WO2020108473A1 - 电子设备、通信方法和存储介质 - Google Patents

电子设备、通信方法和存储介质 Download PDF

Info

Publication number
WO2020108473A1
WO2020108473A1 PCT/CN2019/120902 CN2019120902W WO2020108473A1 WO 2020108473 A1 WO2020108473 A1 WO 2020108473A1 CN 2019120902 W CN2019120902 W CN 2019120902W WO 2020108473 A1 WO2020108473 A1 WO 2020108473A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
tci state
association
indication
electronic device
Prior art date
Application number
PCT/CN2019/120902
Other languages
English (en)
French (fr)
Inventor
曹建飞
Original Assignee
索尼公司
曹建飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 曹建飞 filed Critical 索尼公司
Priority to US17/288,572 priority Critical patent/US11695451B2/en
Priority to EP19888686.3A priority patent/EP3890203A4/en
Priority to CN201980076805.5A priority patent/CN113169780A/zh
Priority to KR1020217014580A priority patent/KR20210095626A/ko
Publication of WO2020108473A1 publication Critical patent/WO2020108473A1/zh
Priority to US18/328,811 priority patent/US20230318663A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity
    • H04B7/0897Space-time diversity using beamforming per multi-path, e.g. to cope with different directions of arrival [DOA] at different multi-paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present disclosure relates to electronic devices, communication methods, and storage media, and more particularly, the present disclosure relates to electronic devices, communication methods, and storage media for beam indication in a wireless communication system.
  • a base station and a user equipment have multiple antennas.
  • the base station antenna and the UE antenna can form a spatial beam with narrow directivity through beamforming to Provides strong power coverage in a specific direction, thereby combating the large path loss present in high-frequency channels.
  • Many beams with different transmission directions are used to achieve greater coverage.
  • the base station and the UE need to select a beam that matches the channel direction as much as possible, that is, at the transmitting end, the transmitting beam is aligned with the channel emission angle (AOD), and at the receiving end, the receiving beam is aligned with the channel arrival Angle (AOA).
  • AOD channel emission angle
  • AOA channel arrival Angle
  • the base station and the UE can determine the transmit beam and the receive beam to be used through beam training.
  • Beam training may generally include steps such as beam measurement, beam reporting, and beam indication.
  • the base station may transmit a group of beams with mutually different directions, and the UE measures the quality of each beam received and reports the measurement result to the base station, so that the base station can select the best beam from them.
  • the base station may indicate the selected best beam to the UE through, for example, a transmission configuration indication (TCI) status.
  • TCI transmission configuration indication
  • the base station configures up to 64 TCI states for the UE. These TCI states may not correspond to the selected best beam, and thus cannot be used to indicate the Good beam. In addition, reconfiguring the TCI state for the UE will consume a lot of resources.
  • the present disclosure provides various aspects to meet the above needs.
  • an electronic device for a user equipment side including a processing circuit configured to receive, from a control device, a correlation between a first reference signal and a second reference signal Configuration; receiving an indication of the first reference signal from the control device; and in response to the indication of the first reference signal, based on the association between the first reference signal and the second reference signal, utilizing the spatial reception of the second reference signal Parameters to achieve the reception of the third reference signal.
  • an electronic device for controlling a device side including a processing circuit configured to send to a user equipment an association about a first reference signal and a second reference signal Configuration; sending an indication of a first reference signal to the user equipment, wherein, in response to the indication of the first reference signal, the user equipment uses the second reference signal based on the association between the first reference signal and the second reference signal To receive the third reference signal.
  • an electronic device for a user equipment side including a processing circuit configured to receive, from a control device, a correlation between a first reference signal and a second reference signal Configuration; receiving an indication of the first reference signal from the control device; and in response to the indication of the first reference signal, based on the association between the first reference signal and the second reference signal, utilizing the spatial reception of the second reference signal Parameters or spatial transmission parameters to achieve the sending of the third reference signal.
  • an electronic device for controlling a device side including a processing circuit configured to send to a user equipment an association about a first reference signal and a second reference signal Configuration; sending an indication of a first reference signal to the user equipment, wherein, in response to the indication of the first reference signal, the user equipment uses the second reference signal based on the association between the first reference signal and the second reference signal To achieve the sending of the third reference signal by using the space receiving parameter or the space transmitting parameter.
  • an electronic device for a user equipment side including a processing circuit configured to receive activation information for a first transmission configuration indication (TCI) state set from a control device, Each TCI state in the first TCI state set is respectively associated with the corresponding TCI state in the second TCI state set; receiving indication information for the specific TCI state in the first TCI state set and its associated activation from the control device Information; and if the association activation information indicates that the association is enabled, determine the space reception parameter based on the TCI state associated with the specific TCI state in the second TCI state set.
  • TCI transmission configuration indication
  • an electronic device for controlling a device side including a processing circuit configured to send activation information for a first transmission configuration indication (TCI) state set to user equipment, Wherein each TCI state in the first TCI state set is respectively associated with the corresponding TCI state in the second TCI state set; sending indication information for the specific TCI state in the first TCI state set and its associated activation to the user equipment Information, where the TCI state associated with the specific TCI state in the second TCI state set is used by the user equipment to determine space reception parameters when the association activation information indicates that the association is enabled.
  • TCI transmission configuration indication
  • a communication method including: receiving a configuration about an association between a first reference signal and a second reference signal from a control device; receiving an indication of the first reference signal from the control device And in response to the indication of the first reference signal, based on the association between the first reference signal and the second reference signal, using the spatial reception parameters of the second reference signal to achieve the reception of the third reference signal.
  • a communication method including: sending a configuration about an association between a first reference signal and a second reference signal to a user equipment; sending an indication of the first reference signal to the user equipment, wherein, in response to the indication of the first reference signal, the user equipment uses the spatial reception parameters of the second reference signal to realize the reception of the third reference signal based on the association between the first reference signal and the second reference signal.
  • a communication method including: receiving a configuration about an association between a first reference signal and a second reference signal from a control device; receiving an indication of the first reference signal from the control device And in response to the indication of the first reference signal, based on the association between the first reference signal and the second reference signal, using the spatial reception parameters or spatial transmission parameters of the second reference signal to achieve the transmission of the third reference signal.
  • a communication method including: sending a configuration about an association between a first reference signal and a second reference signal to a user equipment; sending an indication of the first reference signal to the user equipment, wherein, in response to the indication of the first reference signal, based on the association between the first reference signal and the second reference signal, the user equipment uses the spatial reception parameters or spatial transmission parameters of the second reference signal to implement the third reference signal send.
  • a communication method including: receiving activation information for a first transmission configuration indication (TCI) state set from a control device, where each TCI state in the first TCI state set is Corresponding TCI state associations in the two TCI state sets; receiving indication information for the specific TCI state in the first TCI state set and its associated activation information from the control device; and if the association activation information indicates the association activation , The space reception parameter is determined based on the TCI state associated with the specific TCI state in the second TCI state set.
  • TCI transmission configuration indication
  • a communication method including: sending activation information for a first transmission configuration indication (TCI) state set to a user equipment, wherein each TCI state in the first TCI state set is Corresponding TCI state associations in the two TCI state sets; sending indication information for the specific TCI state in the first TCI state set and its associated activation information to the user equipment, where the association activation information indicates the situation of association activation Next, the TCI state associated with the specific TCI state in the second TCI state set is used by the user equipment to determine the space reception parameter.
  • TCI transmission configuration indication
  • a non-transitory computer-readable storage medium storing executable instructions that, when executed, implement any of the above communication methods.
  • FIG. 1 is a simplified diagram showing the architecture of an NR communication system
  • Figures 2A and 2B are the NR radio protocol architecture of the user plane and the control plane, respectively;
  • 3A shows an example of an antenna array arranged in a matrix
  • FIG. 3B illustrates the mapping between the transceiver unit (TXRU) and the TXRU and the antenna port;
  • FIG. 4 schematically shows beams usable by the base station and the UE
  • FIG. 5 is a configuration diagram illustrating the TCI state
  • FIG. 6 is a schematic diagram illustrating an existing beam indication using TCI status
  • FIG. 7 is a schematic diagram illustrating beam indication according to the first embodiment
  • FIG. 8 is a schematic diagram illustrating the QCL relationship between various reference signals
  • Example 9 is a simplified diagram of Example 1 of indirect beam indication according to the first embodiment
  • FIG. 10 is a schematic diagram illustrating the beam ranges of SSB and CSI-RS
  • Example 11 is a simplified diagram of Example 2 of indirect beam indication according to the first embodiment
  • Example 3 of indirect beam indication is a simplified diagram of Example 3 of indirect beam indication according to the first embodiment
  • Example 4 of indirect beam indication according to the first embodiment
  • FIG. 14 illustrates the MAC used in the beam indication of the PDCCH
  • 15A illustrates the MAC CE used in the beam indication of the PDSCH
  • 15B illustrates the improved DCI used in the beam indication of the PDSCH
  • 16A and 16B illustrate an electronic device on the UE side and a communication method thereof according to the first embodiment
  • 17A and 17B illustrate the electronic device on the base station side and its communication method according to the first embodiment
  • FIG. 18A illustrates the configuration of PUCCH spatial relationship information for scheduling PUCCH
  • 18B illustrates the configuration of SRS spatial relationship information used for scheduling SRS
  • 19A and 19B are schematic diagrams illustrating beam indication according to the second embodiment
  • 20 is a schematic diagram illustrating the extended QCL relationship between various reference signals
  • Example 21 is a simplified diagram of Example 1 of indirect beam indication according to the second embodiment
  • Example 2 is a simplified diagram of Example 2 of indirect beam indication according to the second embodiment
  • 23A and 23B illustrate an electronic device on the UE side and a communication method thereof according to the second embodiment
  • 24A and 24B illustrate an electronic device on the base station side and a communication method thereof according to the second embodiment
  • 25A and 25B illustrate the case where the TCI state needs to be reactivated or reconfigured due to UE movement
  • 26A and 26B illustrate examples of TCI state association according to the third embodiment
  • 27A and 27B illustrate an electronic device on the UE side and a communication method thereof according to the third embodiment
  • 28A and 28B illustrate an electronic device on the base station side and a communication method thereof according to the third embodiment
  • FIG. 29 illustrates a first example of the schematic configuration of the base station according to the present disclosure
  • FIG. 30 illustrates a second example of the schematic configuration of the base station according to the present disclosure
  • FIG. 31 illustrates a schematic configuration example of a smartphone according to the present disclosure
  • FIG. 32 illustrates a schematic configuration example of a car navigation device according to the present disclosure.
  • FIG. 1 is a simplified diagram showing the architecture of a 5G NR communication system.
  • the radio access network (NG-RAN) node of the NR communication system includes gNB and ng-eNB, where gNB is a newly defined node in the 5G NR communication standard, which passes the NG interface Connected to the 5G core network (5GC) and provides NR user plane and control plane protocols that terminate with terminal equipment (also called “user equipment”, hereinafter referred to as "UE"); ng-eNB is designed to communicate with 4G
  • the LTE communication system is compatible and defined as a node, which can be an upgrade of the evolved Node B (eNB) of the LTE radio access network, connect the device to the 5G core network via the NG interface, and provide an evolved universal terrestrial radio connection that terminates with the UE Into (E-UTRA) user plane and control plane protocol.
  • gNB and ng-eNB are collectively referred to as "base stations”.
  • the term “base station” used in the present disclosure is not limited to the above two nodes, but is an example of a control device on the network side, and has the full breadth of its usual meaning.
  • the “base station” may also be, for example, an eNB, a remote radio head, or a wireless interface in an LTE communication system. Entry points, drone control towers, control nodes in automated factories, or communication devices that perform similar functions. The following chapters will describe the application examples of base stations in detail.
  • the term "UE” has the full breadth of its usual meaning, including various terminal devices or in-vehicle devices that communicate with a base station.
  • the UE may be, for example, a terminal device such as a mobile phone, a laptop computer, a tablet computer, an in-vehicle communication device, an unmanned aerial vehicle, sensors and actuators in an automated factory, or its components.
  • a terminal device such as a mobile phone, a laptop computer, a tablet computer, an in-vehicle communication device, an unmanned aerial vehicle, sensors and actuators in an automated factory, or its components.
  • FIG. 2A shows a radio protocol stack for the user plane of UE and gNB
  • FIG. 2B shows a radio protocol stack for the control plane of UE and gNB.
  • the radio protocol stack may include the following three layers: layer 1, layer 2, and layer 3.
  • Layer 1 is the lowest layer and implements various physical layer signal processing to provide transparent transmission of signals.
  • the L1 layer will be referred to herein as the physical layer (PHY).
  • L1 layer ie, the physical layer
  • signal processing functions include encoding and interleaving to facilitate UE's forward error correction (FEC) and based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M phase shift Keying (M-PSK), M quadrature amplitude modulation (M-QAM)) mapping to signal constellations.
  • FEC forward error correction
  • modulation schemes eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M phase shift Keying (M-PSK), M quadrature amplitude modulation (M-QAM)
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M phase shift Keying
  • M-QAM M quadrature amplitude modulation
  • Channel estimation can be used to determine coding and modulation schemes and for spatial processing.
  • the channel estimate may be derived from the reference signal and/or channel status feedback transmitted by the UE.
  • Each spatial stream is then provided to a different antenna via a separate transmitter.
  • Each transmitter modulates the RF carrier with its own spatial stream for transmission.
  • each receiver receives signals through its respective corresponding antenna.
  • Each receiver recovers the information modulated onto the radio frequency (RF) carrier and provides this information to the various signal processing functions of the L1 layer.
  • the symbol stream is then converted from the time domain to the frequency domain.
  • Each symbol and reference signal are recovered and demodulated by determining the signal constellation point most likely to be transmitted by the base station. These soft decisions can be based on channel estimation. These soft decisions are then decoded and deinterleaved to recover the original data and control signals transmitted by the base station on the physical channel. These data and control signals are then provided to higher layers for processing.
  • Layer 2 is above the physical layer and is responsible for the link between the UE and the base station above the physical layer.
  • the L2 layer includes a medium access control (MAC) sublayer, a radio link control (RLC) sublayer, a packet data convergence protocol (PDCP) sublayer, and a service data adaptation protocol (SDAP) sublayer, They are terminated at the network side at the base station (ng-eNB, gNB) and at the user side at the UE.
  • the L2 layer includes a MAC sublayer, an RLC sublayer, and a PDCP sublayer.
  • the physical layer provides the transport channel for the MAC sub-layer
  • the MAC sub-layer provides the logical channel for the RLC sub-layer
  • the RLC sub-layer provides the RLC channel for the PDCP sub-layer
  • the PDCP sub-layer provides the radio bearer for the SDAP sub-layer.
  • the MAC sublayer provides services such as data transmission and radio resource allocation for the upper layer, and provides services such as data transmission, HARQ feedback signaling, scheduling request signaling, and measurement (eg, channel quality indicator CQI) for the physical layer.
  • the MAC sublayer also provides mapping between logical channels and transport channels, multiplexing and demultiplexing of MAC service data units (SDUs), scheduling information reporting, error correction through HARQ, priority handling between UEs, and logic for a single UE Priority processing, filling and other functions between channels.
  • the MAC sublayer is responsible for allocating various radio resources (for example, resource blocks) in a cell among each UE.
  • the RLC sublayer provides functions such as segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets.
  • the PDCP sublayer provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer also provides functions such as sequence numbering, header compression and decompression, user data and control plane data transmission, rearrangement, and duplicate detection.
  • the PDCP sublayer also provides different functions for the user plane and the control plane.
  • the SDAP sublayer provides functions such as mapping between QoS flows and data radio bearers, and marking QoS flow ID (QFI) in upstream and downstream data packets.
  • QFI QoS flow ID
  • the radio resource control (RRC) layer in layer 3 (L3 layer) is also included in the UE and the base station.
  • the RRC layer is responsible for obtaining radio resources (ie, radio bearers) and for configuring the lower layers using RRC layer signaling between the base station and the UE.
  • the non-access stratum (NAS) control protocol in the UE performs functions such as authentication, mobility management, and security control.
  • Both base stations and UEs can utilize large-scale antenna technologies such as Massive MIMO (Massive MIMO).
  • Massive MIMO massive MIMO
  • both the base station and the UE have many antennas, such as dozens, hundreds, or even thousands.
  • antenna model a three-layer mapping relationship is generally defined around the antenna, so that it can smoothly undertake the channel model and communication standard.
  • the bottom layer is the most basic physical unit-the antenna (also called antenna array element).
  • Each antenna element radiates electromagnetic waves according to its respective amplitude and phase parameters.
  • the antenna elements are arranged into one or more antenna arrays in the form of a matrix.
  • An antenna array may be composed of antenna elements in an entire row, an entire column, multiple rows, and multiple columns.
  • each antenna array actually constitutes a transceiver unit (Transceiver Unit, TXRU).
  • TXRU Transceiver Unit
  • Each TXRU can be configured independently.
  • TXRU can be configured independently.
  • the electromagnetic wave radiation emitted by all antenna elements in the antenna array forms a narrow beam pointing in a specific spatial direction, That is, beamforming is realized.
  • an antenna panel may include at least one antenna array.
  • the base station and the UE may include one, two or more antenna panels.
  • the base station can contain more antennas (for example, up to 1024 antennas) than the UE, and thus has stronger beamforming capability.
  • the TXRU and its antenna array elements can be configured in a variety of correspondences, thereby changing the beamforming capabilities and characteristics. From the perspective of TXRU, a single TXRU can only contain single row or single column antenna array elements, so-called one-dimensional TXRU, at this time, TXRU can only adjust the beam direction in one dimension; a single TXRU can also contain multiple rows or columns The antenna array element, the so-called two-dimensional TXRU, at this time, the TXRU can adjust the direction of the beam in both horizontal and vertical dimensions.
  • a column of antenna array elements can form multiple TXRUs, but the formation method can be a partial connection method, in which case each TXRU uses only part of the antenna element to form a beam; it can also be a fully connected method.
  • Each TXRU can adjust the weighting coefficients of all antenna elements to form a beam.
  • one or more TXRUs form the antenna ports (Antenna Ports) seen at the system level through logical mapping.
  • the TXRU and the antenna port are equivalent, as shown in FIG. 3B.
  • two or more TXRUs belong to the coherent beam selection type, they can jointly constitute an antenna port.
  • antenna port is defined such that a channel carrying a symbol on a certain antenna port can be inferred from a channel carrying another symbol on the same antenna port.
  • DMRS demodulation reference signal
  • PDSCH physical downlink shared channel
  • PRG Physical Resource Block
  • the antenna port can be characterized by a reference signal.
  • Reference signals include, for example, channel state information reference signals (CSI-RS), cell-specific reference signals (CRS), sounding reference signals (SRS), DMRS, and so on.
  • CSI-RS channel state information reference signals
  • CRS cell-specific reference signals
  • SRS sounding reference signals
  • DMRS DMRS
  • the large-scale properties include at least one of the following: delay spread, Doppler spread, Doppler shift, average gain, average delay, and spatial reception parameters.
  • antenna port A and antenna port B have a QCL relationship with respect to spatial reception parameters, the receiving end can use the same spatial reception parameters to achieve the reception of signals on these two antenna ports.
  • the antenna port can be regarded as an identification of the physical channel or physical signal based on the air interface environment.
  • the channel environment of the same antenna port changes roughly the same, and the receiving end can perform channel estimation accordingly to receive and transmit signals. demodulation.
  • the base station or the UE uses the antenna array to send data.
  • the baseband signal representing the user data stream is mapped onto m (m ⁇ 1) radio frequency links through digital precoding.
  • Each radio frequency link upconverts the baseband signal to obtain a radio frequency signal, and transmits the radio frequency signal to the antenna array of the corresponding antenna port.
  • a set of simulated beamforming parameters are applied to the antenna elements in the antenna array.
  • the simulated beam forming parameters may include, for example, phase setting parameters and/or amplitude setting parameters of the antenna elements of the antenna array.
  • the electromagnetic wave radiation emitted by all antenna elements of the antenna array forms a desired beam in space.
  • the antenna array receiving beam has the same principle, that is, the analog beam forming parameters associated with a specific direction are applied to the antenna array elements in the antenna array so that the antenna array can receive the beam in that direction.
  • the above-mentioned processing of forming beams by using analog beam forming parameters may also be referred to as "analog precoding".
  • the base station or the UE may store the beamforming codebook in advance, and the beamforming codebook includes beamforming parameters for generating a limited number of beams with different directions, respectively.
  • the base station or the UE may also determine the transmission direction or reception direction of the beam through channel estimation, thereby determining the beamforming parameter associated with the beam direction.
  • more flexible digital beamforming can be achieved, for example, for single-user or multi-user precoding, to achieve multi-stream or multi-user transmission.
  • the term "spatial transmission parameters" includes beamforming parameters used to form a transmission beam pointing in a specific spatial direction.
  • Spatial transmission parameters may be based on codebooks, pre-configured and stored at the transmitting end.
  • the spatial transmission parameters may also be based on non-codebooks.
  • the spatial transmission parameters may correspond to the transmission direction or channel direction, and the base station or UE as the transmitting end may calculate the spatial transmission parameters based on the transmission direction or channel direction.
  • the spatial transmission parameter may be embodied as a spatial domain transmission filter. It should be understood that, in the present disclosure, the “spatial transmission parameter” may sometimes have the same meaning as the “transmission beam” used by the transmitting end.
  • the term "spatial reception parameter" includes a beamforming parameter for receiving a transmission beam from a specific spatial direction.
  • the antenna array configured by specific spatial receiving parameters can achieve optimal reception of the beam signal from the corresponding spatial direction.
  • the space receiving parameter may be based on a codebook, which is stored in the receiving end in advance.
  • the space transmission parameters may also be based on non-codebooks.
  • the space transmission parameters may correspond to the reception direction or channel direction, and the base station or UE as the receiving end may calculate the space reception parameters based on the reception direction or channel direction.
  • the spatial reception parameter may be embodied as a spatial domain reception filter. It should be understood that, in the present disclosure, “spatial reception parameter” may have the same meaning as “reception beam” used by the receiving end.
  • the radiated energy can be mainly concentrated in a specific direction to combat path loss.
  • the base station and the UE need to have the ability to form many beams pointing to different beams, and before using beams for transmission and reception, select a transmission beam or a reception beam that matches the channel direction as much as possible from these beams.
  • the transmitting beam is aligned with the channel transmission angle
  • the receiving beam is aligned with the channel angle of arrival.
  • the base station and the UE can perform beam selection through beam training.
  • Beam training generally includes beam measurement, beam reporting, beam indication and other processes.
  • the right arrow indicates the downstream direction from the base station 1000 to the UE 1004, and the left arrow indicates the upstream direction from the UE 1004 to the base station 1000.
  • the base station 1000 may use n t_DL (n t_DL ⁇ 1) downlink transmit beams in different directions
  • the UE 1004 may use n r_DL (n r_DL ⁇ 1) downlink receive beams in different directions.
  • the base station 1000 may also use n r_UL (n r_UL ⁇ ) uplink receive beams with different directions, and the UE 1004 may also use n t_UL (n t_UL ⁇ 1) uplink transmit beams with different directions.
  • n r_UL n r_UL ⁇
  • n t_UL n t_UL ⁇ 1
  • the number of uplink receive beams and downlink transmit beams 1002 of base station 1000 and the coverage of each beam are the same, the number of uplink transmit beams and downlink receive beams 1006 of UE 1004 and the coverage of each beam are the same, However, it should be understood that, according to system requirements and settings, the coverage and number of uplink receive beams and downlink transmit beams of the base station 1000 may be different, and so are the uplink transmit beams and downlink receive beams of the UE 1004.
  • the base station 1000 and the UE 1004 traverse all transmit beam-end beam combinations by scanning beams, so as to select the best transmit beam-receive beam pair. Taking the following horizontal beam scanning as an example, first, the base station 1000 sends n r_DL downlink reference signals to the UE 1004 through each of its n t_DL transmission beams according to the downlink scanning period. In this way, n t_DL transmit beams of the base station 1000 sequentially send n t_DL ⁇ n r_DL downlink reference signals to the UE 1004.
  • the n t_DL transmit beams may come from the beamforming codebook of the base station 1000, which corresponds to the corresponding spatial transmit parameters.
  • the reference signal resources available to the base station 1000 include, for example, non-zero power CSI-RS (NZP-CSI-RS) resources, synchronization signals, and physical broadcast channel block (SS/PBCH Block, SSB) resources.
  • NZP-CSI-RS non-zero power CSI-RS
  • the UE 1004 receives each transmit beam through its n r_DL receive beams 1006 and measures the beam signal. For example, the UE 1004 may measure n t_DL downlink reference signals carried in each transmit beam, and then the n r_DL receive beams of the UE 1004 receive and measure n t_DL ⁇ n r_DL downlink reference signals from the base station 1000 in total. For example, the UE 1004 may measure reference signal received power (RSRP), reference signal received quality (RSRQ), signal to interference plus noise ratio (SINR), and so on.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • SINR signal to interference plus noise ratio
  • the UE 1004 reports the beam measurement result to the base station 1000 in the form of a beam report.
  • the UE 1004 may be configured to report beam information of only a part of the transmitted beams, for example, only report beam information of Nr (Nr pre-configured by the base station 1000) beams.
  • the UE 1004 can report the measurement results of Nr reference signals and their indicators. Due to the correspondence between the reference signals and the transmission beam and the reception beam, the measurement results of each reference signal indicate the pair of transmission beam-reception beam. Beam information.
  • the base station 1000 may select the best transmit beam from the transmit beams reported by the UE 1004 for downlink transmission with the UE 1004.
  • the base station 1000 may select the transmission beam corresponding to the reference signal with the best measurement result as the optimal transmission beam.
  • the direction of the transmission beam generally matches the channel direction best, and corresponds to the corresponding spatial reception parameter.
  • the base station 1000 indicates the selected best transmit beam to the UE 1004.
  • the base station 1000 may indicate the reference signal corresponding to the optimal transmission beam to the UE 1004, and thus the UE 1004 may determine the reception beam corresponding to the reference signal as the optimal reception beam during the beam scanning process. This receive beam achieves the best reception for the best transmit beam and its direction generally best matches the channel direction. After that, the base station 1000 and the UE 1004 will be able to use the determined best transmit beam and best receive beam for downlink transmission.
  • the UE 10004 sends n r_UL uplink reference signals to the base station 1000 through each of its n t_UL transmit beams.
  • the base station 1000 has a total of n t_UL ⁇ n r_UL uplink reference signals through its n r_UL receive beams.
  • the base station 1000 measures the n t_UL ⁇ n r_UL uplink reference signals, for example, RSRP, RSRQ, CQI, etc., to determine the best uplink transmit beam of the UE 1004 and the best uplink receive beam of the base station 1000.
  • the base station 1000 indicates the corresponding reference signal to the UE 1004, so that the UE 1004 can utilize the determined optimal transmission beam for uplink transmission.
  • the base station may use the TCI status indication mechanism to indicate the best beam selected to the UE.
  • FIG. 5 is a configuration diagram illustrating the TCI state.
  • the TCI state is identified by the TCI state ID.
  • Each TCI state contains parameters for configuring the quasi-co-location (QCL) relationship between one or two downlink reference signals and the DMRS port of the PDCCH or PDSCH.
  • QCL quasi-co-location
  • the qcl-Type1 or qcl-Type2 parameters include the following information:
  • ServCellIndex which represents the serving cell where the reference signal is located
  • Bandwidth part ID (BWP-Id), which represents the downstream bandwidth part where the reference signal is located;
  • Reference signal which represents the source reference signal resources providing QCL information, including NZP-CSI-RS resources identified by NZP-CSI-RS-ResoureId and SSB resources identified by SSB-Index;
  • QCL type (qcl-Type), which represents the quasi-co-location type corresponding to the listed downlink reference signals.
  • the QCL type qcl-Type involved in the TCI state may include the following options:
  • TypeA About ⁇ Doppler frequency shift, Doppler spread, average delay, delay spread ⁇ ;
  • TypeB About ⁇ Doppler frequency shift, Doppler expansion ⁇ ;
  • TypeC About ⁇ Doppler frequency shift, average delay ⁇ ;
  • TypeD About ⁇ spatial reception parameters ⁇ .
  • each TCI state generally allows only one QCL hypothesis of type "typeD".
  • the UE when the UE receives a typeD type TCI state, the UE makes the following QCL assumption: the antenna port of the reference signal listed in the TCI state (hereinafter referred to as "source reference signal”) and the TCI state are for reception purposes
  • the antenna port of the indicated reference signal (hereinafter referred to as "target reference signal”) has a quasi-co-location relationship with respect to the spatial reception parameters, so that the spatial reception parameters previously used to receive the source reference signal (eg, spatial domain receive filters) Will be used to receive the target reference signal.
  • the base station sends a source reference signal (for example, SSB or NZP-CSI-RS) to the UE through the transmit beam, and the UE receives the source reference signal through the receive beam. And determine the spatial reference parameters of the source reference signal.
  • the base station determines the transmission beam as the best transmission beam of the PDCCH or PDSCH through a beam selection strategy, and indicates the source reference signal corresponding to the transmission beam to the UE.
  • the indication of the source reference signal can be achieved by including indication information about the TCI status of the reference source reference signal in control signaling such as MAC control element (MAC) or downlink control information (DCI).
  • MAC MAC control element
  • DCI downlink control information
  • the UE decodes the control signaling and extracts the TCI state, finds the qcl-Type1 or qcl-Type2 with the qcl-Type parameter set to "typeD" in the TCI state, and finds the identifier of the source reference signal, such as NZP-CSI-RS-ResoureId or SSB-Index.
  • the UE will assume that the port of the source reference signal and the port of the target reference signal, that is, the DMRS ports of the PDCCH or PDSCH scheduled by the above control signaling, have a quasi-co-location relationship with respect to spatial reception parameters, so that the UE can use
  • the spatial reception parameters of the signal are used to receive the scheduled DMRS of the PDCCH or PDSCH for the related demodulation of the PDCCH or PDSCH.
  • the base station ensures that the source reference signal and the target reference signal have a substantial typeD QCL relationship. For this reason, the transmission beam used by the base station when transmitting the PDCCH or PDSCH is the same as the transmission beam used when transmitting the source reference signal, or at least has the same transmission direction.
  • the existing beam-indicating mechanism faces the problem about the availability of TCI status.
  • TCI state resources are scarce, and it is impossible to allocate TCI states to all reference signals, resulting in that there may not be a TCI state corresponding to the source reference signal.
  • the base station does not configure or activate this TCI state to the UE.
  • the TCI state corresponding to the source reference signal is not of type D type and cannot be used for beam indication to the UE.
  • the type of the source reference signal is restricted from being used for beam indication, and so on.
  • the base station's beam selection may be restricted, so that the base station cannot select one or more beams with the best transmission performance but lack the available TCI state, resulting in a decrease in beam indication performance.
  • the base station needs to reconfigure and activate the TCI state for the selected best beam, which will undoubtedly consume a lot of processing resources and transmission resources, resulting in a decrease in the efficiency of beam indication.
  • the present disclosure proposes an improved beam indication mechanism to make up for the defects of the existing beam indication.
  • the base station when the base station selects a transmit beam-receive beam pair corresponding to the source reference signal to perform data transmission, there may be no TCI state corresponding to the source reference signal or the TCI state corresponding to the source reference signal may not be used for beam indication , But there is an available TCI state corresponding to another reference signal (hereinafter referred to as "intermediate reference signal").
  • the base station may create an association between the source reference signal and another reference signal, and configure this association to the UE through RRC layer signaling.
  • the base station instead uses the intermediate reference signal for beam indication. For example, the base station may indicate the TCI status of the reference intermediate reference signal to the UE through MAC CE or DCI.
  • the indication that the base station uses the intermediate reference signal is not intended to indicate the spatial reception parameter that directly uses the intermediate reference signal.
  • the UE uses the spatial reference parameter of the source reference signal instead of the spatial reference parameter of the intermediate reference signal based on the association between the intermediate reference signal and the source reference signal to implement the DMRS of the PDCCH or PDSCH Received for PDCCH or PDSCH related demodulation.
  • the UE finds the identifier of the intermediate reference signal from the indicated TCI state, such as NZP-CSI-RS-ResoureId or SSB-Index.
  • the UE finds the source reference signal based on the association between the configured source reference signal and the intermediate reference signal, and uses the source The PDCCH or PDSCH reception is prepared with reference to the spatial reception parameters of the signal.
  • the beam indication according to the present disclosure is an indirect beam indication.
  • the present disclosure also proposes that an association between a set of multiple reference signals and another set of multiple reference signals can be created, and each reference signal in one set of reference signals can be executed for itself and another The indication of the corresponding reference signal in the group reference signal to further improve the efficiency of beam indication, as will be explained in detail below.
  • association in this disclosure refers to any form of connection between two reference signals, as long as the base station and the UE can determine another reference signal from one reference signal based on this connection.
  • "Association” may include the association between the identifiers of the two reference signals, and may also include the association between the information elements (for example, TCI status, spatial relationship information (SpatialRelationInfo), etc.) referencing the two reference signals, or Includes the association between the identifier of one reference signal and the information element of another reference signal.
  • the first embodiment of the present disclosure relates to beam indication for downlink transmission, that is, in the first embodiment, the target reference signal is a downlink reference signal.
  • the target reference signal is a downlink reference signal.
  • the following description will use the PDCCH of PDCCH or PDSCH as an example of a target reference signal, but it should be understood that the first embodiment of the present disclosure is also applicable to beam indication of downlink reference signals or synchronization signals such as CSI-RS.
  • FIG. 7 is a simplified schematic diagram illustrating beam indication according to the first embodiment. Unlike the existing beam indication described with reference to FIG. 6, in the first embodiment of the present disclosure, for the reception of the target reference signal, the reference signal utilized by the beam indication and the reference signal providing spatial reception parameters are two different references signal.
  • the base station wishes to use the transmit beam that previously sent the source reference signal to transmit the target reference signal, and accordingly, the UE uses the previous receive beam that was used to receive the source reference signal to receive the target reference signal.
  • the base station may not have generated a TCL state with a QCL hypothesis of typeD for the source reference signal, or even with this TCI state, the TCI state has not been configured or activated to the UE or is restricted for indicating the target reference signal.
  • the base station may create an association between the source reference signal and another reference signal (intermediate reference signal) with an available TCI state.
  • the association of the source reference signal and the intermediate reference signal may be any form of association.
  • the port of the source reference signal and the port of the intermediate reference signal have a QCL relationship. More preferably, the port of the source reference signal and the port of the intermediate reference signal have a typeD QCL relationship.
  • FIG. 8 is a schematic diagram illustrating the QCL relationship between various reference signals.
  • the CSI-RS used for beam management (denoted as CSI-RS (BM) in FIG. 8 )
  • it can have typeC and typeD QCL relationships with SSB resources, which is expressed in FIG. 8 as "C+D" arrow between CSI-RS (BM) and SSB.
  • the CSI-RS (BM) may also have a typeD type QCL relationship with another CSI-RS (BM) used for beam management, and a CSI-RS used for tracking (denoted as CSI-RS in FIG. 8) (TRS)) QCL relationship with typeD.
  • TRS CSI-RS
  • CSI-RS (TRS) for tracking and CSI-RS (CSI) for CSI measurement may have corresponding QCL relationships with CSI-RS of SSB resources or other uses, respectively.
  • the PDCCH or PDSCH DMRS may have a typeD QCL relationship with CSI-RS (BM), a typeA or typeA+typeD QCL relationship with CSI-RS (TRS), and a CSI-RS (CSI ) QCL relationship with typeA or typeA+typeD type.
  • CSI-RS (BM), CSI-RS (TRS), CSI-RS (CSI) can all be used to indicate the QCL relationship regarding spatial reception parameters for the DMRS of PDCCH or PDSCH.
  • SSB cannot be used to directly indicate the QCL relationship for the PDCCH or PDSCH DMRS.
  • CSI-RSs such as CSI-RS (BM), CSI-RS (TRS), CSI-RS (CSI) can be used as intermediate reference signals to convey QCL relationship.
  • BM CSI-RS
  • TRS CSI-RS
  • CSI-RS CSI-RS
  • CSI-RS CSI-RS
  • FIG. 8 a typeD type QCL relationship between the SSB as the source reference signal and the CSI-RS (CSI) as the intermediate reference signal can be created and indicated by CSI-RS (CSI)
  • CSI-RS The typeA+typeD type QCL relationship between the PDCCH and the DMRS of the PDCCH.
  • the QCL chain of SSB ⁇ CSI-RS (CSI) ⁇ DMRS can be realized.
  • the selection of the intermediate reference signal may not be limited to CSI-RS (CSI), but may be any other suitable reference signal.
  • CSI-RS CSI-RS
  • the QCL chain of SSB ⁇ CSI-RS(BM) ⁇ DMRS, and the QCL chain of CSI-RS(BM) ⁇ CSI-RS(TRS) ⁇ DMRS can be similarly implemented.
  • the intermediate reference signal is not limited to one, in other words, the QCL chain from the source reference signal to the target reference signal may be implemented via two or more reference signals.
  • a QCL chain of SSB ⁇ CSI-RS(BM) ⁇ CSI-RS(TRS) ⁇ DMRS can be established, where the TCI status referencing CSI-RS(TRS) can be used for beam indication for DMRS and as a source reference
  • the association between the SSB and CSI-RS (TRS) of the signal may include the QCL relationship between SSB and CSI-RS (BM) and the QCL relationship between CSI-RS (BM) and CSI-RS (TRS).
  • BM the QCL relationship between CSI-RS
  • TRS CSI-RS
  • the association between the source reference signal and the intermediate reference signal may not be a typeD type QCL relationship. Even the association between the two may not be a QCL relationship, but only a nominal relationship, as long as the UE can find the source reference signal from the indicated intermediate reference signal.
  • the base station configures the association between the source reference signal and the intermediate reference signal to the UE through RRC layer signaling.
  • the UE receives configuration information about this association and stores it in its own memory.
  • the base station can use the intermediate reference signal to perform beam indication.
  • the TCI status referencing the intermediate reference signal can be indicated to the UE through MAC CE or DCI.
  • the indication process for PDCCH transmission and PDSCH transmission will be described in detail later.
  • the UE After receiving the TCI state referencing the intermediate reference signal, the UE can find the identifier of the referenced intermediate reference signal from the TCI state, such as NZP-CSI-RS-ResourceID or SSB_Index.
  • the UE needs to interpret whether the TCI status indicates whether to directly use the spatial reception parameters of the intermediate reference signal for PDSCH or PDCCH reception, or whether the spatial reception parameters of the associated source reference signal should be used. That is, the UE needs to determine whether to enable the association from the intermediate reference signal to the source reference signal.
  • the UE may determine whether to enable the association by checking the received TCI status. For example, the UE detects that the intermediate reference signal belongs to the type of beam indication restricted to the DMRS of the PDCCH or PDSCH, such as SSB resources that cannot directly perform beam indication for the PDCCH or PDSCH. In this case, the UE judges that the intermediate reference signal cannot be used directly Reference signal spatial reception parameters. For another example, the UE may determine that the TCL state does not include the QCL hypothesis of type D, and thus cannot directly use the spatial reception parameters of the intermediate reference signal. For another example, the UE may determine that the intermediate reference signal has not been received before and there is no corresponding spatial reception parameter.
