路径中,基站110利用波束111将通信数据发送给中间设备130,然后中间设备130利用波束131将通信数据发送给终端设备120。在第二条传输路径中,基站110通过波束112将通信数据直接发送给终端设备120。在第三条传输路径中,基站110利用波束113将通信数据发送给中间设备140,然后中间设备140利用波束141将通信数据发送给终端设备120。其中第一条传输路径和第三条传输路径为中间设备辅助的传输路径,而第二条传输路径为直接传输路径。
应理解,例如通过调整反射阵子,中间设备130和140可以利用多个波束来传输通信数据,而不仅限于波束131或波束141。此外,虽然图1中示出的波束111-113、131、141为发射波束,但是可以理解还可以存在对应的接收波束,从而形成基站与终端设备、基站与中间设备或中间设备与终端设备之间的波束对。为了叙述简单,本文 中以发射波束为例进行描述,然而应理解本发明的方法同样适用于利用波束对的场景,并且适用于上下行链路。
如上所述,中间设备的引入给通信网络带来了新的挑战和机遇。例如,当基站110与终端设备120之间存在遮挡物时,如果仅利用直接传输路径,则无论基站110利用波束111、112还是113进行发射,终端设备120的接收信号质量都将较差。中间设备提供了新的传输路径,可能可以避开遮挡物而实现有效通信。例如,基站110可以利用基站110与中间设备130之间的波束111和中间设备130与终端设备120之间的波束131来建立新的链路,或者基站110可以利用基站110与中间设备140之间的波束113和中间设备140与终端设备120之间的波束141来建立新的链路。然而,利用中间设备辅助链路的传输也可能会失败,并且存在多种复杂情形,因为在基站与中间设备之间的波束和中间设备与终端设备之间的波束之一或两者上都有可能发生传输失败。因此,需要对传输失败的具体情形进行分析判断,并且确定快速有效的波束恢复方法,以尽可能减少传输失败带来的时延和性能损失。
下面将参照附图来描述根据本公开的实施例的改进无线通信系统中发生传输失败后的链路恢复和重建的电子设备和方法。
图2示出了根据本公开的实施例的基站侧电子设备200的示意性框图。基站侧电子设备200可以对应于图1中的基站110,其可以与无线通信系统中的中间设备或终端设备进行通信,或者基站侧电子设备200可以用于控制图1中的基站110的操作。如图2所示,基站侧电子设备200可以包括处理电路220。下面将结合图1的场景作为示例来描述处理电路220的功能。
根据本公开的实施例,处理电路220可以被配置为:确定基站110和终端设备120之间的链路发生传输失败;响应于基站110和终端设备120之间的链路发生传输失败,根据针对终端设备120的可用波束和干扰波束来建立新的链路以进行重传,其中新的链路利用以下各项中的一者:基站110与终端设备120之间的波束(例如,波束112);基站110与中间设备(例如,中间设备130)之间的波束(例如,波束111)以及中间设备与终端设备120之间的备用波束(例如,中间设备130的其他波束,图1未示出);或者基站110与第二中间设备(例如,中间设备140)之间的波束(例如,波束113)以及第二中间设备与终端设备120之间的波束(例如,波束141)。
在上述设备的结构示例中,处理电路220可以是通用处理器的形式,也可以是专用处理电路,例如ASIC。例如,处理电路220能够由电路(硬件)或中央处理设备 (诸如,中央处理单元(CPU))构造。此外,处理电路220上可以承载用于使电路(硬件)或中央处理设备工作的程序(软件)。该程序能够存储在存储器(诸如,布置在存储器中)或从外面连接的外部存储介质中,以及经由网络(诸如,互联网)下载。
根据本公开的实施例,处理电路220可以包括用于实现上述功能的各个单元,例如被配置为确定基站110和终端设备120之间的链路发生传输失败的传输失败确定单元222,以及被配置为响应于基站110和终端设备120之间的链路发生传输失败,根据针对终端设备120的可用波束和干扰波束来建立新的链路以进行重传的新链路建立单元224。
处理电路220可选地可以包括被配置为向终端设备120发送用于测量波束的通信质量的参考信号以及从终端设备120接收波束质量测量结果的波束通信质量测量单元226。波束通信质量测量单元226用虚线绘出,旨在说明该单元并不一定被包含在处理电路中,作为示例,该单元可以在基站侧电子设备200中而在处理电路220之外,甚至可以位于基站侧电子设备200之外。
处理电路220所包括的这些单元可以彼此通信地耦接(未示出)。需要注意的是,尽管图2中将各个单元示为分立的单元,但是这些单元中的一个或多个也可以合并为一个单元,或者拆分为多个单元。
应注意,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。此外,上述各个单元在附图中用虚线示出指示这些单元可以并不实际存在,而它们所实现的操作/功能可由处理电路本身来实现。
处理电路220可以被实现为包括基站侧电子设备中的一个或多个其它部件,或者可以被实现为基站侧电子设备。在实际实现时,处理电路220可以被实现为芯片(诸如包括单个晶片的集成电路模块)、硬件部件或完整的产品。
应理解,图2仅仅是基站侧电子设备的概略性结构配置,基站侧电子设备200还可以包括其他可能的部件(例如,存储器等)。可选地,基站侧电子设备200还可以包括未示出的其它部件,诸如存储器、射频链路、基带处理单元、网络接口、控制器等。处理电路可以与存储器和/或天线相关联。例如,处理电路可以直接或间接(例如, 中间可能连接有其它部件)连接到存储器,以进行数据的存取。还例如,处理电路可以直接或间接连接到天线,以经由通信单元发送无线电信号以及经由通信单元接收无线电信号。
存储器可以存储由处理电路220产生的各种信息(例如,链路配置信息、可用波束和干扰波束信息等等)、用于基站侧电子设备操作的程序和数据、将由基站侧电子设备发送的数据等。存储器还可以位于基站侧电子设备内但在处理电路之外,或者甚至位于基站侧电子设备之外。存储器可以是易失性存储器和/或非易失性存储器。例如,存储器可以包括但不限于随机存储存储器(RAM)、动态随机存储存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)、闪存存储器。
以下将具体描述图2中的基站侧电子设备200的处理电路220中的单元的功能。
根据本公开的实施例,中间设备、第二中间设备可以包括反射天线阵列。
根据本公开的实施例,波束通信质量测量单元226可以被配置为向终端设备120发送用于测量波束的通信质量的参考信号以及从终端设备120接收波束质量测量结果。在一个实施例中,波束通信质量测量单元226可以响应于从终端设备120接收到波束测量请求信号而向终端设备120发送用于测量波束的通信质量的参考信号。例如,终端设备120可以在通信质量较差时触发向基站110发送波束测量请求信号,或者定期向基站110发送波束测量请求信号。在另一个实施例中,波束通信质量测量单元226可以自发地向终端设备120发送用于测量波束的通信质量的参考信号,例如,波束通信质量测量单元226可以定期发送(例如,每隔固定时间段发送)参考信号。
根据本发明的实施例,从终端设备120接收的波束质量测量结果可以包括针对终端设备120的可用波束列表和干扰波束列表。根据一个实施例,针对终端设备120的可用波束可以为通信质量(例如,参考信号接收功率(RSRP))高于第一阈值的波束,针对终端设备120的干扰波束可以为通信质量高于第二阈值的波束,其中第一阈值大于第二阈值。下文将结合图7A和图7B进一步描述可用波束和干扰波束的概念。
终端设备120可能通过基站110与终端设备120之间的波束(例如,波束112)或者中间设备与终端设备120之间的波束(例如,波束131、141)接收到参考信号。在中间设备不透明的系统中,终端设备120知道中间设备的存在,因此,终端设备120可以确定可用波束和干扰波束是基站110的波束还是中间设备的波束以及相应的波束ID。根据一个实施例,可用波束列表可以包括中间设备的ID以及中间设备的波束的ID,并且干扰波束列表可以包括中间设备的ID以及中间设备的波束的ID。
而在中间设备透明的系统中,终端设备120不知道中间设备的存在,它只知道基站110命名的波束ID,而无法判断波束具体是来自基站110还是某个中间设备。在这种情况下,基站110可以根据从终端设备120接收的波束ID确定该波束的来源和具体信息。根据本发明的实施例,可用波束列表可以包括可用波束的ID,并且波束通信质量测量单元226还可以被配置为:基于每个可用波束的ID确定该可用波束为基站110与终端设备120之间的波束还是中间设备与终端设备120之间的波束;以及响应于确定可用波束为中间设备与终端设备120之间的波束,基于可用波束的ID确定中间设备的ID和与可用波束对应的中间设备的波束的ID。根据本发明的实施例,干扰波束列表可以包括干扰波束的ID,并且波束通信质量测量单元226还可以被配置为:基于干扰波束的ID确定中间设备的ID和与干扰波束对应的中间设备的波束的ID。应注意,如上所述,由于基站的不同波束占用不同的通信资源,干扰波束不包括基站的波束,而仅可能包括中间设备与终端设备120之间的波束。
如上所述,在现有通信机制中,终端设备仅维护一个备用波束,并且将该备用波束告知基站。如果一旦该备用波束被占用、存在干扰或者变得不可用,则可能需要重新进行波束测量,从而严重增加传输延迟,影响服务质量。因此,根据本发明的实施例,可用波束列表可以包括多个可用波束的ID。在中间设备透明的系统中,为了要求终端设备测量后上报多个可用波束,可以通过显式或隐式的触发机制来保证多波束上报。根据一个实施例,波束通信质量测量单元226可以被配置为向终端设备120发送信令,该信令包括指示终端设备上报多个可用波束的信息。例如,该信息可以为任意1比特的指令信息,它可以嵌入任何合适的现有下行信令(例如,DCI)中,也可以作为单独的信令被发送。这种机制可以被称为显式的多波束上报触发机制。终端设备120接收到该信令后,可以确定需要上报多个可用波束,并相应地进行测量和上报。根据一个实施例,波束通信质量测量单元226可以被配置为在预定时隙向终端设备120发送信令,该预定时隙对应于终端设备上报多个可用波束的模式。时隙与模式的对应关系可以是基站110和终端设备120(例如,在注册过程中)预先约定的。终端设备120通过接收到基站110在预定时隙发送的信令,就可以确定需要上报多个可用波束,而不用管该信令的内容如何。这种机制可以被称为隐式的多波束上报触发机制。在中间设备不透明的系统中,终端设备120通过中间设备来上报可用波束。由于中间设备一般具有多个波束并且波束之间的资源共享等情况较为复杂,因此一般默认要求终端设备120上报多个可用波束,无需额外的触发机制。
根据本发明的实施例,新链路建立单元224可以被配置为根据针对终端设备120的可用波束和干扰波束来建立新的链路以进行重传。根据一个实施例,响应于在基站110和终端设备120之间的链路发生传输失败时,该链路仅利用基站110与终端设备120之间的波束(例如,波束112),新链路建立单元224可以被配置为利用基站110与中间设备(例如,中间设备130或140)之间的波束(例如,波束111或113)以及中间设备与终端设备120之间的波束(例如,波束131或141)建立新的链路。也就是说,如果在发生传输失败时没有利用中间设备辅助链路进行传输,则可以利用中间设备辅助链路建立新的链路以进行重传。
如果在发生传输失败时,中间设备辅助链路参与了传输,则可以在确定传输失败发生的具体波束后再相应地制定重传策略。根据一个实施例,响应于在基站110和终端设备120之间的链路发生传输失败时,该链路利用基站110与中间设备之间的波束(例如,波束111或113)以及中间设备与终端设备120之间的波束(例如,波束131或141),新链路建立单元224可以被配置为确定传输失败发生在基站110与中间设备之间的波束上还是中间设备与终端设备120之间的波束上。
根据一个实施例,新链路建立单元224可以基于通过相同的中间设备与基站110进行通信的其他终端设备的通信质量来确定传输失败发生在基站110与中间设备之间的波束上还是中间设备与终端设备120之间的波束上。例如,这可以在中间设备为被动型(例如,被动型反射天线阵列,其仅具有反射电磁波的能力而不具备逻辑判断能力和主动发射信号的能力)时发生。当然在中间设备为主动型时,也可以由新链路建立单元224确定传输失败发生在基站110与中间设备之间的波束上还是中间设备与终端设备120之间的波束上。由于高频段通信业务的信道条件变化较快,因此其他终端设备的通信质量反馈需要是当前时刻有效的(例如,从反馈通信质量的时刻到当前时刻的时间间隔内信道是平坦的)。根据一个实施例,其他终端设备的通信质量可以是其他终端设备在信道平坦的时段内反馈的(例如,ACK/NACK或信道估计结果等)。如果基站110没有当前时刻有效的来自其他终端设备的通信质量反馈信息,则基站110可以向其它终端设备发送参考信号以测量其它终端设备的当前通信质量。根据一个实施例,其他终端设备的通信质量是基于基站110向其他终端设备发送的参考信号而测量得到的。根据一个实施例,响应于通过中间设备与基站110进行通信的其他终端设备中的至少一些终端设备的通信质量高于阈值,新链路建立单元224可以确定传输失败发生在中间设备与终端设备120之间的波束上。根据一个实施例,响应于通过中间 设备与基站110进行通信的其他终端设备的通信质量都低于阈值,新链路建立单元224可以确定传输失败发生在基站110与中间设备之间的波束上。
在中间设备为主动型的情况下,例如中间设备为主动型反射天线阵列,中间设备可以不仅具有反射电磁波的能力,还具有逻辑判断能力(例如,判断信号功率是否低于门限值的能力)和主动发射信号的能力。此时,中间设备可以将从基站110接收到的信号质量(例如,接收信号功率)与有效信号阈值进行比较。如果信号质量低于有效信号阈值,则中间设备可以向基站110发送指示中间设备接收到的信号质量低于有效信号阈值的反馈信息;如果信号质量大于或等于有效信号阈值,则中间设备可以向基站110发送指示中间设备接收到的信号质量大于或等于有效信号阈值的反馈信息或者不向基站110发送任何反馈信息。从而,基站110可以基于来自中间设备的反馈信息来确定传输失败发生的波束。根据一个实施例,新链路建立单元224可以基于从中间设备接收的反馈信息来确定传输失败发生在基站110与中间设备之间的波束上还是中间设备与终端设备120之间的波束上。根据一个实施例,响应于接收到的反馈信息指示中间设备接收到的信号质量低于有效信号阈值,新链路建立单元224可以确定传输失败发生在基站110与中间设备之间的波束上。根据一个实施例,响应于反馈信息指示中间设备接收到的信号质量等于或高于有效信号阈值或者没有接收到指示中间设备接收到的信号质量低于有效信号阈值的反馈信息,新链路建立单元224可以确定传输失败发生在中间设备与终端设备120之间的波束上。
根据本发明的一个实施例,响应于确定传输失败发生在基站110与中间设备(例如,中间设备130)之间的波束上,新链路建立单元224可以利用基站110与第二中间设备(例如,中间设备140)之间的波束(例如,波束113)以及第二中间设备与终端设备120之间的波束(例如,波束141)建立新的链路。即,可以利用另一中间设备来建立新的链路以进行通信。根据本发明的一个实施例,响应于确定传输失败发生在中间设备(例如,中间设备130)与终端设备120之间的波束(例如,波束131)上,新链路建立单元224可以利用基站110与中间设备之间的波束(例如,波束111)以及中间设备与终端设备120之间的备用波束(例如,中间设备130的除了波束131之外的其他波束)建立新的链路。即,可以通过切换同一中间设备的不同波束来建立新的链路。这可以通过基站110指示中间设备进行波束切换而实现。
当然,在发生传输失败时中间设备辅助链路参与了传输的情况下,也可以不考虑传输失败发生的具体波束,直接利用另一中间设备来建立新的链路。根据本发明的一 个实施例,响应于在基站110和终端设备120之间的链路发生传输失败时,该链路利用基站110与中间设备(例如,中间设备130)之间的波束以及中间设备与终端设备120之间的波束,新链路建立单元224可以利用基站110与第二中间设备(例如,中间设备140)之间的波束(例如,波束113)以及第二中间设备与终端设备120之间的波束(例如,波束141)建立新的链路。这样的好处是减少了基站或中间设备的判断任务,但是可能会造成可用波束的数目减少以及额外的信令开销。
