WO2012091195A1 - 간섭제거기능을 갖는 무선중계장치 - Google Patents

간섭제거기능을 갖는 무선중계장치 Download PDF

Info

Publication number
WO2012091195A1
WO2012091195A1 PCT/KR2010/009419 KR2010009419W WO2012091195A1 WO 2012091195 A1 WO2012091195 A1 WO 2012091195A1 KR 2010009419 W KR2010009419 W KR 2010009419W WO 2012091195 A1 WO2012091195 A1 WO 2012091195A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
antenna
base station
terminal
backhaul
Prior art date
Application number
PCT/KR2010/009419
Other languages
English (en)
French (fr)
Inventor
은세영
강형창
Original Assignee
주식회사 지에스인스트루먼트
엘지에릭슨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지에스인스트루먼트, 엘지에릭슨 주식회사 filed Critical 주식회사 지에스인스트루먼트
Priority to PCT/KR2010/009419 priority Critical patent/WO2012091195A1/ko
Publication of WO2012091195A1 publication Critical patent/WO2012091195A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/003Interference mitigation or co-ordination of multi-user interference at the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15564Relay station antennae loop interference reduction
    • H04B7/15571Relay station antennae loop interference reduction by signal isolation, e.g. isolation by frequency or by antenna pattern, or by polarization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15564Relay station antennae loop interference reduction
    • H04B7/15585Relay station antennae loop interference reduction by interference cancellation