  • the UE determines to enable the correlation from the intermediate reference signal to the source reference signal, and uses the spatial parameters of the previously received source reference signal to configure its spatial domain receive filter in preparation for reception DMRS for PDSCH or PDCCH.
  • the base station may send information to the UE about whether to enable association, so that the UE can easily determine which of the intermediate reference signal and the source reference signal the spatial reception parameter should be adopted when receiving this information.
  • the information about whether to enable association can be represented by as little as 1 bit, for example, it can be transmitted to the UE in MAC or CE with the TCI status, and of course, it can also be transmitted to the UE through other signaling.
  • the UE may find the source reference signal based on the association between the source reference signal and the intermediate reference signal, and configure its spatial domain receive filter using the spatial reception parameters of the previously received source reference signal to Prepare to receive DMRS of PDSCH or PDCCH.
  • the UE may always enable the association if the association between the source reference signal and the intermediate reference signal is received.
  • the association configuration of the base station to the UE serves as a trigger to enable such association.
  • the base station may use the selected transmit beam to send the PDCCH or PDSCH and its DMRS.
  • the antenna port of the source reference signal and the antenna port of the target reference signal need to have a typeD QCL relationship. For this reason, the base station uses the same transmit beam when transmitting the target reference signal as the previous transmit source reference signal, or at least has the same transmission direction.
  • the wireless channel has greater time selectivity and frequency selectivity, the time-frequency resources (eg, time slots, subcarriers, etc.) used by the base station when transmitting the source reference signal and the target reference signal are approximately the same, making the target The channel environment experienced by the reference signal is similar to the channel environment experienced by the source reference signal.
  • the source reference signal On the UE side, the source reference signal has been received before, for example, in the previous beam scanning process, CSI measurement process, beam tracking process, etc.
  • the spatial reception parameters of the source reference signal are saved in the UE.
  • the UE makes the following assumption: the target reference signal and the source reference signal have a QCL relationship with respect to the spatial reception parameter, and utilizes the spatial reception parameter of the source reference signal To achieve the reception of the target reference signal.
  • the target reference signal is DMRS of PDCCH or PDSCH.
  • the source reference signal is an SSB resource, which is identified by SSB_Index. Since the system has a limitation that SSB cannot be directly used for beam indication of DMRS, NZP-CSI-RS can be used as an intermediate reference signal for indication.
  • the base station configures the association between the source reference signal SSB intermediate reference signal NZP-CSI-RS for the UE.
  • the association includes but is not limited to the typeD type QCL relationship between SSB and NZP-CSI-RS.
  • Correlation can be established on various levels. For example, you can create an association between the SSB identifier SSB_Index and the NZP-CSI-RS identifier NZP-CSI-RS-ResourceID, the SSB identifier SSB_Index and the TCI state ID that references the TCI state of NZP-CSI-RS Association between the TCI state ID referencing the TCI state of the SSB and the TCI state ID referencing the TCI state of the NZP-CSI-RS, and so on.
  • the base station indicates the TCI status referencing the NZP-CSI-RS to the UE through MAC CE or DCI. It should be noted that the TCI state may or may not include additional QCL assumptions. For simplicity, another optional qcl assumption is not shown in FIG. 9.
  • the UE receives the indication and finds the NZP-CSI-RS-ResourceID from the QCL hypothesis with typeD type (for example, qcl-Type1 in FIG. 9).
  • the UE Based on the association between the NZP-CSI-RS and the source reference signal SSB, the UE finds the source reference signal identified by SSB_Index.
  • the UE makes the following assumption: there is a QCL chain of SSB ⁇ NZP-CSI-RS ⁇ DMRS, and the source reference signal SSB and the target reference signal DMRS have a typeD QCL relationship.
  • the UE uses the spatial reception parameters previously used to receive the SSB to prepare for DMRS reception.
  • each SSB corresponds to a relatively wide beam, so that a small number of wide beams are used to cover the entire cell.
  • CSI-RS is used for beam management, tracking, CSI measurement, etc., and each CSI-RS may correspond to a relatively narrow beam. Therefore, as shown in FIG. 10, it may occur that the beam range of the SSB includes more than one CSI-RS, that is, more than one CSI-RS may have a QCL relationship with the SSB.
  • the base station may select the CSI-RS whose beam main lobe direction is closest to the beam main lobe direction of the SSB as an intermediate reference signal, and associate the QCL between the CSI-RS and SSB to the UE.
  • the base station may select any one of these CSI-RSs as the intermediate reference signal.
  • Example 2 of indirect beam indication is a simplified diagram of Example 2 of indirect beam indication according to the first embodiment.
  • the target reference signal is a DMRS of PDCCH or PDSCH.
  • the source reference signal is NZP-CSI-RS resource, which is identified by NZP-CSI-RS-ResourceID.
  • the base station may configure all or most of the TCI states to reference the SSB. In this way, there is not enough TCI status quota to configure other reference signals. Therefore, there may be no TCI state corresponding to the source reference signal.
  • the base station may use the configured TCI status referencing the SSB for indirect beam indication.
  • the base station configures the association between the source reference signal NZP-CSI-RS and the intermediate reference signal SSB for the UE.
  • the association includes but is not limited to the typeD type QCL relationship between SSB and NZP-CSI-RS.
  • Correlation can be established on various levels. For example, the association between the NZP-CSI-RS identifier NZP-CSI-RS-ResourceID and the SSB identifier SSB_Index, the NZP-CSI-RS identifier NZP-CSI-RS-ResourceID and the TCI referencing the SSB can be created The association between the TCI state ID of the state, and so on.
  • the base station indicates the TCI status referencing the NZP-CSI-RS to the UE through MAC CE or DCI. It should be noted that the TCI state may or may not include additional QCL assumptions. For simplicity, another optional QCL assumption is not shown in FIG. 11.
  • the UE receives the indication, and finds the SSB_Index from the QCL hypothesis of typeD type (for example, qcl-Type1 in FIG. 11).
  • the UE can judge that the SSB cannot be directly used for the beam indication of the DMRS, thereby enabling the association between the intermediate reference signal and the source reference signal. Alternatively, the UE may also receive information about whether to enable association from the base station.
  • the UE Based on the association between the NZP-CSI-RS and the source reference signal SSB, the UE finds the source reference signal identified by the NZP-CSI-RS-ResourceID.
  • the UE makes the following assumption: there is a QCL chain of NZP-CSI-RS ⁇ SSB ⁇ DMRS, and the source reference signal NZP-CSI-RS and the target reference signal DMRS have a typeD QCL relationship.
  • the UE uses the spatial reception parameters previously used to receive NZP-CSI-RS to prepare for DMRS reception.
  • the target reference signal is a DMRS of PDCCH or PDSCH.
  • the source reference signal is NZP-CSI-RS resource, which is identified by NZP-CSI-RS-ResourceID.
  • the number of TCI states that the base station configures and activates for each UE is limited, for example, at most 64 TCI states are configured for the UE at a time, or up to 8 TCI states are further activated from it.
  • the TCI state corresponding to the source reference signal is not configured or activated for the UE, resulting in the TCI state corresponding to the source reference signal not being available for beam indication, as shown in FIG. 12 by the dotted line Draw out.
  • the base station may use the TCI state referencing the intermediate reference signal for indirect beam indication.
  • the base station configures the association between the source reference signal NZP-CSI-RS and the intermediate reference signal (for example, SSB or NZP-CSI-RS) for the UE.
  • the association includes but is not limited to the typeD type QCL relationship between SSB and NZP-CSI-RS.
  • Correlation can be established on various levels. For example, you can create an association between the identifier NZP-CSI-RS-ResourceID of the source reference signal and the identifier of the intermediate reference signal (SSB_Index or NZP-CSI-RS-ResourceID), and a TCI state that references the TCI state of the source reference signal The association between the ID and the TCI state ID referencing the TCI state of the intermediate reference signal, and so on.
  • the base station indicates the TCI state in the middle of the reference to the UE through MAC CE or DCI. It should be noted that the TCI state may or may not include additional QCL assumptions. For simplicity, another optional qcl assumption is not shown in FIG. 12.
  • the UE receives the indication, and finds the identifier of the intermediate reference signal (for example, SSB_Index or NZP-CSI-RS-ResourceID) from the QCL hypothesis of typeD type (for example, qcl-Type1 in FIG. 11).
  • the intermediate reference signal for example, SSB_Index or NZP-CSI-RS-ResourceID
  • the UE can determine that the association between the intermediate reference signal and the source reference signal needs to be enabled. Based on the association between the intermediate reference signal and the source reference signal, the UE finds the source reference signal identified by NZP-CSI-RS-ResourceID.
  • the UE makes the following assumption: there is a QCL chain of NZP-CSI-RS ⁇ SSB/NZP-CSI-RS ⁇ DMRS, and the source reference signal NZP-CSI-RS and the target reference signal DMRS have a typeD QCL relationship.
  • the UE uses the spatial reception parameters previously used to receive NZP-CSI-RS to prepare for DMRS reception.
  • the target reference signal is DMRS of PDCCH or PDSCH.
  • the source reference signal is, for example, the NZP-CSI-RS resource identified by NZP-CSI-RS-ResourceID.
  • the base station may perform beam indication with a TCI state that does not include the QCL hypothesis of typeD type.
  • the two QCL states of the TCI state are all non-typeD types, or as shown in the lower part of FIG. 13, the TCI state contains only one non-typeD QCL hypothesis of type (qcl-Type1).
  • the TCI state that does not include the QCL typeD is not available for the beam beam.
  • the base station may configure an association between the source reference signal (for example, SSB or NZP-CSI-RS) and the intermediate reference signal for the UE.
  • the association includes but is not limited to the QCL relationship between SSB and NZP-CSI-RS.
  • Correlation can be established on various levels. For example, the association between the identifier of the source reference signal (SSB_Index or NZP-CSI-RS-ResourceID) and the identifier of the intermediate reference signal NZP-CSI-RS-ResourceID, the identifier of the source reference signal (SSB_Index or NZP -CSI-RS-ResourceID) and TCI state ID referencing the intermediate reference signal, TCI state ID referencing the TCI state of the source reference signal, and TCI state ID referencing the TCI state of the intermediate reference signal ,and many more.
  • the NZP-CSI-RS as the source reference signal and the NZP-CSI-RS as the intermediate reference signal may be the same NZP-CSI-RS resource, that is, have the same NZP-CSI-RS-ResourceID.
  • the base station indicates the TCI status referring to the intermediate reference signal to the UE through MAC CE or DCI.
  • the UE can determine that since the TCI state does not include the QCL assumption of type D, the association between the intermediate reference signal and the source reference signal should be enabled. The UE may also determine whether the association should be enabled based on the association activation information from the base station, as described above.
  • the UE Based on the association between the intermediate reference signal and the source reference signal, the UE finds the source reference signal identified by SSB_Index or NZP-CSI-RS-ResourceID.
  • the UE makes the following assumption: the source reference signal NZP-CSI-RS and the target reference signal DMRS have a typeD QCL relationship.
  • the UE uses the spatial reception parameters previously used to receive SSB or NZP-CSI-RS to prepare for DMRS reception.
  • the following describes the indication process of PDCCH transmission and PDSCH transmission.
  • the base station can activate the selected beam by sending the MAC for scheduling PDCCH CE.
  • activated refers to enabling the MAC listed CE(s) beam in the set of beams configured for the UE. After activation, for example, after 3 ms, the base station will use the selected transmit beam for PDCCH transmission, and the UE will use the receive beam corresponding to this transmit beam to monitor the PDCCH.
  • the base station configures M (for example, 64 or 128) TCI states for the UE through RRC layer signaling.
  • M for example, 64 or 1228
  • the base station may set tci-StatesPDCCH-ToAddList to configure the TCI state of the UE.
  • the base station generates a single MAC including the TCI state ID associated with the beam selected in the beam selection at the MAC layer.
  • the format of the MAC CE is shown in FIG. 14.
  • the R field indicates the reserved one bit
  • the serving cell ID field indicates the ID of the serving cell to which the MAC applies, and its length is 5 bits
  • the BWP ID field contains the downlink applicable to the MAC
  • the BWP-Id of the bandwidth part is 2 bits in length
  • -2nd octet the identifier (CORESET) of the control resource set (ControlResourceSet) present in the PDCCH associated with the selected beam, and the identifier TCI state ID of the TCI state of the PDCCH, these two Each identifier occupies 2 bits and 6 bits respectively; the 6-bit TCI-StateId can indicate up to 64 TCI states.
  • the UE receives the MAC data packet containing the MAC CE and submits it to the MAC layer of the UE for decoding.
  • the UE extracts the CORESET ID and TCI state ID in the MAC, and finds the reference signal identified by the reference signal identifier (such as SSB_Index or NZP-CSI-RS-ResourceID) in the TCI state identified by the TCI state ID.
  • the reference signal identifier such as SSB_Index or NZP-CSI-RS-ResourceID
  • the UE finds the associated source reference signal based on the association between the reference signal in the TCI state and another reference signal, and assumes that the port of the found source reference signal and the PDCCH
  • the DMRS port is of typeD QCL relationship, thus preparing to receive the PDCCH using the spatial receiving parameters (receiving beam) used when receiving the same source reference signal before.
  • the UE After the MAC CE configuration starts to take effect (for example, after 3 ms), the UE will start to use the determined receive beam to monitor the PDCCH.
  • the base station uses MAC CE activation plus DCI designation to indicate the beam used for PDSCH transmission.
  • the base station activates up to 8 of the configured TCI states for the UE through the MAC CE. However, if there are no more than 8 TCI states configured in the RRC layer, that is, M ⁇ 8, the MAC activation step may be omitted.
  • FIG. 15A illustrates the format of the MAC CE (excluding the header) for activating the TCI state.
  • the "R” field indicates reserved bits
  • the "Serving Cell ID” indicates the identification information of the serving cell to which the MAC CE applies, and it occupies 5 bits
  • the "BWP ID” indicates the downlink applicable to the MAC CE.
  • the identification information of the bandwidth part (such as BWP_Id) occupies 2 bits.
  • “T i ” represents the activation information of the M TCI states configured by the RRC layer. It occupies 1 bit. If it is set to “1”, it means activation Corresponding TCI state, otherwise it means deactivating the corresponding TCI state.
  • the base station can specify the TCI state corresponding to the beam selected for PDSCH transmission in DCI.
  • FIG. 15B illustrates a format of DCI that can be used to specify the TCI state, whose DCI contains an identification field of the TCI state associated with the selected beam.
  • Each TCI state identification field occupies 3 bits to specify one of up to 8 TCI states.
  • the DCI may also optionally include association enabling information.
  • the association enable information may be only 1 bit. For example, when the association enable information is set to "1", it means that the association between the source reference signal and the intermediate reference signal is enabled, otherwise it means that it is not enabled.
  • the DCI may be transmitted to the UE through, for example, PDCCH.
  • the UE receives the DCI and extracts various fields from it. With the help of the TCI status identification field indicating the beam in the DCI, the UE can find the reference signal identified by the reference signal identifier (for example, SSB_Index or NZP-CSI-RS-ResourceID).
  • the reference signal identifier for example, SSB_Index or NZP-CSI-RS-ResourceID
  • the UE may determine whether the intermediate reference signal and the source reference should be enabled based on the type of the reference signal, the presence or absence of the spatial reception parameter of the reference signal, the QCL type in the TCI state, etc. Correlation between signals. Alternatively, the UE may determine whether the association between the intermediate reference signal and the source reference signal should be enabled based on the association activation information in DCI. If it is determined that the association between the intermediate reference signal and the source reference signal should be enabled, the UE finds the source reference signal based on this association.
  • the UE uses the spatial receiving parameters of the source reference signal to determine the spatial receiving parameters (receiving beams) of the monitored PDSCH, so as to realize the receiving of the PDSCH beams.
  • the 16A is a block diagram illustrating the electronic device 100 according to the first embodiment.
  • the electronic device 100 may be a UE or a component of the UE.
  • the electronic device 100 includes a processing circuit 101.
  • the processing circuit 101 includes at least an associated configuration receiving unit 102, an instruction receiving unit 103, and a reference signal receiving unit 104.
  • the processing circuit 101 may be configured to perform the communication method shown in FIG. 16B.
  • the processing circuit 101 may refer to various implementations of digital circuitry, analog circuitry, or mixed-signal (combination of analog and digital signals) circuitry that performs functions in a computing system.
  • Processing circuits may include, for example, circuits such as integrated circuits (ICs), application specific integrated circuits (ASICs), parts or circuits of individual processor cores, entire processor cores, individual processors, such as field programmable arrays (FPGAs) ) Programmable hardware devices, and/or systems including multiple processors.
  • ICs integrated circuits
  • ASICs application specific integrated circuits
  • FPGAs field programmable arrays
  • the association configuration receiving unit 102 in the processing circuit 101 is configured to receive the configuration regarding the association between the source reference signal and the intermediate reference signal from a control device such as a base station, that is, to perform step S101 in FIG. 16B.
  • the association configuration receiving unit 102 is configured to receive RRC signaling regarding the association between the source reference signal and the intermediate reference signal.
  • the processing circuit 101 may store the received association information in the UE, for example, in the memory 106.
  • the instruction receiving unit 103 is configured to receive an instruction to the intermediate reference signal from the base station, that is, to perform step S102 in FIG. 16B.
  • the instruction receiving unit 103 may receive the instruction information of the TCI state corresponding to the intermediate reference signal through MAC CE or DCI.
  • the reference signal receiving unit 104 is configured to respond to the indication of the intermediate reference signal, based on the correlation between the intermediate reference signal and the source reference signal, to utilize the spatial reception parameters of the source reference signal to achieve the reception of the target reference signal, ie execute FIG. 16B Step S103 in The reference signal receiving unit 104 finds the source reference signal based on the correlation between the intermediate reference signal and the source reference signal from the intermediate reference signal referenced in the TCI state received by the instruction receiving unit 103, and utilizes the spatial reception determined before receiving the source reference signal
  • the parameters configure the antenna array to facilitate reception of PDCCH or PDSCH and its DMRS.
  • the electronic device 100 may also include, for example, a communication unit 105 and a memory 106.
  • the communication unit 105 may be configured to communicate with the base station under the control of the processing circuit 101.
  • the communication unit 105 may be implemented as a transmitter or a transceiver, including communication components such as an antenna array and/or a radio frequency link.
  • the communication unit 105 is drawn with a broken line because it can also be located outside the electronic device 100.
  • the communication unit 105 may receive configuration information, beam indication information, etc. regarding the association between the source reference signal and the intermediate reference signal from the base station.
  • the communication unit 105 can also receive the DMRS transmitted by the base station.
  • the electronic device 100 may also include a memory 106.
  • the memory 106 may store various data and instructions, for example, from configuration information and beam indication information regarding the association between the source reference signal and the intermediate reference signal, programs and data for the operation of the electronic device 100, generated by the processing circuit 101 Various data, data received by the communication unit 105, and the like.
  • the memory 106 is drawn with a dotted line because it can also be located inside the processing circuit 101 or outside the electronic device 100.
  • the memory 106 may be a volatile memory and/or a non-volatile memory.
  • the memory 202 may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory.
  • FIG. 17A is a block diagram illustrating the electronic device 200 according to the present disclosure.
  • the electronic device 200 may be a control device such as a base station or located in a control device such as a base station.
  • the electronic device 200 includes a processing circuit 201.
  • the processing circuit 201 at least includes an associated configuration sending unit 202 and an instruction sending unit 203.
  • the processing circuit 201 may be configured to perform the communication method shown in FIG. 17B.
  • the processing circuit 201 may refer to various implementations of digital circuitry, analog circuitry, or mixed-signal (combination of analog and digital signals) circuitry that performs functions in a computing system.
  • Processing circuits may include, for example, circuits such as integrated circuits (ICs), application specific integrated circuits (ASICs), parts or circuits of individual processor cores, entire processor cores, individual processors, such as field programmable arrays (FPGAs) ) Programmable hardware devices, and/or systems including multiple processors.
  • ICs integrated circuits
  • ASICs application specific integrated circuits
  • FPGAs field programmable arrays
  • the association configuration transmitting unit 202 of the processing circuit 201 is configured to transmit the configuration regarding the association between the source reference signal and the intermediate reference signal to the UE, that is, to perform step S201 in FIG. 17B.
  • the association configuration sending unit 202 may create an association between two reference signals, and configure this association to the UE through RRC layer signaling.
  • the instruction sending unit 203 is configured to send an instruction to the UE to the intermediate reference signal, that is, to perform step S202 in FIG. 17B.
  • the indication sending unit 203 may include indication information of the TCI state corresponding to the intermediate reference signal in the MAC CE or DCI.
  • the UE may configure the antenna array using the spatial reception parameters determined by the spatial reference parameters of the source reference signal based on the correlation between the intermediate reference signal and the source reference signal to facilitate receiving the target reference signal , DMRS such as PDCCH or PDSCH.
  • DMRS such as PDCCH or PDSCH.
  • the electronic device 200 may further include, for example, a communication unit 205 and a memory 206.
  • the communication unit 205 may be configured to communicate with the UE under the control of the processing circuit 201.
  • the communication unit 205 may be implemented as a transmitter or a transceiver, including communication components such as an antenna array and/or a radio frequency link.
  • the communication unit 205 is drawn with a dotted line because it can also be located outside the electronic device 200.
  • the communication unit 205 may send configuration information about the association between the intermediate reference signal and the source reference signal to the UE and beam indication information for the intermediate reference signal.
  • the electronic device 200 may also include a memory 206.
  • the memory 206 can store various data and instructions, such as programs and data for the operation of the electronic device 200, various data generated by the processing circuit 201, various control signaling or service data to be transmitted by the communication unit 205, and will be communicated by the communication unit 205 sends the associated configuration information, beam indication information, etc.
  • the memory 206 is drawn with a dotted line because it can also be located inside the processing circuit 201 or outside the electronic device 200.
  • the memory 206 may be a volatile memory and/or a non-volatile memory.
  • the memory 202 may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory.
  • the second embodiment of the present disclosure relates to beam indication for uplink transmission, that is, in the second embodiment, the target reference signal is an uplink reference signal.
  • the target reference signal is an uplink reference signal.
  • the following description will use the PUCCH DMRS and sounding reference signal (SRS) as examples of target reference signals, but it should be understood that the target reference signal may also be other uplink reference signals.
  • SRS sounding reference signal
  • the base station implements the beam indication of the uplink transmission by configuring the spatial relationship information to the UE and using MAC CE activation.
  • 18A and 18B illustrate the configuration of two kinds of spatial relationship information, respectively.
  • FIG. 18A illustrates the configuration of PUCCH spatial relationship information for scheduling PUCCH.
  • PUCCH spatial relationship information is identified by PUCCH spatial relationship information ID (PUCCH-SpatialRelationInfoId), which includes source reference signal resources that provide spatial relationship information, such as NZP-CSI identified by NZP-CSI-RS-ResoureId -RS resources, SSB resources identified by SSB-Index, and SRS resources jointly identified by SRS-ResourceId and BWP-Id.
  • PUCCH spatial relationship information ID PUCCH spatial relationship information ID
  • NZP-CSI-CSI-RS-ResoureId -RS resources SSB resources identified by SSB-Index
  • SRS resources jointly identified by SRS-ResourceId and BWP-Id SSB or NZP-CSI-RS.
  • SRS is configured in the PUCCH spatial relationship information
  • the UE should send the PUCCH and its DMRS using the spatial transmission parameters used to send the SRS.
  • FIG. 18B illustrates the configuration of SRS spatial relationship information for scheduling SRS.
  • SRS spatial relationship information is identified by SRS spatial relationship information ID (SRS-SpatialRelationInfoId), which includes source reference signal resources providing spatial relationship information, including NZP-CSI identified by NZP-CSI-RS-ResoureId -RS resources, SSB resources identified by SSB-Index, and SRS resources jointly identified by SRS-ResourceId and BWP-Id.
  • SRS or NZP-CSI-RS is configured in the SRS spatial relationship information, the UE should transmit the SRS using the spatial reception parameters for receiving the SSB or NZP-CSI-RS.
  • the SRS is configured in the PUCCH spatial relationship information
  • the UE should send the SRS using the spatial transmission parameters used to send the SRS.
  • the base station can activate or deactivate the spatial relationship information by sending the MAC to the UE.
  • the downlink beam indication using the TCI state and the uplink beam indication using spatial relationship information are performed independently of each other. This may cause excessive signaling interaction.
  • the second embodiment of the present disclosure proposes an improved uplink beam indication mechanism to indirectly perform uplink beam indication while performing downlink beam indication.
  • the indirect beam indication according to the second embodiment is described below with reference to FIGS. 19A and 19B.
  • the spatial relationship information configured by the base station for the UE includes the reference signal that provides the spatial relationship information for the target reference signal, that is, the source reference signal.
  • the source reference signal may be a downlink reference signal such as SSB or NZP-CSI-RS.
  • the UE may determine and save its spatial reception parameters when receiving the source reference signal.
  • the source reference signal may also be an uplink reference signal such as SRS.
  • the UE may determine and save its spatial transmission parameters when sending the source reference signal.
  • the base station can perform beam indication to the UE through the TCI state, so that the UE can use the spatial reception parameters of the reference signals listed in the TCI state to realize the reception of the PDCCH or PDSCH.
  • the base station can create an association between the source reference signal in the spatial relationship information and the reference signal (intermediate reference signal) in the TCI state.
  • this association may be an association between spatial relationship information and TCI state, for example, an association between spatial relationship information ID and TCI state ID.
  • association methods can also be adopted, such as the association between the identifier of the source reference signal and the identifier of the intermediate reference signal, the association between the identifier of the TCI state ID and the identifier of the source reference signal, etc., as long as the UE can be based on The correlation only needs to find the source reference signal from the intermediate reference signal.
  • the base station can configure this association to the UE through RRC layer signaling.
  • the UE finds the QCL hypothesis with typeD from the TCI state and uses the listed spatial reception parameters of the reference signal to implement DMRS such as PDCCH or PDSCH
  • DMRS such as PDCCH or PDSCH
  • the UE finds the associated spatial relationship information based on the association between the TCI state and the spatial relationship information, and uses the spatial relationship information to achieve.
  • the UE may use the spatial reception parameters previously used to receive the reference signal To determine the spatial transmission parameters used to send the target reference signal to achieve the target reference signal transmission.
  • the UE may determine the space for transmitting the target reference signal using the spatial transmission parameters previously used to transmit the reference signal Transmit parameters to achieve the transmission of the target reference signal.
  • both the downlink beam indication and the uplink beam indication can be implemented using the TCI state corresponding to the intermediate reference signal without additional signaling to activate the spatial relationship information to the UE. This saves resources consumed by signaling transmission.
  • the SSB or NZP-CSI-RS as the source reference signal in the spatial relationship information and the SSB or NZP-CSI-RS as the intermediate reference signal in the TCI state may be configured to have a QCL relationship, or even It is the same reference signal, that is, identified by the same SSB_Index or NZP-CSI-RS-ResourceID.
  • the beam used by the UE to receive the source reference signal and the beam used to receive the intermediate reference signal have the same beam direction.
  • the UE when SSB or NZP-CSI-RS is referenced as the source reference signal in the spatial relationship information, in order to ensure that the spatial reception parameters of SSB or NZP-CSI-RS can be used for the transmission of the target reference signal, the UE is used to receive the source reference signal
  • the receive beam and the transmit beam used to transmit the target reference signal may have the same direction, that is, the downlink radio channel through which the source reference signal propagates and the uplink radio channel through which the target reference signal propagates are symmetrical. In a TDD system, it can be considered that uplink channels and downlink channels sharing the same frequency domain resources have symmetry.
  • the frequency bands of the uplink channel and the downlink channel may be relatively close, the channel environment experienced by the uplink channel and the downlink channel may be similar, and they may also be considered to have symmetry.
  • the large-scale nature of the downlink channel carrying the source reference signal can be inferred from the large-scale nature of the uplink channel carrying the target reference signal.
  • the source reference signal receiving port and the target reference signal There is a typeD QCL relationship between the transmit ports.
  • the transmit beam used by the UE for transmitting the source reference signal and The transmit beams can have the same direction. In this sense, there is a typeD QCL relationship between the source reference signal transmission port and the target reference signal transmission port.
  • FIG. 20 the QCL relationship between the various reference signals described with reference to FIG. 8 can be expanded to FIG. 20.
  • a QCL relationship between a downlink reference signal such as SSB or CSI-RS and an uplink reference signal such as SRS can be established.
  • Three types of SRS are shown in FIG. 20, namely, SRS (BM) for beam management, SRS (CB) based on codebook scheduling and SRS (NCB) based on non-codebook scheduling, but it should be understood that The kind may not be limited to this.
  • SRS SRS
  • CB codebook scheduling
  • NCB SRS
  • the QCL relationships between the SSB, CSI-RS, and various SRSs depicted in FIG. 20 are only exemplary and not limiting, for example, SSB may also have QCL with SRS (BM) or SRS (NCB) relationship.
  • an intermediate reference signal suitable for indirect beam indication of SRS can be easily selected. Similar to the first embodiment, a QCL chain between the source reference signal, the intermediate reference signal, and the target reference signal can be established, which is beneficial to simplify the beam operation in the uplink and downlink directions.
  • Example 1 of the second embodiment involves but is not limited to the following scenario: After the UE receives the PDSCH scheduled by DCI, it needs to feed back the ACK/NACK for the PDSCH to the base station through the PUCCH.
  • Example 1 of the second embodiment provides a method of simultaneously indicating PDSCH and PUCCH.
  • Example 1 is a simplified diagram of Example 1 of indirect beam indication according to the second embodiment.
  • the target reference signal is PUCCH or its DMRS.
  • the base station establishes an association between the TCI status for the beam indication of the PDSCH and the spatial relationship information of the PUCCH for the beam indication of the PUCCH, and configures it to the UE through RRC layer signaling. For example, the base station can send the TCI status ID and PUCCH to the UE For the association information between the spatial relationship information IDs, the UE stores this association locally.
  • the base station indicates the TCI status to the UE through DCI. It should be noted that for simplicity, another optional QCL hypothesis is not shown in FIG. 21, but the TCI state may or may not include additional QCL hypotheses.
  • the UE receives the indication, and finds the identifier SSB_Index or NZP-CSI-RS-ResourceID of the reference signal from the qcl hypothesis of typeD type (for example, qcl-Type1 in FIG. 21).
  • the UE uses the spatial reception parameters of the reference signal identified by the identifier to configure its antenna array to receive the PDSCH.
  • the UE also finds the associated PUCCH spatial relationship information based on the association between the TCI state and the PUCCH spatial relationship information, and uses the PUCCH spatial relationship information to schedule PUCCH transmission.
  • the UE may use the spatial reception parameters of the reference signal SSB_Index or NZP-CSI-RS-ResourceID listed in the PUCCH spatial relationship information or the spatial transmission parameters of the SRS identified by SRS-ResourceId plus BWP-Id to determine
  • the spatial transmission parameters of the PUCCH and its DMRS (if PUCCH is present) are sent.
  • the UE configures its antenna array using the determined spatial transmission parameters to send ACK/NACK for PDSCH through PUCCH.
  • Example 2 of the second embodiment involves, but is not limited to, the following scenario: When an aperiodic SRS trigger is received in DCI, the UE sends the SRS to the base station.
  • Example 2 of the second embodiment provides a method of simultaneously scheduling SRS through the TCI state.
  • Example 2 is a simplified diagram of Example 2 of indirect beam indication according to the second embodiment. As shown in FIG. 22, the target reference signal is SRS.
  • the base station establishes an association between the TCI status for the beam indication of the PDSCH and the SRS spatial relationship information for the beam indication of the SRS, and configures it to the UE through RRC layer signaling. For example, the base station can send the TCI status ID and SRS to the UE For the association information between the spatial relationship information IDs, the UE stores this association locally.
  • the base station indicates the TCI status to the UE through DCI. It should be noted that for simplicity, another optional QCL hypothesis is not shown in FIG. 22, but this TCI state may or may not include additional QCL hypotheses.
  • the UE receives the indication and finds the identifier SSB_Index or NZP-CSI-RS-ResourceID of the reference signal from the qcl hypothesis of typeD type (for example, qcl-Type1 in FIG. 22).
  • the UE uses the spatial reception parameters of the reference signal identified by the identifier to configure its antenna array to receive the PDSCH.
  • the UE also finds the associated SRS spatial relationship information based on the association between the TCI state and the SRS spatial relationship information, and uses the SRS spatial relationship information to schedule SRS transmission.
  • the UE may use the spatial reception parameters of the reference signal SSB or NZP-CSI-RS listed in the SRS spatial relationship information or the spatial transmission parameters of the SRS identified by SRS-ResourceId plus BWP-Id to determine the SRS for sending Space launch parameters.
  • the UE uses the determined spatial transmission parameters to configure its antenna array to send an aperiodic SRS.
  • the electronic device 300 may be a UE or a component of the UE.
  • the electronic device 300 includes a processing circuit 301.
  • the processing circuit 301 includes at least an associated configuration receiving unit 302 and an instruction receiving unit 303.
  • the processing circuit 301 may be configured to perform the communication method shown in FIG. 23B.
  • the association configuration receiving unit 302 in the processing circuit 301 is configured to receive the configuration regarding the association between the source reference signal and the intermediate reference signal from the base station, that is, to perform step S301 in FIG. 23B.
  • the association configuration receiving unit 302 is configured to receive RRC signaling regarding the association between the source reference signal and the intermediate reference signal.
  • the association between the source reference signal and the intermediate reference signal may include an association between the spatial relationship information referencing the source reference signal and the TCI state referencing the intermediate reference signal.
  • the processing circuit 301 may store the received association information in the UE, for example, in the memory 306.
  • the instruction receiving unit 303 is configured to receive an instruction to the intermediate reference signal from the base station, that is, to perform step S302 in FIG. 23B.
  • the indication receiving unit 303 may receive the indication information of the TCI state corresponding to the intermediate reference signal through MAC CE or DCI.
  • the reference signal sending unit 304 is configured to use the spatial reception parameters or spatial transmission parameters of the source reference signal to achieve the reception of the target reference signal based on the correlation between the intermediate reference signal and the source reference signal in response to the indication of the intermediate reference signal That is, step S303 in FIG. 23B is executed.
  • the reference signal transmission unit 304 finds the source reference signal from the intermediate reference signal referenced in the TCI status received by the indication receiving unit 303 based on the correlation between the intermediate reference signal and the source reference signal, and utilizes the previous reception such as SSB or NZP-CSI-RS
  • An antenna array is configured by a spatial reception parameter determined by a source reference signal or the like or a spatial transmission parameter determined by a source reference signal such as an SRS, so as to transmit PUCCH or SRS.
  • the electronic device 300 may further include, for example, a communication unit 305 and a memory 306.
  • the communication unit 305 may be configured to communicate with the base station under the control of the processing circuit 301.
  • the communication unit 305 may be implemented as a transmitter or a transceiver, including communication components such as an antenna array and/or a radio frequency link.
  • the communication unit 305 is drawn with a dotted line because it can also be located outside the electronic device 300.
  • the communication unit 305 may receive configuration information, beam indication information, etc. regarding the association between the source reference signal and the intermediate reference signal from the base station.
  • the communication unit 305 may also transmit PUCCH or SRS.
  • the electronic device 300 may also include a memory 306.
  • the memory 306 may store various data and instructions, for example, from configuration information and beam indication information regarding the association between the source reference signal and the intermediate reference signal, programs and data for the operation of the electronic device 300, generated by the processing circuit 301 Various data, data received by the communication unit 305, and the like.
  • FIG. 24A is a block diagram illustrating the electronic device 400 according to the present disclosure.
  • the electronic device 400 may be a control device such as a base station, or located in a control device such as a base station.
  • the electronic device 400 includes a processing circuit 401.
  • the processing circuit 401 includes at least an associated configuration sending unit 402 and an instruction sending unit 403.
  • the processing circuit 401 may be configured to perform the communication method shown in FIG. 24B.
  • the association configuration transmitting unit 402 of the processing circuit 401 is configured to transmit the configuration regarding the association between the source reference signal and the intermediate reference signal to the UE, that is, to perform step S401 in FIG. 24B.
  • the association configuration sending unit 402 can create an association between two reference signals, and configure this association to the UE through RRC layer signaling.
  • the association between the source reference signal and the intermediate reference signal may include an association between the spatial relationship information referencing the source reference signal and the TCI state referencing the intermediate reference signal.
  • the instruction sending unit 403 is configured to send an indication of an intermediate reference signal to the UE, that is, to perform step S402 in FIG. 24B.
  • the indication sending unit 403 may include indication information of the TCI state corresponding to the intermediate reference signal in the MAC CE or DCI.
  • the UE may use the spatial reception parameters or spatial transmission parameters of the source reference signal to achieve the reception of the target reference signal based on the association between the intermediate reference signal and the source reference signal.
  • the electronic device 400 may further include, for example, a communication unit 405 and a memory 406.
  • the communication unit 405 may be configured to communicate with the UE under the control of the processing circuit 401.
  • the communication unit 405 may be implemented as a transmitter or a transceiver, including communication components such as an antenna array and/or a radio frequency link.
  • the communication unit 405 is drawn with a dotted line because it can also be located outside the electronic device 400.
  • the communication unit 405 may send configuration information about the association between the intermediate reference signal and the source reference signal to the UE and beam indication information for the intermediate reference signal.
  • the electronic device 400 may also include a memory 406.
  • the memory 406 can store various data and instructions, such as programs and data for the operation of the electronic device 400, various data generated by the processing circuit 401, various control signaling or service data to be sent by the communication unit 405, to be communicated by the communication unit 205 sends the associated configuration information, beam indication information, etc.
  • the memory 406 is drawn with dotted lines because it can also be located inside the processing circuit 401 or outside the electronic device 400.
  • the UE may generate large movements in the cell, resulting in the eight activated TCI states becoming unsuitable for beam indication.
  • the circles represent up to 64 TCI states configured for the UE, where the TCI states activated before the UE moves are indicated by the circles filled in squares.
  • the TCI state that is more suitable for beam indication to the UE is indicated by circles filled with solid colors.
  • the base station needs to reactivate these TCI states in order to select a TCI state to indicate the beam closest to the channel direction to the UE.
  • the UE's rotation, beam blocking, etc. may also lead to the need for reactivation.
  • FIG. 25B schematically shows this situation.
  • the TCI states (circles filled with solid colors) currently suitable for beam indication are not included in the configured 64 TCI states.
  • the base station needs to reconfigure the TCI state to configure these more suitable TCI states to the UE.
  • the reconfiguration and re-activation of the TCI state will consume a large amount of signaling resources, resulting in a decrease in the efficiency of beam indication, which is undesirable.
  • Increasing the number of TCI states configured for the UE each time for example, from a maximum of 64 per configuration to a maximum of 128 per configuration, can reduce the probability of reconfiguration to a certain extent.
  • the third embodiment of the present disclosure provides a solution to improve the beam indication efficiency by establishing an association between TCI states.
  • the base station may create an association between each TCI state and another TCI state, and configure these associations to the UE.
  • each TCI state can represent not only itself, but also the TCI state associated with it. Based on this association, indirect beam indication can be achieved.
  • FIG. 26A is a schematic diagram illustrating a TCI state association manner according to the third embodiment.
  • Fig. 26A shows that among the eight currently active TCI states, TCI state 1 is associated with TCI state 1', TCI state 2 is associated with TCI state 2', TCI state 3 is associated with TCI state 3', and TCI state 4 is associated with TCI State 4'association. For brevity, the correlation of the remaining 4 TCI states is not shown in the figure.
  • the association between the TCI states in the third embodiment is not a spatial relationship, and the reference signals in the two TCI states that establish the association are not necessarily With QCL relationship.
