WO2020156503A1 - 电子设备、通信方法和存储介质 - Google Patents

电子设备、通信方法和存储介质 Download PDF

Info

Publication number
WO2020156503A1
WO2020156503A1 PCT/CN2020/074089 CN2020074089W WO2020156503A1 WO 2020156503 A1 WO2020156503 A1 WO 2020156503A1 CN 2020074089 W CN2020074089 W CN 2020074089W WO 2020156503 A1 WO2020156503 A1 WO 2020156503A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
user equipment
link
access link
downlink
Prior art date
Application number
PCT/CN2020/074089
Other languages
English (en)
French (fr)
Inventor
刘文东
王昭诚
曹建飞
Original Assignee
索尼公司
刘文东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 刘文东 filed Critical 索尼公司
Priority to US17/414,323 priority Critical patent/US12035184B2/en
Priority to EP20748043.5A priority patent/EP3920588A1/en
Priority to CN202080010858.XA priority patent/CN113330778B/zh
Publication of WO2020156503A1 publication Critical patent/WO2020156503A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15557Selecting relay station operation mode, e.g. between amplify and forward mode, decode and forward mode or FDD - and TDD mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • H04W36/008355Determination of target cell based on user equipment [UE] properties, e.g. UE service capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/20Performing reselection for specific purposes for optimising the interference level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present disclosure relates to electronic devices, communication methods, and storage media. More specifically, the present disclosure relates to multi-user MIMO enhanced electronic devices, communication methods, and storage media suitable for integrated access and backhaul (IAB) systems.
  • IAB integrated access and backhaul
  • 5G NR New Radio
  • 5G NR uses higher frequency bands, such as millimeter wave frequency bands, and applies large-scale antennas and multi-beam systems to provide higher system rates and spectrum efficiency.
  • Massive MIMO Massive MIMO
  • beamforming technology is used to form narrower directional beams to combat the larger path loss in the high-frequency channel.
  • IAB is an important form of 5G NR network deployment, especially in scenarios where users are densely distributed. Due to the key role of IAB in 5G network deployment and coverage, IAB has become a hot topic in the industry.
  • FIG. 1 illustrates a schematic diagram of the IAB system.
  • the IAB master node IAB donor
  • IAB node IAB nodes
  • a wireless backhaul link can be established between the nodes of the IAB system, and a wireless access link can be established between the node and the accessed user equipment.
  • the nodes in the IAB system support multi-user MIMO (MU-MIMO) transmission of its access users (including the UE and the accessed child nodes).
  • MU-MIMO multi-user MIMO
  • the master node uses the same time-frequency resource to provide multi-user MIMO services for its sub-node 1, sub-node 2 and user 5 in its cell; for the second layer
  • Sub-node 1 and sub-node 2 use the same time-frequency resources to provide multi-user MIMO services for access users in their small cells.
  • sub-node 1 serves UE1 and UE2
  • sub-node 2 serves UE3 and UE4.
  • neighboring base stations can perform coordinated scheduling of time-frequency resources through, for example, the X2 interface, avoiding scheduling UE2 and UE3 in the same time-frequency resource block; in a millimeter wave cell system, adjacent millimeter wave cells
  • the base station can perform joint scheduling in the time-frequency domain beam domain through, for example, the Xn interface, which can also effectively avoid inter-cell interference.
  • scheduling based on coordinated resources between adjacent cells requires additional signaling to be transmitted between adjacent base stations, which brings additional overhead, and does not take advantage of the multi-layer structure characteristics of the IAB system.
  • the present disclosure provides multiple aspects to meet the above-mentioned needs.
  • an electronic device on the user equipment side, with an access link between the user equipment and a first node of an integrated access and backhaul (IAB) system, and There is a backhaul link with the second node of the IAB system.
  • IAB integrated access and backhaul
  • the second node is the parent node of the first node.
  • the electronic device includes a processing circuit, and the processing circuit is Configured to: measure signal interference from a third node; report interference measurement results to the first node; and determine, at the second node, to switch the access link used by the user equipment based at least in part on the interference measurement result exceeding a predetermined threshold In the case of establishing a direct access link between the user equipment and the second node, and disconnecting the access link between the user equipment and the first node.
  • an electronic device for a node in an integrated access and backhaul (IAB) system.
  • the node is denoted as a first node, and there is an interface between the first node and user equipment.
  • Inbound link there is a backhaul link between the first node and the second node of the IAB system, where the second node is the parent node of the first node in the network topology of the IAB system, and the electronic
  • the device includes a processing circuit configured to: receive an interference measurement result for signal interference from a third node from the user equipment; determine to switch the second node based at least in part on the interference measurement result exceeding a predetermined threshold In the case of the access link used by the user equipment, receiving an instruction from the second node about disconnecting the access link between the first node and the user equipment; and disconnecting the first node and the user equipment Access link between.
  • an electronic device for a node in an integrated access and backhaul (IAB) system is denoted as a second node, and the first node is connected to the first node of the IAB system.
  • the electronic device includes a processing circuit configured to: determine to switch the access link used by the user equipment based at least in part on the interference measurement result of the user equipment for signal interference from the third node exceeding a predetermined threshold; and respond Based on the determination, a direct access link between the second node and the user equipment is established, and the first node is instructed to disconnect the access link between the first node and the user equipment.
  • an electronic device for a node in an integrated access and backhaul (IAB) system is denoted as a second node.
  • the second node is connected to the first node of the IAB system.
  • the electronic device includes a processing circuit, the processing circuit is configured to: obtain via the backhaul link, the first node, and the access link through a reference signal transmitted between the second node and the user equipment The connection channel state information of the downlink baseband connection channel, where the first node is working in an amplifying and forwarding (AF) mode; and based on the acquired connection channel state information, calculating a digital precoding matrix for downlink transmission of the user equipment .
  • AF amplifying and forwarding
  • an electronic device on the user equipment side, and an access link is provided between the user equipment and a first node in an integrated access and backhaul (IAB) system.
  • IAB integrated access and backhaul
  • the second node is the parent node of the first node, and the electronic device includes a processing circuit.
  • Is configured to receive a data stream transmitted via the backhaul link, the first node, and the access link, wherein the first node operates in an amplified and forwarded (AF) mode, wherein the data stream is transmitted by the first node
  • the two nodes perform precoding using a digital precoding matrix, where the digital precoding matrix is based on the connection channel state information of the downlink baseband connection channel via the backhaul link, the first node, and the access link And calculated, and wherein the connection channel state information is obtained through a reference signal transmitted between the second node and the user equipment.
  • an electronic device for a node in an integrated access and backhaul (IAB) system.
  • the node is denoted as a first node, and there is an interface between the first node and user equipment.
  • Inbound link there is a backhaul link between the first node and the second node of the IAB system, where the second node is the parent node of the first node in the network topology of the IAB system
  • the device includes a processing circuit configured to forward a data stream from a second node to the user equipment in an amplifying and forwarding (AF) mode, wherein the data stream is precoded by the second node using a digital precoding matrix,
  • the digital precoding matrix is calculated based on the connection channel state information of the downlink baseband connection channel via the backhaul link, the first node, and the access link, and wherein the connection channel state The information is obtained through a reference signal transmitted between the second node and the user equipment.
  • AF amplifying and forwarding
  • a communication method including operations performed by any of the processing circuits described above.
  • a non-transitory computer-readable storage medium storing executable instructions, which, when executed, implement operations performed by any of the aforementioned processing circuits.
  • Figure 1 shows a schematic diagram of the IAB system
  • Figure 2 shows the network topology of the IAB system
  • Figures 3A and 3B are the NR radio protocol architectures of the user plane and control plane respectively;
  • FIG. 4 shows a simplified schematic diagram of the IAB system
  • FIG. 5 shows an exemplary flow chart of inter-layer link switching according to the first embodiment of the present disclosure
  • Figure 6 shows the UE's access link before and after handover
  • Figure 7 shows a schematic diagram of beam scanning
  • Figure 8 shows the link changes of the IAB system of Figure 4 before and after handover
  • Figures 9 and 10 show examples of signaling procedures for inter-layer link handover according to the first embodiment of the present disclosure
  • 11A and 11B show an electronic device and a communication method for user equipment according to the first embodiment of the present disclosure
  • 12A and 12B show an electronic device and a communication method for a child node according to the first embodiment of the present disclosure
  • 13A and 13B show an electronic device and a communication method for the master node according to the first embodiment of the present disclosure
  • FIG. 14 shows a transmission model of inter-layer connection transmission according to the second embodiment of the present disclosure
  • 15 and 16 show examples of the signaling flow of inter-layer connection transmission according to the second embodiment of the present disclosure
  • 17A and 17B show an electronic device and a communication method for a master node according to a second embodiment of the present disclosure
  • 18A and 18B show an electronic device and a communication method for user equipment according to a second embodiment of the present disclosure
  • 19A and 19B show an electronic device and a communication method for a child node according to the second embodiment of the present disclosure
  • FIG. 20 shows a first example of a schematic configuration of a base station according to the present disclosure
  • FIG. 21 shows a second example of the schematic configuration of a base station according to the present disclosure
  • FIG. 22 shows a schematic configuration example of a smart phone according to the present disclosure
  • FIG. 23 shows a schematic configuration example of a car navigation device according to the present disclosure.
  • the IAB system consists of a series of IAB base stations (also referred to as "nodes” in this article) forming an access network according to a certain network topology.
  • the so-called IAB base stations refer to base stations that integrate wireless access functions and wireless backhaul functions.
  • the IAB base station can be a 5G NR base station.
  • NR base stations include gNB and ng-eNB, where gNB is a newly defined node in R15 that provides terminal equipment (also referred to as "user equipment”, sometimes referred to as "UE") terminated NR user plane and control plane protocol; ng-eNB is a node defined for compatibility with 4G LTE communication systems, which can be an upgraded Node B (eNB) of the LTE radio access network, Provides an Evolved Universal Terrestrial Radio Access (E-UTRA) user plane and control plane protocol for UE termination.
  • eNB Node B
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • the IAB base station is not limited to the above two base stations, but covers various control devices on the network side.
  • the IAB base station may also be, for example, an eNB, a remote radio head, and a wireless access in an LTE communication system. Point, drone control tower, control node in automated factory or communication device that performs similar functions. The following chapters will describe in detail the application examples of the base station.
  • the term "UE” has the full breadth of its usual meaning, including various terminal devices or vehicle-mounted devices that communicate with a base station.
  • the UE may be a terminal device such as a mobile phone, a laptop computer, a tablet computer, an in-vehicle communication device, a drone, a sensor and an actuator in an automated factory, or an element thereof.
  • a terminal device such as a mobile phone, a laptop computer, a tablet computer, an in-vehicle communication device, a drone, a sensor and an actuator in an automated factory, or an element thereof.
  • the nodes of the IAB system can be divided into two categories: one is the IAB master node (IAB donor, referred to as the "master node” in this article) that provides an interface to the core network, and there are such things as optical fiber between the master node and the core network.
  • the other is an IAB node (IAB node, sometimes referred to as a "child node” in this article) that does not provide an interface to the core network, and there is no wired connection between the IAB node and the core network.
  • Figure 1 illustrates a schematic diagram of a single-hop IAB system.
  • IAB master node there is a wireless backhaul link between the IAB master node and the IAB node (child node 1, child node 2), and there is an access link between the IAB node and its UE, so that the UE can pass through the IAB
  • the node is connected to the IAB master node to access the core network (not shown in the figure).
  • this is referred to as a "direct access link" in this article.
  • the IAB node plays the dual role of a user and a base station in the IAB system.
  • child node 1 and child node 2 can be regarded as special access users of the master node, and the master node is child node 1, child node 2 and UE5 in its cell.
  • Provide services; in the second layer, sub-node 1 and sub-node 2 are the base stations of UE1, UE2, UE3, and UE4 respectively, and they respectively provide services for the accessed user equipment in their small cells.
  • the IAB node between the IAB master node and the UE can have two working modes for the data transmitted through it: one is Amplifying and Forwarding (AF) mode, and the other is Deconding and Forwarding (DF) mode. )mode.
  • AF Amplifying and Forwarding
  • DF Deconding and Forwarding
  • AF mode the IAB node only amplifies and forwards the received analog signal, which is often used to handle some coverage holes.
  • the IAB node working in AF mode is transparent to the UE and the IAB master node. It amplifies all received signals, including useful signals, noise and interference, which means that the signal-to-noise ratio at the output of the IAB node will not be higher than The signal-to-noise ratio at the input is therefore suitable for environments with high signal-to-noise ratios.
  • the IAB node decodes and re-encodes the received signal before forwarding the received signal to its access user.
  • the significance of this decoding-re-encoding process is that it will not amplify noise and interference, so it is especially suitable for environments with low SNR.
  • the decoding-re-encoding process in the DF mode often means a larger delay.
  • Fig. 2 generally illustrates a schematic diagram of the network topology of a multi-hop IAB system. If an IAB node controls and schedules another IAB node, the IAB node is the parent node (Parent Node) of the other IAB node. There is a parent backhaul link (BH) between the IAB node and its parent node, including a downlink parent backhaul link and an uplink parent backhaul link. If an IAB node is under the control of another IAB node, the IAB node is a child node of the other IAB node.
  • BH parent backhaul link
  • sub-backhaul links between the IAB node and its child nodes including downlink sub-backhaul links and uplink sub-backhaul links.
  • the same IAB node may be both a parent node and a child node (Child Node), but the IAB master node can only be a parent node.
  • the master node and each sub-node can provide wireless access links for its access to the UE, including downlink access links and uplink access links.
  • the nodes of the IAB system perform data backhaul through wireless backhaul links without the need for a wired transmission network. Therefore, base stations are easier to deploy in dense scenarios, reducing the cost of deploying wired transmission networks.
  • the radio protocol stack may include layer 1, layer 2, and layer 3.
  • Layer 1 is the lowest layer and implements various physical layer signal processing to provide transparent signal transmission functions.
  • the L1 layer will be referred to as the physical layer (PHY) herein.
  • the various signal processing functions of the physical layer at the base station side including coding and interleaving to facilitate the forward error correction (FEC) of the UE, and based on various modulation schemes (for example, binary phase shift keying (BPSK), quadrature phase Shift keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM), etc.) are mapped to signal constellations.
  • modulation schemes for example, binary phase shift keying (BPSK), quadrature phase Shift keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM), etc.
  • BPSK binary phase shift keying
  • QPSK quadrature phase Shift keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • Channel estimation can be used to determine coding and modulation schemes and for spatial processing.
  • the channel estimation may be derived from the reference signal and/or channel condition feedback transmitted by the UE.
  • Each spatial stream is then provided to a different antenna via a separate transmitter.
  • Each transmitter modulates the RF carrier with its own spatial stream for transmission.
  • each receiver receives the signal through its respective antenna.
  • Each receiver recovers the information modulated onto the radio frequency (RF) carrier and provides the information to various signal processing functions of the physical layer. Perform spatial processing on this information at the physical layer to recover any spatial stream destined for the UE. If there are multiple spatial streams destined for the UE, they can be combined into a single symbol stream. This symbol stream is then converted from the time domain to the frequency domain. Recover and demodulate each symbol and reference signal by determining the signal constellation point most likely to be transmitted by the base station. These soft decisions can be based on channel estimation. These soft decisions are then decoded and de-interleaved to recover the data and control signals originally transmitted by the base station on the physical channel. These data and control signals are then provided to higher-level processing.
  • RF radio frequency
  • Layer 2 is above the physical layer.
  • the L2 layer includes a medium access control (MAC) sublayer, a radio link control (RLC) sublayer, a packet data convergence protocol (PDCP) sublayer, and a service data adaptation protocol (SDAP) sublayer.
  • the L2 layer includes a MAC sublayer, an RLC sublayer, and a PDCP sublayer. The relationship between these sublayers is that the physical layer provides transmission channels for the MAC sublayer, the MAC sublayer provides logical channels for the RLC sublayer, the RLC sublayer provides RLC channels for the PDCP sublayer, and the PDCP sublayer provides radio bearers for the SDAP sublayer.
  • the radio resource control (RRC) sublayer in layer 3 (L3 layer) is also included in the UE and the base station.
  • the RRC sublayer is responsible for obtaining radio resources (ie, radio bearers) and for configuring the lower layers using RRC signaling between the base station and the UE.
  • the non-access stratum (NAS) control protocol in the UE performs functions such as authentication, mobility management, and security control.
  • Both the base station and the UE may have many antennas to support massive MIMO technology.
  • the following three-level mapping relationship is generally defined around the antenna, so that it can successfully undertake the channel model and communication standards.
  • the first level is the most basic physical unit-antenna, which can also be called an antenna array element.
  • Each antenna element radiates electromagnetic waves according to its own amplitude parameter and phase parameter.
  • the antenna elements are arranged into one or more antenna arrays in the form of a matrix.
  • An antenna array can be composed of an entire row, an entire column, multiple rows, and multiple columns of antenna array elements.
  • each antenna array actually constitutes a Transceiver Unit (TXRU).
  • TXRU Transceiver Unit
  • Each TXRU is independently configurable. By configuring the amplitude parameters and/or phase parameters of the antenna elements that make up the TXRU, the TXRU antenna pattern can be adjusted.
  • the electromagnetic wave radiation emitted by all the antenna elements in the antenna array forms a narrow beam pointing to a specific spatial direction. That is, beamforming is realized.
  • one or more TXRUs form the antenna port (Antenna Port) seen on the system level through logical mapping.
  • "Antenna port” is defined as a channel that carries a symbol on a certain antenna port can be inferred from a channel that carries another symbol on the same antenna port.
  • DMRS demodulation reference signal
  • PDSCH physical downlink shared channel
  • PRG physical resource block group In
  • the channel carrying PDSCH symbols on one antenna port can be inferred from the channel carrying DMRS symbols on the same antenna port. This means that different signals transmitted by the same antenna port experience the same channel environment.
  • the DMRS reference signal is a UE-specific reference signal, that is, the DMRS signal of each UE is different, and is used to evaluate the radio channel to facilitate signal demodulation.
  • a UE-specific reference signal that is, the DMRS signal of each UE is different, and is used to evaluate the radio channel to facilitate signal demodulation.
  • multiple orthogonal DMRS ports need to be scheduled, where each DMRS port corresponds to each layer of MIMO.
  • “Orthogonal" can be achieved through frequency division multiplexing (FDM), time division multiplexing (TDM) and code division multiplexing (CDM) with a comb structure.
  • the baseband signal representing the user data stream is mapped onto m (m ⁇ 1) radio frequency links through digital precoding.
  • Each radio frequency link up-converts the baseband signal to obtain a radio frequency signal, and transmits the radio frequency signal to the antenna array of the corresponding antenna port.
  • the antenna array beamforms the radio frequency signal by adjusting the amplitude and phase to form a narrower beam aligned with the transmission direction. This processing can also be referred to as "analog precoding".
  • the antenna array receiving beam has the opposite process.
  • more flexible digital beamforming can be realized, for example, single-user or multi-user precoding to realize multi-stream or multi-user transmission.
  • the use of MIMO technology enables base stations and UEs to use the space domain to support spatial multiplexing, beamforming, and transmit diversity.
  • the nodes in the IAB system support downlink and uplink multi-user MIMO transmission of its access users, for example, spatial multiplexing of downlink transmission to UE and sub-nodes, and spatial multiplexing of uplink transmission from UE and sub-nodes.
  • Nodes that provide multi-user MIMO services simultaneously transmit different data streams on the same time-frequency resources, and these data streams are sent to multiple UEs to increase the total system capacity.
  • FIG 4 is a simplified schematic diagram of the single-hop two-layer IAB system shown in Figure 1, in which only the downlink is shown. As shown in Figure 4, for the first layer, both sub-node 1 and sub-node 2 can be regarded as special access users.
  • the master node uses the same time-frequency resource for its sub-node 1, sub-node 2 and users in its cell.
  • both sub-node 1 and sub-node 2 can be regarded as base stations, using the same time-frequency resource to provide multi-user MIMO services to access users in their small cells, for example, sub-node 1 Serving UE1 and UE2, and child node 2 serving UE3 and UE4.
  • the node and its child nodes adopt a frequency division multiplexing working mode.
  • the backhaul link in layer 1 and the access link in layer 2 work in different frequency bands.
  • both downlink and uplink time division duplex (TDD) duplex modes are used to use channel reciprocity to reduce downlink channel estimation overhead.
  • Child node 1 and child node 2 may use the same or similar time-frequency resources.
  • the child node 1 provides multi-user MIMO transmission for UE1 and UE2
  • the child node 2 provides multi-user MIMO transmission for UE3 and UE4
  • interference may occur between the two adjacent small cells.
  • UE2 and UE3 are located close, UE2 may suffer from signal interference due to downlink transmission from child node 2 to UE3.
  • UE3 may also suffer from signal interference due to downlink transmission from child node 1 to UE2.
  • the present disclosure provides an improved solution for multi-user MIMO transmission aimed at reducing or eliminating such inter-small cell interference.
  • the access link used by the interfered UE is switched to another layer of the IAB system to avoid signal interference from adjacent small cells in the same layer.
  • the single-hop two-layer IAB system shown in FIG. 4 will be used as a description scenario, in which UE2 is interfered by the same frequency signal from the child node 2.
  • the scenario targeted by this embodiment is not limited to this.
  • the IAB system may not be limited to two layers, but may have more than two layers, and the nodes that generate co-frequency interference may not be limited to being under the same master node. Child node.
  • FIG. 5 is a simplified flowchart showing an inter-layer handover process according to the first embodiment of the present disclosure.
  • the interfered user equipment UE2 performs interference measurement to understand the degree of interference.
  • UE2 can accurately measure interference by measuring the reference signal.
  • the reference signal may be a channel state information reference signal (CSI-RS) used for channel evaluation.
  • CSI-RS channel state information reference signal
  • the interfering child node 2 transmits a non-zero power CSI-RS (NZP-CSI-RS), and the NZP-CSI-RS resource may be coordinated and allocated to the child node 2 by the master node.
  • NZP-CSI-RS non-zero power CSI-RS
  • the child node 2 may use the transmission beam originally used for downlink transmission to the UE3 to transmit the reference signal.
  • UE2 uses the antenna array to receive the NZP-CSI-RS from the child node 2 and performs signal measurement. For example, UE2 may measure reference signal received power (RSRP) as the interference measurement result.
  • RSRP reference signal received power
  • the master node may also allocate a zero-power CSI-RS (ZP-CSI-RS) to the child node 1.
  • ZP-CSI-RS zero-power CSI-RS
  • the child node 1 transmitting ZP-CSI-RS is equivalent to not transmitting a signal. Therefore, the signal received by the UE2 is the interference from the child node 2.
  • the UE2 reports the obtained interference measurement result to the corresponding child node 1.
  • the UE2 may quantize the interference measurement result (for example, RSRP) into a predetermined number of bits (for example, 7 bits), and send the quantized interference measurement result to the child node 1 together with a CSI-RS resource indicator (CRI).
  • RSRP interference measurement result
  • CRI CSI-RS resource indicator
  • the interference measurement results can be used to evaluate the severity of the interference.
  • the interference measurement result from UE2 can be compared with a predetermined threshold.
  • the predetermined threshold may be a predefined RSRP.
  • the comparison processing between the interference measurement result and the predetermined threshold may occur at the child node 1.
  • the child node 1 compares the received interference measurement result with a predetermined threshold. If after comparison, the interference measurement result exceeds the predetermined threshold, it indicates that the signal interference on the access link currently used by UE2 is severe. Child node 1 notifies the master node of the comparison result. For example, the child node 1 may send a link switching attempt request to the master node to try to switch the access link used by the UE2 through the backhaul link, or the child node 1 may send the interference measurement result to the master node through the backhaul link. Information about the relationship between the size and the predetermined threshold. Conversely, if the interference measurement result does not exceed the predetermined threshold, it indicates that the signal interference on the access link currently used by the UE does not affect the communication performance to the extent that there is no need to switch the link.
  • the comparison process between the interference measurement result and a predetermined threshold value may occur at the master node.
  • the child node 1 forwards the received interference measurement result to the master node through the backhaul link.
  • the master node compares the interference measurement result with a predetermined threshold. If after comparison, the interference measurement result exceeds the predetermined threshold, it indicates that the signal interference on the access link currently used by UE2 is severe. Conversely, if the interference measurement result does not exceed the predetermined threshold, it indicates that the signal interference on the access link currently used by the UE is not severe enough, and there is no need to switch the link.
  • the master node determines whether to switch the access link used by UE2. This determination process is based at least in part on the degree to which UE2 is interfered.
  • the master node makes a determination that the access link used by UE2 will be switched.
  • This kind of determination processing mainly focuses on the interference problem of UE2.
  • the master node may also consider other factors when determining whether to switch the access link used by UE2.
  • the master node also considers the impact of link switching on link quality.
  • Fig. 6 illustrates the situation before and after the handover of the access link for a general UEk, where Fig. 6(a) is about the downlink access link, and Fig. 6(b) is about the uplink access link.
  • the downlink quality of the direct access link between the master node and UEk It can be expressed as:
  • RSRP RSRP
  • P D,k the transmit power of the master node
  • LD ,k the path attenuation of the direct access link.
  • the downlink quality of the access link between child node 1 and UEk It can be expressed as:
  • RSRP RSRP
  • PA ,k the transmit power of the child node
  • L A,k represents the path attenuation of the access link.
  • the transmit power of the master node is greater than the transmit power of the child nodes, so P D,k >PA ,k ; the attenuation of the link directly connected to the master node is greater than that of the child node, so ,LD ,k >LA ,k ; Assuming that each antenna port of the master node and the child node is configured with the same number of antennas, the transmit beamforming gain can be assumed Therefore, if P D,k- L D,k > P A,k- L A,k , for UEk, It is possible, that is, the access master node may obtain a higher downlink received power than the access child node, thereby obtaining better downlink data service performance. Conversely, if the quality of the access link after the handover deteriorates, the link handover may outweigh the gain. To this end, the master node can collect information about changes in link quality from the UE.
  • the uplink quality of the direct access link between the master node and UEk It can be expressed as:
  • RSRP RSRP
  • P k the transmit power of UEk
  • LD ,k the path attenuation of the direct access link.
  • the downlink quality of the access link between child node 1 and UEk It can be expressed as:
  • RSRP RSRP
  • P k represents the transmit power of UEk
  • L A,k represents the path attenuation of the access link.
  • the receive beamforming gain is the same, that is However, due to the direct access link attenuation L D, k is greater, so generally That is, generally, the UE can obtain better transmission performance by accessing the child node for uplink data transmission.
  • the handover between the link through which the UE accesses the master node and the link through which the UE accesses the child node may cause different link quality changes.
  • a dual-connection architecture in which the uplink transmission and downlink transmission of the UE are separated may be useful, that is, the uplink access node and the downlink access node of the UE may be different.
  • the master node or child node 1 can instruct UE2 to initially access the master node through cell search in an attempt to establish a direct access link between the master node and UE2.
  • the master node and UE2 can determine the best transmitting beam and the best receiving beam used on the direct access link through beam training.
  • the base station 1000 may use n t_DL (n t_DL ⁇ 1) downlink transmit beams with different directions, and the UE 1004 may use n r_DL (n r_DL ⁇ 1) downlink receive beams with different directions.
  • the base station 1000 and the UE 1004 traverse all transmit beam-receive beam combinations by beam scanning, so as to select the best transmit beam-receive beam pair.
  • the base station 1000 sends n r_DL downlink reference signals to the UE 1004 through each transmit beam according to the downlink scan period, so that the base station 1000 sequentially sends n t_DL ⁇ n r_DL downlink reference signals to the UE 1004 .
  • the reference signal resources that the base station 1000 can use include, for example, NZP-CSI-RS resources, synchronization signals, and physical broadcast channel block (SSB) resources.
  • the UE 1004 receives each transmit beam through its n r_DL receive beams 1006 and measures the beam signal. Then, the n r_DL receive beams of the UE 1004 receive and measure n t_DL ⁇ n r_DL downlink reference signals from the base station 1000 in total. For example, the UE 1004 can measure reference signal received power (RSRP), reference signal received quality (RSRQ), signal to interference plus noise ratio (SINR), and so on. Then, the UE 1004 reports the beam information to the base station 1000 in the form of a beam report. Based on the reported beam information, the base station 1000 may select the best transmission beam from the transmission beams reported by the UE 1004 to use for downlink transmission with the UE 1004.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • SINR signal to interference plus noise ratio
  • the base station 1000 instructs the selected optimal transmission beam to the UE 1004 through a transmission configuration indication (TCI) state.
  • TCI transmission configuration indication
  • the base station 1000 may indicate the reference signal corresponding to the best transmission beam to the UE 1004, so that the UE 1004 can determine the reception beam corresponding to the reference signal during the beam scanning process as the best reception beam.
  • Uplink and downlink scan scanning process similar to the process from the base station 1000 selects the best reception beam from n r_UL number (n r_UL ⁇ 1) receiving uplink beams, UE1004 selected from n t_UL number (n t_UL ⁇ 1) uplink transmission beams The best transmit beam, this will not be repeated here.
  • the master node and UE2 can select the beam most suitable for the wireless channel.
  • UE2 in addition to measuring beam information, UE2 also measures the best downlink quality during beam training. This best downlink quality can represent to a certain extent the downlink quality of the direct access link established between the master node and UE2 in the future.
  • UE2 can also measure the downlink quality of the existing access link between it and child node 1.
  • UE2 can calculate the gain of downlink quality caused by link switching:
  • gain It is not necessarily a positive value, and may be a negative value in some cases, which means that link switching will cause the link quality of the downlink access link to deteriorate.
  • UE2 will gain in terms of downlink quality
  • the information is reported to the master node for reference when the master node determines whether to switch the access link used by UE2.
  • the master node compares the gain of downlink quality Whether it is greater than a certain threshold (can be negative, zero or positive), if it is, it means that the link switching will not cause intolerable link quality degradation, and the master node will switch the access used by UE2 Confirmation of the link. If not, it indicates that the impact of link switching on link quality cannot be ignored, and the master node will not make a determination to switch the access link used by UE2.
  • a certain threshold can be negative, zero or positive
  • the master node can perform beam training for UE3, and UE3 can measure the best downlink quality of the direct access link between UE3 and the master node during beam training. Measure the downlink quality of the existing access link between it and child node 1 And calculate the gain of downlink quality caused by link switching:
