WO2023010563A1 - 一种无线通信方法及装置、终端设备、网络设备 - Google Patents

一种无线通信方法及装置、终端设备、网络设备 Download PDF

Info

Publication number
WO2023010563A1
WO2023010563A1 PCT/CN2021/111304 CN2021111304W WO2023010563A1 WO 2023010563 A1 WO2023010563 A1 WO 2023010563A1 CN 2021111304 W CN2021111304 W CN 2021111304W WO 2023010563 A1 WO2023010563 A1 WO 2023010563A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
base station
terminal device
indication information
computer program
Prior art date
Application number
PCT/CN2021/111304
Other languages
English (en)
French (fr)
Inventor
邢金强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/111304 priority Critical patent/WO2023010563A1/zh
Priority to CN202180098018.8A priority patent/CN117322088A/zh
Publication of WO2023010563A1 publication Critical patent/WO2023010563A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular to a wireless communication method and device, terminal equipment, and network equipment.
  • the signal radiated by the terminal is spherical in space to meet the mobility requirements of the terminal.
  • most of the radiated power of the omnidirectional antenna is invalid, and only the signal received by the base station Very little power is effective, that is to say, in the omnidirectional radiation mode adopted by the terminal, the effectiveness of the radiated power is very low.
  • Embodiments of the present application provide a wireless communication method and device, a terminal device, and a network device.
  • the terminal device measures the downlink signal of the first base station, and determines the first beam direction of the downlink signal based on the measurement result;
  • the terminal device communicates with the second base station based on a first beam corresponding to a second beam direction, the second beam direction corresponds to the first beam direction, and the first beam is a directional beam;
  • the terminal device uses a first frequency band to communicate with the first base station; the terminal device uses a second frequency band to communicate with the second base station.
  • the network device sends first indication information to the terminal device, where the first indication information is used to indicate that the first base station and the second base station share or quasi-share the site, and the terminal equipment is located between the first base station and the second base station
  • the first frequency band communication is performed with the second base station through the first beam
  • the second frequency band communication is performed with the first base station through the second beam
  • the first beam and the second base station communicate with each other.
  • the beam direction of the second beam is the same.
  • the measuring unit is configured to measure the downlink signal of the first base station, and determine the first beam direction of the downlink signal based on the measurement result;
  • the first communication unit is configured to communicate with the second base station based on a first beam corresponding to a second beam direction, the second beam direction corresponds to the first beam direction, and the first beam is a directional beam;
  • the terminal device uses a first frequency band to communicate with the first base station; the terminal device uses a second frequency band to communicate with the second base station.
  • the second sending unit is configured to send first indication information to a terminal device, where the first indication information is used to indicate that the first base station and the second base station have a co-site or a quasi-co-site, and the terminal device is in the first
  • the first frequency band communication is performed with the second base station through the first beam
  • the second frequency band communication is performed with the first base station through the second beam
  • the said The beam directions of the first beam and the second beam are the same.
  • the terminal device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used for storing computer programs
  • the processor is used for invoking and running the computer programs stored in the memory to execute the above wireless communication method.
  • the network device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used for storing computer programs
  • the processor is used for invoking and running the computer programs stored in the memory to execute the above wireless communication method.
  • the chip provided in the embodiment of the present application is used to implement the above wireless communication method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above wireless communication method.
  • the computer-readable storage medium provided by the embodiment of the present application is used for storing a computer program, and the computer program causes a computer to execute the above wireless communication method.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, where the computer program instructions cause a computer to execute the above wireless communication method.
  • the computer program provided in the embodiment of the present application when running on a computer, enables the computer to execute the above wireless communication method.
  • the direction of arrival of the downlink signal is determined, and the beam direction of the beam of the second frequency band interacting with the second base station is adjusted based on the measured direction of arrival. , so as to improve the effectiveness of the radiation power of the terminal equipment and save power consumption at the same time.
  • FIG. 1 is a schematic diagram of an optional application scenario of an embodiment of the present application
  • Fig. 2 is a schematic diagram of an optional application scenario of the embodiment of the present application.
  • Fig. 3 is a schematic diagram of an optional application scenario of the embodiment of the present application.
  • FIG. 4 is an optional schematic flowchart of a wireless communication method according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of an optional application scenario of the embodiment of the present application.
  • Fig. 6 is a schematic diagram of an optional application scenario of the embodiment of the present application.
  • Fig. 7 is a schematic diagram of an optional application scenario of the embodiment of the present application.
  • FIG. 8 is a schematic diagram of an optional application scenario of the embodiment of the present application.
  • FIG. 9 is an optional schematic flowchart of a wireless communication method according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an optional application scenario of the embodiment of the present application.
  • Fig. 11 is a schematic diagram of an optional application scenario of the embodiment of the present application.
  • Fig. 12 is a schematic diagram of an optional application scenario of the embodiment of the present application.
  • Fig. 13 is a schematic diagram of an optional application scenario of the embodiment of the present application.
  • Fig. 14 is a schematic diagram of an optional application scenario of the embodiment of the present application.
  • Fig. 15 is a schematic diagram of an optional application scenario of the embodiment of the present application.
  • Fig. 16 is a schematic diagram of an optional application scenario of the embodiment of the present application.
  • Fig. 17 is a schematic diagram of an optional application scenario of the embodiment of the present application.
  • Fig. 18 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 19 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Fig. 22 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • a communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through an air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120 .
  • the embodiment of the present application is only described by using the communication system 100 as an example, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: Long Term Evolution (Long Term Evolution, LTE) system, LTE Time Division Duplex (Time Division Duplex, TDD), Universal Mobile Communication System (Universal Mobile Telecommunication System, UMTS), Internet of Things (Internet of Things, IoT) system, Narrow Band Internet of Things (NB-IoT) system, enhanced Machine-Type Communications (eMTC) system, The 5th generation (5th generation, 5G) communication system (also known as the new radio (New Radio, NR) communication system), or future communication systems, etc.
  • LTE Long Term Evolution
  • LTE Time Division Duplex Time Division Duplex
  • TDD Universal Mobile Communication System
  • UMTS Universal Mobile Communication System
  • Internet of Things Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • the access network device can provide communication coverage for a specific geographical area, and can communicate with terminal devices 110 (such as UEs) located in the coverage area.
  • the network device 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (Long Term Evolution, LTE) system, or a Next Generation Radio Access Network (NG RAN) device, Either a base station (gNB) in the NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle device, a wearable Devices, hubs, switches, bridges, routers, or network devices in the future evolution of the Public Land Mobile Network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a Long Term Evolution (Long Term Evolution, LTE) system
  • NG RAN Next Generation Radio Access Network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • the network device 120 can be a relay station, an access point, a vehicle device, a wearable Devices,
  • the terminal device 110 may be any terminal device, including but not limited to a terminal device connected to the network device 120 or other terminal devices by wire or wirelessly.
  • the terminal equipment 110 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, user agent, or user device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistant , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device 110 can be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, Access and Mobility Management Function (Access and Mobility Management Function , AMF), and for example, authentication server function (Authentication Server Function, AUSF), and for example, user plane function (User Plane Function, UPF), and for example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be a packet core evolution (Evolved Packet Core, EPC) device of the LTE network, for example, a data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) Equipment.
  • EPC packet core evolution
  • SMF+PGW-C can realize the functions of SMF and PGW-C at the same time.
  • the above-mentioned core network equipment may be called by other names, or a new network entity may be formed by dividing functions of the core network, which is not limited in this embodiment of the present application.
  • Various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the NR interface to transmit user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); access Network equipment such as the next generation wireless access base station (gNB), can establish a user plane data connection with UPF through NG interface 3 (abbreviated as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (abbreviated as N2) connection; UPF can establish a control plane signaling connection with SMF through NG interface 4 (abbreviated as N4); UPF can exchange user plane data with the data network through NG interface 6 (abbreviated as N6); AMF can communicate with SMF through NG interface 11 (abbreviated as N11) The SMF establishes a control plane signaling connection; the SMF may establish a control plane signaling connection with the PCF through an NG interface 7 (N7 for short).
  • gNB next generation wireless access base station
  • Figure 1 exemplarily shows a base station, a core network device, and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and each base station may include other numbers of terminals within the coverage area.
  • the device is not limited in the embodiment of this application.
  • FIG. 1 is only an illustration of a system applicable to this application, and of course, the method shown in the embodiment of this application may also be applicable to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations.
  • the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • the "indication” mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the "correspondence” mentioned in the embodiments of the present application may mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated. , configuration and configured relationship.
  • the "predefined” or “predefined rules” mentioned in the embodiments of this application can be used by pre-saving corresponding codes, tables or other It is implemented by indicating related information, and this application does not limit the specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, and this application does not limit this .
  • the millimeter wave operating frequency band is introduced, and the millimeter wave operating frequency is above 10GHz.
  • the spatial propagation loss of electromagnetic waves in the millimeter wave frequency band is very large, resulting in limited coverage of electromagnetic wave signals.
  • terminal equipment and base stations generally use antenna arrays composed of multiple antenna elements to form narrow beams to transmit and receive signals in the millimeter wave frequency band. These narrow beams have relatively strong directivity, such as As shown in FIG. 2 , base station 201 and terminal 202 communicate through narrow beam 211 and narrow beam 212, wherein narrow beam 211 is a beam formed by the antenna array of the base station, and narrow beam 212 is a beam formed by the antenna array of terminal 202.
  • omnidirectional antennas are usually used, that is, the signals radiated by the terminal are spherical in space to meet the mobility requirements of the terminal.
  • the coverage orientation 311 of the base station 301 also adopts a wide-area coverage manner, and the signal radiated by the terminal device 302 is a spherical radiation 312 in space. .
  • the spherical radiation in Figure 3 has a better mobility effect, that is, the terminal can maintain a good connection no matter how it moves.
  • the problem is that most of the radiated power is useless, and only the very little power received by the base station is useful.
  • the terminal equipment adopts the omnidirectional radiation mode in the low frequency band, and the power efficiency of the radiation is very low.
  • terminal equipment adopts beam-directed radiation in the millimeter wave frequency band, and its power can be effectively received by the base station. From the perspective of the effectiveness of the transmit power of the terminal equipment, it is necessary to further optimize the transmit power of the terminal in the low frequency band, that is, to reduce the transmission of useless power.
  • the wireless communication method provided in the embodiment of the present application, as shown in FIG. 4 includes:
  • the terminal device measures a downlink signal of a first base station, and determines a first beam direction of the downlink signal based on a measurement result.
  • the terminal device communicates with the second base station based on a first beam corresponding to a second beam direction, where the second beam direction corresponds to the first beam direction, and the first beam is a directional beam.
  • the terminal device uses a first frequency band to communicate with the first base station; the terminal device uses a second frequency band to communicate with the second base station.
  • the first frequency band and the second frequency band are different frequency bands.
  • the first frequency band belongs to the first frequency band range
  • the second frequency band belongs to the second frequency band range.
  • the first base station supports the first frequency band range
  • the second base station supports the second frequency band range.
  • the first frequency range and the second frequency range are different or the same frequency range.
  • the first frequency range is a millimeter wave frequency range
  • the second frequency range is a low frequency range
  • the first frequency range is a millimeter-wave frequency range
  • the second frequency range is a millimeter-wave frequency range
  • the first frequency range is a low frequency range
  • the second frequency range is a low frequency range
  • the combination of the first frequency band and the second frequency band may include one of the following:
  • CA Carrier Aggregation
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC NR Dual Connectivity
  • NR and E-UTRA dual connectivity (NR-E-UTRA Dual Connectivity, NE-DC).
  • the first frequency band supports directional radiation
  • the second frequency band supports directional radiation
  • directional radiation can be understood as directional beam generation capability, or beamforming capability.
  • the first base station uses the first frequency band to communicate with the terminal device
  • the second base station uses the second frequency band to communicate with the terminal device.
  • the first base station and the second base station are different base stations.
  • a terminal device 501 communicates with a base station 502 using a first frequency band, and a terminal device communicates with a base station 503 using a second frequency band.
  • the first base station and the second base station are the same base station.
  • the terminal device 501 communicates with the base station 503 by using the first frequency band and the second frequency band.
  • the first base station and the second base station are deployed on a co-site or quasi-co-site.
  • co-site or quasi-co-site can be understood as having the same spatial propagation relationship or the same spatial relationship or having a quasi-co-location (Quasi Co-Location, QCL) relationship, which represents the direction of arrival of the first base station and the direction of the second base station.
  • QCL quasi-co-location
  • the terminal device can communicate with the first base station and the second base station in the same direction or in a similar direction.
  • the co-site or quasi-co-site of the first base station and the second base station can be understood as the co-site or quasi-site of the first frequency band in which the first base station communicates with terminal equipment and the second frequency band in which the second base station communicates with terminal equipment.
  • Co-site that is, the direction of the signal radiated by the first base station using the first frequency band is the same or similar to the direction of the signal radiated by the second base station using the second frequency band.
  • the terminal device detects the measurement result of the downlink signal of the first base station, and obtains the beam direction of the beam that the first base station transmits the downlink signal to the terminal device, that is, the first beam direction, and the first beam direction indicates the radiation when the first base station transmits a signal to the terminal device Direction, that is, the direction of the first base station relative to the terminal device.
  • the terminal device determines a second beam direction corresponding to the first beam direction, wherein the first beam direction is a beam direction of a beam for transmitting a downlink signal by the first base station, and the second beam direction is used by the terminal device to receive a signal from the first beam direction direction of the beam.
  • the first beam direction is opposite to the second beam direction.
  • the included angle between the first beam direction and the second beam direction is within a set included angle range.
  • the terminal device performs signal radiation in the second frequency band based on the second beam direction, so as to form a first beam whose beam direction is the second beam direction.
  • the terminal device uses the first beam to send or receive signals in the second frequency band.
  • the terminal device 701 receives the downlink signal transmitted by the base station 702 through the beam 7021, and the terminal device 701 communicates with the base station 703 through the beam 7011, that is, the first beam, and the beam direction of the beam 7011 is the first beam direction, the beam direction of the beam 7021 is the second beam direction.
  • the terminal device radiates the signal of the second frequency band based on the second beam direction, so as to form the first beam.
  • the first beam is used by the terminal device to transmit signals to the second base station;
  • the first beam is used for the terminal device to receive a signal transmitted by the second base station.
  • the terminal device communicates with the first base station based on a second beam, where a beam direction of the second beam is the second beam direction.
  • the terminal device After determining the direction of the second beam, the terminal device radiates the signal of the first frequency band based on the second beam, thereby forming the second beam.
  • the second beam is used by the terminal device to transmit signals to the first base station
  • the second beam is used for the terminal device to receive a signal transmitted by the first base station.
  • the terminal device 701 communicates with the base station 702 through the second beam 7012, and the beam direction of the second beam 7012 and the beam direction of the first beam 7011 are the second beam direction.
  • one beam of the second frequency band corresponds to one or more beams of the first frequency band.
  • the terminal device determines, based on the corresponding relationship between the beams of the second frequency band and the beams of the first frequency band, that the beam of the second frequency band corresponding to the second beam is the first beam.
  • the corresponding relationship between the beams of the second frequency band supported by the terminal device and the beams of the first frequency band includes: beam 1-1 corresponds to beam 2-1, beam 2-2, and beam 2-3, and beam 1-2 corresponds to beam 2-4 and beam 2-5, wherein beam 1-1 and beam 1-2 belong to beams of the second frequency band, beam 2-1, beam 2-2, beam 2-3, beam 2-4 and beam 2- 5 Beams belonging to the first frequency band, when the second beam selected by the terminal device based on the first beam direction is beam 2-3, then select the beam corresponding to beam 2-3 based on the corresponding relationship between the beams of the second frequency band and the beams of the first frequency band Beam 1-1 is the first beam.
