WO2022017303A1 - 用于无线通信系统的电子设备、方法和存储介质 - Google Patents

用于无线通信系统的电子设备、方法和存储介质 Download PDF

Info

Publication number
WO2022017303A1
WO2022017303A1 PCT/CN2021/107000 CN2021107000W WO2022017303A1 WO 2022017303 A1 WO2022017303 A1 WO 2022017303A1 CN 2021107000 W CN2021107000 W CN 2021107000W WO 2022017303 A1 WO2022017303 A1 WO 2022017303A1
Authority
WO
WIPO (PCT)
Prior art keywords
trp
terminal device
serving
primary
measurement
Prior art date
Application number
PCT/CN2021/107000
Other languages
English (en)
French (fr)
Inventor
侯延昭
陶小峰
王成瑞
文阳
朱敏
王晓雪
刘敏
孙晨
Original Assignee
索尼集团公司
侯延昭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 侯延昭 filed Critical 索尼集团公司
Priority to CN202180060410.3A priority Critical patent/CN116250267A/zh
Priority to US18/013,910 priority patent/US20230292164A1/en
Publication of WO2022017303A1 publication Critical patent/WO2022017303A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present disclosure relates generally to wireless communication systems and methods, and in particular to mobility management techniques for multiple Transmission and Reception Points (multi-TRP).
  • multi-TRP Transmission and Reception Points
  • Wireless communication systems such as New Radio (NR) that have been or are under development will support massive connectivity, high capacity, ultra-reliability and low latency.
  • NR New Radio
  • multi-TRP technology is crucial.
  • a single terminal device can maintain connections with multiple TRPs.
  • improvements to mobility management schemes are desired to ensure the quality and reliability of communication between terminal equipment and multiple TRPs.
  • a first aspect of the present disclosure relates to an electronic device for a first transmission and reception point TRP, wherein the first TRP and the second TRP jointly serve a specific terminal device.
  • the electronic device includes a processing circuit configured to, in response to the first TRP and the second TRP being a primary TRP and a secondary TRP serving the terminal device, respectively: provide measurement configuration information to the terminal device, the measurement configuration information specifying at least the first TRP and the secondary TRP for the terminal device.
  • the second TRP performs measurements; receives a measurement report from the terminal device, the measurement report includes the measurement quality of at least the first TRP and the second TRP; and updates the TRP serving the specific terminal device based on at least the measurement quality of the first TRP and the second TRP .
  • updating the TRP serving the specific terminal device includes determining that the second TRP will become the primary TRP serving the terminal device based on the relative relationship between the measured qualities of the first TRP and the second TRP satisfying a first threshold.
  • a second aspect of the present disclosure relates to an electronic device for a base station, wherein the base station controls a plurality of transmission and reception points TRP to jointly serve a specific terminal device.
  • the electronic device includes a processing circuit configured to, in response to the first TRP and the second TRP being a primary TRP and a secondary TRP serving the terminal device, respectively: provide the first TRP with measurement configuration information for the terminal device, the measurement configuration information specifying
  • the terminal device measures at least the first TRP and the second TRP; and receives a first update request message from the first TRP, the first update request message indicates that the second TRP will become the primary TRP serving the terminal device, and the first TRP will become the serving TRP Secondary TRP for the terminal device.
  • a third aspect of the present disclosure relates to an electronic device for a terminal device, wherein the terminal device is jointly served by a first TRP and a second TRP, the first TRP being the primary TRP and the second TRP being the secondary TRP.
  • the electronic device includes a processing circuit configured to: measure the first TRP and the second TRP based on the measurement configuration information received from the first TRP; and based on the relative relationship between the measurement qualities of the first TRP and the second TRP satisfying The first threshold is to send a measurement report to the first TRP, where the measurement report includes at least the measurement quality of the first TRP and the second TRP.
  • a fourth aspect of the present disclosure relates to a method for a first transmission and reception point TRP, wherein the first TRP and the second TRP jointly serve a specific terminal device.
  • the method includes, in response to the first TRP and the second TRP being the primary TRP and the secondary TRP serving the terminal device, respectively: providing measurement configuration information to the terminal device, the measurement configuration information specifying that at least the first TRP and the second TRP are to be measured; A measurement report of the terminal device, the measurement report includes at least the measurement quality of the first TRP and the second TRP; and the TRP serving the specific terminal device is updated based on at least the measurement quality of the first TRP and the second TRP.
  • updating the TRP serving the specific terminal device includes determining that the second TRP will become the primary TRP serving the terminal device based on the relative relationship between the measured qualities of the first TRP and the second TRP satisfying a first threshold.
  • a fifth aspect of the present disclosure relates to a method for a base station, wherein the base station controls a plurality of transmission and reception points TRP to jointly serve a specific terminal device.
  • the method includes, in response to the first TRP and the second TRP being a primary TRP and a secondary TRP serving the terminal device, respectively: providing the first TRP with measurement configuration information for the terminal device, the measurement configuration information specifying that the terminal device has at least a second TRP measurement; and receiving a first update request message from the first TRP, the first update request message indicating that the second TRP will become the primary TRP serving the terminal device and the first TRP will become the secondary TRP serving the terminal device.
  • a sixth aspect of the present disclosure relates to a method for a terminal device, wherein the terminal device is co-served by a first TRP and a second TRP, the first TRP being the primary TRP and the second TRP being the secondary TRP.
  • the method includes measuring the first TRP and the second TRP based on the measurement configuration information received from the first TRP; and sending to the first TRP based on the relative relationship between the measurement qualities of the first TRP and the second TRP satisfying a first threshold A measurement report, where the measurement report includes at least the measurement quality of the first TRP and the second TRP.
  • a seventh aspect of the present disclosure relates to a computer-readable storage medium having one or more instructions stored thereon.
  • the one or more instructions may, when executed by one or more processors of the electronic device, cause the electronic device to perform methods according to various embodiments of the present disclosure.
  • An eighth aspect of the present disclosure relates to an apparatus for wireless communication, comprising means or units for performing operations of various methods according to embodiments of the present disclosure.
  • FIG. 1 illustrates an exemplary multiple transmit-receive-point (multi-TRP) wireless communication system in accordance with embodiments of the present disclosure.
  • FIG. 2A illustrates an exemplary electronic device for TRP according to an embodiment of the present disclosure.
  • 2B illustrates an exemplary electronic device for a base station according to an embodiment of the present disclosure.
  • FIG. 2C illustrates an exemplary electronic device for a terminal device according to an embodiment of the present disclosure.
  • FIG. 3 shows an exemplary signaling flow for measurement configuration and measurement reporting according to an embodiment of the present disclosure.
  • 4A to 4C respectively illustrate exemplary operations for managing TRP based on measurement reports according to embodiments of the present disclosure.
  • 5 to 8 illustrate exemplary signaling flows for implementing TRP update according to an embodiment of the present disclosure.
  • 9A illustrates an exemplary MAC control element for carrying control channel indication information according to an embodiment of the present disclosure.
  • FIG. 9B illustrates an exemplary MAC control element for carrying a TCI state configuration indication according to an embodiment of the present disclosure.
  • 12A and 12B illustrate exemplary satellite communication scenarios in which technical solutions according to embodiments of the present disclosure may be applied.
  • FIG. 13 is a block diagram of an example structure of a personal computer as an information processing apparatus that can be employed in an embodiment of the present disclosure.
  • FIG. 14 is a block diagram showing a first example of a schematic configuration of a gNB to which the techniques of the present disclosure may be applied.
  • 15 is a block diagram showing a second example of a schematic configuration of a gNB to which the techniques of the present disclosure may be applied.
  • FIG. 16 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied.
  • 17 is a block diagram showing an example of a schematic configuration of a car navigation apparatus to which the technology of the present disclosure can be applied.
  • FIG. 1 illustrates an exemplary multiple transmit-receive-point (multi-TRP) wireless communication system according to an embodiment.
  • the wireless communication system 100 includes a base station 110 , TRP 1 to TRP 3 , and a terminal device 120 .
  • the base station 110 and each TRP may be configured to be coupled to each other through wired or wireless links.
  • TRP 1 and TRP 2 may be configured to communicate with end device 120 over wireless links 155 and 165, respectively, forming a set of TRPs serving end device 120.
  • TRP 1 may be the master TRP (Master TRP) of the serving terminal device 120
  • TRP 2 may be the secondary TRP (Secondary TRP) of the serving terminal device 120.
  • Base station 110 may be configured to communicate with a network (eg, a cellular service provider's core network, a telecommunications network such as a public switched telephone network (PSTN), and/or the Internet).
  • a network eg, a cellular service provider's core network, a telecommunications network such as a public switched telephone network (PSTN), and/or the Internet.
  • PSTN public switched telephone network
  • the base station 110 may facilitate communication between the terminal device 120 and other terminal devices or with the network.
  • a backhaul link (as shown by the dotted line in FIG. 1 ) may be set between the TRPs, so as to synchronize wireless network configuration information or terminal device context information between the TRPs.
  • the above-described backhaul links may include wired lines such as fiber optics.
  • a base station has the full breadth of its usual meaning and includes at least a wireless communication station that facilitates communication as part of a wireless communication system or radio system.
  • Examples of base stations may include, but are not limited to: at least one of a base transceiver station (BTS) and a base station controller (BSC) in a GSM system; a radio network controller (RNC) and at least one of a Node B in a WCDMA system One; eNBs in LTE and LTE-Advanced systems; access points (APs) in WLAN, WiMAX systems; and corresponding network nodes in communication systems to be or under development (eg, in 5G New Radio (NR) systems gNB, eLTE eNB, etc.).
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • eNBs in LTE and LTE-Advanced systems
  • APs access points
  • WLAN WiMAX systems
  • a terminal has the full breadth of its usual meaning, for example, a terminal may be a mobile station (Mobile Station, MS), a user equipment (User Equipment, UE), and so on.
  • a terminal may be implemented as a device such as a mobile phone, handheld device, media player, computer, laptop or tablet, or virtually any type of wireless device.
  • terminals may communicate using a variety of wireless communication technologies.
  • a terminal may be configured to communicate using two or more of GSM, UMTS, CDMA2000, LTE, LTE-Advanced, NR, WiMAX, WLAN, Bluetooth, and the like.
  • the terminal may also be configured to communicate using only one wireless communication technology.
  • TRP has the full breadth of its usual meaning and can be deployed for use alone or in conjunction with a base station.
  • the TRP may only have a transmission and reception function, and the base station may perform a specific control function on the TRP coupled thereto.
  • the TRP may itself have some layer 2 or layer 3 control functions, and may even have exactly or substantially the same functions as the base station.
  • FIG. 1 illustrates only one of many arrangements of multi-TRPs; embodiments of the present disclosure may be implemented in any suitable arrangement as desired.
  • the base station 110 may be co-located with either TRP as the same entity, and that entity performs the inherent functions and operations of both the base station 110 and the TRP, as desired.
  • multiple TRPs (ie, TRP 1 to TRP 3) coupled to the base station 110 in FIG. 1 may have different cell IDs (cell-IDs), and each TRP may be in a corresponding control resource set (Control Resource Set) , CORESET) and the search space (SearchSpace) to send downlink control channels (eg PDCCH) independently.
  • a wireless communication system 100 may be referred to as a Multi-PDCCH-based Multi-TRP communication system.
  • the master TRP (ie TRP 1 ) is responsible for radio resource control (RRC) connections and communications with the terminal equipment 120 under the control of the base station 110 .
  • RRC radio resource control
  • the secondary TRP ie TRP 2
  • the base station controls the main TRP 1 to establish an RRC connection and communication with the terminal device 120.
  • the ServCellIndex value of the cell corresponding to the primary TRP 1 is 0, and the ServCellIndex value of the cell corresponding to the secondary TRP 2 is not 0.
  • the primary TRP 1 and the secondary TRP 2 share the MAC entity in the primary TRP 1, using respective physical layer resources to communicate with the terminal device 120.
  • both primary TRP 1 and secondary TRP 2 provide control channel and shared channel (eg, PDCCH and PDSCH) transmissions to transmit control and data signals, respectively.
  • control channel and shared channel eg, PDCCH and PDSCH
  • the arrangement in which the primary and secondary TRPs in the TRP set independently transmit control signals is advantageous.
  • a control resource set and a search space corresponding to the primary TRP 1 and the secondary TRP 2 are configured to the terminal device 120 through the primary TRP 1, and the primary TRP 1 and the secondary TRP 2 respectively use corresponding control
  • the resource set and search space transmit the PDCCH to terminal device 120 .
  • the terminal device can receive the PDCCH of each TRP by blindly detecting the control resource set of the primary TRP 1 and the secondary TRP 2 and decoding the search space, and then receive the corresponding PDSCH based on each PDCCH decoding.
  • multiple TRPs ie, TRP 1 to TRP 3 coupled to the base station 110 in FIG. 1 may have the same cell-ID (cell-ID), and only the primary TRP 1 may transmit the downlink control channel (eg PDCCH).
  • a wireless communication system 100 may be referred to as a Single-PDCCH based Multi-TRP communication system.
  • the master TRP ie TRP 1
  • RRC radio resource control
  • the secondary TRP ie TRP 2
  • the base station controls the main TRP 1 to establish an RRC connection and communication with the terminal device 120.
  • the primary TRP 1 and the secondary TRP 2 share the MAC entity in the primary TRP 1, using respective physical layer resources to communicate with the terminal device 120.
  • the primary TRP 1 provides control channel and shared channel (such as PDCCH and PDSCH) transmissions to transmit control and data signals
  • the secondary TRP 2 provides only shared channel (such as PDSCH) transmissions to transmit only data signals.
  • the terminal device 120 under the control of the base station 110, only the master TRP 1 can send the PDCCH to the terminal device 120 using the corresponding control resource set and search space.
  • the terminal device can receive the PDCCH of the primary TRP 1 through blind detection of the control resource set of the primary TRP 1 and search space decoding, and then receive the PDSCH of both the primary TRP 1 and the secondary TRP 2 based on the PDCCH decoding.
  • different index values such as CORESETPoolIndex values
  • the control resource sets of each TRP may be indicated by bit information in the control signaling activation state.
  • the bit corresponding to the CORESETPoolIndex of the control resource set may take a value of 0 or 1, indicating that the corresponding control resource set is in a deactivated or activated state, respectively.
  • the CORESETPoolIndex value of the control resource set of TRP 1 in the control signaling is set to 1, then the control resource set can be used by TRP 1 to send the PDCCH. In this way, the terminal device 120 can be instructed to decode and receive the PDCCH on the corresponding control resource set and search space through the information bits corresponding to CORESETPoolIndex.
  • the terminal device 120 In the scenario where the terminal device 120 moves, its links 155 and 165 with TRP 1 and TRP 2 may deteriorate in quality or even be lost. Accordingly, the terminal device 120 will not be able to receive downlink signals from multiple TRPs, negatively affecting, for example, the communication rate. In particular, in the Single-PDCCH embodiment, if the quality of the link 155 with the primary TRP 1 is degraded or lost, the terminal device 120 will not be able to receive and decode downlink signals from any other TRP because it cannot correctly receive the decoded PDCCH . Therefore, mobility management schemes for multi-TRP scenarios such as wireless communication system 100 are desirable.
  • the terminal device 120 may measure the TRP members in the TRP set serving it based on the measurement configuration information.
  • the set of TRPs serving terminal device 120 may be updated based at least on the measured quality of the TRP members. For example, the roles of the primary TRP and secondary TRP of the TRP members in the TRP set may be swapped. In this way, the measurement quality of the primary TRP is always higher, thereby avoiding TRP switching and correspondingly longer switching delays due to the deterioration of the primary TRP quality.
  • a secondary TRP with degraded quality in the TRP set can be replaced with a TRP outside the TRP set, thereby ensuring that all TRP members in the TRP set are TRPs with higher quality, avoiding TRP switching and correspondingly long switching delay.
  • the TRP measurement result reporting event can be triggered based on the relative relationship of the measurement quality of the TRP members serving the terminal device 120, and the serving terminal can be completed in a short time through a specific signaling process.
  • the updating of the TRP set for device 120 is described in detail below.
  • Various embodiments in accordance with the present disclosure will be described below with reference to the context of wireless communication system 100 in FIG. 1 .
  • FIG. 2A shows an exemplary electronic device for TRP, according to an embodiment.
  • the electronic device 220 shown in FIG. 2A may include various units to implement various embodiments according to the present disclosure.
  • the electronic device 200 may include a measurement processing unit 222 and a TRP management unit 224 .
  • the electronic device 200 may be implemented as any TRP in FIG. 1 or a portion thereof, or may be implemented as a device for controlling or otherwise associated with the TRP.
  • the various operations described below in connection with the TRP may be implemented by units 222 and 224 of electronic device 200 or other possible units.
  • the electronic device 220 may be used for or associated with the primary TRP.
  • the main TRP is, for example, TRP 1 in FIG. 1 .
  • the measurement processing unit 222 of the electronic device 220 may be configured to provide measurement configuration information to the terminal device 120 in response to TRP 1 being the primary TRP serving the terminal device 120.
  • the measurement configuration information specifies that at least TRP 1 and one or more other TRPs (eg, TRP 2) be measured.
  • the measurement processing unit 222 may also be configured to receive a measurement report from the terminal device 120, the measurement report including the measurement quality of TRP 1 and one or more other TRPs.
  • the TRP management unit 224 of the electronic device 220 may be configured to update the TRP of the serving terminal device 120 based at least on the measured quality of TRP 1 and one or more other TRPs.
  • Updating the TRP of the serving terminal device 120 may include updating the members in the TRP set or updating the roles of the members in the TRP set. For example, updating the TRP of the serving terminal device 120 may include determining that the roles of TRP 1 and TRP 2 are exchanged so that TRP 2 becomes the primary TRP of the serving terminal device 120 based on the relative relationship between the measured qualities of TRP 1 and TRP 2 satisfying a first threshold.
  • the electronic device 220 may be used for or associated with the secondary TRP.
  • the secondary TRP is, for example, TRP 2 in FIG. 1 .
  • the measurement processing unit 222 of the electronic device 220 may be configured to receive a TRP update control message from the base station 110 in response to TRP 2 being a secondary TRP serving the terminal device 120.
  • the TRP management unit 224 of the electronic device 220 may be configured to, in response to the TRP update control message indicating that TRP 2 will become the primary TRP for the terminal device 120, prepare layer 2 resources, and send a TRP update confirmation message to the base station 110.
  • the measurement processing unit 222 of the electronic device 220 may be configured to release the connection with the terminal device 120 in response to the update control message indicating that the TRP 2 does not serve the terminal device 120.
  • FIG. 2B shows an exemplary electronic device for a base station according to an embodiment.
  • the electronic device 240 shown in FIG. 2B may include various units to implement various embodiments according to the present disclosure.
  • the electronic device 240 may include a measurement processing unit 242 and a TRP management unit 244 .
  • electronic device 240 may be implemented as base station 110 in FIG. 1 or a portion thereof, or may be implemented as a device (eg, a base station controller) or the device for controlling base station 110 or otherwise associated with base station 110 a part of.
  • the various operations described below in connection with the base station may be implemented by units 242 and 244 of electronic device 240 or other possible units.
  • the measurement processing unit 242 of the electronic device 240 may be configured to, in response to TRP 1 and TRP 2 being the primary TRP and secondary TRP serving the terminal device 120, respectively, TRP 1 provides measurement configuration information for terminal device 120.
  • the measurement configuration information specifies that the terminal device 120 measures at least TRP 1 and TRP 2.
  • the TRP management unit 244 of the electronic device 240 may be configured to receive a TRP update request message from TRP 1.
  • the TRP update request message may request to update the members in the TRP set or update the roles of the members in the TRP set.
  • the update request message indicates that TRP 2 will become the primary TRP serving the terminal device 120, and TRP 1 will become the secondary TRP serving the terminal device 120.
  • the TRP management unit 244 may also be configured to perform corresponding processing based on the update request message.
  • FIG. 2C illustrates an exemplary electronic device for use with a terminal device, according to an embodiment.
  • the electronic device 260 shown in FIG. 2C may include various units to implement various embodiments according to the present disclosure.
  • the electronic device 260 may include a measurement processing unit 262 and a connection management unit 264 .
  • the electronic device 260 may be implemented as the terminal device 120 in FIG. 1 or a portion thereof.
  • the various operations described below in connection with the terminal device may be implemented by the units 262 and 264 of the electronic device 260 or other possible units.
  • TRP 1 is the primary TRP and TRP 2 is the secondary TRP.
  • the measurement processing unit 262 of the electronic device 260 may be configured to measure TRP 1 and at least TRP 2 based on the measurement configuration information received from TRP 1.
  • the measurement processing unit 262 may also be configured to send a measurement report to TRP 1 based on the relative relationship between the measurement qualities of TRP 1 and TRP 2 satisfying the first threshold.
  • the measurement report may include at least the measurement quality of TRP 1 and TRP 2.
  • the connection management unit 264 of the electronic device 260 may be configured to establish or release a connection with each TRP under the control of the master TRP.
  • the electronic devices 220 to 260 may be implemented at the chip level, or may be implemented at the device level by including other components, such as radio components shown in dotted lines in the figures.
  • each electronic device can work as a communication device in the form of a complete machine.
  • processing circuitry may refer to various implementations of digital circuitry, analog circuitry, or mixed-signal (combination of analog and digital) circuitry that perform functions in a computing system.
  • Processing circuitry may include, for example, circuits such as integrated circuits (ICs), application specific integrated circuits (ASICs), portions or circuits of separate processor cores, entire processor cores, separate processors, such as field programmable gate arrays (FPGAs) programmable hardware devices, and/or systems including multiple processors.
  • ICs integrated circuits
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • Figure 3 illustrates an exemplary signaling flow for measurement configuration and measurement reporting, according to an embodiment.
  • the base station 110, the main TRP 1 and the terminal device 120 may perform this signaling process through their respective measurement processing units.
  • the primary TRP 1 sends the measurement configuration information to the terminal device 120 in the RRC connection (RRC_CONNECTED) state.
  • the terminal device 120 performs measurement on each TRP including the master TRP 1 based on the measurement configuration information, and sends a measurement report to the master TRP 1 in response to the measurement report event being triggered.
  • the master TRP 1 may send the raw measurement report or the processed measurement report to the base station 110.
  • the measurement configuration information may specify a measurement object of the terminal device 120 .
  • the measurement object may also include one or more other TRPs, such as TRP 3 detected by the terminal device 120 based on synchronization signals, broadcast signals, etc. (eg, SS/PBCH in NR).
  • the measurement configuration information may also specify the signals that the terminal device 120 is to measure.
  • the terminal device 120 may be designated to obtain the measurement quality of primary TRP 1 and secondary TRP 2 by measuring reference signals such as CSI-RS, and obtain the measurement quality of TRP 3 by measuring synchronization signals such as SS/PBCH, broadcast signals, etc. .
  • the measurement quality of the TRP may refer to the link quality reflected by the measurement result of the TRP.
  • Reference Signal Received Power RSRP
  • Reference Signal Received Quality RSRQ
  • Reference Signal-Signal-Noise and Interference Ratio Reference Signal-Signal to Interference plus Noise Ratio, RS-SINR
  • SINR Signal to Noise and Interference Ratio
  • the measurement configuration information may also specify an event type that triggers the terminal device 120 to send a measurement report, so that the terminal device 120 sends a measurement report to the master TRP 1 when the event type occurs during measurement.
  • an event type that triggers the terminal device 120 to send a measurement report
  • the terminal device 120 sends a measurement report to the master TRP 1 when the event type occurs during measurement.
  • the measurement report may include the measurement quality of the primary TRP and the secondary TRP; or additionally, the measurement report may also include a list of other monitored TRPs, where the list includes the identification of each TRP and the measurement quality. In this list, the information of each TRP can be arranged in order of measurement quality.
  • Event type that triggers the measurement report
  • the event type that triggers the measurement report may be defined based on the relative relationship of the measurement quality of the primary TRP 1 and the secondary TRP 2.
  • this event type may be referred to as event type C (Event C).
  • Event C Event C
  • the terminal device 120 may be triggered to send the measurement report corresponding to the trigger time to the master TRP 1.
  • TTT Time to Trigger
  • the threshold ⁇ 0 may be a parameter configured by the base station 110 to control the master TRP 1 for the terminal device 120 through higher layer signaling (eg, RRC layer signaling).
  • Terminal device 120 may be configured with multiple values of ⁇ 0 to control the triggering of measurement reports under different circumstances.
  • the relative relationship between the measurement qualities of the primary TRP 1 and the secondary TRP 2 may be the ratio or difference of the measurement qualities of the two.
  • the relative relationship may have other forms, such as a combination of ratios and differences, logarithms of ratios or differences, and the like. Equation (1) reflects that the measurement quality of the secondary TRP 2 is superior to that of the primary TRP 1, and the degree of superiority can be set and adjusted by the value of the threshold ⁇ 0 .
  • the primary TRP 1 and the base station 110 can manage or update the TRP of the serving terminal device 120 based on the relative relationship between the measurement quality of the primary TRP 1 and the secondary TRP 2 gather.
  • the event type that triggers the measurement report may be defined based on the relative relationship of the measurement quality of the secondary TRP to other TRPs outside the TRP set of the serving terminal device 120 .
  • this event type may be referred to as event type B (Event B).
  • Event B For example, within the trigger time (Time to Trigger, TTT), if the above-mentioned relative relationship satisfies the second threshold, the terminal device 120 may be triggered to send a measurement report corresponding to the trigger time to the master TRP.
  • TTT Time to Trigger
  • the threshold ⁇ 0 may be a parameter configured by the base station 110 to control the primary TRP for the terminal device 120 through higher layer signaling (eg, RRC layer signaling).
  • Terminal device 120 may be configured with multiple values of ⁇ 0 to control the triggering of measurement reports under different circumstances.
  • the relative relationship between the measurement qualities of the secondary TRP and other TRPs may be the ratio or difference of the measurement qualities of the two. In other examples, the relative relationship may have other forms, such as a combination of ratios and differences, logarithms of ratios or differences, and the like. Equation (2) reflects that the measurement quality of other TRPs is superior to that of the auxiliary TRP, and the degree of superiority can be set and adjusted by the value of the threshold ⁇ 0 .
  • the primary TRP or base station 110 can manage or update the TRP set serving the terminal device 120 based on the relative relationship of measurement quality of the secondary TRP and other TRPs.
  • managing the set of TRPs may include exchanging the roles of primary and secondary TRPs.
  • 4A illustrates one exemplary operation for managing TRP based on measurement reports, according to an embodiment. This operation may be performed by the master TRP 1 (eg, by the TRP management unit 224 ) after the terminal device 120 (eg, measurement processing unit 262 ) sends the measurement report, based on whether the measurement report contains event type C.
  • the master TRP 1 determines whether event type C is present in the measurement report. If event type C occurs, it indicates that the relative relationship between the measurement quality of the primary TRP 1 and the secondary TRP 2 satisfies the first threshold ⁇ 0 , and the measurement quality of the secondary TRP 2 is better than that of the primary TRP 1 . Accordingly, at 404, the primary TRP 1 determines the primary and secondary TRP roles assumed by the switching TRP 1 and TRP 2. If no event type C occurs, it indicates that the measurement quality of the primary TRP 1 is better than that of the secondary TRP 2. Accordingly, at 406, the primary TRP 1 determines that the roles of the primary and secondary TRPs of TRP 1 and TRP 2 are not to be exchanged for the time being.
  • the operation of managing the TRP in FIG. 4A may be performed continuously for the TRP of the serving terminal device 120 .
  • TRP 1 can become the master TRP again.
  • TRP 1 always assumes the role of the master TRP without role switching, it will lead to handover when its measurement quality deteriorates. The complex procedures and delays associated with handover are not desirable.