根据本发明的实施例,在波束恢复时利用的中间设备与终端设备120之间的备用波束可以是中间设备与终端设备120之间的可用波束中通信质量最好的波束。例如,终端设备120可以基于接收信号质量(例如,RSRP)对可用波束进行排序,或者基站110可以基于终端设备120反馈的接收信号质量对可用波束进行排序。在定期测量或响应于触发事件的测量结束后,可用波束的列表和排序可以被更新。根据本发明的实施例,在波束恢复时利用的中间设备与终端设备120之间的备用波束不是针对其他终端设备的干扰波束,从而可以避免对其他终端设备的通信造成干扰。根据本发明的实施例,在波束恢复时利用的中间设备与终端设备120之间的备用波束可以是中间设备与终端设备120之间的可用波束中在排除了针对其他终端设备的干扰波束之后通信质量最好的波束。
根据本发明的实施例,如果利用新的链路进行重传成功,终端设备成功接收到通信数据,则可以利用该新的链路继续进行通信。而如果利用新的链路进行重传失败,则可以判断小区重选的标准(例如,重传失败的次数是否超过阈值)是否满足。根据一个实施例,响应于利用新的链路进行的重传失败的次数没有超过阈值(例如,5次、10次等),波束通信质量测量单元226可以向终端设备120发送用于测量波束的通信质量的参考信号,以重新进行波束测量和波束切换。根据一个实施例,响应于利用新的链路进行的重传失败的次数超过阈值,基站110可以指示终端设备120进行小区重选。
在包括中间设备的通信系统中,小区的信号传输路径不仅包括基站到终端设备的直达径,还包括中间设备辅助传输路径。在一些情况下,例如当终端设备的接收机不具备同步接收来自两个路径的传输信号的能力时,在进行小区重选时可以分开测量直达径和中间设备辅助传输路径的通信质量。根据本发明的一个实施例,终端设备120可以通过以下操作来进行小区重选:首先,终端设备120可以测量通过基站110与终端设备120之间的波束进行传输的通信质量。终端设备120还可以测量通过第二基站 与终端设备120之间的波束进行传输的通信质量。响应于确定通过基站110与终端设备120之间的波束进行传输的通信质量大于或等于小区接入阈值,终端设备120可以不进行小区切换。响应于确定通过基站110与终端设备120之间的波束进行传输的通信质量小于小区接入阈值,终端设备120可以进一步测量通过基站110与中间设备之间的波束以及中间设备与终端设备120之间的波束进行传输的通信质量。根据一个实施例,响应于确定通过基站110与中间设备之间的波束以及中间设备与终端设备120之间的波束进行传输的通信质量大于或等于小区接入阈值,终端设备120可以不进行小区切换。根据一个实施例,响应于确定通过基站110与中间设备之间的波束以及中间设备与终端设备120之间的波束进行传输的通信质量小于小区接入阈值,并且通过第二基站与终端设备120之间的波束(例如,第二基站与终端设备120之间的直达径或者中间设备辅助传输路径)进行传输的通信质量大于或等于小区接入阈值,终端设备120可以切换至第二基站的小区。
在一些情况下,例如当终端设备的接收机具备同步接收来自两个路径的传输信号的能力时,在进行小区重选时可以同步测量直达径和中间设备辅助传输路径的通信质量。此时,终端设备接收到的信号功率将是直达径和中间设备辅助传输路径的信号功率之和。根据本发明的一个实施例,终端设备120可以通过以下操作进行小区重选:首先,终端设备120可以测量通过基站110与中间设备之间的波束以及中间设备与终端设备120之间的波束和通过基站110与终端设备120之间的波束同步进行传输的通信质量。根据一个实施例,响应于确定通过基站110与中间设备之间的波束以及中间设备与终端设备120之间的波束和通过基站110与终端设备120之间的波束同步进行传输的通信质量小于小区接入阈值,并且通过第二基站与终端设备120之间的波束(例如,利用第二基站与终端设备120之间的直达径和中间设备辅助传输路径之一或同步利用二者)进行传输的通信质量大于或等于小区接入阈值,终端设备120可以切换至所述第二基站的小区。根据一个实施例,响应于确定通过基站110与中间设备之间的波束以及中间设备与终端设备120之间的波束和通过基站110与终端设备120之间的波束同步进行传输的通信质量大于或等于小区接入阈值,终端设备120可以不进行小区切换。从而,在小区重选的过程中,本发明的机制可以尽量优先选择中间设备辅助路径或者利用直达径和中间设备辅助路径同步进行传输,尽可能地减少小区切换带来的信令损失和时延。
图3示出了根据本公开的实施例的用于基站侧电子设备的方法300的流程图。下 面将结合图1和图2对该通信方法300进行描述,其中基站侧电子设备可以例如为图1所示的基站110或图2所示的基站侧电子设备200。
在步骤S310处,确定基站110和终端设备120之间的链路发生传输失败。该步骤S310可以例如由图2中的传输失败确定单元222执行。根据一个实施例,可以响应于从终端设备120接收到NACK信号,或者在一段预定时间内未从终端设备120接收到ACK信号等,确定基站110和终端设备120之间的链路发生传输失败。
然后,流程进行到步骤S320。步骤S320和S330用虚线框描绘,以表示它们是可选的。此外,步骤S320和S330可以定期发生,而不一定响应于步骤S310发生。在步骤S320处,向终端设备120发送用于测量波束的通信质量的参考信号。该步骤S320可以例如由图2中的波束通信质量测量单元226执行。上文已经描述了发送参考信号的各种实现,在此不再赘述。
然后,流程进行到步骤S330。在步骤S330处,可以从终端设备120接收波束质量测量结果。该步骤S330可以例如由图2中的波束通信质量测量单元226执行。上文已经描述了波束质量测量结果的各种示例,在此不再赘述。
然后,流程进行到步骤S340。在步骤S340处,可以根据针对终端设备120的可用波束和干扰波束来建立新的链路以进行重传。该步骤S340可以例如由图2中的新链路建立单元224执行。上文已经描述了可用波束和干扰波束的各种示例以及建立新的链路的各种实现,在此不再赘述。
然后,流程进行到步骤S350。在步骤S350处,可以确定基站110和终端设备120之间的链路重传是否失败。如果重传成功,则流程可以进行到步骤S360,基站110和终端设备120可以利用新的链路继续进行通信。如果重传失败,则流程可以进行到步骤S370,以进一步判断重传失败的次数是否超过阈值。如果重传失败的次数没有超过阈值,则流程可以返回到步骤S320,以对波束质量进行重新测量,并且重新建立新的链路。如果重传失败的次数超过阈值,则流程可以进行到步骤S380。在步骤S380处,可以指示终端设备120进行小区重选。上文已经描述了小区重选的各种实现,在此不再赘述。
图4示出了根据本公开的实施例的终端设备侧电子设备400的示意性框图。终端设备侧电子设备400可以对应于图1中的终端设备120,其可以与无线通信系统中的基站或中间设备进行通信,或者终端设备侧电子设备400可以用于控制图1中的终端设备120的操作。如图4所示,终端设备侧电子设备400可以包括处理电路420。下 面将结合图1的场景作为示例来描述处理电路420的功能。
根据本公开的实施例,处理电路420可以被配置为:在基站110和终端设备120之间的链路发生传输失败后,与基站110建立新的链路以进行重传。其中新的链路是由基站110根据针对终端设备120的可用波束和干扰波束来建立的,并且其中新的链路利用以下各项中的一者:基站110与终端设备120之间的波束(例如,波束112);基站110与中间设备(例如,中间设备130)之间的波束(例如,波束111)以及中间设备与终端设备120之间的备用波束(例如,中间设备130的其他波束,图1未示出);或者基站110与第二中间设备(例如,中间设备140)之间的波束(例如,波束113)以及第二中间设备与终端设备120之间的波束(例如,波束141)。
在上述设备的结构示例中,处理电路420可以是通用处理器的形式,也可以是专用处理电路,例如ASIC。例如,处理电路420能够由电路(硬件)或中央处理设备(诸如,中央处理单元(CPU))构造。此外,处理电路420上可以承载用于使电路(硬件)或中央处理设备工作的程序(软件)。该程序能够存储在存储器(诸如,布置在存储器中)或从外面连接的外部存储介质中,以及经由网络(诸如,互联网)下载。
根据本公开的实施例,处理电路420可以包括用于实现上述功能的各个单元,例如被配置为与基站110建立新的链路以进行重传的新链路建立单元422。
处理电路420可选地可以包括被配置为从基站110接收用于测量波束的通信质量的参考信号以及向基站110发送波束质量测量结果的波束通信质量测量单元424。处理电路420可选地还可以包括被配置为进行小区重选的小区重选单元426。波束通信质量测量单元424和小区重选单元426用虚线绘出,旨在说明它们并不一定被包含在处理电路中,作为示例,这两个单元可以在终端设备侧电子设备400中而在处理电路420之外,甚至可以位于终端设备侧电子设备400之外。
处理电路420所包括的这些单元可以彼此通信地耦接(未示出)。需要注意的是,尽管图4中将各个单元示为分立的单元,但是这些单元中的一个或多个也可以合并为一个单元,或者拆分为多个单元。
应注意,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。此外,上述各个单元在附图中用 虚线示出指示这些单元可以并不实际存在,而它们所实现的操作/功能可由处理电路本身来实现。
处理电路420可以被实现为包括终端设备侧电子设备中的一个或多个其它部件,或者可以被实现为终端设备侧电子设备。在实际实现时,处理电路420可以被实现为芯片(诸如包括单个晶片的集成电路模块)、硬件部件或完整的产品。
应理解,图4仅仅是终端设备侧电子设备的概略性结构配置,终端设备侧电子设备400还可以包括其他可能的部件(例如,存储器等)。可选地,终端设备侧电子设备400还可以包括未示出的其它部件,诸如存储器、射频链路、基带处理单元、网络接口、控制器等。处理电路可以与存储器和/或天线相关联。例如,处理电路可以直接或间接(例如,中间可能连接有其它部件)连接到存储器,以进行数据的存取。还例如,处理电路可以直接或间接连接到天线,以经由通信单元发送无线电信号以及经由通信单元接收无线电信号。
存储器可以存储由处理电路420产生的各种信息(例如,波束质量测量结果、可用波束和干扰波束信息等等)、用于终端设备侧电子设备操作的程序和数据、将由终端设备侧电子设备发送的数据等。存储器还可以位于终端设备侧电子设备内但在处理电路之外,或者甚至位于终端设备侧电子设备之外。存储器可以是易失性存储器和/或非易失性存储器。例如,存储器可以包括但不限于随机存储存储器(RAM)、动态随机存储存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)、闪存存储器。
以下将具体描述图4中的终端设备侧电子设备400的处理电路420中的单元的功能。
根据本公开的实施例,中间设备、第二中间设备可以包括反射天线阵列。
根据本公开的实施例,波束通信质量测量单元424可以被配置为从基站110接收用于测量波束的通信质量的参考信号以及向基站110发送波束质量测量结果。波束质量测量结果的含义、类型等等可以是如上文所述,这里将不再进行详细描述。
应指出,尽管在附图中未示出,但是处理电路420可以包含用于从基站接收指示终端设备上报多个可用波束的信令的单元。该信令可以包括指示终端设备上报多个可用波束的信息,或者该信令可以在预定时隙被发送,该预定时隙对应于终端设备上报多个可用波束的模式。信令的具体定义等等可以是如上文所述,这里将不再进行详细描述。
根据本公开的实施例,新链路建立单元422可以被配置为与基站110建立新的链路以进行重传。例如,新链路建立单元422可以接收基站110发送的新链路配置,并相应地调整自己的接收机配置(例如,切换到特定的接收波束等)。新链路的具体建立方式等等可以是如上文所述,这里将不再进行详细描述。
根据本公开的实施例,小区重选单元426可以被配置为响应于利用新的链路进行的重传失败的次数超过阈值,进行小区重选。根据一个实施例,小区重选单元426可以响应于利用新的链路进行的重传失败的次数超过阈值,自发进行小区重选。根据一个实施例,小区重选单元426可以响应于接收到基站110的指示而进行小区重选。小区重选的具体方式和操作等等可以是如上文所述,这里将不再进行详细描述。
图5示出了根据本公开的实施例的用于终端设备侧电子设备的方法500的流程图。下面将结合图1和图2对该通信方法500进行描述,其中终端设备侧电子设备可以例如为图1所示的终端设备120或图4所示的终端设备侧电子设备400。
在步骤S510处,从基站110接收用于测量波束的通信质量的参考信号。在一个实施例中,终端设备120可以(例如,在通信质量较差时或者定期地)向基站110发送波束测量请求信号。基站110响应于从终端设备120接收到波束测量请求信号而向终端设备120发送参考信号。该步骤S510可以例如由图4中的波束通信质量测量单元424执行。
然后,流程进行到步骤S520。步骤S510和S520用虚线框描绘,以表示它们是可选的。此外,步骤S510和S520可以定期发生。在步骤S520处,向基站110发送波束质量测量结果。该步骤S520可以例如由图4中的波束通信质量测量单元424执行。上文已经描述了波束质量测量结果的各种示例,在此不再赘述。
然后,流程进行到步骤S530。在步骤S530处,可以与基站110建立新的链路以进行重传。该步骤S530可以例如由图4中的新链路建立单元422执行。上文已经描述了建立新的链路的各种实现,在此不再赘述。
然后,流程进行到步骤S540。在步骤S540处,可以确定基站110和终端设备120之间的链路重传是否失败。如果重传成功,则流程可以进行到步骤S550,在步骤S550处,基站110和终端设备120可以利用新的链路继续进行通信。如果重传失败,则流程可以进行到步骤S560,以进一步判断重传失败的次数是否超过阈值。如果重传失败的次数没有超过阈值,则流程可以返回到步骤S510,以对波束质量进行重新测量,并且重新建立新的链路。如果重传失败的次数超过阈值,则流程可以进行到步骤S570。 在步骤S570处,终端设备120可以进行小区重选。上文已经描述了小区重选的各种实现,在此不再赘述。
图6示出了根据本公开的实施例的用于基站侧电子设备与终端侧电子设备之间的传输失败恢复的示意性信令图600。这里的基站侧电子设备例如可以是图1中的基站110或图2中的基站侧电子设备200,并且这里的终端侧电子设备例如可以是图1中的终端设备120或图4中的终端侧电子设备400。
在步骤601,基站侧电子设备可以向终端设备侧电子设备发送用于测量多个波束的通信质量的参考信号。该步骤可以是响应于确定基站侧电子设备和终端设备侧电子设备之间的链路发生传输失败而发生的,也可以是定期发生的。
在步骤602,基站侧电子设备可以向终端设备侧电子设备发送指示上报多个可用波束的信令。应理解,步骤601和602不一定以所示的顺序发生,而是可以交换顺序或者同时发生。
在步骤603,终端设备侧电子设备可以向基站侧电子设备发送基于在步骤601中接收到的参考信号而得到的波束质量测量结果。如上所述,波束质量测量结果可以包括针对终端设备侧电子设备的可用波束列表和干扰波束列表。
在步骤604,基站侧电子设备可以向终端设备侧电子设备发送基于终端设备的可用波束和干扰波束确定的新的链路配置。终端设备侧电子设备可以相应地调整自己的接收机配置,以与基站侧电子设备建立新的链路。
在步骤605,基站侧电子设备可以利用新的链路向终端设备侧电子设备发送通信数据。
下面将结合图7A-图7B和图8进一步描述可用波束和干扰波束的定义。
图7A示出了根据本公开的实施例的无线通信系统700A中通过中间设备辅助链路进行通信的场景的示意图。
无线通信系统700A可以包括基站710、终端设备701-704以及中间设备720和730。中间设备720可以利用波束721-726与终端设备进行通信,中间设备730可以利用波束731-736与终端设备进行通信。虽然图7A中示出了每个中间设备的六个波束,但是应理解,中间设备可以具有任意合适数量的波束。例如,反射天线阵列可以通过对反射阵子进行划分而调整其波束的数目和宽度。中间设备720和730可以通过基站710与它们之间的波束来接收通信数据,并将其传输给终端设备。为了清楚起见,图7A中未示出基站710与中间设备之间的波束。