Definitions

  • the present invention relates to a wireless relay apparatus, and in particular, has an interference cancellation function that enables efficient data transmission by eliminating indirect phenomena generated during signal relay on the uplink from the terminal to the base station and the downlink from the base station to the terminal. It relates to a wireless relay device.
  • the LTE (Long Term Evolution) system is a mobile communication system that has evolved from the Universal Mobile Telecommunications (UMT) system.
  • UMT Universal Mobile Telecommunications
  • the standard was established by the 3rd Generation Partnership Project (3GPP), an international standardization organization.
  • 1 is a system schematic diagram showing a schematic configuration of an LTE system.
  • the LTE system is basically configured by combining a plurality of terminals 20 with respect to one base station 10.
  • a radio relay that is, a relay node (RN) 30 is provided between the base station 10 and the terminal 20 to improve coverage or cell edge throughput.
  • RN relay node
  • the relay node 30 is a device for supplementing the communication because the communication is not performed smoothly when the distance between the base station 10 and the terminal 20 is far, the downlink signal from the base station 10 to the terminal 20 And a relay process for the uplink signal from the terminal 20 to the base station 10.
  • the relay node 30 distinguishes the downlink and the uplink using different frequencies. That is, the relay node 30 amplifies the backhaul downlink signal applied from the base station 10 and transmits the backhaul downlink signal to the terminal 20 as an access downlink signal, and also applies it from the terminal 20. The amplified access uplink signal is transmitted to the base station 10 as a backhaul uplink signal.
  • FDD frequency division duplexing
  • the backhaul downlink, the access downlink, the backhaul uplink, and the access uplink each use the same frequency band in the FDD LTE system, as shown in FIG.
  • an interference phenomenon occurs because a backhaul signal is fed as an access signal or an access signal is fed back as a backhaul signal on the uplink and the downlink. There is a problem.
  • the time division method between the backhaul signal and the access signal uses only 50% of the allocated communication channel, resulting in a decrease in communication efficiency of the entire system.
  • the present invention has been made in view of the above-described circumstances, and, based on the gain difference between the backhaul signal and the access signal, the backhaul signal between the relay node and the base station is transmitted and received through an antenna having a high directivity characteristic. It is a technical object of the present invention to provide a wireless relay device having an interference canceling function to maintain the call quality without reducing the communication efficiency of the overall system by removing the interference signal.
  • the wireless relay apparatus having an interference cancellation function according to the present invention for achieving the above object is provided in the wireless relay apparatus for providing a downlink signal applied from the base station to the terminal, the uplink signal applied from the terminal to the base station, A high directional backhaul antenna having a first beamwidth for transmitting and receiving signals with the base station, an access antenna having a second beamwidth wider than a first beamwidth of a high directional antenna for transmitting and receiving signals with the terminal, and the high directional backhaul antenna And relay processing means for relaying a signal applied from the access antenna to a base station or a terminal.
  • the backhaul antenna is set so that the level of the signal received from the base station is 70dB or more greater than the level of the signal received from the access antenna.
  • the relay processing means may be configured to remove feedback signals having a different signal level by more than a predetermined level among the signals received through the backhaul antenna or the access antenna.
  • a high directional antenna having a narrow beam width is configured for signal transmission and reception with a base station, and a wide beam width antenna is configured for signal transmission and reception with a terminal.
  • 1 is a system schematic diagram showing a schematic configuration of an LTE system.
  • FIG. 2 is a view for explaining the interference phenomenon generated in the relay node 30 shown in FIG.
  • FIG. 3 is a diagram illustrating a schematic configuration of an LTE system to which a wireless relay apparatus having an interference cancellation function according to the present invention is applied.
  • Figure 4 is a block diagram showing the functional separation of the internal configuration of the relay processing means 130 shown in FIG.
  • FIG. 3 is a diagram illustrating a schematic configuration of an LTE system to which a wireless relay apparatus having an interference cancellation function according to the present invention is applied.
  • the wireless relay device having the interference canceling function according to the present invention is configured by combining a wireless relay device, that is, a relay node 100, between the base station 10 and the terminal 20.
  • the relay node 100 is applied through a backhaul antenna 110 for communicating with the base station 10 and an access antenna 120 for communicating with the terminal 20 and the backhaul antenna 110 as shown.
  • the downlink signal from the base station 10 is recovered and amplified and transmitted to the terminal 20 through the access antenna 120, and the uplink signal from the terminal 20 applied through the access antenna 120 is received.
  • It is configured to include a relay processing means 130 to restore and amplify and transmitted through the backhaul antenna 110.
  • the relay node 100 is configured to narrow (A) the beam width using a high-direction backhaul antenna with respect to the backhaul signal with the base station 10 and with the terminal 20.
  • the access signal is configured to use an omni directional antenna in which the beam width is set wide (B).
  • the high-directional antenna may be configured to have a directing angle of 50 degrees or less, and the access antenna may be configured to have a directing angle of 90 degrees or more.
  • the base station 10 and the relay node 100 is configured at a specific location because the high-directional antenna having a narrow beam width, while the terminal 20 has a mobility within a certain range can cover a certain range
  • the access antenna is configured to have a wider beam width than the base station 10 side antenna.
  • the high-direction backhaul antenna 110 may be set such that when the relay node 100 receives the backhaul downlink, the backhaul downlink received signal is 70 dB or more greater than the signal signaled by the access downlink feedback. . In addition, the high-direction backhaul antenna 110 may be set such that, when the relay node 100 receives the access uplink, the access uplink received signal is 70 dB or more greater than the received signal due to the feedback of the backhaul uplink.
  • the relay processing means 130 includes an RF signal processing block 131, an amplification processing block 132, and a digital signal processing block 133, as shown in FIG.
  • the RF signal processing block 131 is coupled to the backhaul antenna 110 and the access antenna 120.
  • the RF signal processing block 131 performs baseband signal processing, processing of converting an analog signal into a digital signal, and converting an input signal into an intermediate frequency signal. That is, the RF signal processing block 131 converts a received signal applied from the backhaul antenna 110 and the access antenna 120 into an intermediate frequency or a signal of a baseband.
  • the RF signal processing block 131 wirelessly transmits the signal restored and amplified through the digital signal processing block 133 and the amplification processing block 132 through the backhaul antenna 110 and the access antenna 120. do.
  • the RF signal processing block 131 may allow a baseband digital signal processing block applied from the backhaul antenna 110 or the access antenna 120 to process a signal or may have a predetermined bandwidth or more. And a filter for removing the signal.
  • the RF signal processing block 131 may be configured to include a filter for processing the baseband digital signal processing to be emitted to the backhaul antenna 110 or the access antenna 120 as a signal of a predetermined bandwidth or more. .
  • the amplification processing block 132 amplifies the RF signal provided from the RF signal processing block 131 to a predetermined level and provides it to the digital signal processing block 133.
  • the amplification processing block 132 may be configured to perform an amplification process on the demodulated signal through the digital signal processing block 133 and then provide the amplified signal to the RF signal processing block 131. Can be.
  • the digital signal processing block 133 performs a demodulation process on the amplified RF signal applied from the amplification processing block 132 and provides the corresponding signal to the RF signal processing block 131.
  • the digital signal processing block 133 may be configured to perform a demodulation process on the signal applied from the RF signal processing block 131 and then provide the demodulated signal to the amplification processing block 132.
  • the transmission and reception signal level with the base station and the transmission and reception signal level with the terminal is more than a predetermined level, by analyzing the feedback input signal based on the signal level applied through a high-directional antenna or an access antenna to easily remove You can do it.
  • the present invention since it is possible to eliminate the interference phenomenon of the feedback signal applied to the radio relay apparatus with a simple configuration, it is possible to maintain the call quality in the entire communication system, as well as to be allocated on the downlink and uplink. It is possible to use both the entire frequency and time domain, thereby improving the communication efficiency in the overall communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