  • the terminal device communicating with the second base station based on the first beam corresponding to the second beam direction includes:
  • the terminal device uses an antenna whose radiation direction is the second beam direction to communicate with the second base station, and a working frequency band of the antenna is the second frequency band.
  • the implementation of the antenna whose radiation direction is the second beam direction includes at least one of the following:
  • Implementation manner 1 using a first antenna among at least two antennas, where the radiation direction of the first antenna includes the second beam direction, and the radiation directions of different antennas are different;
  • the terminal device adopts implementation manner one to form a beam in the second beam direction.
  • the terminal device forms a beam in the second beam direction by using the second implementation manner.
  • the terminal device uses a combination of the first implementation and the second implementation to form a beam in the second beam direction.
  • the terminal device supports multiple antennas, and the radiation directions of different antennas are different.
  • the terminal device selects the antenna whose radiation direction is the second beam direction as the first antenna. , and use the first antenna to radiate the signal.
  • one antenna supports one radiation direction, that is, a beam direction.
  • the terminal device uses the first antenna to radiate signals, and the formed beam is the first beam.
  • the terminal device supports antenna 1, antenna 2, antenna 3, antenna 4, and antenna 5, wherein antenna 1 supports beam direction 1, antenna 2 supports beam direction 2, antenna 3 supports beam direction 3, and antenna 4 supports beam direction Direction 4, antenna 5 supports beam direction 5.
  • antenna 1 supports beam direction 1
  • antenna 2 supports beam direction 2
  • antenna 3 supports beam direction 3
  • antenna 4 supports beam direction Direction 4
  • antenna 5 supports beam direction 5.
  • the terminal device selects antenna 2, and uses antenna 2 to radiate signals.
  • the terminal device supports one antenna, which is an omnidirectional antenna, and the antenna supports different beam directions based on different antenna feeding points or tuning capacitors,
  • the terminal device selects a feed point or a tuning capacitor corresponding to the second beam direction to perform signal radiation.
  • the antenna feed point of one antenna supported by the terminal device includes: antenna feed point 1 , antenna feed point 2 , antenna feed point 3 , antenna feed point 4 , and antenna feed point 5 .
  • antenna feed point 1 corresponds to beam direction 1
  • antenna feed point 2 corresponds to beam direction 2
  • antenna feed point 3 corresponds to beam direction 3
  • antenna feed point 4 corresponds to beam direction 4
  • antenna feed point 5 corresponds to beam direction 5.
  • the terminal device uses antenna feed point 2 to radiate signals.
  • the terminal device as an example to realize the beam in the second beam direction by using the combination of the first and second implementation methods
  • one antenna can support multiple antenna feed points or coordinate harmonic capacitors, Different beam directions can be supported through different antenna feed points or coordinating harmonic capacitors.
  • the terminal device supports multiple antennas, and each antenna has multiple radiation directions, and different antennas have different radiation directions. Wherein, each antenna can support different radiation directions through different antenna feed points or tuning capacitors.
  • the terminal device selects an antenna whose radiation direction includes the second beam direction as the first antenna, and uses an antenna feed point or a tuning capacitor corresponding to the second beam direction to radiate signals through the first antenna.
  • the terminal device supports antenna 1 and antenna 2, where antenna 1 supports beam directions 1, 2 and 3, and antenna 2 supports beam directions 4 and 5.
  • antenna 1 supports beam directions 1, 2 and 3
  • antenna 2 supports beam directions 4 and 5.
  • the terminal device selects antenna 2, uses antenna 2 to radiate signals, and uses the antenna feeding point or coordination capacitor corresponding to direction 2 of antenna 2.
  • the terminal device receives first indication information sent by a network device, where the first indication information is used to indicate that the first base station and the second base station have a co-site or a quasi-co-site.
  • the network device sends first indication information to the terminal device.
  • the first indication information is used to indicate that the first base station and the second base station have co-site or quasi-co-site.
  • the network determines that the first base station and the second base station share or quasi-co-site, and then send the first indication information to the terminal device to notify the terminal device that the first base station and the second base station share or quasi-site Co-site.
  • the terminal device When receiving the first indication information, uses the first beam to communicate with the second base station.
  • the first indication information indicates the frequency bands supported by the first base station and the frequency bands supported by the second base station that can be combined into the first frequency band combination. It can be understood that the first indication information can indicate the first frequency band combination.
  • the first frequency band combination includes frequency bands supported by the first base station and frequency bands supported by the second base station that can be used in combination by the terminal device.
  • the terminal device determines the first frequency band and the second frequency band based on the first indication information, wherein the first frequency band and the second frequency band belong to the same first frequency band combination, and the first frequency band is a frequency band supported by the first base station, and the second frequency band is the frequency band supported by the first base station. Frequency bands supported by the second base station.
  • the first indication information is applicable to all frequency bands supported by the first base station and all frequency bands supported by the second base station.
  • the first indication information indicates that all frequency bands supported by the first base station and all frequency bands supported by the second base station form the first frequency band combination.
  • the first frequency band used by the terminal device to communicate with the first base station may be any of the frequency bands supported by the first base station
  • the second frequency band used by the terminal device to communicate with the second base station may be a frequency band supported by the second base station. any of the frequency bands.
  • the first base station supports frequency band 11, frequency band 12, and frequency band 13, and the second base station supports frequency band 21, frequency band 22, and frequency band 23, then the first indication information sent by the network device to the terminal device is applicable to the frequency bands supported by the first base station 11.
  • Frequency band 12, frequency band 13 and the second base station support frequency band 21, frequency band 22 and frequency band 23
  • the first base station supports any frequency band in frequency band 11, frequency band 12 and frequency band 13
  • the second base station supports frequency band 21, frequency band 22 and frequency band Any one of the 23 frequency bands forms the first frequency band combination.
  • the first indication information is applicable to at least one first frequency band combination, and the first frequency band combination includes a frequency band supported by the first base station and a frequency band supported by the second base station.
  • the network device informs the terminal device that the first base station and the second base station share or quasi-share a site based on the first frequency band combination.
  • the frequency bands supported by the first base station in the first frequency band combination may be all or part of the frequency bands supported by the first base station, and the frequency bands supported by the second base station in the first frequency band combination may be all or part of the frequency bands supported by the second base station.
  • the frequency bands supported by the first base station include: frequency band 1-1 and frequency band 1-2
  • the frequency bands supported by the second base station include: frequency band 2-1, frequency band 2-2, and frequency band 2-3
  • the first indication information Applicable first band combinations include: ⁇ band 1-1, band 2-1 ⁇ , ⁇ band 1-2, band 2-1 ⁇ , ⁇ band 1-2, band 2-3 ⁇ , then band 1-1 and The frequency band 2-1 can be combined, the frequency band 1-2 and the frequency band 2-1 can be combined, and the frequency band 1-2 and the frequency band 2-3 can be combined.
  • the first frequency band used by the first base station is the frequency band supported by the first base station in any first frequency band combination
  • the second frequency band 1-1 is the frequency band supported by the second base station in the first frequency band combination including the first frequency band .
  • the first indication information is applicable to frequency band combination 1, frequency band combination 2, and frequency band combination 3, wherein frequency band combination 1 includes: frequency band 1-1 and frequency band 2-1, and frequency band combination 2 includes: frequency band 1-2 and Frequency band 2-2, frequency band combination 3 includes: frequency band 1-3 and frequency band 2-3, wherein, frequency band 1-1, frequency band 1-2 and frequency band 1-3 are frequency bands supported by the first base station, frequency band 2-1, frequency band 2-2 and frequency band 2-3 are frequency bands supported by the second base station.
  • the first frequency band used by the terminal device is frequency band 1-1
  • the second frequency band used by the terminal device is 1-2.
  • the terminal device receives the first indication information, and may adjust the used first frequency band and the second frequency band based on the first indication information.
  • the first message transmitting the first indication information includes at least one of the following:
  • the network device sends the first message to the terminal device, and the terminal device receives the first message and obtains first indication information carried in the first message.
  • the broadcast message transmits first indication information applicable to all frequency bands supported by the first base station and all frequency bands supported by the second base station.
  • the broadcast message transmits first indication information applicable to at least one first frequency band combination.
  • the RRC message transmits first indication information applicable to at least one first frequency band combination.
  • the RRC message includes at least one of the following:
  • the network when the first indication information is transmitted through a broadcast message, the network does not need an additional message to carry the first indication information.
  • the terminal device receives at least one second frequency band combination configured by the network device for the terminal device; the second frequency band combination includes a third frequency band and a fourth frequency band, and the third frequency band is the The frequency band supported by the first base station, the fourth frequency band is the frequency band supported by the second base station.
  • the network device configures at least one second frequency band combination for the terminal device, the second frequency band combination includes a third frequency band and a fourth frequency band, and the third frequency band is a frequency band supported by the first base station, so The fourth frequency band is a frequency band supported by the second base station.
  • the second frequency band combination is the frequency band combination configured by the network device for the terminal device.
  • the second frequency band combination includes the third frequency band supported by the first base station and the fourth frequency band supported by the second base station, wherein the third frequency band is within the range of the first frequency band, and the second frequency band is within the range of the first frequency band.
  • the quad band is in the second band range.
  • the second frequency band combination is a frequency band supported by the first base station and a frequency band supported by the second base station that can be combined configured by the network device for the terminal device.
  • the network device may configure different or the same second frequency band combinations for different terminal devices.
  • the first frequency band used by the terminal equipment is the third frequency band in a second frequency band combination
  • the fourth frequency band used is the fourth frequency band in the second frequency band combination
  • the second frequency band combination configured by the network device for terminal device A includes: ⁇ frequency band 1-1, frequency band 2-1 ⁇ , ⁇ frequency band 1-2, frequency band 2-1 ⁇ , ⁇ frequency band 1-2, frequency band 2-3 ⁇ , then in terminal device A, frequency band 1-1 and frequency band 2-1 can be combined, frequency band 1-2 can be combined with frequency band 2-1, and frequency band 1-2 can be combined with frequency band 2-3.
  • at least one first frequency band combination and at least one second frequency band combination overlap frequency band combinations, they may overlap partially or fully.
  • At least one first frequency band combination includes: frequency band combination 1, frequency band combination 2, and frequency band combination 3, and at least one second frequency band combination includes: frequency band combination 4, frequency band combination 5, and frequency band combination 6.
  • At least one first frequency band combination includes: frequency band combination 1, frequency band combination 2, and frequency band combination 3, and at least one second frequency band combination includes: frequency band combination 2, frequency band combination 3, and frequency band combination 4.
  • At least one first frequency band combination includes: frequency band combination 1, frequency band combination 2, and frequency band combination 3, and at least one second frequency band combination includes: frequency band combination 1, frequency band combination 2, and frequency band combination 3.
  • the at least one second frequency band combination is all or part of the first frequency band combination in the at least one first frequency band combination.
  • At least one first frequency band combination includes: frequency band combination 1, frequency band combination 2, and frequency band combination 3, and at least one second frequency band combination includes: frequency band combination 1, frequency band combination 2, and frequency band combination 3.
  • At least one first frequency band combination includes: frequency band combination 1, frequency band combination 2, and frequency band combination 3, and at least one second frequency band combination includes: frequency band combination 2 and frequency band combination 3.
  • the fourth frequency band has directional beamforming capability.
  • the fourth frequency band has a directional beam generation capability, which can be understood as the terminal device can generate a directional beam by using the fourth frequency band, or can perform directional radiation, or has a beamforming capability.
  • the configuration information of the at least one second frequency band combination is carried in a radio resource control RRC message.
  • the RRC message carrying the configuration information of the at least one second frequency band combination and the RRC message transmitting the first indication information may be the same RRC message, or may be different RRC messages.
  • the RRC message includes at least one of the following:
  • the terminal device sends second indication information to the network device, the second indication information is used to indicate the directional beam generation capability of the terminal device in a second frequency band, and the second frequency band belongs to The range of the second frequency band.
  • the network device receives second indication information sent by the terminal device, where the second indication information is used to indicate the directional beam generation capability of the terminal device in a second frequency band, and the second frequency band belongs to the first Two-band range.
  • the terminal device determines the first indication information according to whether it can generate a directional beam within the second frequency band, and sends the first indication information to the network device, and the network device receives the first indication information, and determines the terminal device based on the first indication information. Whether the device generates a directional beam within the second frequency band.
  • the second indication information may include the first identifier.
  • the value of the first identifier is the first value, it indicates that the terminal device sending the second indication information supports the generation of directional beams in the second frequency range.
  • the first The value of the identifier is the second value, which indicates that the terminal device sending the second indication information does not support the generation of directional beams within the second frequency band.
  • the network device can determine which terminal devices support generation of directional beams and which terminal devices do not support generation of directional beams.
  • the second indication information is further used to indicate a frequency band supporting a directional beam generation capability.
  • the second indication information may further include a frequency band identifier, to indicate which frequency bands within the range of the second frequency band can generate the directional beam.
  • the second indication information is also used to indicate frequency band 1 and frequency band 2 in the second frequency band, which means that frequency band 1 and frequency band 2 support the generation of directional beams, that is, when the terminal device uses frequency band 1 for signal radiation, it can Based on the directional beam radiation signal, when the terminal device uses the frequency band 2 for signal radiation, it can radiate the signal based on the directional beam.
  • the second indication information is further used by the network device to configure at least one second frequency band combination for the first device.
  • the network device determines at least one second frequency band combination according to the second indication information, the second frequency band combination includes a third frequency band and a fourth frequency band, the third frequency band is a frequency band supported by the first base station, the The fourth frequency band is a frequency band supported by the second base station.
  • the terminal device sends second indication information to the network device, and the network device determines frequency bands capable of generating directional beams according to the second indication information, and determines at least one second frequency band combination based on the frequency bands capable of generating directional beams.
  • the frequency bands within the second frequency range supported by the second base station include: frequency band 1-1 and frequency band 1-2,
  • the network device determines a second frequency band combination of the first frequency band combination including frequency bands capable of generating directional beams.
  • At least one first frequency band combination includes frequency band combination 1, frequency band combination 2, and frequency band combination 3, and frequency band combination 1 is ⁇ frequency band 1-1, frequency band 2-1 ⁇ , and frequency band combination 2 is ⁇ frequency band 1-1 , frequency band 2-2 ⁇ , frequency band combination 3 is ⁇ frequency band 1-2, frequency band 2-2 ⁇ , and the second indication information indicates that frequency band 2-2 has directional beam generation capability, then the network device determines that the second frequency band combination includes : Band combination 2 and Band combination 3.
  • the network device includes at least one of the following:
  • the network device includes a first base station.
  • the network device includes a second base station.
  • the network device includes a first base station and a second base station.
  • the first base station sends first indication information to the terminal device, and/or the terminal device sends second indication information to the first base station, and/or the first base station configures at least A second band combination.
  • the second base station sends first indication information to the terminal device, and/or the terminal device sends second indication information to the second base station, and/or the second base station configures at least A second band combination.
  • the second base station sends the first indication information to the terminal device, and/or the terminal device sends the second indication information to the first base station, and/or the first base station sends the
  • the terminal device is configured with at least one second frequency band combination.
  • the information exchanged between the terminal equipment and the first base station and the second base station may be determined according to actual requirements.
  • the wireless communication method provided by the embodiment of the present application will be further described by taking the millimeter-wave frequency range as the first frequency range and the low-frequency range as the second frequency range as an example.
  • the transmission power efficiency of the low-frequency terminal in the NR system is very low, and most of the power radiated into the air is not effectively received by the base station.