如上所述,由于不同的中间设备可以共享相同的资源(例如,频率、时隙等)来服务不同的终端设备,因此对于每个终端设备而言,都可能存在一个或多个干扰波束。针对终端设备的可用波束可以被定义为通信质量(例如,RSRP)高于第一阈值(例如,有效信号阈值)的波束,并且针对终端设备的干扰波束可以被定义为通信质量(例如,RSRP)高于第二阈值(例如,干扰信号阈值)的波束,其中第一阈值大于第二阈值。例如,如果终端设备703正在通过波束726从中间设备720接收通信数据,并且终端设备704正在通过波束731从中间设备730接收通信数据,则由于中间设备730与终端设备704之间的波束731和中间设备720与终端设备703之间的波束726共享相同的资源,所以波束731会对终端设备703造成干扰。波束731是终端设备703的干扰波束。同时,相对于从中间设备730接收数据而言,波束731也是终端设备703的可用波束。如果在发生传输失败时,切换到了其他终端设备的干扰波束,则会影响其他终端设备的通信。因此,终端设备可以根据基于参考信号的波束测量结果来确定可用波束和干扰波束。可替代地,终端设备也可以将波束测量结果发送给基站,并且由基站来确定可用波束和干扰波束。
如上所述,在中间设备不透明的系统中,终端设备知道中间设备的存在,并且可以确定可用波束和干扰波束是基站的波束还是中间设备的波束以及相应的中间设备ID和波束ID。
图7B示出了根据本公开的实施例的示例性可用波束列表和干扰波束列表700B。该可用波束列表和干扰波束列表700B例如可以是基于图7A所示的通信场景由终端设备得到的。
如图7B所示,对于终端设备701,来自中间设备730的可用波束为734和733,没有来自中间设备720的可用波束,并且来自中间设备730的干扰波束为734、733和735,没有来自中间设备720的干扰波束。
对于终端设备702,来自中间设备730的可用波束为736,没有来自中间设备720的可用波束,并且来自中间设备730的干扰波束为736和735,没有来自中间设备720的干扰波束。
对于终端设备703,来自中间设备730的可用波束为731、732,来自中间设备720的可用波束为726,并且来自中间设备730的干扰波束为731和732,来自中间设备720的干扰波束为726和725。
对于终端设备704,来自中间设备730的可用波束为731、732,没有来自中间设 备720的可用波束,并且来自中间设备730的干扰波束为731、732和733,来自中间设备720的干扰波束为725。
如上所述,在中间设备透明的系统中,终端设备不知道中间设备的存在,它只知道基站命名的波束ID,而无法判断波束具体是来自基站还是某个中间设备。在这种情况下,基站可以根据从终端设备接收的波束ID确定该波束的来源和具体信息。根据本发明的实施例,可用波束列表可以包括可用波束的ID,并且基站可以被配置为:基于每个可用波束的ID确定该可用波束为基站与终端设备之间的波束还是中间设备与终端设备之间的波束;以及响应于确定可用波束为中间设备与终端设备之间的波束,基于可用波束的ID确定中间设备的ID和与可用波束对应的中间设备的波束的ID。
图8是示出了根据本公开的实施例的可用波束的ID与设备的ID和设备波束的ID之间的对应关系的列表800。
基站可以根据该列表800基于从终端设备接收的可用波束ID确定该波束的来源和具体信息。
如图8所示,可用波束ID可以包括000、001、010、011、100和101。设备ID可以包括0、1、2,其中设备ID 0表示基站,设备ID 1表示中间设备A,设备ID 2表示中间设备B。由此,如果接收到的可用波束ID为000,可以确定该可用波束为基站的波束1;如果接收到的可用波束ID为011,可以确定该可用波束为中间设备A的波束2。
应理解,可以用类似的方式来实现干扰波束的ID与中间设备的ID和中间设备波束的ID之间的对应。此外,图8所示的ID编码方式以及对应关系仅仅是一种示例,本发明不限于此,基站可以通过任何其他适当的方式(例如,通过预先定义的逻辑运算等)来解析设备的ID以及设备波束的ID。
图9示出了根据本公开的实施例的在链路发生传输失败时用于建立新的链路的方法900的流程图。方法900例如可以由图1的基站110执行。下面将结合图1对图9的方法进行描述。
在步骤S901,基站110可以确定基站110和终端设备120之间的链路发生传输失败。
在步骤S902,基站110可以确定该链路是否利用基站110与中间设备之间的波束以及中间设备与终端设备120之间的波束。即,基站110可以确定在链路发生传输失 败时,中间设备是否参与传输。
如果该链路没有利用基站110与中间设备之间的波束以及中间设备与终端设备120之间的波束,则流程进行到步骤S903。在S903处,可以利用基站110与中间设备(例如,中间设备130或140)之间的波束以及中间设备与终端设备120之间的波束建立新的链路。
如果该链路利用了基站110与中间设备(例如,中间设备130)之间的波束以及中间设备与终端设备120之间的波束,则流程进行到步骤S904。在S904处,基站110可以确定传输失败是否发生在基站110与中间设备之间的波束上。可替代地,在S904处,基站110也可以不进行该确定,而直接利用基站110与第二中间设备(例如,中间设备140)之间的波束以及第二中间设备与终端设备120之间的波束建立新的链路。下面将结合图10A、图10B、图11A、图11B进一步描述如何实现步骤S904。
如果传输失败发生在基站110与中间设备(例如,中间设备130)之间的波束上,则流程进行到步骤S905。在S905处,利用基站110与第二中间设备(例如,中间设备140)之间的波束以及第二中间设备与终端设备120之间的波束建立新的链路。
如果传输失败没有发生在基站110与中间设备(例如,中间设备130)之间的波束(例如,波束131)上,而是发生在中间设备与终端设备120之间的波束,则流程进行到步骤S906。在S906处,利用基站110与中间设备(例如,中间设备130)之间的波束以及该中间设备与终端设备120之间的备用波束(例如,中间设备130的除了波束131之外的其他波束)建立新的链路。
图10A和图10B示出了根据本公开的实施例的通过基站确定传输失败发生的波束的场景1000A和1000B的示意图。
如上所述,可以由基站基于通过相同的中间设备与基站进行通信的其他终端设备的通信质量来确定传输失败发生在基站与中间设备之间的波束上还是中间设备与终端设备之间的波束上。例如,这可以在中间设备为被动型(例如,被动型反射天线阵列,其仅具有反射电磁波的能力而不具备逻辑判断能力和主动发射信号的能力)时发生。当然,在中间设备为主动型时,也可以由基站确定传输失败发生在基站与中间设备之间的波束上还是中间设备与终端设备之间的波束上。
如图10A所示,基站1010通过中间设备1030向四个终端设备1020、1022、1024、1026发送通信数据。为了清楚起见,图中省略了基站1010与中间设备1030之间的波束。此时,基站1010向终端设备1020的传输失败,例如,基站1010在一定时间内未 从终端设备1020接收到ACK信号。在信道平坦的一段时间内,基站1010从终端设备1022、1024、1026都接收到了ACK信号,或者从终端设备1022、1024、1026中的至少一部分终端设备接收到ACK信号。这意味着中间设备1030服务的至少一部分终端设备的通信质量是良好的,从而基站1010可以确定传输失败发生在中间设备1030与终端设备1020之间的波束(例如,波束1031)上。
如果如图10B所示,在信道平坦的一段时间内,基站1010没有从终端设备1022、1024、1026中的任意一个接收到ACK信号,则基站1010可以确定传输失败发生在基站1010与中间设备1030之间的波束(例如,波束1012)上。
如果基站1010没有当前时刻有效的来自终端设备1022、1024、1026的通信质量反馈信息,则基站1010可以向终端设备1022、1024、1026分别发送参考信号以测量这些终端设备的当前通信质量。后续对于波束失败的确定方式类似,在此不再赘述。
图11A和图11B示出了根据本公开的实施例的通过中间设备确定传输失败发生的波束的场景1100A和1100B的示意图。
如上所述,在中间设备为主动型的情况下,例如中间设备为主动型反射天线阵列,中间设备可以不仅具有反射电磁波的能力,还具有逻辑判断能力(例如,判断信号功率是否低于门限值的能力)和主动发射信号的能力。此时,中间设备可以将从基站接收到的信号质量(例如,接收信号功率)与有效信号阈值进行比较。如果信号质量低于有效信号阈值,则中间设备可以向基站发送指示中间设备接收到的信号质量低于有效信号阈值的反馈信息;如果信号质量大于或等于有效信号阈值,则中间设备可以向基站发送指示中间设备接收到的信号质量大于或等于有效信号阈值的反馈信息或者不向基站发送任何反馈信息。从而,基站可以基于来自中间设备的反馈信息来确定传输失败发生的波束。
如图11A所示,基站1110通过中间设备1130向终端设备1120发送通信数据。此时,基站1110向终端设备1120的传输失败,例如,基站1110在一定时间内未接收到来自终端设备1120的ACK信号,并且基站1110从中间设备1130接收到指示中间设备1130接收到的信号质量低于有效信号阈值的反馈信息1114。由此,基站1110可以确定传输失败发生在基站1110与中间设备1130之间的波束(例如,波束1112)上。
如果如图11B所示,基站1110从中间设备1130接收到指示中间设备1130接收到的信号质量大于或等于有效信号阈值的反馈信息或者没有从中间设备1130接收到任何反馈信息,则基站1110可以确定传输失败没有发生在基站1110与中间设备1130 之间的波束上,而是发生在中间设备1130与终端设备1120之间的波束(例如,波束1131)上。
图12示出了根据本公开的实施例的用于通过中间设备确定传输失败发生的波束的通信过程的示意性信令图1200。应理解,中间设备1230为上文所述的主动型中间设备。
在步骤1201,基站1210可以通过基站1210与中间设备1230之间的波束向中间设备1230发送通信数据。
在步骤1202,中间设备1230可以通过中间设备1230与终端设备1220之间的波束向终端设备1220发送从基站1210接收的通信数据。
在步骤1203,中间设备1230可以判断接收到的信号质量是否低于有效信号阈值。要注意的是,步骤1203和步骤1202不一定按所示出的顺序发生,而可以按照相反的顺序发生。
在步骤1204,中间设备1230可以向基站1210发送指示中间设备1230接收到的信号质量低于有效信号阈值的反馈信息或者指示中间设备1230接收到的信号质量大于或等于有效信号阈值的反馈信息。可替代地,在中间设备1230接收到的信号质量大于或等于有效信号阈值时,中间设备1230还可以不向基站1210发送反馈信息。
在步骤1205,基站1210可以基于在步骤1204从中间设备1230接收的反馈信息(或者基于没有接收到反馈信息)来判断传输失败发生的具体波束。上文已经描述了具体判断方式的示例,在此不再赘述。
图13示出了根据本公开的实施例的终端设备进行小区重选的场景1300的示意图。
如上所述,根据本发明的实施例,如果利用新的链路进行重传成功,终端设备成功接收到通信数据,则可以利用该新的链路继续进行通信。而如果利用新的链路进行重传失败,则可以判断小区重选的标准(例如,重传失败的次数是否超过阈值)是否满足。如果小区重选的标准满足,则基站可以指示终端设备进行小区重选,或者终端设备可以自发地进行小区重选。
如图13所示,该无线通信系统包括终端设备1320、两个基站1310、1312以及中间设备1330和1340。中间设备1330在基站1310的小区1351中,中间设备1340在基站1312的小区1352中。因此,这两个小区中的信号传输路径不仅包括基站到终端设备1320的直达径,还包括中间设备辅助传输路径。假设终端设备1320开始与基站1310进行通信,并且遭遇了传输失败。
如上所述,在一些情况下,例如当终端设备的接收机不具备同步接收来自两个路径的传输信号的能力时,在进行小区重选时可以分开测量直达径和中间设备辅助传输路径的通信质量。根据本发明的一个实施例,终端设备1320可以首先测量通过基站1310与终端设备1320之间的波束进行传输的通信质量。终端设备1320还可以测量通过基站1312与终端设备1320之间的波束进行传输的通信质量。响应于确定通过基站1310与终端设备1320之间的波束进行传输的通信质量大于或等于小区接入阈值,终端设备1320可以不进行小区切换。响应于确定通过基站1310与终端设备1320之间的波束进行传输的通信质量小于小区接入阈值,终端设备1320可以进一步测量通过基站1310与中间设备1330之间的波束以及中间设备1330与终端设备1320之间的波束进行传输的通信质量。根据一个实施例,响应于确定通过基站1310与中间设备1330之间的波束以及中间设备1330与终端设备1320之间的波束进行传输的通信质量大于或等于小区接入阈值,终端设备1320可以不进行小区切换。
根据一个实施例,响应于确定通过基站1310与中间设备1330之间的波束以及中间设备1330与终端设备1320之间的波束进行传输的通信质量小于小区接入阈值,并且通过基站1312与终端设备1320之间的波束进行传输的通信质量大于或等于小区接入阈值,终端设备1320可以切换至接入基站1312的小区。如果基站1312与终端设备1320之间的波束进行传输的通信质量也小于小区接入阈值,则终端设备1320可以测量通过基站1312与中间设备1340之间的波束以及中间设备1340与终端设备1320之间的波束进行传输的通信质量。如果通过基站1312与中间设备1340之间的波束以及中间设备1340与终端设备1320之间的波束进行传输的通信质量大于或等于小区接入阈值,则终端设备1320可以切换至接入基站1312的小区,利用中间设备1340辅助的链路进行通信。
根据本发明的实施例,可以尽量不切换小区。只有当直达径和中间设备辅助路径都不满足通信要求时,再切换小区,从而尽可能减少小区切换带来的信令损失和时延。
在一些情况下,例如当终端设备1320的接收机具备同步接收来自两个路径的传输信号的能力时,在进行小区重选时可以同步测量直达径和中间设备辅助传输路径的通信质量。此时,终端设备1320接收到的信号功率将是直达径和中间设备辅助传输路径的信号功率之和。根据本发明的一个实施例,首先,终端设备1320可以测量通过基站1310与中间设备1330之间的波束以及中间设备1330与终端设备1320之间的波束和通过基站1310与终端设备1320之间的波束同步进行传输的通信质量。根据一 个实施例,响应于确定通过基站1310与中间设备1330之间的波束以及中间设备1330与终端设备1320之间的波束和通过基站1310与终端设备1320之间的波束同步进行传输的通信质量小于小区接入阈值,终端设备1320可以测量通过基站1312与终端设备1320之间的波束(例如,利用基站1312与终端设备1320之间的直达径和中间设备辅助传输路径之一或同步利用二者)进行传输的通信质量。如果通过基站1312与终端设备1320之间的波束(例如,利用基站1312与终端设备1320之间的直达径和中间设备辅助传输路径之一或同步利用二者)进行传输的通信质量大于或等于小区接入阈值,终端设备1320可以切换至基站1312的小区。根据一个实施例,响应于确定通过基站1310与中间设备1330之间的波束以及中间设备1330与终端设备1320之间的波束和通过基站1310与终端设备1320之间的波束同步进行传输的通信质量大于或等于小区接入阈值,终端设备1320可以不进行小区切换。
以上描述了根据本公开的用于在无线通信系统中的链路发生传输失败时恢复通信的电子设备和方法的实施例。在本公开的实施例中,通过维护多个可用波束,在链路失败发生的情况下可以及时切换到备用波束,从而可以降低时延,保证用户体验。另外,通过检测在中间设备辅助通信的情况下的干扰波束,并在重新建立链路时避免使用干扰波束,可以保证中间设备辅助链路的通信质量。此外,通过优先选择中间设备辅助路径或者利用直达径和中间设备辅助路径同步进行传输,可以尽可能地减少小区切换带来的信令损失和时延。
应指出,上述描述仅仅是示例性的。本公开的实施例还可以任何其它适当的方式执行,仍可实现本公开的实施例所获得的有利效果。而且,本公开的实施例同样可应用于其它类似的应用实例,仍可实现本公开的实施例所获得的有利效果。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图14所示的通用个人计算机1400安装构成该软件的程序,该计算机在安装有各种程序 时,能够执行各种功能等等。图14是示出根据本公开的实施例的中可采用的信息处理设备的个人计算机的示例结构的框图。在一个例子中,该个人计算机可以对应于根据本公开的上述示例性发射设备或终端侧电子设备。