  • UE3 will gain with respect to UE3’s downlink quality
  • the information is reported to the master node, so the master node can determine which UE is better for link switching through the following criteria:
  • the master node determines to switch the access link used by UE2, the master node establishes a direct access link between the master node and UE2, and instructs the child node 1 to disconnect the child node 1 and UE2 As a result, the access link used by UE2 is switched from layer 2 to layer 1.
  • the above-mentioned link switching may refer to the switching of both the downlink and the uplink in the access link, that is, the establishment of the downlink access link and the uplink access link between the master node and UE2 Way, disconnect the downlink access link and uplink access link between the child node 1 and UE2.
  • the above-mentioned link switching may only refer to the switching of the downlink access link.
  • the IAB system according to the present disclosure can support a dual-connection architecture with separate uplink and downlink transmission.
  • UE2 receives downlink data from the master node and sends uplink data to child node 1. Since frequency division multiplexing is used between the master node and the child node, the downlink access link between UE2 and the master node and the uplink access link between UE2 and child node 1 work in different frequency bands, that is, different Bandwidth part (BWP).
  • BWP Bandwidth part
  • the link switching described above may only refer to the switching of the downlink data link.
  • the downlink data link between the master node and UE2 is established, and the downlink data link between the child node 1 and UE2 is disconnected, but the child node is maintained.
  • the advantage of this is that the child node 1 can maintain the necessary downlink control signaling of the handover UE2 to facilitate rapid access link recovery.
  • the access link (at least the downlink access link) of UE2 is changed from child node 1 to access the master node, that is, from layer 2 to layer 1.
  • the master node that is, from layer 2 to layer 1.
  • the downlink transmission between UE2 and the master node and the downlink transmission between UE3 and the child node 2 will not interfere with each other, which improves the communication performance of the system.
  • the access link of the UE to be handed over can be switched from the Nth layer to the N-1th layer, that is, the UE accesses the parent of its access node instead. node.
  • the UE to be handed over can also be handed over to the N-2th layer, the N-3th layer, etc., as long as the access link after the handover can meet the communication requirements of the UE.
  • a problem that needs to be noted is that the master node needs to allocate a new DMRS port for the access link of UE2.
  • the NR base station can support a limited number of downlink DMRS ports for MIMO transmission.
  • NR-based downlink working mode 1 (TM1) supports up to 12 downlink DMRS ports for multi-user MIMO; for single-user MIMO, up to 8 downlink DMRS ports are supported.
  • the child node 1 works in DF mode, and the data of UE1 and UE2 sent by the master node to the child node 1 through the backhaul link is demodulated at the child node 1, and then Re-encode and forward to UE1 and UE2 respectively.
  • the method for the master node to send the data stream to the child node 1 can include: 1) Mix into one data stream according to a certain rule for transmission; 2) Divide into two independent data streams for transmission .
  • Mode 1 Only the master node needs to configure a DMRS port for the backhaul link to child node 1, but the data rate for each UE is lower and the delay is greater; Mode 2) The master node is required to backhaul link to child node 1 Two DMRS ports are configured for each channel, but the data rate for each UE is higher and the delay is lower. Therefore, when the child node is working in the DF mode, the master node is allowed to flexibly configure the transmission mode of the backhaul link and the DMRS port according to the DMRS port configuration and data rate requirements of the access link of each child node.
  • record that the jth child node in the second layer of the downlink DMRS port allocated to the access link is Based on the data rate requirements of the access user, the child node can report the number of DMRS ports it recommends to configure for the backhaul link to the master node through uplink control information (UCI) among them Based on this suggestion, the master node can configure the number of DMRS ports for the backhaul link of the child node as Satisfy And notify the j-th child node through downlink control information (DCI).
  • UCI uplink control information
  • the DMRS port assigned by the master node to the direct access link of the UE, such as UE2, is Should meet:
  • the master node determines whether to perform inter-layer handover on the access link of the user to be handed over (for example, UE2) according to the first embodiment of the present disclosure, the master node should also check whether there are enough DMRS ports directly allocated to the user to be handed over. Switch users. If the number of DMRS ports is insufficient, the master node can re-allocate the DMRS ports of the direct access link of the UE and the backhaul link of the child node according to the demand, and adjust the sending mode of the downlink data of the backhaul link, and notify the corresponding through DCI UE and child nodes.
  • Fig. 9 illustrates a signaling flowchart of an example of inter-layer link switching according to the first embodiment.
  • UE2 performs interference measurement. For example, it measures the RSRP of the NZP-CSI-RS transmitted by the child node 2 of the neighboring small cell. At this time, the child node 1 transmits ZP-CSI-RS to exclude the child nodes. 1 Impact on interference measurement.
  • UE2 reports the measured interference measurement result (for example, RSRP) to the corresponding child node 1.
  • RSRP measured interference measurement result
  • the child node 1 evaluates the interference degree of the UE 2 after receiving the interference measurement result. For example, the child node 1 compares the received interference measurement result with a predetermined threshold, and when the interference measurement result exceeds the threshold, the child node 1 notifies the master node of the comparison result. For example, the child node 1 may generate a link switching attempt request based on the comparison result and send it to the master node.
  • the child node 1 may also notify the UE2 of the comparison result, such as a link switching attempt indication generated based on the comparison result, to instruct the UE2 to prepare to access the master node.
  • the link handover attempt indication can be a simple indication to trigger the initial access process between UE2 and the master node, and it can also contain more information required for UE2’s initial access, such as the cell ID and BWP of the master node, so that UE2 can quickly Access the master node.
  • the master node determines whether the access link needs to be switched. As described above, the master node can determine the handover in response to receiving the link handover attempt request. Alternatively, the master node may also consider other factors such as link quality, available DMRS ports, and available transmission resources.
  • the master node performs beam training on UE2 to determine the transmit beam and receive beam to be used.
  • UE2 can determine the gain of the best downlink quality of the link between UE2 and the master node during beam training compared to the downlink quality of the existing access link between UE2 and child node 1. And feed it back to the master node. If UE2 feedbacks the gain of downlink quality If a certain threshold is exceeded, the master node can determine to switch the link.
  • the master node may also collect the best downlink quality of the link between UE3 and the master node during beam training of UE3 compared to the downlink quality of the existing access link between UE3 and child node 2. Link quality gain By comparing the link quality gains of UE2 and UE3, the master node can determine whether to switch the access link used by UE2 or the access link used by UE3.
  • the master node can establish a direct access link between it and UE2, and send to child node 1 a request to disconnect the access link between child node 1 and UE2. Instructions to achieve link switching.
  • Fig. 10 illustrates a signaling flowchart of another example of inter-layer link switching according to the first embodiment.
  • Fig. 10 The difference between Fig. 10 and Fig. 9 is that the interference evaluation is performed at the master node instead of the child node 1. Specifically, in the ST13 stage, the child node 1 forwards the interference measurement result received from the UE 2 to the master node. Then, the master node can compare the received interference measurement result with a predetermined threshold to evaluate the degree to which UE2 is interfered. If the interference measurement result exceeds the predetermined threshold, the master node determines whether the access link needs to be switched.
  • the operations in the other stages of FIG. 10 are similar to those of FIG. 9, and the description will not be repeated here.
  • FIG. 11A is a block diagram illustrating an electronic device 100 for UE.
  • the electronic device 200 may be a UE or a component of the UE.
  • the UE accesses the first node in the IAB system through the wireless access link, and the first node communicates with the second node in the IAB system through the wireless backhaul link.
  • the second node is The parent node of the first node.
  • the electronic device 100 includes a processing circuit 101.
  • the processing circuit 101 may be configured to execute the communication method shown in FIG. 11B.
  • the processing circuit 101 at least includes an interference measurement unit 102, a reporting unit 103, and a link switching unit 104.
  • the interference measurement unit 102 of the processing circuit 101 is configured to measure the signal interference from the third node in the IAB system (ie, perform step S101 in FIG. 11B).
  • the second node is also the parent node of the third node, the second node can allocate NZP-CSI-RS resources to the third node, so that the third node can transmit NZP-CSI-RS, the interference measurement unit of the electronic device 100 102 may measure the received power of the reference signal as the interference measurement result.
  • the reporting unit 103 is configured to report the measured interference measurement result to the first node (ie, perform step S102 in FIG. 11B).
  • the interference measurement result can be used to evaluate the severity of interference to the UE at the first node or the second node. Based at least in part on the interference measurement result exceeding a predetermined threshold, the second node may make a determination to switch the access link used by the UE.
  • the link switching unit 104 is configured to establish a direct access link between the UE and the second node, and disconnect the UE and the first node when the second node determines to switch the access link used by the UE. Access link between (that is, step S103 in FIG. 11B is performed). In one example, only the downlink access link is switched, so that the uplink access link between the UE and the first node is reserved. Further, only the downlink data link is switched, so that the downlink control link between the UE and the first node is reserved, so as to quickly restore the access link of the UE.
  • the electronic device 100 may further include, for example, a communication unit 105 and a memory 106.
  • the communication unit 105 may be configured to communicate with a base station such as a first node, a second node, and a third node under the control of the processing circuit 101 to perform the transmission operation and/or reception operation described above.
  • the memory 106 can store various data and instructions, such as programs and data used for the operation of the electronic device 100, various data generated by the processing circuit 101, various control signaling or service data received by the communication unit 105, 105 sent data or information (such as interference measurement results), etc.
  • FIG. 12A is a block diagram illustrating an electronic device 200 for the above-mentioned first node.
  • the electronic device 200 may be a base station or a component of a base station.
  • the electronic device 200 includes a processing circuit 201.
  • the processing circuit 201 may be configured to execute the communication method shown in FIG. 12B.
  • the processing circuit 201 includes at least a measurement result receiving unit 202, a disconnection instruction receiving unit 203, and a link disconnection unit 204.
  • the measurement result receiving unit 202 in the processing circuit 201 is configured to receive from the UE the interference measurement result obtained by the UE by measuring the signal interference from the third node (ie, perform step S201 in FIG. 12B).
  • the processing circuit 201 may further include an interference evaluation unit (not shown in the figure), and the interference evaluation unit is configured to evaluate the degree of interference of the UE based on the received interference measurement result.
  • the interference evaluation unit may compare the interference measurement result with a predetermined threshold, and if the interference measurement result exceeds the predetermined threshold, send a link switching attempt request to the second node, so that the second node can make the access chain used by the UE to switch The way is determined.
  • the processing circuit 201 may further include a measurement result forwarding unit (not shown in the figure), and the measurement result forwarding unit is configured to forward the received interference measurement result to the second node.
  • the second node evaluates the degree of UE interference based on the received interference measurement result.
  • the second node may compare the interference measurement result with a predetermined threshold, and make a determination to switch the access link used by the UE based at least in part on the interference measurement result exceeding the predetermined threshold.
  • the disconnection instruction receiving unit 203 of the processing circuit 201 receives an instruction for disconnecting the access link between the first node and the UE from the second node (That is, step S202 in FIG. 12B is performed).
  • the link disconnection unit 204 controls the first node to disconnect the access link between the first node and the UE (ie, execute step S203 in FIG. 12B).
  • the first node may only disconnect the downlink between it and the UE. Further, the first node may only disconnect the downlink data link between it and the UE.
  • the electronic device 200 may further include, for example, a communication unit 205 and a memory 206.
  • the communication unit 205 may be configured to communicate with the second node and the UE under the control of the processing circuit 201 to perform the transmission operation and/or reception operation described above.
  • the memory 206 may store various data and instructions, such as interference measurement results received from the UE, programs and data for the operation of the electronic device 200, various data generated by the processing circuit 201, data to be transmitted by the communication unit 205, and the like.
  • FIG. 13A is a block diagram illustrating an electronic device 300 for the above-mentioned second node.
  • the electronic device 300 may be a base station or a component of a base station.
  • the electronic device 300 includes a processing circuit 301.
  • the processing circuit 301 may be configured to execute the communication method shown in FIG. 13B.
  • the processing circuit 301 at least includes a switching determination unit 302 and a link switching unit 303.
  • the handover determination unit 302 in the processing circuit 301 is configured to determine the access link used by the handover UE (that is, perform the method in FIG. 13B) based at least in part on the UE's interference measurement result of the signal interference from the third node exceeding a predetermined threshold. Step S301).
  • the processing circuit 301 may receive a link switching attempt request sent by the first node based on a comparison result of the interference measurement result with a predetermined threshold, and make a determination to switch the access link used by the UE.
  • the processing circuit 301 may further include an interference evaluation unit (not shown in the figure).
  • the interference evaluation unit is configured to receive the interference measurement result forwarded by the first node, and evaluate based on the received interference measurement result. The extent to which the UE is interfered.
  • the interference evaluation unit may compare the interference measurement result with a predetermined threshold, and based at least in part on the interference measurement result exceeding the predetermined threshold, the handover determination unit 302 makes a determination to switch the access link used by the UE.
  • the link switching unit 303 of the processing circuit 301 controls the establishment of a direct access link between the second node and the UE, and instructs the first node to disconnect the second node and the UE. (Ie, perform step S302 in FIG. 13B).
  • the second node may only establish a downlink between it and the UE, and instruct the first node to disconnect the downlink between it and the UE.
  • the second node may only establish a downlink data link between it and the UE, and instruct the first node to disconnect the downlink data link between it and the UE.
  • the electronic device 300 may further include, for example, a communication unit 305 and a memory 306.
  • the communication unit 305 may be configured to communicate with the first node and the UE under the control of the processing circuit 301 to perform the sending operation and/or receiving operation described above.
  • the memory 306 can store various data and instructions, such as interference measurement results received from the UE, a link switching attempt request received from the first node, programs and data used for the operation of the electronic device 300, and various data generated by the processing circuit 301. Data, data to be transmitted by the communication unit 305, etc.
  • the processing circuits 101, 201, and 301 described above may refer to various implementations of digital circuit systems, analog circuit systems, or mixed signal (combination of analog signals and digital signals) circuit systems that perform functions in a computing system.
  • Processing circuits may include, for example, circuits such as integrated circuits (ICs), application specific integrated circuits (ASICs), parts or circuits of individual processor cores, entire processor cores, individual processors, such as field programmable arrays (FPGAs) ) Programmable hardware devices, and/or systems including multiple processors.
  • ICs integrated circuits
  • ASICs application specific integrated circuits
  • FPGAs field programmable arrays
  • the communication units 105, 205, and 305 described above may be implemented as transmitters or transceivers, including communication components such as antenna arrays and/or radio frequency links.
  • the communication units 105, 205, and 305 are drawn with dotted lines because they can also be located outside the electronic devices 100, 200, and 300, respectively.
  • the memories 106, 206, and 306 are drawn with dashed lines, because they can also be located in the processing circuits 101, 201, and 301 respectively or located outside the electronic devices 100, 200, and 300, respectively.
  • the memories 106, 206, and 306 may be volatile memories and/or non-volatile memories.
  • the memories 106, 206, and 306 may include, but are not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory.
  • the second embodiment of the present disclosure provides downlink MIMO transmission based on inter-layer connection.
  • IAB nodes such as sub-node 1 and sub-node 2 shown in FIG. 4 can not only work in decode and forward (DF) mode, but also work in amplified forward (AF) mode.
  • DF decode and forward
  • AF amplified forward
  • the two layers before and after the IAB node are isolated from each other for the transmission data.
  • the IAB node In the AF mode, the IAB node amplifies and forwards all received signals, including useful signals, noise, and interference. It can be simply considered that the IAB node is an "amplifier" between the two layers, and it is effective for the parent node and the child node. / UE is transparent.
  • the IAB node will amplify the noise and interference in the previous layer and accumulate it to the next layer, so the availability of the AF mode can be judged according to the current communication conditions. For example, when detecting that the SNR of the downlink backhaul link in the previous layer is high (for example, higher than a certain value) and the modulation order is low (for example, belonging to certain modulation schemes), the IAB node can Set to work in AF mode, or at least work in AF mode in the downlink direction. Then, the IAB node can use UCI to notify its parent node of its working mode.
  • the parent node of the IAB node can also collect information about SNR from the IAB node, and configure the IAB node to work in AF mode through DCI according to SNR, modulation order, etc., or at least work in AF mode in the downlink direction. .
  • the backhaul link in layer 1 and the access link in layer 2 are connected due to the transparency of child node 1.
  • the master node and the UE for example, UE1 or UE2
  • the inter-cell interference of the second layer can be regarded as the intra-cell interference of the connection layer.
  • the master node suppresses such intra-cell interference by using precoding. For this reason, the master node needs to obtain the integrated channel state information (ICSI) of the equivalent baseband connection channel. .
  • ICSI integrated channel state information
  • FIG. 14 is a transmission model of the connection channel via the child node 1 and the child node 2 as shown in FIG. 4. To simplify the model, the direct access user UE5 in layer 1 is ignored.
  • the downlink transmission model of layer 1 can be expressed as:
  • Is the received symbol of the jth (j 1, 2) child node; Is the digital merge matrix of the j-th child node; Is the simulated combining matrix of the jth child node (ie, the simulated beamforming matrix of the receiving beam), and M N is the number of antennas configured for the child node; Down the main node and the j th node of the backhaul link channel matrix, M D is the number of antenna configurations master node; versus The analog beamforming matrix and digital precoding matrix of the master node respectively; Is the additive white Gaussian noise (AWGN) vector at the child node; The symbol vector sent from the master node to the child node.
  • AWGN additive white Gaussian noise
  • the downlink transmission model of layer 2 can be expressed as:
  • connection layer It is a diagonal matrix, representing the magnification factor of the jth child node.
  • the downlink transmission model of the connection layer can be expressed as:
  • the digital part of the concatenation matrix that is, the digital merging matrix W N and the precoding matrix P N may adopt an identity matrix to reduce the calculation overhead and processing delay at the child nodes.
  • the master node can recalculate the digital precoding matrix P D after obtaining the equivalent baseband connection downlink channel matrix
  • H BB FH int B D Eliminate inter-user interference in the connection layer.
  • the ICSI acquisition for the equivalent baseband connection downlink channel can be performed through reference signals.
  • the uplink connection channel and the downlink connection channel have channel reciprocity.
  • the ICSI can be acquired by the UE sending an uplink reference signal such as SRS to the master node.
  • SRS uplink reference signal
  • the child node amplifies and forwards Y N, SRS to the master node, and the signal received by the master node can be expressed as:
  • H BB can be obtained by Y D, SRS ⁇ H.
  • the master node may send a downlink reference signal such as CSI-RS to the UE to obtain ICSI.
  • CSI-RS downlink reference signal
  • the child node amplifies and forwards Y N, SRS to the UE, and the signal received by the UE can be expressed as:
  • CSI-RS FH A B N P N ⁇ N Y N
  • H BB can be obtained through Y D, CSI-RS ⁇ H.
  • the master node can calculate a precoding matrix P D for MIMO transmission, and use the calculated precoding matrix to precode a data stream for multi-user MIMO transmission.
  • the inter-user interference can be reduced while increasing the system capacity .
  • the child node Since the child node does not decode and re-encode the passing data stream, the child node recommends to the master node the number of downlink DMRS ports configured for the backhaul link Equal to the number of DMRS ports of all access links associated with the child node The number of downlink DMRS ports that the master node will configure for the backhaul link Set equal to the recommended number of downlink DMRS ports Therefore, the DMRS port on the backhaul link of the child node and the access link are equal.
  • inter-layer connection transmission according to the second embodiment of the present disclosure is described above with reference to the single-hop two-layer IAB system shown in FIG. 4, it should be understood that the inter-layer connection transmission according to the second embodiment is also applicable to multi-hop IAB system.
  • the multi-hop IAB system all the sub-nodes that the connection channel passes through are working in the AF mode, and the transmission model can be established similarly to that in Fig. 14, except that more than two channels are connected.
  • Fig. 15 illustrates an example signaling flow of inter-layer connection transmission according to the second embodiment.
  • each UE transmits an SRS to the master node via the child node.
  • the SRS may be an SRS resource allocated by the master node to the UE through spatial relationship information (for example, PUCCH-SpatialRelationInfo or SRS-SpatialRelationInfo).
  • the child node working in the AF mode amplifies and forwards the SRS to the master node.
  • the master node can estimate the equivalent uplink baseband connection channel through the received SRS to obtain the ICSI of the uplink baseband connection channel, such as channel quality indicator (CQI), precoding matrix indicator (PMI), rank indicator ( RI) etc.
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • RI rank indicator
  • the uplink baseband connection channel via the uplink access link, sub-node, and uplink backhaul link and the downlink baseband connection channel via the downlink backhaul link, sub-node, and downlink backhaul link have channel reciprocity.
  • the main node can obtain the ICSI of the downlink baseband connection channel.
  • the master node calculates a precoding matrix for MIMO transmission based on the acquired ICSI of the downlink baseband connection channel, and performs digital precoding on the transmitted data stream.
  • the downlink data stream is amplified and forwarded by the child node and received by the UE.
  • the UE can perform a decoding operation to obtain data destined for it from the data stream.
  • Fig. 16 illustrates another example signaling flow of inter-layer connection transmission according to the second embodiment.
  • the master node transmits CSI-RS to the UE via the child node.
  • the child node working in the AF mode amplifies and forwards the CSI-RS to the UE.
  • the UE can evaluate the downlink baseband connection channel by measuring the CSI-RS, and report it in the form of a CSI report.
  • the CSI report may include ICSI such as CQI, PMI, and RI.
  • the CSI report is received by the master node after being amplified and forwarded by the child node.
  • the master node can estimate the equivalent downlink baseband connection channel through the received CSI-RS to obtain the ICSI of the downlink baseband connection channel.
  • the master node calculates a precoding matrix for MIMO transmission based on the acquired ICSI of the downlink baseband connection channel, and performs digital precoding on the transmitted data stream.
  • the downlink data stream is amplified and forwarded by the child node and received by the UE.
  • the UE can perform a decoding operation to obtain data destined for it from the data stream.
  • FIG. 17A is a block diagram illustrating an electronic device 400 used for a node (denoted as a second node) in an IAB system.
  • the electronic device 400 may be a base station or a component of a base station.
  • the UE accesses the first node in the IAB system through the wireless access link, and the first node communicates with the second node in the IAB system through the wireless backhaul link.
  • the second node is The parent node of the first node.
  • the first node works in Amplify and Forward (AF) mode.
  • AF Amplify and Forward
  • the electronic device 400 includes a processing circuit 401.
  • the processing circuit 401 may be configured to execute the communication method shown in FIG. 14B.
  • the processing circuit 401 includes at least an ICSI acquisition unit 402 and a digital precoding matrix calculation unit 403.
  • the ICSI acquisition unit 402 in the processing circuit 401 is configured to acquire the downlink baseband connection channel via the backhaul link, the first node, and the access link through the reference signal transmitted between the second node and the user equipment.
  • Link the channel state information ICSI that is, perform step S401 in FIG. 17B.
  • the reference signal may be an SRS sent by the UE and amplified and forwarded by the first node to the second node.
  • the ICSI acquisition unit 402 uses the measurement result of the SRS to perform channel estimation.
  • the reference signal may be a CSI-RS sent by the second node and amplified and forwarded by the first node to the first node, and the UE feeds back the measurement result to the master node for the master node to determine ICSI.
  • the data precoding matrix calculation unit 403 is configured to calculate a digital precoding matrix for downlink transmission of the UE based on the acquired link channel state information (ie, perform step S402 in FIG. 17B).
  • the electronic device 400 may further include, for example, a communication unit 405 and a memory 406.
  • the communication unit 405 may be configured to communicate with the first node and the UE under the control of the processing circuit 401 to perform the transmission operation and/or reception operation described above.
  • the memory 406 can store various data and instructions, such as CSI-RS measurement results received from the UE, programs and data for the operation of the electronic device 400, various data generated by the processing circuit 401, data to be sent by the communication unit 405, etc. .
  • FIG. 18A is a block diagram illustrating an electronic device 500 for UE.
  • the electronic device 500 may be a UE or a component of the UE.
  • the UE accesses the first node in the IAB system through the wireless access link, and the first node communicates with the second node in the IAB system through the wireless backhaul link.
  • the second node is The parent node of the first node.
  • the first node works in Amplify and Forward (AF) mode.
  • AF Amplify and Forward
  • the electronic device 500 includes a processing circuit 501.
  • the processing circuit 501 may be configured to execute the communication method shown in FIG. 18B.
  • the processing circuit 501 includes at least a receiving unit 502.
  • the receiving unit 502 is configured to receive the data stream transmitted on the downlink connection channel via the backhaul link, the first node, and the access link (ie, perform step S501 in FIG. 18B).
  • the data stream is precoded at the second node using a digital precoding matrix, which is calculated based on the connection channel state information of the downlink baseband connection channel.
  • the second node obtains the associated channel state information through a reference signal (for example, SRS or CSI-RS) transmitted between the second node and the UE.
  • a reference signal for example, SRS or CSI-RS
  • the electronic device 500 may further include, for example, a communication unit 505 and a memory 506.
  • the communication unit 505 may be configured to communicate with base stations such as the first node and the second node under the control of the processing circuit 501 to perform the transmission operation and/or reception operation described above.
  • the memory 506 can store various data and instructions, such as programs and data used for the operation of the electronic device 500, various data generated by the processing circuit 501, various control signaling or service data received by the communication unit 505, 505 sent data or information.
  • FIG. 19A is a block diagram illustrating an electronic device 600 used for the above-mentioned first node.
  • the electronic device 600 may be a base station or a component of a base station.
  • the first node works in AF mode.
  • the electronic device 600 includes a processing circuit 601.
  • the processing circuit 601 may be configured to execute the communication method shown in FIG. 19B.
  • the processing circuit 601 includes at least a forwarding unit 604.
  • the forwarding unit 604 is configured to amplify and forward the transmission data passing through the first node, such as the data stream from the second node to the UE (i.e., perform step S601 in FIG. 19B).
  • the data stream is precoded at the second node using a digital precoding matrix, which is calculated based on the connection channel state information of the downlink baseband connection channel.
  • the second node obtains the associated channel state information through a reference signal (for example, SRS or CSI-RS) transmitted between the second node and the UE.
  • a reference signal for example, SRS or CSI-RS
  • the electronic device 600 may further include, for example, a communication unit 605 and a memory 606.
  • the communication unit 605 may be configured to communicate with the second node and the UE under the control of the processing circuit 601 to perform the transmission operation and/or reception operation described above.
  • the memory 606 may store various data and instructions, such as programs and data used for the operation of the electronic device 600, various data generated by the processing circuit 601, data received by the communication unit 605, data to be transmitted by the communication unit 605, and the like.
  • the processing circuits 401, 501, and 601 described above may refer to various implementations of digital circuit systems, analog circuit systems, or mixed signal (combination of analog signals and digital signals) circuit systems that perform functions in a computing system.
  • Processing circuits may include, for example, circuits such as integrated circuits (ICs), application specific integrated circuits (ASICs), parts or circuits of individual processor cores, entire processor cores, individual processors, such as field programmable arrays (FPGAs) ) Programmable hardware devices, and/or systems including multiple processors.
  • ICs integrated circuits
  • ASICs application specific integrated circuits
  • FPGAs field programmable arrays
  • the communication units 405, 505, and 605 described above may be implemented as transmitters or transceivers, including communication components such as antenna arrays and/or radio frequency links.
  • the communication units 405, 505, and 605 are drawn with dashed lines because they can also be located outside the electronic devices 400, 500, and 600, respectively.
  • the memories 406, 506, and 606 are drawn with dashed lines, because they can also be located in the processing circuits 401, 501, and 601 or outside the electronic devices 400, 500, and 600, respectively.
  • the memories 406, 506, and 606 may be volatile memories and/or non-volatile memories.
  • the memories 406, 506, and 606 may include, but are not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory.
  • each of the foregoing units may be implemented as an independent physical entity, or may also be implemented by a single entity (for example, a processor (CPU or DSP, etc.), integrated circuit, etc.).
  • An electronic device on the user equipment side which has an access link between the user equipment and the first node of the integrated access and backhaul (IAB) system, and the first node and the first node of the IAB system There is a backhaul link between the two nodes, where the second node in the network topology of the IAB system is the parent node of the first node, characterized in that, the electronic device includes: a processing circuit configured to: measure Signal interference from the third node; reporting the interference measurement result to the first node; and when the second node determines to switch the access link used by the user equipment based at least in part on the interference measurement result exceeding a predetermined threshold, Establish a direct access link between the user equipment and the second node, and disconnect the access link between the user equipment and the first node.
  • IAB integrated access and backhaul
  • disconnecting the access link between the user equipment and the first node includes disconnecting only the downlink access link between the user equipment and the first node road.
  • disconnecting the downlink access link between the user equipment and the first node includes only disconnecting the downlink data link between the user equipment and the first node Without disconnecting the downlink control link between the user equipment and the first node.
  • measuring the signal interference from the third node includes: receiving a non-zero power channel state information reference signal (NZP-CSI-RS) transmitted by the third node; and The signal power of the received NZP-CSI-RS is measured as the interference measurement result.
  • NZP-CSI-RS non-zero power channel state information reference signal
  • An electronic device used for a node in an integrated access and backhaul (IAB) system The node is marked as the first node. There is an access link between the first node and the user equipment. There is a backhaul link between a node and the second node of the IAB system, where the second node is the parent node of the first node in the network topology of the IAB system, and is characterized in that the electronic device includes