  • the spherical radiation generated by the terminal device 1001 In 1002 only the radiated power facing the base station 1003 can be received by the base station, while the power in other directions becomes useless power, and even becomes an interference signal to adjacent cells.
  • the transmit power For a terminal device, one of its most important indicators is the transmit power, because usually the amplifying capability of the power amplifier device of the terminal device is limited, which leads to the limitation of the maximum transmit power of the terminal. In addition, the capacity of the battery of the terminal is also limited by the volume, resulting in limited expandability. The greater the transmit power, the more power it consumes. Therefore, based on the above, it can be seen that for an omnidirectional radiation terminal, there are many disadvantages from the perspective of power and power consumption. But for a long time, the terminal has always been difficult to overcome this problem. One of the reasons is that the terminal is mobile and it is difficult to locate the direction of the base station. Instead, it can only adopt the most conservative strategy, that is, omnidirectional radiation.
  • the signal radiation of the terminal device is optimized from the perspective of reducing useless radiation and reducing power consumption.
  • Millimeter waves have good directional emission capabilities. Therefore, in some scenarios, it is a feasible idea to combine low-frequency bands with millimeter-wave frequency bands.
  • FIG. 11 A typical scenario is shown in FIG. 11 , where the terminal device communicates with the millimeter-wave base station 1102 and communicates with the low-band base station 1103 , and the millimeter-wave base station 1102 and the low-band base station 1103 are co-sited or quasi-co-sited.
  • Co-site or quasi-co-site can be understood as having the same spatial propagation relationship or the same spatial relationship or having a quasi-co-location (Quasi Co-Location, QCL) relationship, both of which indicate that the incoming wave direction of the millimeter-wave base station and the low-frequency band incoming wave direction can be It is considered to be the same, and the low-frequency beam of the terminal device can use the same or similar direction as that of the millimeter wave beam for transmitting and receiving.
  • QCL quasi-co-location
  • the co-site or quasi-co-site deployment of the millimeter-wave base station and the low-band base station may be notified to the terminal device by any one of the millimeter-wave base station or the low-band base station.
  • the adjustment of the direction of the low-frequency beam can be regarded as adjusting only the low-frequency transmit beam of the terminal device, or it can be adjusted simultaneously for the low-frequency transmit beam and the low-frequency receive beam of the terminal device.
  • the low-band base station and the millimeter-wave base station are located at the same location or approximately at the same location.
  • the terminal device can determine the direction of the corresponding base station and select the corresponding millimeter-wave transmission beam for communication.
  • the terminal device can use a directional low-band antenna to communicate with the low-band base station , so as to improve the effectiveness of terminal radiation power and reduce power consumption at the same time.
  • the low-frequency antenna of the terminal equipment performs directional radiation
  • the pursuit of the spherical surface has relatively strong radiation in all directions, that is, the uniform radiation spherical surface in all directions, but the actual result of this uniform radiation spherical surface in all directions is that the terminal antenna does not have amplification gain, but only Loss can occur, that is, the power 1203 of the radiated signal 1202 of the terminal device 1201 shown in FIG. This results in an antenna that is purely lossy, without amplifying gain.
  • the low-frequency antenna can also have directional radiation, as shown in Figure 13, when the signal radiated by the terminal device is not uniform in all directions, it has directional, and has a higher ratio in these directions than isotropic Evenly radiate higher radiation power, that is, the power of the radiation signal 1202 of the terminal device 1201 shown in FIG. 13 is smaller than the power of the input signal 1204, but the power 1206 in the beam direction shown in FIG. In contrast, it has a directional gain.
  • the antenna itself cannot amplify the signal, it can only have loss, but for a directional antenna, it can have an amplification effect in some directions, that is, the antenna gain but in other directions the gain is less than the loss, but the overall performance is is loss. That is, the radiation signal is less than the input signal power.
  • the directional radiation has higher radiation power than the isotropic uniform radiation.
  • the way for low-frequency terminal equipment to generate directional radiation beams may include at least one of the following:
  • the effectiveness of the radiation power of the terminal device can be improved and interference from other directions can be reduced.
  • different antenna radiation directions can also be excited by using different antenna feed point positions or activating different tuning capacitors.
  • the terminal equipment can report its low-band directional beamforming capability (or low-frequency beamforming capability) to the base station, which is based on The frequency band reported, that is, different low frequency bands may or may not have the ability to generate directional beams. Based on the capability reported by the terminal device, the base station can identify the terminal device with the capability and the corresponding frequency band.
  • the terminal device 1401 can generate beams in various directions in the millimeter wave frequency band, and the terminal device 1401 can determine the incoming wave direction of the signal transmitted by the millimeter wave base station 1402 by receiving and measuring the downlink signal of the base station 1402 1403, and select a suitable beam 1404 of the terminal device 1401 to receive and transmit signals.
  • the low-frequency base station 1501 and the millimeter-wave base station 1502 are in a co-site or quasi-co-site relationship, so it can be considered that the direction of arrival 10511 of the low-frequency base station 1501 and the beam 1503 of the millimeter-wave base station 1502
  • the direction of incoming wave of the terminal device 1504 is the same, and the terminal device 1504 adjusts the low frequency band from the omnidirectional radiation 1505 to the directional signal 1507 that is the same as the direction 1506 of the millimeter wave signal of the terminal device.
  • the low frequency band and the millimeter wave frequency band can work at the same time by combining frequency bands through CA or DC or EN-DC or NE-DC.
  • CA or DC or EN-DC or NE-DC For the co-site or quasi-co-site deployment scenario of the low-frequency band and millimeter wave shown in Figure 4, in order to realize the low-band directional beam radiation of the terminal, the base station needs to use broadcast mode or radio resource control (Radio Resource Control, RRC) dedicated Signaling and other methods inform the terminal that the current co-site or quasi-co-site network deployment scenario is in place.
  • RRC Radio Resource Control
  • Co-site or quasi-co-site deployment can be understood as having the same spatial propagation relationship, or having the same spatial relationship (Spatial relationship), etc.
  • Co-site or quasi-co-site network deployment can include the following two methods in terms of signaling implementation:
  • Method 1 The network device broadcasts to all terminal devices in the community through the broadcast mode
  • the broadcast mode When the broadcast mode is used to inform the terminal equipment that the base station in the low frequency band and the base station in the millimeter wave band are co-sited or quasi-co-sited deployed, only one co-sited or quasi-co-sited indication may be broadcast, and the indication is applicable to the base station A frequency band combination composed of all supported low frequency bands and all millimeter wave frequency bands; it can also be broadcast co-site or quasi-co-site deployment for specific frequency band combinations.
  • the network device does not need to additionally indicate to the terminal device whether a certain frequency band combination is deployed on a co-site, because this indication information has already been carried in the broadcast message. Therefore, the network device can directly configure the combination of the low frequency band and the millimeter wave frequency band for the terminal device, and the terminal can refer to the system broadcast message to complete the adjustment of the low frequency band from omnidirectional radiation to directional radiation.
  • the base station broadcasts to the terminal equipment that the low frequency band and the millimeter wave frequency band are co-site or quasi-co-site deployment.
  • the terminal device reports the low-band directional beam generation capability to the base station.
  • the base station configures the frequency band combination of the low frequency band and the millimeter wave frequency band to the terminal device.
  • the terminal device adjusts the low frequency band to be a directional beam.
  • Method 2 The network device informs the terminal device of the current network deployment through RRC signaling, and the terminal device has the ability to generate low-frequency directional beams
  • the notification of co-site or quasi-co-site deployment is based on the combination of frequency bands.
  • the base station equipment can configure the low frequency band (the terminal has directional beam generation capability in this low frequency band) and the millimeter wave frequency band for the terminal equipment.
  • the formed frequency band combination is carried to the terminal through RRC signaling, for example, carried to the terminal through an RRCReconfiguration message, and may also be indicated by a separate RRC signaling.
  • the terminal device reports the low-band directional beam generation capability to the base station.
  • the base station configures a frequency band combination of the low frequency band and the millimeter wave frequency band to the terminal equipment, and carries the low frequency band and the millimeter wave frequency band for co-site or quasi-co-site deployment.
  • the terminal device adjusts the low frequency band to be a directional beam.
  • the wireless communication method provided by the embodiment of the present application can realize the adjustment of the low-frequency antenna radiation of the terminal device from omnidirectional radiation to directional radiation, so as to improve the effectiveness of the transmission power of the low-frequency terminal and save terminal power consumption.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in this application.
  • the implementation of the examples constitutes no limitation.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is sent from the station The first direction to the user equipment in the cell, “uplink” is used to indicate that the signal or data transmission direction is the second direction sent from the user equipment in the cell to the station, and “side line” is used to indicate that the signal or data transmission direction is A third direction sent from UE1 to UE2.
  • “downlink signal” indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that there may be three relationships. Specifically, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • Fig. 18 is a schematic diagram of the structure and composition of a wireless communication device provided by an embodiment of the present application, which is applied to a terminal device.
  • the wireless communication device 1800 includes:
  • the measuring unit 1801 is configured to measure the downlink signal of the first base station, and determine the first beam direction of the downlink signal based on the measurement result;
  • the first communication unit 1802 is configured to communicate with a second base station based on a first beam corresponding to a second beam direction, the second beam direction corresponds to the first beam direction, and the first beam is a directional beam;
  • the terminal device uses a first frequency band to communicate with the first base station; the terminal device uses a second frequency band to communicate with the second base station.
  • device 1800 also includes:
  • the second communication unit is configured to communicate with the first base station based on a second beam, where a beam direction of the second beam is the second beam direction.
  • the first communication unit 1802 is further configured to use an antenna whose radiation direction is the second beam direction to communicate with the second base station, and a working frequency band of the antenna is the second frequency band.
  • the implementation of the antenna whose radiation direction is the second beam direction includes at least one of the following:
  • the radiation direction of the first antenna includes the second beam direction, and the radiation directions of different antennas are different;
  • An antenna feed point or a tuning capacitor corresponding to the second beam direction of the first antenna is used.
  • device 1800 also includes:
  • the first receiving unit is configured to receive first indication information sent by a network device, where the first indication information is used to indicate that the first base station and the second base station share or quasi-share a site.
  • the first indication information is applicable to all frequency bands supported by the first base station and all frequency bands supported by the second base station.
  • the first indication information is applicable to at least one first frequency band combination, and the first frequency band combination includes a frequency band supported by the first base station and a frequency band supported by the second base station.
  • the first message transmitting the first indication information includes at least one of the following:
  • device 1800 also includes:
  • the second receiving unit is configured to receive at least one second frequency band combination configured by the network device for the terminal device; the second frequency band combination includes a third frequency band and a fourth frequency band, and the third frequency band is the first base station A supported frequency band, the fourth frequency band is a frequency band supported by the second base station.
  • the fourth frequency band has directional beamforming capability.
  • the configuration information of the at least one second frequency band combination is carried in an RRC message.
  • the terminal device uses the third frequency band and the fourth frequency band in the same second frequency band combination to communicate with the first base station and the second base station respectively.
  • device 1800 also includes:
  • the first sending unit is configured to send second indication information to the network device, the second indication information is used to indicate the directional beam generation capability of the terminal equipment in the range of the second frequency band, the second frequency band belongs to the second frequency band Two-band range.
  • the second indication information is further used to indicate a frequency band supporting a directional beam generation capability.
  • the second indication information is used by the network device to configure at least one second frequency band combination for the first device, the second frequency band combination includes a third frequency band and a fourth frequency band, and the first frequency band combination includes a third frequency band and a fourth frequency band.
  • the third frequency band is a frequency band supported by the first base station, and the fourth frequency band is a frequency band supported by the second base station.
  • the network device includes at least one of the following:
  • Fig. 19 is a schematic diagram of the structure and composition of a wireless communication device provided by an embodiment of the present application, which is applied to a network device. As shown in Fig. 19, the wireless communication device 1900 includes:
  • the second sending unit is configured to send first indication information to a terminal device, where the first indication information is used to indicate that the first base station and the second base station have a co-site or a quasi-co-site, and the terminal device is in the first
  • the first frequency band communication is performed with the second base station through the first beam
  • the second frequency band communication is performed with the first base station through the second beam
  • the said The beam directions of the first beam and the second beam are the same.
  • the first indication information is applicable to all frequency bands supported by the first base station and all frequency bands supported by the second base station.
  • the first indication information is applicable to at least one first frequency band combination, and the first frequency band combination includes a frequency band supported by the first base station and a frequency band supported by the second base station.
  • the first message transmitting the first indication information includes at least one of the following:
  • device 1900 also includes:
  • a configuration unit configured to configure at least one second frequency band combination for the terminal device, the second frequency band combination includes a third frequency band and a fourth frequency band, the third frequency band is a frequency band supported by the first base station, the The fourth frequency band is a frequency band supported by the second base station.
  • the fourth frequency band has directional beamforming capability.
  • the configuration information of the at least one second frequency band combination is carried in an RRC message.
  • the network device communicates with the terminal device by using the third frequency band or the fourth frequency band belonging to the same second frequency band combination.
  • device 1900 also includes:
  • the third receiving unit is configured to receive the second indication information sent by the terminal device, the second indication information is used to indicate the directional beam generation capability of the terminal device in the second frequency band range, and the second frequency band belongs to The range of the second frequency band.
  • the second indication information is further used to indicate a frequency band supporting a directional beam generation capability.
  • device 1900 also includes:
  • the determining unit is configured to determine at least one second frequency band combination according to the second indication information, the second frequency band combination includes a third frequency band and a fourth frequency band, and the third frequency band is a frequency band supported by the first base station , the fourth frequency band is a frequency band supported by the second base station.
  • the network device includes at least one of the following:
  • FIG. 20 is a schematic structural diagram of a communication device 2000 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 2000 shown in FIG. 20 includes a processor 2010, and the processor 2010 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 2000 may further include a memory 2020 .
  • the processor 2010 can invoke and run a computer program from the memory 2020, so as to implement the method in the embodiment of the present application.
  • the memory 2020 may be a separate device independent of the processor 2010 , or may be integrated in the processor 2010 .
  • the communication device 2000 may further include a transceiver 2030, and the processor 2010 may control the transceiver 2030 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 2030 may include a transmitter and a receiver.
  • the transceiver 2030 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 2000 may specifically be the network device of the embodiment of the present application, and the communication device 2000 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 2000 may specifically be the mobile terminal/terminal device of the embodiment of the present application, and the communication device 2000 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for the sake of brevity , which will not be repeated here.
  • FIG. 21 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 2100 shown in FIG. 21 includes a processor 2110, and the processor 2110 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 2100 may further include a memory 2120 .
  • the processor 2110 can invoke and run a computer program from the memory 2120, so as to implement the method in the embodiment of the present application.
  • the memory 2120 may be an independent device independent of the processor 2110 , or may be integrated in the processor 2110 .
  • the chip 2100 may also include an input interface 2130 .
  • the processor 2110 can control the input interface 2130 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 2100 may also include an output interface 2140 .
  • the processor 2110 can control the output interface 840 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • Fig. 22 is a schematic block diagram of a communication system 2200 provided by an embodiment of the present application. As shown in FIG. 22 , the communication system 2200 includes a terminal device 2210 and a network device 2220 .
  • the terminal device 2210 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 2220 can be used to realize the corresponding functions realized by the network device in the above method.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the methods of the embodiments of the present application, For the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program executes each method in the embodiment of the present application to be implemented by the mobile terminal/terminal device
  • the corresponding process will not be repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种无线通信方法及装置、终端设备、网络设备,该方法包括:终端设备对第一基站的下行信号进行测量,基于测量结果确定所述下行信号的第一波束方向;所述终端设备基于第二波束方向对应的第一波束与第二基站进行通信,所述第二波束方向与所述第一波束方向对应,所述第一波束为方向性波束;其中,所述终端设备使用第一频段与所述第一基站进行通信;所述终端设备使用第二频段与所述第二基站进行通信。