  • the spatial relationship of the beams when establishing the association between TCI states. For example, the distance between the beam directions corresponding to the two TCI states that are related to each other is within a certain range, so that the coverage of the beams corresponding to the two TCI states covers the UE movement to the greatest extent possible.
  • the base station can configure these associations to the UE through RRC signaling. For example, the base station may configure the association information between the TCI state IDs of the TCI states associated with each other to the UE. The UE receives and exists these association information.
  • the base station may not perform TCI state reactivation.
  • the base station can determine which of the beam corresponding to TCI state 2'and the beam corresponding to TCI state 3'is closer to the channel direction, then the corresponding TCI state is selected for beam indication, for example, the base station selects the beam corresponding to TCI state 3'as the best Beam.
  • the base station Since the TCI state 3 is currently activated, and the TCI state 3'is not activated, the base station sends the indication information of the TCI state 3 to the UE through DCI.
  • the base station may also send association enabling information about whether to enable the association.
  • the association enabling information may be sent to the UE through DCI together with the indication information for TCI state 3.
  • the DCI format depicted in FIG. 15B can be used here. As shown in FIG. 15B, the DCI includes a 3-bit TCI status identification field and 1-bit associated enabling information.
  • the UE receives the DCI through the PDCCH, and finds the identification field identifying the TCI state 3 and the corresponding association enable information from the DCI.
  • the association enable information is set to indicate that the association is enabled, the UE finds the TCI state 3'based on the association between the TCI state 3 and the TCI state 3', and receives the PDSCH using the reference signal referenced in the TCI state 3'.
  • the UE receives the PDSCH using the reference signal referenced in TCI state 3.
  • FIG. 26B is a schematic diagram illustrating another TCI state association manner according to the third embodiment.
  • Fig. 26B shows that among the eight TCI states currently activated, TCI state 1 is associated with unconfigured TCI state 1', TCI state 2 is associated with unconfigured TCI state 2', and TCI state 3 is associated with unconfigured TCI state 3'association, TCI state 4 is associated with unconfigured TCI state 4'.
  • TCI state 1 is associated with unconfigured TCI state 1'
  • TCI state 2 is associated with unconfigured TCI state 2'
  • TCI state 3 is associated with unconfigured TCI state 3'association
  • TCI state 4 is associated with unconfigured TCI state 4'.
  • the correlation of the remaining 4 TCI states is not shown in the figure.
  • the association between TCI states here may not have a QCL relationship.
  • the base station can configure these associations to the UE through RRC signaling. For example, the base station may configure the association information between the TCI state IDs of the TCI states associated with each other to the UE. The UE receives and exists these association information.
  • the currently activated 8 TCI states are not suitable for the UE's beam indication, but TCI state 2'corresponding to TCI state 2 and TCI state 1 corresponding to TCI state 1 State 1'is suitable for the beam indication of the UE.
  • the base station may not perform the reconfiguration of the TCI state.
  • the base station can determine which of the beam corresponding to TCI state 1'and the beam corresponding to TCI state 2'is closer to the channel direction, then the corresponding TCI state is selected for beam indication, for example, the base station selects the beam corresponding to TCI state 1'as the best Beam.
  • the base station Since TCI state 1 is currently activated and TCI state 1'is not activated, the base station sends the indication information of TCI state 1 to the UE through DCI.
  • the base station may also send association activation information about whether to enable association.
  • the association enabling information may be sent to the UE through DCI together with the indication information for TCI state 1.
  • the DCI includes a 3-bit TCI status identification field and 1-bit associated enabling information.
  • the UE receives the DCI through the PDCCH, and finds the identification field identifying the TCI state 1 from the DCI and the corresponding association activation information.
  • the association enable information is set to indicate that the association is enabled, the UE finds the TCI state 1'based on the association between the TCI state 1 and the TCI state 1', and receives the PDSCH using the reference signal referenced in the TCI state 1'.
  • the UE receives the PDSCH using the reference signal cited in TCI state 1.
  • the base station can determine the 8 new TCI states (referred to as TCI states 1'to 8') that are most suitable for the beam at this time, and create these 8 TCIs One-to-one correlation between the state and the currently active 8 TCI states (denoted as TCI states 1-8).
  • the base station configures this association information to the UE through RRC layer signaling.
  • the base station can select a TCI state whose beam direction is closest to the channel direction from the eight new TCI states, for example, TCI state 1'.
  • the base station Without re-activation, the base station indicates the currently activated TCI state 1 associated with the TCI state 1'to the UE. In addition, the base station also sends association enabling information to the UE.
  • the UE After the UE receives the indication information about the TCI state 1 and the association activation information, in response to the association activation information indicating that the association is enabled, the UE can find the TCI state 1'based on the association between the TCI state 1 and the TCI state 1', and utilize the TCI state Receive the PDSCH with the reference signal referenced in 1'.
  • the third embodiment of the present disclosure is not limited to PDSCH transmission, but may be applicable to PDCCH transmission after appropriate modification.
  • FIG. 27A is a block diagram illustrating the electronic device 500 according to the present disclosure.
  • the electronic device 500 may be a UE or a component of the UE.
  • the electronic device 500 includes a processing circuit 501.
  • the processing circuit 501 includes at least an activation receiving unit 502 and an instruction receiving unit 503.
  • the processing circuit 501 may be configured to perform the communication method shown in FIG. 27B.
  • the activation information receiving unit 502 in the processing circuit 501 is configured to receive activation information for a first transmission configuration indication (TCI) state set from a control device such as a base station, that is, to perform step S501 in FIG. 27B.
  • TCI transmission configuration indication
  • Each TCI state in the first TCI state set is respectively associated with a corresponding TCI state in the second TCI state set.
  • the instruction receiving unit 505 is configured to receive indication information for the specific TCI state in the first TCI state set and its associated enabling information from the control device, that is, to perform step S502 in FIG. 27B.
  • the instruction receiving unit 503 may receive instruction information about the specific TCI state through DCI.
  • the association enabling information may be included in the DCI together with the indication information.
  • the determining unit 504 is configured to determine the space reception parameter based on the TCI state associated with the specific TCI state in the second TCI state set when the association activation information indicates the association activation, that is, to perform step S503 in FIG. 27B . In addition, in the case where the association enable information indicates that the association is disabled, the determination unit 504 determines the space reception parameter based on the specific TCI state.
  • the electronic device 500 may further include, for example, a communication unit 505 and a memory 506.
  • the communication unit 505 may be configured to communicate with the base station under the control of the processing circuit 501.
  • the communication unit 505 may be implemented as a transmitter or a transceiver, including communication components such as an antenna array and/or a radio frequency link.
  • the communication unit 505 is drawn with a dotted line because it can also be located outside the electronic device 500.
  • the communication unit 505 may receive activation information, indication information, and association enabling information for the TCI state from the base station.
  • the electronic device 500 may also include a memory 506.
  • the memory 506 may store various data and instructions, such as activation information, indication information, and associated activation information for the TCI status received from the base station, programs and data for the operation of the electronic device 500, and various data generated by the processing circuit 501 3. Data to be sent by the communication unit 505, etc.
  • FIG. 28A is a block diagram illustrating the electronic device 600 according to the present disclosure.
  • the electronic device 600 may be a control device such as a base station or located in a control device such as a base station.
  • the electronic device 600 includes a processing circuit 601.
  • the processing circuit 601 includes at least an activation information sending unit 602 and an instruction sending unit 603.
  • the processing circuit 601 may be configured to perform the communication method shown in FIG. 28B.
  • the activation information sending unit 602 of the processing circuit 601 is configured to send the activation information for the first TCI state set to the UE, that is, to perform step S601 in FIG. 28B.
  • Each TCI state in the first TCI state set is respectively associated with a corresponding TCI state in the second TCI state set.
  • the instruction sending unit 603 is configured to send to the UE indication information for a specific TCI state in the first TCI state set and its associated activation information, that is, to perform step S602 in FIG. 23B.
  • the instruction sending unit 503 may send the instruction information about the specific TCI state through DCI.
  • the association enabling information may be included in the DCI together with the indication information.
  • the UE may determine the space reception parameter based on the TCI state associated with the specific TCI state in the second TCI state set. In addition, in the case where the association enable information indicates that the association is disabled, the UE determines the space reception parameter based on the specific TCI state.
  • the electronic device 600 may further include, for example, a communication unit 605 and a memory 606.
  • the communication unit 605 may be configured to communicate with the UE under the control of the processing circuit 601.
  • the communication unit 605 may be implemented as a transmitter or a transceiver, including communication components such as an antenna array and/or a radio frequency link.
  • the communication unit 605 is drawn with a dotted line because it can also be located outside the electronic device 600.
  • the communication unit 605 may send configuration information about the association between TCI states, beam indication information, and association enable information to the UE.
  • the electronic device 600 may also include a memory 606.
  • the memory 606 may store various data and instructions, such as programs and data for the operation of the electronic device 600, various data generated by the processing circuit 601, various control signaling or service data received by the communication unit 605, and will be communicated 205 The beam indication information and associated enabling information sent, etc.
  • the memory 606 is drawn with a dotted line because it can also be located inside the processing circuit 601 or outside the electronic device 600.
  • the units of the electronic devices 100, 200, 300, 400, 500, and 600 described in the above embodiments are only logical modules divided according to the specific functions they implement, and are not intended to limit specific implementations.
  • the above units may be implemented as independent physical entities, or may be implemented by a single entity (for example, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • An electronic device on the user equipment side including a processing circuit, the processing circuit configured to: receive a configuration regarding an association between a first reference signal and a second reference signal from a control device; receive a pair from the control device The indication of the first reference signal; and in response to the indication of the first reference signal, based on the association between the first reference signal and the second reference signal, using the spatial reception parameters of the second reference signal to achieve the reception of the third reference signal .
  • An electronic device on the control device side including a processing circuit, the processing circuit is configured to: send a configuration about the association between the first reference signal and the second reference signal to the user equipment; An indication of a reference signal, wherein, in response to the indication of the first reference signal, the user equipment uses the spatial reception parameters of the second reference signal to implement the third reference based on the association between the first reference signal and the second reference signal The reception of the signal.
  • using the spatial reception parameter of the second reference signal to achieve the reception of the third reference signal includes: using the spatial reception parameter of the second reference signal to determine Three spatial reception parameters of the reference signal to achieve the reception of the third reference signal.
  • the first reference signal includes any one of a synchronization signal/physical broadcast channel block (SSB) signal and a channel state information reference signal (CSI-RS).
  • SSB synchronization signal/physical broadcast channel block
  • CSI-RS channel state information reference signal
  • the second reference signal includes any one of a synchronization signal/physical broadcast channel block (SSB) signal and a channel state information reference signal (CSI-RS),
  • the third reference signal includes a demodulation reference signal (DMRS).
  • the electronic device according to 1) or 2), wherein the indication of receiving the first reference signal includes receiving a transmission configuration indication (TCI) status containing identification information of the first reference signal.
  • TCI transmission configuration indication
  • An electronic device on the user equipment side including a processing circuit, the processing circuit configured to: receive a configuration regarding an association between a first reference signal and a second reference signal from a control device; receive a pair from the control device The indication of the first reference signal; and in response to the indication of the first reference signal, based on the association between the first reference signal and the second reference signal, using the spatial reception parameters or spatial transmission parameters of the second reference signal to implement the third Reference signal transmission.
  • An electronic device on the control device side including a processing circuit, the processing circuit is configured to: send a configuration about the association between the first reference signal and the second reference signal to the user equipment; An indication of a reference signal, wherein, in response to the indication of the first reference signal, the user equipment uses the spatial reception parameters or spatial transmission parameters of the second reference signal based on the association between the first reference signal and the second reference signal The third reference signal is transmitted.
  • the electronic device according to 11) or 12), wherein the second reference signal is a downlink reference signal, and wherein the third reference signal is transmitted using the spatial reception parameters or spatial transmission parameters of the second reference signal
  • the method includes: using the spatial reception parameter of the second reference signal to determine the spatial transmission parameter for the third reference signal, so as to realize the transmission of the third reference signal.
  • the electronic device according to 11) or 12), wherein the second reference signal is an uplink reference signal, and wherein the third reference signal is transmitted using the spatial reception parameters or spatial transmission parameters of the second reference signal
  • the method includes: using the spatial transmission parameters of the second reference signal to determine the spatial transmission parameters for the third reference signal, so as to realize the transmission of the third reference signal.
  • the first reference signal includes any one of a synchronization signal/physical broadcast channel block (SSB) signal and a channel state information reference signal (CSI-RS).
  • SSB synchronization signal/physical broadcast channel block
  • CSI-RS channel state information reference signal
  • the second reference signal includes any one of a synchronization signal/physical broadcast channel block (SSB) signal and a channel state information reference signal (CSI-RS), and the third The reference signal includes any one of a demodulation reference signal (DMRS) demodulation reference signal (DMRS) and a sounding reference signal (SRS).
  • SSB synchronization signal/physical broadcast channel block
  • CSI-RS channel state information reference signal
  • the third The reference signal includes any one of a demodulation reference signal (DMRS) demodulation reference signal (DMRS) and a sounding reference signal (SRS).
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • the second reference signal includes a sounding reference signal (SRS)
  • the third reference signal includes any one of a demodulation reference signal (DMRS) and a sounding reference signal (SRS) Species.
  • receiving the indication of the first reference signal includes receiving a transmission configuration indication (TCI) status containing identification information of the first reference signal.
  • TCI transmission configuration indication
  • An electronic device on the user equipment side including a processing circuit configured to receive activation information for a first transmission configuration indication (TCI) state set from a control device, where each of the first TCI state set TCI states are respectively associated with corresponding TCI states in the second TCI state set; receiving indication information for the specific TCI states in the first TCI state set and their associated activation information from the control device; and in the associated activation information
  • TCI transmission configuration indication
  • the space reception parameter is determined based on the TCI state associated with the specific TCI state in the second TCI state set.
  • An electronic device on the control device side including a processing circuit configured to send activation information for a first transmission configuration indication (TCI) state set to user equipment, wherein each of the first TCI state sets TCI states are respectively associated with the corresponding TCI states in the second TCI state set; sending indication information for the specific TCI states in the first TCI state set and their associated activation information to the user equipment, wherein, in the association activation When the information indicates that the association is enabled, the TCI state associated with the specific TCI state in the second TCI state set is used by the user equipment to determine the space reception parameter.
  • TCI transmission configuration indication
  • processing circuit is further configured to: when it is determined that at least one TCI state in the first TCI state set and the second TCI state set is suitable for beam indication, not Sending activation information for the TCI state to the user equipment.
  • a communication method comprising: receiving a configuration about an association between a first reference signal and a second reference signal from a control device; receiving an indication of the first reference signal from the control device; and responding to the second An indication of a reference signal, based on the association between the first reference signal and the second reference signal, utilizes the spatial reception parameters of the second reference signal to achieve the reception of the third reference signal.
  • a communication method comprising: sending a configuration about an association between a first reference signal and a second reference signal to a user equipment; sending an indication of the first reference signal to the user equipment, wherein, in response to the first With reference to the indication of the reference signal, the user equipment uses the spatial reception parameter of the second reference signal to realize the reception of the third reference signal based on the association between the first reference signal and the second reference signal.
  • a communication method comprising: receiving a configuration about an association between a first reference signal and a second reference signal from a control device; receiving an indication of the first reference signal from the control device; and responding to the second An indication of a reference signal is based on the association between the first reference signal and the second reference signal, and the third reference signal is transmitted by using the spatial reception parameter or the spatial transmission parameter of the second reference signal.
  • a communication method comprising: sending a configuration about an association between a first reference signal and a second reference signal to a user equipment; sending an indication of the first reference signal to the user equipment, wherein, in response to the first With reference to the indication of the reference signal, based on the association between the first reference signal and the second reference signal, the user equipment uses the spatial reception parameter or spatial transmission parameter of the second reference signal to implement the transmission of the third reference signal.
  • a communication method comprising: receiving activation information for a first transmission configuration indication (TCI) state set from a control device, wherein each TCI state in the first TCI state set is different from that in the second TCI state set Corresponding TCI state association; receiving indication information for the specific TCI state in the first TCI state set and its associated activation information from the control device; and based on the second TCI state if the associated activation information indicates associated activation
  • TCI state associated with the specific TCI state in the set determines the spatial reception parameters.
  • a communication method comprising: sending activation information for a first transmission configuration indication (TCI) state set to a user equipment, wherein each TCI state in the first TCI state set is different from that in the second TCI state set Corresponding TCI state association; sending indication information for the specific TCI state in the first TCI state set and its associated activation information to the user equipment, wherein, in the case where the association activation information indicates association activation, the second TCI state
  • TCI state associated with the specific TCI state in the set is used by the user equipment to determine spatial reception parameters.
  • a non-transitory computer-readable storage medium storing executable instructions, which when executed implement the communication method according to any one of 32)-37).
  • the electronic devices 200, 400, and 600 may be implemented as or installed in various base stations, and the electronic devices 100, 300, and 500 may be implemented as various user equipment or installed in various User equipment.
  • the communication method according to the embodiments of the present disclosure may be implemented by various base stations or user equipment; the methods and operations according to the embodiments of the present disclosure may be embodied as computer-executable instructions, stored in a non-transitory computer-readable storage medium, and It can be executed by various base stations or user equipment to implement one or more functions described above.
  • the technology according to the embodiments of the present disclosure can be made into various computer program products and used in various base stations or user equipments to implement one or more functions described above.
  • the base stations mentioned in this disclosure can be implemented as any type of base station, preferably, such as macro gNB and ng-eNB defined in 3GPP's 5G NR standard.
  • the gNB may be a gNB covering a cell smaller than a macro cell, such as pico gNB, pico gNB, and home (femto) gNB.
  • the base station may be implemented as any other type of base station, such as NodeB, eNodeB, and base transceiver station (BTS).
  • the base station may further include: a main body configured to control wireless communication, and one or more remote wireless head ends (RRHs), wireless relay stations, unmanned aerial towers, control nodes in an automated factory, etc., which are set at different places from the main body.
  • RRHs remote wireless head ends
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle-type mobile router, and a digital camera) or an in-vehicle terminal (such as a car navigation device).
  • a mobile terminal such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle-type mobile router, and a digital camera
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • base station used in the present disclosure has the full breadth of its usual meaning, and includes at least a wireless communication station that is used as a wireless communication system or part of a radio system to facilitate communication.
  • Examples of base stations may be, for example and without limitation, the following: one or both of a base transceiver station (BTS) and a base station controller (BSC) in a GSM communication system; a radio network controller (RNC) in a 3G communication system And one or both of NodeB; eNB in 4G LTE and LTE-A systems; gNB and ng-eNB in 5G communication systems.
  • a logical entity that has a control function for communication may also be called a base station.
  • the logical entity that plays the role of spectrum coordination can also be called a base station.
  • a logical entity that provides network control functions can be called a base station.
  • FIG. 29 is a block diagram showing a first example of a schematic configuration of a base station to which the technology of the present disclosure can be applied.
  • the base station may be implemented as gNB1400.
  • the gNB 1400 includes multiple antennas 1410 and base station equipment 1420.
  • the base station device 1420 and each antenna 1410 may be connected to each other via an RF cable.
  • the gNB 1400 (or base station device 1420) here may correspond to the above-mentioned electronic devices 200, 400, and/or 600.
  • the antenna 1410 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antenna 1410 may be arranged in an antenna array matrix shown in FIG. 2A, for example, and is used for the base station device 1420 to transmit and receive wireless signals.
  • multiple antennas 1410 may be compatible with multiple frequency bands used by gNB 1400.
  • the base station device 1420 includes a controller 1421, a memory 1422, a network interface 1423, and a wireless communication interface 1425.
  • the controller 1421 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1420.
  • the controller 1421 may include the processing circuit 201, 401, or 601 described above, perform the communication method described in FIG. 17B, 24B, or 28B, or control various components of the electronic device 200, 400, or 600.
  • the controller 1421 generates a data packet based on the data in the signal processed by the wireless communication interface 1425, and transfers the generated packet via the network interface 1423.
  • the controller 1421 may bundle data from multiple baseband processors to generate bundle packets, and deliver the generated bundle packets.
  • the controller 1421 may have a logical function of performing control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 1422 includes RAM and ROM, and stores programs executed by the controller 1421 and various types of control data (such as terminal list, transmission power data, and scheduling data).
  • the network interface 1423 is a communication interface for connecting the base station device 1420 to the core network 1424 (eg, 5G core network).
  • the controller 1421 may communicate with the core network node or another gNB via the network interface 1423.
  • gNB 1400 and the core network node or other gNB may be connected to each other through logical interfaces such as NG interface and Xn interface.
  • the network interface 1423 may also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If the network interface 1423 is a wireless communication interface, the network interface 1423 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1425.
  • the wireless communication interface 1425 supports any cellular communication scheme (such as 5G NR), and provides a wireless connection to terminals located in a cell of gNB 1400 via an antenna 1410.
  • the wireless communication interface 1425 may generally include, for example, a baseband (BB) processor 1426 and an RF circuit 1427.
  • the BB processor 1426 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signals of various layers (eg, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer) deal with.
  • the BB processor 1426 may have part or all of the above-mentioned logic functions.
  • the BB processor 1426 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 1426.
  • the module may be a card or blade inserted into the slot of the base station device 1420. Alternatively, the module may also be a chip mounted on a card or blade.
  • the RF circuit 1427 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1410.
  • FIG. 29 shows an example in which one RF circuit 1427 is connected to one antenna 1410, the present disclosure is not limited to this illustration, but one RF circuit 1427 may connect multiple antennas 1410 at the same time.
  • the wireless communication interface 1425 may include a plurality of BB processors 1426.
  • multiple BB processors 1426 may be compatible with multiple frequency bands used by gNB1400.
  • the wireless communication interface 1425 may include a plurality of RF circuits 1427.
  • multiple RF circuits 1427 may be compatible with multiple antenna elements.
  • FIG. 29 shows an example in which the wireless communication interface 1425 includes multiple BB processors 1426 and multiple RF circuits 1427, the wireless communication interface 1425 may also include a single BB processor 1426 or a single RF circuit 1427.
  • gNB 1400 In the gNB 1400 shown in FIG. 29, one or more units included in the processing circuit 201 described with reference to FIG. 17A, the processing circuit 401 described with reference to FIG. 24A, or the processing circuit 601 described with reference to FIG. 28A may be implemented in the wireless Communication interface 825. Alternatively, at least a part of these components may be implemented in the controller 821.
  • gNB 1400 includes a part of wireless communication interface 1425 (eg, BB processor 1426) or the whole, and/or a module including controller 1421, and one or more components may be implemented in the module.
  • the module may store a program for allowing the processor to function as one or more components (in other words, a program for allowing the processor to perform the operation of one or more components), and may execute the program.
  • a program for allowing the processor to function as one or more components may be installed in gNB 1400, and the wireless communication interface 1425 (eg, BB processor 1426) and/or the controller 1421 may execute the program.
  • the gNB 1400, the base station device 1420, or the module may be provided, and a program for allowing the processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • FIG. 30 is a block diagram showing a second example of the schematic configuration of a base station to which the technology of the present disclosure can be applied.
  • the base station is shown as gNB 1530.
  • the gNB 1530 includes multiple antennas 1540, base station equipment 1550, and RRH 1560.
  • the RRH 1560 and each antenna 1540 may be connected to each other via an RF cable.
  • the base station device 1550 and the RRH 1560 can be connected to each other via a high-speed line such as an optical fiber cable.
  • the gNB 1530 (or base station device 1550) here may correspond to the above-mentioned electronic devices 200, 400, and 600.
  • the antenna 1540 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antenna 1540 may be arranged in an antenna array matrix shown in FIG. 2A, for example, and is used for the base station device 1550 to transmit and receive wireless signals.
  • multiple antennas 1540 may be compatible with multiple frequency bands used by gNB 1530.
  • the base station device 1550 includes a controller 1551, a memory 1552, a network interface 1553, a wireless communication interface 1555, and a connection interface 1557.
  • the controller 1551, the memory 1552, and the network interface 1553 are the same as the controller 1421, the memory 1422, and the network interface 1423 described with reference to FIG.
  • the wireless communication interface 1555 supports any cellular communication scheme (such as 5GNR), and provides wireless communication to terminals located in the sector corresponding to the RRH 1560 via the RRH 1560 and the antenna 1540.
  • the wireless communication interface 1555 may generally include, for example, a BB processor 1556.
  • the BB processor 1556 is the same as the BB processor 1426 described with reference to FIG. 29 except that the BB processor 1556 is connected to the RF circuit 1564 of the RRH 1560 via the connection interface 1557.
  • the wireless communication interface 1555 may include a plurality of BB processors 1556.
  • multiple BB processors 1556 can be compatible with multiple frequency bands used by gNB 1530.
  • FIG. 30 shows an example in which the wireless communication interface 1555 includes a plurality of BB processors 1556, the wireless communication interface 1555 may also include a single BB processor 1556.
  • connection interface 1557 is an interface for connecting the base station device 1550 (wireless communication interface 1555) to the RRH 1560.
  • the connection interface 1557 may also be a communication module for communication in the above-described high-speed line that connects the base station device 1550 (wireless communication interface 1555) to the RRH 1560.
  • the RRH 1560 includes a connection interface 1561 and a wireless communication interface 1563.
  • connection interface 1561 is an interface for connecting the RRH 1560 (wireless communication interface 1563) to the base station device 1550.
  • the connection interface 1561 may also be a communication module used for communication in the above high-speed line.
  • the wireless communication interface 1563 transmits and receives wireless signals via the antenna 1540.
  • the wireless communication interface 1563 may generally include, for example, an RF circuit 1564.
  • the RF circuit 1564 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1540.
  • FIG. 30 shows an example in which one RF circuit 1564 is connected to one antenna 1540, the present disclosure is not limited to this illustration, but one RF circuit 1564 may connect multiple antennas 1540 at the same time.
  • the wireless communication interface 1563 may include a plurality of RF circuits 1564.
  • multiple RF circuits 1564 may support multiple antenna elements.
  • FIG. 30 shows an example in which the wireless communication interface 1563 includes a plurality of RF circuits 1564, the wireless communication interface 1563 may also include a single RF circuit 1564.
  • gNB 1500 shown in FIG. 30 one or more units included in the processing circuit 201 described with reference to FIG. 17A, the processing circuit 401 described with reference to FIG. 24A, or the processing circuit 601 described with reference to FIG. 28A may be The wireless communication interface 1525. Alternatively, at least a part of these components may be implemented in the controller 1521.
  • gNB 1500 includes a part (eg, BB processor 1526) or the whole of wireless communication interface 1525, and/or a module including controller 1521, and one or more components may be implemented in the module.
  • the module may store a program for allowing the processor to function as one or more components (in other words, a program for allowing the processor to perform the operation of one or more components), and may execute the program.
  • a program for allowing the processor to function as one or more components may be installed in the gNB1500, and the wireless communication interface 1525 (eg, BB processor 1526) and/or the controller 1521 may execute the program .
  • a gNB 1500, a base station device 1520, or a module may be provided, and a program for allowing the processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • FIG. 31 is a block diagram showing an example of a schematic configuration of a smartphone 1600 to which the technology of the present disclosure can be applied.
  • the smart phone 1600 may be implemented as the electronic device 100 described with reference to FIG. 16A, the electronic device 300 described with reference to FIG. 23A, or the electronic device 500 described with reference to FIG. 27A.
  • the smartphone 1600 includes a processor 1601, a memory 1602, a storage device 1603, an external connection interface 1604, a camera device 1606, a sensor 1607, a microphone 1608, an input device 1609, a display device 1610, a speaker 1611, a wireless communication interface 1612, one or more Antenna switch 1615, one or more antennas 1616, bus 1617, battery 1618, and auxiliary controller 1619.
  • the processor 1601 may be, for example, a CPU or a system on chip (SoC), and controls functions of the application layer and other layers of the smartphone 1600.
  • the processor 1601 may include or serve as the processing circuit 101 described with reference to 16A, the processing circuit 301 described with reference to 12A, and the processing circuit 501 described with reference to 27A.
  • the memory 1602 includes RAM and ROM, and stores data and programs executed by the processor 1601.
  • the storage device 1603 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1604 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 1600.
  • USB universal serial bus
  • the imaging device 1606 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 1607 may include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 1608 converts the sound input to the smartphone 1600 into an audio signal.
  • the input device 1609 includes, for example, a touch sensor configured to detect a touch on the screen of the display device 1610, a keypad, a keyboard, a button, or a switch, and receives operation or information input from the user.
  • the display device 1610 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1600.
  • the speaker 1611 converts the audio signal output from the smartphone 1600 into sound.
  • the wireless communication interface 1612 supports any cellular communication scheme (such as 4G LTE or 5G NR, etc.), and performs wireless communication.
  • the wireless communication interface 1612 may generally include, for example, a BB processor 1613 and an RF circuit 1614.
  • the BB processor 1613 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1614 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1616.
  • the wireless communication interface 1612 may be a chip module on which the BB processor 1613 and the RF circuit 1614 are integrated. As shown in FIG.
  • the wireless communication interface 1612 may include a plurality of BB processors 1613 and a plurality of RF circuits 1614.
  • FIG. 31 shows an example in which the wireless communication interface 1612 includes a plurality of BB processors 1613 and a plurality of RF circuits 1614, the wireless communication interface 1612 may also include a single BB processor 1613 or a single RF circuit 1614.
  • the wireless communication interface 1612 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 1612 may include a BB processor 1613 and an RF circuit 1614 for each wireless communication scheme.
  • Each of the antenna switches 1615 switches the connection destination of the antenna 1616 between a plurality of circuits included in the wireless communication interface 1612 (for example, circuits for different wireless communication schemes).
  • the antenna 1616 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antenna 1616 may be arranged, for example, in the antenna array matrix shown in FIG. 2A and used for the wireless communication interface 1612 to transmit and receive wireless signals.
  • the smartphone 1600 may include one or more antenna panels (not shown).
  • the smartphone 1600 may include an antenna 1616 for each wireless communication scheme.
  • the antenna switch 1615 may be omitted from the configuration of the smartphone 1600.
  • the bus 1617 connects the processor 1601, memory 1602, storage device 1603, external connection interface 1604, camera device 1606, sensor 1607, microphone 1608, input device 1609, display device 1610, speaker 1611, wireless communication interface 1612, and auxiliary controller 1619 to each other connection.
  • the battery 1618 supplies power to each block of the smartphone 1600 shown in FIG. 31 via a feeder, which is partially shown as a dotted line in the figure.
  • the auxiliary controller 1619 operates the minimum necessary functions of the smartphone 1600 in the sleep mode, for example.
  • one or more components included in the processing circuit 101 described with reference to FIG. 16A, the processing circuit 301 described with reference to FIG. 23A, or the processing circuit 501 described with reference to FIG. 27A may be implemented in The wireless communication interface 1612. Alternatively, at least a part of these components may be implemented in the processor 1601 or the auxiliary controller 1619.
  • the smart phone 1600 includes a part of the wireless communication interface 1612 (eg, BB processor 1613) or the whole, and/or a module including the processor 1601 and/or the auxiliary controller 1619, and one or more components can be Implemented in this module.
  • the module may store a program allowing processing to function as one or more components (in other words, a program for allowing the processor to perform the operation of one or more components), and may execute the program.
  • a program for allowing the processor to function as one or more components may be installed in the smartphone 1600, and the wireless communication interface 1612 (for example, the BB processor 1613), the processor 1601, and/or the auxiliary The controller 1619 can execute the program.
  • a smartphone 1600 or a module may be provided, and a program for allowing the processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • FIG. 32 is a block diagram showing an example of a schematic configuration of a car navigation device 1720 to which the technology of the present disclosure can be applied.
  • the car navigation device 1720 may be implemented as the electronic device 100 described with reference to FIG. 16A, the electronic device 300 described with reference to FIG. 23A, or the electronic device 500 described with reference to FIG. 27A.
  • the car navigation device 1720 includes a processor 1721, a memory 1722, a global positioning system (GPS) module 1724, a sensor 1725, a data interface 1726, a content player 1727, a storage medium interface 1728, an input device 1729, a display device 1730, a speaker 1731, wireless A communication interface 1733, one or more antenna switches 1736, one or more antennas 1737, and a battery 1738.
  • GPS global positioning system
  • the processor 1721 may be, for example, a CPU or an SoC, and controls the navigation function and other functions of the car navigation device 1720.
  • the memory 1722 includes RAM and ROM, and stores data and programs executed by the processor 1721.
  • the GPS module 1724 uses GPS signals received from GPS satellites to measure the position (such as latitude, longitude, and altitude) of the car navigation device 1720.
  • the sensor 1725 may include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 1726 is connected to, for example, an in-vehicle network 1741 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 1727 reproduces the content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 1728.
  • the input device 1729 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1730, and receives operation or information input from the user.
  • the display device 1730 includes a screen such as an LCD or OLED display, and displays an image or reproduced content of a navigation function.
  • the speaker 1731 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1733 supports any cellular communication scheme (such as 4G LTE or 5G NR), and performs wireless communication.
  • the wireless communication interface 1733 may generally include, for example, a BB processor 1734 and an RF circuit 1735.
  • the BB processor 1734 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1735 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1737.
  • the wireless communication interface 1733 may also be a chip module on which the BB processor 1734 and the RF circuit 1735 are integrated. As shown in FIG.
  • the wireless communication interface 1733 may include a plurality of BB processors 1734 and a plurality of RF circuits 1735.
  • FIG. 32 shows an example in which the wireless communication interface 1733 includes multiple BB processors 1734 and multiple RF circuits 1735, the wireless communication interface 1733 may also include a single BB processor 1734 or a single RF circuit 1735.
  • the wireless communication interface 1733 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1733 may include a BB processor 1734 and an RF circuit 1735.
  • Each of the antenna switches 1736 switches the connection destination of the antenna 1737 between a plurality of circuits included in the wireless communication interface 1733, such as circuits for different wireless communication schemes.
  • the antenna 1737 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antenna 1737 may be arranged, for example, in the antenna array matrix shown in FIG. 2A and used for the wireless communication interface 1733 to transmit and receive wireless signals.
  • the car navigation device 1720 may include an antenna 1737 for each wireless communication scheme.
  • the antenna switch 1736 may be omitted from the configuration of the car navigation device 1720.
  • the battery 1738 supplies power to various blocks of the car navigation device 1720 shown in FIG. 32 via a feeder, which is partially shown as a dotted line in the figure.
  • the battery 1738 accumulates power supplied from the vehicle.
  • the car navigation device 1720 shown in FIG. 32 one or more components included in the processing circuit 101 described with reference to FIG. 16A, the processing circuit 301 described with reference to FIG. 23A, or the processing circuit 501 described with reference to FIG. 27A can be implemented In the wireless communication interface 1733. Alternatively, at least a part of these components may be implemented in the processor 1721. As an example, the car navigation device 1720 includes a part of the wireless communication interface 1733 (e.g., BB processor 1734) or the whole, and/or a module including the processor 1721, and one or more components may be implemented in the module.
  • BB processor 1734 e.g., BB processor 1734
  • the module may store a program allowing processing to function as one or more components (in other words, a program for allowing the processor to perform the operation of one or more components), and may execute the program.
  • a program for allowing the processor to function as one or more components may be installed in the car navigation device 1720, and the wireless communication interface 1733 (eg, BB processor 1734) and/or the processor 1721 may Perform the procedure.
  • a device including one or more components a car navigation device 1720 or a module may be provided, and a program for allowing the processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • the communication units 105, 305, and 505 of FIGS. 16A, 23A, and 27A may be implemented in the wireless communication interface 1933 (for example, the RF circuit 1935).
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1740 including one or more blocks in a car navigation device 1720, an in-vehicle network 1741, and a vehicle module 1742.
  • vehicle module 1742 generates vehicle data (such as vehicle speed, engine speed, and failure information), and outputs the generated data to the vehicle-mounted network 1741.
  • multiple functions included in one unit in the above embodiments may be implemented by separate devices.
  • the multiple functions implemented by the multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions can be realized by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only the processing performed in time series in the stated order, but also the processing performed in parallel or individually rather than necessarily in time series.
  • the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及无线通信系统中的电子设备、通信方法和存储介质。提供了一种用户设备侧的电子设备,包括处理电路,该处理电路被配置为:从控制设备接收关于第一参考信号与第二参考信号之间的关联的配置;从所述控制设备接收对第一参考信号的指示;以及响应于对第一参考信号的指示,基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数来实现第三参考信号的接收。