  • the processing circuit is configured to: receive an interference measurement result for signal interference from a third node from the user equipment; determine, at the second node, at least partly based on the interference measurement result exceeding a predetermined threshold, the user equipment used In the case of an access link, receiving an instruction from the second node about disconnecting the access link between the first node and the user equipment; and disconnecting the access between the first node and the user equipment link.
  • disconnecting the access link between the user equipment and the first node includes disconnecting only the downlink access link between the user equipment and the first node road.
  • disconnecting the downlink access link between the user equipment and the first node includes only disconnecting the downlink data link between the user equipment and the first node Without disconnecting the downlink control link between the user equipment and the first node.
  • An electronic device for a node in an integrated access and backhaul (IAB) system The node is marked as a second node, and there is a backhaul between the first node and the second node of the IAB system.
  • Transmission link wherein in the network topology relationship of the IAB system, the first node is a child node of the second node, and there is an access link between the user equipment and the first node, characterized in that the electronic device Comprising a processing circuit configured to: determine to switch the access link used by the user equipment based at least in part on the interference measurement result of the user equipment with respect to the signal interference from the third node exceeding a predetermined threshold; and respond to the determination Establish a direct access link between the second node and the user equipment, and instruct the first node to disconnect the access link between the first node and the user equipment.
  • the electronic device wherein the processing circuit is further configured to: receive the best downlink quality during beam training between the user equipment and the second node from the user equipment Compared with the gain of the downlink quality of the access link between the user equipment and the first node; if the gain exceeds a certain threshold, determining to switch the access link used by the user equipment.
  • the electronic device wherein the processing circuit is further configured to receive the best downlink quality during beam training between the user equipment and the second node from the user equipment The first gain compared to the downlink quality of the access link between the user equipment and the first node; receiving from another user equipment during beam training between the other user equipment and the second node
  • the best downlink quality is a second gain compared to the downlink quality of the access link between the other user equipment and the third node, wherein the second gain between the third node and the other user equipment
  • the downlink transmission causes the signal interference from the third node; and when the first gain exceeds the second gain, determining to switch the access link used by the user equipment.
  • An electronic device for a node in an integrated access and backhaul (IAB) system the node is marked as a second node, and there is a backhaul between the second node and the first node of the IAB system Transmission link, wherein in the network topology relationship of the IAB system, the second node is the parent node of the first node, and there is an access link between the user equipment and the first node, wherein the electronic device includes processing
  • the circuit is configured to obtain the downlink baseband connection channel via the backhaul link, the first node, and the access link through a reference signal transmitted between the second node and the user equipment Linking channel state information, where the first node works in an amplifying and forwarding (AF) mode; and calculating a digital precoding matrix for downlink transmission of the user equipment based on the obtained linking channel state information.
  • AF amplifying and forwarding
  • the electronic device wherein the reference signal is a sounding reference signal (SRS) transmitted from the user equipment to the second node, and the IAB system adopts time division duplex (TDD).
  • SRS sounding reference signal
  • TDD time division duplex
  • CSI-RS channel state information reference signal
  • the electronic device wherein the processing circuit is further configured to: receive from the first node the number of downlink DMRS ports suggested to be configured for the backhaul link Recommended number of downstream DMRS ports Equal to the number of DMRS ports of all access links associated with the first node And the number of downlink DMRS ports configured for the backhaul link Set equal to the recommended number of downlink DMRS ports
  • An electronic device on the user equipment side with an access link between the user equipment and the first node in the integrated access and backhaul (IAB) system, and the first node and the IAB system There is a backhaul link between the second nodes of the IAB system, where the second node is the parent node of the first node in the network topology of the IAB system, characterized in that the electronic device includes a processing circuit, and is configured to: Receive a data stream transmitted via the backhaul link, the first node, and the access link, where the first node works in an amplified forward (AF) mode, where the data stream is used by the second node
  • a digital precoding matrix performs precoding, wherein the digital precoding matrix is calculated based on the connection channel state information of the downlink baseband connection channel of the backhaul link, the first node, and the access link , And wherein the connection channel state information is obtained through a reference signal transmitted between the second node and the user equipment.
  • An electronic device for a node in an integrated access and backhaul (IAB) system The node is denoted as the first node. There is an access link between the first node and the user equipment. There is a backhaul link between a node and the second node of the IAB system, where the second node is the parent node of the first node in the network topology of the IAB system, and is characterized in that the electronic device includes The processing circuit is configured to: forward the data stream from the second node to the user equipment in the amplifying and forwarding (AF) mode, wherein the data stream is precoded by the second node using a digital precoding matrix, wherein the The digital precoding matrix is calculated based on the connection channel state information of the downlink baseband connection channel via the backhaul link, the first node, and the access link, and wherein the connection channel state information is Obtained from the reference signal transmitted between the second node and the user equipment.
  • AF amplifying and forwarding
  • a communication method for user equipment with an access link between the user equipment and the first node in the integrated access and backhaul (IAB) system, and the first node and the IAB There is a backhaul link between the second nodes of the system, where the second node is the parent node of the first node in the network topology of the IAB system, characterized in that the communication method includes: measuring from the third node Reporting interference measurement results to the first node; and establishing the user if the second node determines to switch the access link used by the user equipment based at least in part on the interference measurement result exceeding a predetermined threshold Direct access link between the device and the second node, and disconnect the access link between the user equipment and the first node.
  • IAB integrated access and backhaul
  • a communication method for a node in an integrated access and backhaul (IAB) system The node is marked as the first node. There is an access link between the first node and the user equipment. There is a backhaul link between a node and the second node of the IAB system, wherein the second node is the parent node of the first node in the network topology of the IAB system, characterized in that the communication method includes : Receiving an interference measurement result for signal interference from a third node from the user equipment; determining, at the second node, a situation for switching the access link used by the user equipment based at least in part on the interference measurement result exceeding a predetermined threshold Next, receiving an instruction about disconnecting the access link between the first node and the user equipment from the second node; and disconnecting the access link between the first node and the user equipment.
  • IAB integrated access and backhaul
  • a communication method for nodes in an integrated access and backhaul (IAB) system The node is marked as the second node, and there is a backhaul between the first node and the second node of the IAB system.
  • Transmission link wherein in the network topology relationship of the IAB system, the first node is a child node of the second node, and there is an access link between the user equipment and the first node, characterized in that the communication method
  • the method includes: determining to switch the access link used by the user equipment based at least in part on the interference measurement result of the user equipment to the signal interference from the third node exceeding a predetermined threshold; and in response to the determining, establishing the second node and Direct access link between the user equipment, and instruct the first node to disconnect the access link between the first node and the user equipment.
  • a communication method for nodes in an integrated access and backhaul (IAB) system The node is marked as the second node, and there is a backhaul between the second node and the first node of the IAB system.
  • Transmission link wherein in the network topology relationship of the IAB system, the second node is the parent node of the first node, and there is an access link between the user equipment and the first node, characterized in that the communication method
  • the method includes: obtaining a measurement result of a reference signal transmitted between a second node and the user equipment; and obtaining, based on the measurement result of the reference signal, a link via the backhaul link, the first node, and the access
  • AF amplifying and forwarding
  • a communication method on the user equipment side there is an access link between the user equipment and the first node in the integrated access and backhaul (IAB) system, and the first node and the IAB system There is a backhaul link between the second nodes of the IAB system, wherein the second node is the parent node of the first node in the network topology of the IAB system, and the communication method includes: receiving Link, the first node, and the data stream transmitted by the access link, wherein the first node works in an Amplified Forward (AF) mode, wherein the data stream uses digital precoding at the second node A matrix is precoded, wherein the digital precoding matrix is calculated based on the connection channel state information of the downlink baseband connection channel via the backhaul link, the first node, and the access link, and Wherein, the connection channel state information is obtained through a reference signal transmitted between the second node and the user equipment.
  • AF Amplified Forward
  • a communication method for a node in an integrated access and backhaul (IAB) system The node is marked as the first node. There is an access link between the first node and the user equipment. There is a backhaul link between a node and the second node of the IAB system, wherein the second node is the parent node of the first node in the network topology of the IAB system, characterized in that the communication method includes : Forward the data stream from the second node to the user equipment in the amplifying and forwarding (AF) mode, where the data stream is precoded by the second node using a digital precoding matrix, wherein the digital precoding matrix is based on Calculated via the connection channel state information of the downlink baseband connection channel of the backhaul link, the first node and the access link, and wherein the connection channel state information is calculated through the connection between the second node and the Obtained from the reference signal transmitted between user equipment.
  • IAB integrated access and backhaul
  • a non-transitory computer-readable storage medium storing executable instructions that, when executed, implement the communication method according to any one of 29-34.
  • the electronic devices 200, 300, 400, and 600 may be implemented as various base stations or installed in base stations, and the electronic devices 100, 500 may be implemented as various user equipment or installed in various In user equipment.
  • the communication method according to the embodiments of the present disclosure may be implemented by various base stations or user equipment; the methods and operations according to the embodiments of the present disclosure may be embodied as computer-executable instructions, stored in a non-transitory computer-readable storage medium, and It can be executed by various base stations or user equipment to realize one or more of the above-mentioned functions.
  • the technology according to the embodiments of the present disclosure can be made into various computer program products, and used in various base stations or user equipment to implement one or more functions described above.
  • the term "base station” used in the present disclosure has the full breadth of its usual meaning, and includes at least a wireless communication station used as a wireless communication system or a part of a radio system to facilitate communication.
  • the base station mentioned in this disclosure can be implemented as any type of base station, preferably, such as macro gNB and ng-eNB defined in the 5G NR standard of 3GPP.
  • the gNB may be a gNB that covers a cell smaller than a macro cell, such as pico gNB, micro gNB, and home (femto) gNB.
  • the base station may be implemented as any other type of base station, such as NodeB, eNodeB, and base transceiver station (BTS).
  • BTS base transceiver station
  • the base station may also include: a main body configured to control wireless communication, and one or more remote wireless headends (RRH), wireless relay stations, drone towers, control nodes in an automated factory, etc., arranged in a different place from the main body.
  • RRH remote wireless headends
  • a logical entity that has a communication control function can also be called a base station.
  • a logical entity that plays a role of spectrum coordination can also be called a base station.
  • a logical entity that provides network control functions can be called a base station.
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device).
  • the user equipment can also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication, drones, sensors and actuators in automated factories, and so on.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • the first application example of the base station is the first application example of the base station
  • FIG. 20 is a block diagram showing a first example of a schematic configuration of a base station to which the technology of the present disclosure can be applied.
  • the base station can be implemented as gNB 1400.
  • the gNB 1400 includes multiple antennas 1410 and base station equipment 1420.
  • the base station device 1420 and each antenna 1410 may be connected to each other via an RF cable.
  • the gNB 1400 (or base station device 1420) here may correspond to the above electronic devices 200, 300, 400, and 600.
  • the antenna 1410 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antenna 1410 may be arranged in an antenna array matrix, for example, and used for the base station device 1420 to transmit and receive wireless signals.
  • multiple antennas 1410 may be compatible with multiple frequency bands used by gNB 1400.
  • the base station device 1420 includes a controller 1421, a memory 1422, a network interface 1423, and a wireless communication interface 1425.
  • the controller 1421 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1420.
  • the controller 1421 may include the processing circuit 201, 301, 401, or 601 described above, execute the communication method described in FIG. 12B, 13B, 17B, or 19B, or control various components of the electronic device 200, 300, 400, or 600 .
  • the controller 1421 generates a data packet according to data in the signal processed by the wireless communication interface 1425, and transmits the generated packet via the network interface 1423.
  • the controller 1421 may bundle data from a plurality of baseband processors to generate a bundled packet, and transfer the generated bundled packet.
  • the controller 1421 may have a logic function for performing control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 1422 includes RAM and ROM, and stores programs executed by the controller 1421 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 1423 is a communication interface for connecting the base station device 1420 to a core network 1424 (for example, a 5G core network).
  • the controller 1421 may communicate with the core network node or another gNB via the network interface 1423.
  • the gNB 1400 and the core network node or other gNB may be connected to each other through logical interfaces (such as NG interface and Xn interface).
  • the network interface 1423 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1423 is a wireless communication interface, the network interface 1423 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1425.
  • the wireless communication interface 1425 supports any cellular communication scheme (such as 5G NR), and provides a wireless connection to a terminal located in a cell of the gNB 1400 via an antenna 1410.
  • the wireless communication interface 1425 may generally include, for example, a baseband (BB) processor 1426 and an RF circuit 1427.
  • the BB processor 1426 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signals of various layers (such as physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer) deal with.
  • the BB processor 1426 may have a part or all of the above-mentioned logical functions.
  • the BB processor 1426 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 1426.
  • the module may be a card or a blade inserted into the slot of the base station device 1420. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1427 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1410.
  • FIG. 20 shows an example in which one RF circuit 1427 is connected to one antenna 1410, the present disclosure is not limited to this illustration, but one RF circuit 1427 can connect multiple antennas 1410 at the same time.
  • the wireless communication interface 1425 may include a plurality of BB processors 1426.
  • multiple BB processors 1426 may be compatible with multiple frequency bands used by gNB 1400.
  • the wireless communication interface 1425 may include a plurality of RF circuits 1427.
  • multiple RF circuits 1427 may be compatible with multiple antenna elements.
  • FIG. 20 shows an example in which the wireless communication interface 1425 includes a plurality of BB processors 1426 and a plurality of RF circuits 1427, the wireless communication interface 1425 may also include a single BB processor 1426 or a single RF circuit 1427.
  • the processing circuit 201 described with reference to FIG. 12A, the processing circuit 301 described with reference to FIG. 13A, the processing circuit 401 described with reference to FIG. 17A, and the processing circuit 401 described with reference to FIG. 19A include one or Multiple units may be implemented in the wireless communication interface 825. Alternatively, at least a part of these components may be implemented in the controller 821.
  • the gNB 1400 includes a part (for example, the BB processor 1426) or the whole of the wireless communication interface 1425, and/or a module including the controller 1421, and one or more components may be implemented in the module.
  • the module can store a program for allowing the processor to function as one or more components (in other words, a program for allowing the processor to perform the operation of one or more components), and can execute the program.
  • a program for allowing the processor to function as one or more components may be installed in the gNB 1400, and the wireless communication interface 1425 (for example, the BB processor 1426) and/or the controller 1421 may execute this program.
  • gNB 1400, base station equipment 1420, or modules may be provided, and a program for allowing the processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded can be provided.
  • FIG. 21 is a block diagram showing a second example of a schematic configuration of a base station to which the technology of the present disclosure can be applied.
  • the base station is shown as gNB 1530.
  • the gNB 1530 includes multiple antennas 1540, base station equipment 1550 and RRH 1560.
  • the RRH 1560 and each antenna 1540 may be connected to each other via an RF cable.
  • the base station apparatus 1550 and the RRH 1560 may be connected to each other via a high-speed line such as an optical fiber cable.
  • the gNB 1530 (or base station device 1550) here may correspond to the above electronic devices 200, 300, 400, and 600.
  • the antenna 1540 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antenna 1540 may be arranged in an antenna array matrix, for example, and used for the base station device 1550 to transmit and receive wireless signals.
  • multiple antennas 1540 may be compatible with multiple frequency bands used by gNB 1530.
  • the base station equipment 1550 includes a controller 1551, a memory 1552, a network interface 1553, a wireless communication interface 1555, and a connection interface 1557.
  • the controller 1551, the memory 1552, and the network interface 1553 are the same as the controller 1421, the memory 1422, and the network interface 1423 described with reference to FIG. 21.
  • the wireless communication interface 1555 supports any cellular communication scheme (such as 5G NR), and provides wireless communication to a terminal located in a sector corresponding to the RRH 1560 via the RRH 1560 and the antenna 1540.
  • the wireless communication interface 1555 may generally include, for example, a BB processor 1556.
  • the BB processor 1556 is the same as the BB processor 1426 described with reference to FIG. 20 except that the BB processor 1556 is connected to the RF circuit 1564 of the RRH 1560 via the connection interface 1557.
  • the wireless communication interface 1555 may include a plurality of BB processors 1556.
  • multiple BB processors 1556 may be compatible with multiple frequency bands used by gNB 1530.
  • FIG. 21 shows an example in which the wireless communication interface 1555 includes a plurality of BB processors 1556, the wireless communication interface 1555 may also include a single BB processor 1556.
  • connection interface 1557 is an interface for connecting the base station device 1550 (wireless communication interface 1555) to the RRH 1560.
  • the connection interface 1557 may also be a communication module for connecting the base station device 1550 (wireless communication interface 1555) to the communication in the above-mentioned high-speed line of the RRH 1560.
  • RRH1560 includes connection interface 1561 and wireless communication interface 1563.
  • connection interface 1561 is an interface for connecting the RRH 1560 (wireless communication interface 1563) to the base station device 1550.
  • the connection interface 1561 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1563 transmits and receives wireless signals via the antenna 1540.
  • the wireless communication interface 1563 may generally include an RF circuit 1564, for example.
  • the RF circuit 1564 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1540.
  • FIG. 21 shows an example in which one RF circuit 1564 is connected to one antenna 1540, the present disclosure is not limited to this illustration, but one RF circuit 1564 can connect multiple antennas 1540 at the same time.
  • the wireless communication interface 1563 may include a plurality of RF circuits 1564.
  • multiple RF circuits 1564 may support multiple antenna elements.
  • FIG. 21 shows an example in which the wireless communication interface 1563 includes a plurality of RF circuits 1564, the wireless communication interface 1563 may also include a single RF circuit 1564.
  • the processing circuit 201 described with reference to FIG. 12A, the processing circuit 301 described with reference to FIG. 13A, the processing circuit 401 described with reference to FIG. 17A, and the processing circuit 401 described with reference to FIG. 19A include one or Multiple units may be implemented in the wireless communication interface 1525. Alternatively, at least a part of these components may be implemented in the controller 1521.
  • the gNB 1500 includes a part (for example, the BB processor 1526) or the whole of the wireless communication interface 1525, and/or a module including the controller 1521, and one or more components may be implemented in the module.
  • the module can store a program for allowing the processor to function as one or more components (in other words, a program for allowing the processor to perform the operation of one or more components), and can execute the program.
  • a program for allowing the processor to function as one or more components may be installed in the gNB 1500, and the wireless communication interface 1525 (for example, the BB processor 1526) and/or the controller 1521 may execute the program.
  • gNB 1500 base station equipment 1520 or a module may be provided, and a program for allowing the processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • the first application example of user equipment is the first application example of user equipment
  • FIG. 22 is a block diagram showing an example of a schematic configuration of a smart phone 1600 to which the technology of the present disclosure can be applied.
  • the smart phone 1600 may be implemented as the electronic device 100 described with reference to FIG. 11A or the electronic device 500 described with reference to FIG. 18A.
  • the smart phone 1600 includes a processor 1601, a memory 1602, a storage device 1603, an external connection interface 1604, a camera device 1606, a sensor 1607, a microphone 1608, an input device 1609, a display device 1610, a speaker 1611, a wireless communication interface 1612, one or more An antenna switch 1615, one or more antennas 1616, a bus 1617, a battery 1618, and an auxiliary controller 1619.
  • the processor 1601 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and other layers of the smart phone 1600.
  • the processor 1601 may include or serve as the processing circuit 101 described with reference to FIG. 11A or the processing circuit 501 described with reference to FIG. 18A.
  • the memory 1602 includes RAM and ROM, and stores data and programs executed by the processor 1601.
  • the storage device 1603 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1604 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smart phone 1600.
  • USB universal serial bus
  • the camera 1606 includes an image sensor, such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 1607 may include a group of sensors, such as a measurement sensor, a gyroscope sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1608 converts the sound input to the smart phone 1600 into an audio signal.
  • the input device 1609 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1610, and receives operations or information input from the user.
  • the display device 1610 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1600.
  • the speaker 1611 converts the audio signal output from the smart phone 1600 into sound.
  • the wireless communication interface 1612 supports any cellular communication scheme (such as 4G LTE or 5G NR, etc.), and performs wireless communication.
  • the wireless communication interface 1612 may generally include, for example, a BB processor 1613 and an RF circuit 1614.
  • the BB processor 1613 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1614 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1616.
  • the wireless communication interface 1612 may be a chip module on which the BB processor 1613 and the RF circuit 1614 are integrated. As shown in FIG.
  • the wireless communication interface 1612 may include a plurality of BB processors 1613 and a plurality of RF circuits 1614.
  • FIG. 22 shows an example in which the wireless communication interface 1612 includes a plurality of BB processors 1613 and a plurality of RF circuits 1614, the wireless communication interface 1612 may also include a single BB processor 1613 or a single RF circuit 1614.
  • the wireless communication interface 1612 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 1612 may include a BB processor 1613 and an RF circuit 1614 for each wireless communication scheme.
  • Each of the antenna switches 1615 switches the connection destination of the antenna 1616 among a plurality of circuits included in the wireless communication interface 1612 (for example, circuits for different wireless communication schemes).
  • the antenna 1616 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antenna 1616 may be arranged in an antenna array matrix, for example, and used for the wireless communication interface 1612 to transmit and receive wireless signals.
  • the smart phone 1600 may include one or more antenna panels (not shown).
  • the smart phone 1600 may include an antenna 1616 for each wireless communication scheme.
  • the antenna switch 1615 may be omitted from the configuration of the smart phone 1600.
  • the bus 1617 connects the processor 1601, memory 1602, storage device 1603, external connection interface 1604, camera 1606, sensor 1607, microphone 1608, input device 1609, display device 1610, speaker 1611, wireless communication interface 1612, and auxiliary controller 1619 to each other. connection.
  • the battery 1618 supplies power to each block of the smart phone 1600 shown in FIG. 22 via a feeder line, which is partially shown as a dashed line in the figure.
  • the auxiliary controller 1619 operates the minimum necessary functions of the smartphone 1600 in the sleep mode, for example.
  • one or more units included in the processing circuit 101 described with reference to FIG. 11A and the processing circuit 501 described with reference to FIG. 18A may be implemented in the wireless communication interface 1612. Alternatively, at least a part of these components may be implemented in the processor 1601 or the auxiliary controller 1619. As an example, the smart phone 1600 includes a part of the wireless communication interface 1612 (for example, the BB processor 1613) or the whole, and/or a module including the processor 1601 and/or the auxiliary controller 1619, and one or more components may be Implemented in this module.
  • the wireless communication interface 1612 for example, the BB processor 1613
  • the smart phone 1600 includes a part of the wireless communication interface 1612 (for example, the BB processor 1613) or the whole, and/or a module including the processor 1601 and/or the auxiliary controller 1619, and one or more components may be Implemented in this module.
  • the module can store a program that allows the processing to function as one or more components (in other words, a program for allowing the processor to perform the operation of one or more components), and can execute the program.
  • a program for allowing the processor to function as one or more components may be installed in the smart phone 1600, and the wireless communication interface 1612 (for example, the BB processor 1613), the processor 1601, and/or auxiliary The controller 1619 can execute this program.
  • a smart phone 1600 or a module may be provided, and a program for allowing a processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • Fig. 23 is a block diagram showing an example of a schematic configuration of a car navigation device 1720 to which the technology of the present disclosure can be applied.
  • the car navigation device 1720 may be implemented as the electronic device 100 described in FIG. 11A or the electronic device 500 described with reference to FIG. 18A.
  • the car navigation device 1720 includes a processor 1721, a memory 1722, a global positioning system (GPS) module 1724, a sensor 1725, a data interface 1726, a content player 1727, a storage medium interface 1728, an input device 1729, a display device 1730, a speaker 1731, a wireless A communication interface 1733, one or more antenna switches 1736, one or more antennas 1737, and a battery 1738.
  • GPS global positioning system
  • the processor 1721 may be, for example, a CPU or SoC, and controls the navigation function and other functions of the car navigation device 1720.
  • the memory 1722 includes RAM and ROM, and stores data and programs executed by the processor 1721.
  • the GPS module 1724 uses GPS signals received from GPS satellites to measure the position (such as latitude, longitude, and altitude) of the car navigation device 1720.
  • the sensor 1725 may include a group of sensors, such as a gyroscope sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 1726 is connected to, for example, an in-vehicle network 1741 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 1727 reproduces content stored in a storage medium (such as CD and DVD), which is inserted into the storage medium interface 1728.
  • the input device 1729 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1730, and receives an operation or information input from the user.
  • the display device 1730 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 1731 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1733 supports any cellular communication scheme (such as 4G LTE or 5G NR), and performs wireless communication.
  • the wireless communication interface 1733 may generally include, for example, a BB processor 1734 and an RF circuit 1735.
  • the BB processor 1734 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1735 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1737.
  • the wireless communication interface 1733 can also be a chip module on which the BB processor 1734 and the RF circuit 1735 are integrated. As shown in FIG.
  • the wireless communication interface 1733 may include multiple BB processors 1734 and multiple RF circuits 1735.
  • FIG. 23 shows an example in which the wireless communication interface 1733 includes a plurality of BB processors 1734 and a plurality of RF circuits 1735, the wireless communication interface 1733 may also include a single BB processor 1734 or a single RF circuit 1735.
  • the wireless communication interface 1733 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1733 may include a BB processor 1734 and an RF circuit 1735 for each wireless communication scheme.
  • Each of the antenna switches 1736 switches the connection destination of the antenna 1737 among a plurality of circuits included in the wireless communication interface 1733, such as circuits for different wireless communication schemes.
  • the antenna 1737 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antenna 1737 may be arranged in an antenna array matrix, for example, and used for the wireless communication interface 1733 to transmit and receive wireless signals.
  • the car navigation device 1720 may include an antenna 1737 for each wireless communication scheme.
  • the antenna switch 1736 may be omitted from the configuration of the car navigation device 1720.
  • the battery 1738 supplies power to each block of the car navigation device 1720 shown in FIG. 23 via a feeder line, which is partially shown as a dashed line in the figure.
  • the battery 1738 accumulates electric power supplied from the vehicle.
  • one or more units included in the processing circuit 101 described with reference to FIG. 11A or the processing circuit 501 described with reference to FIG. 18A may be implemented in the wireless communication interface 1733.
  • at least a part of these components may be implemented in the processor 1721.
  • the car navigation device 1720 includes a part (for example, the BB processor 1734) or the whole of the wireless communication interface 1733, and/or a module including the processor 1721, and one or more components may be implemented in the module.
  • the module can store a program that allows the processing to function as one or more components (in other words, a program for allowing the processor to perform the operation of one or more components), and can execute the program.
  • a program for allowing the processor to function as one or more components may be installed in the car navigation device 1720, and the wireless communication interface 1733 (for example, the BB processor 1734) and/or the processor 1721 may Execute the procedure.
  • a device including one or more components a car navigation device 1720 or a module may be provided, and a program for allowing the processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • the communication unit 105 described with reference to FIG. 11A or the communication unit 505 described with reference to FIG. 18A may be implemented in the wireless communication interface 1933 (for example, the RF circuit 1935) .
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1740 including one or more blocks of a car navigation device 1720, an in-vehicle network 1741, and a vehicle module 1742.
  • vehicle module 1742 generates vehicle data (such as vehicle speed, engine speed, and failure information), and outputs the generated data to the vehicle network 1741.
  • a plurality of functions included in one unit in the above embodiments may be realized by separate devices.
  • the multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions can be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only processing performed in time series in the described order, but also processing performed in parallel or individually rather than necessarily in time series. Furthermore, even in the steps processed in time series, needless to say, the order can be changed appropriately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及无线通信系统中的电子设备、通信方法和存储介质。提供了一种用户设备侧的电子设备,在所述用户设备和集成接入和回传(IAB)系统中的第一节点之间具有接入链路,在第一节点与第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,所述电子设备包括处理电路,被配置为:测量来自第三节点的信号干扰;向第一节点上报干扰测量结果;以及在第二节点至少部分基于所述干扰测量结果超过预定阈值而确定切换所述用户设备使用的接入链路的情况下,建立所述用户设备和第二节点之间的直接接入链路,并且断开所述用户设备和第一节点之间的接入链路。