在图14中,中央处理单元(CPU)1401根据只读存储器(ROM)1402中存储的程序或从存储部分1408加载到随机存取存储器(RAM)1403的程序执行各种处理。在RAM 1403中,也根据需要存储当CPU 1401执行各种处理等时所需的数据。
CPU 1401、ROM 1402和RAM 1403经由总线1404彼此连接。输入/输出接口1405也连接到总线1404。
下述部件连接到输入/输出接口1405:输入部分1406,包括键盘、鼠标等;输出部分1407,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分1408,包括硬盘等;和通信部分1409,包括网络接口卡比如LAN卡、调制解调器等。通信部分1409经由网络比如因特网执行通信处理。
根据需要,驱动器1410也连接到输入/输出接口1405。可拆卸介质1411比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1410上,使得从中读出的计算机程序根据需要被安装到存储部分1408中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1411安装构成软件的程序。
本领域技术人员应当理解,这种存储介质不局限于图14所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1411。可拆卸介质1411的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1402、存储部分1408中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本公开的技术能够应用于各种产品。
例如,根据本公开的实施例的控制侧电子设备可以被实现为各种控制设备/基站或者被包含在各种控制设备/基站中。例如,根据本公开的实施例的发射设备和终端设备可以被实现为各种终端设备或者被包含在各种终端设备中。
例如,本公开中提到的控制设备/基站可以被实现为任何类型的基站,例如eNB,诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。还例如,可以实现为gNB,诸如宏gNB和小gNB。 小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的终端设备,在一些实施例中可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。终端设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,终端设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以下将参照附图描述根据本公开的应用示例。
[关于基站的示例]
应当理解,本公开中的基站一词具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的例子可以例如是但不限于以下:基站可以是GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者,可以是WCDMA系统中的无线电网络控制器(RNC)和Node B中的一者或两者,可以是LTE和LTE-Advanced系统中的eNB,或者可以是未来通信系统中对应的网络节点(例如可能在5G通信系统中出现的gNB,eLTE eNB等等)。本公开的基站中的部分功能也可以实现为在D2D、M2M以及V2V通信场景下对通信具有控制功能的实体,或者实现为在认知无线电通信场景下起频谱协调作用的实体。
第一示例
图15是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 1500包括多个天线1510以及基站设备1520。基站设备1520和每个天线1510可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1500(或基站设备1520)可以对应于上述控制侧电子设备。
天线1510中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1520发送和接收无线信号。 如图15所示,gNB 1500可以包括多个天线1510。例如,多个天线1510可以与gNB 1500使用的多个频段兼容。
基站设备1520包括控制器1521、存储器1522、网络接口1517以及无线通信接口1525。
控制器1521可以为例如CPU或DSP,并且操作基站设备1520的较高层的各种功能。例如,控制器1521根据由无线通信接口1525获取的无线通信系统中的终端侧的至少一个终端设备的定位信息和至少一个终端设备的特定位置配置信息来确定至少一个终端设备中的目标终端设备的位置信息。控制器1521可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接入控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1522包括RAM和ROM,并且存储由控制器1521执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1523为用于将基站设备1520连接至核心网1524的通信接口。控制器1521可以经由网络接口1517而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1500与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1523还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1523为无线通信接口,则与由无线通信接口1525使用的频段相比,网络接口1523可以使用较高频段用于无线通信。
无线通信接口1525支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-Advanced),并且经由天线1510来提供到位于gNB 1500的小区中的终端的无线连接。无线通信接口1525通常可以包括例如基带(BB)处理器1526和RF电路1527。BB处理器1526可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1521,BB处理器1526可以具有上述逻辑功能的一部分或全部。BB处理器1526可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1526的功能改变。该模块可以为插入到基站设备1520的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1527可以包括例如混频器、滤波器和放大器,并且经由天线1510来传送和接收无线信号。虽然图15示出一个RF电路1527与一根天线1510连接的示例,但是本公开并不限于该图示,而是一个RF电路1527 可以同时连接多根天线1510。
如图15所示,无线通信接口1525可以包括多个BB处理器1526。例如,多个BB处理器1526可以与gNB 1500使用的多个频段兼容。如图15所示,无线通信接口1525可以包括多个RF电路1527。例如,多个RF电路1527可以与多个天线元件兼容。虽然图15示出其中无线通信接口1525包括多个BB处理器1526和多个RF电路1527的示例,但是无线通信接口1525也可以包括单个BB处理器1526或单个RF电路1527。
第二示例
图16是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 1600包括多个天线1610、RRH 1620和基站设备1630。RRH 1620和每个天线1610可以经由RF线缆而彼此连接。基站设备1630和RRH 1620可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 1600(或基站设备1630)可以对应于上述控制侧电子设备。
天线1610中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于RRH 1620发送和接收无线信号。如图16所示,gNB 1600可以包括多个天线1610。例如,多个天线1610可以与gNB 1600使用的多个频段兼容。
基站设备1630包括控制器1631、存储器1632、网络接口1633、无线通信接口1634以及连接接口1636。控制器1631、存储器1632和网络接口1633与参照图15描述的控制器1521、存储器1522和网络接口1523相同。
无线通信接口1634支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且经由RRH 1620和天线1610来提供到位于与RRH 1620对应的扇区中的终端的无线通信。无线通信接口1634通常可以包括例如BB处理器1635。除了BB处理器1635经由连接接口1636连接到RRH 1620的RF电路1622之外,BB处理器1635与参照图15描述的BB处理器1526相同。如图16所示,无线通信接口1634可以包括多个BB处理器1635。例如,多个BB处理器1635可以与gNB 1600使用的多个频段兼容。虽然图16示出其中无线通信接口1634包括多个BB处理器1635的示例,但是无线通信接口1634也可以包括单个BB处理器1635。
连接接口1636为用于将基站设备1630(无线通信接口1634)连接至RRH 1620的接口。连接接口1636还可以为用于将基站设备1630(无线通信接口1634)连接至RRH 1620的上述高速线路中的通信的通信模块。
RRH 1620包括连接接口1623和无线通信接口1621。
连接接口1623为用于将RRH 1620(无线通信接口1621)连接至基站设备1630的接口。连接接口1623还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1621经由天线1610来传送和接收无线信号。无线通信接口1621通常可以包括例如RF电路1622。RF电路1622可以包括例如混频器、滤波器和放大器,并且经由天线1610来传送和接收无线信号。虽然图16示出一个RF电路1622与一根天线1610连接的示例,但是本公开并不限于该图示,而是一个RF电路1622可以同时连接多根天线1610。
如图16所示,无线通信接口1621可以包括多个RF电路1622。例如,多个RF电路1622可以支持多个天线元件。虽然图16示出其中无线通信接口1621包括多个RF电路1622的示例,但是无线通信接口1621也可以包括单个RF电路1622。
[关于用户设备/终端设备的示例]
第一示例
图17是示出可以应用本公开内容的技术的通讯设备1700(例如,智能电话,联络器等等)的示意性配置的示例的框图。通讯设备1700包括处理器1701、存储器1702、存储装置1703、外部连接接口1704、摄像装置1706、传感器1707、麦克风1708、输入装置1709、显示装置1710、扬声器1711、无线通信接口1712、一个或多个天线开关1715、一个或多个天线1716、总线1717、电池1718以及辅助控制器1719。在一种实现方式中,此处的通讯设备1700(或处理器1701)可以对应于上述发射设备或终端侧电子设备。
处理器1701可以为例如CPU或片上系统(SoC),并且控制通讯设备1700的应用层和另外层的功能。存储器1702包括RAM和ROM,并且存储数据和由处理器1701执行的程序。存储装置1703可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1704为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至通讯设备1700的接口。
摄像装置1706包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1707可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1708将输入到通讯设备1700的声音转换为音频信号。输入装置1709包括例如被配置为检测显示装置1710的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1710包括屏幕(诸如液晶显示器(LCD)和有机发光二 极管(OLED)显示器),并且显示通讯设备1700的输出图像。扬声器1711将从通讯设备1700输出的音频信号转换为声音。
无线通信接口1712支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且执行无线通信。无线通信接口1712通常可以包括例如BB处理器1713和RF电路1714。BB处理器1713可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1714可以包括例如混频器、滤波器和放大器,并且经由天线1716来传送和接收无线信号。无线通信接口1712可以为其上集成有BB处理器1713和RF电路1714的一个芯片模块。如图17所示,无线通信接口1712可以包括多个BB处理器1713和多个RF电路1714。虽然图17示出其中无线通信接口1712包括多个BB处理器1713和多个RF电路1714的示例,但是无线通信接口1712也可以包括单个BB处理器1713或单个RF电路1714。
此外,除了蜂窝通信方案之外,无线通信接口1712可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1712可以包括针对每种无线通信方案的BB处理器1713和RF电路1714。
天线开关1715中的每一个在包括在无线通信接口1712中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1716的连接目的地。
天线1716中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1712传送和接收无线信号。如图17所示,通讯设备1700可以包括多个天线1716。虽然图17示出其中通讯设备1700包括多个天线1716的示例,但是通讯设备1700也可以包括单个天线1716。
此外,通讯设备1700可以包括针对每种无线通信方案的天线1716。在此情况下,天线开关1715可以从通讯设备1700的配置中省略。
总线1717将处理器1701、存储器1702、存储装置1703、外部连接接口1704、摄像装置1706、传感器1707、麦克风1708、输入装置1709、显示装置1710、扬声器1711、无线通信接口1712以及辅助控制器1719彼此连接。电池1718经由馈线向图17所示的通讯设备1700的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1719例如在睡眠模式下操作通讯设备1700的最小必需功能。
第二示例
图18是示出可以应用本公开内容的技术的汽车导航设备1800的示意性配置的示 例的框图。汽车导航设备1800包括处理器1801、存储器1802、全球定位系统(GPS)模块1804、传感器1805、数据接口1806、内容播放器1807、存储介质接口1808、输入装置1809、显示装置1810、扬声器1811、无线通信接口1813、一个或多个天线开关1816、一个或多个天线1817以及电池1818。在一种实现方式中,此处的汽车导航设备1800(或处理器1801)可以对应于发射设备或终端侧电子设备。
处理器1801可以为例如CPU或SoC,并且控制汽车导航设备1800的导航功能和另外的功能。存储器1802包括RAM和ROM,并且存储数据和由处理器1801执行的程序。
GPS模块1804使用从GPS卫星接收的GPS信号来测量汽车导航设备1800的位置(诸如纬度、经度和高度)。传感器1805可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1806经由未示出的终端而连接到例如车载网络1821,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1807再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1808中。输入装置1809包括例如被配置为检测显示装置1810的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1810包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1811输出导航功能的声音或再现的内容。