Description

一种无线通信方法及装置、终端设备、网络设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种无线通信方法及装置、终端设备、网络设备。
背景技术
对于常采用的全向天线的终端来讲,终端对外辐射的信号在空间是球状辐射,以满足终端的移动性要求,但是全向天线的大部分辐射功率都是无效的,只有被基站接收的很少功率是有效的,也就是说,终端采用的全向辐射方式,辐射功率有效性很低。
发明内容
本申请实施例提供一种无线通信法及装置、终端设备、网络设备。
本申请实施例提供的线通信方法,包括:
终端设备对第一基站的下行信号进行测量,基于测量结果确定所述下行信号的第一波束方向;
所述终端设备基于第二波束方向对应的第一波束与第二基站进行通信,所述第二波束方向与所述第一波束方向对应,所述第一波束为方向性波束;
其中,所述终端设备使用第一频段与所述第一基站进行通信;所述终端设备使用第二频段与所述第二基站进行通信。
本申请实施例提供的无线通信方法,包括:
网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示第一基站和第二基站共站址或准共站址,所述终端设备在所述第一基站和所述第二基站共站址或准共站址的情况下,通过第一波束与第二基站进行第一频段通信,且通过第二波束与第一基站进行第二频段通信,所述第一波束和所述第二波束的波束方向相同。
本申请实施例提供的无线通信装置,包括:
测量单元,配置为对第一基站的下行信号进行测量,基于测量结果确定所述下行信号的第一波束方向;
第一通信单元,配置为基于第二波束方向对应的第一波束与第二基站进行通信,所述第二波束方向与所述第一波束方向对应,所述第一波束为方向性波束;
其中,所述终端设备使用第一频段与所述第一基站进行通信;所述终端设备使用第二频段与所述第二基站进行通信。
本申请实施例提供的无线通信装置,包括:
第二发送单元,配置为向终端设备发送第一指示信息,所述第一指示信息用于指示第一基站和第二基站共站址或准共站址,所述终端设备在所述第一基站和所述第二基站共站址或准共站址的情况下,通过第一波束与第二基站进行第一频段通信,且通过第二波束与第一基站进行第二频段通信,所述第一波束和所述第二波束的波束方向相同。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的无线通信方法。
本申请实施例提供的网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的无线通信方法。
本申请实施例提供的芯片,用于实现上述的无线通信方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的无线通信方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的无线通信方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的无线通信方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的无线通信方 法。
通过上述技术方案,基于使用第一频段的第一基站的下行信号的测量,确定下行信号的来波方向,基于测量的来波方向来调整与第二基站交互的第二频段的波束的波束方向,从而在提升终端设备的辐射功率的有效性,同时节省耗电。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例的一个可选地应用场景的示意图;
图2是本申请实施例的一个可选地应用场景的示意图;
图3是本申请实施例的一个可选地应用场景的示意图;
图4是本申请实施例的一个无线通信方法的可选地流程示意图;
图5是本申请实施例的一个可选地应用场景的示意图;
图6是本申请实施例的一个可选地应用场景的示意图;
图7是本申请实施例的一个可选地应用场景的示意图;
图8是本申请实施例的一个可选地应用场景的示意图;
图9是本申请实施例的一个无线通信方法的可选地流程示意图;
图10是本申请实施例的一个可选地应用场景的示意图;
图11是本申请实施例的一个可选地应用场景的示意图;
图12是本申请实施例的一个可选地应用场景的示意图;
图13是本申请实施例的一个可选地应用场景的示意图;
图14是本申请实施例的一个可选地应用场景的示意图;
图15是本申请实施例的一个可选地应用场景的示意图;
图16是本申请实施例的一个可选地应用场景的示意图;
图17是本申请实施例的一个可选地应用场景的示意图;
图18是本申请实施例提供的一种通信设备示意性结构图;
图19是本申请实施例提供的一种通信设备示意性结构图;
图20是本申请实施例提供的一种通信设备示意性结构图;
图21是本申请实施例的芯片的示意性结构图;
图22是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、第5代(5th generation,5G)通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN) 中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
在5G NR系统中,引入了毫米波工作频段,毫米波工作频率在10GHz以上。电磁波在毫米波频段的空间传播损耗非常大,导致电磁波信号的覆盖范围受限。为了克服大的空间传播损耗,终端设备以及基站在毫米波频段一般会采用由多个天线阵子组成的天线阵来形成窄波束以发射和接收信号,这些窄波 束相应具有比较强的指向性,如图2所示,基站201和终端202通过窄波束211和窄波束212进行通信,其中,窄波束211为基站的天线阵形成的波束,窄波束212为终端202的天线阵形成的波束。
对于使用低频段(通常指7.125GHz以下频段)的终端来说,通常采用的是全向天线,也即终端对外辐射的信号在空间是球状辐射,以满足终端的移动性要求。如图3所示,基站301的覆盖方位311也是采用大范围覆盖的方式,终端设备302辐射的信号在空间上是球状辐射312。。
相比于图2中的波束辐射方式,图3中的球面辐射具有更好的移动性效果,也即终端无论怎么移动都能够保持很好的连接。当然,问题就在于绝大部分的辐射功率都是无效的,只有被基站接收的很少功率是有效的。
终端设备在低频段采用的是全向辐射方式,其辐射的功率有效性很低。相比之下,终端设备在毫米波频段采用波束定向辐射方式,其功率能够有效的被基站接收。从终端设备的发射功率有效性角度看,需要进一步优化低频段的终端发射功率,也即减少无用功率的发射。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
本申请实施例提供的无线通信方法,如图4所示,包括:
S401、终端设备对第一基站的下行信号进行测量,基于测量结果确定所述下行信号的第一波束方向。
S402、所述终端设备基于第二波束方向对应的第一波束与第二基站进行通信,所述第二波束方向与所述第一波束方向对应,所述第一波束为方向性波束。
其中,所述终端设备使用第一频段与所述第一基站进行通信;所述终端设备使用第二频段与所述第二基站进行通信。
第一频段与第二频段为不同的频段。第一频段属于第一频段范围,第二频段属于第二频段范围。其中,第一基站支持第一频段范围,第二基站支持第二频段范围。
可选地,第一频段范围和第二频段范围为不同或相同的频段范围。
在一示例中,第一频段范围为毫米波频段,第二频段范围为低频段。
在一示例中,第一频段范围为毫米波频段,第二频段范围为毫米波频段。
在一示例中,第一频段范围为低频段,第二频段范围为低频段。
本申请实施例中,第一频段和第二频段的组合方式可包括以下之一:
载波聚合(Carrier Aggregation,CA);
双连接(Dual Connectivity,DC);
演进的通用无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA)和NR双连接(E-UTRA-NR Dual Connectivity,EN-DC);
NR和E-UTRA双连接(NR-E-UTRA Dual Connectivity,NE-DC)。
可选地,第一频段支持方向性辐射,第二频段支持方向性辐射。
这里,方向性辐射可理解为方向性波束产生能力,或波束赋形能力。
第一基站使用第一频段与终端设备进行通信,第二基站使用第二频段与终端设备进行通信。
可选地,第一基站与第二基站为不同的基站。
在一示例中,如图5所示,终端设备501使用第一频段与基站502进行通信,终端设备使用第二频段与基站503进行通信。
可选地,第一基站与第二基站为同一基站。
在一示例中,如图6所示,终端设备501使用第一频段与第二频段与基站503进行通信。
可选地,第一基站与第二基站共站址或准共站址部署。
本申请实施例中,共站址或准共站址可理解为空间传播关系相同或空间关系相同或具有准共址(Quasi Co-Location,QCL)关系,表征第一基站的来波方向跟第二基站的来波方向可以认为是相同或类似的。
当第一基站和第二基站共站址或准共站址,终端设备可采用相同方向或类似的方向与第一基站和第二基站进行通信。
这里,第一基站与第二基站共站址或准共站址可理解为第一基站与终端设备进行通信的第一频段与第二基站与终端设备进行通信的第二频段共站址或准共站址,也就是说,第一基站使用第一频段辐射的信号的方向与第二基站使用第二频段辐射的信号的方向相同或类似。
终端设备检测第一基站的下行信号的测量结果,得到第一基站向终端设备发射下行信号的波束的波束方向即第一波束方向,第一波束方向指示第一基站向终端设备发射信号时的辐射方向,即第一基站相 对于终端设备的方向。
终端设备确定第一波束方向对应的第二波束方向,其中,第一波束方向为第一基站发射下行信号的波束的波束方向,第二波束方向为终端设备接收来自第一波束方向的信号所使用的波束的方向。
可选地,第一波束方向与第二波束方向的方向相反。
可选地,第一波束方向与第二波束方向之间的夹角位于设定的夹角范围内。
终端设备基于第二波束方向进行第二频段的信号辐射,以形成波束方向为第二波束方向的第一波束。终端设备使用第一波束进行第二频段的信号的发送或接收。
在一示例中,如图7所示,终端设备701接收基站702通过波束7021发射的下行信号,终端设备701通过波束7011即第一波束与基站703进行通信,波束7011的波束方向为第一波束方向,波束7021的波束方向为第二波束方向。
本申请实施例中,终端设备基于第二波束方向进行第二频段的信号的辐射,从而形成第一波束。
可选地,第一波束用于终端设备向第二基站发射信号;
可选地,第一波束用于终端设备接收第二基站发射的信号。
在一些实施例中,所述终端设备基于第二波束与所述第一基站进行通信,所述第二波束的波束方向为所述第二波束方向。
终端设备确定第二波束方向后,并基于第二波束进行第一频段的信号的辐射,从而形成第二波束。
可选地,第二波束用于终端设备向第一基站发射信号;
可选地,第二波束用于终端设备接收第一基站发射的信号。
在一示例中,如图8所示,终端设备701通过第二波束7012与基站702进行通信,第二波束7012的波束方向与第一波束7011的波束方向为第二波束方向。
本申请实施例中,一个第二频段的波束对应一个或多个第一频段的波束。
可选地,终端设备基于第二频段的波束与第一频段的波束的对应关系,确定第二波束对应对应的第二频段的波束为第一波束。
在一示例中,终端设备支持的第二频段的波束与第一频段波束的对应关系包括:波束1-1对应波束2-1、波束2-2和波束2-3,波束1-2对应波束2-4和波束2-5,其中,波束1-1和波束1-2属于第二频段的波束,波束2-1、波束2-2、波束2-3、波束2-4和波束2-5属于第一频段的波束,当终端设备基于第一波束方向选择的第二波束为波束2-3,则基于第二频段的波束与第一频段的波束的对应关系选择波束2-3对应的波束1-1为第一波束。
在一些实施例中,S402所述终端设备基于所述第二波束方向对应的第一波束与第二基站进行通信,包括:
所述终端设备采用辐射方向为所述第二波束方向的天线与所述第二基站进行通信,所述天线的工作频段为所述第二频段。
在一些实施例中,辐射方向为所述第二波束方向的天线的实现方式包括以下至少之一:
实现方式一、使用至少两个天线中的第一天线,所述第一天线的辐射方向包括所述第二波束方向,不同的天线的辐射方向不同;
实现方式二、使用第一天线的所述第二波束方向对应的天线馈点或调谐电容。
在一示例中,终端设备采用实现方式一形成第二波束方向的波束。
在一示例中,终端设备采用实现方式二形成第二波束方向的波束。
在一示例中,终端设备采用实现方式一和实现方式二的结合形成第二波束方向的波束。
以终端设备采用实现方式一实现第二波束方向的波束为例,终端设备支持多个天线,且不同天线的辐射方向不同,这里,终端设备选择辐射方向为第二波束方向的天线为第一天线,且使用第一天线辐射信号。可选地,一个天线支持一个辐射方向即波束方向。
终端设备使用第一天线辐射信号,形成的波束为第一波束。
在一示例中,终端设备支持天线1、天线2、天线3、天线4和天线5,其中,天线1支持波束方向1,天线2支持波束方向2,天线3支持波束方向3,天线4支持波束方向4,天线5支持波束方向5。当第二波束方向属于方向2,则终端设备选择天线2,采用天线2进行信号的辐射。
以终端设备采用实现方式二实现第二波束方向的波束为例,终端设备支持一个天线,该天线为全向天线,且,该天线基于不同的天线馈电点或调谐电容支持不同的波束方向,终端设备选择第二波束方向对应的馈电点或调谐电容进行信号辐射。
在一示例中,终端设备支持的一个天线的天线馈电点包括:天线馈电点1、天线馈电点2、天线馈电点3、天线馈电点4和天线馈电点5。其中,天线馈电点1对应波束方向1,天线馈电点2对应波束方向2,天线馈电点3对应波束方向3,天线馈电点4对应波束方向4,天线馈电点5对应波束 方向5。当第二波束方向属于波束方向2,则终端设备采用天线馈电点2进行信号的辐射。