  • the measurement quality of the secondary TRP 2 may be good enough to avoid handover. Therefore, based on the operation in FIG. 4A , it can be ensured that one of TRP 1 and TRP 2 with relatively good measurement quality becomes the primary TRP serving the terminal device 120, thereby avoiding or delaying the time when the primary TRP has to perform handover.
  • managing the set of TRPs may also include updating the membership of the set of TRPs serving terminal device 120 .
  • 4B illustrates another exemplary operation for managing TRP based on measurement reports, according to an embodiment. This operation may be performed by the master TRP 1 and the base station 110 (e.g. by the TRP management units 224, 244) after the terminal device 120 (e.g. measurement processing unit 262) sends the measurement report based on whether the measurement report contains event type B.
  • the master TRP 1 determines whether event type B is present in the measurement report. If event type B occurs, it indicates that the relative relationship between the measurement quality of the secondary TRP 2 and another TRP (eg, TRP 3 ) satisfies the first threshold ⁇ 0 , and the measurement quality of TRP 3 is better than that of secondary TRP 2 . Accordingly, at 424, primary TRP 1 determines to add TRP 3 to the set of serving terminal devices 120 and replace original secondary TRP 2 as the new secondary TRP. If event type B is not present, it indicates that no other TRP has measurement quality better than that of secondary TRP2. Accordingly, at 426, primary TRP 1 determines to keep secondary TRP 2 from being replaced.
  • event type B occurs, it indicates that the relative relationship between the measurement quality of the secondary TRP 2 and another TRP (eg, TRP 3 ) satisfies the first threshold ⁇ 0 , and the measurement quality of TRP 3 is better than that of secondary TRP 2 . Accordingly, at 424, primary TRP
  • the operation of managing the TRP in FIG. 4B may be performed continuously for the TRP of the serving terminal device 120 .
  • the secondary TRP can be updated to a TRP with better measurement quality under the condition that the terminal device 120 remains connected to the primary TRP, thereby optimizing the measurement quality of the members of the TRP set. This facilitates optimizing the connection quality of the terminal device 120 .
  • a secondary TRP with better quality may become a new primary TRP through role exchange, which optimizes the measurement quality of the primary TRP. In this way, the time when the master TRP has to perform handover can be avoided or delayed to a greater extent.
  • managing the TRP set may also include a combination of operations of exchanging the roles of primary and secondary TRPs and updating members of the TRP set.
  • Figure 4C illustrates yet another exemplary operation for managing TRP based on measurement reports, according to an embodiment. This operation may be performed by the master TRP 1 and the base station 110 (eg by the TRP management units 224, 244) based on whether the measurement report contains event type C, event type B and measurement quality information in the measurement report.
  • the master TRP 1 determines whether event type C is present in the measurement report. If event type C occurs, it indicates that the relative relationship between the measurement quality of the primary TRP 1 and the secondary TRP 2 satisfies the first threshold ⁇ 0 , and the measurement quality of the secondary TRP 2 is better than that of the primary TRP 1 . Accordingly, at 444, primary TRP 1 determines the primary and secondary TRP roles to be assumed by switching TRP 1 and TRP 2.
  • the base station 110 may determine, based on the measurement quality information in the measurement report, that the measurement quality of another TRP (eg, TRP 3) is better than the measurement quality of the original primary TRP 1 (which will become the secondary TRP after the original role is switched), and determine TRP 3 is added to the TRP set of the serving terminal device 120 and replaces TRP 1 as a new secondary TRP. That is, after the update, the members of the TRP set of the serving terminal device 120 will be changed from the primary TRP 1 and the secondary TRP 2 to the primary TRP 2 and the secondary TRP 3 .
  • TRP 3 the measurement quality of another TRP
  • the primary TRP 1 determines that the roles of the primary and secondary TRPs of TRP 1 and TRP 2 are not to be exchanged for the time being.
  • the primary TRP 1 may determine that there is another TRP (eg, TRP 3) with better measurement quality than TRP 2 (secondary TRP) based on the measurement report occurrence of measurement event B, and determine to replace the TRP with TRP 3 2 becomes the new secondary TRP. That is, after updating, the members of the TRP set of the service terminal device 120 will be changed from primary TRP 1 and secondary TRP 2 to primary TRP 1 and secondary TRP 3.
  • the operation of managing the TRP in FIG. 4C may be performed continuously for the TRP of the serving terminal device 120 .
  • the secondary TRP with better quality may become the new primary TRP through role exchange, which optimizes the measurement quality of the primary TRP and can avoid or delay the time when the primary TRP has to perform handover.
  • the secondary TRP may be updated to a TRP with better measurement quality under the condition that the terminal device 120 remains connected to the primary TRP, thereby optimizing the measurement quality of the members of the TRP set.
  • FIG. 5 shows an exemplary signaling flow for implementing primary and secondary TRP role switching, according to an embodiment.
  • This signaling flow can be used to implement TRP management operations as shown in Figure 4A.
  • This signaling procedure may be performed by the master TRP 1, the base station 110 (eg by the TRP management unit 224, 244) and the terminal equipment (eg by the connection management unit 264).
  • the primary TRP 1 in response to determining the roles of the primary and secondary TRPs exchanging TRP 1 and TRP 2, the primary TRP 1 sends a TRP update request message, here a role exchange request message, to the base station 110.
  • a TRP update request message here a role exchange request message
  • base station 110 identifies that TRP 2 will assume the master TRP role.
  • the base station 110 sends a TRP update control message, which is a role exchange control message here, to the TRP 2.
  • the control message may contain information required by TRP 2 to prepare Layer 2 for role switching.
  • the base station 110 also sends the RRC connection related information of the terminal device 120 to the TRP 2, so that the TRP 2 and the terminal device 120 can establish an RRC connection later.
  • TRP 2 may make layer 2 preparations for a role exchange with TRP 1.
  • layer 2 preparation may include establishing a MAC entity, or layer 2 preparation may additionally include establishing an RLC entity or even a PDCP entity.
  • both TRP 1 and TRP 2 transmit PDCCH signals on the corresponding control resource set and search space before and after role switching.
  • TRP1 sends PDCCH signals on the corresponding control resource set and search space, and TRP 2 does not send PDCCH signals.
  • the base station 110 may configure the TRP 2 to send the PDCCH signal on the corresponding control resource set and search space after the role exchange is completed.
  • TRP 1 will stop sending PDCCH signals.
  • the terminal device 120 may be notified by, for example, MAC layer signaling to receive and decode the PDCCH on the control resource set and search space corresponding to TRP 2 after the role exchange is completed, and by, for example, MAC layer signaling
  • the terminal device 120 is used to receive the TCI state configuration required by the PDCCH sent by the TRP 2. Examples of this aspect will be described below with reference to FIGS. 9A and 9B .
  • TRP 2 can reply to the base station 110 with a TRP update confirmation message, which is a role exchange confirmation message here, indicating that TRP 2 is ready to perform role exchange.
  • the base station 110 may communicate the role exchange confirmation message to TRP 1, indicating that TRP 2 is ready for role exchange.
  • the base station 110 may also send an RRC reconfiguration message to the TRP 1 to facilitate the terminal device 120 to establish an RRC connection with the new primary TRP 2. Since the new primary TRP 2 is the previous secondary TRP of the terminal device 120, there is already a physical layer connection between the two.
  • the RRC reconfiguration message here may not include new transmission configuration indicator (Transmission Configuration Indicator, TCI) state configuration information. This is beneficial to simplify the process of establishing an RRC connection between the terminal device 120 and the TRP 2, thereby reducing the operation delay.
  • TCI Transmission Configuration Indicator
  • terminal device 120 may perform RRC reconfiguration. Specifically, the terminal device 120 may continue to use the original TCI state configuration information of the TRP 2 to establish RRC communication with the new primary TRP 2.
  • the terminal device 120 does not need to reset its own MAC entity, so that the primary and secondary TRP role switching operations are completed as soon as possible, and corresponding operation delays are avoided.
  • terminal device 120 may send an RRC reconfiguration complete message to TRP 2. So far, the RRC connection reset between the terminal device 120 and the new primary TRP 2 is completed, and the role exchange process between the primary and secondary TRPs ends.
  • the original primary TRP 1 becomes the new secondary TRP.
  • the ServCellIndex value of the new primary TRP 2 is set to 0.
  • TRP 2 In contrast to the primary and secondary TRP roles exchange in Figure 5, another feasible way to make TRP 2 the primary TRP is to switch the terminal device 120 from TRP 1 to TRP 2. However, each subject involves more operations in this way. Table 1 below shows exemplary additional operations to be performed by each subject to switch from TRP 1 to TRP 2.
  • the role switching operation does not involve reconfiguration of the TCI state through RRC signaling, and the terminal device may use the original TCI state configuration.
  • the role exchange operation does not involve the terminal device resetting the MAC entity.
  • the role switching operation does not involve the terminal device activating/deactivating the TRP, nor does it involve initiating random access to the cell of the new primary TRP.
  • the terminal equipment When the original primary TRP performs RRC reconfiguration on the terminal equipment, the terminal equipment needs to be configured to set the ServCellIndex value of the cell corresponding to the original secondary TRP to 0. Moreover, configuration information such as C-RNTI, cell ID, antenna information, downlink carrier frequency, and security algorithm of the current base station configured for the terminal equipment does not need to be changed when the Multi-TRP transmission is established. It can be seen that the time spent for role switching in Figure 5 will be much less than the switching delay.
  • FIG. 6 shows an exemplary signaling flow for implementing primary and secondary TRP role switching, according to an embodiment.
  • This signaling flow can be used to implement TRP management operations such as those shown in FIG. 4B .
  • This signaling procedure may be performed by the master TRP 1, the base station 110 (eg by the TRP management unit 224, 244) and the terminal equipment (eg by the connection management unit 264).
  • the primary TRP 1 may send a TRP update request message, here a secondary TRP replacement request message, to the base station 110.
  • a TRP update request message here a connection release control message here
  • TRP 2 to instruct TRP 2 to release the connection with the terminal device 120
  • a connection establishment control message to TRP 3 to indicate that TRP 3 is the secondary TRP A connection to the terminal device 120 is established.
  • the TRP 3 may perform corresponding connection establishment preparations, specifically including physical layer (layer 1) preparations.
  • the physical layer preparation may include preparing physical layer time-frequency resources for connection with the terminal device 120 .
  • the TRP 3 also needs to prepare to transmit the PDCCH signal on the corresponding control resource set and search space after becoming the secondary TRP.
  • TRP 3 can reply to the base station 110 with a connection establishment confirmation message, indicating that TRP 3 is ready to establish a connection with the terminal device 120.
  • the base station 110 may send a TRP update confirmation message, here a connection establishment control message, to TRP 1.
  • the connection establishment control message includes the TCI state configuration information of the TRP 3 in order to communicate to the terminal device to establish a connection with the TRP 3.
  • TRP 1 then sends the connection establishment control message and the TCI state configuration information of TRP 3 to terminal device 120.
  • the terminal device 120 may send a connection establishment request to the TRP 3 to establish a physical layer connection between the two. End device 120 does not need to reset the MAC entity. TRP 2 may release the connection with end device 120. So far, the connection establishment between the terminal device 120 and the new secondary TRP 3 is completed, and the secondary TRP update procedure ends. As a result, the TRP of the serving terminal device 120 includes a primary TRP 1 and a secondary TRP 3.
  • FIG. 7 illustrates an exemplary signaling flow for implementing primary and secondary TRP role switching and secondary TRP update, according to an embodiment.
  • the signaling flow can be used to implement TRP management operations (specifically, operations 442 to 446 ) as shown in FIG. 4C .
  • This signaling procedure may be performed by the TRP, the base station 110 (eg by the TRP management unit) and the terminal equipment (eg by the connection management unit).
  • the primary TRP 1 in response to determining the roles of the primary and secondary TRPs exchanging TRP 1 and TRP 2, the primary TRP 1 sends a TRP update request message, which is a role exchange request message here, to the base station 110.
  • the master TRP 1 also sends measurement reports (which may be raw or processed versions) from the terminal equipment 120 to the base station 110.
  • base station 110 identifies that TRP 2 will assume the master TRP role.
  • the base station 110 sends a TRP update control message, which is a role exchange control message here, to the TRP 2.
  • the base station 110 also sends the RRC connection related information of the terminal device 120 to the TRP 2, so that the TRP 2 and the terminal device 120 can establish an RRC connection later. Further, the base station 110 may determine, based on the measurement report, that the measurement quality of TRP 3 is better than the measurement quality of TRP 1 (originally to be the secondary TRP), and determine to replace TRP 1 with TRP 3 to become a new secondary TRP. Correspondingly, the base station 110 sends a connection release control message to TRP 1, and sends a connection establishment control message to TRP 3.
  • Signaling processes related to role exchange are omitted in FIG. 7, and these signaling processes include the following operations: in response to receiving the role exchange control message from base station 110, TRP 2 prepares layer 2 for role exchange with TRP 1, And reply the TRP role exchange confirmation message to the base station 110, and the role exchange confirmation message is further conveyed to TRP 1 by the base station 110.
  • the base station 110 may also send an RRC reconfiguration message to TRP1.
  • the terminal device 120 may perform RRC reconfiguration, complete the RRC reconfiguration with TRP 2, and the original secondary TRP 2 becomes the new primary TRP.
  • TRP 3 may prepare to establish a connection with terminal device 120. Specifically, TRP 3 may prepare physical layer time-frequency resources for connecting with the terminal device 120. In the wireless communication system 100 based on the Multi-PDCCH, the TRP 3 also needs to prepare to transmit the PDCCH signal on the corresponding control resource set and search space after becoming the secondary TRP.
  • TRP 3 may reply to base station 110 with a connection establishment confirmation message.
  • the base station 110 sends a TRP update confirmation message, which is a connection establishment control message here, to TRP 1 (which is still the primary TRP).
  • connection establishment control message contains the configuration information of the new TRP 3, including the corresponding new TCI state configuration information, so as to be communicated to the terminal device to establish a connection with the TRP 3.
  • TRP 1 then sends the connection establishment control message and the TCI state configuration information of TRP 3 to terminal device 120.
  • the terminal device 120 reconfigures the RRC connection with TRP 2 (new main TRP) on the one hand, and sends a connection establishment request to TRP 3 on the one hand, to establish a connection with TRP 3 based on the configuration information of TRP 3.
  • TRP 1 releases the connection with terminal device 120. So far, the RRC connection between the terminal device 120 and the new primary TRP 2 is reset, and the connection between the terminal device 120 and the new secondary TRP 3 is established.
  • the original and auxiliary TRP 2 becomes the new master TRP, the original master TRP 1 withdraws from the TRP set, and the TRP 3 outside the original set becomes the new slave TRP.
  • the ServCellIndex value of the new primary TRP 2 is set to 0.
  • the terminal device 120 can establish a connection with TRP 3 while maintaining a connection with the main TRP 1 before the role swap, or can establish a connection with TRP 3 while maintaining a connection with the main TRP 2 after the role exchange.
  • the terminal device 120 does not experience negative conditions such as loss of the communication link, and the communication quality is guaranteed.
  • event type A may also be defined based on the relative relationship between the measurement quality of the primary, secondary or other TRPs and a specific threshold. For example, within the trigger time, when the measurement quality of the TRP meets a certain threshold, the terminal device 120 may be triggered to send a measurement report corresponding to the trigger time to the master TRP.
  • the following equations (3) to (6) show examples of event types A1 to A4, respectively.
  • Q in can be a threshold greater than or equal to Q out.
  • Primary, secondary quality measure is superior to Q in TRP TRP indicates that the service for the terminal device 120 is desirable.
  • the measured quality of the primary and secondary TRPs being lower than Q out indicates that the TRP is not desired for serving the terminal device 120 .
  • event types A, B, and C may be combined in an appropriate manner to trigger measurement reporting.
  • An example of the combination of event types B and C has been described above with reference to FIG. 4C , and multiple event types A may also be combined or combined with event types B or C.
  • Table II shows some examples of combined event and TRP management operations, and those skilled in the art can similarly contemplate any other suitable combined event and TRP management operations without departing from the scope of the present disclosure.
  • the combined event 1 indicates that the measurement quality of both the primary TPR and the secondary TRP is better (higher than the expected threshold Q in ) and the measurement quality of the secondary TRP is better than that of the primary TRP .
  • the corresponding TRP management operation may be to exchange the roles of the primary and secondary TRPs.
  • the combined event 2 indicates that the measurement quality of the secondary TRP is lower than the expected threshold (eg Q out ), and the measurement quality of another TRP is better than that of the secondary TRP.
  • the corresponding TRP management operation may be to have the other TRP replace the secondary TRP.
  • the combined event 3 indicates that the measurement quality of the secondary TRP is better, the measurement quality of the primary TRP is lower than the expected threshold (eg Q out ), and the measurement quality of the secondary TRP is better than that of the primary TRP.
  • the corresponding TRP management operation may be to exchange the roles of the primary and secondary TRPs.
  • another TRP may replace the original primary TRP as a secondary TRP, as described above with reference to operations 442-446.
  • the combined event 4 indicates that the measurement quality of the primary and secondary TRPs are both lower than the expected threshold (eg Q out ).
  • the corresponding TRP management operation may be to switch from the primary TRP to the other TRP.
  • FIGS. 5 to 7 Exemplary signaling procedures regarding TRP role exchange and secondary TRP replacement have been described with reference to FIGS. 5 to 7 and are therefore not repeated here.
  • Figure 8 illustrates an exemplary signaling flow for implementing TRP handover, according to an embodiment. This signaling procedure may be performed by the master TRP 1, the base station 110 (eg by the TRP management unit 224, 244) and the terminal equipment (eg by the connection management unit 264).
  • the primary TRP 1 in response to determining that the terminal device 120 is to be handed over from the primary TRP 1 to another TRP (eg, TRP 3), the primary TRP 1 sends a handover request message to the base station 110.
  • the handover request message may contain information required by TRP 3 to prepare layer 1/layer 2 for handover.
  • the base station 110 identifies that the new TRP 3 will assume the primary TRP role for the terminal device 120. Accordingly, the base station 110 sends a handover control message to the TRP 3.
  • the base station 110 also sends the RRC connection related information of the terminal device 120 to the TRP 3, so that the TRP 3 and the terminal device 120 can establish an RRC connection later.
  • TRP 3 may prepare layer 1/layer 2 for handover.
  • layer 1 preparation may include allocating physical layer time-frequency resources for establishing a connection with terminal device 120;
  • layer 2 preparation may include establishing a MAC entity, or layer 2 preparation may additionally include establishing an RLC entity or even a PDCP entity.
  • TRP 3 also needs to prepare to send the PDCCH signal on the corresponding control resource set and search space after becoming the master TRP.
  • TRP 3 can reply to the base station 110 with a handover confirmation message, indicating that TRP 3 is ready for handover.
  • base station 110 may communicate the handover confirmation message to TRP 1.
  • the base station 110 may also send an RRC reconfiguration message to the TRP 1, so that the terminal device 120 can switch to the cell of the new primary TRP 3 and establish an RRC connection.
  • the base station 110 also sends the TCI state configuration information of TRP 3 to TRP 1 for conveying to the terminal device to establish a connection with TRP 3.
  • TRP 1 then sends the above information to terminal device 120.
  • the terminal device 120 may initiate a random access procedure to the cell of TRP 3 and perform RRC reconfiguration. Specifically, the terminal device 120 needs to reset its own MAC entity, and use the TCI state configuration information of the TRP 3 to establish RRC communication with the new master TRP 3.
  • terminal device 120 may send an RRC reconfiguration complete message to TRP 3. So far, the terminal device 120 switches from TRP 1 to the new main TRP 3.
  • the reliability of the communication link between the terminal device and the primary TRP can be ensured, and the Delaying the occurrence of TRP handover reduces the delay associated with TRP management. This is particularly advantageous for URLLC services.
  • the beam is narrow and the cell coverage is small, and the communication link between the terminal equipment and the TRP is more easily affected by the movement of the terminal equipment.
  • the TRP set update scheme according to the present disclosure can more advantageously take advantage of avoiding or delaying TRP handover.
  • the solution of the present disclosure can effectively ensure high communication reliability and low transmission delay while maintaining high data rate transmission.
  • the primary and secondary TRPs can independently transmit downlink control channels (eg PDCCH) on corresponding control resource sets and search spaces;
  • downlink control channels eg PDCCH
  • the primary TRP may configure corresponding control resource sets and search spaces for the primary and secondary TRPs.
  • a control resource set may be assigned a corresponding identification index, which may be referred to as CORESETPoolIndex.
  • the primary TRP may correspond to a control resource set with a CORESETPoolIndex value of 0 and the secondary TRP may correspond to a control resource set with a CORESETPoolIndex value of 1.
  • the primary TRP may also send control channel indication information to the terminal device 120 to indicate that a downlink control channel (eg, PDCCH) is received over the corresponding control resource set and search space through at least one of the primary TRP or the secondary TRP.
  • the master TRP may also carry the control channel indication information through at least one of RRC signaling, MAC control element (Control Element, CE), downlink control information (Downlink Control Information, DCI), and the like.
  • Figure 9A illustrates an exemplary MAC control element for carrying control channel indication information, according to an embodiment.
  • the MAC control element includes the following fields.
  • Field 1 CORESETPoolIndex corresponding to different C i. This field indicates the activation/deactivation state of the control resource set corresponding to the CORESETPoolIndex whose value is i, and the length of the field is 1 bit.
  • the terminal device uses the control resource set corresponding to the CORESETPoolIndex whose value is 1 to receive and decode the PDCCH.
  • the control resource set of only one of the primary and secondary TRPs is in an active state to transmit the PDCCH signal, thus corresponding to the Single-PDCCH scenario.
  • the control resource sets of both the primary and secondary TRPs are in an active state to transmit PDCCH signals, thus corresponding to the scenario of Multi-PDCCH. That is to say, in the embodiment, the Multi-PDCCH and Single-PDCCH states of the communication system can be reflected through the values of CORESETPoolIndex corresponding to different TRPs.
  • Field 2 Serving Cell ID. This field may indicate the identity of the serving cell to which the MAC control element is applied, and the length of the field is, for example, 5 bits.
  • Field 3 BWP ID. This field may indicate the identifier of the part of the carrier bandwidth to which the MAC control unit is applied, and the length of the field is, for example, 2 bits.
  • FIG. 9B illustrates an exemplary MAC control element for carrying a TCI status configuration indication, according to an embodiment.
  • the terminal device 120 may be notified of the TCI state configuration used to receive the PDCCH through the MAC control element.
  • the MAC control element may include a serving cell ID, a control resource set ID, and a TCI state ID.
  • the serving cell ID field may indicate the serving cell identifier to which the MAC control element is applied, and the length of the field is, for example, 5 bits.
  • the serving cell ID field may indicate the corresponding control resource set, and the length of the field is, for example, 4 bits.
  • the TCI state ID field may indicate the corresponding TCI state, and the length of the field is, for example, 7 bits. This TCI state applies to the control resource set indicated by the control resource set ID.
  • the method 1000 may be performed by a first TRP, where the first TRP and the second TRP jointly serve a particular terminal device.
  • the method 1000 can include providing measurement configuration information to the terminal device, the measurement configuration information specifying at least measuring the first TRP and the second TRP (block 1005); receiving a measurement report from the terminal device, the measurement report including the measurement quality of at least the first TRP and the second TRP (block 1010); and based on at least the first TRP and the second TRP Second, the measured quality of the TRP, the TRP serving the specific terminal device is updated (block 1015).
  • updating the TRP serving a specific terminal device includes determining that the second TRP will become the primary TRP serving the terminal device based on the relative relationship between the measured qualities of the first TRP and the second TRP satisfying a first threshold
  • updating the TRP serving the specific terminal device further includes: based on the measurement quality of the second TRP being less than the second threshold and the measurement quality of the third TRP being better than the measurement quality of the second TRP, determining to replace the third TRP with the third TRP.
  • Two TRPs serve the terminal equipment.
  • the method further includes sending a corresponding TRP update request message to the base station based on updating the TRP serving the specific terminal device.
  • the update request message includes one of the following: the second TRP will become the primary TRP of the serving terminal device; or the third TRP will replace the second TRP to become the secondary TRP of the serving terminal device.
  • the method further includes receiving a TRP update confirmation message from the base station.
  • the confirmation message indicates at least one of the following: the second TRP will become the primary TRP of the serving terminal device, the first TRP will become the secondary TRP of the serving terminal device; the third TRP will replace the second TRP to become the secondary TRP of the serving terminal device ; or the second TRP will become the primary TRP serving the terminal device, and the third TRP will replace the first TRP and become the secondary TRP serving the terminal device.
  • the method further includes sending a radio resource control RRC reconfiguration message to the terminal device to instruct the terminal device to perform at least one of the following: establish a primary connection with the second TRP and establish a secondary connection with the first TRP; A secondary connection is established with the third TRP; or a primary connection is established with the second TRP, and a secondary connection is established with the third TRP.
  • the method further includes, in response to the first TRP being a secondary TRP serving the terminal device, receiving a TRP update control message from the base station, and performing the following operations: responsive to the update control message indicating that the first TRP is to be the terminal device's secondary TRP
  • the master TRP prepares layer 2 resources and sends a TRP update confirmation message to the base station; or in response to the update control message indicating that the first TRP does not serve the terminal device, releases the connection with the terminal device.
  • FIG. 11A illustrates another example method for a Multi-TRP wireless communication system according to an embodiment.
  • the method 1100 may be performed by a base station, and the base station controls a plurality of transmission and reception points TRP to jointly serve a specific terminal device. As shown in FIG.
  • the method in response to the first TRP and the second TRP being the primary TRP and the secondary TRP serving the terminal device, respectively, the method includes providing the first TRP with measurement configuration information for the terminal device, the measurement configuration information specifying The terminal device measures at least the first TRP and the second TRP (block 1105); and receives a first update request message from the first TRP indicating that the second TRP will be the primary TRP serving the terminal device, the first update request message The TRP will become the secondary TRP serving the terminal device (block 1110).
  • the method further includes sending a control message to the second TRP to indicate that the second TRP will become the primary TRP serving the terminal device.
  • the method further includes: receiving a measurement report of the terminal device from the first TRP, the measurement report including the measurement quality of each TRP; based on the measurement quality of the first TRP being lower than a third threshold and the measurement of the third TRP The quality is better than the measured quality of the first TRP, and it is determined that the third TRP will become the secondary TRP serving the terminal device.
  • the method further includes: sending a control message to the first TRP to indicate that the first TRP does not serve the terminal device; sending a control message to the second TRP to indicate that the second TRP will become the primary TRP serving the terminal device ; and send a control message to the third TRP to indicate that the third TRP will become the secondary TRP serving the terminal device.
  • the method further includes receiving a second update request message from the first TRP, the second update request message indicating that the third TRP will replace the second TRP as the secondary TRP serving the terminal device.
  • the method further comprises: sending a control message to the second TRP to indicate that the second TRP does not serve the terminal device; and sending a control message to the third TRP to indicate that the third TRP is to become a secondary device serving the terminal device TRP.
  • the method further includes sending an acknowledgement message to the first TRP for the first or second update request message.
  • Method 1150 may be performed by a terminal device, where the terminal device is co-served by a first TRP and a second TRP, the first TRP being the primary TRP and the second TRP being the secondary TRP.