无线通信接口1813支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且执行无线通信。无线通信接口1813通常可以包括例如BB处理器1814和RF电路1815。BB处理器1814可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1815可以包括例如混频器、滤波器和放大器,并且经由天线1817来传送和接收无线信号。无线通信接口1813还可以为其上集成有BB处理器1814和RF电路1815的一个芯片模块。如图18所示,无线通信接口1813可以包括多个BB处理器1814和多个RF电路1815。虽然图18示出其中无线通信接口1813包括多个BB处理器1814和多个RF电路1815的示例,但是无线通信接口1813也可以包括单个BB处理器1814或单个RF电路1815。
此外,除了蜂窝通信方案之外,无线通信接口1813可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1813可以包括BB处理器1814和RF电路1815。
天线开关1816中的每一个在包括在无线通信接口1813中的多个电路(诸如用于 不同的无线通信方案的电路)之间切换天线1817的连接目的地。
天线1817中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1813传送和接收无线信号。如图18所示,汽车导航设备1800可以包括多个天线1817。虽然图18示出其中汽车导航设备1800包括多个天线1817的示例,但是汽车导航设备1800也可以包括单个天线1817。
此外,汽车导航设备1800可以包括针对每种无线通信方案的天线1817。在此情况下,天线开关1816可以从汽车导航设备1800的配置中省略。
电池1818经由馈线向图18所示的汽车导航设备1800的各个块提供电力,馈线在图中被部分地示为虚线。电池1818累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备1800、车载网络1821以及车辆模块1822中的一个或多个块的车载系统(或车辆)1820。车辆模块1822生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1821。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,在相关设备的存储介质存储构成相应软件的相应程序,当所述程序被执行时,能够执行各种功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处 理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
本公开的示例性实施例实现
根据本公开的实施例,可以想到各种实现本公开的概念的示例性实现方式,包括但不限于:
示例性实施例1、一种用于基站侧的电子设备,所述电子设备包括:
处理电路,所述处理电路被配置为:
确定基站和终端设备之间的链路发生传输失败;
响应于基站和终端设备之间的链路发生传输失败,根据针对所述终端设备的可用波束和干扰波束来建立新的链路以进行重传,其中所述新的链路利用以下各项中的一者:
所述基站与所述终端设备之间的波束;
所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的备用波束;或者
所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束。
示例性实施例2、根据示例性实施例1所述的电子设备,其中所述中间设备、所述第二中间设备包括反射天线阵列。
示例性实施例3、根据示例性实施例1所述的电子设备,其中所述处理电路还被配置为:
向所述终端设备发送用于测量波束的通信质量的参考信号;以及
从所述终端设备接收波束质量测量结果。
示例性实施例4、根据示例性实施例3所述的电子设备,其中所述波束质量测量结果包括针对所述终端设备的可用波束列表和干扰波束列表。
示例性实施例5、根据示例性实施例4所述的电子设备,其中所述可用波束列表包括可用波束的ID,并且所述处理电路还被配置为:
基于每个可用波束的ID确定该可用波束为所述基站与所述终端设备之间的波束还是中间设备与所述终端设备之间的波束;以及
响应于确定可用波束为中间设备与所述终端设备之间的波束,基于可用波束的ID确定所述中间设备的ID和与所述可用波束对应的所述中间设备的波束的ID。
示例性实施例6、根据示例性实施例4所述的电子设备,其中所述干扰波束列表包括干扰波束的ID,并且所述处理电路还被配置为:
基于干扰波束的ID确定中间设备的ID和与所述干扰波束对应的所述中间设备的波束的ID。
示例性实施例7、根据示例性实施例4所述的电子设备,其中所述可用波束列表包括中间设备的ID以及所述中间设备的波束的ID,并且所述干扰波束列表包括中间设备的ID以及所述中间设备的波束的ID。
示例性实施例8、根据示例性实施例4所述的电子设备,其中所述可用波束列表包括多个可用波束的ID。
示例性实施例9、根据示例性实施例8所述的电子设备,所述处理电路还被配置为向所述终端设备发送信令,所述信令包括指示所述终端设备上报多个可用波束的信息。
示例性实施例10、根据示例性实施例8所述的电子设备,所述处理电路还被配置为在预定时隙向所述终端设备发送信令,所述预定时隙对应于所述终端设备上报多个可用波束的模式。
示例性实施例11、根据示例性实施例1所述的电子设备,其中针对所述终端设备的所述可用波束为通信质量高于第一阈值的波束,并且针对所述终端设备的所述干扰波束为通信质量高于第二阈值的波束,其中第一阈值大于第二阈值。
示例性实施例12、根据示例性实施例1所述的电子设备,其中响应于在所述基站和所述终端设备之间的所述链路发生传输失败时,所述链路仅利用所述基站与所述终端设备之间的波束,利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束建立所述新的链路。
示例性实施例13、根据示例性实施例1所述的电子设备,其中响应于在所述基站和所述终端设备之间的所述链路发生传输失败时,所述链路利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束,利用所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束建立所述新的链路。
示例性实施例14、根据示例性实施例1所述的电子设备,其中所述处理电路还被配置为:
响应于在所述基站和所述终端设备之间的所述链路发生传输失败时,所述链路利 用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束,确定所述传输失败发生在所述基站与中间设备之间的波束上还是所述中间设备与所述终端设备之间的波束上。
示例性实施例15、根据示例性实施例14所述的电子设备,
其中响应于确定所述传输失败发生在所述基站与中间设备之间的波束上,利用所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束建立所述新的链路;以及
响应于确定所述传输失败发生在所述中间设备与所述终端设备之间的波束上,利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的备用波束建立所述新的链路。
示例性实施例16、根据示例性实施例14所述的电子设备,其中基于通过所述中间设备与所述基站进行通信的其他终端设备的通信质量来确定所述传输失败发生在所述基站与中间设备之间的波束上还是所述中间设备与所述终端设备之间的波束上。
示例性实施例17、根据示例性实施例16所述的电子设备,其中所述其他终端设备的通信质量是所述其他终端设备在信道平坦的时段内反馈的。
示例性实施例18、根据示例性实施例16所述的电子设备,其中所述其他终端设备的通信质量是基于所述基站向所述其他终端设备发送的参考信号而测量得到的。
示例性实施例19、根据示例性实施例16所述的电子设备,
其中响应于通过所述中间设备与所述基站进行通信的其他终端设备中的至少一些终端设备的通信质量高于阈值,确定所述传输失败发生在所述中间设备与所述终端设备之间的波束上;以及
其中响应于通过所述中间设备与所述基站进行通信的其他终端设备的通信质量都低于阈值,确定所述传输失败发生在所述基站与中间设备之间的波束上。
示例性实施例20、根据示例性实施例14所述的电子设备,其中基于从所述中间设备接收的反馈信息来确定所述传输失败发生在所述基站与中间设备之间的波束上还是所述中间设备与所述终端设备之间的波束上。
示例性实施例21、根据示例性实施例20所述的电子设备,
其中响应于所述反馈信息指示所述中间设备接收到的信号质量低于有效信号阈值,确定所述传输失败发生在所述基站与中间设备之间的波束上;以及
其中响应于所述反馈信息指示所述中间设备接收到的信号质量等于或高于有效 信号阈值或者没有接收到指示所述中间设备接收到的信号质量低于有效信号阈值的反馈信息,确定所述传输失败发生在所述中间设备与所述终端设备之间的波束上。
示例性实施例22、根据示例性实施例1所述的电子设备,其中所述中间设备与所述终端设备之间的备用波束是所述中间设备与所述终端设备之间的可用波束中通信质量最好的波束。
示例性实施例23、根据示例性实施例1所述的电子设备,其中所述中间设备与所述终端设备之间的备用波束不是针对其他终端设备的干扰波束。
示例性实施例24、根据示例性实施例1所述的电子设备,其中所述处理电路还被配置为:
响应于利用新的链路进行的重传失败的次数超过阈值,指示所述终端设备进行小区重选。
示例性实施例25、根据示例性实施例24所述的电子设备,其中所述终端设备通过以下操作进行小区重选:
测量通过所述基站与所述终端设备之间的波束进行传输的通信质量;
响应于确定通过所述基站与所述终端设备之间的波束进行传输的通信质量小于小区接入阈值,测量通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束进行传输的通信质量,其中:
响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,不进行小区切换;
响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束进行传输的通信质量小于小区接入阈值,并且通过第二基站与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,切换至所述第二基站的小区;以及
响应于确定通过所述基站与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,不进行小区切换。
示例性实施例26、根据示例性实施例24所述的电子设备,其中所述终端设备通过以下操作进行小区重选:
测量通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束和通过所述基站与所述终端设备之间的波束同步进行传输的通信质量;
响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束和通过所述基站与所述终端设备之间的波束同步进行传输的通信质量小于小区接入阈值,并且通过第二基站与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,切换至所述第二基站的小区;以及
响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束和通过所述基站与所述终端设备之间的波束同步进行传输的通信质量大于或等于小区接入阈值,不进行小区切换。
示例性实施例27、一种用于终端设备侧的电子设备,所述电子设备包括:
处理电路,所述处理电路被配置为:
在基站和终端设备之间的链路发生传输失败后,与所述基站建立新的链路以进行重传,
其中所述新的链路是由所述基站根据针对所述终端设备的可用波束和干扰波束来建立的,并且其中所述新的链路利用以下各项中的一者:
所述基站与所述终端设备之间的波束;
所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的备用波束;或者
所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束。
示例性实施例28、根据示例性实施例27所述的电子设备,其中所述中间设备、所述第二中间设备包括反射天线阵列。
示例性实施例29、根据示例性实施例27所述的电子设备,其中所述处理电路还被配置为:
从所述基站接收用于测量波束的通信质量的参考信号;以及
向所述基站发送波束质量测量结果。
示例性实施例30、根据示例性实施例29所述的电子设备,其中所述波束质量测量结果包括针对所述终端设备的可用波束列表和干扰波束列表。
示例性实施例31、根据示例性实施例30所述的电子设备,其中:
所述可用波束列表包括可用波束的ID;
所述基站基于每个可用波束的ID确定该可用波束为所述基站与所述终端设备之间的波束还是中间设备与所述终端设备之间的波束;以及
响应于确定可用波束为中间设备与所述终端设备之间的波束,所述基站基于可用波束的ID确定所述中间设备的ID和与所述可用波束对应的所述中间设备的波束的ID。
示例性实施例32、根据示例性实施例30所述的电子设备,其中:
所述干扰波束列表包括干扰波束的ID;并且
所述基站基于干扰波束的ID确定中间设备的ID和与所述干扰波束对应的所述中间设备的波束的ID。
示例性实施例33、根据示例性实施例30所述的电子设备,其中所述可用波束列表包括中间设备的ID以及所述中间设备的波束的ID,并且所述干扰波束列表包括中间设备的ID以及所述中间设备的波束的ID。
示例性实施例34、根据示例性实施例30所述的电子设备,其中所述可用波束列表包括多个可用波束的ID。
示例性实施例35、根据示例性实施例34所述的电子设备,所述处理电路还被配置为从所述基站接收信令,所述信令包括指示所述终端设备上报多个可用波束的信息。
示例性实施例36、根据示例性实施例34所述的电子设备,所述处理电路还被配置为从所述基站接收在预定时隙发送的信令,所述预定时隙对应于所述终端设备上报多个可用波束的模式。
示例性实施例37、根据示例性实施例27所述的电子设备,其中针对所述终端设备的所述可用波束为通信质量高于第一阈值的波束,并且针对所述终端设备的所述干扰波束为通信质量高于第二阈值的波束,其中第一阈值大于第二阈值。
示例性实施例38、根据示例性实施例27所述的电子设备,其中响应于在所述基站和所述终端设备之间的所述链路发生传输失败时,所述链路仅利用所述基站与所述终端设备之间的波束,利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束建立所述新的链路。
示例性实施例39、根据示例性实施例27所述的电子设备,其中响应于在所述基站和所述终端设备之间的所述链路发生传输失败时,所述链路利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束,利用所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束建立所述新的链路。
示例性实施例40、根据示例性实施例27所述的电子设备,其中响应于在所述基站和所述终端设备之间的所述链路发生传输失败时,所述链路利用所述基站与中间设 备之间的波束以及所述中间设备与所述终端设备之间的波束,所述基站确定所述传输失败发生在所述基站与中间设备之间的波束上还是所述中间设备与所述终端设备之间的波束上。
示例性实施例41、根据示例性实施例40所述的电子设备,
其中响应于确定所述传输失败发生在所述基站与中间设备之间的波束上,利用所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束建立所述新的链路;以及
响应于确定所述传输失败发生在所述中间设备与所述终端设备之间的波束上,利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的备用波束建立所述新的链路。