본 발명은 무선중계장치에 관한 것으로, 특히 LTE시스템의 릴레이 노드에서 발생되는 업링크와 다운링크간의 간접현상을 제거함으로써 효율적인 데이터전송이 가능하도록 해 주는 간섭제거기능을 갖는 무선중계장치에 관한 것이다. 본 발명에 따른 간섭제거기능을 갖는 무선중계장치는 기지국으로부터 인가되는 다운링크신호를 단말로 제공하고, 단말로부터 인가되는 업링크신호를 기지국으로 제공하는 무선중계장치에 있어서, 상기 기지국과 신호를 송수신하기 위한 제1 빔폭을 갖는 고지향성 백홀 안테나와, 상기 단말과 신호를 송수신하기 위한 고지향성 안테나의 제1 빔폭보다 넓은 제2 빔폭을 갖는 액세스 안테나 및, 상기 고지향성 백홀 안테나 및 상기 액세스 안테나로부터 인가되는 신호를 기지국 또는 단말로 중계처리하는 중계처리수단을 포함하여 구성되는 것을 특징으로 한다.

Description

간섭제거기능을 갖는 무선중계장치
본 발명은 무선중계장치에 관한 것으로, 특히 단말에서 기지국으로의 업링크와 기지국에서 단말로의 다운링크상의 신호중계시 발생되는 간접현상을 제거함으로써 효율적인 데이터전송이 가능하도록 해 주는 간섭제거기능을 갖는 무선중계장치 에 관한 것이다.
무선통신시스템에서 특히 LTE(Long Term Evolution) 시스템은 UMT(Universal Mobile Telecommunications)시스템에서 진화한 이동통신시스템으로 국제 표준화기구인 3GPP(3rd Generation Partnership Project)에서 표준이 제정되었다.
도1은 LTE시스템의 개략적인 구성을 나타낸 시스템개요도이다.
도1에 도시된 바와 같이 LTE시스템은 기본적으로 하나의 기지국(10)에 대해다수의 단말(20)이 결합되어 구성된다. 그리고, 상기 기지국(10)과 단말(20) 사이에는 커버리지(coverage) 나 셀 경계에서의 전송효율(cell edge throughput)를 개선하기 위하여 무선중계장치 즉, 릴레이노드(RN:Relay Node, 30)가 결합된다. 이때, 상기 기지국(10)에서 단말(20)로의 신호연결을 다운링크, 단말(20)에서 기지국(10)로의 신호연결을 업링크라고 한다.
상기 릴레이노드(30)는 기지국(10)과 단말(20) 사이의 거리가 먼 경우 원활하게 통신이 이루어지지 않기 때문에 이를 보완하기 위한 장치로서, 기지국(10)에서 단말(20)로의 다운링크신호와 단말(20)로부터 기지국(10)으로의 업링크신호에 대한 중계처리를 수행한다.
특히, FDD(Frequency Division Duplexing) LTE시스템에서 상기 릴레이노드(30)는 다운링크와 업링크를 서로 다른 주파수를 이용하여 구분한다. 즉, 릴레이노드(30)는 기지국(10)으로부터 인가되는 백홀(backhaul) 다운링크신호를 증폭처리하여 액세스(Access) 다운링크신호로서 단말(20)로 송출함과 더불어, 단말(20)로부터 인가되는 액세스(Access) 업링크신호를 증폭처리하여 백홀(Backhaul) 업링크신호로서 기지국(10)로 송출한다.
그러나, 상기 FDD LTE 시스템에서 백홀(Backhaul) 다운링크와 액세스(Access) 다운링크, 백홀(Backhaul) 업링크와 액세스(Access) 업링크는 각각 동일한 주파수대역을 사용하기 때문에, 도2에 도시된 바와 같이 릴레이노드(30)는 업링크와 다운링크상에서 백홀(Backhaul) 신호가 액세스(Access) 신호로, 또는 액 세스(Acess) 신호가 백홀(Backhaul)신호로 궤환(Feedback)입력되어 간섭현상이 발생하는 문제가 있게 된다.
이에, 최근에는 다운링크 또는 업링크에 대해 백홀(Backhaul) 신호와 액세스(Access) 신호를 시간적으로 동시에 인에이블하지 않도록 제어하는 방법이 제안되었다.
그러나, 상기 백홀(Backhaul) 신호와 액세스(Access) 신호간의 시간분할 방법은 결과적으로 할당된 통신채널을 50%만 사용하게 되므로 전체 시스템의 통신효율을 저하시키게 되는 단점이 있게 된다.