  • the method includes: measuring the first TRP and the second TRP based on the measurement configuration information received from the first TRP (block 1155); and satisfying a first threshold based on the relative relationship of the measurement quality of the first TRP and the second TRP, A measurement report is sent to the first TRP, the measurement report including the measurement quality of at least the first TRP and the second TRP (block 1160).
  • the method further includes measuring the third TRP based on the measurement configuration information, and the measurement report further includes the measurement quality of the third TRP.
  • the method further includes receiving a radio resource control RRC reconfiguration message from the primary TRP, and performing at least one of the following: establishing a primary connection with the second TRP, establishing a secondary connection with the first TRP; The TRP establishes a secondary connection; or a primary connection is established with the second TRP, and a secondary connection is established with the third TRP.
  • FIGS. 12A and 12B Exemplary satellite communication scenarios to which the technical solutions according to the embodiments of the present disclosure may be applied are described below with reference to FIGS. 12A and 12B .
  • NTN non-terrestrial networks
  • wireless communication system 1200 includes satellite 1210, TRP 1 to TRP 3, and terminal device 1220.
  • the satellite 1210 and each TRP can be configured to be coupled to each other via a wireless link, and each TRP can serve as an Ancillary Terrestrial Component (ATC) for the satellite 1210 to improve the coverage performance of the satellite 1210 .
  • ATC Ancillary Terrestrial Component
  • the TRP can also be installed in the air, for example, it can be implemented as a UAV with TRP function, and can be flexibly deployed in cooperation with satellites in emergency situations such as natural disasters, wars, etc. that cause damage to ground infrastructure.
  • TRP 1 and TRP 2 may be configured to communicate with end devices 1220 over wireless links, respectively, forming a multi-TRP system serving end devices 1220.
  • TRP 1 may be the primary TRP of the serving terminal device 1220
  • TRP 2 may be the secondary TRP of the serving terminal device 1220.
  • the satellite 1210 may comprise any type of orbiting satellite, such as a Geosynchronous Eearth Orbit (GEO), a Medium Earth Orbit (MEO), a Low Earth Orbit (LEO).
  • GEO Geosynchronous Eearth Orbit
  • MEO Medium Earth Orbit
  • LEO Low Earth Orbit
  • satellite and satellite communication device are used interchangeably unless the context clearly dictates otherwise.
  • Satellite 1210 may correspond to the base station in FIG. 1 .
  • each TRP may perform various operations including primary and secondary TRP switching or replacement according to the present disclosure to provide services for the terminal device.
  • the wireless communication system 1250 includes satellites 1210 - 1 to 1210 - 3 , and a terminal device 1220 .
  • Each satellite 1210-1 to 1210-3 may be located in a low orbit to provide coverage for terminal devices, eg, each satellite may communicate with the terminal devices using beamforming techniques.
  • multiple satellites may serve as TRPs to serve terminal equipment 1220 simultaneously, and the multiple satellites may form a multi-TRP system serving terminal equipment 1220 .
  • satellite 1210-1 may be the primary TRP for kiosk device 1220 and satellite 1210-2 may be the secondary TRP for kiosk device 1220.
  • satellite 1210-1 or 1210-2 itself, other satellites, or devices coupled to satellites 1210-1 and 1210-2 may correspond to the base station in FIG. 1 .
  • Satellites 1210-1 to 1210-3 may include low-orbit satellites.
  • both the low-orbit satellite itself and the terminal equipment may have mobility. Unless the moving speed of the terminal equipment is very fast, it is generally considered that the operations regarding mobility management are caused by the movement of the low-orbiting satellites in the air.
  • each satellite may perform various operations including primary and secondary TRP exchange or secondary TRP replacement according to the present disclosure to serve terminal devices.
  • the satellite 1210-1 and the satellite 1210-2 form a multi-TRP system serving the terminal device 1220, and the satellite 1210-1 is Primary TRP, satellite 1210-2 is secondary TRP.
  • the movement is such that the relative relationship of the measured qualities of satellite 1210-1 and satellite 1210-2 satisfies the threshold relationship.
  • the satellite 1210-2 becomes the primary TRP and the satellite 1210-1 becomes the secondary TRP.
  • the movement is such that the relative relationship of the measured qualities of satellite 1210-1 and satellite 1210-3 satisfies the threshold relationship.
  • the satellite 1210-3 replaces the satellite 1210-1 to assume the role of the secondary TRP, serving the terminal device 1220 together with the primary TRP (satellite 1210-2).
  • the primary and secondary TRP roles may similarly be exchanged between satellite 1210-3 and satellite 1210-2, and other satellites (not shown) may join to perform primary and secondary TRP exchange or secondary TRP replacement operations.
  • machine-executable instructions in a machine-readable storage medium or program product may be configured to perform operations corresponding to the above-described apparatus and method embodiments.
  • the embodiments of the machine-readable storage medium or program product will be apparent to those skilled in the art, and thus the description will not be repeated.
  • Machine-readable storage media and program products for carrying or including the above-described machine-executable instructions are also within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • the above-described series of processes and devices may also be implemented by software and/or firmware.
  • FIG. 13 is a block diagram showing an example structure of a personal computer as an information processing apparatus that can be employed in an embodiment of the present disclosure.
  • the personal computer may correspond to the above-described exemplary terminal device according to the present disclosure.
  • a central processing unit (CPU) 1301 executes various processes according to a program stored in a read only memory (ROM) 1302 or a program loaded from a storage section 1308 to a random access memory (RAM) 1303 .
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1301 executes various processes and the like is also stored as necessary.
  • the CPU 1301, the ROM 1302, and the RAM 1303 are connected to each other via a bus 1304.
  • Input/output interface 1305 is also connected to bus 1304 .
  • the following components are connected to the input/output interface 1305: an input section 1306, including a keyboard, a mouse, etc.; an output section 1307, including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; a storage section 1308 , including a hard disk, etc.; and a communication section 1309, including a network interface card such as a LAN card, a modem, and the like.
  • the communication section 1309 performs communication processing via a network such as the Internet.
  • a driver 1310 is also connected to the input/output interface 1305 as required.
  • a removable medium 1311 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc. is mounted on the drive 1310 as needed, so that a computer program read therefrom is installed into the storage section 1308 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1311 .
  • such a storage medium is not limited to the removable medium 1311 shown in FIG. 13 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable medium 1311 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including minidiscs (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be the ROM 1302, a hard disk contained in the storage section 1308, or the like, in which programs are stored and distributed to users together with the devices containing them.
  • the base stations mentioned in this disclosure may be implemented as any type of evolved Node Bs (gNBs), such as macro gNBs and small gNBs.
  • gNBs evolved Node Bs
  • Small gNBs may be gNBs covering cells smaller than macro cells, such as pico gNBs, micro gNBs, and home (femto) gNBs.
  • the base station may be implemented as any other type of base station, such as a NodeB and a Base Transceiver Station (BTS).
  • BTS Base Transceiver Station
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (Remote Radio Heads, RRHs) disposed at a place different from the main body.
  • a main body also referred to as a base station device
  • RRHs Remote Radio Heads
  • various types of terminals to be described below can each operate as a base station by temporarily or semi-persistently performing a base station function.
  • the terminal devices referred to in this disclosure may be implemented as mobile terminals such as smartphones, tablet personal computers (PCs), notebook PCs, portable game terminals, portable/dongles type mobile routers and digital cameras) or in-vehicle terminals (such as car navigation equipment).
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module comprising a single die) mounted on each of the aforementioned terminals.
  • the TRP may have a similar configuration to the gNB. Specifically, the TRP may only have the sending and receiving functions in the figure, may itself have some control functions of layer 2 or layer 3, and may even have completely or substantially the same functions as the gNB.
  • gNB 1400 includes multiple antennas 1410 and base station equipment 1420.
  • the base station apparatus 1420 and each antenna 1410 may be connected to each other via an RF cable.
  • the gNB 1400 (or the base station device 1420) here may correspond to the above-mentioned electronic devices 300A, 1300A and/or 1500B.
  • Each of the antennas 1410 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used for the base station apparatus 1420 to transmit and receive wireless signals.
  • gNB 1400 may include multiple antennas 1410.
  • multiple antennas 1410 may be compatible with multiple frequency bands used by gNB 1400.
  • the base station apparatus 1420 includes a controller 1421 , a memory 1422 , a network interface 1423 , and a wireless communication interface 1425 .
  • the controller 1421 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 1420 .
  • the controller 1421 generates data packets from the data in the signal processed by the wireless communication interface 1425, and communicates the generated packets via the network interface 1423.
  • the controller 1421 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 1421 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 1422 includes RAM and ROM, and stores programs executed by the controller 1421 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1423 is a communication interface for connecting the base station apparatus 1420 to the core network 1424 .
  • the controller 1421 may communicate with core network nodes or further gNBs via the network interface 1423 .
  • gNB 1400 and core network nodes or other gNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 1423 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 1423 is a wireless communication interface, the network interface 1423 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1425 .
  • Wireless communication interface 1425 supports any cellular communication scheme, such as Long Term Evolution (LTE), LTE-Advanced and NR, and provides wireless connectivity to terminals located in the cell of gNB 1400 via antenna 1410.
  • the wireless communication interface 1425 may generally include, for example, a baseband (BB) processor 1426 and RF circuitry 1427 .
  • the BB processor 1426 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) various types of signal processing.
  • L1 Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the BB processor 1426 may have some or all of the above-described logical functions.
  • the BB processor 1426 may be a memory storing a communication control program, or a module including a processor and associated circuitry configured to execute the program.
  • the update procedure may cause the functionality of the BB processor 1426 to change.
  • the module may be a card or blade that is inserted into a slot of the base station device 1420. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1427 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1410 .
  • FIG. 14 shows an example in which one RF circuit 1427 is connected to one antenna 1410 , the present disclosure is not limited to this illustration, but one RF circuit 1427 may connect a plurality of antennas 1410 at the same time.
  • the wireless communication interface 1425 may include multiple BB processors 1426 .
  • multiple BB processors 1426 may be compatible with multiple frequency bands used by gNB 1400.
  • the wireless communication interface 1425 may include a plurality of RF circuits 1427.
  • multiple RF circuits 1427 may be compatible with multiple antenna elements.
  • FIG. 14 shows an example in which the wireless communication interface 1425 includes multiple BB processors 1426 and multiple RF circuits 1427 , the wireless communication interface 1425 may also include a single BB processor 1426 or a single RF circuit 1427 .
  • gNB 15 is a block diagram illustrating a second example of a schematic configuration of a gNB to which the techniques of this disclosure may be applied.
  • gNB 1530 includes multiple antennas 1540, base station equipment 1550 and RRH 1560.
  • the RRH 1560 and each antenna 1540 may be connected to each other via an RF cable.
  • the base station apparatus 1550 and the RRH 1560 may be connected to each other via a high-speed line such as an optical fiber cable.
  • the gNB 1530 (or the base station device 1550) here may correspond to the above-mentioned electronic devices 300A, 1300A and/or 1500B.
  • Each of the antennas 1540 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1560 to transmit and receive wireless signals.
  • gNB 1530 may include multiple antennas 1540.
  • multiple antennas 1540 may be compatible with multiple frequency bands used by gNB 1530.
  • the base station apparatus 1550 includes a controller 1551 , a memory 1552 , a network interface 1553 , a wireless communication interface 1555 , and a connection interface 1557 .
  • the controller 1551 , the memory 1552 and the network interface 1553 are the same as the controller 1421 , the memory 1422 and the network interface 1423 described with reference to FIG. 14 .
  • Wireless communication interface 1555 supports any cellular communication scheme (such as LTE, LTE-Advanced and NR) and provides wireless communication via RRH 1560 and antenna 1540 to terminals located in a sector corresponding to RRH 1560.
  • Wireless communication interface 1555 may generally include, for example, BB processor 1556 .
  • the BB processor 1556 is the same as the BB processor 1426 described with reference to FIG. 14, except that the BB processor 1556 is connected to the RF circuit 1564 of the RRH 1560 via the connection interface 1557.
  • the wireless communication interface 1555 may include multiple BB processors 1556 .
  • multiple BB processors 1556 may be compatible with multiple frequency bands used by gNB 1530.
  • FIG. 15 shows an example in which the wireless communication interface 1555 includes multiple BB processors 1556
  • the wireless communication interface 1555 may also include a single BB processor 1556 .
  • the connection interface 1557 is an interface for connecting the base station apparatus 1550 (the wireless communication interface 1555 ) to the RRH 1560.
  • the connection interface 1557 may also be a communication module for connecting the base station apparatus 1550 (the wireless communication interface 1555 ) to the communication in the above-mentioned high-speed line of the RRH 1560 .
  • RRH 1560 includes connection interface 1561 and wireless communication interface 1563.
  • connection interface 1561 is an interface for connecting the RRH 1560 (the wireless communication interface 1563 ) to the base station apparatus 1550.
  • the connection interface 1561 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1563 transmits and receives wireless signals via the antenna 1540 .
  • Wireless communication interface 1563 may typically include RF circuitry 1564, for example.
  • RF circuitry 1564 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 1540 .
  • FIG. 15 shows an example in which one RF circuit 1564 is connected to one antenna 1540 , the present disclosure is not limited to this illustration, but one RF circuit 1564 may connect multiple antennas 1540 at the same time.
  • the wireless communication interface 1563 may include a plurality of RF circuits 1564 .
  • multiple RF circuits 1564 may support multiple antenna elements.
  • FIG. 15 shows an example in which the wireless communication interface 1563 includes multiple RF circuits 1564 , the wireless communication interface 1563 may include a single RF circuit 1564 .
  • FIG. 16 is a block diagram showing an example of a schematic configuration of a smartphone 1600 to which the techniques of the present disclosure may be applied.
  • Smartphone 1600 includes processor 1601, memory 1602, storage device 1603, external connection interface 1604, camera device 1606, sensor 1607, microphone 1608, input device 1609, display device 1610, speaker 1611, wireless communication interface 1612, one or more Antenna switch 1615 , one or more antennas 1616 , bus 1617 , battery 1618 , and auxiliary controller 1619 .
  • the smart phone 1600 (or the processor 1601 ) here may correspond to the above-mentioned terminal device 300B and/or 1500A.
  • the processor 1601 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and further layers of the smartphone 1600 .
  • the memory 1602 includes RAM and ROM, and stores data and programs executed by the processor 1601 .
  • the storage device 1603 may include storage media such as semiconductor memories and hard disks.
  • the external connection interface 1604 is an interface for connecting an external device such as a memory card and a Universal Serial Bus (USB) device to the smartphone 1600 .
  • USB Universal Serial Bus
  • the camera 1606 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 1607 may include a set of sensors such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 1608 converts the sound input to the smartphone 1600 into an audio signal.
  • the input device 1609 includes, for example, a touch sensor, a keypad, a keyboard, buttons, or switches configured to detect a touch on the screen of the display device 1610, and receives operations or information input from a user.
  • the display device 1610 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1600 .
  • the speaker 1611 converts the audio signal output from the smartphone 1600 into sound.
  • the wireless communication interface 1612 supports any cellular communication scheme such as LTE, LTE-Advanced and NR, and performs wireless communication.
  • Wireless communication interface 1612 may typically include, for example, BB processor 1613 and RF circuitry 1614.
  • the BB processor 1613 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 1614 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 1616 .
  • the wireless communication interface 1612 may be a chip module on which the BB processor 1613 and the RF circuit 1614 are integrated. As shown in FIG.
  • the wireless communication interface 1612 may include a plurality of BB processors 1613 and a plurality of RF circuits 1614 .
  • FIG. 16 shows an example in which the wireless communication interface 1612 includes multiple BB processors 1613 and multiple RF circuits 1614 , the wireless communication interface 1612 may include a single BB processor 1613 or a single RF circuit 1614 .
  • the wireless communication interface 1612 may support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1612 may include the BB processor 1613 and the RF circuit 1614 for each wireless communication scheme.
  • Each of the antenna switches 1615 switches the connection destination of the antenna 1616 among a plurality of circuits included in the wireless communication interface 1612 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 1616 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1612 to transmit and receive wireless signals.
  • smartphone 1600 may include multiple antennas 1616 .
  • FIG. 16 shows an example in which the smartphone 1600 includes multiple antennas 1616
  • the smartphone 1600 may also include a single antenna 1616 .
  • the smartphone 1600 may include an antenna 1616 for each wireless communication scheme.
  • the antenna switch 1615 can be omitted from the configuration of the smartphone 1600 .
  • the bus 1617 connects the processor 1601, the memory 1602, the storage device 1603, the external connection interface 1604, the camera device 1606, the sensor 1607, the microphone 1608, the input device 1609, the display device 1610, the speaker 1611, the wireless communication interface 1612, and the auxiliary controller 1619 to each other connect.
  • the battery 1618 provides power to the various blocks of the smartphone 1600 shown in FIG. 16 via feeders, which are partially shown in phantom in the figure.
  • the auxiliary controller 1619 operates the minimum necessary functions of the smartphone 1600, eg, in sleep mode.
  • FIG. 17 is a block diagram showing an example of a schematic configuration of a car navigation apparatus 1720 to which the techniques of the present disclosure can be applied.
  • the car navigation device 1720 includes a processor 1721, a memory 1722, a global positioning system (GPS) module 1724, a sensor 1725, a data interface 1726, a content player 1727, a storage medium interface 1728, an input device 1729, a display device 1730, a speaker 1731, a wireless A communication interface 1733 , one or more antenna switches 1736 , one or more antennas 1737 , and a battery 1738 .
  • the car navigation device 1720 (or the processor 1721 ) here may correspond to the above-mentioned terminal device 300B and/or 1500A.
  • the processor 1721 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 1720 .
  • the memory 1722 includes RAM and ROM, and stores data and programs executed by the processor 1721 .
  • the GPS module 1724 measures the position (such as latitude, longitude, and altitude) of the car navigation device 1720 using GPS signals received from GPS satellites.
  • Sensors 1725 may include a set of sensors, such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 1726 is connected to, for example, the in-vehicle network 1741 via a terminal not shown, and acquires data generated by the vehicle, such as vehicle speed data.
  • the content player 1727 reproduces content stored in storage media such as CDs and DVDs, which are inserted into the storage media interface 1728 .
  • the input device 1729 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1730, and receives operations or information input from a user.
  • the display device 1730 includes a screen such as an LCD or OLED display, and displays images or reproduced content of a navigation function.
  • the speaker 1731 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1733 supports any cellular communication scheme such as LTE, LTE-Advanced and NR, and performs wireless communication.
  • Wireless communication interface 1733 may generally include, for example, BB processor 1734 and RF circuitry 1735.
  • the BB processor 1734 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1735 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1737 .
  • the wireless communication interface 1733 can also be a chip module on which the BB processor 1734 and the RF circuit 1735 are integrated. As shown in FIG.
  • the wireless communication interface 1733 may include a plurality of BB processors 1734 and a plurality of RF circuits 1735 .
  • FIG. 17 shows an example in which the wireless communication interface 1733 includes multiple BB processors 1734 and multiple RF circuits 1735
  • the wireless communication interface 1733 may also include a single BB processor 1734 or a single RF circuit 1735 .
  • the wireless communication interface 1733 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1733 may include the BB processor 1734 and the RF circuit 1735 for each wireless communication scheme.
  • Each of the antenna switches 1736 switches the connection destination of the antenna 1737 among a plurality of circuits included in the wireless communication interface 1733, such as circuits for different wireless communication schemes.
  • Each of the antennas 1737 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1733 to transmit and receive wireless signals.
  • the car navigation device 1720 may include a plurality of antennas 1737 .
  • FIG. 17 shows an example in which the car navigation device 1720 includes a plurality of antennas 1737
  • the car navigation device 1720 may also include a single antenna 1737 .
  • the car navigation device 1720 may include an antenna 1737 for each wireless communication scheme.
  • the antenna switch 1736 may be omitted from the configuration of the car navigation device 1720.
  • the battery 1738 provides power to the various blocks of the car navigation device 1720 shown in FIG. 17 via feeders, which are partially shown as dashed lines in the figure.
  • the battery 1738 accumulates power supplied from the vehicle.
  • the techniques of this disclosure may also be implemented as an in-vehicle system (or vehicle) 1740 that includes one or more blocks of a car navigation device 1720 , an in-vehicle network 1741 , and a vehicle module 1742 .
  • the vehicle module 1742 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 1741 .
  • An electronic device for a first transmission and reception point TRP wherein the first TRP and the second TRP jointly serve a specific terminal device, and the electronic device comprises a processing circuit configured to:
  • the first TRP and the second TRP being the primary and secondary TRPs serving the terminal device, respectively:
  • the measurement configuration information specifies at least the first TRP and the second TRP to be measured
  • the measurement report including the measurement quality of at least the first TRP and the second TRP;
  • updating the TRP serving the specific terminal device includes: determining that the second TRP will become the primary TRP serving the terminal device based on the relative relationship between the measurement quality of the first TRP and the second TRP satisfying a first threshold.
  • updating the TRP serving the specific terminal device further comprises:
  • the terminal device is served by the third TRP instead of the second TRP.
  • the secondary TRP will be the primary TRP serving the end device; or
  • the third TRP will replace the second TRP as the secondary TRP serving the terminal device.
  • processing circuit is further configured to receive a TRP update confirmation message from the base station, the confirmation message indicating at least one of the following:
  • the second TRP will become the primary TRP serving the terminal device, and the first TRP will become the secondary TRP serving the terminal device;
  • the third TRP will replace the second TRP as the secondary TRP serving the terminal device; or
  • the second TRP will become the primary TRP serving the terminal device, and the third TRP will replace the first TRP to become the secondary TRP serving the terminal device.
  • processing circuit is further configured to send a radio resource control RRC reconfiguration message to the terminal device to instruct the terminal device to perform at least one of the following:
  • a primary connection is established with the second TRP, and a secondary connection is established with the third TRP.
  • processing circuit is further configured to, in response to the first TRP being a secondary TRP serving the terminal device, receive a TRP update control message from a base station and perform the following operations:
  • the connection with the terminal device is released.
  • processing circuit is further configured to send control channel indication information to the terminal device to indicate that the physical downlink is received through at least one of the first TRP or the second TRP Link Control Channel PDCCH.
  • the first TRP and the base station are implemented as the same device or as separate devices;
  • the second TRP is implemented as a separate device or the same device as the base station; and/or
  • the first TRP and the second TRP are satellite communication equipment.
  • An electronic device for a base station wherein the base station controls a plurality of transmission and reception points TRP to jointly serve a specific terminal device, and the electronic device comprises a processing circuit configured to:
  • the first TRP and the second TRP being the primary and secondary TRPs serving the terminal device, respectively:
  • the measurement configuration information specifying that the terminal device measures at least the first TRP and the second TRP;
  • a first update request message from the first TRP is received, the first update request message indicates that the second TRP will become the primary TRP serving the terminal device, and the first TRP will become the secondary TRP serving the terminal device.
  • processing circuit is further configured to:
  • a control message is sent to the second TRP to indicate that the second TRP will become the primary TRP serving the terminal device.
  • processing circuit is further configured to:
  • the measurement report including the measurement quality of each TRP
  • the third TRP Based on the measurement quality of the first TRP being lower than the third threshold and the measurement quality of the third TRP being better than the measurement quality of the first TRP, it is determined that the third TRP will be the secondary TRP serving the terminal device.
  • a control message is sent to the third TRP to indicate that the third TRP will be the secondary TRP serving the terminal device.
  • processing circuit is further configured to:
  • a second update request message from the first TRP is received, the second update request message indicates that the third TRP will replace the second TRP as a secondary TRP serving the terminal device.
  • a control message is sent to the third TRP to indicate that the third TRP will be the secondary TRP serving the terminal device.
  • An acknowledgement message for the first or second update request message is sent to the first TRP.
  • the first TRP and the base station are implemented as the same device or as separate devices;
  • the second TRP is implemented as a separate device or the same device as the base station; and/or
  • the base station is a satellite communication device.
  • An electronic device for a terminal device wherein the terminal device is jointly served by a first TRP and a second TRP, the first TRP is a primary TRP, the second TRP is a secondary TRP, and the electronic device includes a processing circuit, the processing circuit is configured to:
  • a measurement report is sent to the first TRP, where the measurement report includes at least the measurement quality of the first TRP and the second TRP.
  • processing circuit is further configured to:
  • the third TRP is also measured, and the measurement report further includes the measurement quality of the third TRP.
  • a primary connection is established with the second TRP, and a secondary connection is established with the third TRP.
  • processing circuit is further configured to receive control channel indication information from the first TRP to receive the physical downlink via at least one of the first TRP or the second TRP Control channel PDCCH.
  • the first TRP and the second TRP being the primary and secondary TRPs serving the terminal device, respectively:
  • the measurement configuration information specifies at least the first TRP and the second TRP to be measured
  • the measurement report including the measurement quality of at least the first TRP and the second TRP;
  • updating the TRP serving the specific terminal device includes: determining that the second TRP will become the primary TRP serving the terminal device based on the relative relationship between the measurement quality of the first TRP and the second TRP satisfying a first threshold.
  • a method for a base station wherein the base station controls a plurality of transmission and reception points TRP to jointly serve a specific terminal device, the method comprising:
  • the first TRP and the second TRP being the primary and secondary TRPs serving the terminal device, respectively:
  • the measurement configuration information specifying that the terminal device measures at least the first TRP and the second TRP;
  • a first update request message from the first TRP is received, the first update request message indicates that the second TRP will become the primary TRP serving the terminal device, and the first TRP will become the secondary TRP serving the terminal device.
  • a method for a terminal device wherein the terminal device is jointly served by a first TRP and a second TRP, the first TRP being a primary TRP and the second TRP being a secondary TRP, the method comprising:
  • a measurement report is sent to the first TRP, where the measurement report includes at least the measurement quality of the first TRP and the second TRP.
  • a computer-readable storage medium having stored thereon one or more instructions that, when executed by one or more processing circuits of an electronic device, cause the electronic device to perform any of the items in clauses 23 to 25. one of the methods described.
  • An apparatus for wireless communication comprising means for performing the method of any of clauses 23 to 25.
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processing performed in time series in the stated order, but also processing performed in parallel or individually rather than necessarily in time series. Furthermore, even in the steps processed in time series, needless to say, the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及用于无线通信系统的电子设备、方法和存储介质。描述了针对多发送接收点(multi-TRP)的移动性管理的各种实施例。在一个实施例中,用于第一TRP的电子设备包括处理电路,该处理电路被配置为响应于第一TRP和第二TRP分别是服务终端设备的主TRP和辅TRP:向终端设备提供测量配置信息,接收来自终端设备的测量报告,以及至少基于第一TRP和第二TRP的测量质量更新服务特定终端设备的TRP。