Description

电子设备、通信方法和存储介质 技术领域
本公开涉及电子设备、通信方法和存储介质,更具体地,本公开涉及适用于集成接入和回传(IAB)系统的多用户MIMO增强的电子设备、通信方法和存储介质。
背景技术
作为下一代无线通信标准,5G NR(New Radio,新无线电)使用更高的频段,例如毫米波频段,并且应用大规模天线和多波束系统,从而能够提供更高的系统速率和频谱效率。大规模MIMO(Massive MIMO)技术进一步扩展了对于空间域的利用,而波束赋形(Beamforming)技术用于形成较窄的指向性波束以对抗高频信道中存在的较大的路径损耗,它们均已经成为5G通信的关键技术。
IAB是5G NR网络部署的一种重要形式,尤其是在用户密集分布的场景中。由于IAB在5G网络铺设和覆盖方面的关键性作用,目前IAB已经成为业界的热点关注话题。
图1例示了IAB系统的示意图。如图1中所示,IAB主节点(IAB donor)向两个IAB节点(IAB node)提供无线回传功能。在IAB系统的节点之间可以建立无线回传链路(backhaul link),在节点与接入的用户设备之间可以建立无线接入链路(access link)。
IAB系统中的节点支持其接入用户(包括UE和接入的子节点)的多用户MIMO(MU-MIMO)传输。在如图1所示的单跳两层IAB系统中,主节点利用同一时频资源为其小区(cell)内的子节点1、子节点2和用户5提供多用户MIMO服务;对于第2层,子节点1与子节点2利用同一时频资源为其小小区(small cell)内的接入用户提供多用户MIMO服务,例如,子节点1服务UE1与UE2,子节点2服务UE3与UE4。
然而,由于采用相同的频段,某个子节点服务的接入用户可能受到相邻子节点带来的小小区间干扰,导致系统的性能降低。例如在图1所示的例子中,子节点1和子 节点2的小小区之间有可能产生信号干扰。
在传统蜂窝小区系统中,相邻基站可以通过例如X2接口进行时频资源协同调度,避免将UE2与UE3调度在同一个时频资源块内;在毫米波蜂窝小区系统中,相邻毫米波小区基站可以通过例如Xn接口进行时频域波束域的联合调度,同样可以有效避免小区间干扰。然而,基于相邻小区间的协同资源调度需要在相邻基站之间传输额外的信令,带来额外的开销,并且也没有利用IAB系统的多层结构特性。
因此,存在对于提供适用于IAB系统的多用户MIMO传输方案以避免或降低用户间干扰的需求。
发明内容
本公开提供了多个方面,以满足上述需求。
在下文中给出了关于本公开的简要概述,以便提供关于本公开的一些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图用来确定本公开的关键性部分或重要部分,也不是意图用来限定本公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
根据本公开的一个方面,提供了一种用户设备侧的电子设备,在所述用户设备和集成接入和回传(IAB)系统的第一节点之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,所述电子设备包括处理电路,处理电路被配置为:测量来自第三节点的信号干扰;向第一节点上报干扰测量结果;以及在第二节点至少部分基于所述干扰测量结果超过预定阈值而确定切换所述用户设备使用的接入链路的情况下,建立所述用户设备和第二节点之间的直接接入链路,并且断开所述用户设备和第一节点之间的接入链路。
根据本公开的一个方面,提供了一种用于集成接入和回传(IAB)系统中的节点的电子设备,所述节点记为第一节点,在第一节点和用户设备之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的 网络拓扑关系中第二节点是第一节点的父节点,所述电子设备包括处理电路,处理电路被配置为:从所述用户设备接收对于来自第三节点的信号干扰的干扰测量结果;在第二节点至少部分基于所述干扰测量结果超过预定阈值而确定切换所述用户设备使用的接入链路的情况下,从第二节点接收关于断开第一节点与所述用户设备之间的接入链路的指示;以及断开第一节点与所述用户设备之间的接入链路。
根据本公开的一个方面,提供了一种用于集成接入和回传(IAB)系统中的节点的电子设备,所述节点记为第二节点,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第一节点是第二节点的子节点,并且在用户设备和第一节点之间具有接入链路,所述电子设备包括处理电路,处理电路被配置为:至少部分基于所述用户设备对于来自第三节点的信号干扰的干扰测量结果超过预定阈值,确定切换所述用户设备使用的接入链路;以及响应于所述确定,建立第二节点和所述用户设备之间的直接接入链路,并且指示第一节点断开第一节点与所述用户设备之间的接入链路。
根据本公开的一个方面,提供了一种用于集成接入和回传(IAB)系统中的节点的电子设备,所述节点记为第二节点,在第二节点与所述IAB系统的第一节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,并且在用户设备和第一节点之间具有接入链路,所述电子设备包括处理电路,处理电路被配置为:通过在第二节点和所述用户设备之间传输的参考信号,获取经由所述回传链路、所述第一节点和所述接入链路的下行基带联结信道的联结信道状态信息,其中第一节点工作在放大转发(AF)模式下;以及基于所获取的联结信道状态信息,计算用于所述用户设备的下行传输的数字预编码矩阵。
根据本公开的一个方面,提供了一种用户设备侧的电子设备,在所述用户设备和集成接入和回传(IAB)系统中的第一节点之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,所述电子设备包括处理电路,处理电路被配置为接收经由所述回传链路、所述第一节点和所述接入链路传输的数据流,其中第一节点工作在放大转发(AF)模式下,其中所述数据流由第二节点利用数字预编码矩阵进行预编码,其中所述数字预编码矩阵是基于经由所述回传链路、所述第一节点和所述 接入链路的下行基带联结信道的联结信道状态信息而计算的,并且其中所述联结信道状态信息是通过在第二节点和所述用户设备之间传输的参考信号而获取的。
根据本公开的一个方面,提供了一种用于集成接入和回传(IAB)系统中的节点的电子设备,所述节点记为第一节点,在第一节点和用户设备之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,所述电子设备包括处理电路,处理电路被配置为在放大转发(AF)模式下向所述用户设备转发来自第二节点的数据流,其中所述数据流由第二节点利用数字预编码矩阵进行预编码,其中所述数字预编码矩阵是基于经由所述回传链路、所述第一节点和所述接入链路的下行基带联结信道的联结信道状态信息而计算的,并且其中所述联结信道状态信息是通过在第二节点和所述用户设备之间传输的参考信号而获取的。
根据本公开的一个方面,提供了包括上述任何处理电路所执行的操作的通信方法。
根据本公开的一个方面,提供了一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被运行时实现上述任何处理电路所执行的操作。
附图说明
本公开可以通过参考下文中结合附图所给出的详细描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的要素。所有附图连同下面的详细说明一起包含在本说明书中并形成说明书的一部分,用来进一步举例说明本公开的实施例和解释本公开的原理和优点。其中:
图1示出了IAB系统的示意图;
图2示出了IAB系统的网络拓扑关系;
图3A和3B分别是用户平面和控制平面的NR无线电协议架构;
图4示出了IAB系统的简化示意图;
图5示出了根据本公开的第一实施例的层间链路切换的示例性流程图;
图6示出了UE的接入链路在切换前后的情况;
图7示出了波束扫描的示意图;
图8示出了图4的IAB系统在切换前后的链路变化;
图9、10示出了根据本公开的第一实施例的层间链路切换的信令流程的示例;
图11A、11B示出了根据本公开的第一实施例的用于用户设备的电子设备和通信方法;
图12A、12B示出了根据本公开的第一实施例的用于子节点的电子设备和通信方法;
图13A、13B示出了根据本公开的第一实施例的用于主节点的电子设备和通信方法;
图14示出了根据本公开的第二实施例的层间联结传输的传输模型;
图15、16示出了根据本公开的第二实施例的层间联结传输的信令流程的示例;
图17A、17B示出了根据本公开的第二实施例的用于主节点的电子设备和通信方法;
图18A、18B示出了根据本公开的第二实施例的用于用户设备的电子设备和通信方法;
图19A、19B示出了根据本公开的第二实施例的用于子节点的电子设备和通信方法;
图20示出了根据本公开的基站的示意性配置的第一示例;
图21示出了根据本公开的基站的示意性配置的第二示例;
图22示出了根据本公开的智能电话的示意性配置示例;
图23示出了根据本公开的汽车导航设备的示意性配置示例。
通过参照附图阅读以下详细描述,本公开的特征和方面将得到清楚的理解。
具体实施方式
在下文中将参照附图来详细描述本公开的各种示例性实施例。为了清楚和简明起见,在本说明书中并未描述实施例的所有特征。然而应注意,在实现本公开的实施例时可以根据特定需求做出很多特定于实现方式的设置,以便实现开发人员的具体目标,例如,符合与设备及业务相关的限制条件,并且这些限制条件可能会随着实现方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是较复杂和费事的,但对得益于本公开内容的本领域技术人员来说,这种开发公开仅仅是例行的任务。
此外,还应注意,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与至少根据本公开的技术方案密切相关的处理步骤和/或设备结构,而省略了与本公开关系不大的其他细节。以下对于示例性实施例的描述仅仅是说明性的,不意在作为对本公开及其应用的任何限制。
为了方便解释本公开的技术方案,下面将在5G NR的背景下描述本公开的各个方面。但是应注意,这不是对本公开的应用范围的限制,本公开的一个或多个方面还可以被应用于例如4G LTE/LTE-A等已经普遍使用的无线通信系统,或者将来发展的各种无线通信系统。下面的描述中提及的架构、实体、功能、过程等并非局限于NR通信系统中的那些,而可以在其它的通信标准中找到对应。
IAB系统概述
IAB系统由一系列IAB基站(本文中也称为“节点”)按照一定的网络拓扑关系形成接入网络,其中所谓IAB基站是指集成了无线接入功能和无线回传功能的基站。IAB基站可以是5G NR基站。根据3GPP发布的第一个5G标准R15,NR基站包括gNB和ng-eNB,其中gNB是在R15中新定义的节点,提供与终端设备(也可称为“用户设备”,下文中有时简称为“UE”)终接的NR用户平面和控制平面协议;ng-eNB是为了与4G LTE通信系统兼容而定义的节点,其可以是LTE无线接入网的演进型节点B(eNB)的升级,提供与UE终接的演进通用陆地无线接入(E-UTRA)用户平面和控制平面协议。
应注意,IAB基站不仅限于上面这两种基站,而是涵盖网络侧的各种控制设备。例如,除了5G通信标准中规定的gNB和ng-eNB之外,取决于本公开的技术方案被应用的场景,IAB基站例如还可以是LTE通信系统中的eNB、远程无线电头端、无线 接入点、无人机控制塔台、自动化工厂中的控制节点或者执行类似功能的通信装置。后面的章节将详细描述基站的应用示例。
另外,在本公开中,术语“UE”具有其通常含义的全部广度,包括与基站通信的各种终端设备或车载设备。作为例子,UE例如可以是移动电话、膝上型电脑、平板电脑、车载通信设备、无人机、自动化工厂中的传感器和执行器等之类的终端设备或其元件。后面的章节将详细描述UE的应用示例。
IAB系统的节点可以分为两类:一类是提供了到核心网的接口的IAB主节点(IAB donor,本文中简称为“主节点”),主节点与核心网之间具有诸如光纤之类的有线连接;另一类是不提供到核心网的接口的IAB节点(IAB node,本文中有时简称为“子节点”),IAB节点与核心网之间不具有有线连接。
图1例示了单跳IAB系统的示意图。如图1中所示,IAB主节点与IAB节点(子节点1、子节点2)之间分别具有无线回传链路,IAB节点与其UE之间具有接入链路,由此UE可以经由IAB节点连接到IAB主节点,以访问核心网(图中未示出)。IAB主节点与其接入用户(例如,UE5)之间也可以具有接入链路,为了区分的目的,本文中称其为“直接接入链路”。
IAB节点在IAB系统中扮演用户和基站的双重角色。例如,如图1中所示,在第1层内,子节点1和子节点2可以看作是主节点的特别的接入用户,主节点在其小区内为子节点1、子节点2和UE5提供服务;在第2层内,子节点1和子节点2又分别是UE1、UE2和UE3、UE4的基站,它们分别在其小小区内为接入的用户设备提供服务。
介于IAB主节点和UE之间的IAB节点对于经过它的传输数据可以具有两种工作模式:一种是放大转发(Amplifying and Forwarding,AF)模式,一种是解码转发(Deconding and Forwarding,DF)模式。在AF模式下,IAB节点仅放大和转发所接收的模拟信号,常用于处理一些覆盖盲区。工作在AF模式下的IAB节点对于UE和IAB主节点来说是透明的,它放大所接收的一切信号,包括有用信号、噪声和干扰,这意味IAB节点的输出端的信噪比不会高于输入端的信噪比,因此适用于高信噪比的环境。在DF模式下,IAB节点在将所接收的信号转发至其接入用户之前,会对接收信号进行解码并重新编码。这个解码-重新编码过程的意义在于不会放 大噪声和干扰,因此特别适用于低信噪比的环境。然而,DF模式下的解码-重新编码过程往往意味着较大的时延。
应理解,实际的IAB系统可以具有不止两层,即,IAB主节点与UE之间的链路经过不止一个IAB节点。图2一般性地例示了多跳IAB系统的网络拓扑关系的示意图。如果一个IAB节点控制和调度另一个IAB节点,则该IAB节点是另一个IAB节点的父节点(Parent Node)。IAB节点与其父节点之间具有父回传链路(BH),包括下行父回传链路和上行父回传链路。如果一个IAB节点在另一个IAB节点的控制之下,则该IAB节点是另一个IAB节点的子节点。IAB节点与其子节点之间具有子回传链路,包括下行子回传链路和上行子回传链路。显然,同一个IAB节点可能既是父节点又是子节点(Child Node),但是IAB主节点只能是父节点。同时,主节点和各子节点均可以为其接入UE提供无线接入链路,包括下行接入链路和上行接入链路。
可见,IAB系统的节点相互之间通过无线回传链路进行数据回传,而不需要有线传输网络,因此,基站更容易部署在密集场景,减轻了部署有线传输网络的成本。
下面结合图3A和3B来描述在5G NR中用于IAB基站和UE的用户平面和控制平面的无线电协议栈。无线电协议栈可以包括层1、层2和层3。
层1(L1)是最低层并实现各种物理层信号处理以提供信号的透明传输功能。L1层将在本文中被称为物理层(PHY)。
简要介绍基站侧实现物理层的各种信号处理功能,包括编码和交织以促成UE的前向纠错(FEC)以及基于各种调制方案(例如,二进制相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM)等)向信号星座进行的映射。随后,经编码和调制的码元被拆分成并行流。每个流随后与参考信号一起用于产生携带时域码元流的物理信道。该码元流被空间预编码以产生一个或多个空间流。信道估计可被用来确定编码和调制方案以及用于空间处理。该信道估计可以从由UE传送的参考信号和/或信道状况反馈推导出来。每个空间流随后经由分开的发射机被提供给不同的天线。每个发射机用各自的空间流来调制RF载波以供传输。
在UE处,每个接收机通过其各自相应的天线来接收信号。每个接收机恢复出被调制到射频(RF)载波上的信息并将该信息提供给物理层的各种信号处理功能。在物理层对该信息执行空间处理以恢复出以UE为目的地的任何空间流。如果有多个空间流以UE为目的地,那么它们可被组合成单个码元流。随后将该码元流从时域转换到频域。通过确定最有可能由基站传送了的信号星座点来恢复和解调每个码元、以及参考信号。这些软判决可以基于信道估计。这些软判决随后被解码和解交织以恢复出原始由基站在物理信道上传送的数据和控制信号。这些数据和控制信号随后被提供给更高层处理。
层2(L2层)在物理层之上。在用户平面中,L2层包括介质接入控制(MAC)子层、无线电链路控制(RLC)子层、分组数据汇聚协议(PDCP)子层、以及业务数据适配协议(SDAP)子层。另外,在控制平面中,L2层包括MAC子层、RLC子层、PDCP子层。这些子层的关系在于:物理层为MAC子层提供传输信道,MAC子层为RLC子层提供逻辑信道,RLC子层为PDCP子层提供RLC信道,PDCP子层为SDAP子层提供无线电承载。
在控制平面中,UE和基站中还包括层3(L3层)中的无线电资源控制(RRC)子层。RRC子层负责获得无线电资源(即,无线电承载)以及负责使用基站与UE之间的RRC信令来配置各下层。另外,UE中的非接入层(NAS)控制协议执行例如认证、移动性管理、安全控制等功能。
基站和UE都可以具有许多天线以支持大规模MIMO技术。对于天线模型,一般围绕天线定义了以下三级的映射关系,使其能够顺利承接信道模型和通信标准。
第一级是最基本的物理单元——天线,也可以称为天线阵元。每个天线阵元按照各自的幅度参数和相位参数辐射电磁波。
天线阵元按照矩阵的形式被布置成一个或多个天线阵列。一个天线阵列可以由整行、整列、多行、多列的天线阵元构成。在这一级,每个天线阵列实际上构成一个收发单元(Transceiver Unit,TXRU)。每一个TXRU都是可独立配置的。通过配置组成该TXRU的天线阵元的幅度参数和/或相位参数,实现对该TXRU天线图样的调整,天线阵列内的所有天线阵元发射的电磁波辐射形成指向特定空间方向的较窄的波束,即,实现波束赋形。
最后,一个或多个TXRU通过逻辑映射构成系统层面上看到的天线端口(Antenna Port)。“天线端口”被定义为使得运送某个天线端口上的符号的信道可以从运送同一天线端口上的另一符号的信道推断出。例如,对于与物理下行共享信道(PDSCH)相关联的解调参考信号(DMRS),当PDSCH符号和DMRS符号都在为PDSCH调度的相同传输资源内,即在相同的时隙和物理资源块组(PRG)中时,运送一个天线端口上的PDSCH符号的信道可以从运送同一天线端口上的DMRS符号的信道推断出。这意味着,同一天线端口传输的不同信号所经历的信道环境一样。
DMRS参考信号是UE特定的参考信号,即每个UE的DMRS信号不同,用于对无线信道进行评估,以利于信号解调。对于同一个UE,为了支持多层MIMO传输(即,多路空间流),需要调度多个正交的DMRS端口,其中每个DMRS端口与MIMO的每一层相对应。“正交”可通过梳状结构的频分复用(FDM)、时分复用(TDM)以及码分复用(CDM)来达到。
简单描述基站或UE利用天线阵列发送数据的过程。首先,表示用户数据流的基带信号通过数字预编码被映射到m(m≥1)个射频链路上。每个射频链路对基带信号进行上变频以得到射频信号,并将射频信号传输到对应的天线端口的天线阵列上。天线阵列通过调节幅度和相位来对射频信号进行波束赋形以形成对准发射方向的较窄波束,该处理也可以被称为“模拟预编码”。天线阵列接收波束则具有相反的过程。
另外,通过在天线端口层面上进行数字预编码操作,可以实现更为灵活的数字波束赋形,例如针对单用户或者多用户的预编码,实现多流或多用户传输。
MIMO技术的使用使得基站和UE能够利用空域来支持空间复用、波束赋形和发射分集。IAB系统中的节点支持其接入用户的下行和上行多用户MIMO传输,例如,对去往UE和子节点的下行传输的空间复用、对来自UE和子节点的上行传输的空间复用。提供多用户MIMO服务的节点在相同的时频资源上同时传送不同的数据流,这些数据流被给发送给多个UE以增加系统总容量。
但是,由于子节点在IAB系统中既可以视为基站,又可以视为用户,因此相比于传统蜂窝系统,IAB系统的多用户MIMO具有更复杂的拓扑结构。图4是图1中所示 的单跳两层IAB系统的简化示意图,其中仅示出了下行链路。如图4中所示,对于第1层,子节点1与子节点2均可视为特别的接入用户,主节点利用同一时频资源为其小区内的子节点1、子节点2和用户5提供多用户MIMO服务;对于第2层,子节点1与子节点2均可视为基站,利用同一时频资源为其小小区内的接入用户提供多用户MIMO服务,例如,子节点1服务UE1与UE2,子节点2服务UE3与UE4。
为避免层间干扰,在IAB系统中,节点与其子节点采用频分复用的工作模式。在图4所示的示例性IAB系统中,第1层内的回传链路与第2层内的接入链路工作在不同的频段。同时,对于接入链路和回传链路,均采用下行与上行时分双工(TDD)的双工模式以利用信道互易性降低下行信道估计开销。
然而,虽然IAB系统的不同层内采用频分复用以避免层间干扰,但是相同层内的链路可能工作在同一频段内。例如,在图4所示的例子中,子节点1和子节点2有可能使用相同或相近的时频资源。此时,如果子节点1为UE1、UE2提供多用户MIMO传输,子节点2为UE3、UE4提供多用户MIMO传输,这两个相邻的小小区之间可能产生干扰。例如,UE2和UE3位置相近,UE2有可能受到由于从子节点2到UE3的下行传输导致的信号干扰,类似地,UE3也有可能受到由于从子节点1到UE2的下行传输导致的信号干扰。
本公开提供了旨在减少或消除这种小小区间干扰的多用户MIMO传输的改进方案。
第一实施例
下面参照附图描述第一实施例。
根据本公开的第一实施例,通过将受干扰UE所使用的接入链路切换到IAB系统的另一层来避免相同层内来自相邻小小区的信号干扰。在下文中,将以图4中示出的单跳两层IAB系统作为描述的场景,其中UE2受到来自子节点2的同频信号干扰。但是应注意,本实施例针对的场景不限于此,例如,IAB系统可以不限于是两层的,而可以是多于两层的,并且产生同频干扰的节点可以不限于是同一主节点下的子节点。
图5是示出了根据本公开的第一实施例的层间切换过程的简化流程图。
首先,受干扰用户设备UE2进行干扰测量,以便了解受干扰的程度。优选地,UE2可以通过测量参考信号来准确地测量干扰。
例如,参考信号可以是用于信道评估的信道状态信息参考信号(CSI-RS)。产生干扰的子节点2发射非零功率CSI-RS(NZP-CSI-RS),该NZP-CSI-RS资源可以是主节点协调分配给子节点2的。为了便于UE2接收到该NZP-CSI-RS,子节点2可以使用原本用于向UE3下行传输的发射波束来发射此参考信号。
UE2利用天线阵列接收来自子节点2的NZP-CSI-RS,并进行信号测量。UE2例如可以测量参考信号接收功率(RSRP)作为干扰测量结果。
在测量过程中,为了避免来自子节点1的下行传输的影响,主节点还可以为子节点1分配零功率CSI-RS(ZP-CSI-RS)。当然,子节点1发射ZP-CSI-RS相当于不发射信号,由此,UE2所接收到的信号就是来自子节点2的干扰。
然后,UE2将所得到的干扰测量结果上报给相对应的子节点1。UE2可以将干扰测量结果(例如,RSRP)量化成预定数量的比特(例如,7比特),并将量化的干扰测量结果与CSI-RS资源指示符(CRI)一起发送给子节点1。
干扰测量结果可用于评估干扰的严重程度。在一个优选的例子中,来自UE2的干扰测量结果可以与预定阈值相比较。在干扰测量结果是RSRP的情况下,预定阈值可以是预先定义的RSRP。
干扰测量结果与预定阈值之间的比较处理可以发生在子节点1处。在此例子中,子节点1将接收的干扰测量结果与预定阈值相比较。如果经过比较,干扰测量结果超过预定阈值,则表明UE2当前使用的接入链路受到的信号干扰较为严重。子节点1向主节点通知比较结果。例如子节点1可以通过回传链路向主节点发送关于尝试切换UE2所使用的接入链路的链路切换尝试请求,或者子节点1可以通过回传链路向主节点发送指示干扰测量结果和预定阈值之间的大小关系的信息。反之,如果干扰测量结果不超过预定阈值,则表明UE当前使用的接入链路受到的信号干扰未到影响通信性能的程度,无需切换链路。
作为替代,干扰测量结果与预定阈值之间的比较处理可以发生在主节点处。在此例子中,子节点1通过回传链路将接收的干扰测量结果转发至主节点。主节点在 接收到干扰测量结果之后,将此干扰测量结果与预定阈值相比较。如果经过比较,干扰测量结果超过预定阈值,则表明UE2当前使用的接入链路受到的信号干扰较为严重。反之,如果干扰测量结果不超过预定阈值,则表明UE当前使用的接入链路受到的信号干扰未到严重程度,无需切换链路。
接下来,主节点确定是否需要切换UE2所使用的接入链路。这种确定处理至少部分基于UE2受干扰的程度。
作为最简单的确定处理,如果上述比较的结果是干扰测量结果超过预定阈值,则主节点做出将切换UE2所使用的接入链路的确定。这种确定处理首要关注UE2的受干扰问题。
可替代地,主节点在确定是否需要切换UE2所使用的接入链路时,还可以考虑其它的因素。
在下面描述的确定处理示例中,主节点还考虑链路切换对于链路质量的影响。
图6例示了对于一般UEk的接入链路在切换前后的情况,其中图6(a)关于下行接入链路,而图6(b)关于上行接入链路。
参照图6(a),主节点与UEk之间的直接接入链路的下行链路质量
Figure PCTCN2020074089-appb-000001
可以表示为:
Figure PCTCN2020074089-appb-000002
其中,
Figure PCTCN2020074089-appb-000003
可以由例如RSRP表征,P D,k表示主节点的发射功率,
Figure PCTCN2020074089-appb-000004
表示主节点发射波束赋形增益,
Figure PCTCN2020074089-appb-000005
表示UEk接收波束赋形增益,L D,k表示直接接入链路的路径衰减。
同样,子节点1与UEk之间的接入链路的下行链路质量
Figure PCTCN2020074089-appb-000006
可以表示为:
Figure PCTCN2020074089-appb-000007
其中,
Figure PCTCN2020074089-appb-000008
可以由例如RSRP表征,P A,k表示子节点的发射功率,
Figure PCTCN2020074089-appb-000009
表示子节点发射波束赋形增益,
Figure PCTCN2020074089-appb-000010
表示UEk接收波束赋形增益,L A,k表示接入链路的路径衰减。
通常,主节点的发射功率比子节点的发射功率更大,因此P D,k>P A,k;而直接 接入主节点的链路衰减比接入子节点的链路衰减要大,因此,L D,k>L A,k;假设主节点与子节点的每个天线端口配置同样的天线数目,则发射波束赋形增益可以假设
Figure PCTCN2020074089-appb-000011
因此,如果P D,k-L D,k>P A,k-L A,k,对于UEk,
Figure PCTCN2020074089-appb-000012
是可能的,即,接入主节点比接入子节点可能获得更高的下行接收功率,从而获取更好的下行数据服务性能。反之,如果切换后的接入链路质量劣化,则链路切换可能得不偿失。为此,主节点可以从UE收集关于链路质量的变化的信息。
类似地,将参照图6(b)探讨上行接入链路的链路质量变化。
参照图6(b),主节点与UEk之间的直接接入链路的上行链路质量
Figure PCTCN2020074089-appb-000013
可以表示为:
Figure PCTCN2020074089-appb-000014
其中,
Figure PCTCN2020074089-appb-000015
可以由例如RSRP表征,P k表示UEk的发射功率,
Figure PCTCN2020074089-appb-000016
表示UEk发射波束赋形增益,
Figure PCTCN2020074089-appb-000017
表示主节点接收波束赋形增益,L D,k表示直接接入链路的路径衰减。
同样,子节点1与UEk之间的接入链路的下行链路质量
Figure PCTCN2020074089-appb-000018
可以表示为:
Figure PCTCN2020074089-appb-000019
其中,
Figure PCTCN2020074089-appb-000020
可以由例如RSRP表征,P k表示UEk的发射功率,
Figure PCTCN2020074089-appb-000021
表示UEk发射波束赋形增益,
Figure PCTCN2020074089-appb-000022
表示子节点接收波束赋形增益,L A,k表示接入链路的路径衰减。
假设主节点与子节点的每个天线端口配置同样的天线数目,则接收波束赋形增益相同,即
Figure PCTCN2020074089-appb-000023
而由于直接接入链路衰减L D,k更大,因此一般
Figure PCTCN2020074089-appb-000024
即,一般UE通过接入子节点进行上行数据传输可以获得更好的传输性能。
经过如上讨论,在上行方向和下行方向上,UE接入主节点的链路和接入子节点的链路之间的切换可能导致不同的链路质量变化。鉴于这种变化,UE的上行传输和下行传输分离的双连接架构可能是有用的,即,UE的上行链路接入的节点和下行链路接入的节点可以不同。
下面描述主节点考虑链路质量变化的确定处理的详细示例。
首先,主节点或子节点1可以指示UE2通过小区搜索来初始接入主节点,以尝 试建立主节点与UE2之间的直接接入链路。接下来,主节点和UE2可以通过波束训练来确定直接接入链路上使用的最佳发射波束和最佳接收波束。
下面参照图7来简单描述基站与UE之间的波束训练过程。如图6中所示,基站1000可使用方向不同的n t_DL个(n t_DL≥1)下行发射波束,UE1004可使用方向不同的n r_DL个(n r_DL≥1)下行接收波束。基站1000和UE1004通过波束扫描的方式遍历所有的发射波束-接收波束组合,以便选择出最佳的发射波束-接收波束对。
在下行波束扫描中,首先,基站1000按照下行扫描周期通过每个发射波束向UE1004发送n r_DL个下行参考信号,从而基站1000依次向UE1004发送n t_DL×n r_DL个下行参考信号。基站1000可以利用的参考信号资源例如包括NZP-CSI-RS资源和同步信号及物理广播信道块(SSB)资源。
UE1004通过其n r_DL个接收波束1006分别接收每个发射波束,并对波束信号进行测量,则UE1004的n r_DL个接收波束共接收并测量来自基站1000的n t_DL×n r_DL个下行参考信号。例如,UE1004可以测量参考信号接收功率(RSRP)、参考信号接收质量(RSRQ)、信号与干扰加噪声比(SINR)等。然后,UE1004通过波束报告的形式将波束信息上报给基站1000。基于所上报的波束信息,基站1000可以从UE1004上报的发射波束中选择最佳发射波束以用于与UE1004的下行传输。为了便于UE1004进行波束接收,基站1000通过传输配置指示(TCI)状态将所选择的最佳发射波束指示给UE1004。例如,基站1000可以将与最佳发射波束相对应的参考信号指示给UE1004,由此UE1004可以确定在波束扫描过程中与该参考信号对应的接收波束作为最佳接收波束。
上行扫描过程与下行扫描过程类似,基站从1000从其n r_UL个(n r_UL≥1)上行接收波束中选择最佳接收波束,UE1004从其n t_UL个(n t_UL≥1)上行发射波束中选择最佳发射波束,对此不再赘述。
通过上述扫描训练,主节点和UE2可以选择最适合无线信道的波束。其中,在波束训练过程中,UE2除了测量波束信息之外,还测量在波束训练期间的最佳下行链路质量
Figure PCTCN2020074089-appb-000025
这个最佳下行链路质量可以在一定程度上表示将来在主节点和UE2之间建立的直接接入链路的下行链路质量。另外,UE2还可以测量其与子节点1之间的现有接入链路的下行链路质量
Figure PCTCN2020074089-appb-000026
UE2可以计算链路切换导致的下行链路质量 的增益:
Figure PCTCN2020074089-appb-000027
应理解,所谓的“增益”
Figure PCTCN2020074089-appb-000028
不一定是正值,在有些情况下可能为负值,这意味着链路切换将会导致下行接入链路的链路质量变差。
UE2将关于下行链路质量的增益
Figure PCTCN2020074089-appb-000029
的信息上报给主节点,以供主节点确定是否切换UE2所使用的接入链路时参考。
在一个例子中,主节点比较下行链路质量的增益
Figure PCTCN2020074089-appb-000030
是否大于某个特定阈值(可以为负值、零或正值),如果是,则表明链路切换不会导致不能容忍的链路质量劣化,并且主节点做出将切换UE2所使用的接入链路的确定。如果否,则表明链路切换对链路质量的影响不可忽略,主节点将不做出切换UE2所使用的接入链路的确定。
在另一个例子中,考虑到UE2和UE3的下行传输可能是相互干扰的,所以切换UE3的接入链路也可以达到消除用户间干扰的效果。由此,类似于UE2,主节点可以执行对于UE3执行波束训练,并且UE3可以测量在波束训练期间UE3与主节点之间的直接接入链路的最佳下行链路质量
Figure PCTCN2020074089-appb-000031
测量其与子节点1之间的现有接入链路的下行链路质量
Figure PCTCN2020074089-appb-000032
并且计算链路切换导致的下行链路质量的增益:
Figure PCTCN2020074089-appb-000033
UE3将关于UE3的下行链路质量的增益
Figure PCTCN2020074089-appb-000034