이에, 본 발명은 상기한 사정을 감안하여 창출된 것으로 릴레이노드와 기지지국간의 Backhaul 신호에 대해서는 고지향성 특성을 갖는 안테나를 통해 신호를 송수신함과 더불어, Backhaul 신호와 Access 신호간의 이득차를 근거로 간섭신호를 제거하도록 함으로써, 전체적인 시스템의 통신효율을 저하시키지 않고도 통화품질을 유지할 수 있도록 해 주는 간섭제거기능을 갖는 무선중계장치를 제공함에 기술적 목적이 있다.
상기 목적을 달성하기 위한 본 발명에 따른 간섭제거기능을 갖는 무선중계장치는 기지국으로부터 인가되는 다운링크신호를 단말로 제공하고, 단말로부터 인가되는 업링크신호를 기지국으로 제공하는 무선중계장치에 있어서, 상기 기지국과 신호를 송수신하기 위한 제1 빔폭을 갖는 고지향성 백홀 안테나와, 상기 단말과 신호를 송수신하기 위한 고지향성 안테나의 제1 빔폭보다 넓은 제2 빔폭을 갖는 액세스 안테나 및, 상기 고지향성 백홀 안테나 및 상기 액세스 안테나로부터 인가되는 신호를 기지국 또는 단말로 중계처리하는 중계처리수단을 포함하여 구성되는 것을 특징으로 한다.
또한, 본 발명에 있어서 상기 백홀 안테나는 기지국으로부터 수신된 신호의 레벨이 액세스 안테나로부터 수신된 신호의 레벨보다 70dB 이상 크도록 설정되는 것을 특징으로 한다.
또한, 본 발명에 있어서 상기 중계처리수단은 상기 백홀 안테나 또는 액세스 안테나를 통해 수신되는 신호 중 신호레벨이 일정 레벨 이상 차이 나는 궤환 신호는 제거하도록 구성되는 것을 특징으로 한다.
본 발명에 의하면 기지국과의 신호송수신을 위해서는 빔폭이 좁은 고지향성안테나를 구성하고 단말과의 신호송수신을 위해서는 빔폭이 넓은 안테나를 구성함과 더불어 다운링크 또는 업링크상에서 기지국과의 송수신신호레벨과 단말과의 송수신신호레벨이 일정 레벨 이상 차이가 나도록 설정함으로써, 간단한 구성으로 무선중계장치로 인가되는 궤환 신호에 대한 간섭현상을 제거할 수 있게 된다.
따라서, 전체적인 통신시스템에서 통화품질을 유지하는 것이 가능하게 됨은 물론, 다운링크 및 업링크상에서 할당된 전체 주파수 및 시간영역을 모두 사용하는 것이 가능하여 전체적인 통신시스템에 통신효율을 향상 시킬 수 있게 된다.
도1은 LTE시스템의 개략적인 구성을 나타낸 시스템개요도.
도2는 도1에 도시된 릴레이노드(30)에서 발생되는 간섭현상을 설명하기 위한 도면.
도3은 본 발명에 따른 간섭제거기능을 갖는 무선중계장치가 적용되는 LTE시스템의 개략적인 구성을 도시한 도면.
도4는 도3에 도시된 중계처리수단(130)의 내부구성을 기능적으로 분리하여 나타낸 블록구성도.
이하, 도면을 참조하여 본 발명에 따른 실시 예를 설명한다. 단, 이하에 설명하는 실시 예는 본 발명의 하나의 바람직한 구현예를 예시적으로 나타낸 것으로서, 이러한 실시 예의 예시는 본 발명의 권리범위를 제한하기 위한 것이 아니다. 본 발명은 그 기술적 사상을 벗어나지 않는 범위내에서 다양하게 변형시켜 실시할 수 있다.
도3은 본 발명에 따른 간섭제거기능을 갖는 무선중계장치가 적용되는 LTE시스템의 개략적인 구성을 도시한 도면이다.
도3에 도시된 바와 같이 본 발명에 따른 간섭제거기능을 갖는 무선중계장치는 기지국(10)과 단말(20) 사이에 무선중계장치, 즉 릴레이노드(100)가 결합되어 구성된다.
상기 릴레이노드(100)는 도시된 바와 같이 상기 기지국(10)과 통신하기 위한 백홀 안테나(110)와 단말(20)과 통신하기 위한 액세스 안테나(120), 상기 백홀 안테나(110)를 통해 인가되는 기지국(10)으로부터의 다운링크 신호를 복원 및 증폭시켜 액세스 안테나(120)를 통해 단말(20)측으로 송출함과 더불어 상기 액세스 안테나(120)를 통해 인가되는 단말(20)로부터의 업링크 신호를 복원 및 증폭시켜 백홀 안테나(110)를 통해 송출하는 중계처리수단(130)을 포함하여 구성된다.
이때, 상기 릴레이노드(100)는 기지국(10)과의 백홀(Backhaul)신호에 대해서는 고지향성 백홀 안테나를 이용하여 빔(beam)폭을 좁게 설정(A)하도록 구성되고, 단말(20)과의 액세스(Access)신호에 대해서는 빔(beam)폭이 넓게 설정(B)되는 무지향성 안테나를 이용하도록 구성된다. 예컨대, 상기 고지향성 안테나는 50˚이하의 지향각도를 갖도록 구성되고, 상기 액세스 안테나는 90˚이상의 지향각도를 갖도록 구성될 수 있다.