Description

用于无线通信系统的电子设备、方法和存储介质
本申请要求于2020年7月21日递交的题为“用于无线通信系统的电子设备、方法和存储介质”的中国专利申请号202010704294.1的优先权。
技术领域
本公开一般地涉及无线通信系统和方法,并且具体地涉及针对多发送接收点(multiple Transmission and Reception Points,multi-TRP)的移动性管理技术。
背景技术
无线通信技术的发展和应用前所未有地满足了人们的语音和数据通信需求。为了改进无线通信性能,不同层面的技术不断被引用无线通信系统中。诸如新无线电(New Radio,NR)的已经或正在开发的无线通信系统将支持大规模连接、高容量、超可靠性和低时延。为了通过灵活的网络部署来提高通信可靠性、覆盖范围和网络容量,multi-TRP多发送接收点技术显得至关重要。
在multi-TRP网络部署中,单个终端设备可以与多个TRP保持连接。就此而言,对移动性管理方案的改进是期望的,以保证终端设备与多个TRP的通信质量和通信可靠性。
发明内容
本公开的第一方面涉及用于第一发送接收点TRP的电子设备,其中第一TRP与第二TRP共同服务特定终端设备。电子设备包括处理电路,处理电路被配置为响应于第一TRP和第二TRP分别是服务终端设备的主TRP和辅TRP:向终端设备提供测量配置信息,测量配置信息指定至少对第一TRP和第二TRP进行测量;接收来自终端设备的测量报告,测量报告包括至少第一TRP和第二TRP的测量质量;以及至少基于第一TRP和第二TRP的测量质量,更新服务特定终端设备的TRP。在一个实施例中,更新服务特定终端设备的TRP包括基于第一TRP和第二TRP的测量质量的相对关系满足第一阈值,确定第二TRP将成为服务终端设备的主TRP。
本公开的第二方面涉及用于基站的电子设备,其中基站控制多个发送接收点TRP共同服务特定终端设备。电子设备包括处理电路,处理电路被配置为响应于第一TRP和第二TRP分别是服务终端设备的主TRP和辅TRP:向第一TRP提供用于终端设备的测量配置 信息,测量配置信息指定终端设备至少对第一TRP和第二TRP测量;以及接收来自第一TRP的第一更新请求消息,第一更新请求消息指示第二TRP将成为服务终端设备的主TRP,第一TRP将成为服务终端设备的辅TRP。
本公开的第三方面涉及用于终端设备的电子设备,其中终端设备由第一TRP与第二TRP共同服务,第一TRP是主TRP,第二TRP是辅TRP。电子设备包括处理电路,处理电路被配置为:基于从第一TRP接收的测量配置信息,对第一TRP和第二TRP进行测量;以及基于第一TRP和第二TRP的测量质量的相对关系满足第一阈值,向第一TRP发送测量报告,测量报告包括至少第一TRP和第二TRP的测量质量。
本公开的第四方面涉及用于第一发送接收点TRP的方法,其中第一TRP与第二TRP共同服务特定终端设备。该方法包括响应于第一TRP和第二TRP分别是服务终端设备的主TRP和辅TRP:向终端设备提供测量配置信息,测量配置信息指定至少对第一TRP和第二TRP进行测量;接收来自终端设备的测量报告,测量报告包括至少第一TRP和第二TRP的测量质量;以及至少基于第一TRP和第二TRP的测量质量,更新服务特定终端设备的TRP。在一个实施例中,更新服务特定终端设备的TRP包括基于第一TRP和第二TRP的测量质量的相对关系满足第一阈值,确定第二TRP将成为服务终端设备的主TRP。
本公开的第五方面涉及用于基站的方法,其中基站控制多个发送接收点TRP共同服务特定终端设备。该方法包括响应于第一TRP和第二TRP分别是服务终端设备的主TRP和辅TRP:向第一TRP提供用于终端设备的测量配置信息,测量配置信息指定终端设备至少对第一TRP和第二TRP测量;以及接收来自第一TRP的第一更新请求消息,第一更新请求消息指示第二TRP将成为服务终端设备的主TRP,第一TRP将成为服务终端设备的辅TRP。
本公开的第六方面涉及用于终端设备的方法,其中终端设备由第一TRP与第二TRP共同服务,第一TRP是主TRP,第二TRP是辅TRP。该方法包括基于从第一TRP接收的测量配置信息,对第一TRP和第二TRP进行测量;以及基于第一TRP和第二TRP的测量质量的相对关系满足第一阈值,向第一TRP发送测量报告,测量报告包括至少第一TRP和第二TRP的测量质量。
本公开的第七方面涉及存储有一个或多个指令的计算机可读存储介质。在一些实施例中,该一个或多个指令可以在由电子设备的一个或多个处理器执行时,使电子设备执行根据本公开的各种实施例的方法。
本公开的第八方面涉及用于无线通信的装置,包括用于执行根据本公开实施例的各 方法的操作的部件或单元。
提供上述概述是为了总结一些示例性的实施例,以提供对本文所描述的主题的各方面的基本理解。因此,上述特征仅仅是例子并且不应该被解释为以任何方式缩小本文所描述的主题的范围或精神。本文所描述的主题的其他特征、方面和优点将从以下结合附图描述的具体实施方式而变得明晰。
附图说明
当结合附图考虑实施例的以下具体描述时,可以获得对本公开内容更好的理解。在各附图中使用了相同或相似的附图标记来表示相同或者相似的部件。各附图连同下面的具体描述一起包含在本说明书中并形成说明书的一部分,用来例示说明本公开的实施例和解释本公开的原理和优点。其中:
图1示出了根据本公开实施例的示例性多发送接收点(multi-TRP)无线通信系统。
图2A示出了根据本公开实施例的用于TRP的示例性电子设备。
图2B示出了根据本公开实施例的用于基站的示例性电子设备。
图2C示出了根据本公开实施例的用于终端设备的示例性电子设备。
图3示出了根据本公开实施例的用于测量配置和测量报告的示例性信令流程。
图4A至图4C分别示出了根据本公开实施例的用于基于测量报告管理TRP的示例性操作。
图5至图8示出了根据本公开实施例的用于实施TRP更新的示例性信令流程。
图9A示出了根据本公开实施例的用于携带控制信道指示信息的示例性MAC控制单元。
图9B示出了根据本公开实施例的用于携带TCI状态配置指示的示例性MAC控制单元。
图10、图11A和图11B示出了根据本公开实施例的用于通信的示例性方法。
图12A和图12B示出了可以应用根据本公开实施例的技术方案的示例性卫星通信场景。
图13是作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图。
图14是示出可以应用本公开的技术的gNB的示意性配置的第一示例的框图。
图15是示出可以应用本公开的技术的gNB的示意性配置的第二示例的框图。
图16是示出可以应用本公开的技术的智能电话的示意性配置的示例的框图。
图17是示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
虽然在本公开内容中所描述的实施例可能易于有各种修改和另选形式,但是其具体实施例在附图中作为例子示出并且在本文中被详细描述。但是,应当理解,附图以及对其的详细描述不是要将实施例限定到所公开的特定形式,而是相反,目的是要涵盖属于权利要求的精神和范围内的所有修改、等同和另选方案。
具体实施方式
以下描述根据本公开的设备和方法等各方面的代表性应用。这些例子的描述仅是为了增加上下文并帮助理解所描述的实施例。因此,对本领域技术人员而言明晰的是,以下所描述的实施例可以在没有具体细节当中的一些或全部的情况下被实施。在其他情况下,众所周知的过程步骤没有详细描述,以避免不必要地模糊所描述的实施例。其他应用也是可能的,本公开的方案并不限制于这些示例。
图1示出了根据实施例的示例性多发送接收点(multi-TRP)无线通信系统。如图1所示,无线通信系统100包括基站110、TRP 1至TRP 3、以及终端设备120。基站110和每个TRP可以被配置为通过有线线路或无线链路彼此耦接。TRP 1和TRP 2可以被配置为分别通过无线链路155和165与终端设备120进行通信,形成服务终端设备120的TRP集合。具体地,TRP 1可以是服务终端设备120的主TRP(Master TRP),TRP 2可以是服务终端设备120的辅TRP(Secondary TRP)。
基站110可以被配置为与网络(例如,蜂窝服务提供方的核心网、诸如公共交换电话网(PSTN)的电信网络和/或互联网)进行通信。由此,基站110可以便于终端设备120与其他终端设备或与网络之间通信。可选地,TRP之间可以设置有回程链路(如图1中虚线所示),以便于TRP之间同步无线网络配置信息或者终端设备上下文信息。例如,上述回程链路可以包括诸如光纤的有线线路。在无线通信系统100中,通过远离基站110布置TRP 1至TRP 3,扩展了基站110的覆盖范围,使终端设备120可以获得更好的服务质量。
在本文中,基站具有其通常含义的全部广度,并且至少包括作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的示例可以包括但不限于:GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的至少一者;WCDMA系统中的无线电网络控制器(RNC)和Node B中的至少一者;LTE和LTE-Advanced系统中的eNB;WLAN、 WiMAX系统中的接入点(AP);以及将要或正在开发的通信系统中对应的网络节点(例如5G New Radio(NR)系统中的gNB,eLTE eNB等)。本文中基站的部分功能也可以实现为在D2D、M2M以及V2V通信场景下对通信具有控制功能的实体,或者实现为在认知无线电通信场景下起频谱协调作用的实体。
在本文中,终端具有其通常含义的全部广度,例如终端可以为移动站(Mobile Station,MS)、用户设备(User Equipment,UE)等。终端可以实现为诸如移动电话、手持式设备、媒体播放器、计算机、膝上型电脑或平板电脑的设备或者几乎任何类型的无线设备。在一些情况下,终端可以使用多种无线通信技术进行通信。例如,终端可以被配置为使用GSM、UMTS、CDMA2000、LTE、LTE-Advanced、NR、WiMAX、WLAN、蓝牙等中的两者或更多者进行通信。在一些情况下,终端也可以被配置为仅使用一种无线通信技术进行通信。
在本文中,TRP具有其通常含义的全部广度,可以单独部署或者与基站一起部署使用。在实施例中,TRP可以仅具有发送接收功能,基站可以对与其耦接的TRP执行特定的控制功能。另选地,TRP可以自身具有层2或层3的一些控制功能,甚至可以具有与基站完全或基本相同的功能。
应理解,图1仅示出multi-TRP的多种布置中的一种;可以根据需要在任何适当的布置中实现本公开的实施例。例如,根据需要,基站110可以与任一TRP共址布置为同一实体,并且由该实体执行基站110和该TRP二者原本的功能和操作。
在一个实施例中,图1中与基站110耦接的多个TRP(即TRP 1至TRP 3)可以具有不同的小区ID(cell-ID),各TRP可以在相应控制资源集(Control Resource Set,CORESET)和搜索空间(SearchSpace)上各自独立地发送下行链路控制信道(例如PDCCH)。这样的无线通信系统100可以称为基于Multi-PDCCH的Multi-TRP通信系统。
在该实施例中,主TRP(即TRP 1)在基站110的控制下负责与终端设备120之间的无线电资源控制(RRC)连接和通信。辅TRP(即TRP 2)与终端设备120之间无RRC连接和通信。终端设备120的RRC上下文存储基站中,基站控制主TRP 1与终端设备120建立RRC连接和通信。从终端设备120的角度,主TRP 1对应小区的ServCellIndex值为0,辅TRP 2对应小区的ServCellIndex值不为0。
在该实施例中,主TRP 1与辅TRP 2共享主TRP 1中的MAC实体,使用各自的物理层资源以与终端设备120通信。在下行链路中,主TRP 1和辅TRP 2均提供控制信道和共享信道(例如PDCCH和PDSCH)传输,以各自发送控制信号和数据信号。对于各TRP之 间不具有回程链路或者回程链路受限的情况下,这种TRP集合中主、辅TRP独立发送控制信号的布置是有利的。
在该实施例中,在基站110控制下,通过主TRP 1向终端设备120配置对应于主TRP 1与辅TRP 2的控制资源集和搜索空间,主TRP 1与辅TRP 2分别使用相应的控制资源集和搜索空间向终端设备120发送PDCCH。相应地,终端设备可以通过盲检测主TRP 1与辅TRP 2的控制资源集和搜索空间解码接收各TRP的PDCCH,进而基于各PDCCH解码接收对应的PDSCH。
在另一个实施例中,图1中与基站110耦接的多个TRP(即TRP 1至TRP 3)可以具有相同的小区ID(cell-ID),仅主TRP 1可以发送下行链路控制信道(例如PDCCH)。这样的无线通信系统100可以称为基于Single-PDCCH的Multi-TRP通信系统。
在该实施例中,主TRP(即TRP 1)在基站110的控制下负责与终端设备120之间的无线电资源控制(RRC)连接和通信。辅TRP(即TRP 2)与终端设备120之间无RRC连接和通信。终端设备120的RRC上下文存储基站中,基站控制主TRP 1与终端设备120建立RRC连接和通信。
在该实施例中,主TRP 1与辅TRP 2共享主TRP 1中的MAC实体,使用各自的物理层资源以与终端设备120通信。在下行链路中,主TRP 1提供控制信道和共享信道(例如PDCCH和PDSCH)传输以发送控制信号和数据信号,辅TRP 2仅提供共享信道(例如PDSCH)传输以仅发送数据信号。
在该实施例中,在基站110控制下,仅主TRP 1可以使用相应的控制资源集和搜索空间向终端设备120发送PDCCH。相应地,终端设备可以通过盲检测主TRP 1的控制资源集和搜索空间解码接收主TRP 1的PDCCH,进而基于该PDCCH解码接收主TRP 1和辅TRP2二者的PDSCH。
在一个或多个实施例中,可以为主TRP 1和辅TRP 2的控制资源集分别设置不同的索引值,例如CORESETPoolIndex值;可以通过控制信令中的比特信息来指示各TRP的控制资源集的激活状态。具体地,在控制信令中,与控制资源集的CORESETPoolIndex对应的比特可以取值为0或1,分别表示相应控制资源集为去激活或激活状态。例如,控制信令中TRP 1的控制资源集的CORESETPoolIndex值设置为1,则该控制资源集可以由TRP 1用于发送PDCCH。这样,可以通过与CORESETPoolIndex对应的信息比特指示终端设备120在对应的控制资源集和搜索空间上解码接收PDCCH。
在终端设备120移动的场景下,其与TRP 1和TRP 2的链路155和165会质量恶化 甚至丢失。相应地,终端设备120将无法从多个TRP接收下行链路信号,对例如通信速率造成负面影响。特别地,在Single-PDCCH的实施例中,如果与主TRP 1的链路155质量恶化或丢失,则终端设备120将因为无法正确接收解码PDCCH而不能接收解码来自其他任何TRP的下行链路信号。因此,针对例如无线通信系统100的multi-TRP场景的移动性管理方案是期望的。
在本公开的实施例中,终端设备120可以基于测量配置信息对为其提供服务的TRP集合中的TRP成员进行测量。至少基于TRP成员的测量质量,可以更新服务终端设备120的TRP集合。例如,可以交换TRP集合中TRP成员的主TRP和辅TRP的角色。这样,主TRP的测量质量总是较高的,从而避免由于主TRP质量恶化而导致的TRP切换以及相应较长的切换时延。又例如,可以用TRP集合外的TRP替换TRP集合中质量恶化的辅TRP,从而保证TRP集合中的TRP成员均是质量较高的TRP,避免TRP切换以及相应较长的切换时延。
在本公开的实施例中,可以基于为终端设备120提供服务的TRP成员的测量质量的相对关系触发TRP测量结果上报事件,并且可以通过特定的信令流程在较短的时间内完成对服务终端设备120的TRP集合的更新,如以下详细描述的。以下将参照图1中无线通信系统100的上下文描述根据本公开的各种实施例。
图2A示出了根据实施例的用于TRP的示例性电子设备。图2A所示的电子设备220可以包括各种单元以实现根据本公开的各种实施例。电子设备200可以包括测量处理单元222和TRP管理单元224。在不同实施方式中,电子设备200可以实现为图1中的任一TRP或其一部分,或者可以实现为用于控制该TRP或以其他方式与该TRP相关的设备。以下结合TRP描述的各种操作可以由电子设备200的单元222和224或者其他可能的单元实现。
电子设备220可以用于主TRP或者与主TRP相关联。主TRP例如是图1中的TRP 1。在一个实施例中,电子设备220的测量处理单元222可以被配置为响应于TRP 1是服务终端设备120的主TRP,向终端设备120提供测量配置信息。该测量配置信息指定至少对TRP 1和一个或多个其他TRP(例如TRP 2)进行测量。测量处理单元222还可以被配置为接收来自终端设备120的测量报告,该测量报告包括TRP 1以及一个或多个其他TRP的测量质量。在实施例中,电子设备220的TRP管理单元224可以被配置为至少基于TRP 1和一个或多个其他TRP的测量质量,更新服务终端设备120的TRP。
更新服务终端设备120的TRP可以包括更新TRP集合中的成员或者更新TRP集合中 成员的角色。例如,更新服务终端设备120的TRP可以包括基于TRP 1和TRP 2的测量质量的相对关系满足第一阈值,确定交换TRP 1和TRP 2的角色使TRP 2成为服务终端设备120的主TRP。
电子设备220可以用于辅TRP或者与辅TRP相关联。辅TRP例如是图1中的TRP 2。在一个实施例中,电子设备220的测量处理单元222可以被配置为响应于TRP 2是服务终端设备120的辅TRP,从基站110接收TRP更新控制消息。电子设备220的TRP管理单元224可以被配置为响应于TRP更新控制消息指示TRP 2将成为终端设备120的主TRP,准备层2资源,并向基站110发送TRP更新确认消息。在另一个实施例中,电子设备220的测量处理单元222可以被配置为响应于更新控制消息指示TRP 2不服务终端设备120,释放与终端设备120的连接。
图2B示出了根据实施例的用于基站的示例性电子设备。图2B所示的电子设备240可以包括各种单元以实现根据本公开的各种实施例。电子设备240可以包括测量处理单元242和TRP管理单元244。在不同实施方式中,电子设备240可以实现为图1中的基站110或其一部分,或者可以实现为用于控制基站110或以其他方式与基站110相关的设备(例如基站控制器)或该设备的一部分。以下结合基站描述的各种操作可以由电子设备240的单元242和244或者其他可能的单元实现。
参照图1中的无线通信系统100的上下文,在实施例中,电子设备240的测量处理单元242可以被配置为响应于TRP 1和TRP 2分别是服务终端设备120的主TRP和辅TRP,向TRP 1提供用于终端设备120的测量配置信息。该测量配置信息指定终端设备120至少对TRP 1和TRP 2测量。电子设备240的TRP管理单元244可以被配置为接收来自TRP 1的TRP更新请求消息。TRP更新请求消息可以请求更新TRP集合中的成员或者更新TRP集合中成员的角色。例如,该更新请求消息指示TRP 2将成为服务终端设备120的主TRP,TRP 1将成为服务述终端设备120的辅TRP。TRP管理单元244还可以被配置为基于该更新请求消息进行相应的处理。
图2C示出了根据实施例的用于终端设备的示例性电子设备。图2C所示的电子设备260可以包括各种单元以实现根据本公开的各种实施例。电子设备260可以包括测量处理单元262和连接管理单元264。在不同实施方式中,电子设备260可以被实现为图1中的终端设备120或其一部分。以下结合终端设备描述的各种操作可以由电子设备260的单元262和264或者其他可能的单元实现。
同样参照图1中的无线通信系统100的上下文,其中终端设备120由TRP 1与TRP  2共同服务,TRP 1是主TRP,TRP 2是辅TRP。在实施例中,电子设备260的测量处理单元262可以被配置为基于从TRP 1接收的测量配置信息,对TRP 1以及至少TRP 2进行测量。测量处理单元262还可以被配置为基于TRP 1和TRP 2的测量质量的相对关系满足第一阈值,向TRP 1发送测量报告。该测量报告可以包括至少TRP 1和TRP 2的测量质量。电子设备260的连接管理单元264可以被配置为在主TRP的控制下与各TRP建立连接或释放连接。
在实施例中,电子设备220至260可以以芯片级来实现,或者可以通过包括其他部件(例如图中以虚线示出的无线电部件)以设备级来实现。例如,各电子设备可以作为整机形式的通信设备工作。
应注意,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。其中,处理电路可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟和数字的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)这样的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
以上参考图2A至图2C描述了根据实施例的示例性电子设备和一般性操作。以下将进一步描述这些操作的细节。
测量配置与测量报告
图3示出了根据实施例的用于测量配置和测量报告的示例性信令流程。基站110、主TRP 1和终端设备120可以通过各自的测量处理单元来执行该信令流程。
如图3所示,在终端设备120与主TRP 1、辅TRP 2建立连接之后,在基站110的控制下,主TRP 1将测量配置信息发送给处于RRC连接(RRC_CONNECTED)状态的终端设备120。接着,终端设备120基于该测量配置信息对包括主TRP 1在内的各TRP执行测量,并且响应于测量报告事件被触发而向主TRP 1发送测量报告。可选地,主TRP 1可以将原始测量报告或经处理的测量报告发送给基站110。
测量配置信息可以指定终端设备120的测量对象。除了主TRP 1和辅TRP 2之外,测量对象还可以包括一个或多个其他TRP,例如终端设备120基于同步信号、广播信号等(例如NR中的SS/PBCH)检测到的TRP 3。附加地,测量配置信息还可以指定终端设备 120要测量的信号。例如,可以指定终端设备120通过测量诸如CSI-RS的参考信号来获得主TRP 1和辅TRP 2的测量质量,并且通过测量诸如SS/PBCH的同步信号、广播信号等来获得TRP 3的测量质量。
在本公开中,TRP的测量质量可以指针对该TRP的测量结果所反映的链路质量。可以通过针对主TRP、辅TRP测得的参考信号接收功率(Reference Signal Received Power,RSRP)、参考信号接收质量(Reference Signal Received Quality,RSRQ)、参考信号-信号噪声干扰比(Reference Signal-Signal to Interference plus Noise Ratio,RS-SINR)或者信号噪声干扰比(SINR)来反映相应的测量质量。
测量配置信息还可以指定触发终端设备120发送测量报告的事件类型,使得终端设备120在测量中出现该事件类型的情况下向主TRP 1发送测量报告。触发测量报告的事件类型以及基于测量报告的TRP管理操作将在下文进一步描述。
在实施例中,测量报告可以包括主TRP、辅TRP的测量质量;或者附加地,测量报告还可以包括监测到的其他TRP的列表,该列表包括各TRP的标识以及测量质量。在该列表中,可以以测量质量为序排列各TRP的信息。
触发测量报告的事件类型
在实施例中,触发测量报告的事件类型可以基于主TRP 1和辅TRP 2的测量质量的相对关系而定义。在本公开中,该种事件类型可以称为事件类型C(Event C)。例如,在触发时间(Time to Trigger,TTT)内,在上述相对关系满足第一阈值的情况下,可以触发终端设备120向主TRP 1发送与该触发时间对应的测量报告。以下式(1)示出了事件类型C的一个示例。
α>α 0,          (式1)
其中α=Q Secondary_TRP/Q Master_TRP或者α=Q Secondary_TRP-Q Master_TRP,阈值α 0可以是基站110控制主TRP 1通过高层信令(例如RRC层信令)为终端设备120配置的参数。可以为终端设备120配置多个α 0取值,以便在不同情况下控制对测量报告的触发。
根据以上参数α的定义,主TRP 1和辅TRP 2的测量质量的相对关系可以是二者的测量质量的比值或差值。在其他示例中,该相对关系可以具有其他形式,例如比值和差值的组合、比值或差值的对数等。式(1)反映了辅TRP 2的测量质量优于主TRP 1的测量质量,优于的程度可以通过阈值α 0的取值设定和调整。通过定义事件类型C并且在出现事件类型C的情况下触发测量报告,使得主TRP 1和基站110可以基于主TRP 1和辅TRP 2的测量质量的相对关系来管理或更新服务终端设备120的TRP集合。
在实施例中,附加地或者另选地,触发测量报告的事件类型可以基于辅TRP的测量质量与服务终端设备120的TRP集合外的其他TRP的相对关系而定义。在本公开中,该种事件类型可以称为事件类型B(Event B)。例如,在触发时间(Time to Trigger,TTT)内,在上述相对关系满足第二阈值的情况下,可以触发终端设备120向主TRP发送与该触发时间对应的测量报告。以下式(2)示出了事件类型B的一个示例。
β>β 0(式2)
其中β=Q Other_TRP/Q Secondary_TRP或者β=Q Other_TRO-Q Secondary_TRP,阈值β 0可以是基站110控制主TRP通过高层信令(例如RRC层信令)为终端设备120配置的参数。可以为终端设备120配置多个β 0取值,以便在不同情况下控制对测量报告的触发。
根据以上β的定义,辅TRP与其他TRP的测量质量的相对关系可以是二者的测量质量的比值或差值。在其他示例中,该相对关系可以具有其他形式,例如比值和差值的组合、比值或差值的对数等。式(2)反映了其他TRP的测量质量优于辅TRP的测量质量,优于的程度可以通过阈值β 0的取值设定和调整。通过定义事件类型B并且在出现事件类型B的情况下触发测量报告,使得主TRP或者基站110可以基于辅TRP与其他TRP的测量质量的相对关系来管理或更新服务终端设备120的TRP集合。
TRP管理操作示例
以下将参照图1中无线通信系统100的上下文描述根据本公开实施例的用于TRP管理的示例性操作。在实施例中,管理TRP集合可以包括交换主、辅TRP的角色。图4A示出了根据实施例的用于基于测量报告管理TRP的一个示例性操作。在终端设备120(例如测量处理单元262)发送测量报告之后,可以由主TRP 1(例如由TRP管理单元224)基于测量报告是否包含事件类型C来执行该操作。
如图4A所示,在402处,一经接收到测量报告,主TRP 1判断在测量报告中是否出现事件类型C。如果出现事件类型C,则表明主TRP 1和辅TRP 2的测量质量的相对关系满足第一阈值α 0,辅TRP 2的测量质量优于主TRP 1的测量质量。相应地,在404处,主TRP 1确定交换TRP 1和TRP 2所承担的主、辅TRP的角色。如果没有出现事件类型C,则表明主TRP 1的测量质量优于辅TRP 2的测量质量。相应地,在406处,主TRP 1确定暂不交换TRP 1和TRP 2的主、辅TRP的角色。
图4A中管理TRP的操作可以针对服务终端设备120的TRP持续执行。例如,在一次角色交换之后,在后续测量报告中TRP 1的测量质量相对好的情况下,通过再次角色交换,TRP 1可以又成为主TRP。可以理解,如果TRP 1一直承担主TRP的角色而没有角 色交换,其测量质量恶化时会导致切换。与切换相关联的复杂流程和时延不是期望的。此时,辅TRP 2的测量质量可能足够好以避免切换。因此,基于图4A中的操作,可以保证TRP 1和TRP 2中测量质量相对好的一者成为服务终端设备120的主TRP,从而避免或者推迟主TRP不得不执行切换的时间。
在实施例中,管理TRP集合还可以包括更新服务终端设备120的TRP集合的成员。图4B示出了根据实施例的用于基于测量报告管理TRP的另一个示例性操作。在终端设备120(例如测量处理单元262)发送测量报告之后,可以由主TRP 1和基站110(例如由TRP管理单元224、244)基于测量报告是否包含事件类型B来执行该操作。
如图4B所示,在422处,一经接收到测量报告,主TRP 1判断在测量报告中是否出现事件类型B。如果出现事件类型B,则表明辅TRP 2和另一TRP(例如TRP 3)的测量质量的相对关系满足第一阈值β 0,TRP 3的测量质量优于辅TRP 2的测量质量。相应地,在424处,主TRP 1确定将TRP 3加入服务终端设备120的集合并作为新的辅TRP替换原辅TRP 2。如果没有出现事件类型B,则表明没有其他TRP的测量质量优于辅TRP2的测量质量。相应地,在426处,主TRP 1确定保持辅TRP 2暂不替换。
图4B中管理TRP的操作可以针对服务终端设备120的TRP持续执行。相应地,可以在终端设备120与主TRP保持连接的情况下,将辅TRP更新为测量质量更好的TRP,优化了TRP集合成员的测量质量。这有利于优化终端设备120的连接质量。进一步地,通过例如参照图4A所描述的TRP管理操作,质量更好的辅TRP可能通过角色交换而成为新的主TRP,优化了主TRP的测量质量。这样,可以更大程度上避免或者推迟主TRP不得不执行切换的时间。