Description

电子设备、通信方法和存储介质
相关申请的交叉引用
本申请要求于2018年11月28日递交的中国专利申请No.201811432397.6的优先权,其全文通过引用并入于此。
技术领域
本公开涉及电子设备、通信方法和存储介质,更具体地,本公开涉及用于无线通信系统中的波束指示的电子设备、通信方法和存储介质。
背景技术
伴随着5G时代的到来,用户数量和每用户速率需求显著增加,对空间域进一步扩展的需求更加迫切。大规模天线技术因其在提升系统频谱效率和用户体验速率方面的巨大潜力,已经成为5G通信的关键技术之一。
在利用大规模天线技术的无线通信系统中,基站和用户设备(UE)具有多个天线,基站天线和UE天线可以通过波束赋形(beamforming)形成具有较窄的指向性的空间波束,以在特定的方向上提供较强的功率覆盖,从而对抗高频信道中存在的较大的路径损耗。许多发射方向不同的波束被用于实现较大的覆盖范围。为了提高波束信号的接收质量,基站和UE需要选择出尽可能与信道方向匹配的波束,即,在发射端,发射波束对准信道发射角(AOD),在接收端,接收波束对准信道到达角(AOA)。
典型地,基站和UE可以通过波束训练来确定要使用的发射波束和接收波束。波束训练一般可以包括波束测量、波束上报、波束指示等步骤。具体而言,基站可以发射方向相互不同的一组波束,由UE测量所接收的各个波束的质量并将测量结果上报给基站,使得基站能够从中选择出最佳波束。基站可以通过例如传输配置指示(TCI)状态来向UE指示所选择的最佳波束。
然而,可能存在没有合适的TCI状态用于实施波束指示的情况。例如,在5G新无线电(5G NR)的第一个标准R15中,基站最多为UE配置64个TCI状态,这些TCI状态可能都不是与所选择的最佳波束对应,从而无法用于指示该最佳波束。此外,重新为UE配置TCI状态将会耗费大量的资源。
因此,存在对于改进波束指示的机制以便提高波束指示的效率的需求。
发明内容
本公开提供了多个方面,以满足上述需求。
在下文中给出了关于本公开的简要概述,以便提供关于本公开的一些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图用来确定本公开的关键性部分或重要部分,也不是意图用来限定本公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
根据本公开的一个方面,提供了一种用于用户设备侧的电子设备,包括处理电路,该处理电路被配置为:从控制设备接收关于第一参考信号与第二参考信号之间的关联的配置;从所述控制设备接收对第一参考信号的指示;以及响应于对第一参考信号的指示,基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数来实现第三参考信号的接收。
根据本公开的一个方面,提供了一种用于控制设备侧的电子设备,包括处理电路,该处理电路被配置为:向用户设备发送关于第一参考信号与第二参考信号之间的关联的配置;向所述用户设备发送第一参考信号的指示,其中,响应于第一参考信号的指示,所述用户设备基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数来实现第三参考信号的接收。
根据本公开的一个方面,提供了一种用于用户设备侧的电子设备,包括处理电路,该处理电路被配置为:从控制设备接收关于第一参考信号与第二参考信号之间的关联的配置;从所述控制设备接收对第一参考信号的指示;以及响应于对第一参考信号的指示,基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数或空间发射参数来实现第三参考信号的发送。
根据本公开的一个方面,提供了一种用于控制设备侧的电子设备,包括处理电路,该处理电路被配置为:向用户设备发送关于第一参考信号与第二参考信号之间的关联的配置;向所述用户设备发送第一参考信号的指示,其中,响应于第一参考信号的指示,所述用户设备基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数或空间发射参数来实现第三参考信号的发送。
根据本公开的一个方面,提供了一种用于用户设备侧的电子设备,包括处理电路,该处理电路被配置为:从控制设备接收对于第一传输配置指示(TCI)状态集合的激活信息,其中第一TCI状态集合中的每个TCI状态分别与第二TCI状态集合中的相应TCI状态关联;从所述控制设备接收对于第一TCI状态集合中的特定TCI状态的指示信息及其关联启用信息;以及在所述关联启用信息指示关联启用的情况下,基于第二TCI状态集合中与所述特定TCI状态关联的TCI状态来确定空间接收参数。
根据本公开的一个方面,提供了一种用于控制设备侧的电子设备,包括处理电路,该处理电路被配置为:向用户设备发送对于第一传输配置指示(TCI)状态集合的激活信息,其中第一TCI状态集合中的每个TCI状态分别与第二TCI状态集合中的相应TCI状态关联;向所述用户设备发送对于第一TCI状态集合中的特定TCI状态的指示信息及其关联启用信息,其中,在所述关联启用信息指示关联启用的情况下,第二TCI状态集合中与所述特定TCI状态关联的TCI状态被所述用户设备用来确定空间接收参数。
根据本公开的一个方面,提供了一种通信方法,包括:从控制设备接收关于第一参考信号与第二参考信号之间的关联的配置;从所述控制设备接收对第一参考信号的指示;以及响应于对第一参考信号的指示,基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数来实现第三参考信号的接收。
根据本公开的一个方面,提供了一种通信方法,包括:向用户设备发送关于第一参考信号与第二参考信号之间的关联的配置;向所述用户设备发送第一参考信号的指示,其中,响应于第一参考信号的指示,所述用户设备基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数来实现第三参考信号的接收。
根据本公开的一个方面,提供了一种通信方法,包括:从控制设备接收关于第一参考信号与第二参考信号之间的关联的配置;从所述控制设备接收对第一参考信号的指示;以及响应于对第一参考信号的指示,基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数或空间发射参数来实现第三参考信号的发送。
根据本公开的一个方面,提供了一种通信方法,包括:向用户设备发送关于第一参考信号与第二参考信号之间的关联的配置;向所述用户设备发送第一参考信号的指示,其中,响应于第一参考信号的指示,所述用户设备基于第一参考信号与第二参 考信号之间的关联,利用第二参考信号的空间接收参数或空间发射参数来实现第三参考信号的发送。
根据本公开的一个方面,提供了一种通信方法,包括:从控制设备接收对于第一传输配置指示(TCI)状态集合的激活信息,其中第一TCI状态集合中的每个TCI状态分别与第二TCI状态集合中的相应TCI状态关联;从所述控制设备接收对于第一TCI状态集合中的特定TCI状态的指示信息及其关联启用信息;以及在所述关联启用信息指示关联启用的情况下,基于第二TCI状态集合中与所述特定TCI状态关联的TCI状态来确定空间接收参数。
根据本公开的一个方面,提供了一种通信方法,包括:向用户设备发送对于第一传输配置指示(TCI)状态集合的激活信息,其中第一TCI状态集合中的每个TCI状态分别与第二TCI状态集合中的相应TCI状态关联;向所述用户设备发送对于第一TCI状态集合中的特定TCI状态的指示信息及其关联启用信息,其中,在所述关联启用信息指示关联启用的情况下,第二TCI状态集合中与所述特定TCI状态关联的TCI状态被所述用户设备用来确定空间接收参数。
根据本公开的一个方面,提供了一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现上面的任一个通信方法。
附图说明
本公开可以通过参考下文中结合附图所给出的详细描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的要素。所有附图连同下面的详细说明一起包含在本说明书中并形成说明书的一部分,用来进一步举例说明本公开的实施例和解释本公开的原理和优点。其中:
图1是示出了NR通信系统的体系架构的简化示图;
图2A和2B分别是用户平面和控制平面的NR无线电协议架构;
图3A示出了按矩阵布置的天线阵列的示例;
图3B例示了收发单元(TXRU)与TXRU与天线端口之间的映射;
图4示意性地示出了基站和UE可使用的波束;
图5是例示了TCI状态的配置示意图;
图6是例示了利用TCI状态的现有波束指示的示意图;
图7是例示了根据第一实施例的波束指示的示意图;
图8是例示了各种参考信号之间的QCL关系的示意图;
图9是根据第一实施例的间接波束指示的示例1的简化图;
图10是例示了SSB与CSI-RS的波束范围的示意图;
图11是根据第一实施例的间接波束指示的示例2的简化图;
图12是根据第一实施例的间接波束指示的示例3的简化图;
图13是根据第一实施例的间接波束指示的示例4的简化图;
图14例示了在PDCCH的波束指示中使用的MAC CE;
图15A例示了在PDSCH的波束指示中使用的MAC CE;
图15B例示了在PDSCH的波束指示中使用的改进的DCI;
图16A和16B例示了根据第一实施例的UE侧的电子设备及其通信方法;
图17A和17B例示了根据第一实施例的基站侧的电子设备及其通信方法;
图18A例示了用于调度PUCCH的PUCCH空间关系信息的配置;
图18B例示了用于调度SRS的SRS空间关系信息的配置;
图19A和19B是例示了根据第二实施例的波束指示的示意图;
图20是例示了各种参考信号之间的扩展的QCL关系的示意图;
图21是根据第二实施例的间接波束指示的示例1的简化图;
图22是根据第二实施例的间接波束指示的示例2的简化图;
图23A和23B例示了根据第二实施例的UE侧的电子设备及其通信方法;
图24A和24B例示了根据第二实施例的基站侧的电子设备及其通信方法;
图25A和25B例示了由于UE移动导致需要重新激活或重新配置TCI状态的情况;
图26A和26B例示了根据第三实施例的TCI状态关联的例子;
图27A和27B例示了根据第三实施例的UE侧的电子设备及其通信方法;
图28A和28B例示了根据第三实施例的基站侧的电子设备及其通信方法;
图29例示了根据本公开的基站的示意性配置的第一示例;
图30例示了根据本公开的基站的示意性配置的第二示例;
图31例示了根据本公开的智能电话的示意性配置示例;
图32例示了根据本公开的汽车导航设备的示意性配置示例。
通过参照附图阅读以下详细描述,本公开的特征和方面将得到清楚的理解。
具体实施方式
在下文中将参照附图来详细描述本公开的各种示例性实施例。为了清楚和简明起见,在本说明书中并未描述实施例的所有特征。然而应注意,在实现本公开的实施例时可以根据特定需求做出很多特定于实现方式的设置,以便实现开发人员的具体目标,例如,符合与设备及业务相关的限制条件,并且这些限制条件可能会随着实现方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是较复杂和费事的,但对得益于本公开内容的本领域技术人员来说,这种开发公开仅仅是例行的任务。
此外,还应注意,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与至少根据本公开的技术方案密切相关的处理步骤和/或设备结构,而省略了与本公开关系不大的其他细节。以下对于示例性实施例的描述仅仅是说明性的,不意在作为对本公开及其应用的任何限制。
为了方便解释本公开的技术方案,下面将在5G NR的背景下描述本公开的各个方面。但是应注意,这不是对本公开的应用范围的限制,本公开的一个或多个方面还可以被应用于例如4G LTE/LTE-A等已经普遍使用的无线通信系统,或者将来发展的各种无线通信系统。下面的描述中提及的架构、实体、功能、过程等并非局限于NR通信系统中的那些,而可以在其它的通信标准中找到对应。
【概述】
图1是示出了5G NR通信系统的体系架构的简化示图。如图1中所示,在网络侧,NR通信系统的无线接入网(NG-RAN)节点包括gNB和ng-eNB,其中gNB是在5G NR通信标准中新定义的节点,其经由NG接口连接到5G核心网(5GC),并且提供与终端设备(也可称为“用户设备”,下文中简称为“UE”)终接的NR用户平面和控制平面协议;ng-eNB是为了与4G LTE通信系统兼容而定义的节点,其可以是LTE无线接入网的演进型节点B(eNB)的升级,经由NG接口连接设备到5G核心网,并且提供与UE终接的演进通用陆地无线接入(E-UTRA)用户平面和控制平面协议。下文中将gNB和ng-eNB统称为“基站”。
但是应注意,本公开中所使用的术语“基站”不仅限于上面这两种节点,而是作为网络侧的控制设备的示例,并具有其通常含义的全部广度。例如,除了5G通信标准中规定的gNB和ng-eNB之外,取决于本公开的技术方案被应用的场景,“基站”例如还可以是LTE通信系统中的eNB、远程无线电头端、无线接入点、无人机控制塔台、自 动化工厂中的控制节点或者执行类似功能的通信装置。后面的章节将详细描述基站的应用示例。
另外,在本公开中,术语“UE”具有其通常含义的全部广度,包括与基站通信的各种终端设备或车载设备。作为例子,UE例如可以是移动电话、膝上型电脑、平板电脑、车载通信设备、无人机、自动化工厂中的传感器和执行器等之类的终端设备或其元件。后面的章节将详细描述UE的应用示例。
接下来参照图2A和2B来介绍用于图1中的基站和UE的NR无线电协议架构。图2A示出了用于UE和gNB的用户平面的无线电协议栈,图2B示出了用于UE和gNB的控制平面的无线电协议栈。无线电协议栈可包括以下三层:层1、层2和层3。
层1(L1)是最低层并实现各种物理层信号处理以提供信号的透明传输功能。L1层将在本文中被称为物理层(PHY)。
简要介绍基站侧实现L1层(即,物理层)的各种信号处理功能。这些信号处理功能包括编码和交织以促成UE的前向纠错(FEC)以及基于各种调制方案(例如,二进制相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))向信号星座进行的映射。随后,经编码和调制的码元被拆分成并行流。每个流随后与参考信号一起用于产生携带时域码元流的物理信道。该码元流被空间预编码以产生多个空间流。信道估计可被用来确定编码和调制方案以及用于空间处理。该信道估计可以从由UE传送的参考信号和/或信道状况反馈推导出来。每个空间流随后经由分开的发射机被提供给不同的天线。每个发射机用各自的空间流来调制RF载波以供传输。
在UE处,每个接收机通过其各自相应的天线来接收信号。每个接收机恢复出调制到射频(RF)载波上的信息并将该信息提供给L1层的各种信号处理功能。在L1层对该信息执行空间处理以恢复出以UE为目的地的任何空间流。如果有多个空间流以UE为目的地,那么它们可被组合成单个码元流。随后将该码元流从时域转换到频域。通过确定最有可能由基站传送了的信号星座点来恢复和解调每个码元、以及参考信号。这些软判决可以基于信道估计。这些软判决随后被解码和解交织以恢复出原始由基站在物理信道上传送的数据和控制信号。这些数据和控制信号随后被提供给更高层处理。
层2(L2层)在物理层之上并且负责UE与基站之间在物理层之上的链路。在 用户平面中,L2层包括介质接入控制(MAC)子层、无线电链路控制(RLC)子层、分组数据汇聚协议(PDCP)子层、以及业务数据适配协议(SDAP)子层,它们在网络侧终接于基站(ng-eNB、gNB)处、在用户侧终接于UE处。另外,在控制平面中,L2层包括MAC子层、RLC子层、PDCP子层。这些子层具有如下关系:物理层为MAC子层提供传输信道,MAC子层为RLC子层提供逻辑信道,RLC子层为PDCP子层提供RLC信道,PDCP子层为SDAP子层提供无线电承载。
其中,MAC子层为上面的层提供数据传送和无线电资源分配等服务,并且为物理层提供数据传输、HARQ反馈信令、调度请求信令、测量(例如,信道质量指示CQI)等服务。MAC子层还提供逻辑信道与传输信道之间的映射、MAC业务数据单元(SDU)的复用和解复用、调度信息报告、通过HARQ纠错、UE之间的优先级处理、单个UE的逻辑信道之间的优先级处理、填充等功能。MAC子层负责在各UE间分配一个蜂窝小区中的各种无线电资源(例如,资源块)。
RLC子层提供对上层数据分组的分段和重装、对丢失数据分组重传、以及对数据分组的重排序等功能。PDCP子层提供不同无线电承载与逻辑信道之间的复用。PDCP子层还提供序列编号、报头压缩和解压、用户数据和控制平面数据的传输、重排和重复检测等功能。另外,PDCP子层还针对用户平面和控制平面提供了不同的功能。SDAP子层提供QoS流和数据无线电承载之间的映射、在上行和下行数据包中标记QoS流ID(QFI)等功能。
在控制平面中,UE和基站中还包括层3(L3层)中的无线电资源控制(RRC)层。RRC层负责获得无线电资源(即,无线电承载)以及负责使用基站与UE之间的RRC层信令来配置各下层。另外,UE中的非接入层(NAS)控制协议执行例如认证、移动性管理、安全控制等功能。
基站和UE都可以利用诸如大规模MIMO(Massive MIMO)之类的大规模天线技术。为了支持MIMO技术的应用,基站和UE均具有许多天线,例如几十根、几百根甚至上千根。对于天线模型,一般围绕天线定义了三层的映射关系,使其能够顺利承接信道模型和通信标准。
最底层是最基本的物理单元——天线(也可以称为天线阵元)。每个天线阵元按照各自的幅度参数和相位参数辐射电磁波。
天线阵元按照矩阵的形式被布置成一个或多个天线阵列。一个天线阵列可以由 整行、整列、多行、多列的天线阵元构成。在这一层上,每个天线阵列实际上构成一个收发单元(Transceiver Unit,TXRU)。每一个TXRU都可以独立配置。通过配置组成该TXRU的天线阵元的幅度参数和/或相位参数,实现对该TXRU天线图样的调整,天线阵列内的所有天线阵元发射的电磁波辐射形成指向特定空间方向的较窄的波束,即,实现波束赋形。物理上,一个天线面板(Antenna Panel)可以包括至少一个天线阵列。图3A示出了按矩阵布置的天线阵列的示例,其中M g和N g(M g≥1,N g≥1)分别表示水平方向和垂直方向上的天线阵列的个数。基站和UE可以包括一个、两个或更多个天线面板。一般来说,基站能够比UE包含更多的天线(例如,多达1024根),从而具有更强的波束赋形能力。
TXRU与其天线阵元可以配置成多种对应关系,从而改变波束赋形的能力和特性。从TXRU的角度看,单个TXRU可以仅包含单行或单列天线阵元,即所谓的一维TXRU,此时,TXRU仅能在一个维度上调整波束的方向;单个TXRU也可以包含多行或多列天线阵元,即所谓的二维TXRU,此时TXRU能够在水平和垂直两个维度上调整波束的方向。从天线阵元的角度看,例如一列天线阵元可以构成多个TXRU,但是构成方式可以是部分连接方式,此时每个TXRU只使用部分天线阵元形成波束;也可以是全连接方式,此时每个TXRU都可以对所有天线阵元的加权系数进行调整以形成波束。
最后,一个或多个TXRU通过逻辑映射构成系统层面上看到的天线端口(Antenna Ports)。当TXRU与天线端口之间采用一一映射的关系时,TXRU与天线端口是等价的,如图3B中所示。当然,取决于系统配置,当两个或多个TXRU属于相干波束选择类型时,可以共同构成一个天线端口。
如通常所理解的,“天线端口”被定义为使得运送某个天线端口上的符号的信道可以从运送同一天线端口上的另一符号的信道推断出。例如,对于与物理下行共享信道(PDSCH)相关联的解调参考信号(DMRS),仅当PDSCH符号和DMRS符号都在为PDSCH调度的相同传输资源内,即在相同的时隙和相同的物理资源块组(Physical Resource Block Group,PRG)中时,运送一个天线端口上的PDSCH符号的信道可以从运送同一天线端口上的DMRS符号的信道推断出。这意味着,同一天线端口传输的不同信号所经历的信道环境一样。
一般而言,天线端口可以由参考信号表征。天线端口与参考信号之间存在一一 对应的关系,不同的天线端口用于发送不同的参考信号。参考信号例如包括:信道状态信息参考信号(CSI-RS)、小区特定参考信号(CRS)、探测参考信号(SRS)、DMRS等等。
在不同的天线端口之间可以存在准共址(quasi-co-located,QCL)的关系。如果运送一个天线端口上的符号的信道的大尺度性质可以从运送另一个天线端口上的符号的信道推断出,则认为这两个天线端口是准共址的。这意味着,当例如天线端口A和天线端口B之间满足QCL关系时,从天线端口A上的信号估计得到的信道大尺度性质参数同样适合于天线端口B上的信号。大尺度性质包括以下至少之一:时延扩展、多普勒扩展、多普勒频移、平均增益、平均延迟和空间接收参数等。特别而言,如果天线端口A和天线端口B具有关于空间接收参数的QCL关系,则接收端可以使用相同的空间接收参数来实现这两个天线端口上的信号的接收。
在这种意义上,天线端口可以看作物理信道或物理信号的一种基于空口环境的标识,相同的天线端口信道环境变化大致一样,接收端可以据此进行信道估计从而对传输信号进行接收和解调。
下面简单描述基站或UE利用天线阵列发送数据的过程。首先,表示用户数据流的基带信号通过数字预编码被映射到m(m≥1)个射频链路上。每个射频链路对基带信号进行上变频以得到射频信号,并将射频信号传输到对应的天线端口的天线阵列上。按照发射方向,一组模拟波束赋形参数被应用于天线阵列中的天线阵元。模拟波束赋形参数例如可以包括天线阵列的天线阵元的相位设置参数和/或幅度设置参数。根据对应的模拟波束赋形参数,天线阵列的所有天线阵元发射的电磁波辐射在空间中形成希望的波束。天线阵列接收波束具有相同的原理,即,与特定方向相关联的模拟波束赋形参数被应用于天线阵列中的天线阵元,使得天线阵列能够接收该方向上的波束。上述利用模拟波束赋形参数进行波束赋形的处理也可以被称为“模拟预编码”。基站或UE可以预先存储波束赋形码本,波束赋形码本包括用于分别产生方向不同的有限个波束的波束赋形参数。
基站或UE也可以通过信道估计来确定波束的发射方向或接收方向,从而确定与波束方向相关联的波束赋形参数。
另外,通过在天线端口层面上进行预编码操作,可以实现更为灵活的数字波束赋形,例如针对单用户或者多用户的预编码,实现多流或多用户传输。
如本公开中所使用的,术语“空间发射参数”包括用于形成指向特定空间方向的发射波束的波束赋形参数。空间发射参数可以是基于码本的,被预先配置和存储在发射端。空间发射参数也可以是基于非码本的,例如,空间发射参数可以与发射方向或信道方向相对应,并且作为发射端的基站或UE可以基于发射方向或信道方向来计算空间发射参数。在一个例子中,空间发射参数可以体现为空间域发射滤波器。应理解的是,在本公开中,“空间发射参数”有时候可以与发射端所使用的“发射波束”具有相同的含义。
如本公开中所使用的,术语“空间接收参数”包括用于接收来自特定空间方向的发射波束的波束赋形参数。通过特定空间接收参数配置的天线阵列可以对来自于对应的空间方向的波束信号实现最佳接收。空间接收参数可以是基于码本的,被预先存储在接收端。空间发射参数也可以是基于非码本的,例如,空间发射参数可以与接收方向或信道方向相对应,并且作为接收端的基站或UE可以基于接收方向或信道方向来计算空间接收参数。在一个例子中,空间接收参数可以体现为空间域接收滤波器。应理解的是,在本公开中,“空间接收参数”可以与接收端所使用的“接收波束”具有相同的含义。
通过采用波束赋形,辐射能量可以主要集中于特定的方向上,以对抗路径损耗。为了实现完全覆盖,基站和UE需要具备形成许多指向不同的波束的能力,并且在使用波束进行发射和接收之前从这些波束当中选择尽可能地与信道方向匹配的发射波束或接收波束,即,在发射端,发射波束对准信道发射角,在接收端,接收波束对准信道到达角。
基站和UE可以通过波束训练来进行波束选择。波束训练一般包括波束测量、波束上报、波束指示等过程。
下面参照图4来简单描述无线通信系统中的波束训练过程。在图4中,向右的箭头表示从基站1000到UE 1004的下行方向,向左的箭头表示从UE 1004到基站1000的上行方向。如图4中所示,基站1000可使用方向不同的n t_DL个(n t_DL≥1)下行发射波束,UE 1004可使用方向不同的n r_DL个(n r_DL≥1)下行接收波束。类似地,基站1000还可使用方向不同的n r_UL个(n r_UL≥)上行接收波束,UE 1004还可使用方向不同的n t_UL个(n t_UL≥1)上行发射波束。虽然在图4中,基站1000的上行接收波束与下行发射波束1002的个数以及各波束的覆盖范围相同,UE 1004的上行发射波 束与下行接收波束1006的个数以及各波束的覆盖范围相同,但是应当理解,根据系统需求和设定,基站1000的上行接收波束和下行发射波束的覆盖范围以及数量可以不同,UE 1004的上行发射波束和下行接收波束也是如此。
基站1000和UE 1004通过扫描波束的方式遍历所有的发射波束-结束波束组合,以便选择出最佳的发射波束-接收波束对。以下行波束扫描为例,首先,基站1000按照下行扫描周期通过其n t_DL个发射波束中的每个发射波束向UE 1004发送n r_DL个下行参考信号。以这种方式,基站1000的n t_DL个发射波束依次向UE 1004发送n t_DL×n r_DL个下行参考信号。这n t_DL个发射波束可以来自基站1000的波束赋形码本,其对应于相应的空间发射参数。基站1000可以利用的参考信号资源例如包括非零功率的CSI-RS(NZP-CSI-RS)资源和同步信号及物理广播信道块(SS/PBCH Block,SSB)资源。
UE 1004通过其n r_DL个接收波束1006分别接收每个发射波束,并对波束信号进行测量。例如,UE 1004可以测量每个发射波束中携带的n t_DL个下行参考信号,则UE 1004的n r_DL个接收波束共接收并测量来自基站1000的n t_DL×n r_DL个下行参考信号。例如,UE 1004可以测量参考信号接收功率(RSRP)、参考信号接收质量(RSRQ)、信号与干扰加噪声比(SINR)等。
然后,UE 1004通过波束报告的形式将波束测量结果上报给基站1000。为了减少上报的数据量,UE 1004可以被配置仅上报一部分发射波束的波束信息,例如,仅上报Nr个(Nr由基站1000预先配置)波束的波束信息。例如,UE 1004可以上报Nr个参考信号的测量结果及其指示符,由于参考信号与发射波束和接收波束之间的对应关系,每个参考信号的测量结果指示了一对发射波束-接收波束的波束信息。
基于所上报的波束信息,基站1000可以从UE 1004上报的发射波束中选择最佳发射波束以用于与UE 1004的下行传输。在一个例子中,基站1000可以选择与测量结果最好的参考信号对应的发射波束作为最佳发射波束,该发射波束的方向一般最匹配信道方向,并且对应于相应的空间接收参数。
为了便于UE 1004进行波束接收,基站1000将所选择的最佳发射波束指示给UE 1004。例如,基站1000可以将与最佳发射波束相对应的参考信号指示给UE 1004,由此UE 1004可以确定在波束扫描过程中与该参考信号对应的接收波束作为最佳接收波束。该接收波束实现了对于最佳发射波束的最佳接收并且其方向一般最匹配信道方向。之后,基 站1000和UE 1004将可以使用所确定的最佳发射波束和最佳接收波束进行下行传输。
类似地,在上行波束扫描过程中,UE 10004通过其n t_UL个发射波束中的每个发射波束向基站1000发送n r_UL个上行参考信号。以这种方式,基站1000通过其n r_UL个接收波束共n t_UL×n r_UL个上行参考信号。基站1000对这n t_UL×n r_UL个上行参考信号进行测量,例如测量RSRP、RSRQ、CQI等,从而确定UE 1004的最佳上行发射波束和基站1000的最佳上行接收波束。基站1000将对应的参考信号指示给UE 1004,使得UE 1004可以利用所确定的最佳发射波束来进行上行传输。
典型地,基站可以利用TCI状态的指示机制来向UE指示所选择的最佳波束。
图5是例示了TCI状态的配置示意图。如图5中所示,TCI状态由TCI状态ID标识。每个TCI状态包含用于配置一个或两个下行参考信号与PDCCH或PDSCH的DMRS端口之间的准共址(QCL)关系的参数。对于第一个下行参考信号,这种准共址关系由RRC层参数qcl-Type1配置。如果还有第二个下行参考信号,则准共址关系由可选的qcl-Type2配置。如图5中所示,qcl-Type1或qcl-Type2参数包括以下信息:
–服务小区索引(ServCellIndex),其代表参考信号所位于的服务小区;
–带宽部分ID(BWP-Id),其代表参考信号所位于的下行带宽部分;
–参考信号(referenceSignal),其代表提供QCL信息的源参考信号资源,包括由NZP-CSI-RS-ResoureId标识的NZP-CSI-RS资源和由SSB-Index标识的SSB资源;
–QCL类型(qcl-Type),其代表与所列出的下行参考信号对应的准共址类型。
取决于需要推断的无线信道的大尺度性质,TCI状态所涉及的QCL类型qcl-Type可以包括以下选项:
–“typeA”:关于{多普勒频移,多普勒扩展,平均延迟,延迟扩展};
–“typeB”:关于{多普勒频移,多普勒扩展};
–“typeC”:关于{多普勒频移,平均延迟};
–“typeD”:关于{空间接收参数}。
为了避免歧义,每个TCI状态一般仅允许包含一个“typeD”类型的QCL假设。
其中,当UE接收到typeD类型的TCI状态时,UE做出如下QCL假设:TCI状态中列出的参考信号(下文中称为“源参考信号”)的天线端口与该TCI状态为了接收目的而指示的参考信号(下文中称为“目标参考信号”)的天线端口存在关于空间接收参数的准共址关系,从而先前用于接收源参考信号的空间接收参数(例如,空间域接收滤波器) 将可用于接收目标参考信号。
下面参照图6来更详细地描述利用TCI状态的现有波束指示。如图6中所示,在例如下行波束扫描等过程中,基站通过发射波束向UE发送源参考信号(例如,SSB或NZP-CSI-RS),UE通过接收波束对该源参考信号进行接收,并且确定源参考信号的空间接收参数。基站通过波束选择策略确定该发射波束作为PDCCH或PDSCH的最佳发射波束,并将与该发射波束对应的源参考信号指示给UE。对源参考信号的指示可以通过在诸如MAC控制元素(MAC CE)或下行控制信息(DCI)之类的控制信令中包含对于引用源参考信号的TCI状态的指示信息来实现。
UE通过对控制信令译码并提取出TCI状态,在该TCI状态内找到qcl-Type参数被设置为“typeD”的qcl-Type1或qcl-Type2,并从中找到源参考信号的标识符,诸如NZP-CSI-RS-ResoureId或SSB-Index。UE将假设该源参考信号的端口与目标参考信号的端口,即,上述控制信令调度的PDCCH或PDSCH的DMRS端口,具有关于空间接收参数的准共址关系,从而UE可以使用接收该源参考信号的空间接收参数来接收所调度的PDCCH或PDSCH的DMRS,以用于PDCCH或PDSCH的相关解调。
从基站侧的角度来看,基站确保源参考信号与目标参考信号之间具有实质的typeD类型的QCL关系。为此,基站在传输PDCCH或PDSCH时所使用的发射波束与之前传输源参考信号时使用的发射波束相同,或者至少具有相同的发射方向。
然而,现有的这种波束指示机制面临关于TCI状态可用性的问题。例如,TCI状态资源比较紧缺,不可能为所有参考信号分配TCI状态,导致可能不存在与源参考信号对应的TCI状态。又例如,虽然存在与源参考信号对应的TCI状态但是基站没有将此TCI状态配置或激活给UE。又例如,与源参考信号对应的TCI状态不是typeD类型的,无法用于向UE进行波束指示。再例如,源参考信号的类型被限制不可用于波束指示,等等。
考虑到TCI状态的种种可用性问题,基站的波束选择可能受到限制,使得基站不能选择具有最佳的传输性能但是缺乏可用TCI状态的一个或多个波束,导致波束指示性能下降。或者基站需要为所选择的最佳波束重新配置和激活TCI状态,这无疑会耗费很多处理资源和传输资源,导致波束指示的效率下降。
有鉴于此,本公开提出了一种改进的波束指示机制,以弥补现有波束指示的缺陷。
具体而言,当基站选择与源参考信号对应的发射波束-接收波束对来执行数据传输时,可能不存在与源参考信号对应的TCI状态或者与源参考信号对应的TCI状态不可用 于波束指示,但是存在与另一参考信号(下文中称为“中间参考信号”)对应的可用TCI状态。基站可以创建源参考信号与另一参考信号之间的关联,并通过RRC层信令向UE配置这种关联。基站改为利用中间参考信号来进行波束指示。例如,基站可以通过MAC CE或DCI向UE指示引用中间参考信号的TCI状态。
然而,与参照图6描述的现有波束指示不同的是,基站利用中间参考信号的指示不意在指示直接使用中间参考信号的空间接收参数。在接收到对中间参考信号的指示之后,UE基于中间参考信号与源参考信号之间的关联,利用源参考信号的空间接收参数而非中间参考信号的空间接收参数来实现PDCCH或PDSCH的DMRS的接收,以用于PDCCH或PDSCH的相关解调。在利用TCI状态进行指示的例子中,UE从所指示的TCI状态中找到中间参考信号的标识符,诸如NZP-CSI-RS-ResoureId或SSB-Index。但是,UE不是直接使用该标识符所代表的参考信号的空间接收参数来接收目标参考信号,而是基于所配置的源参考信号与中间参考信号之间的关联,找到源参考信号,并使用源参考信号的空间接收参数来准备PDCCH或PDSCH的接收。
通过建立源参考信号与中间参考信号之间的关联,对于源参考信号的指示可以经由中间参考信号来实现。因此,根据本公开的波束指示是一种间接的波束指示。
根据本公开的间接波束指示提供了额外的灵活性。对于最佳波束的选择不再受限于是否存在与参考信号对应的可用的TCI状态。即使与参考信号对应的TCI状态不存在或者由于任何其它因素而不可用,基站仍然能够基于中间参考信号和源参考信号的关联来间接地实现对于源参考信号的指示。
可以理解,通过创建两个参考信号之间的关联,实际上扩大了可用于执行波束指示的参考信号的范围。进一步地,本公开还提出了可以创建一组多个参考信号与另一组多个参考信号之间的关联,并通过其中一组参考信号中的每个参考信号来执行对于其自身以及另一组参考信号中的对应参考信号的指示,以进一步提高波束指示的效率,如下面将详细说明的。
需要注意,本公开中所言的“关联”是指两个参考信号之间的任何形式的联系,只要基站和UE能够基于这种联系从一个参考信号确定另一个参考信号即可。“关联”可以包括两个参考信号的标识符之间的关联,也可以包括引用两个参考信号的信息元素(例如,TCI状态、空间关系信息(SpatialRelationInfo)等等)之间的关联,还可以包括一个参考信号的标识符与另一个参考信号的信息元素之间的关联。
为了对本公开的透彻理解,下面将详细介绍体现本公开的各个方面的实施例。
【第一实施例】
本公开的第一实施例涉及对于下行传输的波束指示,即,在第一实施例中,目标参考信号是下行参考信号。下面的描述将以PDCCH或PDSCH的DMRS作为目标参考信号的例子进行描述,但是应理解,本公开的第一实施例还适用于诸如CSI-RS之类的下行参考信号或同步信号的波束指示。
图7是例示了根据第一实施例的波束指示的简化示意图。不同于参照图6描述的现有波束指示,在本公开的第一实施例中,对于目标参考信号的接收,波束指示所利用的参考信号和提供空间接收参数的参考信号是两个不同的参考信号。
在某些情况下,基站希望使用之前发送源参考信号的发射波束来发送目标参考信号,并且相应地,UE使用之前用于接收源参考信号的接收波束来接收目标参考信号。然而,基站可能尚未为该源参考信号产生具有typeD类型的QCL假设的TCI状态,或者即使有此TCI状态,该TCI状态尚未被配置或激活给UE或者被限制用于对目标参考信号进行指示。
如图7中所示,基站可以创建源参考信号与具有可用TCI状态的另一参考信号(中间参考信号)之间的关联。
源参考信号与中间参考信号的关联可以是任何形式的联系。
在一个优选示例中,源参考信号的端口与中间参考信号的端口具有QCL关系。更优选地,源参考信号的端口与中间参考信号的端口具有typeD类型的QCL关系。
在5G NR的标准R15中,针对各种类型的参考信号定义了可配置的QCL关系。图8是例示了各种参考信号之间的QCL关系的示意图。如图8中所示,对于用于波束管理的CSI-RS(图8中表示为CSI-RS(BM)),其可以与SSB资源具有typeC和typeD类型的QCL关系,在图8中表示为CSI-RS(BM)与SSB之间的“C+D”箭头。另外,CSI-RS(BM)还可以与用于波束管理的另一CSI-RS(BM)之间具有typeD类型的QCL关系,与用于跟踪的CSI-RS(图8中表示为CSI-RS(TRS))之间具有typeD类型的QCL关系。
类似地,用于跟踪的CSI-RS(TRS)和用于CSI测量的CSI-RS(CSI)可以分别与SSB资源或其它用途的CSI-RS具有相应的QCL关系。
特别地,对于PDCCH或PDSCH的DMRS,其可以与CSI-RS(BM)具有typeD 类型的QCL关系、与CSI-RS(TRS)具有typeA或typeA+typeD类型的QCL关系、与CSI-RS(CSI)具有typeA或typeA+typeD类型的QCL关系。CSI-RS(BM)、CSI-RS(TRS)、CSI-RS(CSI)均可被用于为PDCCH或PDSCH的DMRS指示关于空间接收参数的QCL关系。
同样,从图8可以看到,SSB不可被用于直接为PDCCH或PDSCH的DMRS指示QCL关系。
借助于本公开的间接波束指示,可以利用诸如CSI-RS(BM)、CSI-RS(TRS)、CSI-RS(CSI)之类的各种CSI-RS作为中间参考信号来传递SSB与DMRS之间的QCL关系。如图8中的加粗箭头所示,可以创建作为源参考信号的SSB与作为中间参考信号的CSI-RS(CSI)之间的typeD类型的QCL关系,并通过CSI-RS(CSI)来指示其与PDCCH的DMRS之间的typeA+typeD类型的QCL关系。由此,可以实现SSB→CSI-RS(CSI)→DMRS的QCL链。
显然,中间参考信号的选择可以不局限于CSI-RS(CSI),而可以是任何其它合适的参考信号。例如,虽然图8中未示出,但是可以类似地实现SSB→CSI-RS(BM)→DMRS的QCL链、CSI-RS(BM)→CSI-RS(TRS)→DMRS的QCL链。
在某些情况下,中间参考信号不限于一个,换句话说,在源参考信号到目标参考信号的QCL链可以经由两个或更多个参考信号来实现。例如,可以建立SSB→CSI-RS(BM)→CSI-RS(TRS)→DMRS的QCL链,其中引用CSI-RS(TRS)的TCI状态可被用于针对DMRS的波束指示,而作为源参考信号的SSB与CSI-RS(TRS)之间的关联可以包括SSB与CSI-RS(BM)的QCL关系以及CSI-RS(BM)与CSI-RS(TRS)的QCL关系。更长的QCL链是可行的,但是有可能导致指示过程复杂化。
作为替代,源参考信号与中间参考信号之间的关联可以不是typeD类型的QCL关系。甚至这两者的关联可以不是QCL关系,而仅仅是名义上的联系,只要UE能够从所指示的中间参考信号找到源参考信号即可。
回到图7,基站通过RRC层信令将源参考信号与中间参考信号之间的关联配置给UE。UE接收关于这种关联的配置信息,并且将其存储在自身的存储器中。
然后,基站可以利用中间参考信号来进行波束指示。引用中间参考信号的TCI状态可以通过MAC CE或DCI指示给UE。后文中将详细描述对于PDCCH传输和 PDSCH传输的指示过程。
在接收到引用中间参考信号的TCI状态之后,UE可以从TCI状态中找到所引用的中间参考信号的标识符,例如NZP-CSI-RS-ResourceID或SSB_Index。
此时,UE需要解读TCI状态是指示直接利用中间参考信号的空间接收参数进行PDSCH或PDCCH的接收,还是指示应该利用相关联的源参考信号的空间接收参数。也就是说,UE需要确定是否启用从中间参考信号到源参考信号的关联。
在一个例子中,UE可以通过对所接收的TCI状态进行检查来判断是否启用关联。例如,UE检查到中间参考信号属于被限制用于PDCCH或PDSCH的DMRS的波束指示的类型,诸如不能直接为PDCCH或PDSCH进行波束指示的SSB资源,在这种情况下,UE判断不能直接利用中间参考信号的空间接收参数。又例如,UE可以判断TCI状态中不包含typeD类型的QCL假设,由此不能直接利用中间参考信号的空间接收参数。又例如,UE可以判断之前未接收过中间参考信号,不存在对应的空间接收参数。
响应于判断不能直接利用中间参考信号的空间接收参数,UE确定启用从中间参考信号到源参考信号的关联,并且使用之前接收源参考信号的空间参数来配置其空间域接收滤波器,以准备接收PDSCH或PDCCH的DMRS。