的信息上报给主节点,由此主节点可以通过如下准则来确定链路切换对于哪个UE的效果更好:
Figure PCTCN2020074089-appb-000035
k=2或3。
在UE2的下行链路质量的增益超过UE3的下行链路质量的增益,将针对UE2执行下面的链路切换处理。反之,则针对UE3执行下面的链路切换处理。
回到图5,在主节点确定切换UE2所使用的接入链路的情况下,主节点建立主节点与UE2之间的直接接入链路,并且指示子节点1断开子节点1与UE2之间的接入链路,由此,UE2使用的接入链路从第2层切换到第1层。
在一个例子中,上面所述的链路切换可以指接入链路中的下行链路和上行链路 都切换,即,建立主节点与UE2之间的下行接入链路和上行接入链路,断开子节点1与UE2之间的下行接入链路和上行接入链路。
在另一个例子中,上面所述的链路切换可以仅指下行接入链路的切换。具体而言,根据用户设备上报的设备能力信息,根据本公开的IAB系统可以支持上下行传输分离的双连接架构。经过链路切换,UE2从主节点接收下行数据,向子节点1发送上行数据。由于主节点和子节点之间采用频分复用,所以UE2与主节点之间的下行接入链路和UE2与子节点1之间的上行接入链路工作在不同的频段,即,不同的带宽部分(BWP)。
在进一步的例子中,上面所述的链路切换可以仅指下行数据链路的切换。具体而言,响应于主节点确定切换UE2所使用的接入链路,建立主节点与UE2之间的下行数据链路,断开子节点1与UE2之间的下行数据链路,但是维持子节点1与UE2之间的上行链路(包括上行数据链路和上行控制链路)以及下行控制链路。这样做的好处在于,子节点1可以维持已切换的UE2的必要的下行控制信令,以利于快速的接入链路恢复。
如图8中所示,在经过链路切换之后,UE2的接入链路(至少是下行接入链路)从子节点1改为接入主节点,即,从第2层切换到第1层。由于IAB系统的不同层采用频分复用的特性,UE2与主节点之间的下行传输和UE3与子节点2之间的下行传输不会相互干扰,这提高了系统的通信性能。
虽然上面主要参照图4描述了单跳两层IAB系统的层间切换过程,但是应注意,本公开的第一实施例也适用于多跳IAB系统。优选地,对于具有N(N>2)层的IAB系统,待切换UE的接入链路可以从第N层切换至第N-1层,即,UE改为接入其接入节点的父节点。作为替代,待切换UE也可以切换至第N-2层、第N-3层等等,只要切换后的接入链路能够满足UE的通信需求。
在本公开的第一实施例中,需要注意的一个问题是,主节点需要为UE2的接入链路分配新的DMRS端口。NR基站对于MIMO传输能够支持有限数量的下行DMRS端口。例如,基于NR的下行工作模式1(TM1),对于多用户MIMO,最多支持12个下行DMRS端口;对单用户MIMO,最多支持8个下行DMRS端口。
在图4所示的示例性IAB系统中,子节点1工作在DF模式下,主节点通过回传链路向子节点1发送的UE1与UE2的数据在子节点1处先进行解调,再分别重新编码并转发至UE1与UE2。假设UE1和UE2都只有一路数据流,则主节点向子节点1发送数据流的方式可以包括:1)以一定规则混合为一路数据流进行传输;2)分为两路独立的数据流进行传输。方式1)只需要主节点向子节点1的回传链路配置一个DMRS端口,但对于每个UE的数据率较低,延迟较大;方式2)需要主节点向子节点1的回传链路配置两个DMRS端口,但对于每个UE的数据率较高,延迟较低。因此在子节点工作在DF模式时,允许主节点依据其各个子节点的接入链路的DMRS端口配置、数据率需求等灵活地配置回传链路的发送方式和DMRS端口。
一般性,记第j个子节点在第2层内对分配给接入链路的下行DMRS端口为
Figure PCTCN2020074089-appb-000036
基于接入用户的数据率需求,子节点可通过上行控制信息(UCI)向主节点上报它建议为回传链路配置的DMRS端口数
Figure PCTCN2020074089-appb-000037
其中
Figure PCTCN2020074089-appb-000038
基于该建议,主节点可以为该子节点的回传链路配置DMRS端口数为
Figure PCTCN2020074089-appb-000039
满足
Figure PCTCN2020074089-appb-000040
并通过下行控制信息(DCI)通知第j个子节点。
而在第一层中,主节点分配给诸如UE2之类的接入UE的直接接入链路的DMRS端口为
Figure PCTCN2020074089-appb-000041
应满足:
Figure PCTCN2020074089-appb-000042
因此,当根据本公开的第一实施例,主节点确定是否对待切换用户(例如,UE2)的接入链路进行层间切换时,主节点还应检查是否有足够的DMRS端口直接分配给待切换用户。如果DMRS端口数不足,主节点可依据需求重新分配给UE的直接接入链路和子节点的回传链路的DMRS端口,并调整回传链路的下行数据的发送方式,通过DCI通知对应的UE和子节点。
下面参照图9和图10来描述根据第一实施例的层间链路切换过程的信令流程图。
图9例示了根据第一实施例的层间链路切换的一个示例的信令流程图。首先,在ST01阶段,UE2进行干扰测量,例如,它测量由相邻小小区的子节点2发射的NZP-CSI-RS的RSRP,此时子节点1发射ZP-CSI-RS,以排除子节点1对于干扰测量的影响。
在ST02阶段,UE2将所测得干扰测量结果(例如,RSRP)上报至对应的子节点1。
在图9所示的示例中,在ST03阶段,子节点1在接收到干扰测量结果之后对UE2的受干扰程度进行评估。例如,子节点1将接收的干扰测量结果与预定阈值相比较,当干扰测量结果超过此阈值时,子节点1向主节点通知比较结果。例如,子节点1可以基于比较结果产生链路切换尝试请求,并将其发送到主节点。
另外,子节点1还可以向UE2通知比较结果,例如基于比较结果而产生的链路切换尝试指示,以指示UE2准备接入主节点。该链路切换尝试指示可以是触发UE2与主节点的初始接入过程的简单指示,也可以包含UE2初始接入所需要的更多信息,诸如主节点的小区ID、BWP等,以便于UE2快速接入主节点。
当接收到基于比较结果的链路切换尝试请求时,主节点确定是否需要切换接入链路。如上面所介绍的,主节点可以响应于接收到链路切换尝试请求就确定切换。或者,主节点还可以考虑诸如链路质量、可用DMRS端口、可用传输资源等其他因素。
主节点对UE2进行波束训练,以确定将要使用的发射波束和接收波束。同时,UE2可以确定在波束训练期间UE2与主节点之间的链路的最佳下行链路质量相比于UE2与子节点1之间的现有接入链路的下行链路质量的增益
Figure PCTCN2020074089-appb-000043
并将其反馈给主节点。如果UE2反馈的下行链路质量的增益
Figure PCTCN2020074089-appb-000044
超过特定阈值,则主节点可以确定切换链路。可替代地,主节点还可以收集在UE3的波束训练期间UE3与主节点之间的链路的最佳下行链路质量相比于UE3与子节点2之间的现有接入链路的下行链路质量的增益
Figure PCTCN2020074089-appb-000045
通过比较UE2和UE3的链路质量增益,主节点可以确定是切换UE2所使用的接入链路还是切换UE3所使用的接入链路。
如果选择UE2作为待切换用户,则在ST04阶段,主节点可以建立它与UE2之间的直接接入链路,并且向子节点1发送断开子节点1与UE2之间的接入链路的指示,以实现链路切换。
图10例示了根据第一实施例的层间链路切换的另一示例的信令流程图。
图10与图9相比,区别在于对于干扰的评估是在主节点而非子节点1处进行。 具体而言,在ST13阶段,子节点1将从UE2接收的干扰测量结果转发至主节点。然后,主节点可以将接收的干扰测量结果与预定阈值相比较,以评估UE2受干扰的程度。如果干扰测量结果超过预定阈值,则主节点确定是否需要切换接入链路。图10的其他阶段的操作与图9相似,这里不再重复描述。
接下来描述可以实施根据本公开的第一实施例的电子设备和通信方法。
图11A是例示了用于UE的电子设备100的框图。电子设备200可以是UE或者UE的部件。UE通过无线接入链路接入IAB系统中的第一节点,第一节点通过无线回传链路与IAB系统中的第二节点通信,其中,在IAB系统的网络拓扑关系中第二节点是第一节点的父节点。
如图11A中所示,电子设备100包括处理电路101。处理电路101可被配置为执行图11B中所示的通信方法。处理电路101至少包括干扰测量单元102、上报单元103和链路切换单元104。
处理电路101的干扰测量单元102被配置为测量来自IAB系统中的第三节点的信号干扰(即,执行图11B中步骤S101)。在第二节点也是第三节点的父节点的情况下,第二节点可以为第三节点分配NZP-CSI-RS资源,使得第三节点可以发射NZP-CSI-RS,电子设备100的干扰测量单元102可以测量该参考信号的接收功率作为干扰测量结果。
上报单元103被配置为向第一节点上报所测量的干扰测量结果(即,执行图11B中的步骤S102)。该干扰测量结果可以用于在第一节点或第二节点处评估UE受到干扰的严重程度。至少部分基于干扰测量结果超过预定阈值,第二节点可以做出切换UE所使用的接入链路的确定。
链路切换单元104被配置为在第二节点确定切换UE所使用的接入链路的情况下,建立UE与第二节点之间的直接接入链路,并且断开UE与第一节点之间的接入链路(即,执行图11B中的步骤S103)。在一个例子中,仅切换下行接入链路,从而保留UE与第一节点之间的上行接入链路。进一步地,仅切换下行数据链路,从而保留UE与第一节点之间的下行控制链路,以便快速恢复UE的接入链路。
电子设备100还可以包括例如通信单元105和存储器106。
通信单元105可以被配置为在处理电路101的控制下与诸如第一节点、第二节点、 第三节点之类的基站进行通信,以执行上面所描述的发送操作和/或接收操作。
存储器106可以存储各种数据和指令,例如用于电子设备100操作的程序和数据、由处理电路101产生的各种数据、由通信单元105接收的各种控制信令或业务数据、将由通信单元105发送的数据或信息(例如干扰测量结果)等。
图12A是例示了用于上述第一节点的电子设备200的框图。电子设备200可以是基站或基站的部件。
如图12A中所示,电子设备200包括处理电路201。处理电路201可被配置为执行图12B中所示的通信方法。处理电路201至少包括测量结果接收单元202、断开指示接收单元203和链路断开单元204。
处理电路201中的测量结果接收单元202被配置为从UE接收UE通过测量来自第三节点的信号干扰而得到的干扰测量结果(即,执行图12B中的步骤S201)。
在一个例子中,处理电路201还可以包括干扰评估单元(图中未示出),干扰评估单元被配置为基于接收到的干扰测量结果来评估UE受干扰的程度。干扰评估单元可以将干扰测量结果与预定阈值相比较,并且如果干扰测量结果超过预定阈值,则向第二节点发送链路切换尝试请求,以便于第二节点做出切换UE所使用的接入链路的确定。
在另一个例子中,处理电路201还可以包括测量结果转发单元(图中未示出),测量结果转发单元被配置为将接收到的干扰测量结果转发至第二节点。第二节点基于接收到的干扰测量结果来评估UE受干扰的程度。第二节点可以将干扰测量结果与预定阈值相比较,并且至少部分基于干扰测量结果超过预定阈值,做出切换UE所使用的接入链路的确定。
在第二节点确定切换UE所使用的接入链路的情况下,处理电路201的断开指示接收单元203从第二节点接收关于断开第一节点与UE之间的接入链路的指示(即,执行图12B中的步骤S202)。响应于接收到该指示,链路断开单元204控制第一节点断开第一节点与UE之间的接入链路(即,执行图12B中的步骤S203)。例如,第一节点可以仅断开其与UE之间的下行链路。进一步地,第一节点可以仅断开其与UE之间的下行数据链路。
电子设备200还可以包括例如通信单元205和存储器206。
通信单元205可以被配置为在处理电路201的控制下与第二节点和UE进行通信,以执行上面所描述的发送操作和/或接收操作。
存储器206可以存储各种数据和指令,例如从UE接收的干扰测量结果、用于电子设备200操作的程序和数据、由处理电路201产生的各种数据、将由通信单元205发送的数据等。
图13A是例示了用于上述第二节点的电子设备300的框图。电子设备300可以是基站或基站的部件。
如图13A中所示,电子设备300包括处理电路301。处理电路301可被配置为执行图13B中所示的通信方法。处理电路301至少包括切换确定单元302、链路切换单元303。
处理电路301中的切换确定单元302被配置为至少部分基于UE对于来自第三节点的信号干扰的干扰测量结果超过预定阈值,确定切换UE所使用的接入链路(即,执行图13B中的步骤S301)。
在一个例子中,处理电路301可以接收第一节点基于干扰测量结果与预定阈值的比较结果而发出的链路切换尝试请求,并且做出切换UE所使用的接入链路的确定。
在另一个例子中,处理电路301还可以包括干扰评估单元(图中未示出),干扰评估单元被配置为接收由第一节点转发的干扰测量结果,并且基于接收到的干扰测量结果来评估UE受干扰的程度。干扰评估单元可以将干扰测量结果与预定阈值相比较,并且至少部分基于干扰测量结果超过预定阈值,切换确定单元302做出切换UE所使用的接入链路的确定。
响应于切换确定单元302做出的确定,处理电路301的链路切换单元303控制建立第二节点与UE之间的直接接入链路,并且指示第一节点断开第二节点与UE之间的接入链路(即,执行图13B中的步骤S302)。例如,第二节点可以仅建立其与UE之间的下行链路,并且指示第一节点断开其与UE之间的下行链路。进一步地,第二节点可以仅建立其与UE之间的下行数据链路,并且指示第一节点断开其与UE之间的下行数据链路。
电子设备300还可以包括例如通信单元305和存储器306。
通信单元305可以被配置为在处理电路301的控制下与第一节点和UE进行通信, 以执行上面所描述的发送操作和/或接收操作。
存储器306可以存储各种数据和指令,例如从UE接收的干扰测量结果、从第一节点接收的链路切换尝试请求、用于电子设备300操作的程序和数据、由处理电路301产生的各种数据、将由通信单元305发送的数据等。
上面描述的处理电路101、201、301可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟信号和数字信号的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)之类的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程们阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
上面描述的通信单元105、205、305可以被实现为发射机或收发机,包括天线阵列和/或射频链路等通信部件。通信单元105、205、305用虚线绘出,因为它们还可以分别位于电子设备100、200、300之外。
存储器106、206、306用虚线绘出,因为它们还可以分别位于处理电路101、201、301内或者分别位于电子设备100、200、300外。存储器106、206、306可以是易失性存储器和/或非易失性存储器。例如,存储器106、206、306可以包括但不限于随机存储存储器(RAM)、动态随机存储存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)、闪存存储器。
第二实施例
本公开的第二实施例提供了基于层间联结的下行MIMO传输。
如前面的章节所介绍的,诸如图4中所示的子节点1和子节点2之类的IAB节点除了能够工作在解码转发(DF)模式下,还可以工作在放大转发(AF)模式下。
在DF模式下,由于IAB节点需要对经过它的传输数据进行解码-重新编码,所以传输数据而言,IAB节点前后两个层是相互隔离的。
在AF模式下,IAB节点放大并转发所接收的所有信号,包括有用信号、噪声、干扰,可以简单地认为,IAB节点是介于两个层之间的“放大器”,它对于父节点和子节点/UE而言是透明的。
鉴于IAB节点的AF模式的特点,IAB节点会把前一层内的噪声和干扰放大并 积累至下一层,所以可以根据当前的通信状况来判断AF模式的可用性。例如,当检测到前一层内的下行回传链路的SNR较高(例如,高于某个值)、调制阶数较低(例如,属于某些调制方案)时,IAB节点可以将其设置为工作在AF模式下,或者至少在下行方向上以AF模式工作。然后,IAB节点可以利用UCI来向其父节点通知其工作模式。
可替代地,IAB节点的父节点也可以从该IAB节点收集关于SNR等信息,并根据SNR、调制阶数等来通过DCI配置IAB节点在AF模式下工作,或者至少在下行方向上以AF模式工作。
再次参照图4,以子节点1为例,当子节点1处于AF模式时,第1层内的回传链路和第2层内的接入链路相联结,由于子节点1的透明性,在主节点与UE(例如UE1或UE2)之间存在由两段信道串联而成的等效联结信道。此时第2层的小小区间干扰可视为联结层的小区内干扰。
根据本公开的第二实施例,主节点通过利用预编码的方式来抑制这种小区内干扰,为此,主节点需要获取等效基带联结信道的联结信道状态信息(Integrated Channel State Information,ICSI)。
图14是如图4中所示的经由子节点1和子节点2的联结信道的传输模型。为简化模型,忽略第1层中的直接接入用户UE5。
首先,第1层的下行传输模型可以表示为:
Figure PCTCN2020074089-appb-000046
Figure PCTCN2020074089-appb-000047
其中,
Figure PCTCN2020074089-appb-000048
为第j(j=1,2)个子节点的接收符号;
Figure PCTCN2020074089-appb-000049
为第j个子节点的数字合并矩阵;
Figure PCTCN2020074089-appb-000050
为第j个子节点的模拟合并矩阵(即,接收波束的模拟波束赋形矩阵),M N是为子节点配置的天线数目;
Figure PCTCN2020074089-appb-000051
为主节点与第j个子节点的下行回传链路信道矩阵,M D是为主节点配置的天线数目;
Figure PCTCN2020074089-appb-000052
Figure PCTCN2020074089-appb-000053
Figure PCTCN2020074089-appb-000054
分别为主节点的模拟波束赋形矩阵与数字预编码矩阵;
Figure PCTCN2020074089-appb-000055
Figure PCTCN2020074089-appb-000056
为子节点处的加性高斯白噪声(AWGN)向量;
Figure PCTCN2020074089-appb-000057
为主节点向子节点的 发送符号向量。
第2层的下行传输模型可以表示为:
r=FH AB NP Ny N+Fn,或
Figure PCTCN2020074089-appb-000058
其中,r k(k=1,2,3,4)为第k个UE的接收符号;
Figure PCTCN2020074089-appb-000059
为第k个UE的接收波束向量,M是为每个UE配备的天线数目;
Figure PCTCN2020074089-appb-000060
为UE与两个子节点间的下行接入链路信道矩阵;
Figure PCTCN2020074089-appb-000061
为第k个UE对应的子节点处的发送波束向量;
Figure PCTCN2020074089-appb-000062
为第j个子节点处的数字预编码矩阵;
Figure PCTCN2020074089-appb-000063
为第j个子节点对其接入用户的发送符号;
Figure PCTCN2020074089-appb-000064
为UE处的AWGN向量。
当子节点1与子节点2均工作在AF模式下时,有:
Figure PCTCN2020074089-appb-000065
其中,
Figure PCTCN2020074089-appb-000066
为对角阵,代表第j个子节点的放大系数。此时,联结层下行传输模型可表示为:
r=FH AB NP NΓ N(W NF NH BB DP Dx+W NF Nn N)+Fn
=FH AB NP NΓ NW NF NH BB DP Dx+(FH AB NP NΓ NW NF Nn N+Fn)
=FH intB DP Dx+(FH ATn N+Fn)
其中,H int=H AB NP NΓ NW NF NH B代表主节点与UE间的联结下行信道;T=B NP NΓ NW NF N代表子节点处的联结矩阵;特别地,联结矩阵中的数字部分,即数字合并矩阵W N与预编码矩阵P N可以采用单位矩阵以降低子节点处的计算开销和处理时延。保持主节点的模拟波束赋形矩阵B D和子节点的合并向量F不变,主节点在获取等效的基带联结下行信道矩阵H BB=FH intB D后可以重新计算数字预编码矩阵P D以消除联结层内的用户间干扰。
从上述传输模型可见,由于子节点工作在AF模式下,回传链路的噪声也被放大并转发,因此叠加噪声为FH ATn N+Fn,且其中第1层的累积噪声FH ATn N相比第 2层的噪声Fn影响更大。
而针对等效基带联结下行信道的ICSI获取,可以通过参考信号来进行。
在一个例子中,如果IAB系统是TDD系统,则上行联结信道和下行联结信道具有信道互易性。此时,可以通过UE向主节点发送诸如SRS之类的上行参考信号来获取ICSI。记
Figure PCTCN2020074089-appb-000067
为4个UE发送的SRS矩阵,满足φφ H=I 4,则子节点处收到的信号可表示为
Figure PCTCN2020074089-appb-000068
然后,子节点将Y N,SRS放大并转发给主节点,主节点接收信号可表示为:
Figure PCTCN2020074089-appb-000069
则H BB可通过Y D,SRSφ H获得。
在另一个例子中,如果IAB系统不是TDD系统,例如是频分双工(FDD)系统,可以通过主节点向UE发送诸如CSI-RS之类的下行参考信号来获取ICSI。记
Figure PCTCN2020074089-appb-000070
为主节点向四个UE发送的CSI-RS矩阵,满足φφ H=I 4,则子节点处收到的信号可表示为
Y N,CSI-RS=F NH BB Dφ
然后,子节点将Y N,SRS放大并转发给UE,UE接收的信号可表示为:
Y D,CSI-RS=FH AB NP NΓ NY N,SRS=FH intB Dφ=H BBφ
则H BB可通过Y D,CSI-RSφ H获得。
基于所获取的下行基带联结信道的ICSI,主节点可以计算用于MIMO传输的预编码矩阵P D,并利用所计算的预编码矩阵来对多用户MIMO传输的数据流进行预编码。
通过在主节点层面对于所有相关联的接入用户(包括直接接入主节点的UE和接入主节点的子节点的UE)进行MIMO传输的预编码,可以降低用户间干扰,同时提高系统容量。
由于子节点不对经过的数据流进行解码和重新编码,子节点向主节点建议为回 传链路配置的下行DMRS端口数
Figure PCTCN2020074089-appb-000071
等于与子节点相关联的所有接入链路的DMRS端口数
Figure PCTCN2020074089-appb-000072
主节点将为回传链路配置的下行DMRS端口数
Figure PCTCN2020074089-appb-000073
设置为等于所建议的下行DMRS端口数
Figure PCTCN2020074089-appb-000074
由此,子节点的回传链路和接入链路上的DMRS端口相等。
虽然上面参照图4中所示的单跳两层IAB系统描述了根据本公开的第二实施例的层间联结传输,但是应理解,根据第二实施例的层间联结传输同样适用于多跳IAB系统。在多跳IAB系统中,联结信道经过的所有子节点都工作在AF模式下,并且传输模型可以与图14中那样类似地建立,区别在于超过两个信道相联结。
下面描述根据本公开的第二实施例的层间联结传输的信令流程。
图15例示了根据第二实施例的层间联结传输的一个示例的信令流程。如图15中所示,首先,每个UE经由子节点向主节点发送SRS。该SRS可以是主节点通过空间关系信息(例如,PUCCH-SpatialRelationInfo或SRS-SpatialRelationInfo)为该UE分配的SRS资源。工作在AF模式下的子节点在接收到该SRS之后,放大并转发该SRS至主节点。
根据上面讨论的,主节点可以通过所接收的SRS来估计等效上行基带联结信道,以获取上行基带联结信道的ICSI,诸如信道质量指示(CQI)、预编码矩阵指示(PMI)、秩指示(RI)等。在TDD系统中,经由上行接入链路、子节点、上行回传链路的上行基带联结信道与经由下行回传链路、子节点、下行回传链路的下行基带联结信道具有信道互易性,主节点可以获取下行基带联结信道的ICSI。主节点基于所获取的下行基带联结信道的ICSI来计算用于MIMO传输的预编码矩阵,对传输的数据流进行数字预编码。
下行数据流经由子节点的放大转发,由UE接收。UE可以进行解码操作以从数据流获得以它为目的地的数据。
图16例示了根据第二实施例的层间联结传输的另一个示例的信令流程。如图16中所示,首先,主节点经由子节点向UE发送CSI-RS。工作在AF模式下的子节点在接收到该CSI-RS之后,放大并转发该CSI-RS至UE。
UE可以通过测量CSI-RS来评估下行基带联结信道,并以CSI报告的形式进 行上报。CSI报告中可以包含诸如CQI、PMI、RI之类的ICSI。CSI报告经过子节点放大转发后被主节点接收。
然后,根据上面讨论的,主节点可以通过所接收的CSI-RS来估计等效下行基带联结信道,以获取下行基带联结信道的ICSI。主节点基于所获取的下行基带联结信道的ICSI来计算用于MIMO传输的预编码矩阵,对传输的数据流进行数字预编码。
下行数据流经由子节点的放大转发,由UE接收。UE可以进行解码操作以从数据流获得以它为目的地的数据。
接下来描述可以实施根据本公开的第二实施例的电子设备和通信方法。
图17A是例示了用于IAB系统中的节点(记为第二节点)的电子设备400的框图。电子设备400可以是基站或基站的部件。UE通过无线接入链路接入IAB系统中的第一节点,第一节点通过无线回传链路与IAB系统中的第二节点通信,其中,在IAB系统的网络拓扑关系中第二节点是第一节点的父节点。第一节点工作在放大转发(AF)模式下。
如图17A中所示,电子设备400包括处理电路401。处理电路401可被配置为执行图14B中所示的通信方法。处理电路401至少包括ICSI获取单元402和数字预编码矩阵计算单元403。
处理电路401中的ICSI获取单元402被配置为通过在第二节点和所述用户设备之间传输的参考信号,获取经由回传链路、第一节点和接入链路的下行基带联结信道的联结信道状态信息ICSI(即,执行图17B中的步骤S401)。在TDD系统中,参考信号可以是由UE发送、由第一节点放大转发至第二节点的SRS,ICSI获取单元402利用SRS的测量结果来进行信道估计。可替代地,例如在FDD系统中,参考信号可以是由第二节点发送、并由第一节点放大转发至第一节点的CSI-RS,UE将测量结果反馈给主节点,以供主节点确定ICSI。
数据预编码矩阵计算单元403被配置为基于所获取的联结信道状态信息,计算用于UE的下行传输的数字预编码矩阵(即,执行图17B中的步骤S402)。
电子设备400还可以包括例如通信单元405和存储器406。
通信单元405可以被配置为在处理电路401的控制下与第一节点和UE进行通信,以执行上面所描述的发送操作和/或接收操作。
存储器406可以存储各种数据和指令,例如从UE接收的CSI-RS测量结果、用于电子设备400操作的程序和数据、由处理电路401产生的各种数据、将由通信单元405发送的数据等。
图18A是例示了用于UE的电子设备500的框图。电子设备500可以是UE或UE的部件。UE通过无线接入链路接入IAB系统中的第一节点,第一节点通过无线回传链路与IAB系统中的第二节点通信,其中,在IAB系统的网络拓扑关系中第二节点是第一节点的父节点。第一节点工作在放大转发(AF)模式下。
如图18A中所示,电子设备500包括处理电路501。处理电路501可被配置为执行图18B中所示的通信方法。处理电路501至少包括接收单元502。
接收单元502被配置为接收在经由回传链路、第一节点和接入链路的下行联结信道上传输的数据流(即,执行图18B中步骤S501)。其中,数据流在第二节点处利用数字预编码矩阵被预编码,该数字预编码矩阵是基于下行基带联结信道的联结信道状态信息而计算的。第二节点通过在第二节点和UE之间传输的参考信号(例如SRS或CSI-RS)而获取联结信道状态信息。
电子设备500还可以包括例如通信单元505和存储器506。
通信单元505可以被配置为在处理电路501的控制下与诸如第一节点和第二节点之类的基站进行通信,以执行上面所描述的发送操作和/或接收操作。
存储器506可以存储各种数据和指令,例如用于电子设备500操作的程序和数据、由处理电路501产生的各种数据、由通信单元505接收的各种控制信令或业务数据、将由通信单元505发送的数据或信息等。
图19A是例示了用于上述第一节点的电子设备600的框图。电子设备600可以是基站或基站的部件。第一节点工作在AF模式下。
如图19A中所示,电子设备600包括处理电路601。处理电路601可被配置为执行图19B中所示的通信方法。处理电路601至少包括转发单元604。
转发单元604被配置为放大并转发经过第一节点的传输数据,诸如来自第二节 点、去往UE的数据流(即,执行图19B中步骤S601)。其中,数据流在第二节点处利用数字预编码矩阵被预编码,该数字预编码矩阵是基于下行基带联结信道的联结信道状态信息而计算的。第二节点通过在第二节点和UE之间传输的参考信号(例如SRS或CSI-RS)而获取联结信道状态信息。
电子设备600还可以包括例如通信单元605和存储器606。
通信单元605可以被配置为在处理电路601的控制下与第二节点和UE进行通信,以执行上面所描述的发送操作和/或接收操作。
存储器606可以存储各种数据和指令,例如用于电子设备600操作的程序和数据、由处理电路601产生的各种数据、由通信单元605接收的数据、将由通信单元605发送的数据等。
上面描述的处理电路401、501、601可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟信号和数字信号的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)之类的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程们阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
上面描述的通信单元405、505、605可以被实现为发射机或收发机,包括天线阵列和/或射频链路等通信部件。通信单元405、505、605用虚线绘出,因为它们还可以分别位于电子设备400、500、600之外。
存储器406、506、606用虚线绘出,因为它们还可以分别位于处理电路401、501、601内或者分别位于电子设备400、500、600外。存储器406、506、606可以是易失性存储器和/或非易失性存储器。例如,存储器406、506、606可以包括但不限于随机存储存储器(RAM)、动态随机存储存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)、闪存存储器。
上面已经详细描述了本公开的实施例的各个方面,但是应注意,上面为了描述了所示出的天线阵列的结构、布置、类型、数量等,端口,参考信号,通信设备,通信方法等等,都不是为了将本公开的方面限制到这些具体的示例。所描述的方法步骤、信令流程的顺序不限于本公开中所例示的那些,而是根据应用场景,可以调换或并行执行部分步骤和流程。
应当理解,上述各实施例中描述的电子设备100、200、300、400、500、600的各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式。在实际实现时,上述各单元可被实现为独立的物理实体,或者也可以由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
【本公开的示例性实现】
根据本公开的实施例,可以想到各种实现本公开的概念的实现方式,包括但不限于:
1)一种用户设备侧的电子设备,在所述用户设备和集成接入和回传(IAB)系统的第一节点之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,其特征在于,所述电子设备包括:处理电路,被配置为:测量来自第三节点的信号干扰;向第一节点上报干扰测量结果;以及在第二节点至少部分基于所述干扰测量结果超过预定阈值而确定切换所述用户设备使用的接入链路的情况下,建立所述用户设备和第二节点之间的直接接入链路,并且断开所述用户设备和第一节点之间的接入链路。
2)、如1)所述的电子设备,其中,断开所述用户设备和第一节点之间的接入链路包括仅断开所述用户设备和第一节点之间的下行接入链路。
3)、如2)所述的电子设备,其中,断开所述用户设备和第一节点之间的下行接入链路包括仅断开所述用户设备和第一节点之间的下行数据链路而不断开所述用户设备和第一节点之间的下行控制链路。
4)、如2)或3)所述的电子设备,其中,所述用户设备和第二节点之间的直接接入链路与所述用户设备和第一节点之间的上行接入链路工作在不同的频段上。
5)、如1)或2)所述的电子设备,其中,建立所述用户设备和第二节点之间的直接接入链路包括仅建立所述用户设备和第二节点之间的下行接入链路。
6)、如1)或2)所述的电子设备,其中,建立所述用户设备和第二节点之间的直接接入链路包括仅建立所述用户设备和第二节点之间的下行数据链路。