在实施例中,管理TRP集合还可以包括交换主、辅TRP的角色以及更新TRP集合的成员的操作组合。图4C示出了根据实施例的用于基于测量报告管理TRP的又一个示例性操作。可以由主TRP 1和基站110(例如由TRP管理单元224、244)基于测量报告是否包含事件类型C、事件类型B以及测量报告中的测量质量信息来执行该操作。
如图4C所示,在442处,一经接收到测量报告,主TRP 1判断在测量报告中是否出现事件类型C。如果出现事件类型C,则表明主TRP 1和辅TRP 2的测量质量的相对关系满足第一阈值α 0,辅TRP 2的测量质量优于主TRP 1的测量质量。相应地,在444处,主TRP 1确定交换TRP 1和TRP 2所承担的主、辅TRP的角色。接着,在446处,基站110可以基于测量报告中的测量质量信息判断另一TRP(例如TRP 3)的测量质量优于原主TRP 1(原本角色交换后将成为辅TRP)的测量质量,并确定将TRP 3加入服务终端设 备120的TRP集合并作为新的辅TRP替换TRP 1。也就是,经过更新,服务终端设备120的TRP集合的成员将由主TRP 1和辅TRP 2变为主TRP 2和辅TRP 3。
在442处,如果判断没有出现事件类型C,则表明主TRP 1的测量质量优于辅TRP2的测量质量。相应地,在448处,主TRP 1确定暂不交换TRP 1和TRP 2的主、辅TRP的角色。接着,在450处,主TRP 1可以基于测量报告出现测量事件B而判断存在另一TRP(例如TRP 3)的测量质量优于TRP 2(辅TRP)的测量质量,并确定用TRP 3替换TRP 2成为新的辅TRP。也就是,经过更新,服务终端设备120的TRP集合的成员将由主TRP 1和辅TRP 2变为主TRP 1和辅TRP 3。
图4C中管理TRP的操作可以针对服务终端设备120的TRP持续执行。相应地,一方面,质量更好的辅TRP可能通过角色交换而成为新的主TRP,优化了主TRP的测量质量,可以避免或者推迟主TRP不得不执行切换的时间。另一方面,可以在终端设备120与主TRP保持连接的情况下,将辅TRP更新为测量质量更好的TRP,优化了TRP集合成员的测量质量。通过主、辅TRP的角色交换以及用测量质量更好的TRP替换辅TRP,可以最大程度上避免或者推迟主TRP不得不执行切换的时间。
TRP管理信令流程示例
以下将参照图1中无线通信系统100的上下文描述根据本公开实施例的用于TRP管理的示例性信令流程。图5示出了根据实施例的用于实施主、辅TRP角色交换的示例性信令流程。该信令流程可以用于实施如图4A所示的TRP管理操作。可以由主TRP 1、基站110(例如由TRP管理单元224、244)和终端设备(例如由连接管理单元264)来执行该信令流程。
如图5所示,响应于确定交换TRP 1和TRP 2的主、辅TRP的角色,主TRP 1向基站110发送TRP更新请求消息,此处即角色交换请求消息。响应于接收到来自主TRP 1的角色交换请求消息,基站110识别出TRP 2将承担主TRP角色。相应地,基站110向TRP 2发送TRP更新控制消息,此处即角色交换控制消息。该控制消息中可以包含TRP 2为角色交换进行层2准备所需要的信息。在一个实施例中,基站110还向TRP 2发送终端设备120的RRC连接相关信息,以便于之后TRP 2与终端设备120建立RRC连接。
如图5所示,响应于接收到来自基站110的角色交换控制消息,TRP 2可以为与TRP 1的角色交换做层2准备。具体地,层2准备可以包括建立MAC实体,或者层2准备可以附加地包括建立RLC实体甚至还建立PDCP实体。在基于Multi-PDCCH的无线通信系统100中,在角色交换之前和之后,TRP 1和TRP 2均在对应的控制资源集和搜索空间上 发送PDCCH信号。在基于Single-PDCCH的无线通信系统100中,在角色交换之前,TRP1在对应的控制资源集和搜索空间上发送PDCCH信号,TRP 2不发送PDCCH信号。在角色交换中,基站110可以将TRP 2配置为在角色交换完成后在对应的控制资源集和搜索空间上发送PDCCH信号。在角色交换之后,TRP 1将停止发送PDCCH信号。在基于Single-PDCCH的实施例中,可以通过例如MAC层信令通知终端设备120在角色交换完成后在TRP 2对应的控制资源集和搜索空间上接收解码PDCCH,以及通过例如MAC层信令通知终端设备120用来接收TRP 2发送的PDCCH所需的TCI状态配置。以下将参照图9A和图9B描述该方面的示例。
如图5所示,一经完成角色交换准备,TRP 2可以向基站110回复TRP更新确认消息,此处即角色交换确认消息,表明TRP 2已经就绪进行角色交换。一经接收到来自TRP2的角色交换确认消息,基站110可以向TRP 1传达该角色交换确认消息,表明TRP 2已经就绪进行角色交换。基站110还可以向TRP 1发送RRC重配置消息,便于终端设备120与新的主TRP 2建立RRC连接。由于新的主TRP 2是终端设备120先前的辅TRP,二者之间已经具有物理层连接。因此,相比于一般RRC重配置消息,此处的RRC重配置消息可以不包含新的传输配置指示(Transmission Configuration Indicator,TCI)状态配置信息。这有利于简化终端设备120与TRP 2建立RRC连接的过程,从而减小操作时延。
如图5所示,一经接收到RRC重配置消息,终端设备120可以执行RRC重配置。具体地,终端设备120可以继续使用TRP 2的原TCI状态配置信息与新的主TRP 2建立RRC通信。此处,相比于一般的移动性管理操作(例如切换),终端设备120不需要重置自身的MAC实体,从而使得主、辅TRP角色交换操作尽快完成,避免相应的操作时延。
一经完成RRC重配置,终端设备120可以向TRP 2发送RRC重配置完成消息。至此,终端设备120与新的主TRP 2之间的RRC连接重置完成,主、辅TRP的角色交换流程结束。原主TRP 1成为新的辅TRP。新的主TRP 2的ServCellIndex值置为0。
与图5中的主、辅TRP角色交换相对照,使TRP 2成为主TRP的另一种可行方式是将终端设备120从TRP 1切换到TRP 2。然而,这种方式中每个主体都涉及更多的操作。以下表一示出了从TRP 1切换到TRP 2各主体要执行的示例性额外操作。相比而言,角色交换操作中不涉及通过RRC信令对TCI状态重新配置,终端设备使用原TCI状态配置即可。角色交换操作中不涉及终端设备重置MAC实体。角色交换操作中不涉及终端设备对TRP进行激活/去激活,不涉及对新主TRP的小区发起随机接入。在原主TRP对终端设备进行RRC重配置时,需要配置终端设备将原辅TRP对应小区的ServCellIndex值设置 为0。而且,在Multi-TRP传输建立时对终端设备配置的C-RNTI、小区ID、天线信息、下行链路载波频率、当前基站的安全算法等配置信息不需要改变。可见,图5中角色交换所花费的时间将远小于切换时延。
表一 TRP切换示例操作
Figure PCTCN2021107000-appb-000001
图6示出了根据实施例的用于实施主、辅TRP角色交换的示例性信令流程。该信令流程可以用于实施例如图4B所示的TRP管理操作。可以由主TRP 1、基站110(例如由TRP管理单元224、244)和终端设备(例如由连接管理单元264)来执行该信令流程。
如图6所示,响应于确定另一TRP(例如TRP 3)替换辅TRP 2,主TRP 1可以向基站110发送TRP更新请求消息,此处即辅TRP替换请求消息。响应于接收到来自主TRP1的辅TRP替换请求消息,基站110识别出TRP 3将替换TRP 2成为新的辅TRP。相应地,基站110向TRP 2发送TRP更新控制消息,此处即连接释放控制消息,以指示TRP 2释放与终端设备120的连接,并向TRP 3发送连接建立控制消息以指示TRP 3作为辅TRP建立与终端设备120的连接。
如图6所示,响应于接收到来自基站110的连接建立控制消息,TRP 3可以执行相应的连接建立准备,具体包括物理层(层1)准备。物理层准备可以包括为与终端设备120连接准备物理层时频资源。在基于Multi-PDCCH的无线通信系统100中,TRP 3还需要准备在成为辅TRP之后,在对应的控制资源集和搜索空间上发送PDCCH信号。
如图6所示,一经完成连接建立准备,TRP 3可以向基站110回复连接建立确认消息,表明TRP 3已经就绪与终端设备120建立连接。一经接收到来自TRP 3的连接建立确认消息,基站110可以向TRP 1发送TRP更新确认消息,此处即连接建立控制消息。在一个实施例中,连接建立控制消息包括TRP 3的TCI状态配置信息,以便传达给终端设备以与TRP 3建立连接。TRP 1接着将该连接建立控制消息和TRP 3的TCI状态配置信息发送给终端设备120。
接着,终端设备120可以向TRP 3发送连接建立请求以在二者之间建立物理层连接。终端设备120不需要重置MAC实体。TRP 2可以释放与终端设备120的连接。至此,终端设备120与新的辅TRP 3之间连接建立完成,辅TRP更新流程结束。结果,服务终端设备120的TRP包括主TRP 1和辅TRP 3。
图7示出了根据实施例的用于实施主、辅TRP角色交换和辅TRP更新的示例性信令流程。该信令流程可以用于实施例如图4C所示的TRP管理操作(具体为操作442至446)。可以由TRP、基站110(例如由TRP管理单元)和终端设备(例如由连接管理单元)来执行该信令流程。
如图7所示,响应于确定交换TRP 1和TRP 2的主、辅TRP的角色,主TRP 1向基站110发送TRP更新请求消息,此处即角色交换请求消息。主TRP 1还向基站110发送来自终端设备120的测量报告(可以为原始或经处理的版本)。响应于接收到来自主TRP1的角色交换请求消息,基站110识别出TRP 2将承担主TRP角色。相应地,基站110向TRP 2发送TRP更新控制消息,此处即角色交换控制消息。在一个实施例中,基站110还向TRP 2发送终端设备120的RRC连接相关信息,以便于之后TRP 2与终端设备120建立RRC连接。进一步地,基站110可以基于测量报告判断TRP 3的测量质量优于TRP 1(原本将要成为辅TRP)的测量质量,并确定用TRP 3替换TRP 1成为新的辅TRP。相应地,基站110向TRP 1发送连接释放控制消息,向TRP 3发送连接建立控制消息。
图7中省略了用于角色交换相关的信令流程,这些信令流程包括以下操作:响应于接收到来自基站110的角色交换控制消息,TRP 2为与TRP 1的角色交换做层2准备,并向基站110回复TRP角色交换确认消息,该角色交换确认消息进一步由基站110传达给TRP 1。基站110还可以向TRP 1发送RRC重配置消息。一经接收到RRC重配置消息,终端设备120可以执行RRC重配置,完成与TRP 2的RRC重配置,原辅TRP 2成为新的主TRP。可以参照图5理解上述信令流程和操作的具体细节。
图7中详细示出了与辅TRP更新相关的信令流程和操作。如图7所示,一经接收到 来自基站110的连接建立控制消息,TRP 3可以为与终端设备120建立连接做准备。具体地,TRP 3可以为与终端设备120连接准备物理层时频资源。在基于Multi-PDCCH的无线通信系统100中,TRP 3还需要准备在成为辅TRP之后,在对应的控制资源集和搜索空间上发送PDCCH信号。一经完成连接建立准备,TRP 3可以向基站110回复连接建立确认消息。接着,基站110向TRP 1(仍然是主TRP)发送TRP更新确认消息,此处即连接建立控制消息。该连接建立控制消息包含新TRP 3的配置信息,包括相应的新TCI状态配置信息,以便传达给终端设备以与TRP 3建立连接。TRP 1接着将该连接建立控制消息和TRP 3的TCI状态配置信息发送给终端设备120。
如图7所示,接着,终端设备120一方面与TRP 2(新的主TRP)重配置RRC连接,一方面向TRP 3发送连接建立请求,以基于TRP 3的配置信息与TRP 3建立连接。TRP 1释放与终端设备120的连接。至此,终端设备120与新的主TRP 2之间的RRC连接完成重置,终端设备120与新的辅TRP 3之间的连接完成建立。原辅TRP 2成为新主TRP,原主TRP 1退出TRP集合,原集合外的TRP 3成为新的辅TRP。新主TRP 2的ServCellIndex值置为0。
在该示例中,终端设备120可以在角色交换之前与主TRP 1保持连接的情况下与TRP 3建立连接,或者可以在角色交换之后与主TRP 2保持连接的情况下与TRP 3建立连接。相比于一般的移动性管理操作(例如切换),终端设备120不会经历通信链路的丢失等负面状况,通信质量得以保证。
以上参照图5至图7描述了根据实施例的用于TRP管理的示例性信令流程。在这些图中,信令或操作的先后次序仅为示例,而非限制。根据需求,可以以不同的先后次序执行这些信令或操作,可以执行相比附图执行更多或更少的信令或操作。这些适当的变型仍然落入本公开的范围内。
报告事件类型与TRP管理操作的附加实现方式
在实施例中,除了事件类型C和B之外,还可以基于主、辅TRP或其他TRP的测量质量与特定阈值的相对关系来定义事件类型A(Event A)。例如,在触发时间内,在TRP的测量质量满足特定阈值的情况下,可以触发终端设备120向主TRP发送与该触发时间对应的测量报告。以下式(3)至(6)分别示出了事件类型A1至A4的示例。
Q Master_TRP>Q in,               式(3)
Q Secondary_TRP>Q in,             式(4)
Q Master_TRP<Q out,               式(5)
Q Secondary_TRP<Q out,                  式(6)
其中,Q in可以是大于或等于Q out的阈值。主、辅TRP的测量质量优于Q in表明该TRP用于服务终端设备120是理想的。主、辅TRP的测量质量低于Q out表明该TRP用于服务终端设备120不是期望的。
在本公开的实施例中,事件类型A、B、C可以以适当的方式组合来触发测量报告。以上参照图4C描述了事件类型B、C组合的示例,多个事件类型A之间或者与事件类型B或C也可以组合。表二示出了组合事件与TRP管理操作的一些示例,本领域技术人员可以类似地构想任何其他适当的组合事件与TRP管理操作而不脱离本公开的范围。
表二组合事件与TRP管理操作示例
Figure PCTCN2021107000-appb-000002
基于各种事件类型的定义,由表二可以理解,组合事件1表明主TPR和辅TRP的测量质量都较好(高于预期阈值Q in)并且辅TRP的测量质量优于主TRP的测量质量。相应的TRP管理操作可以是交换主、辅TRP的角色。
由表二可以理解,组合事件2表明辅TRP的测量质量低于预期阈值(例如Q out),并且有另一TRP的测量质量优于辅TRP的测量质量。相应的TRP管理操作可以是使该另一TRP替换辅TRP。
由表二可以理解,组合事件3表明辅TPR的测量质量较好,主TRP的测量质量低于预期阈值(例如Q out),辅TRP的测量质量优于主TRP的测量质量。相应的TRP管理操作可以是交换主、辅TRP的角色。在该情况下,另一TRP可能替换原主TRP成为辅TRP,如以上参照操作442至446所描述的。
由表二可以理解,组合事件4表明主、辅TRP的测量质量都低于预期阈值(例如Q out)。在该情况下,如果有另一TRP的测量质量优于预期阈值,则相应的TRP管理操作可以是从主TRP切换到该另一TRP。
已经参照图5至图7描述了关于TRP角色交换和辅TRP替换的示例性信令流程,因此不在此重复。图8示出了根据实施例的用于实施TRP切换的示例性信令流程。可以由主TRP 1、基站110(例如由TRP管理单元224、244)和终端设备(例如由连接管理单元264)来执行该信令流程。
如图8所示,响应于确定将终端设备120从主TRP 1切换到另一TRP(例如TRP 3),主TRP 1向基站110发送切换请求消息。该切换请求消息可以包含TRP 3为切换做层1/层2准备所需的信息。响应于接收到来自主TRP 1的切换请求消息,基站110识别出新的TRP 3将承担终端设备120的主TRP角色。相应地,基站110向TRP 3发送切换控制消息。在一个实施例中,基站110还向TRP 3发送终端设备120的RRC连接相关信息,以便于之后TRP 3与终端设备120建立RRC连接。
如图8所示,响应于接收到来自基站110的切换控制消息,TRP 3可以为切换做层1/层2准备。具体地,层1准备可以包括为与终端设备120建立连接分配物理层时频资源;层2准备可以包括建立MAC实体,或者层2准备可以附加地包括建立RLC实体甚至还建立PDCP实体。TRP 3还需要准备在成为主TRP之后,在对应的控制资源集和搜索空间上发送PDCCH信号。
如图8所示,一经完成切换准备,TRP 3可以向基站110回复切换确认消息,表明TRP 3已经就绪进行切换。一经接收到来自TRP 3的切换确认消息,基站110可以向TRP 1传达该切换确认消息。基站110还可以向TRP 1发送RRC重配置消息,便于终端设备120切换到新的主TRP 3的小区并建立RRC连接。在一个实施例中,基站110还向TRP 1发送TRP 3的TCI状态配置信息,以便传达给终端设备以与TRP 3建立连接。TRP 1接着将上述信息发送给终端设备120。
如图8所示,一经接收到RRC重配置消息,终端设备120可以对TRP 3的小区发起随机接入过程,并执行RRC重配置。具体地,终端设备120需要重置自身的MAC实体,使用TRP 3的TCI状态配置信息与新的主TRP 3建立RRC通信。
一经完成RRC重配置,终端设备120可以向TRP 3发送RRC重配置完成消息。至此,终端设备120从TRP 1切换到新的主TRP 3。
在本公开中,通过对服务终端设备的TRP集合的成员进行更新,例如交换主、辅TRP的角色以及替换辅TRP,能够确保终端设备与主TRP之间通信链路的可靠性,尽量避免或推迟TRP切换的发生,降低了与TRP管理相关的时延。这对于URLLC业务是特别有利的。
在诸如NR系统中FR2频段的高频段下,波束较窄、小区覆盖范围小,终端设备与TRP之间的通信链路更容易受到终端设备移动的影响。在此类频段中,根据本公开的TRP集合更新方案能够更有利地发挥避免或推迟TRP切换的优势。特别地,对于FR2高频段下部署的URLLC业务,本公开的方案能够在保持高数据率传输的情况下有效地保证通信的高可靠性和传输的低时延。
控制信令示例
如参照图1所描述的,在基于Multi-PDCCH的Multi-TRP通信系统中,主、辅TRP可以在相应控制资源集和搜索空间上各自独立地发送下行链路控制信道(例如PDCCH);在基于Single-PDCCH的Multi-TRP通信系统中,仅主TRP可以在其控制资源集和搜索空间上发送下行链路控制信道(例如PDCCH)。在实施例中,主TRP可以为主、辅TRP配置相应的控制资源集和搜索空间。控制资源集可以被分配相应的标识索引,该标识索引可以称为CORESETPoolIndex。例如,主TRP可以对应CORESETPoolIndex值为0的控制资源集,辅TRP可以对应CORESETPoolIndex值为1的控制资源集。主TRP还可以向终端设备120发送控制信道指示信息,以指示通过主TRP或辅TRP中的至少一者在相应的控制资源集和搜索空间上接收下行链路控制信道(例如PDCCH)。主TRP还可以通过RRC信令、MAC控制单元(Control Element,CE)、下行链路控制信息(Downlink Control Information,DCI)等中的至少一者来携带所述控制信道指示信息。
图9A示出了根据实施例的用于携带控制信道指示信息的示例性MAC控制单元。该MAC控制单元包括以下字段。
字段1:与不同CORESETPoolIndex对应的C i。该字段指示值为i的CORESETPoolIndex对应的控制资源集的激活/去激活状态,字段的长度为1比特。
如果C 0=0,C 1=1,则表示值为0的CORESETPoolIndex对应的控制资源集处于去激活状态,值为1的CORESETPoolIndex对应的控制资源集处于激活状态。相应地,终端设备使用值为1的CORESETPoolIndex对应的控制资源集对PDCCH进行接收解码。如果C 0=1,C 1=0,则表示值为0的CORESETPoolIndex对应的控制资源集处于激活状态,值为1的CORESETPoolIndex对应的控制资源集处于去激活状态,UE使用值为0的CORESETPoolIndex对应的控制资源集对PDCCH进行接收解码。以上两种情况中,主、辅TRP中仅一者的控制资源集处于激活状态以发送PDCCH信号,因此对应与Single-PDCCH的场景。
如果C 0=1,C 1=1,则表示值为0、1的CORESETPoolIndex对应的控制资源集都处于 激活状态,终端设备可以使用所有控制资源集对PDCCH进行接收解码。该情况中,主、辅TRP两者的控制资源集都处于激活状态以发送PDCCH信号,因此对应与Multi-PDCCH的场景。也就是说,在实施例中,可以通过不同TRP对应的CORESETPoolIndex的取值情况反映通信系统的Multi-PDCCH和Single-PDCCH状态。
字段2:服务小区ID。该字段可以指示该MAC控制单元所应用于的服务小区的标识,字段的长度例如为5比特。
字段3:BWP ID。该字段可以指示该MAC控制单元所应用于的部分载波带宽的标识,字段的长度例如为2比特。
图9B示出了根据实施例的用于携带TCI状态配置指示的示例性MAC控制单元。可以通过该MAC控制单元通知终端设备120用来接收PDCCH的TCI状态配置。
如图9B所示,该MAC控制单元可以包括服务小区ID、控制资源集ID和TCI状态ID。服务小区ID字段可以指示该MAC控制单元所应用于的服务小区标识,字段的长度例如为5比特。服务小区ID字段可以指示相应的控制资源集,字段的长度例如为4比特。TCI状态ID字段可以指示相应的TCI状态,字段的长度例如为7位。该TCI状态应用于控制资源集ID所指示的控制资源集。
图10示出了根据实施例的用于Multi-TRP无线通信系统的示例方法。方法1000可以由第一TRP执行,其中第一TRP与第二TRP共同服务特定终端设备。如图10所示,响应于第一TRP和第二TRP分别是服务终端设备的主TRP和辅TRP,该方法1000可以包括向所述终端设备提供测量配置信息,所述测量配置信息指定至少对第一TRP和第二TRP进行测量(框1005);接收来自终端设备的测量报告,该测量报告包括至少第一TRP和第二TRP的测量质量(框1010);以及至少基于第一TRP和第二TRP的测量质量,更新服务特定终端设备的TRP(框1015)。在实施例中,更新服务特定终端设备的TRP包括基于第一TRP和第二TRP的测量质量的相对关系满足第一阈值,确定第二TRP将成为服务所述终端设备的主TRP。
在一个实施例中,更新服务特定终端设备的TRP还包括:基于第二TRP的测量质量小于第二阈值并且第三TRP的测量质量优于第二TRP的测量质量,确定由第三TRP替换第二TRP服务该终端设备。
在一个实施例中,该方法还包括基于更新服务特定终端设备的TRP,向基站发送相应的TRP更新请求消息。该更新请求消息包括以下中的一项:第二TRP将成为服务终端设备的主TRP;或者第三TRP将替换第二TRP成为服务终端设备的辅TRP。
在一个实施例中,该方法还包括接收来自基站的TRP更新确认消息。该确认消息指示以下中的至少一项:第二TRP将成为服务终端设备的主TRP,第一TRP将成为服务终端设备的辅TRP;第三TRP将替换第二TRP成为服务终端设备的辅TRP;或者第二TRP将成为服务终端设备的主TRP,第三TRP将替换第一TRP成为服务终端设备的辅TRP。
在一个实施例中,该方法还包括向终端设备发送无线电资源控制RRC重配置消息,以指示终端设备执行以下中的至少一项:与第二TRP建立主连接,与第一TRP建立辅连接;与第三TRP建立辅连接;或者与第二TRP建立主连接,与第三TRP建立辅连接。
在一个实施例中,该方法还包括响应于第一TRP是服务终端设备的辅TRP,从基站接收TRP更新控制消息,并执行以下操作:响应于更新控制消息指示第一TRP将成为终端设备的主TRP,准备层2资源,并向基站发送TRP更新确认消息;或者响应于更新控制消息指示第一TRP不服务终端设备,释放与终端设备的连接。
图11A示出了根据实施例的用于Multi-TRP无线通信系统的另一示例方法。方法1100可以由基站执行,基站控制多个发送接收点TRP共同服务特定终端设备。如图11A所示,响应于第一TRP和第二TRP分别是服务终端设备的主TRP和辅TRP,该方法包括:向第一TRP提供用于终端设备的测量配置信息,该测量配置信息指定终端设备至少对第一TRP和第二TRP测量(框1105);以及接收来自第一TRP的第一更新请求消息,第一更新请求消息指示第二TRP将成为服务终端设备的主TRP,第一TRP将成为服务终端设备的辅TRP(框1110)。
在一个实施例中,该方法还包括向第二TRP发送控制消息,以指示第二TRP将成为服务终端设备的主TRP。
在一个实施例中,该方法还包括:从第一TRP接收终端设备的测量报告,该测量报告包括各TRP的测量质量;基于第一TRP的测量质量低于第三阈值并且第三TRP的测量质量优于第一TRP的测量质量,确定第三TRP将成为服务终端设备的辅TRP。
在一个实施例中,该方法还包括:向第一TRP发送控制消息,以指示第一TRP不服务终端设备;向第二TRP发送控制消息,以指示第二TRP将成为服务终端设备的主TRP;以及向第三TRP发送控制消息,以指示第三TRP将成为服务终端设备的辅TRP。
在一个实施例中,该方法还包括接收来自第一TRP的第二更新请求消息,第二更新请求消息指示第三TRP将替换第二TRP成为服务终端设备的辅TRP。
在一个实施例中,该方法还包括:向第二TRP发送控制消息,以指示第二TRP不服务终端设备;以及向第三TRP发送控制消息,以指示第三TRP将成为服务终端设备的辅 TRP。
在一个实施例中,该方法还包括向第一TRP发送针对第一或第二更新请求消息的确认消息。
图11B示出了根据实施例的用于Multi-TRP无线通信系统的又一示例方法。方法1150可以由终端设备执行,其中终端设备由第一TRP与第二TRP共同服务,第一TRP是主TRP,第二TRP是辅TRP。该方法包括:基于从第一TRP接收的测量配置信息,对第一TRP和第二TRP进行测量(框1155);以及基于第一TRP和第二TRP的测量质量的相对关系满足第一阈值,向第一TRP发送测量报告,该测量报告包括至少第一TRP和第二TRP的测量质量(框1160)。
在一个实施例中,该方法还包括基于测量配置信息,还对第三TRP进行测量,并且测量报告还包括第三TRP的测量质量。
在一个实施例中,该方法还包括从主TRP接收无线电资源控制RRC重配置消息,并执行以下中的至少一项:与第二TRP建立主连接,与第一TRP建立辅连接;与第三TRP建立辅连接;或者与第二TRP建立主连接,与第三TRP建立辅连接。
可以结合图4A至图9B理解以上方法1000至1150。例如参考信令流程图中信令的流向,本领域技术人员可以明晰地理解各信令与方法1000至1150中各操作的对应关系,在此不再具体描述。
以下结合图12A和图12B描述可以应用根据本公开实施例的技术方案的示例性卫星通信场景。
如已知的,卫星通信在覆盖、可靠性及灵活性方面具有优势。卫星通信与地面移动网络融合有助于提供更为可靠的一致性服务体验,降低网络部署成本,形成一体化的泛在网络格局。因此,非地面网络(Non-terrestrial networks,NTN)通信以及其与地面移动网络的融合成为通信领域的重要应用场景。
在图12A的卫星通信场景中,无线通信系统1200包括卫星1210、TRP 1至TRP 3、以及终端设备1220。卫星1210和每个TRP可以被配置为通过无线链路彼此耦接,每个TRP可以作为卫星1210的地面辅助组件(Ancillary Terrestrial Component,ATC)改善卫星1210的覆盖性能。另选地,TRP也可以设置在空中如实现为具有TRP功能的无人机,在遭遇自然灾害、战争等造成地面基础设施破坏的紧急情况下,可以配合卫星进行灵活部署。TRP 1和TRP 2可以被配置为分别通过无线链路与终端设备1220进行通信,形成服务终端设备1220的multi-TRP系统。具体地,TRP 1可以是服务终端设备1220的 主TRP,TRP 2可以是服务终端设备1220的辅TRP。
在实施例中,卫星1210可以包括任何类型的轨道卫星,例如地球静止轨道卫星(Geosynchronous Eearth Orbit,GEO)、中高轨卫星(Medium Earth Orbit,MEO)、低轨卫星(Low Earth Orbit,LEO)。在本公开中,术语卫星和卫星通信设备可以互换地使用,除非上下文明显指示相反的情况。卫星1210可以对应于图1中的基站。在终端设备具有移动性的情况下,各个TRP可以执行根据本公开的包括主、辅TRP交换或替换的各种操作来为终端设备提供服务。