在另一个例子中,基站可以向UE发送关于是否启用关联的信息,使得UE在接收到此信息时容易地确定应该采用中间参考信号和源参考信号中的哪一个的空间接收参数。关于是否启用关联的信息可以用少至1个比特表示,例如可以随TCI状态一起在MAC CE或DCI中传送至UE,当然也可以通过其它信令传送至UE。
响应于接收到启用关联的信息,UE可以基于源参考信号与中间参考信号之间的关联,找到源参考信号,并且使用之前接收源参考信号的空间接收参数来配置其空间域接收滤波器,以准备接收PDSCH或PDCCH的DMRS。
在另一个示例中,UE可以在接收到源参考信号与中间参考信号之间的关联的情况下总是启用关联。换句话说,基站向UE的关联配置充当启用这种关联的触发。
在波束指示生效之后(例如,在发送TCI状态3ms之后),基站可以使用所选择的发射波束来发送PDCCH或PDSCH及其DMRS。
为了确保源参考信号的空间接收参数能够用于目标参考信号的接收,源参考信号的天线端口与目标参考信号的天线端口之间需要具有typeD类型的QCL关系。为此,基 站在发送目标参考信号时所使用的发射波束与之前发送源参考信号时使用的发射波束相同,或者至少具有相同的发射方向。在无线信道具有较大的时间选择性和频率选择性的情况下,基站发送源参考信号和发送目标参考信号时所使用的时频资源(例如,时隙、子载波等)近似一致,使得目标参考信号经历的信道环境类似于源参考信号经历的信道环境。
在UE侧,源参考信号是其之前已经接收过的,例如,在之前的波束扫描过程中、CSI测量过程中、波束跟踪过程中,等等。源参考信号的空间接收参数被保存在UE中。响应于对中间参考信号的指示以及中间参考信号与源参考信号的关联,UE做出如下假设:目标参考信号与源参考信号具有关于空间接收参数的QCL关系,并且利用源参考信号的空间接收参数来实现目标参考信号的接收。
下面介绍根据第一实施例的间接波束指示的一些示例。应理解,以下示例仅仅用于举例说明可以应用第一实施例的代表性场景,而非对第一实施例的方面进行限制。
(示例1)
图9是根据第一实施例的间接波束指示的示例1的简化图。如图9中所示,目标参考信号是PDCCH或PDSCH的DMRS。源参考信号是SSB资源,其由SSB_Index标识。由于系统具有SSB无法直接用于DMRS的波束指示的限制,所以可以使用NZP-CSI-RS作为中间参考信号进行指示。
基站为UE配置源参考信号SSB中间参考信号NZP-CSI-RS之间的关联。如上面所描述的,关联包括但不限于SSB与NZP-CSI-RS之间的typeD类型的QCL关系。
关联可以建立在各种层面上。例如,可以创建SSB的标识符SSB_Index与NZP-CSI-RS的标识符NZP-CSI-RS-ResourceID之间的关联、SSB的标识符SSB_Index与引用NZP-CSI-RS的TCI状态的TCI状态ID之间的关联、引用SSB的TCI状态的TCI状态ID与引用NZP-CSI-RS的TCI状态的TCI状态ID之间的关联,等等。
基站通过MAC CE或DCI将引用NZP-CSI-RS的TCI状态指示给UE。应注意,该TCI状态还可以包括或不包括另外的QCL假设,为了简洁,图9中未示出可选的另一个qcl假设。UE接收该指示,并且从具有typeD类型的QCL假设(例如,图9中的qcl-Type1)中找到NZP-CSI-RS-ResourceID。
基于该NZP-CSI-RS与源参考信号SSB之间的关联,UE找到由SSB_Index标识的源参考信号。UE做出如下假设:存在SSB→NZP-CSI-RS→DMRS的QCL链,源参考信号SSB与目标参考信号DMRS之间具有typeD类型的QCL关系。由此,UE利用之前 用于接收SSB的空间接收参数来准备DMRS的接收。
典型地,SSB资源被用于初始接入阶段,并且每个SSB对应一个相对较宽的波束,以便使用少量的宽波束覆盖整个小区。在初始接入之后,CSI-RS被用于波束管理、跟踪、CSI测量等,并且每个CSI-RS可以对应相对较窄的波束。因此,如图10中所示,可能出现SSB的波束范围中包括不止一个CSI-RS,也就是说,可能不止一个CSI-RS与该SSB具有QCL关系。基站可以从这些CSI-RS中选择波束主瓣方向与SSB的波束主瓣方向最接近的CSI-RS作为中间参考信号,并且向UE该CSI-RS与SSB之间的QCL关联。作为替代,基站可以选择这些CSI-RS中的任何一个作为中间参考信号。
(示例2)
图11是根据第一实施例的间接波束指示的示例2的简化图。如图11中所示,目标参考信号是PDCCH或PDSCH的DMRS。源参考信号是NZP-CSI-RS资源,其由NZP-CSI-RS-ResourceID标识。
在例如初始接入等情况下,为了在高频段实现小区覆盖,基站可能将全部或大部分的TCI状态配置为引用SSB。这样就没有足够的TCI状态额度来配置其他参考信号。因此,可能不存在与源参考信号对应的TCI状态。
根据示例2,基站可以使用已配置的引用SSB的TCI状态来进行间接波束指示。
基站为UE配置源参考信号NZP-CSI-RS与中间参考信号SSB之间的关联。如上面所描述的,关联包括但不限于SSB与NZP-CSI-RS之间的typeD类型的QCL关系。
关联可以建立在各种层面上。例如,可以创建NZP-CSI-RS的标识符NZP-CSI-RS-ResourceID与SSB的标识符SSB_Index之间的关联、NZP-CSI-RS的标识符NZP-CSI-RS-ResourceID与引用SSB的TCI状态的TCI状态ID之间的关联,等等。
基站通过MAC CE或DCI将引用NZP-CSI-RS的TCI状态指示给UE。应注意,该TCI状态还可以包括或不包括另外的QCL假设,为了简洁,图11中未示出可选的另一个QCL假设。UE接收该指示,并且从具有typeD类型的QCL假设(例如,图11中的qcl-Type1)中找到SSB_Index。
UE可以判断由于SSB不能直接用于DMRS的波束指示,从而启用中间参考信号与源参考信号之间的关联。可替代地,UE也可以从基站接收关于是否启用关联的信息。
基于该NZP-CSI-RS与源参考信号SSB之间的关联,UE找到由 NZP-CSI-RS-ResourceID标识的源参考信号。UE做出如下假设:存在NZP-CSI-RS→SSB→DMRS的QCL链,源参考信号NZP-CSI-RS与目标参考信号DMRS之间具有typeD类型的QCL关系。由此,UE利用之前用于接收NZP-CSI-RS的空间接收参数来准备DMRS的接收。
(示例3)
图12是根据第一实施例的间接波束指示的示例3的简化图。如图12中所示,目标参考信号是PDCCH或PDSCH的DMRS。源参考信号是NZP-CSI-RS资源,其由NZP-CSI-RS-ResourceID标识。
典型地,基站为每个UE配置和激活的TCI状态的数量受到限制,例如,每次为UE配置至多64个TCI状态,或者从中进一步激活至多8个TCI状态。可能存在与源参考信号对应的TCI状态未被配置或激活给UE的情况,导致与源参考信号对应的TCI状态不可用于波束指示,如在图12中与源参考信号对应的TCI状态用虚线绘出。
根据示例3,基站可以使用引用中间参考信号的TCI状态来进行间接波束指示。
基站为UE配置源参考信号NZP-CSI-RS与中间参考信号(例如SSB或NZP-CSI-RS)之间的关联。如上面所描述的,关联包括但不限于SSB与NZP-CSI-RS之间的typeD类型的QCL关系。
关联可以建立在各种层面上。例如,可以创建源参考信号的标识符NZP-CSI-RS-ResourceID与中间参考信号的标识符(SSB_Index或NZP-CSI-RS-ResourceID)之间的关联、引用源参考信号的TCI状态的TCI状态ID与引用中间参考信号的TCI状态的TCI状态ID之间的关联,等等。
基站通过MAC CE或DCI将引用中间的TCI状态指示给UE。应注意,该TCI状态还可以包括或不包括另外的QCL假设,为了简洁,图12中未示出可选的另一个qcl假设。UE接收该指示,并且从具有typeD类型的QCL假设(例如,图11中的qcl-Type1)中找到中间参考信号的标识符(例如SSB_Index或NZP-CSI-RS-ResourceID)。
UE可以判断需要启用中间参考信号与源参考信号之间的关联。基于中间参考信号与源参考信号之间的关联,UE找到由NZP-CSI-RS-ResourceID标识的源参考信号。UE做出如下假设:存在NZP-CSI-RS→SSB/NZP-CSI-RS→DMRS的QCL链,源参考信号NZP-CSI-RS与目标参考信号DMRS之间具有typeD类型的QCL关系。由此,UE利用之前用于接收NZP-CSI-RS的空间接收参数来准备DMRS的接收。
(示例4)
图13是根据第一实施例的间接波束指示的示例4的简化图。如图13中所示,目标参考信号是PDCCH或PDSCH的DMRS。源参考信号是例如由NZP-CSI-RS-ResourceID标识的NZP-CSI-RS资源。
在根据第一实施例的示例4中,基站可以用不包含typeD类型的QCL假设的TCI状态来执行波束指示。例如,如图13的上面部分所示,TCI状态的两个QCL假设(qcl-Type1和qcl-Type2)都是非typeD类型的,或者如图13的下面部分所示,TCI状态仅包含一个非typeD类型的QCL假设(qcl-Type1)。在现有波束指示中,不包含typeD类型的QCL假设的TCI状态不可用于波束波束。
根据示例4,基站可以为UE配置源参考信号(例如SSB或NZP-CSI-RS)与中间参考信号之间的关联。例如,如上面所描述的,关联包括但不限于SSB与NZP-CSI-RS之间的QCL关系。
关联可以建立在各种层面上。例如,可以创建源参考信号的标识符(SSB_Index或NZP-CSI-RS-ResourceID)与中间参考信号的标识符NZP-CSI-RS-ResourceID之间的关联、源参考信号的标识符(SSB_Index或NZP-CSI-RS-ResourceID)与引用中间参考信号的TCI状态TCI状态ID之间的关联、引用源参考信号的TCI状态的TCI状态ID与引用中间参考信号的TCI状态的TCI状态ID之间的关联,等等。
在一个示例中,作为源参考信号的NZP-CSI-RS和作为中间参考信号的NZP-CSI-RS可以是同一个NZP-CSI-RS资源,即,具有相同的NZP-CSI-RS-ResourceID。
基站通过MAC CE或DCI将引用中间参考信号的TCI状态指示给UE。
UE可以判断:由于TCI状态不包含typeD类型的QCL假设,所以应当启用中间参考信号与源参考信号之间的关联。UE也可以基于来自基站的关联启用信息来判断是非应当启用关联,如上面所描述的。
基于中间参考信号与源参考信号之间的关联,UE找到由SSB_Index或NZP-CSI-RS-ResourceID标识的源参考信号。UE做出如下假设:源参考信号NZP-CSI-RS与目标参考信号DMRS之间具有typeD类型的QCL关系。由此,UE利用之前用于接收SSB或NZP-CSI-RS的空间接收参数来准备DMRS的接收。
应当注意,上面描述的示例1~4可以单独应用,也可以取决于实际的应用场景而以任何组合的方式应用。
下面介绍PDCCH传输和PDSCH传输的指示过程。
(PDCCH传输的波束指示)
根据本公开的波束指示,基站可以通过发送用于调度PDCCH的MAC CE来激活所选择的波束。如本文所使用的,“激活”是指在为UE配置的波束集合中启用该MAC CE列出的(一个或多个)波束。经过激活之后,例如在3ms之后,基站将可以使用所选择的发射波束进行PDCCH传输,UE将可以使用与这个发射波束对应的接收波束来监测PDCCH。
首先,基站通过RRC层信令为UE配置M个(例如,64个或128个)TCI状态。例如,基站可以设置tci-StatesPDCCH-ToAddList来配置UE的TCI状态。
然后,基站在MAC层生成包括与波束选择中选择的波束相关联的TCI状态ID的单个MAC CE,该MAC CE的格式如图14所示。
在图14所示的MAC CE(未示出该MAC CE的头部)中:
—第1个八比特字节:R字段表示预留的1个比特;服务小区ID字段指示该MAC CE适用的服务小区的ID,其长度为5比特;BWP ID字段包含该MAC CE适用的下行带宽部分的BWP-Id,其长度为2比特;
—第2个八比特字节:与所选择的波束相关联的PDCCH所存在的控制资源集(ControlResourceSet)的标识符(CORESET ID),以及该PDCCH的TCI状态的标识符TCI状态ID,这两个标识符分别占用2个比特、6个比特;6比特的TCI-StateId能指示至多64个TCI状态。
UE接收到包含该MAC CE的MAC数据包,并提交到UE的MAC层解码。UE提取该MAC CE中的CORESET ID和TCI状态ID,在TCI状态ID标识的TCI状态中找到由参考信号标识符(例如SSB_Index或NZP-CSI-RS-ResourceID)标识的参考信号。
在根据本公开的间接波束指示的情况下,UE基于TCI状态中的参考信号与另一参考信号之间的关联,找到相关联的源参考信号,并假设所找到的源参考信号的端口与PDCCH的DMRS端口是typeD类型的QCL关系,从而准备利用之前接收相同的源参考信号时使用的空间接收参数(接收波束)接收PDCCH。在MAC CE的配置开始生效之后(例如,3ms之后),UE将开始使用所确定的接收波束来监测PDCCH。
(PDSCH传输的波束指示)
典型地,基站采用MAC CE激活加上DCI指定的方式来指示用于PDSCH传输的波束。
具体而言,首先,基站在RRC层为UE配置最多M(例如,M=64或128)个TCI状态。
然后,基站通过MAC CE为UE激活所配置的TCI状态中的最多8个。但是,如果RRC层配置的TCI状态不超过8个,即,M≤8,则可以省去该MAC CE激活步骤。
图15A例示了用于激活TCI状态的MAC CE的格式(不包括头部)。如图15A中所示,“R”字段表示预留比特,“服务小区ID”表示该MAC CE适用的服务小区的标识信息,其占用5个比特,“BWP ID”表示该MAC CE适用的下行带宽部分的标识信息(如BWP_Id),其占用2个比特,“T i”表示RRC层配置的M个TCI状态的激活信息,其占用1个比特,如果被设置为“1”,则表示激活对应的TCI状态,否则表示去激活对应的TCI状态。
最后,基站可以通过在DCI中指定与为PDSCH传输选择的波束对应的TCI状态。图15B例示了可用于指定TCI状态的DCI的格式,其DCI包含与所选择的波束相关联的TCI状态的标识字段。每个TCI状态标识字段占用3个比特以指定至多8个TCI状态中的一个。
另外,在根据本公开的间接波束指示中,如图15B中所示,DCI还可以可选地包括关联启用信息。关联启用信息可以仅为1个比特,例如,当关联启用信息被设置为“1”,则表示启用源参考信号与中间参考信号之间的关联,否则表示不启用。
DCI可以通过例如PDCCH传送至UE。UE接收该DCI并从中提取各个字段。借助于DCI中指示波束的TCI状态标识字段,UE可以找到由参考信号标识符(例如SSB_Index或NZP-CSI-RS-ResourceID)标识的参考信号。
在根据本公开的间接波束指示中,UE可以基于该参考信号的类型、该参考信号的空间接收参数的存在与否、TCI状态中的QCL类型等等来判断是否应启用中间参考信号与源参考信号之间的关联。作为替代,UE可以基于DCI中的关联启用信息来确定是否应启用中间参考信号与源参考信号之间的关联。如果确定应该启用中间参考信号与源参考信号之间的关联,UE基于此关联找到源参考信号。
UE利用源参考信号的空间接收参数来确定监测PDSCH的空间接收参数(接收波束),以实现PDSCH的波束的接收。
(根据第一实施例的电子设备和通信方法)
接下来描述可以实施本公开的第一实施例的电子设备和通信方法。
图16A是例示了根据第一实施例的电子设备100的框图。电子设备100可以是UE或者UE的部件。
如图16A中所示,电子设备100包括处理电路101。处理电路101至少包括关联配置接收单元102、指示接收单元103和参考信号接收单元104。处理电路101可被配置为执行图16B中所示的通信方法。处理电路101可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟信号和数字信号的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)之类的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程们阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
处理电路101中的关联配置接收单元102被配置为从诸如基站之类的控制设备接收关于源参考信号与中间参考信号之间的关联的配置,即执行图16B中的步骤S101。关联配置接收单元102被配置为接收关于源参考信号与中间参考信号之间的关联的RRC信令。处理电路101可以将所接收到的关联信息存储在UE中,例如存储在存储器106中。
指示接收单元103被配置为从基站接收对中间参考信号的指示,即执行图16B中的步骤S102。指示接收单元103可以通过MAC CE或DCI接收与中间参考信号对应的TCI状态的指示信息。
参考信号接收单元104被配置为响应于对中间参考信号的指示,基于中间参考信号与源参考信号之间的关联,利用源参考信号的空间接收参数来实现目标参考信号的接收,即执行图16B中的步骤S103。参考信号接收单元104基于中间参考信号与源参考信号之间的关联,从指示接收单元103所接收的TCI状态中引用的中间参考信号找到源参考信号,利用之前接收源参考信号时确定的空间接收参数对天线阵列进行配置,以便于接收PDCCH或PDSCH及其DMRS。
电子设备100还可以包括例如通信单元105和存储器106。
通信单元105可以被配置为在处理电路101的控制下与基站进行通信。在一个示例中,通信单元105可以被实现为发射机或收发机,包括天线阵列和/或射频链路等通信部件。通信单元105用虚线绘出,因为它还可以位于电子设备100外。通信单元105可以从基站接收关于源参考信号与中间参考信号之间的关联的配置信息、波束指示信息等。通信 单元105还可以接收由基站发送的DMRS。
电子设备100还可以包括存储器106。存储器106可以存储各种数据和指令,例如从关于源参考信号与中间参考信号之间的关联的配置信息和波束指示信息等、用于电子设备100操作的程序和数据、由处理电路101产生的各种数据、由通信单元105接收的数据等。存储器106用虚线绘出,因为它还可以位于处理电路101内或者位于电子设备100外。存储器106可以是易失性存储器和/或非易失性存储器。例如,存储器202可以包括但不限于随机存储存储器(RAM)、动态随机存储存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)、闪存存储器。
图17A是例示了根据本公开的电子设备200的框图。电子设备200可以是基站之类的控制设备,或者位于基站之类的控制设备中。
如图17A中所示,电子设备200包括处理电路201。处理电路201至少包括关联配置发送单元202和指示发送单元203。处理电路201可被配置为执行图17B中所示的通信方法。处理电路201可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟信号和数字信号的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)之类的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程们阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
处理电路201的关联配置发送单元202被配置为向UE发送关于源参考信号与中间参考信号之间的关联的配置,即执行图17B中的步骤S201。关联配置发送单元202可以创建两个参考信号之间的关联,并通过RRC层信令将这种关联配置给UE。
指示发送单元203被配置为向UE发送对中间参考信号的指示,即执行图17B中的步骤S202。指示发送单元203可以在MAC CE或DCI中包括与中间参考信号对应的TCI状态的指示信息。
响应于对中间参考信号的指示,UE可以基于中间参考信号与源参考信号之间的关联,利用源参考信号的空间接收参数来确定的空间接收参数对天线阵列进行配置,以便于接收目标参考信号,诸如PDCCH或PDSCH的DMRS。
电子设备200还可以包括例如通信单元205和存储器206。
通信单元205可以被配置为在处理电路201的控制下与UE进行通信。在一个示例中,通信单元205可以被实现为发射机或收发机,包括天线阵列和/或射频链路等通信部 件。通信单元205用虚线绘出,因为它还可以位于电子设备200外。通信单元205可以向UE发送关于中间参考信号与源参考信号之间的关联的配置信息以及对中间参考信号的波束指示信息。
电子设备200还可以包括存储器206。存储器206可以存储各种数据和指令,例如用于电子设备200操作的程序和数据、由处理电路201产生的各种数据、将由通信单元205发送的各种控制信令或业务数据、将由通信单元205发送的关联配置信息、波束指示信息等。存储器206用虚线绘出,因为它还可以位于处理电路201内或者位于电子设备200外。存储器206可以是易失性存储器和/或非易失性存储器。例如,存储器202可以包括但不限于随机存储存储器(RAM)、动态随机存储存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)、闪存存储器。
【第二实施例】
本公开的第二实施例涉及对于上行传输的波束指示,即,在第二实施例中,目标参考信号是上行参考信号。下面的描述将以PUCCH的DMRS、探测参考信号(SRS)作为目标参考信号的例子进行描述,但是应理解,目标参考信号还可以是其它上行参考信号。
在5G NR的标准R15中,基站通过向UE配置空间关系信息并利用MAC CE激活来实施上行传输的波束指示。图18A和18B分别例示了两种空间关系信息的配置。
图18A例示了用于调度PUCCH的PUCCH空间关系信息的配置。如图18A中所示,PUCCH空间关系信息由PUCCH空间关系信息ID(PUCCH-SpatialRelationInfoId)标识,其中包括提供空间关系信息的源参考信号资源,诸如由NZP-CSI-RS-ResoureId标识的NZP-CSI-RS资源、由SSB-Index标识的SSB资源、以及由SRS-ResourceId和BWP-Id共同标识的SRS资源。如果PUCCH空间关系信息中配置的是SSB或NZP-CSI-RS,则UE应当利用用于接收该SSB或NZP-CSI-RS的空间接收参数来发送PUCCH及其DMRS。如果PUCCH空间关系信息中配置的是SRS,则UE应当利用用于发送该SRS的空间发射参数来发送PUCCH及其DMRS。
图18B例示了用于调度SRS的SRS空间关系信息的配置。如图18B中所示,SRS空间关系信息由SRS空间关系信息ID(SRS-SpatialRelationInfoId)标识,其中包括提供空间关系信息的源参考信号资源,包括由NZP-CSI-RS-ResoureId标识的 NZP-CSI-RS资源、由SSB-Index标识的SSB资源、以及由SRS-ResourceId和BWP-Id共同标识的SRS资源。如果SRS空间关系信息中配置的是SSB或NZP-CSI-RS,则UE应当利用用于接收该SSB或NZP-CSI-RS的空间接收参数来发送SRS。如果PUCCH空间关系信息中配置的是SRS,则UE应当利用用于发送该SRS的空间发射参数来发送SRS。
基站可以通过向UE发送MAC CE以激活或去激活空间关系信息。
根据现有的波束指示机制,利用TCI状态的下行波束指示和利用空间关系信息的上行波束指示相互独立地进行。这可能会导致过多的信令交互。
本公开的第二实施例提出了改进的上行波束指示机制,以在进行下行波束指示的同时间接地进行上行波束指示。
下面参照图19A和19B来描述根据第二实施例的间接波束指示。
如上面所描述的,基站为UE配置的空间关系信息中包含为目标参考信号提供空间关系信息的参考信号,即,源参考信号。源参考信号可以是SSB或NZP-CSI-RS等下行参考信号。先前UE在接收源参考信号时可以确定并保存其空间接收参数。源参考信号还可以是SRS等上行参考信号。先前UE在发送源参考信号时可以确定并保存其空间发射参数。
此外,基站可以通过TCI状态向UE进行波束指示,使得UE可以使用TCI状态中列出的参考信号的空间接收参数来实现对于PDCCH或PDSCH的接收。
根据本公开的第二实施例,基站可以创建空间关系信息中的源参考信号与TCI状态中的参考信号(中间参考信号)之间的关联。优选地,这种关联可以是空间关系信息与TCI状态之间的关联,例如,空间关系信息ID和TCI状态ID之间的关联。当然,也可以采取其它的关联方式,例如源参考信号的标识符与中间参考信号的标识符之间的关联、TCI状态ID与源参考信号的标识符之间的关联等等,只要UE能够基于该关联从中间参考信号找到源参考信号即可。基站可以通过RRC层信令将这种关联配置给UE。
由此,当UE接收到TCI状态时,一方面,UE从TCI状态中找到具有typeD类型的QCL假设,并使用所列出的参考信号的空间接收参数来实现诸如PDCCH或PDSCH的DMRS之类的下行参考信号的接收,以用于PDCCH或PDSCH的相干解调;另一方面,UE基于该TCI状态与空间关系信息之间的关联,找到相关联的空间关系信息,并且使用该空间关系信息来实现。
具体而言,如图19A中所示,在空间关系信息中的源参考信号是SSB或NZP-CSI-RS等下行参考信号的情况下,UE可以利用先前用于接收该参考信号的空间接收参数来确定用于发送目标参考信号的空间发射参数,以实现目标参考信号的发送。
如图19B中所示,在空间关系信息中的源参考信号是SRS等下行参考信号的情况下,UE可以利用先前用于发送该参考信号的空间发射参数来确定用于发送目标参考信号的空间发射参数,以实现目标参考信号的发送。
以这种方式,可以利用与中间参考信号对应的TCI状态来实现下行波束指示和上行波束指示这两者,而无需额外的信令来向UE激活空间关系信息。这节省了信令传输所耗费的资源。
对于空间关系信息中作为源参考信号的SSB或NZP-CSI-RS和TCI状态中作为中间参考信号的SSB或NZP-CSI-RS,在一个示例中,它们可以被配置具有QCL关系,甚至它们可以是同一个参考信号,即,由相同的SSB_Index或NZP-CSI-RS-ResourceID标识。在这种情况下,从UE侧看,UE用于接收源参考信号的波束和用于接收中间参考信号的波束具有相同的波束方向。
此外,当空间关系信息中引用SSB或NZP-CSI-RS作为源参考信号时,为了确保SSB或NZP-CSI-RS的空间接收参数能够用于目标参考信号的发送,UE用于接收源参考信号的接收波束和用于发送目标参考信号的发射波束可以具有相同的方向,即,源参考信号传播通过的下行无线信道与目标参考信号传播通过的上行无线信道是对称的。在TDD系统中,可以认为共享相同频域资源的上行信道和下行信道具有对称性。对于FDD系统,如果上行信道和下行信道的频带可能较为接近,上行信道与下行信道经历的信道环境可能是相似的,也可以认为它们具有对称性。在这种情况下,运送源参考信号的下行信道的大尺度性质可以从运送目标参考信号的上行信道的大尺度性质推断出,从这个意义上讲,源参考信号的接收端口与目标参考信号的发射端口之间具有typeD类型的QCL关系。
类似地,当空间关系信息中引用SRS作为源参考信号时,为了确保SRS的空间发射参数能够用于目标参考信号的发送,UE用于发送源参考信号的发射波束和用于发送目标参考信号的发射波束可以具有相同的方向。从这个意义上讲,源参考信号的发射端口与目标参考信号的发射端口之间具有typeD类型的QCL关系。
由此,可以将参照图8描述的各种参考信号之间的QCL关系扩展为图20。图20与图8的不同之处在于,可以建立例如SSB或CSI-RS之类的下行参考信号与例如 SRS之类的上行参考信号之间的QCL关系。在图20中示出了三种SRS,即,用于波束管理的SRS(BM)、基于码本调度的SRS(CB)和基于非码本调度的SRS(NCB),但是应理解,SRS的种类可以不限于此。此外,图20中所绘出的SSB、CSI-RS与各种SRS之间的QCL关系仅仅是示例性的而非限制性的,例如SSB也可以与SRS(BM)或SRS(NCB)具有QCL关系。
基于图20中扩展的QCL关系图,可以容易地选择适合用于SRS的间接波束指示的中间参考信号。与第一实施例类似,可以建立源参考信号、中间参考信号、目标参考信号之间的QCL链,这有利于简化上下行方向上的波束操作。
下面介绍根据第二实施例的间接波束指示的一些示例。应理解,以下示例仅仅用于举例说明可以应用第二实施例的一些场景,而非对第二实施例的方面进行限制。
(示例1)
第二实施例的示例1涉及但不限于如下场景:当UE接收由DCI调度的PDSCH后,需要通过PUCCH来反馈对于PDSCH的ACK/NACK给基站。第二实施例的示例1提供了同时指示PDSCH和PUCCH的方法。
图21是根据第二实施例的间接波束指示的示例1的简化图。如图21中所示,目标参考信号是PUCCH或其DMRS。
基站建立用于PDSCH的波束指示的TCI状态和用于PUCCH的波束指示的PUCCH空间关系信息之间的关联,并且通过RRC层信令配置给UE,例如,基站可以向UE发送TCI状态ID与PUCCH空间关系信息ID之间的关联信息,UE将这种关联存储于本地。
基站通过DCI将TCI状态指示给UE。应注意,为了简洁,图21中未示出可选的另一个QCL假设,但是该TCI状态可以包括或不包括另外的QCL假设。
UE接收该指示,并且从具有typeD类型的qcl假设(例如,图21中的qcl-Type1)中找到参考信号的标识符SSB_Index或NZP-CSI-RS-ResourceID。UE利用由该标识符标识的参考信号的空间接收参数来配置其天线阵列,以接收PDSCH。
此外,UE还基于TCI状态与PUCCH空间关系信息之间的关联,找到相关联的PUCCH空间关系信息,并且利用该PUCCH空间关系信息来调度PUCCH的传输。特别地,UE可以利用该PUCCH空间关系信息中列出的参考信号SSB_Index或NZP-CSI-RS-ResourceID的空间接收参数或由SRS-ResourceId加BWP-Id标识的SRS 的空间发射参数,确定用于发送PUCCH及其DMRS(如果PUCCH有的话)的空间发射参数。UE使用所确定的空间发射参数配置其天线阵列,以通过PUCCH发送对于PDSCH的ACK/NACK。
(示例2)
第二实施例的示例2涉及但不限于如下场景:当在DCI中接收到一个非周期的SRS触发时,UE向基站发送该SRS。第二实施例的示例2提供了通过TCI状态来同时调度SRS的方法。
图22是根据第二实施例的间接波束指示的示例2的简化图。如图22中所示,目标参考信号是SRS。
基站建立用于PDSCH的波束指示的TCI状态和用于SRS的波束指示的SRS空间关系信息之间的关联,并且通过RRC层信令配置给UE,例如,基站可以向UE发送TCI状态ID与SRS空间关系信息ID之间的关联信息,UE将这种关联存储于本地。
基站通过DCI将TCI状态指示给UE。应注意,为了简洁,图22中未示出可选的另一个QCL假设,但是该TCI状态可以包括或不包括另外的QCL假设。
UE接收该指示,并且从具有typeD类型的qcl假设(例如,图22中的qcl-Type1)中找到参考信号的标识符SSB_Index或NZP-CSI-RS-ResourceID。UE利用由该标识符标识的参考信号的空间接收参数来配置其天线阵列,以接收PDSCH。
此外,UE还基于TCI状态与SRS空间关系信息之间的关联,找到相关联的SRS空间关系信息,并且利用该SRS空间关系信息来调度SRS的传输。特别地,UE可以利用该SRS空间关系信息中列出的参考信号SSB或NZP-CSI-RS的空间接收参数或由SRS-ResourceId加BWP-Id标识的SRS的空间发射参数,确定用于发送SRS的空间发射参数。UE使用所确定的空间发射参数配置其天线阵列,以发送一个非周期的SRS。
(根据第二实施例的电子设备和通信方法)
接下来描述可以实施本公开的第二实施例的电子设备和通信方法。
图23A是例示了根据本公开的电子设备300的框图。电子设备300可以是UE或者UE的部件。
如图23A中所示,电子设备300包括处理电路301。处理电路301至少包括关联配置接收单元302和指示接收单元303。处理电路301可被配置为执行图23B中所示的通信方法。
处理电路301中的关联配置接收单元302被配置为从基站接收关于源参考信号与中间参考信号之间的关联的配置,即执行图23B中的步骤S301。关联配置接收单元302被配置为接收关于源参考信号与中间参考信号之间的关联的RRC信令。源参考信号与中间参考信号之间的关联可以包括引用源参考信号的空间关系信息与引用中间参考信号的TCI状态之间的关联。处理电路301可以将所接收到的关联信息存储在UE中,例如存储在存储器306中。
指示接收单元303被配置为从基站接收对中间参考信号的指示,即执行图23B中的步骤S302。指示接收单元303可以通过MAC CE或DCI接收与中间参考信号对应的TCI状态的指示信息。
参考信号发送单元304被配置为响应于对中间参考信号的指示,基于中间参考信号与源参考信号之间的关联,利用源参考信号的空间接收参数或空间发射参数来实现目标参考信号的接收,即执行图23B中的步骤S303。参考信号发送单元304基于中间参考信号与源参考信号之间的关联,从指示接收单元303所接收的TCI状态中引用的中间参考信号找到源参考信号,利用之前接收诸如SSB或NZP-CSI-RS之类的源参考信号时确定的空间接收参数或者诸如SRS之类的源参考信号时确定的空间发射参数来对天线阵列进行配置,以便于发送PUCCH或SRS。
电子设备300还可以包括例如通信单元305和存储器306。
通信单元305可以被配置为在处理电路301的控制下与基站进行通信。在一个示例中,通信单元305可以被实现为发射机或收发机,包括天线阵列和/或射频链路等通信部件。通信单元305用虚线绘出,因为它还可以位于电子设备300外。通信单元305可以从基站接收关于源参考信号与中间参考信号之间的关联的配置信息、波束指示信息等。通信单元305还可以发送PUCCH或SRS。
电子设备300还可以包括存储器306。存储器306可以存储各种数据和指令,例如从关于源参考信号与中间参考信号之间的关联的配置信息和波束指示信息等、用于电子设备300操作的程序和数据、由处理电路301产生的各种数据、由通信单元305接收的数据等。
图24A是例示了根据本公开的电子设备400的框图。电子设备400可以是基站之类的控制设备,或者位于基站之类的控制设备中。
如图24A中所示,电子设备400包括处理电路401。处理电路401至少包括关联配 置发送单元402和指示发送单元403。处理电路401可被配置为执行图24B中所示的通信方法。
处理电路401的关联配置发送单元402被配置为向UE发送关于源参考信号与中间参考信号之间的关联的配置,即执行图24B中的步骤S401。关联配置发送单元402可以创建两个参考信号之间的关联,并通过RRC层信令将这种关联配置给UE。源参考信号与中间参考信号之间的关联可以包括引用源参考信号的空间关系信息与引用中间参考信号的TCI状态之间的关联。
指示发送单元403被配置为向UE发送对中间参考信号的指示,即执行图24B中的步骤S402。指示发送单元403可以在MAC CE或DCI中包括与中间参考信号对应的TCI状态的指示信息。
响应于对中间参考信号的指示,UE可以基于中间参考信号与源参考信号之间的关联,利用源参考信号的空间接收参数或空间发射参数来实现目标参考信号的接收。
电子设备400还可以包括例如通信单元405和存储器406。
通信单元405可以被配置为在处理电路401的控制下与UE进行通信。在一个示例中,通信单元405可以被实现为发射机或收发机,包括天线阵列和/或射频链路等通信部件。通信单元405用虚线绘出,因为它还可以位于电子设备400外。通信单元405可以向UE发送关于中间参考信号与源参考信号之间的关联的配置信息以及对中间参考信号的波束指示信息。
电子设备400还可以包括存储器406。存储器406可以存储各种数据和指令,例如用于电子设备400操作的程序和数据、由处理电路401产生的各种数据、将由通信单元405发送的各种控制信令或业务数据、将由通信单元205发送的关联配置信息、波束指示信息等。存储器406用虚线绘出,因为它还可以位于处理电路401内或者位于电子设备400外。
【第三实施例】
如上面的第一实施例和第二实施例中详细描述的,在PDSCH的波束指示中,首先基站利用RRC层信令为UE配置M(例如,M=64)个TCI状态,每个TCI状态对应于不同的波束。然后基站利用MAC CE为UE激活至多8个TCI状态,这些激活的TCI状态对应的波束方向可以覆盖当前UE所在的一定空间范围,并且基站可以通过DCI来向UE指示与当前信道方向最接近的波束。
考虑小区内移动性的问题。UE可能在小区内产生较大的移动,导致所激活的8个TCI状态都变得不适合用于波束指示。如图25A中所示,圆圈表示为UE配置的至多64个TCI状态,其中UE移动之前激活的TCI状态由方格填充的圆圈表示。在UE移动之后,更为适合用于对UE进行波束指示的TCI状态由纯色填充的圆圈表示。在现有的波束指示机制中,基站需要重新激活这些TCI状态,以便从中选择一个TCI状态向UE指示最接近信道方向的波束。另外,UE的旋转、波束阻断等也可能导致需要重新激活的情况。
如果UE的移动、选择、波束阻断足够大,甚至可能导致目前配置的TCI状态都无法使用。图25B示意性地示出了这种情况。如图25B中所示,由于UE的移动,目前适合波束指示的TCI状态(由纯色填充的圆圈)不包括在所配置的64个TCI状态之内。此时,在现有的波束指示机制,基站需要重新配置TCI状态,以将这些更适合的TCI状态配置给UE。
TCI状态的重新配置和重新激活都会耗费大量的信令资源,导致波束指示的效率下降,这是不希望的。增加每次为UE配置的TCI状态的数量,例如从每次配置至多64个增加到每次配置至多128个,可以在一定程度上减少重新配置的机率。
除此之外,本公开的第三实施例提供了通过建立TCI状态之间的关联来提高波束指示效率的方案。
具体而言,基站可以创建每个TCI状态与另一TCI状态之间的关联,并将这些关联配置给UE。由此,每个TCI状态不仅可以代表其本身,还可以代表与其关联的TCI状态。基于这种关联,可以实现间接的波束指示。
下面参照图26A和26B来详细地介绍根据第三实施例的间接波束指示。
图26A是例示了根据第三实施例的一种TCI状态关联方式的示意图。在一个示例中,基站可以把为UE配置的M(在图26A中M=64,但M也可以为128等等)个TCI状态分为两组,第一组中的TCI状态与第二组中的TCI状态一一关联。可以把这种关联方式称作“组内关联”。
图26A示出了在当前激活的8个TCI状态当中,TCI状态1与TCI状态1’关联,TCI状态2与TCI状态2’关联,TCI状态3与TCI状态3’关联,TCI状态4与TCI状态4’关联。为了简洁,其余4个TCI状态的关联未在图中示出。
可以理解的是,由于各个TCI状态对应的波束的方向一般不同,所以第三实施 例中的TCI状态之间的关联不是空间关系上的关联,建立关联的两个TCI状态中的参考信号不一定具有QCL关系。然而,优选的是在建立TCI状态之间的关联时,仍然考虑波束的空间关系。例如,相互关联的两个TCI状态对应的波束方向的间距在一定范围内,使得这两个TCI状态对应的波束的覆盖范围最大可能地涵盖UE移动。
基站可以将这些关联通过RRC信令配置给UE。例如,基站可以将相互关联的TCI状态的TCI状态ID之间的关联信息配置给UE。UE接收并存在这些关联信息。
当UE出现移动、旋转、波束阻断等情况时,当前激活的8个TCI状态都不适合用于UE的波束指示,但是与TCI状态2对应的TCI状态2’和与TCI状态3对应的TCI状态3’适合用于UE的波束指示。在这种情况下,基站可以不执行TCI状态的重新激活。
基站可以判断TCI状态2’对应的波束和TCI状态3’对应的波束中哪个更接近信道方向,则相应的TCI状态被选择用于波束指示,例如基站选择TCI状态3’对应的波束作为最佳波束。
由于TCI状态3是当前已激活的,而TCI状态3’是未被激活的,所以基站将TCI状态3的指示信息通过DCI发送给UE。
为了便于UE知道对TCI状态3的指示究竟是针对TCI状态3本身还是针对相关联的TCI状态3’,基站可以还发送关于是否启用关联的关联启用信息。该关联启用信息可以与对TCI状态3的指示信息一起通过DCI发送给UE。图15B绘出的DCI格式可以在此处使用。如图15B中所示,DCI包括3比特的TCI状态标识字段以及1比特的关联启用信息。