示例性实施例42、根据示例性实施例40所述的电子设备,其中基于通过所述中间设备与所述基站进行通信的其他终端设备的通信质量来确定所述传输失败发生在所述基站与中间设备之间的波束上还是所述中间设备与所述终端设备之间的波束上。
示例性实施例43、根据示例性实施例42所述的电子设备,其中所述其他终端设备的通信质量是所述其他终端设备在信道平坦的时段内反馈的。
示例性实施例44、根据示例性实施例42所述的电子设备,其中所述其他终端设备的通信质量是基于所述基站向所述其他终端设备发送的参考信号而测量得到的。
示例性实施例45、根据示例性实施例42所述的电子设备,
其中响应于通过所述中间设备与所述基站进行通信的其他终端设备中的至少一些终端设备的通信质量高于阈值,所述基站确定所述传输失败发生在所述中间设备与所述终端设备之间的波束上;以及
其中响应于通过所述中间设备与所述基站进行通信的其他终端设备的通信质量都低于阈值,所述基站确定所述传输失败发生在所述基站与中间设备之间的波束上。
示例性实施例46、根据示例性实施例40所述的电子设备,其中基于从所述中间设备接收的反馈信息来确定所述传输失败发生在所述基站与中间设备之间的波束上还是所述中间设备与所述终端设备之间的波束上。
示例性实施例47、根据示例性实施例46所述的电子设备,
其中响应于所述反馈信息指示所述中间设备接收到的信号质量低于有效信号阈值,所述基站确定所述传输失败发生在所述基站与中间设备之间的波束上;以及
其中响应于所述反馈信息指示所述中间设备接收到的信号质量等于或高于有效 信号阈值或者没有接收到指示所述中间设备接收到的信号质量低于有效信号阈值的反馈信息,所述基站确定所述传输失败发生在所述中间设备与所述终端设备之间的波束上。
示例性实施例48、根据示例性实施例27所述的电子设备,其中所述中间设备与所述终端设备之间的备用波束是所述中间设备与所述终端设备之间的可用波束中通信质量最好的波束。
示例性实施例49、根据示例性实施例27所述的电子设备,其中所述中间设备与所述终端设备之间的备用波束不是针对其他终端设备的干扰波束。
示例性实施例50、根据示例性实施例27所述的电子设备,其中所述处理电路还被配置为:
响应于利用新的链路进行的重传失败的次数超过阈值,进行小区重选。
示例性实施例51、根据示例性实施例50所述的电子设备,其中进行小区重选包括:
测量通过所述基站与所述终端设备之间的波束进行传输的通信质量;
响应于确定通过所述基站与所述终端设备之间的波束进行传输的通信质量小于小区接入阈值,测量通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束进行传输的通信质量,其中:
响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,不进行小区切换;
响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束进行传输的通信质量小于小区接入阈值,并且通过第二基站与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,切换至所述第二基站的小区;以及
响应于确定通过所述基站与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,不进行小区切换。
示例性实施例52、根据示例性实施例50所述的电子设备,其中进行小区重选包括:
测量通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束和通过所述基站与所述终端设备之间的波束同步进行传输的通信质量;
响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束和通过所述基站与所述终端设备之间的波束同步进行传输的通信质量小于小区接入阈值,并且通过第二基站与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,切换至所述第二基站的小区;以及
响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束和通过所述基站与所述终端设备之间的波束同步进行传输的通信质量大于或等于小区接入阈值,不进行小区切换。
示例性实施例53、一种用于基站的方法,包括:
确定基站和终端设备之间的链路发生传输失败;
响应于基站和终端设备之间的链路发生传输失败,根据针对所述终端设备的可用波束和干扰波束来建立新的链路以进行重传,其中所述新的链路利用以下各项中的一者:
所述基站与所述终端设备之间的波束;
所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的备用波束;或者
所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束。
示例性实施例54、根据示例性实施例53所述的方法,其中所述中间设备、所述第二中间设备包括反射天线阵列。
示例性实施例55、根据示例性实施例53所述的方法,还包括:
向所述终端设备发送用于测量波束的通信质量的参考信号;以及
从所述终端设备接收波束质量测量结果。
示例性实施例56、根据示例性实施例55所述的方法,其中所述波束质量测量结果包括针对所述终端设备的可用波束列表和干扰波束列表。
示例性实施例57、根据示例性实施例56所述的方法,其中所述可用波束列表包括可用波束的ID,并且所述方法还包括:
基于每个可用波束的ID确定该可用波束为所述基站与所述终端设备之间的波束还是中间设备与所述终端设备之间的波束;以及
响应于确定可用波束为中间设备与所述终端设备之间的波束,基于可用波束的ID确定所述中间设备的ID和与所述可用波束对应的所述中间设备的波束的ID。
示例性实施例58、根据示例性实施例56所述的方法,其中所述干扰波束列表包括干扰波束的ID,并且所述方法还包括:
基于干扰波束的ID确定中间设备的ID和与所述干扰波束对应的所述中间设备的波束的ID。
示例性实施例59、根据示例性实施例56所述的方法,其中所述可用波束列表包括中间设备的ID以及所述中间设备的波束的ID,并且所述干扰波束列表包括中间设备的ID以及所述中间设备的波束的ID。
示例性实施例60、根据示例性实施例56所述的方法,其中所述可用波束列表包括多个可用波束的ID。
示例性实施例61、根据示例性实施例60所述的方法,还包括:
向所述终端设备发送信令,所述信令包括指示所述终端设备上报多个可用波束的信息。
示例性实施例62、根据示例性实施例60所述的方法,还包括:
在预定时隙向所述终端设备发送信令,所述预定时隙对应于所述终端设备上报多个可用波束的模式。
示例性实施例63、根据示例性实施例53所述的方法,其中针对所述终端设备的所述可用波束为通信质量高于第一阈值的波束,并且针对所述终端设备的所述干扰波束为通信质量高于第二阈值的波束,其中第一阈值大于第二阈值。
示例性实施例64、根据示例性实施例53所述的方法,其中响应于在所述基站和所述终端设备之间的所述链路发生传输失败时,所述链路仅利用所述基站与所述终端设备之间的波束,利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束建立所述新的链路。
示例性实施例65、根据示例性实施例53所述的方法,其中响应于在所述基站和所述终端设备之间的所述链路发生传输失败时,所述链路利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束,利用所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束建立所述新的链路。
示例性实施例66、根据示例性实施例53所述的方法,还包括:
响应于在所述基站和所述终端设备之间的所述链路发生传输失败时,所述链路利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束,确定所述传输失败发生在所述基站与中间设备之间的波束上还是所述中间设备与所述 终端设备之间的波束上。
示例性实施例67、根据示例性实施例66所述的方法,
其中响应于确定所述传输失败发生在所述基站与中间设备之间的波束上,利用所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束建立所述新的链路;以及
响应于确定所述传输失败发生在所述中间设备与所述终端设备之间的波束上,利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的备用波束建立所述新的链路。
示例性实施例68、根据示例性实施例66所述的方法,其中基于通过所述中间设备与所述基站进行通信的其他终端设备的通信质量来确定所述传输失败发生在所述基站与中间设备之间的波束上还是所述中间设备与所述终端设备之间的波束上。
示例性实施例69、根据示例性实施例68所述的方法,其中所述其他终端设备的通信质量是所述其他终端设备在信道平坦的时段内反馈的。
示例性实施例70、根据示例性实施例68所述的方法,其中所述其他终端设备的通信质量是基于所述基站向所述其他终端设备发送的参考信号而测量得到的。
示例性实施例71、根据示例性实施例68所述的方法,
其中响应于通过所述中间设备与所述基站进行通信的其他终端设备中的至少一些终端设备的通信质量高于阈值,确定所述传输失败发生在所述中间设备与所述终端设备之间的波束上;以及
其中响应于通过所述中间设备与所述基站进行通信的其他终端设备的通信质量都低于阈值,确定所述传输失败发生在所述基站与中间设备之间的波束上。
示例性实施例72、根据示例性实施例66所述的方法,其中基于从所述中间设备接收的反馈信息来确定所述传输失败发生在所述基站与中间设备之间的波束上还是所述中间设备与所述终端设备之间的波束上。
示例性实施例73、根据示例性实施例72所述的方法,
其中响应于所述反馈信息指示所述中间设备接收到的信号质量低于有效信号阈值,确定所述传输失败发生在所述基站与中间设备之间的波束上;以及
其中响应于所述反馈信息指示所述中间设备接收到的信号质量等于或高于有效信号阈值或者没有接收到指示所述中间设备接收到的信号质量低于有效信号阈值的反馈信息,确定所述传输失败发生在所述中间设备与所述终端设备之间的波束上。
示例性实施例74、根据示例性实施例53所述的方法,其中所述中间设备与所述终端设备之间的备用波束是所述中间设备与所述终端设备之间的可用波束中通信质量最好的波束。
示例性实施例75、根据示例性实施例53所述的方法,其中所述中间设备与所述终端设备之间的备用波束不是针对其他终端设备的干扰波束。
示例性实施例76、根据示例性实施例53所述的方法,还包括:
响应于利用新的链路进行的重传失败的次数超过阈值,指示所述终端设备进行小区重选。
示例性实施例77、根据示例性实施例76所述的方法,其中所述终端设备通过以下操作进行小区重选:
测量通过所述基站与所述终端设备之间的波束进行传输的通信质量;
响应于确定通过所述基站与所述终端设备之间的波束进行传输的通信质量小于小区接入阈值,测量通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束进行传输的通信质量,其中:
响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,不进行小区切换;
响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束进行传输的通信质量小于小区接入阈值,并且通过第二基站与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,切换至所述第二基站的小区;以及
响应于确定通过所述基站与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,不进行小区切换。
示例性实施例78、根据示例性实施例76所述的方法,其中所述终端设备通过以下操作进行小区重选:
测量通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束和通过所述基站与所述终端设备之间的波束同步进行传输的通信质量;
响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束和通过所述基站与所述终端设备之间的波束同步进行传输的通信质量小于小区接入阈值,并且通过第二基站与所述终端设备之间的波束进行传输的通信 质量大于或等于小区接入阈值,切换至所述第二基站的小区;以及
响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束和通过所述基站与所述终端设备之间的波束同步进行传输的通信质量大于或等于小区接入阈值,不进行小区切换。
示例性实施例79、一种用于终端设备的方法,包括:
在基站和终端设备之间的链路发生传输失败后,与所述基站建立新的链路以进行重传,
其中所述新的链路是由所述基站根据针对所述终端设备的可用波束和干扰波束来建立的,并且其中所述新的链路利用以下各项中的一者:
所述基站与所述终端设备之间的波束;
所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的备用波束;或者
所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束。
示例性实施例80、根据示例性实施例79所述的方法,其中所述中间设备、所述第二中间设备包括反射天线阵列。
示例性实施例81、根据示例性实施例79所述的方法,还包括:
从所述基站接收用于测量波束的通信质量的参考信号;以及
向所述基站发送波束质量测量结果。
示例性实施例82、根据示例性实施例81所述的方法,其中所述波束质量测量结果包括针对所述终端设备的可用波束列表和干扰波束列表。
示例性实施例83、根据示例性实施例82所述的方法,其中:
所述可用波束列表包括可用波束的ID;
所述基站基于每个可用波束的ID确定该可用波束为所述基站与所述终端设备之间的波束还是中间设备与所述终端设备之间的波束;以及
响应于确定可用波束为中间设备与所述终端设备之间的波束,所述基站基于可用波束的ID确定所述中间设备的ID和与所述可用波束对应的所述中间设备的波束的ID。
示例性实施例84、根据示例性实施例82所述的方法,其中:
所述干扰波束列表包括干扰波束的ID;并且
所述基站基于干扰波束的ID确定中间设备的ID和与所述干扰波束对应的所述中 间设备的波束的ID。
示例性实施例85、根据示例性实施例82所述的方法,其中所述可用波束列表包括中间设备的ID以及所述中间设备的波束的ID,并且所述干扰波束列表包括中间设备的ID以及所述中间设备的波束的ID。
示例性实施例86、根据示例性实施例82所述的方法,其中所述可用波束列表包括多个可用波束的ID。
示例性实施例87、根据示例性实施例86所述的方法,还包括:
从所述基站接收信令,所述信令包括指示所述终端设备上报多个可用波束的信息。
示例性实施例88、根据示例性实施例86所述的方法,还包括:
从所述基站接收在预定时隙发送的信令,所述预定时隙对应于所述终端设备上报多个可用波束的模式。
示例性实施例89、根据示例性实施例79所述的方法,其中针对所述终端设备的所述可用波束为通信质量高于第一阈值的波束,并且针对所述终端设备的所述干扰波束为通信质量高于第二阈值的波束,其中第一阈值大于第二阈值。
示例性实施例90、根据示例性实施例79所述的方法,其中响应于在所述基站和所述终端设备之间的所述链路发生传输失败时,所述链路仅利用所述基站与所述终端设备之间的波束,利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束建立所述新的链路。
示例性实施例91、根据示例性实施例79所述的方法,其中响应于在所述基站和所述终端设备之间的所述链路发生传输失败时,所述链路利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束,利用所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束建立所述新的链路。
示例性实施例92、根据示例性实施例79所述的方法,其中响应于在所述基站和所述终端设备之间的所述链路发生传输失败时,所述链路利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束,所述基站确定所述传输失败发生在所述基站与中间设备之间的波束上还是所述中间设备与所述终端设备之间的波束上。