在图12B的卫星通信场景中,无线通信系统1250包括卫星1210-1至1210-3、以及终端设备1220。每个卫星1210-1至1210-3可以位于低轨道中为终端设备提供覆盖,例如每个卫星可以使用波束成形技术与终端设备通信。在实施例中,多个卫星可以作为TRP同时服务终端设备1220,这多个卫星可以形成服务终端设备1220的multi-TRP系统。例如,卫星1210-1可以是服务终端设备1220的主TRP,卫星1210-2可以是服务终端设备1220的辅TRP。在实施例中,卫星1210-1或1210-2本身、其他卫星或者与卫星1210-1和1210-2耦接的设备可以对应图1中的基站。
卫星1210-1至1210-3可以包括低轨卫星。在实施例中,低轨卫星本身和终端设备均可以具有移动性。除非终端设备的移动速度非常快,否则一般认为由于低轨卫星在空中的移动而引起关于移动性管理的操作。在该情况下,各个卫星可以执行根据本公开的包括主、辅TRP交换或辅TRP替换的各种操作来为终端设备提供服务。
具体而言,假设图12B中的卫星以图中自右向左方向移动,在第一时刻,卫星1210-1和卫星1210-2形成服务终端设备1220的multi-TRP系统,卫星1210-1为主TRP,卫星1210-2为辅TRP。在第二时刻,移动使得卫星1210-1和卫星1210-2的测量质量的相对关系满足阈值关系。此时,通过交换主、辅TRP角色,卫星1210-2变为主TRP,卫星1210-1变为辅TRP。在第三时刻,移动使得卫星1210-1和卫星1210-3的测量质量的相对关系满足阈值关系。此时,卫星1210-3替换卫星1210-1承担辅TRP的角色,与主TRP(卫星1210-2)一起服务终端设备1220。接下来,卫星1210-3与卫星1210-2之间可以类似地交换主、辅TRP角色,并且可以有其他卫星(未示出)加入以执行主、辅TRP交换或辅TRP替换操作。
以上分别描述了根据本公开实施例的各示例性电子设备和方法。应当理解,这些电子设备的操作或功能可以相互组合,从而实现比所描述的更多或更少的操作或功能。各方法的操作步骤也可以以任何适当的顺序相互组合,从而类似地实现比所描述的更多或 更少的操作。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图13所示的通用个人计算机1300安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。图13是示出作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图。在一个例子中,该个人计算机可以对应于根据本公开的上述示例性终端设备。
在图13中,中央处理单元(CPU)1301根据只读存储器(ROM)1302中存储的程序或从存储部分1308加载到随机存取存储器(RAM)1303的程序执行各种处理。在RAM1303中,也根据需要存储当CPU 1301执行各种处理等时所需的数据。
CPU 1301、ROM 1302和RAM 1303经由总线1304彼此连接。输入/输出接口1305也连接到总线1304。
下述部件连接到输入/输出接口1305:输入部分1306,包括键盘、鼠标等;输出部分1307,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分1308,包括硬盘等;和通信部分1309,包括网络接口卡比如LAN卡、调制解调器等。通信部分1309经由网络比如因特网执行通信处理。
根据需要,驱动器1310也连接到输入/输出接口1305。可拆卸介质1311比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1310上,使得从中读出的计算机程序根据需要被安装到存储部分1308中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1311安装构成软件的程序。
本领域技术人员应当理解,这种存储介质不局限于图13所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1311。可拆卸介质1311的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘 (DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1302、存储部分1308中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本公开的技术能够应用于各种产品。例如,本公开中提到的基站可以被实现为任何类型的演进型节点B(gNB),诸如宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制的无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的终端设备在一些示例中也称为用户设备,可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以下将参照图14至图17描述根据本公开的应用示例。
[关于基站的应用示例]
以下参照图14和图15描述了gNB的示意性配置。可以理解,TRP可以具有与gNB类似的配置。具体地,TRP可以仅具有图中的发送接收功能,可以自身具有层2或层3的一些控制功能,甚至可以具有与gNB完全或基本相同的功能。
第一应用示例
图14是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 1400包括多个天线1410以及基站设备1420。基站设备1420和每个天线1410可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1400(或基站设备1420)可以对应于上述电子设备300A、1300A和/或1500B。
天线1410中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1420发送和接收无线信号。如图14所示,gNB 1400可以包括多个天线1410。例如,多个天线1410可以与gNB 1400使用的多个频段兼容。
基站设备1420包括控制器1421、存储器1422、网络接口1423以及无线通信接口1425。
控制器1421可以为例如CPU或DSP,并且操作基站设备1420的较高层的各种功能。例如,控制器1421根据由无线通信接口1425处理的信号中的数据来生成数据分组,并经由网络接口1423来传递所生成的分组。控制器1421可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1421可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1422包括RAM和ROM,并且存储由控制器1421执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1423为用于将基站设备1420连接至核心网1424的通信接口。控制器1421可以经由网络接口1423而与核心网节点或另外的gNB进行通信。在此情况下,gNB1400与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1423还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1423为无线通信接口,则与由无线通信接口1425使用的频段相比,网络接口1423可以使用较高频段用于无线通信。
无线通信接口1425支持任何蜂窝通信方案(诸如长期演进(LTE)、LTE-先进和NR),并且经由天线1410来提供到位于gNB 1400的小区中的终端的无线连接。无线通信接口1425通常可以包括例如基带(BB)处理器1426和RF电路1427。BB处理器1426可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1421,BB处理器1426可以具有上述逻辑功能的一部分或全部。BB处理器1426可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1426的功能改变。该模块可以为插入到基站设备1420的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1427可以包括例如混频器、滤波器和放大器,并且经由天线1410来传送和接收无线信号。虽然图14示出一个RF电路1427与一根天线1410连接的示例,但是本公开并不限于该图示,而是一个RF电路1427可以同时连接多根天线1410。
如图14所示,无线通信接口1425可以包括多个BB处理器1426。例如,多个BB处理器1426可以与gNB 1400使用的多个频段兼容。如图14所示,无线通信接口1425可 以包括多个RF电路1427。例如,多个RF电路1427可以与多个天线元件兼容。虽然图14示出其中无线通信接口1425包括多个BB处理器1426和多个RF电路1427的示例,但是无线通信接口1425也可以包括单个BB处理器1426或单个RF电路1427。
第二应用示例
图15是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 1530包括多个天线1540、基站设备1550和RRH 1560。RRH 1560和每个天线1540可以经由RF线缆而彼此连接。基站设备1550和RRH 1560可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 1530(或基站设备1550)可以对应于上述电子设备300A、1300A和/或1500B。
天线1540中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1560发送和接收无线信号。如图15所示,gNB 1530可以包括多个天线1540。例如,多个天线1540可以与gNB 1530使用的多个频段兼容。
基站设备1550包括控制器1551、存储器1552、网络接口1553、无线通信接口1555以及连接接口1557。控制器1551、存储器1552和网络接口1553与参照图14描述的控制器1421、存储器1422和网络接口1423相同。
无线通信接口1555支持任何蜂窝通信方案(诸如LTE、LTE-先进和NR),并且经由RRH 1560和天线1540来提供到位于与RRH 1560对应的扇区中的终端的无线通信。无线通信接口1555通常可以包括例如BB处理器1556。除了BB处理器1556经由连接接口1557连接到RRH 1560的RF电路1564之外,BB处理器1556与参照图14描述的BB处理器1426相同。如图15所示,无线通信接口1555可以包括多个BB处理器1556。例如,多个BB处理器1556可以与gNB 1530使用的多个频段兼容。虽然图15示出其中无线通信接口1555包括多个BB处理器1556的示例,但是无线通信接口1555也可以包括单个BB处理器1556。
连接接口1557为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的接口。连接接口1557还可以为用于将基站设备1550(无线通信接口1555)连接至RRH1560的上述高速线路中的通信的通信模块。
RRH 1560包括连接接口1561和无线通信接口1563。
连接接口1561为用于将RRH 1560(无线通信接口1563)连接至基站设备1550的接口。连接接口1561还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1563经由天线1540来传送和接收无线信号。无线通信接口1563通 常可以包括例如RF电路1564。RF电路1564可以包括例如混频器、滤波器和放大器,并且经由天线1540来传送和接收无线信号。虽然图15示出一个RF电路1564与一根天线1540连接的示例,但是本公开并不限于该图示,而是一个RF电路1564可以同时连接多根天线1540。
如图15所示,无线通信接口1563可以包括多个RF电路1564。例如,多个RF电路1564可以支持多个天线元件。虽然图15示出其中无线通信接口1563包括多个RF电路1564的示例,但是无线通信接口1563也可以包括单个RF电路1564。
[关于用户设备的应用示例]
第一应用示例
图16是示出可以应用本公开内容的技术的智能电话1600的示意性配置的示例的框图。智能电话1600包括处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612、一个或多个天线开关1615、一个或多个天线1616、总线1617、电池1618以及辅助控制器1619。在一种实现方式中,此处的智能电话1600(或处理器1601)可以对应于上述终端设备300B和/或1500A。
处理器1601可以为例如CPU或片上系统(SoC),并且控制智能电话1600的应用层和另外层的功能。存储器1602包括RAM和ROM,并且存储数据和由处理器1601执行的程序。存储装置1603可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1604为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1600的接口。
摄像装置1606包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1607可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1608将输入到智能电话1600的声音转换为音频信号。输入装置1609包括例如被配置为检测显示装置1610的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1610包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1600的输出图像。扬声器1611将从智能电话1600输出的音频信号转换为声音。
无线通信接口1612支持任何蜂窝通信方案(诸如LTE、LTE-先进和NR),并且执行无线通信。无线通信接口1612通常可以包括例如BB处理器1613和RF电路1614。BB处 理器1613可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1614可以包括例如混频器、滤波器和放大器,并且经由天线1616来传送和接收无线信号。无线通信接口1612可以为其上集成有BB处理器1613和RF电路1614的一个芯片模块。如图16所示,无线通信接口1612可以包括多个BB处理器1613和多个RF电路1614。虽然图16示出其中无线通信接口1612包括多个BB处理器1613和多个RF电路1614的示例,但是无线通信接口1612也可以包括单个BB处理器1613或单个RF电路1614。
此外,除了蜂窝通信方案之外,无线通信接口1612可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1612可以包括针对每种无线通信方案的BB处理器1613和RF电路1614。
天线开关1615中的每一个在包括在无线通信接口1612中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1616的连接目的地。
天线1616中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1612传送和接收无线信号。如图16所示,智能电话1600可以包括多个天线1616。虽然图16示出其中智能电话1600包括多个天线1616的示例,但是智能电话1600也可以包括单个天线1616。
此外,智能电话1600可以包括针对每种无线通信方案的天线1616。在此情况下,天线开关1615可以从智能电话1600的配置中省略。
总线1617将处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612以及辅助控制器1619彼此连接。电池1618经由馈线向图16所示的智能电话1600的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1619例如在睡眠模式下操作智能电话1600的最小必需功能。
第二应用示例
图17是示出可以应用本公开内容的技术的汽车导航设备1720的示意性配置的示例的框图。汽车导航设备1720包括处理器1721、存储器1722、全球定位系统(GPS)模块1724、传感器1725、数据接口1726、内容播放器1727、存储介质接口1728、输入装置1729、显示装置1730、扬声器1731、无线通信接口1733、一个或多个天线开关1736、一个或多个天线1737以及电池1738。在一种实现方式中,此处的汽车导航设备1720(或处理器1721)可以对应于上述终端设备300B和/或1500A。
处理器1721可以为例如CPU或SoC,并且控制汽车导航设备1720的导航功能和另外的功能。存储器1722包括RAM和ROM,并且存储数据和由处理器1721执行的程序。
GPS模块1724使用从GPS卫星接收的GPS信号来测量汽车导航设备1720的位置(诸如纬度、经度和高度)。传感器1725可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1726经由未示出的终端而连接到例如车载网络1741,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1727再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1728中。输入装置1729包括例如被配置为检测显示装置1730的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1730包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1731输出导航功能的声音或再现的内容。
无线通信接口1733支持任何蜂窝通信方案(诸如LTE、LTE-先进和NR),并且执行无线通信。无线通信接口1733通常可以包括例如BB处理器1734和RF电路1735。BB处理器1734可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1735可以包括例如混频器、滤波器和放大器,并且经由天线1737来传送和接收无线信号。无线通信接口1733还可以为其上集成有BB处理器1734和RF电路1735的一个芯片模块。如图17所示,无线通信接口1733可以包括多个BB处理器1734和多个RF电路1735。虽然图17示出其中无线通信接口1733包括多个BB处理器1734和多个RF电路1735的示例,但是无线通信接口1733也可以包括单个BB处理器1734或单个RF电路1735。
此外,除了蜂窝通信方案之外,无线通信接口1733可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1733可以包括BB处理器1734和RF电路1735。
天线开关1736中的每一个在包括在无线通信接口1733中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1737的连接目的地。
天线1737中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1733传送和接收无线信号。如图17所示,汽车导航设备1720可以包括多个天线1737。虽然图17示出其中汽车导航设备1720包括多个天线1737的示例,但是汽车导航设备1720也可以包括单个天线1737。
此外,汽车导航设备1720可以包括针对每种无线通信方案的天线1737。在此情况 下,天线开关1736可以从汽车导航设备1720的配置中省略。
电池1738经由馈线向图17所示的汽车导航设备1720的各个块提供电力,馈线在图中被部分地示为虚线。电池1738累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备1720、车载网络1741以及车辆模块1742中的一个或多个块的车载系统(或车辆)1740。车辆模块1742生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1741。
本公开的方案可以以如下的示例方式实施。
1、一种用于第一发送接收点TRP的电子设备,其中,第一TRP与第二TRP共同服务特定终端设备,并且所述电子设备包括处理电路,所述处理电路被配置为:
响应于第一TRP和第二TRP分别是服务所述终端设备的主TRP和辅TRP:
向所述终端设备提供测量配置信息,所述测量配置信息指定至少对第一TRP和第二TRP进行测量;
接收来自所述终端设备的测量报告,所述测量报告包括至少第一TRP和第二TRP的测量质量;以及
至少基于第一TRP和第二TRP的测量质量,更新服务所述特定终端设备的TRP,
其中,更新服务所述特定终端设备的TRP包括:基于第一TRP和第二TRP的测量质量的相对关系满足第一阈值,确定第二TRP将成为服务所述终端设备的主TRP。
2、如条款1所述的电子设备,其中,更新服务所述特定终端设备的TRP还包括:
基于第二TRP的测量质量小于第二阈值并且第三TRP的测量质量优于第二TRP的测量质量,确定由第三TRP替换第二TRP服务所述终端设备。
3、如条款1或2所述的电子设备,其中,所述处理电路还被配置为基于更新服务所述特定终端设备的TRP,向基站发送相应的TRP更新请求消息,所述更新请求消息包括以下中的一项:
第二TRP将成为服务所述终端设备的主TRP;或者
第三TRP将替换第二TRP成为服务所述终端设备的辅TRP。
4、如条款3所述的电子设备,其中,所述处理电路还被配置为接收来自基站的TRP更新确认消息,所述确认消息指示以下中的至少一项:
第二TRP将成为服务所述终端设备的主TRP,第一TRP将成为服务所述终端设备的辅TRP;
第三TRP将替换第二TRP成为服务所述终端设备的辅TRP;或者
第二TRP将成为服务所述终端设备的主TRP,第三TRP将替换第一TRP成为服务所述终端设备的辅TRP。
5、如条款4所述的电子设备,其中,所述处理电路还被配置为向所述终端设备发送无线电资源控制RRC重配置消息,以指示所述终端设备执行以下中的至少一项:
与第二TRP建立主连接,与第一TRP建立辅连接;
与第三TRP建立辅连接;或者
与第二TRP建立主连接,与第三TRP建立辅连接。
6、如条款1所述的电子设备,其中,所述处理电路还被配置为响应于第一TRP是服务所述终端设备的辅TRP,从基站接收TRP更新控制消息,并执行以下操作:
响应于所述更新控制消息指示第一TRP将成为所述终端设备的主TRP,准备层2资源,并向基站发送TRP更新确认消息;或者
响应于所述更新控制消息指示第一TRP不服务所述终端设备,释放与所述终端设备的连接。
7、如条款1所述的电子设备,其中,所述处理电路还被配置为向所述终端设备发送控制信道指示信息,以指示通过第一TRP或第二TRP中的至少一者接收物理下行链路控制信道PDCCH。
8、如条款7所述的电子设备,其中,所述处理电路还被配置为通过MAC控制单元来携带所述控制信道指示信息。
9、如条款1所述的电子设备,其中,
第一TRP与基站实现为同一设备或分立设备;
第二TRP与基站实现为分立设备或同一设备;和/或
第一TRP和第二TRP为卫星通信设备。
10、一种用于基站的电子设备,其中,基站控制多个发送接收点TRP共同服务特定终端设备,并且所述电子设备包括处理电路,所述处理电路被配置为:
响应于第一TRP和第二TRP分别是服务所述终端设备的主TRP和辅TRP:
向第一TRP提供用于所述终端设备的测量配置信息,所述测量配置信息指定所述终端设备至少对第一TRP和第二TRP测量;以及
接收来自第一TRP的第一更新请求消息,第一更新请求消息指示第二TRP将成为服务所述终端设备的主TRP,第一TRP将成为服务所述终端设备的辅TRP。
11、如条款10所述的电子设备,其中,所述处理电路还被配置为:
向第二TRP发送控制消息,以指示第二TRP将成为服务所述终端设备的主TRP。
12、如条款10所述的电子设备,其中,所述处理电路还被配置为:
从第一TRP接收所述终端设备的测量报告,所述测量报告包括各TRP的测量质量;
基于第一TRP的测量质量低于第三阈值并且第三TRP的测量质量优于第一TRP的测量质量,确定第三TRP将成为服务所述终端设备的辅TRP。
13、如条款12所述的电子设备,其中,所述处理电路还被配置为:
向第一TRP发送控制消息,以指示第一TRP不服务所述终端设备;
向第二TRP发送控制消息,以指示第二TRP将成为服务所述终端设备的主TRP;以及
向第三TRP发送控制消息,以指示第三TRP将成为服务所述终端设备的辅TRP。
14、如条款10所述的电子设备,其中,所述处理电路还被配置为:
接收来自第一TRP的第二更新请求消息,第二更新请求消息指示第三TRP将替换第二TRP成为服务所述终端设备的辅TRP。
15、如条款14所述的电子设备,其中,所述处理电路还被配置为:
向第二TRP发送控制消息,以指示第二TRP不服务所述终端设备;以及
向第三TRP发送控制消息,以指示第三TRP将成为服务所述终端设备的辅TRP。
16、如条款11、13或15所述的电子设备,其中,所述处理电路还被配置为:
向第一TRP发送针对第一或第二更新请求消息的确认消息。
17、如条款10所述的电子设备,其中,
第一TRP与基站实现为同一设备或分立设备;
第二TRP与基站实现为分立设备或同一设备;和/或
基站为卫星通信设备。
18、一种用于终端设备的电子设备,其中,所述终端设备由第一TRP与第二TRP共同服务,第一TRP是主TRP,第二TRP是辅TRP,并且所述电子设备包括处理电路,所述处理电路被配置为:
基于从第一TRP接收的测量配置信息,对第一TRP和第二TRP进行测量;以及
基于第一TRP和第二TRP的测量质量的相对关系满足第一阈值,向第一TRP发送测量报告,所述测量报告包括至少第一TRP和第二TRP的测量质量。
19、如条款18所述的电子设备,其中,所述处理电路还被配置为:
基于测量配置信息,还对第三TRP进行测量,并且所述测量报告还包括第三TRP的 测量质量。
20、如条款18或19所述的电子设备,其中,所述处理电路还被配置为从主TRP接收无线电资源控制RRC重配置消息,并执行以下中的至少一项:
与第二TRP建立主连接,与第一TRP建立辅连接;
与第三TRP建立辅连接;或者
与第二TRP建立主连接,与第三TRP建立辅连接。
21、如条款18所述的电子设备,其中,所述处理电路还被配置为从第一TRP接收控制信道指示信息,以通过第一TRP或第二TRP中的至少一者接收物理下行链路控制信道PDCCH。
22、如条款21所述的电子设备,其中,所述处理电路还被配置为通过MAC控制单元来携带所述控制信道指示信息。
23、一种用于第一发送接收点TRP的方法,其中,第一TRP与第二TRP共同服务特定终端设备,所述方法包括:
响应于第一TRP和第二TRP分别是服务所述终端设备的主TRP和辅TRP:
向所述终端设备提供测量配置信息,所述测量配置信息指定至少对第一TRP和第二TRP进行测量;
接收来自所述终端设备的测量报告,所述测量报告包括至少第一TRP和第二TRP的测量质量;以及
至少基于第一TRP和第二TRP的测量质量,更新服务所述特定终端设备的TRP,
其中,更新服务所述特定终端设备的TRP包括:基于第一TRP和第二TRP的测量质量的相对关系满足第一阈值,确定第二TRP将成为服务所述终端设备的主TRP。
24、一种用于基站的方法,其中,基站控制多个发送接收点TRP共同服务特定终端设备,所述方法包括:
响应于第一TRP和第二TRP分别是服务所述终端设备的主TRP和辅TRP:
向第一TRP提供用于所述终端设备的测量配置信息,所述测量配置信息指定所述终端设备至少对第一TRP和第二TRP测量;以及
接收来自第一TRP的第一更新请求消息,第一更新请求消息指示第二TRP将成为服务所述终端设备的主TRP,第一TRP将成为服务所述终端设备的辅TRP。
25、一种用于终端设备的方法,其中,所述终端设备由第一TRP与第二TRP共同服务,第一TRP是主TRP,第二TRP是辅TRP,所述方法包括:
基于从第一TRP接收的测量配置信息,对第一TRP和第二TRP进行测量;以及
基于第一TRP和第二TRP的测量质量的相对关系满足第一阈值,向第一TRP发送测量报告,所述测量报告包括至少第一TRP和第二TRP的测量质量。
26、一种存储有一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理电路执行时使该电子设备执行如条款23至25中任一项所述的方法。
27、一种用于无线通信的装置,包括用于执行如条款23至25中任一项所述的方法的单元。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (27)