UE通过PDCCH接收DCI,从DCI中找到标识TCI状态3的标识字段以及相应的关联启用信息。关联启用信息被设置为指示启用关联,则UE基于TCI状态3与TCI状态3’之间的关联,找到TCI状态3’,并且使用TCI状态3’中引用的参考信号来接收PDSCH。
相反,如果关联启用信息被设置为指示禁用关联,则UE使用TCI状态3中引用的参考信号来接收PDSCH。
根据本示例,只要当前激活的TCI状态与其相关联的TCI状态(共16个)中存在适合波束指示的TCI状态,都可以无需重新激活新的TCI状态。这提高了波束指示的效率。
图26B是例示了根据第三实施例的另一种TCI状态关联方式的示意图。在一个示例中,基站可以让为UE配置的M(在图26B中M=64,但M也可以为128等等)个TCI状态与另外未配置的M个TCI状态一一关联。可以把这种关联方式称作“组外关联”。
图26B示出了在当前激活的8个TCI状态当中,TCI状态1与未配置的TCI状态1’关联,TCI状态2与未配置的TCI状态2’关联,TCI状态3与未配置的TCI状态3’关联,TCI状态4与未配置的TCI状态4’关联。为了简洁,其余4个TCI状态的关联未在图中示出。
同样,这里TCI状态之间的关联可能不具有QCL关系。基站可以将这些关联通过RRC信令配置给UE。例如,基站可以将相互关联的TCI状态的TCI状态ID之间的关联信息配置给UE。UE接收并存在这些关联信息。
当UE出现移动、旋转、波束阻断等情况时,当前激活的8个TCI状态都不适合用于UE的波束指示,但是与TCI状态2对应的TCI状态2’和与TCI状态1对应的TCI状态1’适合用于UE的波束指示。在这种情况下,基站可以不执行TCI状态的重新配置。
基站可以判断TCI状态1’对应的波束和TCI状态2’对应的波束中哪个更接近信道方向,则相应的TCI状态被选择用于波束指示,例如基站选择TCI状态1’对应的波束作为最佳波束。
由于TCI状态1是当前已激活的,而TCI状态1’是未被激活的,所以基站将TCI状态1的指示信息通过DCI发送给UE。
为了便于UE知道对TCI状态1的指示究竟是针对TCI状态1本身还是针对相关联的TCI状态1’,基站可以还发送关于是否启用关联的关联启用信息。该关联启用信息可以与对TCI状态1的指示信息一起通过DCI发送给UE。如图15B中所示,DCI包括3比特的TCI状态标识字段以及1比特的关联启用信息。
UE通过PDCCH接收DCI,从DCI中找到标识TCI状态1的标识字段以及相应的关联启用信息。关联启用信息被设置为指示启用关联,则UE基于TCI状态1与TCI状态1’之间的关联,找到TCI状态1’,并且使用TCI状态1’中引用的参考信号来接收PDSCH。
相反,如果关联启用信息被设置为指示禁用关联,则UE使用TCI状态1中引 用的参考信号来接收PDSCH。
根据本示例,只要当前激活的TCI状态与其相关联的TCI状态(共16个)中存在适合波束指示的TCI状态,都可以无需重新配置和重新激活新的TCI状态。这提高了波束指示的效率。
作为替代,当UE出现移动、旋转、波束阻断等情况时,基站可以确定此时最适合波束的8个新的TCI状态(记为TCI状态1’~8’),并且创建这8个TCI状态与当前激活的8个TCI状态(记为TCI状态1~8)之间的一一关联。基站将这种关联信息通过RRC层信令配置给UE。
然后,基站可以从这8个新的TCI状态中选择波束方向最接近信道方向的某个TCI状态,例如TCI状态1’。
在不重新激活的情况下,基站将与该TCI状态1’关联的当前激活的TCI状态1指示给UE。另外,基站还向UE发送关联启用信息。
UE接收到关于TCI状态1的指示信息以及关联启用信息之后,响应于关联启用信息指示启用关联,可以基于TCI状态1与TCI状态1’之间的关联,找到TCI状态1’,并且利用TCI状态1’中引用的参考信号来接收PDSCH。
虽然上面以PDSCH传输为例描述了根据第三实施例的间接波束指示,但是本公开的第三实施例不限于PDSCH传输,而是可以在适当变型之后适用于PDCCH传输。
(根据第三实施例的电子设备和通信方法)
接下来描述可以实施本公开的第三实施例的电子设备和通信方法。
图27A是例示了根据本公开的电子设备500的框图。电子设备500可以是UE或者UE的部件。
如图27A中所示,电子设备500包括处理电路501。处理电路501至少包括激活接收单元502和指示接收单元503。处理电路501可被配置为执行图27B中所示的通信方法。
处理电路501中的激活信息接收单元502被配置为从诸如基站之类的控制设备接收对于第一传输配置指示(TCI)状态集合的激活信息,即执行图27B中的步骤S501。其中第一TCI状态集合中的每个TCI状态分别与第二TCI状态集合中的相应TCI状态关联。
指示接收单元505被配置为从所述控制设备接收对于第一TCI状态集合中的特 定TCI状态的指示信息及其关联启用信息,即执行图27B中的步骤S502。指示接收单元503可以通过DCI接收对于该特定TCI状态的指示信息。关联启用信息可以与指示信息一起包括在DCI中。
确定单元504被配置为在所述关联启用信息指示关联启用的情况下,基于第二TCI状态集合中与所述特定TCI状态关联的TCI状态来确定空间接收参数,即执行图27B中的步骤S503。此外,在所述关联启用信息指示关联禁用的情况下,确定单元504基于所述特定TCI状态来确定空间接收参数。
电子设备500还可以包括例如通信单元505和存储器506。
通信单元505可以被配置为在处理电路501的控制下与基站进行通信。在一个示例中,通信单元505可以被实现为发射机或收发机,包括天线阵列和/或射频链路等通信部件。通信单元505用虚线绘出,因为它还可以位于电子设备500外。通信单元505可以从基站接收对于TCI状态的激活信息、指示信息和关联启用信息。
电子设备500还可以包括存储器506。存储器506可以存储各种数据和指令,例如从基站接收的对于TCI状态的激活信息、指示信息和关联启用信息等、用于电子设备500操作的程序和数据、由处理电路501产生的各种数据、将由通信单元505发送的数据等。
图28A是例示了根据本公开的电子设备600的框图。电子设备600可以是基站之类的控制设备,或者位于基站之类的控制设备中。
如图28A中所示,电子设备600包括处理电路601。处理电路601至少包括激活信息发送单元602和指示发送单元603。处理电路601可被配置为执行图28B中所示的通信方法。
处理电路601的激活信息发送单元602被配置为向UE发送对于第一TCI状态集合的激活信息,即执行图28B中的步骤S601。其中第一TCI状态集合中的每个TCI状态分别与第二TCI状态集合中的相应TCI状态关联。
指示发送单元603被配置为向UE发送对于第一TCI状态集合中的特定TCI状态的指示信息及其关联启用信息,即执行图23B中的步骤S602。指示发送单元503可以通过DCI发送对于该特定TCI状态的指示信息。关联启用信息可以与指示信息一起包括在DCI中。
在所述关联启用信息指示关联启用的情况下,UE可以基于第二TCI状态集合中与所述特定TCI状态关联的TCI状态来确定空间接收参数。此外,在所述关联启 用信息指示关联禁用的情况下,UE基于所述特定TCI状态来确定空间接收参数。
电子设备600还可以包括例如通信单元605和存储器606。
通信单元605可以被配置为在处理电路601的控制下与UE进行通信。在一个示例中,通信单元605可以被实现为发射机或收发机,包括天线阵列和/或射频链路等通信部件。通信单元605用虚线绘出,因为它还可以位于电子设备600外。通信单元605可以向UE发送关于TCI状态之间的关联的配置信息、波束指示信息以及关联启用信息。
电子设备600还可以包括存储器606。存储器606可以存储各种数据和指令,例如用于电子设备600操作的程序和数据、由处理电路601产生的各种数据、由通信单元605接收的各种控制信令或业务数据、将由通信单元205发送的波束指示信息和关联启用信息等。存储器606用虚线绘出,因为它还可以位于处理电路601内或者位于电子设备600外。
上面已经详细描述了本公开的实施例的各个方面,但是应注意,上面为了描述了所示出的天线阵列的结构、布置、类型、数量等,端口,参考信号,通信设备,通信方法等等,都不是为了将本公开的方面限制到这些具体的示例。
应当理解,上述各实施例中描述的电子设备100、200、300、400、500、600的各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式。在实际实现时,上述各单元可被实现为独立的物理实体,或者也可以由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
【本公开的示例性实现】
根据本公开的实施例,可以想到各种实现本公开的概念的实现方式,包括但不限于:
1)、一种用户设备侧的电子设备,包括处理电路,处理电路被配置为:从控制设备接收关于第一参考信号与第二参考信号之间的关联的配置;从所述控制设备接收对第一参考信号的指示;以及响应于对第一参考信号的指示,基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数来实现第三参考信号的接收。
2)、一种控制设备侧的电子设备,包括处理电路,处理电路被配置为:向用户设备发送关于第一参考信号与第二参考信号之间的关联的配置;向所述用户设备发送第一参考信号的指示,其中,响应于第一参考信号的指示,所述用户设备基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数来实现第三参考信号的接收。
3)、如1)或2)所述的电子设备,其中,利用第二参考信号的空间接收参数来实现第三参考信号的接收包括:利用第二参考信号的空间接收参数来确定用于第三参考信号的空间接收参数,以实现第三参考信号的接收。
4)、如1)或2)所述的电子设备,其中,第二参考信号的端口与第三参考信号的端口具有关于空间接收参数的准共址(QCL)关系。
5)、如1)或2)所述的电子设备,其中,第一参考信号与第二参考信号的关联包括第一参考信号与第二参考信号之间的QCL关系。
6)、如1)或2)所述的电子设备,其中,第一参考信号与第二参考信号的关联由第一参考信号与第四参考信号之间的QCL关系以及第四参考信号与第二参考信号之间的QCL关系实现。
7)、如1)或2)所述的电子设备,其中,第一参考信号包括同步信号/物理广播信道块(SSB)信号和信道状态信息参考信号(CSI-RS)中的任一种。
8)、如1)或2)所述的电子设备,其中,第二参考信号包括同步信号/物理广播信道块(SSB)信号和信道状态信息参考信号(CSI-RS)中的任一种,并且第三参考信号包括解调参考信号(DMRS)。
9)、如1)或2)所述的电子设备,其中,所述空间接收参数是用于形成接收波束的波束赋形参数。
10)、如1)或2)所述的电子设备,其中,接收第一参考信号的指示包括接收含有第一参考信号的标识信息的传输配置指示(TCI)状态。
11)、一种用户设备侧的电子设备,包括处理电路,处理电路被配置为:从控制设备接收关于第一参考信号与第二参考信号之间的关联的配置;从所述控制设备接收对第一参考信号的指示;以及响应于对第一参考信号的指示,基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数或空间发射参数来实现第三参考信号的发送。
12)、一种控制设备侧的电子设备,包括处理电路,处理电路被配置为:向用户设备发送关于第一参考信号与第二参考信号之间的关联的配置;向所述用户设备发送第一参考信号的指示,其中,响应于第一参考信号的指示,所述用户设备基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数或空间发射参数来实现第三参考信号的发送。
13)、如11)或12)所述的电子设备,其中,第二参考信号是下行参考信号,并且其中,利用第二参考信号的空间接收参数或空间发射参数来实现第三参考信号的发送包括:利用第二参考信号的空间接收参数来确定用于第三参考信号的空间发射参数,以实现第三参考信号的发送。
14)、如11)或12)所述的电子设备,其中,第二参考信号是上行参考信号,并且其中,利用第二参考信号的空间接收参数或空间发射参数来实现第三参考信号的发送包括:利用第二参考信号的空间发射参数来确定用于第三参考信号的空间发射参数,以实现第三参考信号的发送。
15)、如11)或12)所述的电子设备,其中,第二参考信号传播通过的下行无线信道与第三参考信号传播通过的上行无线信道对称。
16)、如11)或12)所述的电子设备,其中,第一参考信号与第二参考信号之间的关联包括含有第一参考信号的标识信息的传输配置指示(TCI)状态与含有第二参考信号的标识信息的空间关系信息(SpatialRelationInfo)之间的关联。
17)、如11)或12)所述的电子设备,其中,第一参考信号与第二参考信号是同一个下行参考信号。
18)、如11)或12)所述的电子设备,其中,第一参考信号包括同步信号/物理广播信道块(SSB)信号和信道状态信息参考信号(CSI-RS)中的任一种。
19)、如13)所述的电子设备,其中,第二参考信号包括同步信号/物理广播信道块(SSB)信号和信道状态信息参考信号(CSI-RS)中的任一种,并且第三参考信号包括解调参考信号(DMRS)解调参考信号(DMRS)和探测参考信号(SRS)中的任一种。
20)、如14)所述的电子设备,其中,第二参考信号包括探测参考信号(SRS),并且第三参考信号包括解调参考信号(DMRS)和探测参考信号(SRS)中的任一种。
21)、如11)或12)所述的电子设备,其中,所述空间接收参数是用于形成接收波束的波束赋形参数。
22)、如11)或12)所述的电子设备,其中,所述空间发射参数是用于形成发射波束的波束赋形参数。
23)、如11)或12)所述的电子设备,其中,接收第一参考信号的指示包括接收含有第一参考信号的标识信息的传输配置指示(TCI)状态。
24)、一种用户设备侧的电子设备,包括处理电路,处理电路被配置为:从控制设备接收对于第一传输配置指示(TCI)状态集合的激活信息,其中第一TCI状态集合中的每个TCI状态分别与第二TCI状态集合中的相应TCI状态关联;从所述控制设备接收对于第一TCI状态集合中的特定TCI状态的指示信息及其关联启用信息;以及在所述关联启用信息指示关联启用的情况下,基于第二TCI状态集合中与所述特定TCI状态关联的TCI状态来确定空间接收参数。
25)、根据24)所述的电子设备,其中,所述处理电路进一步被配置为:在所述关联启用信息指示关联禁用的情况下,基于所述特定TCI状态来确定空间接收参数。
26)、根据24)所述的电子设备,其中,在第一TCI状态集合和第二TCI状态集合中的至少一个TCI状态被确定适合波束指示的情况下,没有来自所述控制设备的对于TCI状态的激活信息。
27)、根据24)或25)所述的电子设备,其中,所述关联启用信息被包括在下行控制信息(DCI)中。
28)、一种控制设备侧的电子设备,包括处理电路,处理电路被配置为:向用户设备发送对于第一传输配置指示(TCI)状态集合的激活信息,其中第一TCI状态集合中的每个TCI状态分别与第二TCI状态集合中的相应TCI状态关联;向所述用户设备发送对于第一TCI状态集合中的特定TCI状态的指示信息及其关联启用信息,其中,在所述关联启用信息指示关联启用的情况下,第二TCI状态集合中与所述特定TCI状态关联的TCI状态被所述用户设备用来确定空间接收参数。
29)、根据28)所述的电子设备,其中在所述关联启用信息指示关联禁用的情况下,所述特定TCI状态被所述用户设备用来确定空间接收参数。
30)、根据28)所述的电子设备,其中,所述处理电路进一步被配置为:在确定第一TCI状态集合和第二TCI状态集合中的至少一个TCI状态适合波束指示的情况下,不向所述用户设备发送对于TCI状态的激活信息。
31)、根据28)或29)所述的电子设备,其中,所述关联启用信息被包括在下行控制信息(DCI)中。
32)、一种通信方法,包括:从控制设备接收关于第一参考信号与第二参考信号之间的关联的配置;从所述控制设备接收对第一参考信号的指示;以及响应于对第一参考信号的指示,基于第一参考信号与第二参考信号之间的关联,利用第二参考信 号的空间接收参数来实现第三参考信号的接收。
33)、一种通信方法,包括:向用户设备发送关于第一参考信号与第二参考信号之间的关联的配置;向所述用户设备发送第一参考信号的指示,其中,响应于第一参考信号的指示,所述用户设备基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数来实现第三参考信号的接收。
34)、一种通信方法,包括:从控制设备接收关于第一参考信号与第二参考信号之间的关联的配置;从所述控制设备接收对第一参考信号的指示;以及响应于对第一参考信号的指示,基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数或空间发射参数来实现第三参考信号的发送。
35)、一种通信方法,包括:向用户设备发送关于第一参考信号与第二参考信号之间的关联的配置;向所述用户设备发送第一参考信号的指示,其中,响应于第一参考信号的指示,所述用户设备基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数或空间发射参数来实现第三参考信号的发送。
36)、一种通信方法,包括:从控制设备接收对于第一传输配置指示(TCI)状态集合的激活信息,其中第一TCI状态集合中的每个TCI状态分别与第二TCI状态集合中的相应TCI状态关联;从所述控制设备接收对于第一TCI状态集合中的特定TCI状态的指示信息及其关联启用信息;以及在所述关联启用信息指示关联启用的情况下,基于第二TCI状态集合中与所述特定TCI状态关联的TCI状态来确定空间接收参数。
37)、一种通信方法,包括:向用户设备发送对于第一传输配置指示(TCI)状态集合的激活信息,其中第一TCI状态集合中的每个TCI状态分别与第二TCI状态集合中的相应TCI状态关联;向所述用户设备发送对于第一TCI状态集合中的特定TCI状态的指示信息及其关联启用信息,其中,在所述关联启用信息指示关联启用的情况下,第二TCI状态集合中与所述特定TCI状态关联的TCI状态被所述用户设备用来确定空间接收参数。
38)、一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如32)-37)中任一项所述的通信方法。
【本公开的应用实例】
本公开中描述的技术能够应用于各种产品。
例如,根据本公开的实施例的电子设备200、400、600可以被实现为各种基站或者安装在基站中,电子设备100、300、500可以被实现为各种用户设备或被安装在各种用户设备中。
根据本公开的实施例的通信方法可以由各种基站或用户设备实现;根据本公开的实施例的方法和操作可以体现为计算机可执行指令,存储在非暂时性计算机可读存储介质中,并可以由各种基站或用户设备执行以实现上面所述的一个或多个功能。
根据本公开的实施例的技术可以制成各个计算机程序产品,被用于各种基站或用户设备以实现上面所述的一个或多个功能。
本公开中所说的基站可以被实现为任何类型的基站,优选地,诸如3GPP的5G NR标准中定义的宏gNB和ng-eNB。gNB可以是覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB、eNodeB和基站收发台(BTS)。基站还可以包括:被配置为控制无线通信的主体以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)、无线中继站、无人机塔台、自动化工厂中的控制节点等。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)、无人机、自动化工厂中的传感器和执行器等。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
下面简单介绍可以应用本公开的技术的基站和用户设备的示例。
应当理解,本公开中使用的术语“基站”具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的例子可以例如是但不限于以下:GSM通信系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者;3G通信系统中的无线电网络控制器(RNC)和NodeB中的一者或两者;4G LTE和LTE-A系统中的eNB;5G通信系统中的gNB和ng-eNB。在D2D、M2M以及V2V通信场景下,也可以将对通信具有控制功能的逻辑实体称为基站。在认知无线电通信场景下,还可以将起频谱协调作用的逻辑实体称为基站。在自动化工厂中,可以将提供网络控制功能的逻辑实体称为基站。
基站的第一应用示例
图29是示出可以应用本公开内容的技术的基站的示意性配置的第一示例的框图。在图29中,基站可以实现为gNB 1400。gNB 1400包括多个天线1410以及基站设备1420。基站设备1420和每个天线1410可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1400(或基站设备1420)可以对应于上述电子设备200、400和/或600。
天线1410包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1410例如可以被布置成图2A中所示的天线阵列矩阵,并且用于基站设备1420发送和接收无线信号。例如,多个天线1410可以与gNB 1400使用的多个频段兼容。
基站设备1420包括控制器1421、存储器1422、网络接口1423以及无线通信接口1425。
控制器1421可以为例如CPU或DSP,并且操作基站设备1420的较高层的各种功能。例如,控制器1421可以包括上面所述的处理电路201、401或601,执行图17B、24B或28B中描述的通信方法,或者控制电子设备200、400或600的各个部件。例如,控制器1421根据由无线通信接口1425处理的信号中的数据来生成数据分组,并经由网络接口1423来传递所生成的分组。控制器1421可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1421可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1422包括RAM和ROM,并且存储由控制器1421执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1423为用于将基站设备1420连接至核心网1424(例如,5G核心网)的通信接口。控制器1421可以经由网络接口1423而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1400与核心网节点或其他gNB可以通过逻辑接口(诸如NG接口和Xn接口)而彼此连接。网络接口1423还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1423为无线通信接口,则与由无线通信接口1425使用的频段相比,网络接口1423可以使用较高频段用于无线通信。
无线通信接口1425支持任何蜂窝通信方案(诸如5G NR),并且经由天线1410来提供到位于gNB 1400的小区中的终端的无线连接。无线通信接口1425通常可以包括例如基带(BB)处理器1426和RF电路1427。BB处理器1426可以执行例如编码/解码、调 制/解调以及复用/解复用,并且执行各层(例如物理层、MAC层、RLC层、PDCP层、SDAP层)的各种类型的信号处理。代替控制器1421,BB处理器1426可以具有上述逻辑功能的一部分或全部。BB处理器1426可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1426的功能改变。该模块可以为插入到基站设备1420的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1427可以包括例如混频器、滤波器和放大器,并且经由天线1410来传送和接收无线信号。虽然图29示出一个RF电路1427与一根天线1410连接的示例,但是本公开并不限于该图示,而是一个RF电路1427可以同时连接多根天线1410。
如图29所示,无线通信接口1425可以包括多个BB处理器1426。例如,多个BB处理器1426可以与gNB 1400使用的多个频段兼容。如图29所示,无线通信接口1425可以包括多个RF电路1427。例如,多个RF电路1427可以与多个天线元件兼容。虽然图29示出其中无线通信接口1425包括多个BB处理器1426和多个RF电路1427的示例,但是无线通信接口1425也可以包括单个BB处理器1426或单个RF电路1427。
在图29中示出的gNB 1400中,参照图17A描述的处理电路201、参照图24A描述的处理电路401或参照图28A描述的处理电路601中包括的一个或多个单元可被实现在无线通信接口825中。可替代地,这些组件中的至少一部分可被实现在控制器821中。例如,gNB 1400包含无线通信接口1425的一部分(例如,BB处理器1426)或者整体,和/或包括控制器1421的模块,并且一个或多个组件可被实现在模块中。在这种情况下,模块可以存储用于允许处理器起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在gNB 1400中,并且无线通信接口1425(例如,BB处理器1426)和/或控制器1421可以执行该程序。如上所述,作为包括一个或多个组件的装置,gNB 1400、基站设备1420或模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
基站的第二应用示例
图30是示出可以应用本公开的技术的基站的示意性配置的第二示例的框图。在图30中,基站被示出为gNB 1530。gNB 1530包括多个天线1540、基站设备1550和RRH 1560。 RRH 1560和每个天线1540可以经由RF线缆而彼此连接。基站设备1550和RRH 1560可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 1530(或基站设备1550)可以对应于上述电子设备200、400、600。
天线1540包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1540例如可以被布置成图2A中所示的天线阵列矩阵,并且用于基站设备1550发送和接收无线信号。例如,多个天线1540可以与gNB 1530使用的多个频段兼容。
基站设备1550包括控制器1551、存储器1552、网络接口1553、无线通信接口1555以及连接接口1557。控制器1551、存储器1552和网络接口1553与参照图29描述的控制器1421、存储器1422和网络接口1423相同。
无线通信接口1555支持任何蜂窝通信方案(诸如5G NR),并且经由RRH 1560和天线1540来提供到位于与RRH 1560对应的扇区中的终端的无线通信。无线通信接口1555通常可以包括例如BB处理器1556。除了BB处理器1556经由连接接口1557连接到RRH 1560的RF电路1564之外,BB处理器1556与参照图29描述的BB处理器1426相同。如图30所示,无线通信接口1555可以包括多个BB处理器1556。例如,多个BB处理器1556可以与gNB 1530使用的多个频段兼容。虽然图30示出其中无线通信接口1555包括多个BB处理器1556的示例,但是无线通信接口1555也可以包括单个BB处理器1556。
连接接口1557为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的接口。连接接口1557还可以为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的上述高速线路中的通信的通信模块。
RRH 1560包括连接接口1561和无线通信接口1563。
连接接口1561为用于将RRH 1560(无线通信接口1563)连接至基站设备1550的接口。连接接口1561还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1563经由天线1540来传送和接收无线信号。无线通信接口1563通常可以包括例如RF电路1564。RF电路1564可以包括例如混频器、滤波器和放大器,并且经由天线1540来传送和接收无线信号。虽然图30示出一个RF电路1564与一根天线1540连接的示例,但是本公开并不限于该图示,而是一个RF电路1564可以同时连接多根天线1540。
如图30所示,无线通信接口1563可以包括多个RF电路1564。例如,多个RF电路1564可以支持多个天线元件。虽然图30示出其中无线通信接口1563包括多个RF电 路1564的示例,但是无线通信接口1563也可以包括单个RF电路1564。
在图30中示出的gNB 1500中,参照图17A描述的处理电路201、参照图24A描述的处理电路401或参照图28A描述的处理电路601中中包括的一个或多个单元可被实现在无线通信接口1525中。可替代地,这些组件中的至少一部分可被实现在控制器1521中。例如,gNB 1500包含无线通信接口1525的一部分(例如,BB处理器1526)或者整体,和/或包括控制器1521的模块,并且一个或多个组件可被实现在模块中。在这种情况下,模块可以存储用于允许处理器起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在gNB1500中,并且无线通信接口1525(例如,BB处理器1526)和/或控制器1521可以执行该程序。如上所述,作为包括一个或多个组件的装置,gNB 1500、基站设备1520或模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
用户设备的第一应用示例
图31是示出可以应用本公开内容的技术的智能电话1600的示意性配置的示例的框图。在一个示例中,智能电话1600可以被实现为参照图16A描述的电子设备100、参照图23A描述的电子设备300或参照图27A描述的电子设备500。
智能电话1600包括处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612、一个或多个天线开关1615、一个或多个天线1616、总线1617、电池1618以及辅助控制器1619。
处理器1601可以为例如CPU或片上系统(SoC),并且控制智能电话1600的应用层和另外层的功能。处理器1601可以包括或充当参照16A描述的处理电路101、参照12A描述的处理电路301、参照27A描述的处理电路501。存储器1602包括RAM和ROM,并且存储数据和由处理器1601执行的程序。存储装置1603可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1604为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1600的接口。
摄像装置1606包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1607可以包括一组传感器,诸如测量传感 器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1608将输入到智能电话1600的声音转换为音频信号。输入装置1609包括例如被配置为检测显示装置1610的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1610包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1600的输出图像。扬声器1611将从智能电话1600输出的音频信号转换为声音。
无线通信接口1612支持任何蜂窝通信方案(诸如4G LTE或5G NR等等),并且执行无线通信。无线通信接口1612通常可以包括例如BB处理器1613和RF电路1614。BB处理器1613可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1614可以包括例如混频器、滤波器和放大器,并且经由天线1616来传送和接收无线信号。无线通信接口1612可以为其上集成有BB处理器1613和RF电路1614的一个芯片模块。如图31所示,无线通信接口1612可以包括多个BB处理器1613和多个RF电路1614。虽然图31示出其中无线通信接口1612包括多个BB处理器1613和多个RF电路1614的示例,但是无线通信接口1612也可以包括单个BB处理器1613或单个RF电路1614。
此外,除了蜂窝通信方案之外,无线通信接口1612可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1612可以包括针对每种无线通信方案的BB处理器1613和RF电路1614。
天线开关1615中的每一个在包括在无线通信接口1612中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1616的连接目的地。
天线1616包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1616例如可以被布置成图2A中所示的天线阵列矩阵,并且用于无线通信接口1612传送和接收无线信号。智能电话1600可以包括一个或多个天线面板(未示出)。
此外,智能电话1600可以包括针对每种无线通信方案的天线1616。在此情况下,天线开关1615可以从智能电话1600的配置中省略。
总线1617将处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612以及辅助控制器1619彼此连接。电池1618经由馈线向图31所示的智能电话1600的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1619例如在 睡眠模式下操作智能电话1600的最小必需功能。
在图31中示出的智能电话1600中,参照图16A描述的处理电路101、参照图23A描述的处理电路301或参照图27A描述的处理电路501中包括的一个或多个组件可被实现在无线通信接口1612中。可替代地,这些组件中的至少一部分可被实现在处理器1601或者辅助控制器1619中。作为一个示例,智能电话1600包含无线通信接口1612的一部分(例如,BB处理器1613)或者整体,和/或包括处理器1601和/或辅助控制器1619的模块,并且一个或多个组件可被实现在该模块中。在这种情况下,该模块可以存储允许处理起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在智能电话1600中,并且无线通信接口1612(例如,BB处理器1613)、处理器1601和/或辅助控制器1619可以执行该程序。如上所述,作为包括一个或多个组件的装置,智能电话1600或者模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
用户设备的第二应用示例
图32是示出可以应用本公开的技术的汽车导航设备1720的示意性配置的示例的框图。汽车导航设备1720可以被实现为参照图16A描述的电子设备100、参照图23A描述的电子设备300或参照图27A描述的电子设备500。汽车导航设备1720包括处理器1721、存储器1722、全球定位系统(GPS)模块1724、传感器1725、数据接口1726、内容播放器1727、存储介质接口1728、输入装置1729、显示装置1730、扬声器1731、无线通信接口1733、一个或多个天线开关1736、一个或多个天线1737以及电池1738。
处理器1721可以为例如CPU或SoC,并且控制汽车导航设备1720的导航功能和另外的功能。存储器1722包括RAM和ROM,并且存储数据和由处理器1721执行的程序。
GPS模块1724使用从GPS卫星接收的GPS信号来测量汽车导航设备1720的位置(诸如纬度、经度和高度)。传感器1725可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1726经由未示出的终端而连接到例如车载网络1741,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1727再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质 被插入到存储介质接口1728中。输入装置1729包括例如被配置为检测显示装置1730的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1730包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1731输出导航功能的声音或再现的内容。
无线通信接口1733支持任何蜂窝通信方案(诸如4G LTE或5G NR),并且执行无线通信。无线通信接口1733通常可以包括例如BB处理器1734和RF电路1735。BB处理器1734可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1735可以包括例如混频器、滤波器和放大器,并且经由天线1737来传送和接收无线信号。无线通信接口1733还可以为其上集成有BB处理器1734和RF电路1735的一个芯片模块。如图32所示,无线通信接口1733可以包括多个BB处理器1734和多个RF电路1735。虽然图32示出其中无线通信接口1733包括多个BB处理器1734和多个RF电路1735的示例,但是无线通信接口1733也可以包括单个BB处理器1734或单个RF电路1735。
此外,除了蜂窝通信方案之外,无线通信接口1733可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1733可以包括BB处理器1734和RF电路1735。
天线开关1736中的每一个在包括在无线通信接口1733中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1737的连接目的地。
天线1737包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1737例如可以被布置成图2A中所示的天线阵列矩阵,并且用于无线通信接口1733传送和接收无线信号。
此外,汽车导航设备1720可以包括针对每种无线通信方案的天线1737。在此情况下,天线开关1736可以从汽车导航设备1720的配置中省略。
电池1738经由馈线向图32所示的汽车导航设备1720的各个块提供电力,馈线在图中被部分地示为虚线。电池1738累积从车辆提供的电力。
在图32中示出的汽车导航装置1720中,参照图16A描述的处理电路101、参照图23A描述的处理电路301或参照图27A描述的处理电路501中包括的一个或多个组件可被实现在无线通信接口1733中。可替代地,这些组件中的至少一部分可被实现在处理器1721中。作为一个示例,汽车导航装置1720包含无线通信接口1733的一部分(例 如,BB处理器1734)或者整体,和/或包括处理器1721的模块,并且一个或多个组件可被实现在该模块中。在这种情况下,该模块可以存储允许处理起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在汽车导航装置1720中,并且无线通信接口1733(例如,BB处理器1734)和/或处理器1721可以执行该程序。如上所述,作为包括一个或多个组件的装置,汽车导航装置1720或者模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
另外,在图32中示出的汽车导航装置1720中,例如,图16A、图23A、图27A的通信单元105、305、505可被实现在无线通信接口1933(例如,RF电路1935)中。
本公开的技术也可以被实现为包括汽车导航设备1720、车载网络1741以及车辆模块1742中的一个或多个块的车载系统(或车辆)1740。车辆模块1742生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1741。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (38)