7)、如1)所述的电子设备,其中,所述干扰测量结果在第一节点处与所述预定阈值相比较。
8)、如1)所述的电子设备,其中,所述干扰测量结果由第一节点转发至第二节点,并且在第二节点处与所述预定阈值相比较。
9)、如1)所述的电子设备,其中,测量来自第三节点的信号干扰包括:接收由所述第三节点发射的非零功率信道状态信息参考信号(NZP-CSI-RS);以及测量所接收的NZP-CSI-RS的信号功率作为所述干扰测量结果。
10)、如1)所述的电子设备,其中,所述处理电路还被配置为计算所述用户设备和第二节点之间的波束训练期间的最佳下行链路质量相比于所述用户设备和第一节点之间的接入链路的下行链路质量的增益,并将该增益上报给第二节点。
11)、一种用于集成接入和回传(IAB)系统中的节点的电子设备,所述节点记为第一节点,在第一节点和用户设备之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,其特征在于,所述电子设备包括处理电路,被配置为:从所述用户设备接收对于来自第三节点的信号干扰的干扰测量结果;在第二节点至少部分基于所述干扰测量结果超过预定阈值而确定切换所述用户设备使用的接入链路的情况下,从第二节点接收关于断开第一节点与所述用户设备之间的接入链路的指示;以及断开第一节点与所述用户设备之间的接入链路。
12)、如11)所述的电子设备,其中,断开所述用户设备和第一节点之间的接入链路包括仅断开所述用户设备和第一节点之间的下行接入链路。
13)、如12)所述的电子设备,其中,断开所述用户设备和第一节点之间的下行接入链路包括仅断开所述用户设备和第一节点之间的下行数据链路而不断开所述用户设备和第一节点之间的下行控制链路。
14)、如11)所述的电子设备,其中,所述处理电路还被配置为将接收的干扰测量结果与所述预定阈值相比较,并向第二节点发送链路切换尝试请求以触发第二节点做出关于切换所述用户设备使用的接入链路的确定。
15)、如11)所述的电子设备,其中,所述处理电路还被配置为将接收的干扰测量结果转发至第二节点,并且在第二节点处与所述预定阈值相比较。
16)、如11)所述的电子设备,其中,所述处理电路还被配置为向第二节点上报建议为所述回传链路配置的下行DMRS端口数
Figure PCTCN2020074089-appb-000075
所建议的下行DMRS端口 数
Figure PCTCN2020074089-appb-000076
不大于与第一节点相关联的所有接入链路的DMRS端口数
Figure PCTCN2020074089-appb-000077
17)、如11)所述的电子设备,其中,所述处理电路还被配置为接收包含第二节点为所述回传链路配置的下行DMRS端口数
Figure PCTCN2020074089-appb-000078
的信息,其中所配置的下行DMRS端口数
Figure PCTCN2020074089-appb-000079
不大于第一节点建议为所述回传链路配置的下行DMRS端口数
Figure PCTCN2020074089-appb-000080
18)、一种用于集成接入和回传(IAB)系统中的节点的电子设备,所述节点记为第二节点,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第一节点是第二节点的子节点,并且在用户设备和第一节点之间具有接入链路,其特征在于,所述电子设备包括处理电路,被配置为:至少部分基于所述用户设备对于来自第三节点的信号干扰的干扰测量结果超过预定阈值,确定切换所述用户设备使用的接入链路;以及响应于所述确定,建立第二节点和所述用户设备之间的直接接入链路,并且指示第一节点断开第一节点与所述用户设备之间的接入链路。
19)、如18)所述的电子设备,其中,所述处理电路被配置为仅建立第二节点和所述用户设备之间的下行接入链路,并且指示第一节点断开第一节点与所述用户设备之间的下行接入链路。
20)、如18)所述的电子设备,其中,所述处理电路还被配置为:从所述用户设备接收所述用户设备和第二节点之间的波束训练期间的最佳下行链路质量相比于所述用户设备和第一节点之间的接入链路的下行链路质量的增益;在所述增益超过特定阈值的情况下,确定切换所述用户设备使用的接入链路。
21)、如18)所述的电子设备,其中,所述处理电路还被配置为:从所述用户设备接收所述用户设备和第二节点之间的波束训练期间的最佳下行链路质量相比于所述用户设备和第一节点之间的接入链路的下行链路质量的第一增益;从另一用户设备接收该另一用户设备和第二节点之间的波束训练期间的最佳下行链路质量相比于该另一用户设备和第三节点之间的接入链路的下行链路质量的第二增益,其中,第三节点与所述另一用户设备之间的下行传输导致所述来自第三节点的信号干扰;以及在第一增益超过第二增益的情况下,确定切换所述用户设备使用的接入链路。
22)、一种用于集成接入和回传(IAB)系统中的节点的电子设备,所述节点记 为第二节点,在第二节点与所述IAB系统的第一节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,并且在用户设备和第一节点之间具有接入链路,其中,所述电子设备包括处理电路,被配置为:通过在第二节点和所述用户设备之间传输的参考信号,获取经由所述回传链路、所述第一节点和所述接入链路的下行基带联结信道的联结信道状态信息,其中第一节点工作在放大转发(AF)模式下;以及基于所获取的联结信道状态信息,计算用于所述用户设备的下行传输的数字预编码矩阵。
23)、如22)所述的电子设备,其中,所述参考信号是从所述用户设备传输到第二节点的探测参考信号(SRS),并且所述IAB系统采用时分双工(TDD)。
24)、如22)所述的电子设备,其中,所述参考信号是从第二节点传输到所述用户设备的信道状态信息参考信号(CSI-RS)。
25)、如22)所述的电子设备,其中,所述处理电路还被配置为从第一节点接收包含第一节点选择工作在AF模式下的信息的上行控制信息(UCI)。
26)、如22)所述的电子设备,其中,所述处理电路还被配置为:从第一节点接收建议为所述回传链路配置的下行DMRS端口数
Figure PCTCN2020074089-appb-000081
所建议的下行DMRS端口数
Figure PCTCN2020074089-appb-000082
等于与第一节点相关联的所有接入链路的DMRS端口数
Figure PCTCN2020074089-appb-000083
以及将为所述回传链路配置的下行DMRS端口数
Figure PCTCN2020074089-appb-000084
设置为等于所建议的下行DMRS端口数
Figure PCTCN2020074089-appb-000085
27)、一种用户设备侧的电子设备,在所述用户设备和集成接入和回传(IAB)系统中的第一节点之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,其特征在于,所述电子设备包括处理电路,被配置为:接收经由所述回传链路、所述第一节点和所述接入链路传输的数据流,其中第一节点工作在放大转发(AF)模式下,其中所述数据流由第二节点利用数字预编码矩阵进行预编码,其中所述数字预编码矩阵是基于经由所述回传链路、所述第一节点和所述接入链路的下行基带联结信道的联结信道状态信息而计算的,并且其中所述联结信道状态信息是通过在第二节点和所述用户设备之间传输的参考信号而获取的。
28)、一种用于集成接入和回传(IAB)系统中的节点的电子设备,所述节点记 为第一节点,在第一节点和用户设备之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,其特征在于,所述电子设备包括处理电路,被配置为:在放大转发(AF)模式下向所述用户设备转发来自第二节点的数据流,其中所述数据流由第二节点利用数字预编码矩阵进行预编码,其中所述数字预编码矩阵是基于经由所述回传链路、所述第一节点和所述接入链路的下行基带联结信道的联结信道状态信息而计算的,并且其中所述联结信道状态信息是通过在第二节点和所述用户设备之间传输的参考信号而获取的。
29)、一种用于用户设备的通信方法,在所述用户设备和集成接入和回传(IAB)系统中的第一节点之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,其特征在于,所述通信方法包括:测量来自第三节点的信号干扰;向第一节点上报干扰测量结果;以及在第二节点至少部分基于所述干扰测量结果超过预定阈值而确定切换所述用户设备使用的接入链路的情况下,建立所述用户设备和第二节点之间的直接接入链路,并且断开所述用户设备和第一节点之间的接入链路。
30)、一种用于集成接入和回传(IAB)系统中的节点的通信方法,所述节点记为第一节点,在第一节点和用户设备之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,其特征在于,所述通信方法包括:从所述用户设备接收对于来自第三节点的信号干扰的干扰测量结果;在第二节点至少部分基于所述干扰测量结果超过预定阈值而确定切换所述用户设备使用的接入链路的情况下,从第二节点接收关于断开第一节点与所述用户设备之间的接入链路的指示;以及断开第一节点与所述用户设备之间的接入链路。
31)、一种用于集成接入和回传(IAB)系统中的节点的通信方法,所述节点记为第二节点,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第一节点是第二节点的子节点,并且在用户设备和第一节点之间具有接入链路,其特征在于,所述通信方法包括:至少部分基于所述用户设备对于来自第三节点的信号干扰的干扰测量结果超过预定阈值,确定切换所述用户设备使用的接入链路;以及响应于所述确定,建立第二节点和所述用户设备之间的直接接 入链路,并且指示第一节点断开第一节点与所述用户设备之间的接入链路。
32)、一种用于集成接入和回传(IAB)系统中的节点的通信方法,所述节点记为第二节点,在第二节点与所述IAB系统的第一节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,并且在用户设备和第一节点之间具有接入链路,其特征在于,所述通信方法包括:获取在第二节点和所述用户设备之间传输的参考信号的测量结果;基于所述参考信号的测量结果,获取经由所述回传链路、所述第一节点和所述接入链路的下行基带联结信道的联结信道状态信息,其中第一节点工作在放大转发(AF)模式下;以及基于所获取的联结信道状态信息,计算用于所述用户设备的下传输的数字预编码矩阵。
33)、一种用户设备侧的通信方法,在所述用户设备和集成接入和回传(IAB)系统中的第一节点之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,其特征在于,所述通信方法包括:接收经由所述回传链路、所述第一节点和所述接入链路传输的数据流,其中,第一节点工作在放大转发(AF)模式下,其中,所述数据流在第二节点处利用数字预编码矩阵被预编码,其中,所述数字预编码矩阵是基于经由所述回传链路、所述第一节点和所述接入链路的下行基带联结信道的联结信道状态信息而计算的,并且其中,所述联结信道状态信息是通过在第二节点和所述用户设备之间传输的参考信号而获取的。
34)、一种用于集成接入和回传(IAB)系统中的节点的通信方法,所述节点记为第一节点,在第一节点和用户设备之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,其特征在于,所述通信方法包括:在放大转发(AF)模式下向所述用户设备转发来自第二节点的数据流,其中所述数据流由第二节点利用数字预编码矩阵进行预编码,其中所述数字预编码矩阵是基于经由所述回传链路、所述第一节点和所述接入链路的下行基带联结信道的联结信道状态信息而计算的,并且其中所述联结信道状态信息是通过在第二节点和所述用户设备之间传输的参考信号而获取的。
35)、一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如29-34中任一项所述的通信方法。
【本公开的应用实例】
本公开中描述的技术能够应用于各种产品。
例如,根据本公开的实施例的电子设备200、300、400、600可以被实现为各种基站或者安装在基站中,电子设备100、500可以被实现为各种用户设备或被安装在各种用户设备中。
根据本公开的实施例的通信方法可以由各种基站或用户设备实现;根据本公开的实施例的方法和操作可以体现为计算机可执行指令,存储在非暂时性计算机可读存储介质中,并可以由各种基站或用户设备执行以实现上面所述的一个或多个功能。
根据本公开的实施例的技术可以制成各个计算机程序产品,被用于各种基站或用户设备以实现上面所述的一个或多个功能。
本公开中使用的术语“基站”具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。本公开中所说的基站可以被实现为任何类型的基站,优选地,诸如3GPP的5G NR标准中定义的宏gNB和ng-eNB。gNB可以是覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB、eNodeB和基站收发台(BTS)。基站还可以包括:被配置为控制无线通信的主体以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)、无线中继站、无人机塔台、自动化工厂中的控制节点等。在D2D、M2M以及V2V通信场景下,也可以将对通信具有控制功能的逻辑实体称为基站。在认知无线电通信场景下,还可以将起频谱协调作用的逻辑实体称为基站。在自动化工厂中,可以将提供网络控制功能的逻辑实体称为基站。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)、无人机、自动化工厂中的传感器和执行器等。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
下面简单介绍可以应用本公开的技术的基站和用户设备的示例。
基站的第一应用示例
图20是示出可以应用本公开内容的技术的基站的示意性配置的第一示例的框图。在图20中,基站可以实现为gNB 1400。gNB 1400包括多个天线1410以及基站设备1420。基站设备1420和每个天线1410可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1400(或基站设备1420)可以对应于上述电子设备200、300、400、600。
天线1410包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1410例如可以被布置成天线阵列矩阵,并且用于基站设备1420发送和接收无线信号。例如,多个天线1410可以与gNB 1400使用的多个频段兼容。
基站设备1420包括控制器1421、存储器1422、网络接口1423以及无线通信接口1425。
控制器1421可以为例如CPU或DSP,并且操作基站设备1420的较高层的各种功能。例如,控制器1421可以包括上面所述的处理电路201、301、401或601,执行图12B、13B、17B或19B中描述的通信方法,或者控制电子设备200、300、400或600的各个部件。例如,控制器1421根据由无线通信接口1425处理的信号中的数据来生成数据分组,并经由网络接口1423来传递所生成的分组。控制器1421可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1421可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1422包括RAM和ROM,并且存储由控制器1421执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1423为用于将基站设备1420连接至核心网1424(例如,5G核心网)的通信接口。控制器1421可以经由网络接口1423而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1400与核心网节点或其他gNB可以通过逻辑接口(诸如NG接口和Xn接口)而彼此连接。网络接口1423还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1423为无线通信接口,则与由无线通信接口1425使用的频段相比,网络接口1423可以使用较高频段用于无线通信。
无线通信接口1425支持任何蜂窝通信方案(诸如5G NR),并且经由天线1410 来提供到位于gNB 1400的小区中的终端的无线连接。无线通信接口1425通常可以包括例如基带(BB)处理器1426和RF电路1427。BB处理器1426可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行各层(例如物理层、MAC层、RLC层、PDCP层、SDAP层)的各种类型的信号处理。代替控制器1421,BB处理器1426可以具有上述逻辑功能的一部分或全部。BB处理器1426可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1426的功能改变。该模块可以为插入到基站设备1420的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1427可以包括例如混频器、滤波器和放大器,并且经由天线1410来传送和接收无线信号。虽然图20示出一个RF电路1427与一根天线1410连接的示例,但是本公开并不限于该图示,而是一个RF电路1427可以同时连接多根天线1410。
如图20所示,无线通信接口1425可以包括多个BB处理器1426。例如,多个BB处理器1426可以与gNB 1400使用的多个频段兼容。如图20所示,无线通信接口1425可以包括多个RF电路1427。例如,多个RF电路1427可以与多个天线元件兼容。虽然图20示出其中无线通信接口1425包括多个BB处理器1426和多个RF电路1427的示例,但是无线通信接口1425也可以包括单个BB处理器1426或单个RF电路1427。
在图20中示出的gNB 1400中,参照图12A描述的处理电路201、参照图13A描述的处理电路301、参照图17A描述的处理电路401、参照图19A描述的处理电路401包括的一个或多个单元可被实现在无线通信接口825中。可替代地,这些组件中的至少一部分可被实现在控制器821中。例如,gNB 1400包含无线通信接口1425的一部分(例如,BB处理器1426)或者整体,和/或包括控制器1421的模块,并且一个或多个组件可被实现在模块中。在这种情况下,模块可以存储用于允许处理器起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在gNB 1400中,并且无线通信接口1425(例如,BB处理器1426)和/或控制器1421可以执行该程序。如上所述,作为包括一个或多个组件的装置,gNB 1400、基站设备1420或模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介 质可被提供。
基站的第二应用示例
图21是示出可以应用本公开的技术的基站的示意性配置的第二示例的框图。在图21中,基站被示出为gNB 1530。gNB 1530包括多个天线1540、基站设备1550和RRH1560。RRH1560和每个天线1540可以经由RF线缆而彼此连接。基站设备1550和RRH1560可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 1530(或基站设备1550)可以对应于上述电子设备200、300、400、600。
天线1540包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1540例如可以被布置成天线阵列矩阵,并且用于基站设备1550发送和接收无线信号。例如,多个天线1540可以与gNB 1530使用的多个频段兼容。
基站设备1550包括控制器1551、存储器1552、网络接口1553、无线通信接口1555以及连接接口1557。控制器1551、存储器1552和网络接口1553与参照图21描述的控制器1421、存储器1422和网络接口1423相同。
无线通信接口1555支持任何蜂窝通信方案(诸如5G NR),并且经由RRH1560和天线1540来提供到位于与RRH1560对应的扇区中的终端的无线通信。无线通信接口1555通常可以包括例如BB处理器1556。除了BB处理器1556经由连接接口1557连接到RRH1560的RF电路1564之外,BB处理器1556与参照图20描述的BB处理器1426相同。如图21所示,无线通信接口1555可以包括多个BB处理器1556。例如,多个BB处理器1556可以与gNB 1530使用的多个频段兼容。虽然图21示出其中无线通信接口1555包括多个BB处理器1556的示例,但是无线通信接口1555也可以包括单个BB处理器1556。
连接接口1557为用于将基站设备1550(无线通信接口1555)连接至RRH1560的接口。连接接口1557还可以为用于将基站设备1550(无线通信接口1555)连接至RRH1560的上述高速线路中的通信的通信模块。
RRH1560包括连接接口1561和无线通信接口1563。
连接接口1561为用于将RRH1560(无线通信接口1563)连接至基站设备1550的接口。连接接口1561还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1563经由天线1540来传送和接收无线信号。无线通信接口1563通常可以包括例如RF电路1564。RF电路1564可以包括例如混频器、滤波器和放大器,并且经由天线1540来传送和接收无线信号。虽然图21示出一个RF电路1564与一根天线1540连接的示例,但是本公开并不限于该图示,而是一个RF电路1564可以同时连接多根天线1540。
如图21所示,无线通信接口1563可以包括多个RF电路1564。例如,多个RF电路1564可以支持多个天线元件。虽然图21示出其中无线通信接口1563包括多个RF电路1564的示例,但是无线通信接口1563也可以包括单个RF电路1564。
在图21中示出的gNB 1500中,参照图12A描述的处理电路201、参照图13A描述的处理电路301、参照图17A描述的处理电路401、参照图19A描述的处理电路401包括的一个或多个单元可被实现在无线通信接口1525中。可替代地,这些组件中的至少一部分可被实现在控制器1521中。例如,gNB 1500包含无线通信接口1525的一部分(例如,BB处理器1526)或者整体,和/或包括控制器1521的模块,并且一个或多个组件可被实现在模块中。在这种情况下,模块可以存储用于允许处理器起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在gNB 1500中,并且无线通信接口1525(例如,BB处理器1526)和/或控制器1521可以执行该程序。如上所述,作为包括一个或多个组件的装置,gNB 1500、基站设备1520或模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
用户设备的第一应用示例
图22是示出可以应用本公开内容的技术的智能电话1600的示意性配置的示例的框图。在一个示例中,智能电话1600可以被实现为参照图11A描述的电子设备100或参照图18A描述的电子设备500。
智能电话1600包括处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612、一个或多个天线开关1615、一个或多个天线1616、 总线1617、电池1618以及辅助控制器1619。
处理器1601可以为例如CPU或片上系统(SoC),并且控制智能电话1600的应用层和另外层的功能。处理器1601可以包括或充当参照图11A描述的处理电路101或参照图18A描述的处理电路501。存储器1602包括RAM和ROM,并且存储数据和由处理器1601执行的程序。存储装置1603可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1604为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1600的接口。
摄像装置1606包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1607可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1608将输入到智能电话1600的声音转换为音频信号。输入装置1609包括例如被配置为检测显示装置1610的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1610包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1600的输出图像。扬声器1611将从智能电话1600输出的音频信号转换为声音。
无线通信接口1612支持任何蜂窝通信方案(诸如4G LTE或5G NR等等),并且执行无线通信。无线通信接口1612通常可以包括例如BB处理器1613和RF电路1614。BB处理器1613可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1614可以包括例如混频器、滤波器和放大器,并且经由天线1616来传送和接收无线信号。无线通信接口1612可以为其上集成有BB处理器1613和RF电路1614的一个芯片模块。如图22所示,无线通信接口1612可以包括多个BB处理器1613和多个RF电路1614。虽然图22示出其中无线通信接口1612包括多个BB处理器1613和多个RF电路1614的示例,但是无线通信接口1612也可以包括单个BB处理器1613或单个RF电路1614。
此外,除了蜂窝通信方案之外,无线通信接口1612可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1612可以包括针对每种无线通信方案的BB处理器1613和RF电路1614。
天线开关1615中的每一个在包括在无线通信接口1612中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1616的连接目的地。
天线1616包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1616例如可以被布置成天线阵列矩阵,并且用于无线通信接口1612传送和接收无线信号。智能电话1600可以包括一个或多个天线面板(未示出)。
此外,智能电话1600可以包括针对每种无线通信方案的天线1616。在此情况下,天线开关1615可以从智能电话1600的配置中省略。
总线1617将处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612以及辅助控制器1619彼此连接。电池1618经由馈线向图22所示的智能电话1600的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1619例如在睡眠模式下操作智能电话1600的最小必需功能。
在图22中示出的智能电话1600中,参照图11A描述的处理电路101、参照图18A描述的处理电路501中包括的一个或多个单元可被实现在无线通信接口1612中。可替代地,这些组件中的至少一部分可被实现在处理器1601或者辅助控制器1619中。作为一个示例,智能电话1600包含无线通信接口1612的一部分(例如,BB处理器1613)或者整体,和/或包括处理器1601和/或辅助控制器1619的模块,并且一个或多个组件可被实现在该模块中。在这种情况下,该模块可以存储允许处理起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在智能电话1600中,并且无线通信接口1612(例如,BB处理器1613)、处理器1601和/或辅助控制器1619可以执行该程序。如上所述,作为包括一个或多个组件的装置,智能电话1600或者模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
用户设备的第二应用示例
图23是示出可以应用本公开的技术的汽车导航设备1720的示意性配置的示例的 框图。汽车导航设备1720可以被实现为图11A描述的电子设备100或参照图18A描述的电子设备500。汽车导航设备1720包括处理器1721、存储器1722、全球定位系统(GPS)模块1724、传感器1725、数据接口1726、内容播放器1727、存储介质接口1728、输入装置1729、显示装置1730、扬声器1731、无线通信接口1733、一个或多个天线开关1736、一个或多个天线1737以及电池1738。
处理器1721可以为例如CPU或SoC,并且控制汽车导航设备1720的导航功能和另外的功能。存储器1722包括RAM和ROM,并且存储数据和由处理器1721执行的程序。
GPS模块1724使用从GPS卫星接收的GPS信号来测量汽车导航设备1720的位置(诸如纬度、经度和高度)。传感器1725可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1726经由未示出的终端而连接到例如车载网络1741,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1727再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1728中。输入装置1729包括例如被配置为检测显示装置1730的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1730包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1731输出导航功能的声音或再现的内容。
无线通信接口1733支持任何蜂窝通信方案(诸如4G LTE或5G NR),并且执行无线通信。无线通信接口1733通常可以包括例如BB处理器1734和RF电路1735。BB处理器1734可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1735可以包括例如混频器、滤波器和放大器,并且经由天线1737来传送和接收无线信号。无线通信接口1733还可以为其上集成有BB处理器1734和RF电路1735的一个芯片模块。如图23所示,无线通信接口1733可以包括多个BB处理器1734和多个RF电路1735。虽然图23示出其中无线通信接口1733包括多个BB处理器1734和多个RF电路1735的示例,但是无线通信接口1733也可以包括单个BB处理器1734或单个RF电路1735。
此外,除了蜂窝通信方案之外,无线通信接口1733可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针 对每种无线通信方案,无线通信接口1733可以包括BB处理器1734和RF电路1735。
天线开关1736中的每一个在包括在无线通信接口1733中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1737的连接目的地。
天线1737包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1737例如可以被布置成天线阵列矩阵,并且用于无线通信接口1733传送和接收无线信号。
此外,汽车导航设备1720可以包括针对每种无线通信方案的天线1737。在此情况下,天线开关1736可以从汽车导航设备1720的配置中省略。
电池1738经由馈线向图23所示的汽车导航设备1720的各个块提供电力,馈线在图中被部分地示为虚线。电池1738累积从车辆提供的电力。
在图23中示出的汽车导航装置1720中,参照图11A描述的处理电路101或参照图18A描述的处理电路501中包括的一个或多个单元可被实现在无线通信接口1733中。可替代地,这些组件中的至少一部分可被实现在处理器1721中。作为一个示例,汽车导航装置1720包含无线通信接口1733的一部分(例如,BB处理器1734)或者整体,和/或包括处理器1721的模块,并且一个或多个组件可被实现在该模块中。在这种情况下,该模块可以存储允许处理起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在汽车导航装置1720中,并且无线通信接口1733(例如,BB处理器1734)和/或处理器1721可以执行该程序。如上所述,作为包括一个或多个组件的装置,汽车导航装置1720或者模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
另外,在图23中示出的汽车导航装置1720中,例如,参照图11A描述的通信单元105或参照图18A描述的通信单元505可被实现在无线通信接口1933(例如,RF电路1935)中。
本公开的技术也可以被实现为包括汽车导航设备1720、车载网络1741以及车辆模块1742中的一个或多个块的车载系统(或车辆)1740。车辆模块1742生成车辆数 据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1741。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (35)