이는 기지국(10)과 릴레이노드(100)는 특정 위치에 고정되어 있기 때문에 좁은 빔 폭을 갖는 고지향성 안테나를 구성한 반면, 단말(20)은 일정 범위내에서 이동성을 갖기 때문에 일정 범위를 커버할 수 있도록 기지국(10)측 안테나 보다는 넓은 빔폭을 갖도록 된 액세스 안테나를 구성한 것이다.
또한, 상기 고지향성 백홀 안테나(110)는 릴레이 노드(100)가 백홀 다운링크 수신시 백홀 다운링크 수신신호가 액세스 다운링크가 궤환되어 구싱된 신호보다 신호레벨이 70 dB 이상 크도록 설정될 수 있다. 또한, 상기 고지향성 백홀 안테나(110)는 릴레이노드(100)가 액세스 업링크 수신시 액세스 업링크 수신신호가 백홀 업링크가 궤환되어 수신된 신호보다 신호레벨이 70dB이상 크도록 설정될 수 있다.
한편, 상기 중계처리수단(130)은 도4에 도시된 바와 같이 RF신호처리블럭(131)과, 증폭처리블럭(132) 및 디지털신호처리블럭(133)을 포함하여 구성된다.
상기 RF신호처리블럭(131)은 상기 백홀 안테나(110) 및 액세스 안테나(120)와 결합된다. 상기 RF신호처리블럭(131)은 베이스밴드(Baseband) 신호처리 및 아날로그신호를 디지털신호로 변환하는 처리 및 입력신호를 중간주파수신호로 변환하는 등의 신호처리를 수행한다. 즉, 상기 RF신호처리블럭(131)은 백홀 안테나(110) 및 액세스 안테나(120)로부터 인가되는 수신신호를 중간주파수로 변환하거나 베이스뱅드의 신호로 변환한다. 또한, 상기 RF신호처리블럭(131)은 상기 디지털신호처리블럭(133) 및 증폭처리블럭(132)을 통해 복원 및 증폭이 완료된 신호를 백홀 안테나(110) 및 액세스 안테나(120)를 통해 무선 송출한다.
또한, 상기 RF신호처리블럭(131)은 도시되지는 않았지만, 백홀 안테나(110) 또는 액세스 안테나(120)로부터 인가되는 베이스밴드 디지털 신호처리블럭이 신호를 처리할 수 있도록 또는 일정 대역폭(Bandwidth) 이상의 신호의 제거를 위한 필터를 구비하여 구성된다. 또한 상기 RF신호처리블럭(131)은 베이스밴드 디지털 신호처리되어 백홀 안테나(110) 또는 액세스 안테나(120)로 방사되는 신호가 일정 대역폭 이상의 신호로 방출되지 않도록 하기 위한 필터를 구비하여 구성될 수 있다.
상기 증폭처리블럭(132)은 상기 RF신호처리블럭(131)으로부터 제공되는 RF신호를 일정 레벨로 증폭하여 상기 디지털신호처리블럭(133)으로 제공한다. 또한, 상기 증폭처리블럭(132)은 상기 디지털신호처리블럭(133)을 통해 복조처리가 완료된 신호에 대해 증폭처리를 수행한 후, 증폭된 신호를 RF신호처리블럭(131)으로 제공하도록 구성될 수 있다.
상기 디지털신호처리블럭(133)은 상기 증폭처리블럭(132)으로부터 인가되는 증폭된 RF신호에 대한 복조처리를 수행한 후 해당 신호를 상기 RF신호처리블럭(131)으로 제공한다. 또한, 디지털신호처리블럭(133)은 상기 RF신호처리블럭(131)으로부터 인가되는 신호에 대한 복조처리를 수행한 후 이 복조처리된 신호를 증폭처리블럭(132)으로 제공하도록 구성될 수 있다.
즉, 상기 실시 예에 의하면 기지국과의 신호송수신을 위해서는 빔폭이 좁은 고지향성 안테나를 구성하고, 단말과의 신호송수신을 위해서는 빔폭이 넓은 안테나를 구성함으로써, 궤환신호에 따른 신호간섭현상을 최소화할 수 있도록 된 무선중계장치를 제공할 수 있게 된다.
또한, 기지국과의 송수신 신호레벨과 단말과의 송수신신호레벨이 일정 레벨 이상 차이가 나도록 설정함으로써, 고지향성 안테나 또는 액세스 안테나를 통해 인가되는 신호레벨을 근거로 궤환 입력되는 신호를 분석하여 용이하게 제거할 수 있게 된다.
따라서, 본 발명에 의하면 간단한 구성으로 무선중계장치로 인가되는 궤환 신호에 대한 간섭현상을 제거할 수 있게 되므로 전체적인 통신시스템에서 통화품질을 유지하는 것이 가능하게 됨은 물론, 다운링크 및 업링크상에서 할당된 전체 주파수 및 시간 영역을 모두 사용하는 것이 가능하여 전체적인 통신시스템에 통신효율을 향상시킬 수 있게 된다.