  1. 一种用户设备侧的电子设备,包括:
    处理电路,被配置为:
    从控制设备接收关于第一参考信号与第二参考信号之间的关联的配置;
    从所述控制设备接收对第一参考信号的指示;以及
    响应于对第一参考信号的指示,基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数来实现第三参考信号的接收。
  2. 一种控制设备侧的电子设备,包括:
    处理电路,被配置为:
    向用户设备发送关于第一参考信号与第二参考信号之间的关联的配置;
    向所述用户设备发送第一参考信号的指示,
    其中,响应于第一参考信号的指示,所述用户设备基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数来实现第三参考信号的接收。
  3. 如权利要求1或2所述的电子设备,其中,利用第二参考信号的空间接收参数来实现第三参考信号的接收包括:利用第二参考信号的空间接收参数来确定用于第三参考信号的空间接收参数,以实现第三参考信号的接收。
  4. 如权利要求1或2所述的电子设备,其中,第二参考信号的端口与第三参考信号的端口具有关于空间接收参数的准共址(QCL)关系。
  5. 如权利要求1或2所述的电子设备,其中,第一参考信号与第二参考信号的关联包括第一参考信号与第二参考信号之间的QCL关系。
  6. 如权利要求1或2所述的电子设备,其中,第一参考信号与第二参考信号的关联由第一参考信号与第四参考信号之间的QCL关系以及第四参考信号与第二参考信号之间的QCL关系实现。
  7. 如权利要求1或2所述的电子设备,其中,第一参考信号包括同步信号/物理广播信道块(SSB)信号和信道状态信息参考信号(CSI-RS)中的任一种。
  8. 如权利要求1或2所述的电子设备,其中,第二参考信号包括同步信号/物理广播信道块(SSB)信号和信道状态信息参考信号(CSI-RS)中的任一种,并且第三参考信号包括解调参考信号(DMRS)。
  9. 如权利要求1或2所述的电子设备,其中,所述空间接收参数是用于形成接收波束的波束赋形参数。
  10. 如权利要求1或2所述的电子设备,其中,接收第一参考信号的指示包括接收含有第一参考信号的标识信息的传输配置指示(TCI)状态。
  11. 一种用户设备侧的电子设备,包括
    处理电路,被配置为:
    从控制设备接收关于第一参考信号与第二参考信号之间的关联的配置;
    从所述控制设备接收对第一参考信号的指示;以及
    响应于对第一参考信号的指示,基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数或空间发射参数来实现第三参考信号的发送。
  12. 一种控制设备侧的电子设备,包括
    处理电路,被配置为:
    向用户设备发送关于第一参考信号与第二参考信号之间的关联的配置;
    向所述用户设备发送第一参考信号的指示,
    其中,响应于第一参考信号的指示,所述用户设备基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数或空间发射参数来实现第三参考信号的发送。
  13. 如权利要求11或12所述的电子设备,其中,第二参考信号是下行参考信号,并且其中,利用第二参考信号的空间接收参数或空间发射参数来实现第三参考信号的发送包括:利用第二参考信号的空间接收参数来确定用于第三参考信号的空间发射参数,以实现第三参考信号的发送。
  14. 如权利要求11或12所述的电子设备,其中,第二参考信号是上行参考信号,并且其中,利用第二参考信号的空间接收参数或空间发射参数来实现第三参考信号的发送包括:利用第二参考信号的空间发射参数来确定用于第三参考信号的空间发射参数,以实现第三参考信号的发送。
  15. 如权利要求11或12所述的电子设备,其中,第二参考信号传播通过的下行无线信道与第三参考信号传播通过的上行无线信道对称。
  16. 如权利要求11或12所述的电子设备,其中,第一参考信号与第二参考信号之间的关联包括含有第一参考信号的标识信息的传输配置指示(TCI)状态与含有第二参考信号的标识信息的空间关系信息(SpatialRelationInfo)之间的关联。
  17. 如权利要求11或12所述的电子设备,其中,第一参考信号与第二参考信号是同一个下行参考信号。
  18. 如权利要求11或12所述的电子设备,其中,第一参考信号包括同步信号/物理广播信道块(SSB)信号和信道状态信息参考信号(CSI-RS)中的任一种。
  19. 如权利要求13所述的电子设备,其中,第二参考信号包括同步信号/物理广播信道块(SSB)信号和信道状态信息参考信号(CSI-RS)中的任一种,并且第三参考信号包括解调参考信号(DMRS)解调参考信号(DMRS)和探测参考信号(SRS)中的任一种。
  20. 如权利要求14所述的电子设备,其中,第二参考信号包括探测参考信号(SRS), 并且第三参考信号包括解调参考信号(DMRS)和探测参考信号(SRS)中的任一种。
  21. 如权利要求11或12所述的电子设备,其中,所述空间接收参数是用于形成接收波束的波束赋形参数。
  22. 如权利要求11或12所述的电子设备,其中,所述空间发射参数是用于形成发射波束的波束赋形参数。
  23. 如权利要求11或12所述的电子设备,其中,接收第一参考信号的指示包括接收含有第一参考信号的标识信息的传输配置指示(TCI)状态。
  24. 一种用户设备侧的电子设备,包括
    处理电路,被配置为:
    从控制设备接收对于第一传输配置指示(TCI)状态集合的激活信息,其中第一TCI状态集合中的每个TCI状态分别与第二TCI状态集合中的相应TCI状态关联;
    从所述控制设备接收对于第一TCI状态集合中的特定TCI状态的指示信息及其关联启用信息;以及
    在所述关联启用信息指示关联启用的情况下,基于第二TCI状态集合中与所述特定TCI状态关联的TCI状态来确定空间接收参数。
  25. 根据权利要求24所述的电子设备,其中,所述处理电路进一步被配置为:
    在所述关联启用信息指示关联禁用的情况下,基于所述特定TCI状态来确定空间接收参数。
  26. 根据权利要求24所述的电子设备,其中,在第一TCI状态集合和第二TCI状态集合中的至少一个TCI状态被确定适合波束指示的情况下,没有来自所述控制设备的对于TCI状态的激活信息。
  27. 根据权利要求24或25所述的电子设备,其中,所述关联启用信息被包括在下行 控制信息(DCI)中。
  28. 一种控制设备侧的电子设备,包括
    处理电路,被配置为:
    向用户设备发送对于第一传输配置指示(TCI)状态集合的激活信息,其中第一TCI状态集合中的每个TCI状态分别与第二TCI状态集合中的相应TCI状态关联;
    向所述用户设备发送对于第一TCI状态集合中的特定TCI状态的指示信息及其关联启用信息,
    其中,在所述关联启用信息指示关联启用的情况下,第二TCI状态集合中与所述特定TCI状态关联的TCI状态被所述用户设备用来确定空间接收参数。
  29. 根据权利要求28所述的电子设备,其中在所述关联启用信息指示关联禁用的情况下,所述特定TCI状态被所述用户设备用来确定空间接收参数。
  30. 根据权利要求28所述的电子设备,其中,所述处理电路进一步被配置为:
    在确定第一TCI状态集合和第二TCI状态集合中的至少一个TCI状态适合波束指示的情况下,不向所述用户设备发送对于TCI状态的激活信息。
  31. 根据权利要求28或29所述的电子设备,其中,所述关联启用信息被包括在下行控制信息(DCI)中。
  32. 一种通信方法,包括:
    从控制设备接收关于第一参考信号与第二参考信号之间的关联的配置;
    从所述控制设备接收对第一参考信号的指示;以及
    响应于对第一参考信号的指示,基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数来实现第三参考信号的接收。
  33. 一种通信方法,包括:
    向用户设备发送关于第一参考信号与第二参考信号之间的关联的配置;
    向所述用户设备发送第一参考信号的指示,
    其中,响应于第一参考信号的指示,所述用户设备基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数来实现第三参考信号的接收。
  34. 一种通信方法,包括:
    从控制设备接收关于第一参考信号与第二参考信号之间的关联的配置;
    从所述控制设备接收对第一参考信号的指示;以及
    响应于对第一参考信号的指示,基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数或空间发射参数来实现第三参考信号的发送。
  35. 一种通信方法,包括:
    向用户设备发送关于第一参考信号与第二参考信号之间的关联的配置;
    向所述用户设备发送第一参考信号的指示,
    其中,响应于第一参考信号的指示,所述用户设备基于第一参考信号与第二参考信号之间的关联,利用第二参考信号的空间接收参数或空间发射参数来实现第三参考信号的发送。
  36. 一种通信方法,包括:
    从控制设备接收对于第一传输配置指示(TCI)状态集合的激活信息,其中第一TCI状态集合中的每个TCI状态分别与第二TCI状态集合中的相应TCI状态关联;
    从所述控制设备接收对于第一TCI状态集合中的特定TCI状态的指示信息及其关联启用信息;以及
    在所述关联启用信息指示关联启用的情况下,基于第二TCI状态集合中与所述特定TCI状态关联的TCI状态来确定空间接收参数。
  37. 一种通信方法,包括:
    向用户设备发送对于第一传输配置指示(TCI)状态集合的激活信息,其中第一TCI状态集合中的每个TCI状态分别与第二TCI状态集合中的相应TCI状态关联;
    向所述用户设备发送对于第一TCI状态集合中的特定TCI状态的指示信息及其 关联启用信息,
    其中,在所述关联启用信息指示关联启用的情况下,第二TCI状态集合中与所述特定TCI状态关联的TCI状态被所述用户设备用来确定空间接收参数。
  38. 一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如权利要求32-37中任一项所述的通信方法。
PCT/CN2019/120902 2018-11-28 2019-11-26 电子设备、通信方法和存储介质 WO2020108473A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/288,572 US11695451B2 (en) 2018-11-28 2019-11-26 Electronic device, communication method and storage medium
EP19888686.3A EP3890203A4 (en) 2018-11-28 2019-11-26 ELECTRONIC DEVICE, COMMUNICATION METHOD AND STORAGE MEDIA
CN201980076805.5A CN113169780A (zh) 2018-11-28 2019-11-26 电子设备、通信方法和存储介质
KR1020217014580A KR20210095626A (ko) 2018-11-28 2019-11-26 전자 디바이스, 통신 방법, 및 저장 매체
US18/328,811 US20230318663A1 (en) 2018-11-28 2023-06-05 Electronic device, communication method and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811432397.6 2018-11-28
CN201811432397.6A CN111245488A (zh) 2018-11-28 2018-11-28 电子设备、通信方法和存储介质