示例性实施例93、根据示例性实施例92所述的方法,
其中响应于确定所述传输失败发生在所述基站与中间设备之间的波束上,利用所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波 束建立所述新的链路;以及
响应于确定所述传输失败发生在所述中间设备与所述终端设备之间的波束上,利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的备用波束建立所述新的链路。
示例性实施例94、根据示例性实施例92所述的方法,其中基于通过所述中间设备与所述基站进行通信的其他终端设备的通信质量来确定所述传输失败发生在所述基站与中间设备之间的波束上还是所述中间设备与所述终端设备之间的波束上。
示例性实施例95、根据示例性实施例94所述的方法,其中所述其他终端设备的通信质量是所述其他终端设备在信道平坦的时段内反馈的。
示例性实施例96、根据示例性实施例94所述的方法,其中所述其他终端设备的通信质量是基于所述基站向所述其他终端设备发送的参考信号而测量得到的。
示例性实施例97、根据示例性实施例94所述的方法,
其中响应于通过所述中间设备与所述基站进行通信的其他终端设备中的至少一些终端设备的通信质量高于阈值,所述基站确定所述传输失败发生在所述中间设备与所述终端设备之间的波束上;以及
其中响应于通过所述中间设备与所述基站进行通信的其他终端设备的通信质量都低于阈值,所述基站确定所述传输失败发生在所述基站与中间设备之间的波束上。
示例性实施例98、根据示例性实施例92所述的方法,其中基于从所述中间设备接收的反馈信息来确定所述传输失败发生在所述基站与中间设备之间的波束上还是所述中间设备与所述终端设备之间的波束上。
示例性实施例99、根据示例性实施例98所述的方法,
其中响应于所述反馈信息指示所述中间设备接收到的信号质量低于有效信号阈值,所述基站确定所述传输失败发生在所述基站与中间设备之间的波束上;以及
其中响应于所述反馈信息指示所述中间设备接收到的信号质量等于或高于有效信号阈值或者没有接收到指示所述中间设备接收到的信号质量低于有效信号阈值的反馈信息,所述基站确定所述传输失败发生在所述中间设备与所述终端设备之间的波束上。
示例性实施例100、根据示例性实施例79所述的方法,其中所述中间设备与所述终端设备之间的备用波束是所述中间设备与所述终端设备之间的可用波束中通信质量最好的波束。
示例性实施例101、根据示例性实施例79所述的方法,其中所述中间设备与所述终端设备之间的备用波束不是针对其他终端设备的干扰波束。
示例性实施例102、根据示例性实施例79所述的方法,还包括:
响应于利用新的链路进行的重传失败的次数超过阈值,进行小区重选。
示例性实施例103、根据示例性实施例102所述的方法,其中进行小区重选包括:
测量通过所述基站与所述终端设备之间的波束进行传输的通信质量;
响应于确定通过所述基站与所述终端设备之间的波束进行传输的通信质量小于小区接入阈值,测量通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束进行传输的通信质量,其中:
响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,不进行小区切换;
响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束进行传输的通信质量小于小区接入阈值,并且通过第二基站与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,切换至所述第二基站的小区;以及
响应于确定通过所述基站与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,不进行小区切换。
示例性实施例104、根据示例性实施例102所述的方法,其中进行小区重选包括:
测量通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束和通过所述基站与所述终端设备之间的波束同步进行传输的通信质量;
响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束和通过所述基站与所述终端设备之间的波束同步进行传输的通信质量小于小区接入阈值,并且通过第二基站与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,切换至所述第二基站的小区;以及
响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束和通过所述基站与所述终端设备之间的波束同步进行传输的通信质量大于或等于小区接入阈值,不进行小区切换。
示例性实施例105、一种存储有一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理电路执行时,使得该电子设备执行如示 例性实施例53至78中任一项所述的方法、或者执行如示例性实施例79至104中任一项所述的方法。
示例性实施例106、一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如示例性实施例53至78中任一项所述的方法的步骤、或者实现如示例性实施例79至104中任一项所述的方法的步骤。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
虽然已详细描述了本公开的一些具体实施例,但是本领域技术人员应当理解,上述实施例仅是说明性的而不限制本公开的范围。本领域技术人员应该理解,上述实施例可以被组合、修改或替换而不脱离本公开的范围和实质。本公开的范围是通过所附的权利要求限定的。

Claims (56)

  1. 一种用于基站侧的电子设备,所述电子设备包括:
    处理电路,所述处理电路被配置为:
    确定基站和终端设备之间的链路发生传输失败;
    响应于基站和终端设备之间的链路发生传输失败,根据针对所述终端设备的可用波束和干扰波束来建立新的链路以进行重传,其中所述新的链路利用以下各项中的一者:
    所述基站与所述终端设备之间的波束;
    所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的备用波束;或者
    所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束。
  2. 根据权利要求1所述的电子设备,其中所述中间设备、所述第二中间设备包括反射天线阵列。
  3. 根据权利要求1所述的电子设备,其中所述处理电路还被配置为:
    向所述终端设备发送用于测量波束的通信质量的参考信号;以及
    从所述终端设备接收波束质量测量结果。
  4. 根据权利要求3所述的电子设备,其中所述波束质量测量结果包括针对所述终端设备的可用波束列表和干扰波束列表。
  5. 根据权利要求4所述的电子设备,其中所述可用波束列表包括可用波束的ID,并且所述处理电路还被配置为:
    基于每个可用波束的ID确定该可用波束为所述基站与所述终端设备之间的波束还是中间设备与所述终端设备之间的波束;以及
    响应于确定可用波束为中间设备与所述终端设备之间的波束,基于可用波束的ID确定所述中间设备的ID和与所述可用波束对应的所述中间设备的波束的ID。
  6. 根据权利要求4所述的电子设备,其中所述干扰波束列表包括干扰波束的ID,并且所述处理电路还被配置为:
    基于干扰波束的ID确定中间设备的ID和与所述干扰波束对应的所述中间设备的波束的ID。
  7. 根据权利要求4所述的电子设备,其中所述可用波束列表包括中间设备的ID以及所述中间设备的波束的ID,并且所述干扰波束列表包括中间设备的ID以及所述中间设备的波束的ID。
  8. 根据权利要求4所述的电子设备,其中所述可用波束列表包括多个可用波束的ID。
  9. 根据权利要求8所述的电子设备,所述处理电路还被配置为向所述终端设备发送信令,所述信令包括指示所述终端设备上报多个可用波束的信息。
  10. 根据权利要求8所述的电子设备,所述处理电路还被配置为在预定时隙向所述终端设备发送信令,所述预定时隙对应于所述终端设备上报多个可用波束的模式。
  11. 根据权利要求1所述的电子设备,其中针对所述终端设备的所述可用波束为通信质量高于第一阈值的波束,并且针对所述终端设备的所述干扰波束为通信质量高于第二阈值的波束,其中第一阈值大于第二阈值。
  12. 根据权利要求1所述的电子设备,其中响应于在所述基站和所述终端设备之间的所述链路发生传输失败时,所述链路仅利用所述基站与所述终端设备之间的波束,利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束建立所述新的链路。
  13. 根据权利要求1所述的电子设备,其中响应于在所述基站和所述终端设备之间的所述链路发生传输失败时,所述链路利用所述基站与中间设备之间的波束以及所 述中间设备与所述终端设备之间的波束,利用所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束建立所述新的链路。
  14. 根据权利要求1所述的电子设备,其中所述处理电路还被配置为:
    响应于在所述基站和所述终端设备之间的所述链路发生传输失败时,所述链路利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束,确定所述传输失败发生在所述基站与中间设备之间的波束上还是所述中间设备与所述终端设备之间的波束上。
  15. 根据权利要求14所述的电子设备,
    其中响应于确定所述传输失败发生在所述基站与中间设备之间的波束上,利用所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束建立所述新的链路;以及
    响应于确定所述传输失败发生在所述中间设备与所述终端设备之间的波束上,利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的备用波束建立所述新的链路。
  16. 根据权利要求14所述的电子设备,其中基于通过所述中间设备与所述基站进行通信的其他终端设备的通信质量来确定所述传输失败发生在所述基站与中间设备之间的波束上还是所述中间设备与所述终端设备之间的波束上。
  17. 根据权利要求16所述的电子设备,其中所述其他终端设备的通信质量是所述其他终端设备在信道平坦的时段内反馈的。
  18. 根据权利要求16所述的电子设备,其中所述其他终端设备的通信质量是基于所述基站向所述其他终端设备发送的参考信号而测量得到的。
  19. 根据权利要求16所述的电子设备,
    其中响应于通过所述中间设备与所述基站进行通信的其他终端设备中的至少一些终端设备的通信质量高于阈值,确定所述传输失败发生在所述中间设备与所述终端 设备之间的波束上;以及
    其中响应于通过所述中间设备与所述基站进行通信的其他终端设备的通信质量都低于阈值,确定所述传输失败发生在所述基站与中间设备之间的波束上。
  20. 根据权利要求14所述的电子设备,其中基于从所述中间设备接收的反馈信息来确定所述传输失败发生在所述基站与中间设备之间的波束上还是所述中间设备与所述终端设备之间的波束上。
  21. 根据权利要求20所述的电子设备,
    其中响应于所述反馈信息指示所述中间设备接收到的信号质量低于有效信号阈值,确定所述传输失败发生在所述基站与中间设备之间的波束上;以及
    其中响应于所述反馈信息指示所述中间设备接收到的信号质量等于或高于有效信号阈值或者没有接收到指示所述中间设备接收到的信号质量低于有效信号阈值的反馈信息,确定所述传输失败发生在所述中间设备与所述终端设备之间的波束上。
  22. 根据权利要求1所述的电子设备,其中所述中间设备与所述终端设备之间的备用波束是所述中间设备与所述终端设备之间的可用波束中通信质量最好的波束。
  23. 根据权利要求1所述的电子设备,其中所述中间设备与所述终端设备之间的备用波束不是针对其他终端设备的干扰波束。
  24. 根据权利要求1所述的电子设备,其中所述处理电路还被配置为:
    响应于利用新的链路进行的重传失败的次数超过阈值,指示所述终端设备进行小区重选。
  25. 根据权利要求24所述的电子设备,其中所述终端设备通过以下操作进行小区重选:
    测量通过所述基站与所述终端设备之间的波束进行传输的通信质量;
    响应于确定通过所述基站与所述终端设备之间的波束进行传输的通信质量小于小区接入阈值,测量通过所述基站与中间设备之间的波束以及所述中间设备与所述终 端设备之间的波束进行传输的通信质量,其中:
    响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,不进行小区切换;
    响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束进行传输的通信质量小于小区接入阈值,并且通过第二基站与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,切换至所述第二基站的小区;以及
    响应于确定通过所述基站与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,不进行小区切换。
  26. 根据权利要求24所述的电子设备,其中所述终端设备通过以下操作进行小区重选:
    测量通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束和通过所述基站与所述终端设备之间的波束同步进行传输的通信质量;
    响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束和通过所述基站与所述终端设备之间的波束同步进行传输的通信质量小于小区接入阈值,并且通过第二基站与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,切换至所述第二基站的小区;以及
    响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束和通过所述基站与所述终端设备之间的波束同步进行传输的通信质量大于或等于小区接入阈值,不进行小区切换。
  27. 一种用于终端设备侧的电子设备,所述电子设备包括:
    处理电路,所述处理电路被配置为:
    在基站和终端设备之间的链路发生传输失败后,与所述基站建立新的链路以进行重传,
    其中所述新的链路是由所述基站根据针对所述终端设备的可用波束和干扰波束来建立的,并且其中所述新的链路利用以下各项中的一者:
    所述基站与所述终端设备之间的波束;
    所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的备用波束;或者
    所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束。
  28. 根据权利要求27所述的电子设备,其中所述中间设备、所述第二中间设备包括反射天线阵列。
  29. 根据权利要求27所述的电子设备,其中所述处理电路还被配置为:
    从所述基站接收用于测量波束的通信质量的参考信号;以及
    向所述基站发送波束质量测量结果。
  30. 根据权利要求29所述的电子设备,其中所述波束质量测量结果包括针对所述终端设备的可用波束列表和干扰波束列表。
  31. 根据权利要求30所述的电子设备,其中:
    所述可用波束列表包括可用波束的ID;
    所述基站基于每个可用波束的ID确定该可用波束为所述基站与所述终端设备之间的波束还是中间设备与所述终端设备之间的波束;以及
    响应于确定可用波束为中间设备与所述终端设备之间的波束,所述基站基于可用波束的ID确定所述中间设备的ID和与所述可用波束对应的所述中间设备的波束的ID。
  32. 根据权利要求30所述的电子设备,其中:
    所述干扰波束列表包括干扰波束的ID;并且
    所述基站基于干扰波束的ID确定中间设备的ID和与所述干扰波束对应的所述中间设备的波束的ID。