  1. 一种用于第一发送接收点TRP的电子设备,其中,第一TRP与第二TRP共同服务特定终端设备,并且所述电子设备包括处理电路,所述处理电路被配置为:
    响应于第一TRP和第二TRP分别是服务所述终端设备的主TRP和辅TRP:
    向所述终端设备提供测量配置信息,所述测量配置信息指定至少对第一TRP和第二TRP进行测量;
    接收来自所述终端设备的测量报告,所述测量报告包括至少第一TRP和第二TRP的测量质量;以及
    至少基于第一TRP和第二TRP的测量质量,更新服务所述特定终端设备的TRP,
    其中,更新服务所述特定终端设备的TRP包括:基于第一TRP和第二TRP的测量质量的相对关系满足第一阈值,确定第二TRP将成为服务所述终端设备的主TRP。
  2. 如权利要求1所述的电子设备,其中,更新服务所述特定终端设备的TRP还包括:
    基于第二TRP的测量质量小于第二阈值并且第三TRP的测量质量优于第二TRP的测量质量,确定由第三TRP替换第二TRP服务所述终端设备。
  3. 如权利要求1或2所述的电子设备,其中,所述处理电路还被配置为基于更新服务所述特定终端设备的TRP,向基站发送相应的TRP更新请求消息,所述更新请求消息包括以下中的一项:
    第二TRP将成为服务所述终端设备的主TRP;或者
    第三TRP将替换第二TRP成为服务所述终端设备的辅TRP。
  4. 如权利要求3所述的电子设备,其中,所述处理电路还被配置为接收来自基站的TRP更新确认消息,所述确认消息指示以下中的至少一项:
    第二TRP将成为服务所述终端设备的主TRP,第一TRP将成为服务所述终端设备的辅TRP;
    第三TRP将替换第二TRP成为服务所述终端设备的辅TRP;或者
    第二TRP将成为服务所述终端设备的主TRP,第三TRP将替换第一TRP成为服务所述终端设备的辅TRP。
  5. 如权利要求4所述的电子设备,其中,所述处理电路还被配置为向所述终端设备发送无线电资源控制RRC重配置消息,以指示所述终端设备执行以下中的至少一项:
    与第二TRP建立主连接,与第一TRP建立辅连接;
    与第三TRP建立辅连接;或者
    与第二TRP建立主连接,与第三TRP建立辅连接。
  6. 如权利要求1所述的电子设备,其中,所述处理电路还被配置为响应于第一TRP是服务所述终端设备的辅TRP,从基站接收TRP更新控制消息,并执行以下操作:
    响应于所述更新控制消息指示第一TRP将成为所述终端设备的主TRP,准备层2资源,并向基站发送TRP更新确认消息;或者
    响应于所述更新控制消息指示第一TRP不服务所述终端设备,释放与所述终端设备的连接。
  7. 如权利要求1所述的电子设备,其中,所述处理电路还被配置为向所述终端设备发送控制信道指示信息,以指示通过第一TRP或第二TRP中的至少一者接收物理下行链路控制信道PDCCH。
  8. 如权利要求7所述的电子设备,其中,所述处理电路还被配置为通过MAC控制单元来携带所述控制信道指示信息。
  9. 如权利要求1所述的电子设备,其中,
    第一TRP与基站实现为同一设备或分立设备;
    第二TRP与基站实现为分立设备或同一设备;和/或
    第一TRP和第二TRP为卫星通信设备。
  10. 一种用于基站的电子设备,其中,基站控制多个发送接收点TRP共同服务特定终端设备,并且所述电子设备包括处理电路,所述处理电路被配置为:
    响应于第一TRP和第二TRP分别是服务所述终端设备的主TRP和辅TRP:
    向第一TRP提供用于所述终端设备的测量配置信息,所述测量配置信息指定所述终端设备至少对第一TRP和第二TRP测量;以及
    接收来自第一TRP的第一更新请求消息,第一更新请求消息指示第二TRP将成为服务所述终端设备的主TRP,第一TRP将成为服务所述终端设备的辅TRP。
  11. 如权利要求10所述的电子设备,其中,所述处理电路还被配置为:
    向第二TRP发送控制消息,以指示第二TRP将成为服务所述终端设备的主TRP。
  12. 如权利要求10所述的电子设备,其中,所述处理电路还被配置为:
    从第一TRP接收所述终端设备的测量报告,所述测量报告包括各TRP的测量质量;
    基于第一TRP的测量质量低于第三阈值并且第三TRP的测量质量优于第一TRP的测 量质量,确定第三TRP将成为服务所述终端设备的辅TRP。
  13. 如权利要求12所述的电子设备,其中,所述处理电路还被配置为:
    向第一TRP发送控制消息,以指示第一TRP不服务所述终端设备;
    向第二TRP发送控制消息,以指示第二TRP将成为服务所述终端设备的主TRP;以及
    向第三TRP发送控制消息,以指示第三TRP将成为服务所述终端设备的辅TRP。
  14. 如权利要求10所述的电子设备,其中,所述处理电路还被配置为:
    接收来自第一TRP的第二更新请求消息,第二更新请求消息指示第三TRP将替换第二TRP成为服务所述终端设备的辅TRP。
  15. 如权利要求14所述的电子设备,其中,所述处理电路还被配置为:
    向第二TRP发送控制消息,以指示第二TRP不服务所述终端设备;以及
    向第三TRP发送控制消息,以指示第三TRP将成为服务所述终端设备的辅TRP。
  16. 如权利要求11、13或15所述的电子设备,其中,所述处理电路还被配置为:
    向第一TRP发送针对第一或第二更新请求消息的确认消息。
  17. 如权利要求10所述的电子设备,其中,
    第一TRP与基站实现为同一设备或分立设备;
    第二TRP与基站实现为分立设备或同一设备;和/或
    基站为卫星通信设备。
  18. 一种用于终端设备的电子设备,其中,所述终端设备由第一TRP与第二TRP共同服务,第一TRP是主TRP,第二TRP是辅TRP,并且所述电子设备包括处理电路,所述处理电路被配置为:
    基于从第一TRP接收的测量配置信息,对第一TRP和第二TRP进行测量;以及
    基于第一TRP和第二TRP的测量质量的相对关系满足第一阈值,向第一TRP发送测量报告,所述测量报告包括至少第一TRP和第二TRP的测量质量。
  19. 如权利要求18所述的电子设备,其中,所述处理电路还被配置为:
    基于测量配置信息,还对第三TRP进行测量,并且所述测量报告还包括第三TRP的测量质量。
  20. 如权利要求18或19所述的电子设备,其中,所述处理电路还被配置为从主TRP接收无线电资源控制RRC重配置消息,并执行以下中的至少一项:
    与第二TRP建立主连接,与第一TRP建立辅连接;
    与第三TRP建立辅连接;或者
    与第二TRP建立主连接,与第三TRP建立辅连接。
  21. 如权利要求18所述的电子设备,其中,所述处理电路还被配置为从第一TRP接收控制信道指示信息,以通过第一TRP或第二TRP中的至少一者接收物理下行链路控制信道PDCCH。
  22. 如权利要求21所述的电子设备,其中,所述处理电路还被配置为通过MAC控制单元来携带所述控制信道指示信息。
  23. 一种用于第一发送接收点TRP的方法,其中,第一TRP与第二TRP共同服务特定终端设备,所述方法包括:
    响应于第一TRP和第二TRP分别是服务所述终端设备的主TRP和辅TRP:
    向所述终端设备提供测量配置信息,所述测量配置信息指定至少对第一TRP和第二TRP进行测量;
    接收来自所述终端设备的测量报告,所述测量报告包括至少第一TRP和第二TRP的测量质量;以及
    至少基于第一TRP和第二TRP的测量质量,更新服务所述特定终端设备的TRP,
    其中,更新服务所述特定终端设备的TRP包括:基于第一TRP和第二TRP的测量质量的相对关系满足第一阈值,确定第二TRP将成为服务所述终端设备的主TRP。
  24. 一种用于基站的方法,其中,基站控制多个发送接收点TRP共同服务特定终端设备,所述方法包括:
    响应于第一TRP和第二TRP分别是服务所述终端设备的主TRP和辅TRP:
    向第一TRP提供用于所述终端设备的测量配置信息,所述测量配置信息指定所述终端设备至少对第一TRP和第二TRP测量;以及
    接收来自第一TRP的第一更新请求消息,第一更新请求消息指示第二TRP将成为服务所述终端设备的主TRP,第一TRP将成为服务所述终端设备的辅TRP。
  25. 一种用于终端设备的方法,其中,所述终端设备由第一TRP与第二TRP共同服务,第一TRP是主TRP,第二TRP是辅TRP,所述方法包括:
    基于从第一TRP接收的测量配置信息,对第一TRP和第二TRP进行测量;以及
    基于第一TRP和第二TRP的测量质量的相对关系满足第一阈值,向第一TRP发送测量报告,所述测量报告包括至少第一TRP和第二TRP的测量质量。
  26. 一种存储有一个或多个指令的计算机可读存储介质,所述一个或多个指令在由 电子设备的一个或多个处理电路执行时使该电子设备执行如权利要求23至25中任一项所述的方法。
  27. 一种用于无线通信的装置,包括用于执行如权利要求23至25中任一项所述的方法的单元。
PCT/CN2021/107000 2020-07-21 2021-07-19 用于无线通信系统的电子设备、方法和存储介质 WO2022017303A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180060410.3A CN116250267A (zh) 2020-07-21 2021-07-19 用于无线通信系统的电子设备、方法和存储介质
US18/013,910 US20230292164A1 (en) 2020-07-21 2021-07-19 Electronic device, method, and storage medium for wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010704294.1A CN113965892A (zh) 2020-07-21 2020-07-21 用于无线通信系统的电子设备、方法和存储介质
CN202010704294.1 2020-07-21