以终端设备采用实现方式一和实现方式二的结合实现第二波束方向的波束为例,在第一终端支持多个天线的情况下,一个天线可支持多个天线馈电点或协调谐电容,以通过不同的天线馈电点或协调谐电容支持不同的波束方向。
终端设备支持多个天线,每个天线具有多个辐射方向,且不同天线的辐射方向不同。其中,每个天线可通过不同的天线馈电点或调谐电容来支持不同的辐射方向。
终端设备选择辐射方向包括第二波束方向的天线为第一天线,且使用第二波束方向对应的天线馈电点或调谐电容通过第一天线辐射信号。
在一示例中,终端设备支持天线1、天线2,其中,天线1支持波束方向1、方向2和方向3,天线2支持波束方向4、方向5。当第二波束方向属于方向2,则终端设备选择天线2,采用天线2进行信号的辐射,且使用天线2的对应方向2的天线馈电点或协调电容。
在一些实施例中,所述终端设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一基站与所述第二基站共站址或准共站址。
在一些实施例中,如图9所示,包括:
S901、网络设备向终端设备发送第一指示信息。
第一指示信息用于指示第一基站与第二基站共站址或准共站址。
本申请实施例中,网络确定第一基站与第二基站共站址或准共站址,则向终端设备发送第一指示信息,以通知终端设备第一基站与第二基站共站址或准共站址。
终端设备接收到第一指示信息的情况下,采用第一波束与第二基站进行通信。
可选地,第一指示信息指示能够组合为第一频段组合的第一基站支持的频段和第二基站支持的频段,可理解为第一指示信息能够指示第一频段组合。第一频段组合包括终端设备能够组合使用的第一基站支持的频段和第二基站支持的频段。
终端设备基于第一指示信息,确定第一频段和第二频段,其中,第一频段和第二频段属于同一第一频段组合,且第一频段为第一基站支持的频段,第二频段为第二基站支持的频段。
在一些实施例中,所述第一指示信息适用于所述第一基站支持的全部频段和所述第二基站支持的全部频段。
第一指示信息指示第一基站支持的全部频段和第二基站支持的全部频段组成第一频段组合。
此时,终端设备与第一基站进行通信所使用的第一频段可为第一基站支持的频段中任一频段,终端与第二基站进行通信所使用的第二频段可为第二基站支持的频段中任一频段。
在一示例中,第一基站支持频段11、频段12、频段13,第二基站支持频段21、频段22和频段23,则网络设备向终端设备发送的第一指示信息适用于第一基站支持频段11、频段12、频段13和第二基站支持频段21、频段22、频段23,则第一基站支持频段11、频段12、频段13中任一频段和第二基站支持频段21、频段22、频段23中任一频段组成第一频段组合。
在一些实施例中,所述第一指示信息适用于至少一个第一频段组合,所述第一频段组合包括所述第一基站支持的频段和所述第二基站支持的频段。
这里,网络设备基于第一频段组合告知终端设备第一基站与第二基站共站址或准共站址。
第一频段组合中的第一基站支持的频段可为第一基站支持的全部或部分频段,第一频段组合中的第二基站支持的频段可为第二基站基站支持的全部或部分频段。
在一示例中,第一基站支持的频段包括:频段1-1和频段1-2,第二基站支持的频段包括:频段2-1、频段2-2和频段2-3,第一指示信息适用的第一频段组合包括:{频段1-1、频段2-1},{频段1-2、频段2-1},{频段1-2、频段2-3},则频段1-1和频段2-1能够组合,频段1-2和频段2-1能够组合,频段1-2、频段2-3能够组合。
第一基站所使用的第一频段为任一第一频段组合中第一基站支持的频段,且第二频频段1-1段为包括第一频段的第一频段组合中第二基站支持的频段。
在一示例中,第一指示信息适用于频段组合1、频段组合2和频段组合3,其中,频段组合1包括:频段1-1和频段2-1,频段组合2包括:频段1-2和频段2-2,频段组合3包括:频段1-3和频段2-3,其中,频段1-1、频段1-2和频段1-3为第一基站支持的频段,频段2-1、频段2-2和频段2-3为第二基站支持的频段,此时,当终端设备使用的第一频段为频段1-1,则终端设备使用的第二频段为1-2。
本申请实施例中,终端设备接收到第一指示信息,可基于第一指示信息来调整所使用的第一频段和第二频段。
在一些实施例中,传输所述第一指示信息的第一消息包括以下至少之一:
广播消息;
RRC消息。
网络设备发送第一消息至终端设备,终端设备接收第一消息,并得到第一消息携带的第一指示信息。
可选地,广播消息传输适用于所述第一基站支持的全部频段和所述第二基站支持的全部频段的第一指示信息。
可选地,广播消息传输适用于至少一个第一频段组合的第一指示信息。
可选地,RRC消息传输适用于至少一个第一频段组合的第一指示信息。
可选地,RRC消息包括以下至少之一:
RRC重配置(RRCReconfiguration)消息;
专用RRC信令。
本申请实施例中,通过广播消息传输第一指示信息的情况下,网络不需要额外的消息携带第一指示信息。
在一些实施例中,所述终端设备接收网络设备为所述终端设备配置的至少一个第二频段组合;所述第二频段组合包括第三频段和第四频段,所述第三频段为所述第一基站支持的频段,所述第四频段为所述第二基站支持的频段。
这里,所述网络设备为所述终端设备配置至少一个第二频段组合,所述第二频段组合包括第三频段和第四频段,所述第三频段为所述第一基站支持的频段,所述第四频段为所述第二基站支持的频段。
第二频段组合为网络设备为终端设备配置的频段组合,第二频段组合包括第一基站支持的第三频段和第二基站支持的第四频段,其中,第三频段位于第一频段范围,第四频段位于第二频段范围。
第二频段组合为网络设备给终端设备配置的能够组合的第一基站支持的频段和第二基站支持的频段。
网络设备可为不同的终端设备配置不同或相同的第二频段组合。
终端设备使用的第一频段为一第二频段组合中的第三频段,且使用的第四频段为该第二频段组合中的第四频段。
在一示例中,网路设备为终端设备A配置的第二频段组合包括:{频段1-1、频段2-1},{频段1-2、频段2-1},{频段1-2、频段2-3},则在终端设备A中,频段1-1和频段2-1能够组合,频段1-2和频段2-1能够组合,频段1-2和频段2-3能够组合。
在本申请实施例中,至少一个第一频段组合与至少一个第二频段组合之间可不存在或存在重叠的频段组合。在至少一个第一频段组合与至少一个第二频段组合中存在重叠的频段组合的情况下,可为部分重叠或全部重叠。
在一示例中,至少一个第一频段组合包括:频段组合1、频段组合2和频段组合3,至少一个第二频段组合包括:频段组合4、频段组合5和频段组合6。
在一示例中,至少一个第一频段组合包括:频段组合1、频段组合2和频段组合3,至少一个第二频段组合包括:频段组合2、频段组合3和频段组合4。
在一示例中,至少一个第一频段组合包括:频段组合1、频段组合2和频段组合3,至少一个第二频段组合包括:频段组合1、频段组合2和频段组合3。
可选地,至少一个第二频段组合为至少一个第一频段组合中的全部或部分第一频段组合。
在一示例中,至少一个第一频段组合包括:频段组合1、频段组合2和频段组合3,至少一个第二频段组合包括:频段组合1、频段组合2和频段组合3。
在一示例中,至少一个第一频段组合包括:频段组合1、频段组合2和频段组合3,至少一个第二频段组合包括:频段组合2和频段组合3。
在一些实施例中,所述第四频段具有方向性波束产生能力。
第四频段具有方向性波束产生能力,可理解为终端设备使用该第四频段能够产生方向性波束,或能够进行方向性辐射,或具有波束赋形能力。
在一些实施例中,所述至少一个第二频段组合的配置信息携带在无线资源控制RRC消息中。
这里,携带所述至少一个第二频段组合的配置信息的RRC消息与传输第一指示信息的RRC消息可为同一RRC消息,也可为不同的RRC消息。
可选地,RRC消息包括以下至少之一:
RRC重配消息;
专用的RRC信令。
在一些实施例中,所述终端设备发送第二指示信息至网络设备,所述第二指示信息用于指示所述终端设备在第二频段范围的方向性波束产生能力,所述第二频段属于所述第二频段范围。
所述网络设备接收所述终端设备发送的第二指示信息,所述第二指示信息用于指示所述终端设备在第二频段范围的方向性波束产生能力,所述第二频段属于所述第二频段范围。
终端设备根据自身在第二频段范围内是否能够产生方向性波束,确定第一指示信息,并将第一指示信息发送至网络设备,网络设备接收到第一指示信息,基于第一指示信息确定终端设备在第二频段范围内是否产生方向性波束。
可选项的,第二指示信息可包括第一标识,当第一标识的取值为第一值,表征发送该第二指示信息的终端设备支持在第二频段范围产生方向性波束,当第一标识的取值为第二值,表征发送给第二指示信息的终端设备不支持在第二频段范围内产生方向性波束。
网络设备根据各终端设备的第二指示信息,能够哪些终端设备支持产生方向性波束,哪些终端设备不支持产生方向性波束。
在一些实施例中,所述第二指示信息还用于指示支持方向性波束产生能力的频段。
这里,第二指示信息还可包括频段标识,以指示能够第二频段范围内的哪些频段能够产生方向性波束。
在一示例中,第二指示信息还用于指示第二频段中的频段1、频段2,则表征频段1和频段2支持产生方向性波束,即当终端设备使用频段1进行信号辐射,则能够基于方向性波束辐射信号,当终端设备使用频段2进行信号辐射,则能够基于方向性波束辐射信号。
在一些实施例中,第二指示信息还用于所述网络设备为所述第一设备配置至少一个第二频段组合。
网络设备根据所述第二指示信息,确定至少一个第二频段组合,所述第二频段组合包括第三频段和第四频段,所述第三频段为所述第一基站支持的频段,所述第四频段为所述第二基站支持的频段。
终端设备向网络设备发送第二指示信息,网络设备根据第二指示信息确定具有方向性波束产生能力的频段,并基于具有方向性波束产生能力的频段确定至少一个第二频段组合。
在一示例中,第二基站支持的第二频段范围内的频段包括:频段1-1和频段1-2,
可选地,网络设备确定包括具有方向性波束产生能力的频段的第一频段组合的第二频段组合。
在一示例中,至少一个第一频段组合包括频段组合1、频段组合2和频段组合3,且频段组合1为{频段1-1,频段2-1},频段组合2为{频段1-1,频段2-2},频段组合3为{频段1-2,频段2-2},且第二指示信息指示频段2-2具备方向性波束产生能力,则网路设备确定第二频段组合包括:频段组合2和频段组合3。
在一些实施例中,所述网络设备包括以下至少之一:
第一基站;
第二基站。
在一示例中,网络设备包括第一基站。
在一示例中,网络设备包括第二基站。
在一示例中,网络设备包括第一基站和第二基站。
以网络设备包括第一基站为例,第一基站发送第一指示信息至终端设备,和/或,终端设备向第一基站发送第二指示信息,和/或,第一基站向终端设备配置至少一个第二频段组合。
以网络设备包括第二基站为例,第二基站发送第一指示信息至终端设备,和/或,终端设备向第二基站发送第二指示信息,和/或,第二基站向终端设备配置至少一个第二频段组合。
以网络设备包括第一基站和第二基站为例,第二基站发送第一指示信息至终端设备,和/或,终端设备向第一基站发送第二指示信息,和/或,第一基站向终端设备配置至少一个第二频段组合。
在网络设备包括第一基站和第二基站的情况下,终端设备与第一基站和第二基站所交互的信息可根据实际需求确定。
下面,与第一频段范围为毫米波频段、第二频段范围为低频段为例,本申请实施例提供的无线通信方法进行进一步说明。
如上所述,在NR系统中的低频段终端的发射功率的效率是很低的,绝大部分功率辐射到空中都没有被基站有效的接收,如图10所示,终端设备1001产生的球面辐射1002中,的只有面向基站1003的辐射功率才能被基站接收,而其他方向的功率都成了无用功率,甚至成了对邻近小区的干扰信号。
对于终端设备来说,其最重要的指标之一就是发射功率,因为通常情况下终端设备的功率放大器件的可放大能力是有限的,这导致了终端最大发射功率是有限的。此外,终端的电池的容量也受体积的限制造成可扩展能力有限。发射功率越大,则耗电越多。因此,综合上述可以看到,对于全向辐射的终端来说,从功率及耗电角度看是具有很多弊端的。但长久以来,终端始终难以克服该问题,原因之一就是终端是有移动性的且难以定位基站的方向,而只能采用最保守的策略,即全向辐射。
本申请实施例中,从降低无用辐射、减少耗电的角度,来对终端设备的信号辐射进行优化。
随着毫米波网络的部署,越来越多的终端设备同时具备了低频段与毫米波频段的发射与接收能力。毫米波具有良好的定向发射能力,因此,在部分场景下,对低频段与毫米波频段进行结合是一种可行的思路。一种典型的场景如图11所示,终端设备与毫米波基站1102进行通信,且与低频段基站1103通信,且毫米波基站1102与低频段基站1103共站址或准共站址部署。
共站址或准共站址可理解为空间传播关系相同或空间关系相同或具有准共址(Quasi Co-Location,QCL)关系,都是表征毫米波基站来波方向跟低频段来波方向可以认为是相同的,终端设备的低频段波束可以采用跟毫米波波束的方向相同或类似的收发方向进行。
这里,毫米波基站和低频段基站共站址或准共站址部署可由毫米波基站或低频段基站中的任一个告知终端设备。
本申请实施例中,对低频段波束的方向的调整可视为仅对终端设备的低频段发射波束做调整,也可为针对终端设备的低频段发射波束与低频段接收波束同时做调整。
在毫米波基站与低频段基站共站址或准共站址部署的网络场景下,低频段基站和毫米波基站位于同一位置或近似位于同一位置。终端设备通过接收来自毫米波基站的波束信号,就可以判断出对应的基站方向,并选择相应的毫米波发射波束进行通信,同时终端设备可以采用具有方向性的低频段天线与低频段基站进行通信,从而提升终端辐射功率的有效性,同时降低耗电。