  1. 一种用户设备侧的电子设备,在所述用户设备与集成接入和回传(IAB)系统的第一节点之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,其特征在于,所述电子设备包括:
    处理电路,被配置为:
    测量来自第三节点的信号干扰;
    向第一节点上报干扰测量结果;以及
    在第二节点至少部分基于所述干扰测量结果超过预定阈值而确定切换所述用户设备使用的接入链路的情况下,建立所述用户设备和第二节点之间的直接接入链路,并且断开所述用户设备和第一节点之间的接入链路。
  2. 如权利要求1所述的电子设备,其中,断开所述用户设备和第一节点之间的接入链路包括仅断开所述用户设备和第一节点之间的下行接入链路。
  3. 如权利要求2所述的电子设备,其中,断开所述用户设备和第一节点之间的下行接入链路包括仅断开所述用户设备和第一节点之间的下行数据链路而不断开所述用户设备和第一节点之间的下行控制链路。
  4. 如权利要求2或3所述的电子设备,其中,所述用户设备和第二节点之间的直接接入链路与所述用户设备和第一节点之间的上行接入链路工作在不同的频段上。
  5. 如权利要求1或2所述的电子设备,其中,建立所述用户设备和第二节点之间的直接接入链路包括仅建立所述用户设备和第二节点之间的下行接入链路。
  6. 如权利要求1或2所述的电子设备,其中,建立所述用户设备和第二节点之间的直接接入链路包括仅建立所述用户设备和第二节点之间的下行数据链路。
  7. 如权利要求1所述的电子设备,其中,所述干扰测量结果在第一节点处与所述预定阈值相比较。
  8. 如权利要求1所述的电子设备,其中,所述干扰测量结果由第一节点转发至第二节点,并且在第二节点处与所述预定阈值相比较。
  9. 如权利要求1所述的电子设备,其中,测量来自第三节点的信号干扰包括:
    接收由所述第三节点发射的非零功率信道状态信息参考信号(NZP-CSI-RS);以及
    测量所接收的NZP-CSI-RS的信号功率作为所述干扰测量结果。
  10. 如权利要求1所述的电子设备,其中,所述处理电路还被配置为计算所述用户设备和第二节点之间的波束训练期间的最佳下行链路质量相比于所述用户设备和第一节点之间的接入链路的下行链路质量的增益,并将该增益上报给第二节点。
  11. 一种用于集成接入和回传(IAB)系统中的节点的电子设备,所述节点记为第一节点,在第一节点和用户设备之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,其特征在于,所述电子设备包括:
    处理电路,被配置为:
    从所述用户设备接收对于来自第三节点的信号干扰的干扰测量结果;
    在第二节点至少部分基于所述干扰测量结果超过预定阈值而确定切换所述用户设备使用的接入链路的情况下,从第二节点接收关于断开第一节点与所述用户设备之间的接入链路的指示;以及
    断开第一节点与所述用户设备之间的接入链路。
  12. 如权利要求11所述的电子设备,其中,断开所述用户设备和第一节点之间的接入链路包括仅断开所述用户设备和第一节点之间的下行接入链路。
  13. 如权利要求12所述的电子设备,其中,断开所述用户设备和第一节点之间的下行接入链路包括仅断开所述用户设备和第一节点之间的下行数据链路而不断开所述用户设备和第一节点之间的下行控制链路。
  14. 如权利要求11所述的电子设备,其中,所述处理电路还被配置为将接收的干扰测 量结果与所述预定阈值相比较,并向第二节点发送链路切换尝试请求以触发第二节点做出关于切换所述用户设备使用的接入链路的确定。
  15. 如权利要求11所述的电子设备,其中,所述处理电路还被配置为将接收的干扰测量结果转发至第二节点,并且在第二节点处与所述预定阈值相比较。
  16. 如权利要求11所述的电子设备,其中,所述处理电路还被配置为向第二节点上报建议为所述回传链路配置的下行DMRS端口数
    Figure PCTCN2020074089-appb-100001
    所建议的下行DMRS端口数
    Figure PCTCN2020074089-appb-100002
    不大于与第一节点相关联的所有接入链路的DMRS端口数
    Figure PCTCN2020074089-appb-100003
  17. 如权利要求11所述的电子设备,其中,所述处理电路还被配置为接收包含第二节点为所述回传链路配置的下行DMRS端口数
    Figure PCTCN2020074089-appb-100004
    的信息,其中所配置的下行DMRS端口数
    Figure PCTCN2020074089-appb-100005
    不大于第一节点建议为所述回传链路配置的下行DMRS端口数
    Figure PCTCN2020074089-appb-100006
  18. 一种用于集成接入和回传(IAB)系统中的节点的电子设备,所述节点记为第二节点,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第一节点是第二节点的子节点,并且在用户设备和第一节点之间具有接入链路,其特征在于,所述电子设备包括:
    处理电路,被配置为:
    至少部分基于所述用户设备对于来自第三节点的信号干扰的干扰测量结果超过预定阈值,确定切换所述用户设备使用的接入链路;以及
    响应于所述确定,建立第二节点和所述用户设备之间的直接接入链路,并且指示第一节点断开第一节点与所述用户设备之间的接入链路。
  19. 如权利要求18所述的电子设备,其中,所述处理电路被配置为仅建立第二节点和所述用户设备之间的下行接入链路,并且指示第一节点断开第一节点与所述用户设备之间的下行接入链路。
  20. 如权利要求18所述的电子设备,其中,所述处理电路还被配置为:
    从所述用户设备接收所述用户设备和第二节点之间的波束训练期间的最佳下行链路质 量相比于所述用户设备和第一节点之间的接入链路的下行链路质量的增益;
    在所述增益超过特定阈值的情况下,确定切换所述用户设备使用的接入链路。
  21. 如权利要求18所述的电子设备,其中,所述处理电路还被配置为:
    从所述用户设备接收所述用户设备和第二节点之间的波束训练期间的最佳下行链路质量相比于所述用户设备和第一节点之间的接入链路的下行链路质量的第一增益;
    从另一用户设备接收该另一用户设备和第二节点之间的波束训练期间的最佳下行链路质量相比于该另一用户设备和第三节点之间的接入链路的下行链路质量的第二增益,其中,第三节点与所述另一用户设备之间的下行传输导致所述来自第三节点的信号干扰;以及
    在第一增益超过第二增益的情况下,确定切换所述用户设备使用的接入链路。
  22. 一种用于集成接入和回传(IAB)系统中的节点的电子设备,所述节点记为第二节点,在第二节点与所述IAB系统的第一节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,并且在用户设备和第一节点之间具有接入链路,其中,所述电子设备包括
    处理电路,被配置为:
    通过在第二节点和所述用户设备之间传输的参考信号,获取经由所述回传链路、所述第一节点和所述接入链路的下行基带联结信道的联结信道状态信息,其中第一节点工作在放大转发(AF)模式下;以及
    基于所获取的联结信道状态信息,计算用于所述用户设备的下行传输的数字预编码矩阵。
  23. 如权利要求22所述的电子设备,其中,所述参考信号是从所述用户设备传输到第二节点的探测参考信号(SRS),并且所述IAB系统采用时分双工(TDD)。
  24. 如权利要求22所述的电子设备,其中,所述参考信号是从第二节点传输到所述用户设备的信道状态信息参考信号(CSI-RS)。
  25. 如权利要求22所述的电子设备,其中,所述处理电路还被配置为从第一节点接收包含第一节点选择工作在AF模式下的信息的上行控制信息(UCI)。
  26. 如权利要求22所述的电子设备,其中,所述处理电路还被配置为:
    从第一节点接收建议为所述回传链路配置的下行DMRS端口数
    Figure PCTCN2020074089-appb-100007
    所建议的下行DMRS端口数
    Figure PCTCN2020074089-appb-100008
    等于与第一节点相关联的所有接入链路的DMRS端口数
    Figure PCTCN2020074089-appb-100009
    以及
    将为所述回传链路配置的下行DMRS端口数
    Figure PCTCN2020074089-appb-100010
    设置为等于所建议的下行DMRS端口数
    Figure PCTCN2020074089-appb-100011
  27. 一种用户设备侧的电子设备,在所述用户设备和集成接入和回传(IAB)系统中的第一节点之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,其特征在于,所述电子设备包括:
    处理电路,被配置为:
    接收经由所述回传链路、所述第一节点和所述接入链路传输的数据流,
    其中,第一节点工作在放大转发(AF)模式下,
    其中,所述数据流由第二节点利用数字预编码矩阵进行预编码,
    其中,所述数字预编码矩阵是基于经由所述回传链路、所述第一节点和所述接入链路的下行基带联结信道的联结信道状态信息而计算的,并且
    其中,所述联结信道状态信息是通过在第二节点和所述用户设备之间传输的参考信号而获取的。
  28. 一种用于集成接入和回传(IAB)系统中的节点的电子设备,所述节点记为第一节点,在第一节点和用户设备之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,其特征在于,所述电子设备包括:
    处理电路,被配置为:
    在放大转发(AF)模式下向所述用户设备转发来自第二节点的数据流,
    其中,所述数据流由第二节点利用数字预编码矩阵进行预编码,
    其中,所述数字预编码矩阵是基于经由所述回传链路、所述第一节点和所述接入链路的下行基带联结信道的联结信道状态信息而计算的,并且
    其中,所述联结信道状态信息是通过在第二节点和所述用户设备之间传输的参考信号 而获取的。
  29. 一种用于用户设备的通信方法,在所述用户设备和集成接入和回传(IAB)系统中的第一节点之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,其特征在于,所述通信方法包括:
    测量来自第三节点的信号干扰;
    向第一节点上报干扰测量结果;以及
    在第二节点至少部分基于所述干扰测量结果超过预定阈值而确定切换所述用户设备使用的接入链路的情况下,建立所述用户设备和第二节点之间的直接接入链路,并且断开所述用户设备和第一节点之间的接入链路。
  30. 一种用于集成接入和回传(IAB)系统中的节点的通信方法,所述节点记为第一节点,在第一节点和用户设备之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,其特征在于,所述通信方法包括:
    从所述用户设备接收对于来自第三节点的信号干扰的干扰测量结果;
    在第二节点至少部分基于所述干扰测量结果超过预定阈值而确定切换所述用户设备使用的接入链路的情况下,从第二节点接收关于断开第一节点与所述用户设备之间的接入链路的指示;以及
    断开第一节点与所述用户设备之间的接入链路。
  31. 一种用于集成接入和回传(IAB)系统中的节点的通信方法,所述节点记为第二节点,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第一节点是第二节点的子节点,并且在用户设备和第一节点之间具有接入链路,其特征在于,所述通信方法包括:
    至少部分基于所述用户设备对于来自第三节点的信号干扰的干扰测量结果超过预定阈值,确定切换所述用户设备使用的接入链路;以及
    响应于所述确定,建立第二节点和所述用户设备之间的直接接入链路,并且指示第一节点断开第一节点与所述用户设备之间的接入链路。
  32. 一种用于集成接入和回传(IAB)系统中的节点的通信方法,所述节点记为第二节点,在第二节点与所述IAB系统的第一节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,并且在用户设备和第一节点之间具有接入链路,其特征在于,所述通信方法包括:
    获取在第二节点和所述用户设备之间传输的参考信号的测量结果;
    基于所述参考信号的测量结果,获取经由所述回传链路、所述第一节点和所述接入链路的下行基带联结信道的联结信道状态信息,其中第一节点工作在放大转发(AF)模式下;以及
    基于所获取的联结信道状态信息,计算用于所述用户设备的下传输的数字预编码矩阵。
  33. 一种用户设备侧的通信方法,在所述用户设备和集成接入和回传(IAB)系统中的第一节点之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,其特征在于,所述通信方法包括:
    接收经由所述回传链路、所述第一节点和所述接入链路传输的数据流,
    其中,第一节点工作在放大转发(AF)模式下,
    其中,所述数据流在第二节点处利用数字预编码矩阵被预编码,
    其中,所述数字预编码矩阵是基于经由所述回传链路、所述第一节点和所述接入链路的下行基带联结信道的联结信道状态信息而计算的,并且
    其中,所述联结信道状态信息是通过在第二节点和所述用户设备之间传输的参考信号而获取的。
  34. 一种用于集成接入和回传(IAB)系统中的节点的通信方法,所述节点记为第一节点,在第一节点和用户设备之间具有接入链路,在第一节点与所述IAB系统的第二节点之间具有回传链路,其中在所述IAB系统的网络拓扑关系中第二节点是第一节点的父节点,其特征在于,所述通信方法包括:
    在放大转发(AF)模式下向所述用户设备转发来自第二节点的数据流,
    其中,所述数据流由第二节点利用数字预编码矩阵进行预编码,
    其中,所述数字预编码矩阵是基于经由所述回传链路、所述第一节点和所述接入链路的下行基带联结信道的联结信道状态信息而计算的,并且
    其中,所述联结信道状态信息是通过在第二节点和所述用户设备之间传输的参考信号而获取的。
  35. 一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如29-34中任一项所述的通信方法。
PCT/CN2020/074089 2019-02-02 2020-01-31 电子设备、通信方法和存储介质 WO2020156503A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/414,323 US12035184B2 (en) 2019-02-02 2020-01-31 Electronic device, communication method and storage medium
EP20748043.5A EP3920588A1 (en) 2019-02-02 2020-01-31 Electronic device, communication method and storage medium
CN202080010858.XA CN113330778B (zh) 2019-02-02 2020-01-31 电子设备、通信方法和存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910105935.9A CN111526543A (zh) 2019-02-02 2019-02-02 电子设备、通信方法和存储介质
CN201910105935.9 2019-02-02