Publications (1)

Publication Number Publication Date
WO2022017303A1 true WO2022017303A1 (zh) 2022-01-27

Family

ID=79459924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107000 WO2022017303A1 (zh) 2020-07-21 2021-07-19 用于无线通信系统的电子设备、方法和存储介质

Country Status (3)

Country Link
US (1) US20230292164A1 (zh)
CN (2) CN113965892A (zh)
WO (1) WO2022017303A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022077294A1 (en) * 2020-10-14 2022-04-21 Apple Inc. Transmission and reception point configuration

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017173037A1 (en) * 2016-03-30 2017-10-05 Idac Holdings, Inc. Method and apparatus for performing physical layer mobility procedures
CN110972244A (zh) * 2019-12-08 2020-04-07 北京凌壹世纪科技有限公司 一种一体化实战指挥方法及系统
CN110996294A (zh) * 2019-12-16 2020-04-10 北京码牛科技有限公司 一种基于车辆管理与驾乘人员的安全管理方法及系统
CN110999142A (zh) * 2017-08-07 2020-04-10 三星电子株式会社 用于在无线通信系统中的数据通信的方法和装置
CN111165015A (zh) * 2017-12-12 2020-05-15 华为技术有限公司 用于减少分层nr架构中的移动时延的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017173037A1 (en) * 2016-03-30 2017-10-05 Idac Holdings, Inc. Method and apparatus for performing physical layer mobility procedures
CN110999142A (zh) * 2017-08-07 2020-04-10 三星电子株式会社 用于在无线通信系统中的数据通信的方法和装置
CN111165015A (zh) * 2017-12-12 2020-05-15 华为技术有限公司 用于减少分层nr架构中的移动时延的方法
CN110972244A (zh) * 2019-12-08 2020-04-07 北京凌壹世纪科技有限公司 一种一体化实战指挥方法及系统
CN110996294A (zh) * 2019-12-16 2020-04-10 北京码牛科技有限公司 一种基于车辆管理与驾乘人员的安全管理方法及系统

Also Published As

Publication number Publication date
US20230292164A1 (en) 2023-09-14
CN116250267A (zh) 2023-06-09
CN113965892A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
US20220408298A1 (en) Electronic device and method for wireless communications
CN110784899B (zh) 无线通信系统中的电子设备和无线通信方法
WO2019174532A1 (zh) 电子装置、无线通信方法以及计算机可读介质
WO2018171580A1 (zh) 用于无线通信的电子装置以及无线通信方法
US10893572B2 (en) User-equipment-coordination set for disengaged mode
WO2021169828A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
JP7192855B2 (ja) 無線通信システムに用いられる電気機器、方法及び記憶媒体
US20230180068A1 (en) Electronic apparatus, radio communication method, and computer-readable storage medium
WO2021139669A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
US20230345263A1 (en) Communication control device, and communication control method for determining a frequency range to be used by a base station
WO2019206061A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2016092959A1 (ja) 装置
US20190158166A1 (en) Terminal apparatus, base station, method and recording medium
JP2024012672A (ja) 通信装置、及び通信制御装置
WO2022161441A1 (zh) 无线通信系统中的电子设备和方法
WO2020144944A1 (ja) 通信制御装置、通信制御方法及びコンピュータプログラム
US20220338023A1 (en) Electronic device, wireless communication method, and computer readable storage medium
WO2022017303A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2021161926A1 (ja) 通信制御方法及びユーザ装置
US20220417918A1 (en) Electronic device, method, and storage medium for wireless communication system
US10028256B2 (en) Apparatus
WO2017038192A1 (ja) 装置及び方法
US20240224208A1 (en) Advertising synchronization status and validity in wireless communication systems
WO2022213894A1 (zh) 用于无线通信的电子设备、无线通信方法以及存储介质
WO2023221913A1 (zh) 用于指示tci状态的方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21847358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21847358

Country of ref document: EP

Kind code of ref document: A1