Claims (3)

  1. 기지국으로부터 인가되는 다운링크신호를 단말로 제공하고, 단말로부터 인가되는 업링크신호를 기지국으로 제공하는 무선중계장치에 있어서,
    상기 기지국과 신호를 송수신하기 위한 제1 빔폭을 갖는 고지향성 백홀 안테나와,
    상기 단말과 신호를 송수신하기 위한 고지향성 안테나의 제1 빔폭보다 넓은 제2 빔폭을 갖는 액세스 안테나 및,
    상기 고지향성 백홀 안테나 및 상기 액세스 안테나로부터 인가되는 신호를 기지국 또는 단말로 중계처리하는 중계처리수단을 포함하여 구성되는 것을 특징으로 하는 간섭제거기능을 갖는 무선중계장치.
  2. 제1항에 있어서,
    상기 백홀 안테나는 기지국으로부터 수신된 신호의 레벨이 액세스 안테나로부터 수신된 신호의 레벨보다 70dB 이상 크도록 설정되는 것을 특징으로 하는 간섭제거기능을 갖는 무선중계장치.
  3. 제1항 또는 제2항에 있어서,
    상기 중계처리수단은 상기 백홀 안테나 또는 액세스 안테나를 통해 수신되는 신호 중 신호레벨이 일정 레벨 이상 차이 나는 궤환 신호는 제거하도록 구성되는 것을 특징으로 하는 간섭제거기능을 갖는 무선중계장치.
PCT/KR2010/009419 2010-12-28 2010-12-28 간섭제거기능을 갖는 무선중계장치 WO2012091195A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/009419 WO2012091195A1 (ko) 2010-12-28 2010-12-28 간섭제거기능을 갖는 무선중계장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/009419 WO2012091195A1 (ko) 2010-12-28 2010-12-28 간섭제거기능을 갖는 무선중계장치