本申请实施例提供的无线通信方法,涉及以下两个方面:
1、终端设备的低频段天线进行方向性辐射
低频段天线在设计的时候追求的是球面各方向都具有比较强的辐射,即各向均匀辐射球面,但这种各向均匀辐射球面实际带来的结果是终端天线不具有放大增益,而只能产生损耗,即图12所示的终端设备1201的辐射信号1202的功率1203小于输入信号1204的功率,其中,输入信号1204为终端设备的射频电路输入至终端设备1201的天线1205的信号。这导致天线为单纯的损耗,而没有放大增益。
相比之下,低频段天线也可以为具有方向性的辐射,如图13所示,当终端设备辐射的信号不是各向均匀时,其具有了方向性,并在这些方向上具有比各向均匀辐射更高的辐射功率,即图13所示的终端设备1201的辐射信号1202的功率小于输入信号1204的功率,但在图13所示的波束方向上的功率1206具有放大作用,也即相比之下具有了方向性增益。
其中,天线本身是不能放大信号的,只能有损耗,但对于具有方向性的天线来说,可以在某些方向具有放大作用也即天线增益但在其他方向上增益小于损耗,但总体表现出来是损耗。也即辐射信号小于输入信号功率。
通过辐射信号1202在图12中的功率1203和图13中的功率1206的比较可知,具有方向性的辐射相对于各向均匀的辐射,具有更高的辐射功率。
低频段终端设备产生方向性辐射波束的方式可包括以下至少之一:
在终端设备内部当具有多个低频段天线时,通过使用面向基站的方向性天线,可以提高终端设备辐射功率的有效性,并减少其他方向的干扰。
当终端设备内部只有一个天线时,通过使用不同的天线馈电点位置或激活不同的调谐电容等方式也可以激发出不同的天线辐射方向。
为了实现对具有方向性辐射能力的终端设备进行配置或调度等处理,该终端设备可将其低频段方向性波束产生能力(或称为低频段波束赋形能力)上报给基站,该能力是基于频段上报的,也即不同的低频段其可能具备方向性波束产生能力也可能不具备方向性波束产生能力。基站基于终端设备上报的能力可以识别具有该能力的终端设备及对应的频段。
在实现上面,如图14所示,终端设备1401在毫米波频段能够产生出各方向的波束,终端设备1401通过接收并测量基站1402的下行信号可以判断出毫米波基站1402发射信号的来波方向1403,并选择出合适的终端设备1401的波束1404来进行信号的接收与发射,。
进一步的,如图15所示,低频段基站1501与毫米波基站1502是处于共站址或准共站址关系,这样可以认为低频段基站1501的来波方向10511与毫米波基站1502的波束1503的来波方向是相同的,终端设备1504将低频段从全向性辐射1505调整为跟终端设备的毫米波信号指向1506相同的方向性信号1507。
2、低频段基站与毫米波基站的空间关系
低频段与毫米波频段可以通过CA或DC或EN-DC或NE-DC等方式组成频段组合来同时工作。对于图4所示的低频段与毫米波共站址或准共站址部署场景,为了实现终端的低频段方向性波束辐射,基站需要通过广播模式或无线资源控制(Radio Resource Control,RRC)专用信令等方式告知终端当前为共站址或准共站址网络部署场景。
共站址或准共站址部署可以理解为具有相同的空间传播关系,或具有相同的空间关系(Spatial relationship)等。
共站址或准共站址网络部署在信令实现上可以包括下述两种方式:
方式一、网络设备通过广播模式向小区内的所有终端设备广播
当通过广播模式来告知终端设备低频段基站与毫米波频段基站是共站址或准共站址部署时,可以是仅广播一个共站址或准共站址指示,且该指示适用于该基站支持的所有低频段与所有毫米波频段组成的频段组合;也可以是针对具体的频段组合广播共站址或准共站址部署。
对于方式一,网络设备不需要额外的指示终端设备某频段组合是不是为共站址部署,因为这个指示信息已经在广播消息中携带了。因此,网络设备可以直接给终端设备配置低频段与毫米波频段的频段组合即可,终端可自行参考系统广播消息,来完成低频段从全向辐射向方向性辐射的调整。
对于方式一,终端设备与基站的交互如图16所示,包括:
S1601、基站向终端设备广播低频段与毫米波频段为共站址或准共站址部署。
S1602、终端设备向基站上报低频段方向性波束产生能力。
S1603、基站向终端设备配置低频段与毫米波频段的频段组合。
S1604、终端设备调整低频段为方向性波束。
方式二、网络设备通过RRC信令告知终端设备当前的网络部署,该终端设备具有低频段方向性波束产生能力
共站址或准共站址部署的告知是基于频段组合进行的,在具体实现时可以是基站设备在给终端设备配置低频段(终端在该低频段具有方向性波束产生能力)与毫米波频段组成的频段组合时通过RRC信令携带给终端的,比如通过RRCReconfiguration消息携带给终端等,也可以是单独的RRC信令指示。
对于方式二,终端设备与基站的交互如图17所示,包括:
S1701、终端设备向基站上报低频段方向性波束产生能力。
S1702、基站向终端设备配置低频段与毫米波频段的频段组合,且携带低频段与毫米波频段为共站址或准共站址部署。
S1703、终端设备调整低频段为方向性波束。
本申请实施例提供的无线通信方法,能够实现终端设备低频段天线辐射从全向辐射调整为方向性辐射,以提高低频段终端的发射功率有效性,节省终端耗电。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图18是本申请实施例提供的无线通信装置的结构组成示意图,应用于终端设备,如图18所示,所述无线通信装置1800包括:
测量单元1801,配置为对第一基站的下行信号进行测量,基于测量结果确定所述下行信号的第一波束方向;
第一通信单元1802,配置为基于第二波束方向对应的第一波束与第二基站进行通信,所述第二波束方向与所述第一波束方向对应,所述第一波束为方向性波束;
其中,所述终端设备使用第一频段与所述第一基站进行通信;所述终端设备使用第二频段与所述第二基站进行通信。
在一些实施例中,装置1800还包括:
第二通信单元,配置为基于第二波束与所述第一基站进行通信,所述第二波束的波束方向为所述第二波束方向。
在一些实施例中,第一通信单元1802,还配置为采用辐射方向为所述第二波束方向的天线与所述第二基站进行通信,所述天线的工作频段为所述第二频段。
在一些实施例中,辐射方向为所述第二波束方向的天线的实现方式包括以下至少之一:
使用至少两个天线中的第一天线,所述第一天线的辐射方向包括所述第二波束方向,不同的天线的辐射方向不同;
使用第一天线的所述第二波束方向对应的天线馈电点或调谐电容。
在一些实施例中,装置1800还包括:
第一接收单元,配置为接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一基站与所述第二基站共站址或准共站址。
在一些实施例中,所述第一指示信息适用于所述第一基站支持的全部频段和所述第二基站支持的全部频段。
在一些实施例中,所述第一指示信息适用于至少一个第一频段组合,所述第一频段组合包括所述第一基站支持的频段和所述第二基站支持的频段。
在一些实施例中,传输所述第一指示信息的第一消息包括以下至少之一:
广播消息;
无线资源控制RRC消息。
在一些实施例中,装置1800还包括:
第二接收单元,配置为接收网络设备为所述终端设备配置的至少一个第二频段组合;所述第二频段组合包括第三频段和第四频段,所述第三频段为所述第一基站支持的频段,所述第四频段为所述第二基站支持的频段。
在一些实施例中,所述第四频段具有方向性波束产生能力。
在一些实施例中,所述至少一个第二频段组合的配置信息携带在RRC消息中。
在一些实施例中,所述终端设备采用同一第二频段组合中的第三频段和第四频段,分别与所述第一基站和所述第二基站进行通信。
在一些实施例中,装置1800还包括:
第一发送单元,配置为发送第二指示信息至网络设备,所述第二指示信息用于指示所述终端设备在第二频段范围的方向性波束产生能力,所述第二频段属于所述第二频段范围。
在一些实施例中,所述第二指示信息还用于指示支持方向性波束产生能力的频段。
在一些实施例中,所述第二指示信息用于所述网络设备为所述第一设备配置至少一个第二频段组合,所述第二频段组合包括第三频段和第四频段,所述第三频段为所述第一基站支持的频段,所述第四频段为所述第二基站支持的频段。
在一些实施例中,所述网络设备包括以下至少之一:
第一基站;
第二基站。
图19是本申请实施例提供的无线通信装置的结构组成示意图,应用于网络设备,如图19所示,所述无线通信装置1900包括:
第二发送单元,配置为向终端设备发送第一指示信息,所述第一指示信息用于指示第一基站和第二基站共站址或准共站址,所述终端设备在所述第一基站和所述第二基站共站址或准共站址的情况下,通过第一波束与第二基站进行第一频段通信,且通过第二波束与第一基站进行第二频段通信,所述第一波束和所述第二波束的波束方向相同。
在一些实施例中,所述第一指示信息适用于所述第一基站支持的全部频段和所述第二基站支持的全部频段。
在一些实施例中,所述第一指示信息适用于至少一个第一频段组合,所述第一频段组合包括所述第一基站支持的频段和所述第二基站支持的频段。
在一些实施例中,传输所述第一指示信息的第一消息包括以下至少之一:
广播消息;
无线资源控制RRC消息。
在一些实施例中,装置1900还包括:
配置单元,配置为为所述终端设备配置至少一个第二频段组合,所述第二频段组合包括第三频 段和第四频段,所述第三频段为所述第一基站支持的频段,所述第四频段为所述第二基站支持的频段。
在一些实施例中,所述第四频段具有方向性波束产生能力。
在一些实施例中,所述至少一个第二频段组合的配置信息携带在RRC消息中。
在一些实施例中,所述网络设备采用属于同一第二频段组合的第三频段或第四频段,与所述终端设备进行通信。
在一些实施例中,装置1900还包括:
第三接收单元,配置为接收所述终端设备发送的第二指示信息,所述第二指示信息用于指示所述终端设备在第二频段范围的方向性波束产生能力,所述第二频段属于所述第二频段范围。
在一些实施例中,所述第二指示信息还用于指示支持方向性波束产生能力的频段。。
在一些实施例中,装置1900还包括:
确定单元,配置为根据所述第二指示信息,确定至少一个第二频段组合,所述第二频段组合包括第三频段和第四频段,所述第三频段为所述第一基站支持的频段,所述第四频段为所述第二基站支持的频段。
在一些实施例中,所述网络设备包括以下至少之一:
第一基站;
第二基站。
本领域技术人员应当理解,本申请实施例的上述无线通信装置的相关描述可以参照本申请实施例的无线通信方法的相关描述进行理解。
图20是本申请实施例提供的一种通信设备2000示意性结构图。该通信设备可以终端设备,也可以是网络设备。图20所示的通信设备2000包括处理器2010,处理器2010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图20所示,通信设备2000还可以包括存储器2020。其中,处理器2010可以从存储器2020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器2020可以是独立于处理器2010的一个单独的器件,也可以集成在处理器2010中。
可选地,如图20所示,通信设备2000还可以包括收发器2030,处理器2010可以控制该收发器2030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器2030可以包括发射机和接收机。收发器2030还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备2000具体可为本申请实施例的网络设备,并且该通信设备2000可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备2000具体可为本申请实施例的移动终端/终端设备,并且该通信设备2000可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图21是本申请实施例的芯片的示意性结构图。图21所示的芯片2100包括处理器2110,处理器2110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图21所示,芯片2100还可以包括存储器2120。其中,处理器2110可以从存储器2120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器2120可以是独立于处理器2110的一个单独的器件,也可以集成在处理器2110中。
可选地,该芯片2100还可以包括输入接口2130。其中,处理器2110可以控制该输入接口2130与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片2100还可以包括输出接口2140。其中,处理器2110可以控制该输出接口840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图22是本申请实施例提供的一种通信系统2200的示意性框图。如图22所示,该通信系统2200包括终端设备2210和网络设备2220。
其中,该终端设备2210可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备2220可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中, 上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式 实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (40)