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/288,572 A-371-Of-International US11695451B2 (en) 2018-11-28 2019-11-26 Electronic device, communication method and storage medium
US18/328,811 Continuation US20230318663A1 (en) 2018-11-28 2023-06-05 Electronic device, communication method and storage medium

Publications (1)

Publication Number Publication Date
WO2020108473A1 true WO2020108473A1 (zh) 2020-06-04

Family

ID=70853866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120902 WO2020108473A1 (zh) 2018-11-28 2019-11-26 电子设备、通信方法和存储介质

Country Status (5)

Country Link
US (2) US11695451B2 (zh)
EP (1) EP3890203A4 (zh)
KR (1) KR20210095626A (zh)
CN (2) CN111245488A (zh)
WO (1) WO2020108473A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210185647A1 (en) * 2019-12-13 2021-06-17 Samsung Electronics Co., Ltd. Method and apparatus for group-based multi-beam operation

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436147B (zh) * 2019-01-11 2023-07-11 华为技术有限公司 传输信号的方法和装置
JP7376580B2 (ja) * 2019-05-01 2023-11-08 株式会社Nttドコモ 端末、基地局、システム、及び通信方法
US11317412B2 (en) * 2019-06-28 2022-04-26 Samsung Electronics Co., Ltd. Method and apparatus for downlink and uplink multi-beam operation
CN114557002B (zh) * 2019-08-30 2023-06-20 株式会社Ntt都科摩 终端以及无线通信方法
US11582761B2 (en) * 2019-12-13 2023-02-14 Qualcomm Incorporated Quasi co-location reference signals for uplink transmission configuration indicator states
US20210184738A1 (en) * 2019-12-16 2021-06-17 Qualcomm Incorporated Indication to update uplink and downlink beams
US11723050B2 (en) * 2019-12-20 2023-08-08 Qualcomm Incorporated QCL-type-D sounding reference signal
US11722952B2 (en) * 2019-12-23 2023-08-08 Qualcomm Incorporated Joint cell selection and beam/path loss reference signal update in layer 1/layer 2 based mobility
US11751228B2 (en) * 2020-02-11 2023-09-05 Intel Corporation Methods and apparatuses for uplink spatial relation info switch
US11601925B2 (en) * 2020-04-17 2023-03-07 Qualcomm Incorporated Quasi co-location relationship reporting
US20230362665A1 (en) * 2020-08-05 2023-11-09 Lenovo (Beijing)Limited Methods and apparatuses for uplink signal transmissions
WO2022047631A1 (en) * 2020-09-01 2022-03-10 Nokia Shanghai Bell Co., Ltd. Beamforming scheme in higher rank transmission
US11621818B2 (en) * 2020-11-30 2023-04-04 Qualcomm Incorporated Transmission configuration indicator state configuration
US20220224395A1 (en) * 2021-01-11 2022-07-14 Qualcomm Incorporated Beam indications of various beam indication types
WO2022151090A1 (en) * 2021-01-13 2022-07-21 Apple Inc. Tci chain design
US11856569B2 (en) * 2021-01-15 2023-12-26 Qualcomm Incorporated DCI for common TCI state update
CN116746100A (zh) * 2021-01-15 2023-09-12 苹果公司 用于统一传输配置指示的准协同定位
US11909496B2 (en) * 2021-11-23 2024-02-20 Qualcomm Incorporated Beam switching in near-field operations
CN117322102A (zh) * 2022-04-29 2023-12-29 北京小米移动软件有限公司 物理上行控制信道pucch传输方法及装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150236774A1 (en) * 2014-02-20 2015-08-20 Samsung Electronics Co., Ltd. Method and apparatus for processing feedback information in wireless communication system supporting beamforming
US20170047976A1 (en) * 2015-08-13 2017-02-16 Samsung Electronics Co., Ltd Reference signal measurement method and apparatus for use in mobile communication system
CN107888266A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 一种准共址指示信息指示方法及设备
CN108882274A (zh) * 2017-05-15 2018-11-23 华为技术有限公司 一种通信方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106470096B (zh) * 2015-08-14 2021-03-23 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法
CN108337065A (zh) * 2017-01-18 2018-07-27 索尼公司 电子设备和通信方法
US11272429B2 (en) * 2017-02-13 2022-03-08 Qualcomm Incorporated Initiation of mobility reference signal based on quality of initial access signals
JP7198216B2 (ja) * 2017-03-24 2022-12-28 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 無線デバイスのためのトランスミッタおよびレシーバ設定を決定するためのシステムおよび方法
US20180287860A1 (en) * 2017-03-31 2018-10-04 Futurewei Technologies, Inc. System and Method for Communications Beam Recovery
US10243772B2 (en) * 2017-04-04 2019-03-26 Qualcomm Incorporated Reference signal resource location techniques in wireless communications
US10554262B2 (en) * 2017-05-12 2020-02-04 Qualcomm Incorporated Cross-sub-band quasi co-location signaling
CN113922938B (zh) * 2017-11-17 2024-02-02 中兴通讯股份有限公司 一种参考信号信道特征配置方法和装置、及通信设备
CN110366250B (zh) * 2018-03-26 2023-05-12 华硕电脑股份有限公司 考虑跨载波调度缓存下行链路数据的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150236774A1 (en) * 2014-02-20 2015-08-20 Samsung Electronics Co., Ltd. Method and apparatus for processing feedback information in wireless communication system supporting beamforming
US20170047976A1 (en) * 2015-08-13 2017-02-16 Samsung Electronics Co., Ltd Reference signal measurement method and apparatus for use in mobile communication system
CN107888266A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 一种准共址指示信息指示方法及设备
CN108882274A (zh) * 2017-05-15 2018-11-23 华为技术有限公司 一种通信方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210185647A1 (en) * 2019-12-13 2021-06-17 Samsung Electronics Co., Ltd. Method and apparatus for group-based multi-beam operation
US11678339B2 (en) * 2019-12-13 2023-06-13 Samsung Electronics Co., Ltd. Method and apparatus for group-based multi-beam operation

Also Published As

Publication number Publication date
CN113169780A (zh) 2021-07-23
US11695451B2 (en) 2023-07-04
CN111245488A (zh) 2020-06-05
EP3890203A4 (en) 2022-06-22
US20230318663A1 (en) 2023-10-05
US20210391899A1 (en) 2021-12-16
EP3890203A1 (en) 2021-10-06
KR20210095626A (ko) 2021-08-02

Similar Documents

Publication Publication Date Title
US11695451B2 (en) Electronic device, communication method and storage medium
US11722183B2 (en) Electronic device, communication method and storage medium
US11843557B2 (en) Electronic device and communication method for inter-cell interference coordination
WO2019029515A1 (zh) 用于无线通信的电子设备、方法和介质
KR102555127B1 (ko) 무선 통신 시스템 내의 전자 디바이스, 및 무선 통신 방법
WO2018031924A1 (en) Csi feedback design for new radio
US11101850B2 (en) Electronic device and communication method
WO2021139669A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2020156503A1 (zh) 电子设备、通信方法和存储介质
WO2021204074A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20220182847A1 (en) Base station device, communication method and storage medium
WO2021027802A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
JP7472901B2 (ja) 通信装置、基地局装置、通信方法、及び基地局装置の制御方法
WO2022037467A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2022083541A1 (zh) 电子设备、通信方法和存储介质
US12035184B2 (en) Electronic device, communication method and storage medium
WO2023056922A1 (zh) 电子设备、通信方法和计算机程序产品
WO2024068406A1 (en) System and methods for tci indication for multiple trp transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019888686

Country of ref document: EP

Effective date: 20210628