  33. 根据权利要求30所述的电子设备,其中所述可用波束列表包括中间设备的ID以及所述中间设备的波束的ID,并且所述干扰波束列表包括中间设备的ID以及所述中间设备的波束的ID。
  34. 根据权利要求30所述的电子设备,其中所述可用波束列表包括多个可用波束的ID。
  35. 根据权利要求34所述的电子设备,所述处理电路还被配置为从所述基站接收信令,所述信令包括指示所述终端设备上报多个可用波束的信息。
  36. 根据权利要求34所述的电子设备,所述处理电路还被配置为从所述基站接收在预定时隙发送的信令,所述预定时隙对应于所述终端设备上报多个可用波束的模式。
  37. 根据权利要求27所述的电子设备,其中针对所述终端设备的所述可用波束为通信质量高于第一阈值的波束,并且针对所述终端设备的所述干扰波束为通信质量高于第二阈值的波束,其中第一阈值大于第二阈值。
  38. 根据权利要求27所述的电子设备,其中响应于在所述基站和所述终端设备之间的所述链路发生传输失败时,所述链路仅利用所述基站与所述终端设备之间的波束,利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束建立所述新的链路。
  39. 根据权利要求27所述的电子设备,其中响应于在所述基站和所述终端设备之间的所述链路发生传输失败时,所述链路利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束,利用所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束建立所述新的链路。
  40. 根据权利要求27所述的电子设备,其中响应于在所述基站和所述终端设备之间的所述链路发生传输失败时,所述链路利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束,所述基站确定所述传输失败发生在所述基站与中间设备之间的波束上还是所述中间设备与所述终端设备之间的波束上。
  41. 根据权利要求40所述的电子设备,
    其中响应于确定所述传输失败发生在所述基站与中间设备之间的波束上,利用所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束建立所述新的链路;以及
    响应于确定所述传输失败发生在所述中间设备与所述终端设备之间的波束上,利用所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的备用波束建立所述新的链路。
  42. 根据权利要求40所述的电子设备,其中基于通过所述中间设备与所述基站进行通信的其他终端设备的通信质量来确定所述传输失败发生在所述基站与中间设备之间的波束上还是所述中间设备与所述终端设备之间的波束上。
  43. 根据权利要求42所述的电子设备,其中所述其他终端设备的通信质量是所述其他终端设备在信道平坦的时段内反馈的。
  44. 根据权利要求42所述的电子设备,其中所述其他终端设备的通信质量是基于所述基站向所述其他终端设备发送的参考信号而测量得到的。
  45. 根据权利要求42所述的电子设备,
    其中响应于通过所述中间设备与所述基站进行通信的其他终端设备中的至少一些终端设备的通信质量高于阈值,所述基站确定所述传输失败发生在所述中间设备与所述终端设备之间的波束上;以及
    其中响应于通过所述中间设备与所述基站进行通信的其他终端设备的通信质量都低于阈值,所述基站确定所述传输失败发生在所述基站与中间设备之间的波束上。
  46. 根据权利要求40所述的电子设备,其中基于从所述中间设备接收的反馈信息来确定所述传输失败发生在所述基站与中间设备之间的波束上还是所述中间设备与所述终端设备之间的波束上。
  47. 根据权利要求46所述的电子设备,
    其中响应于所述反馈信息指示所述中间设备接收到的信号质量低于有效信号阈值,所述基站确定所述传输失败发生在所述基站与中间设备之间的波束上;以及
    其中响应于所述反馈信息指示所述中间设备接收到的信号质量等于或高于有效信号阈值或者没有接收到指示所述中间设备接收到的信号质量低于有效信号阈值的反馈信息,所述基站确定所述传输失败发生在所述中间设备与所述终端设备之间的波束上。
  48. 根据权利要求27所述的电子设备,其中所述中间设备与所述终端设备之间的备用波束是所述中间设备与所述终端设备之间的可用波束中通信质量最好的波束。
  49. 根据权利要求27所述的电子设备,其中所述中间设备与所述终端设备之间的备用波束不是针对其他终端设备的干扰波束。
  50. 根据权利要求27所述的电子设备,其中所述处理电路还被配置为:
    响应于利用新的链路进行的重传失败的次数超过阈值,进行小区重选。
  51. 根据权利要求50所述的电子设备,其中进行小区重选包括:
    测量通过所述基站与所述终端设备之间的波束进行传输的通信质量;
    响应于确定通过所述基站与所述终端设备之间的波束进行传输的通信质量小于小区接入阈值,测量通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束进行传输的通信质量,其中:
    响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,不进行小区切换;
    响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束进行传输的通信质量小于小区接入阈值,并且通过第二基站与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,切换至所述第二基站的小区;以及
    响应于确定通过所述基站与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,不进行小区切换。
  52. 根据权利要求50所述的电子设备,其中进行小区重选包括:
    测量通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束和通过所述基站与所述终端设备之间的波束同步进行传输的通信质量;
    响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束和通过所述基站与所述终端设备之间的波束同步进行传输的通信质量小于小区接入阈值,并且通过第二基站与所述终端设备之间的波束进行传输的通信质量大于或等于小区接入阈值,切换至所述第二基站的小区;以及
    响应于确定通过所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的波束和通过所述基站与所述终端设备之间的波束同步进行传输的通信质量大于或等于小区接入阈值,不进行小区切换。
  53. 一种用于基站的方法,包括:
    确定基站和终端设备之间的链路发生传输失败;
    响应于基站和终端设备之间的链路发生传输失败,根据针对所述终端设备的可用波束和干扰波束来建立新的链路以进行重传,其中所述新的链路利用以下各项中的一者:
    所述基站与所述终端设备之间的波束;
    所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的备用波束;或者
    所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束。
  54. 一种用于终端设备的方法,包括:
    在基站和终端设备之间的链路发生传输失败后,与所述基站建立新的链路以进行重传,
    其中所述新的链路是由所述基站根据针对所述终端设备的可用波束和干扰波束来建立的,并且其中所述新的链路利用以下各项中的一者:
    所述基站与所述终端设备之间的波束;
    所述基站与中间设备之间的波束以及所述中间设备与所述终端设备之间的备 用波束;或者
    所述基站与第二中间设备之间的波束以及所述第二中间设备与所述终端设备之间的波束。
  55. 一种存储有一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理电路执行时,使得该电子设备执行如权利要求53所述的方法、或者执行如权利要求54所述的方法。
  56. 一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如权利要求53所述的方法的步骤、或者实现如权利要求54所述的方法的步骤。
PCT/CN2022/074369 2021-01-29 2022-01-27 无线通信系统中的电子设备和方法 WO2022161441A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280011077.1A CN116803175A (zh) 2021-01-29 2022-01-27 无线通信系统中的电子设备和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110126430.8A CN114828111A (zh) 2021-01-29 2021-01-29 无线通信系统中的电子设备和方法
CN202110126430.8 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022161441A1 true WO2022161441A1 (zh) 2022-08-04

Family

ID=82526513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074369 WO2022161441A1 (zh) 2021-01-29 2022-01-27 无线通信系统中的电子设备和方法

Country Status (2)

Country Link
CN (2) CN114828111A (zh)
WO (1) WO2022161441A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115242286A (zh) * 2022-09-21 2022-10-25 广东省新一代通信与网络创新研究院 一种基于智能反射面的无线传输方法及系统
CN116744267B (zh) * 2022-11-16 2024-05-21 荣耀终端有限公司 数据处理方法、系统、电子设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091195A1 (ko) * 2010-12-28 2012-07-05 주식회사 지에스인스트루먼트 간섭제거기능을 갖는 무선중계장치
US20180091262A1 (en) * 2016-09-23 2018-03-29 Samsung Electronics Co., Ltd. Method and apparatus for data retransmission in wireless communication system
CN109997397A (zh) * 2017-07-25 2019-07-09 联发科技股份有限公司 用于波束故障恢复的信道和程序
CN110933695A (zh) * 2019-04-24 2020-03-27 华为技术有限公司 波束故障恢复请求发送方法及终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091195A1 (ko) * 2010-12-28 2012-07-05 주식회사 지에스인스트루먼트 간섭제거기능을 갖는 무선중계장치
US20180091262A1 (en) * 2016-09-23 2018-03-29 Samsung Electronics Co., Ltd. Method and apparatus for data retransmission in wireless communication system
CN109997397A (zh) * 2017-07-25 2019-07-09 联发科技股份有限公司 用于波束故障恢复的信道和程序
CN110933695A (zh) * 2019-04-24 2020-03-27 华为技术有限公司 波束故障恢复请求发送方法及终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Beam recovery procedures", 3GPP DRAFT; R14-1705582 BEAM RECOVERY PROCEDURES, vol. RAN WG1, 25 March 2017 (2017-03-25), Spokane, USA, pages 1 - 4, XP051252324 *

Also Published As

Publication number Publication date
CN116803175A (zh) 2023-09-22
CN114828111A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US12004252B2 (en) Mobile communication system, user terminal, and base station
US20220173781A1 (en) Electronic device, wireless communication method and computer-readable medium
JP7147790B2 (ja) 電子機器、無線通信装置、及び無線通信方法
JP7192855B2 (ja) 無線通信システムに用いられる電気機器、方法及び記憶媒体
US20230180068A1 (en) Electronic apparatus, radio communication method, and computer-readable storage medium
WO2022161441A1 (zh) 无线通信系统中的电子设备和方法
US11412491B2 (en) Communication control device, communication control method, and terminal device
WO2022194082A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230059284A1 (en) Facilitating explicit latency mode determination in beam switching
WO2022017303A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
US20230345533A1 (en) Electronic device, wireless communication method, and non-transitory computer-readable storage medium
US20220287131A1 (en) User equipment in wireless communication system, electronic apparatus, method, and storage medium
US10512086B2 (en) Transmission of discovery signal in small cells while in off state
US20240178887A1 (en) Electronic device, communication method, storage medium and computer program product
WO2023217105A1 (zh) 用于无线通信的电子设备和方法以及计算机可读存储介质
US20230180308A1 (en) Electronic device, wireless communication method, and computer readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280011077.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745314

Country of ref document: EP

Kind code of ref document: A1