Publications (1)

Publication Number Publication Date
WO2012091195A1 true WO2012091195A1 (ko) 2012-07-05

Family

ID=46383258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009419 WO2012091195A1 (ko) 2010-12-28 2010-12-28 간섭제거기능을 갖는 무선중계장치

Country Status (1)

Country Link
WO (1) WO2012091195A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515634A (zh) * 2014-09-25 2016-04-20 成都鼎桥通信技术有限公司 无线通信中继系统
WO2022161441A1 (zh) * 2021-01-29 2022-08-04 索尼集团公司 无线通信系统中的电子设备和方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408679A (en) * 1991-07-18 1995-04-18 Fujitsu Limited Mobile telecommunications system having an expanded operational zone

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408679A (en) * 1991-07-18 1995-04-18 Fujitsu Limited Mobile telecommunications system having an expanded operational zone

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
P. JIANG ET AL., SELF-ORGANIZING RELAY STATIONS IN RELAY BASED CELLULAR NETWORKS, vol. 31, no. 13, August 2008 (2008-08-01), pages 2937 - 2945 *
X. LU ET AL.: "Detection probability estimation of directional antennas and omni-directional antennas", WIRELESS PERSONAL COMMUNICATIONS, vol. 55, no. 1, 11 August 2009 (2009-08-11), pages 51 - 63 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515634A (zh) * 2014-09-25 2016-04-20 成都鼎桥通信技术有限公司 无线通信中继系统
CN105515634B (zh) * 2014-09-25 2019-04-23 成都鼎桥通信技术有限公司 无线通信中继系统
WO2022161441A1 (zh) * 2021-01-29 2022-08-04 索尼集团公司 无线通信系统中的电子设备和方法

Similar Documents

Publication Publication Date Title
US8718542B2 (en) Co-location of a pico eNB and macro up-link repeater
EP3069500B1 (en) Massive mimo multi-user beamforming and single channel full duplex for wireless networks
US9356688B2 (en) Method and system for full duplex relaying in a wireless communication network
US20090147706A1 (en) Frame structures, method and apparatus for resource allocation in wireless communications system based on full duplex replay
US20110216690A1 (en) Relaying system and method with partner relays and selective transmission
US10244409B2 (en) Digital full duplex over single channel solution for small cell backhaul applications
AU2003259509A1 (en) Packet data transmission in a mimo system
US10595287B2 (en) Frequency-division duplexing in a time-division duplexing mode for a telecommunications system
WO2017142124A1 (ko) 디지털 전치 왜곡을 위한 피드백 경로를 공유하는 다중 경로 통신 장치
EP2553834B1 (en) Relay radio front-end
KR20170090307A (ko) 전이중화 기반 이동 통신 시스템에서의 신호 전송 방법 및 그 장치
US9813121B1 (en) Massive MIMO multi-user beamforming and single channel full duplex for wireless networks
WO2012091195A1 (ko) 간섭제거기능을 갖는 무선중계장치
CN103067317A (zh) 一种对上行信号进行噪声抑制的方法、设备和系统
KR101956875B1 (ko) 5g 네트워크용 다이나믹 tdd 방식의 los 확보를 위한 릴레이장치
KR20150133367A (ko) 선박용 무선통신 중계 장치
KR20140131780A (ko) 중계 기능을 겸비한 이동 단말 및 그 중계 방법
US10461814B2 (en) Massive MIMO multi-user beamforming and single channel full duplex for wireless networks
KR20120074512A (ko) 간섭제거기능을 갖는 무선중계장치
KR102541290B1 (ko) 중계 장치 및 중계 장치의 동작 방법
US20240236701A9 (en) Signal forwarding method and related apparatus
KR101197613B1 (ko) 공유 중계기 및 이동통신 시스템
WO2016108448A1 (ko) 간섭 제거 중계 장치
CN102318399B (zh) 使用户终端能正确地解调数据的方法和网络实体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10861299

Country of ref document: EP

Kind code of ref document: A1