  1. 一种无线通信方法,所述方法包括:
    终端设备对第一基站的下行信号进行测量,基于测量结果确定所述下行信号的第一波束方向;
    所述终端设备基于第二波束方向对应的第一波束与第二基站进行通信,所述第二波束方向与所述第一波束方向对应,所述第一波束为方向性波束;
    其中,所述终端设备使用第一频段与所述第一基站进行通信;所述终端设备使用第二频段与所述第二基站进行通信。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端设备基于第二波束与所述第一基站进行通信,所述第二波束的波束方向为所述第二波束方向。
  3. 根据权利要求1至2中任一项所述的方法,其中,所述终端设备基于所述第二波束方向对应的第一波束与第二基站进行通信,包括:
    所述终端设备采用辐射方向为所述第二波束方向的天线与所述第二基站进行通信,所述天线的工作频段为所述第二频段。
  4. 根据权利要求3所述的方法,其中,辐射方向为所述第二波束方向的天线的实现方式包括以下至少之一:
    使用至少两个天线中的第一天线,所述第一天线的辐射方向包括所述第二波束方向,不同的天线的辐射方向不同;
    使用第一天线的所述第二波束方向对应的天线馈电点或调谐电容。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述终端设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一基站与所述第二基站共站址或准共站址。
  6. 根据权利要求5所述的方法,其中,所述第一指示信息适用于所述第一基站支持的全部频段和所述第二基站支持的全部频段。
  7. 根据权利要求5所述的方法,其中,所述第一指示信息适用于至少一个第一频段组合,所述第一频段组合包括所述第一基站支持的频段和所述第二基站支持的频段。
  8. 根据权利要求5至7中任一项所述的方法,其中,传输所述第一指示信息的第一消息包括以下至少之一:
    广播消息;
    无线资源控制RRC消息。
  9. 根据权利要求1至8中任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收网络设备为所述终端设备配置的至少一个第二频段组合;所述第二频段组合包括第三频段和第四频段,所述第三频段为所述第一基站支持的频段,所述第四频段为所述第二基站支持的频段。
  10. 根据权利要求9所述的方法,其中,所述第四频段具有方向性波束产生能力。
  11. 根据权利要求9或10所述的方法,其中,所述至少一个第二频段组合的配置信息携带在RRC消息中。
  12. 根据权利要求9至11中任一项所述的方法,其中,所述终端设备采用同一第二频段组合中的第三频段和第四频段,分别与所述第一基站和所述第二基站进行通信。
  13. 根据权利要求1至12中任一项所述的方法,其中,所述方法还包括:
    所述终端设备发送第二指示信息至网络设备,所述第二指示信息用于指示所述终端设备在第二频段范围的方向性波束产生能力,所述第二频段属于所述第二频段范围。
  14. 根据权利要求13所述的方法,其中,所述第二指示信息还用于指示支持方向性波束产生能力的频段。
  15. 根据权利要求13或14所述的方法,其中,所述第二指示信息用于所述网络设备为所述第一设备配置至少一个第二频段组合,所述第二频段组合包括第三频段和第四频段,所述第三频段为所述第一基站支持的频段,所述第四频段为所述第二基站支持的频段。
  16. 根据权利要求5至15中任一项所述的方法,其中,所述网络设备包括以下至少之一:
    第一基站;
    第二基站。
  17. 一种无线通信方法,所述方法包括:
    网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示第一基站和第二基站共站址或准共站址,所述终端设备在所述第一基站和所述第二基站共站址或准共站址的情况下,通过第一波束与第二基站进行第一频段通信,且通过第二波束与第一基站进行第二频段通信,所述第一波束和所述第二波束的波束方向相同。
  18. 根据权利要求17所述的方法,其中,所述第一指示信息适用于所述第一基站支持的全部频段和所述第二基站支持的全部频段。
  19. 根据权利要求17所述的方法,其中,所述第一指示信息适用于至少一个第一频段组合,所述第一频段组合包括所述第一基站支持的频段和所述第二基站支持的频段。
  20. 根据权利要求17至19中任一项所述的方法,其中,传输所述第一指示信息的第一消息包括以下至少之一:
    广播消息;
    无线资源控制RRC消息。
  21. 根据权利要求17至20中任一项所述的方法,其中,所述方法还包括:
    所述网络设备为所述终端设备配置至少一个第二频段组合,所述第二频段组合包括第三频段和第四频段,所述第三频段为所述第一基站支持的频段,所述第四频段为所述第二基站支持的频段。
  22. 根据权利要求21所述的方法,其中,所述第四频段具有方向性波束产生能力。
  23. 根据权利要求21或22所述的方法,其中,所述至少一个第二频段组合的配置信息携带在RRC消息中。
  24. 根据权利要求21至23中任一项所述的方法,其中,所述网络设备采用属于同一第二频段组合的第三频段或第四频段,与所述终端设备进行通信。
  25. 根据权利要求17至24中任一项所述的方法,其中,所述方法还包括:
    所述网络设备接收所述终端设备发送的第二指示信息,所述第二指示信息用于指示所述终端设备在第二频段范围的方向性波束产生能力,所述第二频段属于所述第二频段范围。
  26. 根据权利要求25所述的方法,其中,所述第二指示信息还用于指示支持方向性波束产生能力的频段。
  27. 根据权利要求25或26所述的方法,其中,所述方法还包括:
    所述网络设备根据所述第二指示信息,确定至少一个第二频段组合,所述第二频段组合包括第三频段和第四频段,所述第三频段为所述第一基站支持的频段,所述第四频段为所述第二基站支持的频段。
  28. 根据权利要求17至27中任一项所述的方法,其中,所述网络设备包括以下至少之一:
    第一基站;
    第二基站。
  29. 一种无线通信装置,所述装置包括:
    测量单元,配置为对第一基站的下行信号进行测量,基于测量结果确定所述下行信号的第一波束方向;
    第一通信单元,配置为基于第二波束方向对应的第一波束与第二基站进行通信,所述第二波束方向与所述第一波束方向对应,所述第一波束为方向性波束;
    其中,所述终端设备使用第一频段与所述第一基站进行通信;所述终端设备使用第二频段与所述第二基站进行通信。
  30. 一种无线通信装置,所述装置包括:
    第二发送单元,配置为向终端设备发送第一指示信息,所述第一指示信息用于指示第一基站和第二基站共站址或准共站址,所述终端设备在所述第一基站和所述第二基站共站址或准共站址的情况下,通过第一波束与第二基站进行第一频段通信,且通过第二波束与第一基站进行第二频段通信,所述第一波束和所述第二波束的波束方向相同。
  31. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至16中任一项所述的方法。
  32. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求17至28中任一项所述的方法。
  33. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至16中任一项所述的方法。
  34. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求17至28中任一项所述的方法。
  35. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法。
  36. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求17至28中任一项所述的方法。
  37. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至16中任一项所述的方法。
  38. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求17至28中任一项所述的方法。
  39. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法。
  40. 一种计算机程序,所述计算机程序使得计算机执行如权利要求17至28中任一项所述的方法。
PCT/CN2021/111304 2021-08-06 2021-08-06 一种无线通信方法及装置、终端设备、网络设备 WO2023010563A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/111304 WO2023010563A1 (zh) 2021-08-06 2021-08-06 一种无线通信方法及装置、终端设备、网络设备
CN202180098018.8A CN117322088A (zh) 2021-08-06 2021-08-06 一种无线通信方法及装置、终端设备、网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/111304 WO2023010563A1 (zh) 2021-08-06 2021-08-06 一种无线通信方法及装置、终端设备、网络设备