Publications (1)

Publication Number Publication Date
WO2020156503A1 true WO2020156503A1 (zh) 2020-08-06

Family

ID=71840282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074089 WO2020156503A1 (zh) 2019-02-02 2020-01-31 电子设备、通信方法和存储介质

Country Status (4)

Country Link
US (1) US12035184B2 (zh)
EP (1) EP3920588A1 (zh)
CN (2) CN111526543A (zh)
WO (1) WO2020156503A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114125894A (zh) * 2021-10-29 2022-03-01 漳州科华电气技术有限公司 数据传输方法及装置
EP4203559A1 (fr) * 2021-12-23 2023-06-28 Thales Procédé de reconfiguration d'une infrastructure de radiocommunication en cas de parasitage et infrastructure de radiocommunication associée

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115150943A (zh) * 2021-03-31 2022-10-04 索尼公司 用于无线通信系统的电子设备、方法和存储介质
CN116938689A (zh) * 2022-04-01 2023-10-24 中兴通讯股份有限公司 网络切换方法、节点、电子设备和可读存储介质
WO2023184542A1 (zh) * 2022-04-02 2023-10-05 富士通株式会社 配置信息的方法、装置和通信系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070213011A1 (en) * 2006-02-22 2007-09-13 Samsung Electronics Co., Ltd. Method for controlling reverse channel rate in a cellular mobile communication system and system thereof
CN108934030A (zh) * 2018-07-19 2018-12-04 武汉虹信通信技术有限责任公司 一种避免iab基站交叉干扰的方法

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE517197C2 (sv) * 1999-04-15 2002-05-07 Ericsson Telefon Ab L M Adaptiv sektorindelning
US6681112B1 (en) * 2002-04-29 2004-01-20 Nokia Corporation Handovers of user equipment connections in wireless communications systems
US20100260126A1 (en) 2009-04-13 2010-10-14 Qualcomm Incorporated Split-cell relay packet routing
US9030977B2 (en) * 2009-10-15 2015-05-12 Qualcomm Incorporated Methods and apparatus for transport block size determination
US8520617B2 (en) * 2009-11-06 2013-08-27 Motorola Mobility Llc Interference mitigation in heterogeneous wireless communication networks
US8559957B2 (en) 2010-01-28 2013-10-15 Qualcomm Incorporated Method and apparatus for biasing a handoff decision based on a blackhaul link
CN105813108B (zh) * 2010-03-29 2019-11-01 Lg电子株式会社 用于对无线电通信系统中的小区间干扰协调的测量的方法和装置
US20120113961A1 (en) * 2010-11-08 2012-05-10 Motorola Mobility, Inc. Interference Measurements in Enhanced Inter-Cell Interference Coordination Capable Wireless Terminals
US20120122472A1 (en) * 2010-11-12 2012-05-17 Motorola Mobility, Inc. Positioning Reference Signal Assistance Data Signaling for Enhanced Interference Coordination in a Wireless Communication Network
CN102480347B (zh) * 2010-11-23 2015-06-03 中兴通讯股份有限公司 中继链路子帧配置切换时确认信息的反馈方法及装置
EP2659704B1 (en) * 2010-12-30 2018-04-25 Nokia Solutions and Networks Oy Relay-to-relay interference coordination in a wireless communication network
WO2013063792A1 (en) * 2011-11-04 2013-05-10 Nokia Siemens Networks Oy Mechanisms addressing dynamic component carrier change in relay systems
US8976662B2 (en) 2012-02-09 2015-03-10 Qualcomm Incorporated Apparatus and method for opportunistic relay association
EP2753121B1 (en) * 2012-09-10 2016-05-11 Fujitsu Limited Handovers in wireless communication systems
US9723647B2 (en) * 2013-02-01 2017-08-01 Nokia Solutions And Networks Oy Handling a radio link failure in communications
US9100883B2 (en) * 2013-04-03 2015-08-04 Blackberry Limited Methods and systems for wireless communication in heterogeneous networks
CN105519167B (zh) * 2013-07-04 2020-01-14 韩国电子通信研究院 移动通信系统中用于支持多连接的控制方法和用于支持多连接的设备
US10419989B2 (en) * 2013-10-16 2019-09-17 Taiwan Semiconductor Manufacturing Company, Ltd. Direct link mode for small cells of cellular wireless communication networks
US10813068B2 (en) * 2014-05-08 2020-10-20 Apple Inc. Systems, methods, and devices for synchronization source selection for device-to-device communication
US9414285B2 (en) * 2014-06-30 2016-08-09 Qualcomm Incorporated Handover with integrated antenna beam training in wireless networks
US10492092B2 (en) * 2014-10-06 2019-11-26 Lg Electronics Inc. Method for reporting channel state information in wireless access system supporting unlicensed band, and apparatus for supporting same
CN107079380A (zh) * 2014-11-14 2017-08-18 株式会社Ntt都科摩 用户装置及d2d通信方法
KR101724232B1 (ko) * 2015-05-26 2017-04-06 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 링크 해제 방법 및 상기 방법을 이용하는 단말
KR102293045B1 (ko) * 2015-05-29 2021-08-26 삼성전자주식회사 Mimo 기반 빔포밍을 지원하는 방법 및 장치
US10135126B2 (en) * 2015-06-05 2018-11-20 Viasat, Inc. Methods and systems for mitigating interference with a nearby satellite
US11183749B2 (en) * 2015-06-05 2021-11-23 Viasat, Inc. Methods and systems for mitigating interference with a nearby satellite
CN108029148B (zh) * 2015-07-23 2022-04-01 苹果公司 移动性中继方法和装置
KR20180043386A (ko) * 2015-09-17 2018-04-27 엘지전자 주식회사 무선 통신 시스템에서 v2x 단말의 메시지 송수신 방법 및 장치
US10244540B2 (en) * 2015-12-02 2019-03-26 Qualcomm Incorporated Systems and methods for mixed interference management
KR102270541B1 (ko) * 2016-04-01 2021-06-30 삼성전자 주식회사 무선 통신 시스템에서 통신 방법 및 장치
CN107425948B (zh) * 2016-05-24 2020-12-01 华为技术有限公司 参考信号的传输方法及装置、网络设备和用户设备
EP3445116B1 (en) * 2016-06-29 2022-05-11 Huawei Technologies Co., Ltd. Communication method, apparatus and system
US9985808B2 (en) * 2016-07-07 2018-05-29 Qualcomm Incorporated Methods and apparatus for managing interference across operators
US10743362B2 (en) * 2016-09-27 2020-08-11 Lg Electronics Inc. Method whereby user equipment operates in wireless communication system, and device for supporting same
US11064542B2 (en) * 2016-11-03 2021-07-13 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for sidelink wireless communications
CN109586771A (zh) * 2017-09-29 2019-04-05 索尼公司 电子设备和通信方法
US10862546B2 (en) * 2018-02-13 2020-12-08 Qualcomm Incorporated Coordinated transmission in millimeter wave systems
US11206643B2 (en) * 2018-08-10 2021-12-21 Qualcomm Incorporated Monitoring uplink preemption indication
EP3850890A1 (en) * 2018-09-12 2021-07-21 Telefonaktiebolaget Lm Ericsson (Publ) First node, fourth node and methods performed thereby for handling access to a communications network in a multi-hop deployment
CN113039862B (zh) * 2018-09-14 2024-06-25 株式会社Ntt都科摩 无线通信装置以及无线通信方法
US20220124761A1 (en) * 2018-11-02 2022-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for signaling pdsch diversity
US20220311574A1 (en) * 2018-12-14 2022-09-29 Nec Corporation Dmrs configuration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070213011A1 (en) * 2006-02-22 2007-09-13 Samsung Electronics Co., Ltd. Method for controlling reverse channel rate in a cellular mobile communication system and system thereof
CN108934030A (zh) * 2018-07-19 2018-12-04 武汉虹信通信技术有限责任公司 一种避免iab基站交叉干扰的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AT&T: "Route Changes Based on Intra-gNB Handover of IAB Node", 3GPP TSG-RAN WG2 MEETING #103 R2-1812405, 24 August 2018 (2018-08-24), XP051522005, DOI: 20200414174853A *
ZTE: "Discussion on IAB topology adaptation", 3GPP TSG-RAN WG2 NR ADHOC 1807 R2-1810211, 6 July 2018 (2018-07-06), XP051467404, DOI: 20200414174853A *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114125894A (zh) * 2021-10-29 2022-03-01 漳州科华电气技术有限公司 数据传输方法及装置
EP4203559A1 (fr) * 2021-12-23 2023-06-28 Thales Procédé de reconfiguration d'une infrastructure de radiocommunication en cas de parasitage et infrastructure de radiocommunication associée
FR3131495A1 (fr) * 2021-12-23 2023-06-30 Thales Procédé de reconfiguration d’une infrastructure de radiocommunication en cas de parasitage; Infrastructure de radiocommunication associée

Also Published As

Publication number Publication date
CN111526543A (zh) 2020-08-11
CN113330778A (zh) 2021-08-31
US12035184B2 (en) 2024-07-09
CN113330778B (zh) 2024-05-31
EP3920588A1 (en) 2021-12-08
US20220038970A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
US20230318663A1 (en) Electronic device, communication method and storage medium
US11843557B2 (en) Electronic device and communication method for inter-cell interference coordination
US20230361817A1 (en) Electronic device, communication method and storage medium
KR102555127B1 (ko) 무선 통신 시스템 내의 전자 디바이스, 및 무선 통신 방법
WO2020156503A1 (zh) 电子设备、通信方法和存储介质
US10804977B2 (en) Electronic device and communication method
WO2019142512A1 (ja) 通信装置及び通信方法
WO2019029515A1 (zh) 用于无线通信的电子设备、方法和介质
US11101850B2 (en) Electronic device and communication method
US20200220605A1 (en) Electronic device, wireless communication method and computer readable storage medium
WO2020031704A1 (ja) 通信装置、通信制御方法及び記録媒体
US20220182847A1 (en) Base station device, communication method and storage medium
CN114342284A (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2020108367A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2023143216A1 (zh) 用户设备、电子设备、无线通信方法和存储介质
CN117859393A (zh) 电子设备、通信方法和计算机程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020748043

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020748043

Country of ref document: EP

Effective date: 20210902