Publications (1)

Publication Number Publication Date
WO2023010563A1 true WO2023010563A1 (zh) 2023-02-09

Family

ID=85154038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111304 WO2023010563A1 (zh) 2021-08-06 2021-08-06 一种无线通信方法及装置、终端设备、网络设备

Country Status (2)

Country Link
CN (1) CN117322088A (zh)
WO (1) WO2023010563A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495151A (zh) * 2017-09-12 2019-03-19 索尼公司 用于无线通信系统的电子设备、方法和存储介质
US20190097712A1 (en) * 2016-04-18 2019-03-28 Intel Corporation Selection of beamforming directions based on learned performance
CN111656704A (zh) * 2018-02-02 2020-09-11 高通股份有限公司 使用多个接收波束确定信号方向和干扰
CN111742572A (zh) * 2018-02-23 2020-10-02 华为技术有限公司 用于调整接收波束的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190097712A1 (en) * 2016-04-18 2019-03-28 Intel Corporation Selection of beamforming directions based on learned performance
CN109495151A (zh) * 2017-09-12 2019-03-19 索尼公司 用于无线通信系统的电子设备、方法和存储介质
CN111656704A (zh) * 2018-02-02 2020-09-11 高通股份有限公司 使用多个接收波束确定信号方向和干扰
CN111742572A (zh) * 2018-02-23 2020-10-02 华为技术有限公司 用于调整接收波束的方法及装置

Also Published As

Publication number Publication date
CN117322088A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
CN111867094B (zh) 数据接收和发送方法及装置
WO2021163957A1 (zh) 一种基于反向散射的传输方法、电子设备及存储介质
CN111867123B (zh) 随机接入方法和通信装置
US20230083602A1 (en) Multi-carrier communication method, terminal device, and network device
WO2021227857A1 (zh) 一种通信方法及装置
WO2021036773A1 (zh) 一种信号测量方法及装置
JP2022174252A (ja) 通信方法、端末装置及びネットワーク装置
US20230109710A1 (en) Uplink timing method and communications apparatus
US20220173845A1 (en) Communication method and apparatus
CN113904706A (zh) 终端设备、信号传输方法及基带芯片
WO2023010563A1 (zh) 一种无线通信方法及装置、终端设备、网络设备
WO2022206520A1 (zh) 一种信号转发方法和装置
WO2022027681A1 (zh) 无线通信方法和设备
WO2022155975A1 (zh) 无线通信的方法、终端设备和网络设备
CN111757351B (zh) 数据接收和发送方法及装置
WO2023097693A1 (zh) 无线通信方法、终端设备和网络设备
Mahmud et al. Two-dimensional cooperation-based asynchronous multichannel directional MAC protocol for wireless networks
WO2022198518A1 (zh) 配置发射功率的方法和终端设备
WO2022133956A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024031370A1 (zh) 一种发送接收终端能力信息的方法、装置及系统
WO2024067517A1 (zh) 一种通信方法及装置
US20240064658A1 (en) Transmit power control method, terminal device, and network device
WO2021138816A1 (zh) 用于波束选择的方法、终端设备和网络设备
WO2024031546A1 (zh) 一种发送接收上行发射功率配置的方法、装置及系统
WO2023115285A1 (zh) 一种天线副瓣的抑制方法及天线阵列

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180098018.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE