WO2024067517A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024067517A1
WO2024067517A1 PCT/CN2023/121213 CN2023121213W WO2024067517A1 WO 2024067517 A1 WO2024067517 A1 WO 2024067517A1 CN 2023121213 W CN2023121213 W CN 2023121213W WO 2024067517 A1 WO2024067517 A1 WO 2024067517A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
frame
domain resource
time domain
sta
Prior art date
Application number
PCT/CN2023/121213
Other languages
English (en)
French (fr)
Inventor
马云思
阮卫
唐云帅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067517A1 publication Critical patent/WO2024067517A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method and device.
  • WLANs wireless local area networks
  • WLANs mostly operate in low-frequency bands.
  • spectrum resources in low-frequency bands have become very crowded. Therefore, the current focus is on using high-frequency bands (such as millimeter wave bands) to obtain more abundant available spectrum resources.
  • the beacon interval (BI) is introduced in the high-frequency communication protocols (such as 802.11ad and 802.11ay) of the Institute of Electrical and Electronics Engineers (IEEE).
  • An access point (AP) may send a directional multi-gigabit (DMG) beacon frame within a beacon transmission interval (BTI) within the beacon interval.
  • the DMG beacon frame may include the duration of the association beamforming training (A-BFT) interval within the beacon interval. Accordingly, after receiving the DMG beacon frame, multiple stations (STA) may select a time slot within the A-BFT interval by competition and communicate with the AP on the selected time slot.
  • contention conflicts may occur, thereby affecting the communication between the STAs and the AP.
  • the present application provides a communication method and apparatus for implementing time domain resources allocated by an AP to a STA within a time domain resource set, thereby avoiding contention conflicts caused by multiple STAs selecting time domain resources within the time domain resource set in a competitive manner.
  • an embodiment of the present application provides a communication method, which can be applied to a first communication device.
  • the first communication device sends a first frame, the first frame includes first indication information, the first indication information indicates a first time domain resource allocated to a second communication device within a time domain resource set, the time domain resource set includes a time domain resource for beamforming training during an association process; the first communication device communicates with the second communication device on the first time domain resource.
  • the first communication device can indicate to the second communication device the time domain resources allocated to the second communication device in the time domain resource set.
  • the time domain resources are allocated to the second communication device by the first communication device, which can avoid waste of resources caused by competition and improve the utilization rate of time domain resources in the time domain resource set.
  • the first communication device communicates with the second communication device on the first time domain resources, including: the first communication device receives a second frame from the second communication device on the first time domain resources, the second frame being used for first beamforming training.
  • the first communication device communicates with the second communication device on the first time domain resources, and also includes: the first communication device sends a third frame to the second communication device on the first time domain resources, and the third frame includes feedback information of the first beamforming training.
  • the first communication device sends the first frame, including: the first communication device sends the first frame on a first frequency domain resource or a second frequency domain resource; wherein the frequency corresponding to the first frequency domain resource is less than the frequency corresponding to the second frequency domain resource.
  • the first frame when the first communication device sends the first frame on the second frequency domain resources, the first frame is also used for second beamforming training.
  • the first indication information can be sent to the second communication device through a frame used for beamforming training, which is relatively simple to implement; and the AP does not need to send the first indication information through an additional frame, which saves transmission resources.
  • the first frame also includes second indication information, where the second indication information indicates a second time domain resource allocated to a third communication device within the time domain resource set.
  • the first communication device can send the first frame by broadcasting or multicasting, and the first frame includes time domain resource information allocated to multiple communication devices, thereby improving transmission efficiency.
  • the method when the first communication device sends the first frame on the first frequency domain resources, the method also includes: the first communication device sends a fourth frame on the second frequency domain resources, and the fourth frame is used for second beamforming training.
  • the method before the first communication device sends the first frame on the first frequency domain resources or the second frequency domain resources, the method also includes: the first communication device sends a fourth frame on the second frequency domain resources, and the fourth frame is used for second beamforming training; the first communication device receives a fifth frame from the second communication device on the first frequency domain resources, and the fifth frame includes feedback information of the second beamforming training.
  • the first communication device can learn that the second communication device supports the high-frequency link based on the feedback information of the second beamforming training included in the fifth frame, and then allocate time domain resources to the second communication device within the time domain resource set.
  • the feedback information is used to indicate the best transmitting antenna and/or best transmitting sector corresponding to the second communication device on the second frequency domain resources of the first communication device; the first communication device sends the first frame on the second frequency domain resources, including: the first communication device sends the first frame on the second frequency domain resources according to the best transmitting antenna and/or the best transmitting sector.
  • the first communication device can use the best transmitting antenna on the second frequency domain resources and send the first frame to the first STA in the best transmitting sector, thereby increasing the communication distance.
  • an embodiment of the present application provides a communication method, which can be applied to a second communication device.
  • the second communication device receives a first frame from a first communication device, the first frame includes first indication information, the first indication information indicates a first time domain resource allocated to the second communication device within a time domain resource set, the time domain resource set includes a time domain resource for beamforming training during an association process; the second communication device communicates with the first communication device on the first time domain resource.
  • the second communication device communicates with the first communication device on the first time domain resources, including: the second communication device sends a second frame to the first communication device on the first time domain resources, and the second frame is used for first beamforming training.
  • the second communication device communicates with the first communication device on the first time domain resources, and also includes: the second communication device receives a third frame from the first communication device on the first time domain resources, the third frame including feedback information of the first beamforming training.
  • the second communication device receives the first frame from the first communication device, including: the second communication device receives the first frame from the first communication device on a first frequency domain resource or a second frequency domain resource; wherein the frequency corresponding to the first frequency domain resource is less than the frequency corresponding to the second frequency domain resource.
  • the first frame is also used for second beamforming training.
  • the method when the second communication device receives the first frame from the first communication device on the first frequency domain resources, the method also includes: the second communication device receives a fourth frame from the first communication device on the second frequency domain resources, and the fourth frame is used for second beamforming training.
  • the method before the second communication device receives the first frame from the first communication device on the first frequency domain resources or the second frequency domain resources, the method also includes: the second communication device receives a fourth frame from the first communication device on the second frequency domain resources, and the fourth frame is used for second beamforming training; the second communication device sends a fifth frame to the first communication device on the first frequency domain resources, and the fifth frame includes feedback information of the second beamforming training.
  • the present application provides a communication device, which has the function of implementing the first aspect or the second aspect mentioned above.
  • the communication device includes a module or unit or means corresponding to the operations involved in the first aspect or the second aspect mentioned above.
  • the module or unit or means can be implemented by software, or by hardware, or the corresponding software can be implemented by hardware.
  • the communication device includes a processing unit and a communication unit, wherein the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices; the processing unit can be used to perform some internal operations of the communication device.
  • the functions performed by the element and the communication unit may correspond to the operations involved in the first aspect or the second aspect mentioned above.
  • the communication device includes a processor, which can be used to couple with a memory.
  • the memory can store necessary computer programs or instructions for implementing the functions involved in the first aspect or the second aspect.
  • the processor can execute the computer program or instructions stored in the memory, and when the computer program or instructions are executed, the communication device implements the method in any possible design or implementation of the first aspect or the second aspect.
  • the communication device includes a processor and a memory
  • the memory can store necessary computer programs or instructions for implementing the functions involved in the first aspect or the second aspect.
  • the processor can execute the computer program or instructions stored in the memory, and when the computer program or instructions are executed, the communication device implements the method in any possible design or implementation of the first aspect or the second aspect.
  • the communication device includes a processor and an interface circuit, wherein the processor is used to communicate with other devices through the interface circuit and execute the method in any possible design or implementation of the first aspect or the second aspect above.
  • the processor can be implemented by hardware or by software.
  • the processor can be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor can be a general-purpose processor, which is implemented by reading the software code stored in the memory.
  • the above processors can be one or more, and the memories can be one or more.
  • the memory can be integrated with the processor, or the memory can be separately set from the processor. In the specific implementation process, the memory can be integrated with the processor on the same chip, or can be set on different chips respectively.
  • the embodiment of the present application does not limit the type of memory and the setting method of the memory and the processor.
  • the present application provides a communication system, which may include a first communication device and a second communication device; wherein the first communication device is used to execute the communication method provided in the first aspect, and the second communication device is used to execute the communication method provided in the second aspect.
  • the present application provides a computer-readable storage medium, in which computer-readable instructions are stored.
  • a computer reads and executes the computer-readable instructions, the computer executes a method in any possible design of the first aspect or the second aspect.
  • the present application provides a computer program product.
  • the computer reads and executes the computer program product, the computer executes the method in any possible design of the first aspect or the second aspect mentioned above.
  • the present application provides a chip, comprising a processor, wherein the processor is coupled to a memory and is used to read and execute a software program stored in the memory to implement a method in any possible design of the first aspect or the second aspect above.
  • FIG1 is a schematic diagram of a network architecture applicable to an embodiment of the present application.
  • FIG2 is a schematic diagram of an AP MLD provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a link between an AP MLD and a non-AP MLD provided in an embodiment of the present application;
  • FIG4 is a schematic diagram of a possible SLS process provided in an embodiment of the present application.
  • FIG5 is a structural example of a beacon interval provided in an embodiment of the present application.
  • FIG6 is a flow chart of a communication method according to the first embodiment of the present application.
  • FIG7 is a flow chart of the communication method according to the second embodiment of the present application.
  • FIG8 is a structural example of a DMG beacon frame provided in an embodiment of the present application.
  • 9A and 9B are schematic flow charts corresponding to the communication method provided in Embodiment 3 of the present application.
  • FIG10 is a schematic diagram of the structure of a first frame provided in an embodiment of the present application.
  • 11A and 11B are schematic flow charts corresponding to the communication method provided in Embodiment 4 of the present application.
  • FIG12 is a possible exemplary block diagram of a device involved in an embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of an AP provided in an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the structure of a STA provided in an embodiment of the present application.
  • the embodiments of the present application may be applicable to WLAN, for example, any one of the IEEE 802.11 series protocols currently used by WLAN.
  • the WLAN may include one or more basic service sets (BSS).
  • the network nodes include AP and STA.
  • IEEE 802.11ad introduces personal basic service set (PBSS) and personal basic service set control point (PBSS control point, PCP) based on the original BSS.
  • PBSS personal basic service set
  • PCP personal basic service set control point
  • Each personal basic service set can include an AP/PCP and multiple non AP/PCPs associated with the AP/PCP.
  • non AP/PCP can be called STA
  • PCP can be understood as the name of the role of AP in PBSS.
  • the embodiments of the present application may also be applicable to wireless local area networks such as the Internet of Things (IoT) network or the Vehicle to X (V2X) network.
  • IoT Internet of Things
  • V2X Vehicle to X
  • the embodiments of the present application may also be applicable to other possible communication systems, such as the Long Term Evolution (LTE) communication system, the LTE frequency division duplex (FDD) communication system, the LTE time division duplex (TDD) communication system, the universal mobile telecommunication system (UMTS), the worldwide interoperability for microwave access (WiMAX) communication system, the fifth generation (5G) communication system, and future evolving communication systems.
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • FIG1 a network architecture diagram of a WLAN applicable to the application embodiment is shown, and FIG1 takes the WLAN including 1 AP and 2 STAs as an example.
  • the STA associated with the AP can receive wireless frames sent by the AP and can also send wireless frames to the AP.
  • the embodiment of the present application will be described by taking the communication between AP and STA as an example. It can be understood that the embodiment of the present application can also be applied to communication between APs, for example, each AP can communicate with each other through a distributed system (DS), and can also be applied to communication between STAs.
  • DS distributed system
  • AP can be an access point for terminal devices (such as mobile phones) to enter wired (or wireless) networks. It is mainly deployed in homes, buildings and parks, with a typical coverage radius of tens to hundreds of meters. Of course, it can also be deployed outdoors. AP is equivalent to a bridge connecting wired networks and wireless networks. Its main function is to connect various wireless network clients together and then connect the wireless network to Ethernet.
  • AP can be a terminal device (such as a mobile phone) or a network device (such as a router) with a wireless fidelity (Wi-Fi) chip.
  • Wi-Fi wireless fidelity
  • AP can be a device that supports the 802.11be standard, or it can also be a device that supports multiple WLAN standards of the 802.11 family such as 802.11ax, 802.11ay, 802.11ac, 802.11n, 802.11g, 802.11b, 802.11a and 802.11be next generation.
  • STA can be a wireless communication chip, a wireless sensor or a wireless communication terminal, etc., and can also be called a user.
  • STA can be a mobile phone that supports Wi-Fi communication function, a tablet computer that supports Wi-Fi communication function, a set-top box that supports Wi-Fi communication function, a smart TV that supports Wi-Fi communication function, a smart wearable device that supports Wi-Fi communication function, a vehicle-mounted communication device that supports Wi-Fi communication function, and a computer that supports Wi-Fi communication function, etc.
  • STA can support the 802.11be standard, or can also support multiple WLAN standards of the 802.11 family such as 802.11ax, 802.11ay, 802.11ac, 802.11n, 802.11g, 802.11b, 802.11a, and 802.11be next generation.
  • FIG. 1 the number of APs and STAs shown in FIG. 1 is only an example, and may be more or less.
  • the AP and STA involved in FIG1 may be communication devices with dual-mode communication functions, that is, communication devices with low-frequency (LF) band (or channel or link) communication mode and high-frequency (HF) band communication mode.
  • the low-frequency band includes, for example, sub 1 GHz, 2.4 GHz, 5 GHz, 6 GHz, etc.
  • the high-frequency band includes, for example, 60 GHz, etc.
  • the communication device with dual-mode communication function may be a dual-band dual-concurrent (DBDC) device, or may be a multi-link device (MLD), which are described below respectively.
  • DBDC dual-band dual-concurrent
  • MLD multi-link device
  • the DBDC device integrates two independent and complete links, including two baseband processors and RF front-ends, thus supporting independent operation in two frequency bands.
  • AP and STA are DBDC devices
  • AP is DBDC device 1
  • STA is DBDC device 2
  • AP and STA can perform signaling interaction on the low-frequency link to establish a low-frequency link connection; and, perform signaling interaction on the high-frequency link to establish a high-frequency link connection.
  • MLD supports multi-link operation technology.
  • MLD has multiple radio frequency modules, which work in different frequency bands.
  • the frequency band of MLD can be all or part of sub 1GHz, 2.4GHz, 5GHz, 6GHz and high frequency 60GHz.
  • MLD can include AP MLD and/or non-AP MLD.
  • non-AP MLD can be STA MLD.
  • AP MLD may include one or more affiliated sites, each of which has its own media access control (MAC) address.
  • the affiliated sites of AP MLD include AP1 and AP2, the low MAC address of AP1 is link address 1, and the low MAC address of AP2 is link address 2.
  • the AP MLD has an upper MAC address, called the MLD MAC address.
  • AP MLD and non-AP MLD can establish multi-link connection through signaling interaction on low-frequency link.
  • AP MLD includes AP1 and AP2
  • AP1 includes AP1PHY, AP1 low-layer MAC and high-layer MAC
  • AP2 includes AP2PHY, AP2 low-layer MAC and high-layer MAC, where AP1 and AP2 share high-layer MAC
  • non-AP MLD includes STA1 and STA2
  • STA1 includes STA1PHY, STA1 low-layer MAC and high-layer MAC
  • STA2 includes STA2PHY, STA2 low-layer MAC and high-layer MAC, where STA1 and STA2 share high-layer MAC
  • AP1 and STA1 are connected through link 1
  • AP2 and STA2 are connected through link 2.
  • non-AP MLD When establishing multiple links, non-AP MLD sends an association request frame on link 1.
  • the association request frame carries the STA side information of link 1 and the STA side information of link 2.
  • the association request frame can carry the multi-link element field.
  • the multi-link element field is used to carry the information of non-AP MLD and the information of the sites in non-AP MLD.
  • AP MLD sends an association response frame on link 1.
  • the association response frame carries the AP side information of link 1 and the AP side information of link 2, so that STA1 and STA2 of non-AP MLD can establish associations with AP1 and AP2 of AP MLD respectively.
  • the AP when the AP initiates beamforming training, the AP can be called the initiator and the STA can be called the responder; when the STA initiates beamforming training, the STA can be called the initiator and the AP can be called the responder. That is, the party that initiates beamforming training can be called the initiator, and the party that responds to beamforming training can be called the responder.
  • the party that initiates beamforming training can also be called the responder, and the party that responds to beamforming training can be called the initiator; or, the party that initiates beamforming training is fixedly called the initiator, and the other party of beamforming training is fixedly called the responder.
  • the initiator can initiate beamforming training and can also respond to beamforming training initiated by the responder; similarly, the responder can also initiate beamforming training and can also respond to beamforming training initiated by the initiator.
  • beamforming training may include a sector level sweeping (SLS) process and/or a beam refinement protocol (BRP) process.
  • SLS sector level sweeping
  • BRP beam refinement protocol
  • FIG4 is a schematic diagram of a possible SLS process. As shown in FIG4 , the SLS process includes four stages, namely, the initiator sector sweep (ISS) stage, the responder sector sweep (RSS) stage, the sector sweep (SSW) feedback frame transmission stage, and the sector sweep confirmation (SSW acknowledgment, SSW Ack) frame transmission stage. Through these four stages, the basic link between the initiator and the responder is established.
  • ISS initiator sector sweep
  • RSS responder sector sweep
  • SSW sector sweep
  • SSW Ack sector sweep confirmation
  • the initiator can obtain the optimal sending sector and the optimal receiving sector of the initiator corresponding to the responder, and the responder can also obtain the optimal sending sector and the optimal receiving sector of the responder corresponding to the initiator. That is to say, the sending beam and the receiving beam can be selected to utilize the gain of the sending beam and the receiving beam.
  • AP is taken as the initiator and STA is taken as the responder as an example.
  • the ISS phase may include an initiator transmission of sector sweep (I-TXSS) subphase and/or an initiator reception of sector sweep (I-RXSS) subphase.
  • I-TXSS initiator transmission of sector sweep
  • I-RXSS initiator reception of sector sweep
  • FIG4 illustrates an example in which the ISS phase includes an I-TXSS subphase.
  • the AP can send multiple SSW frames, such as SSW frame 1, SSW frame 2, and SSW frame 3, directionally on the high-frequency band to perform AP transmission sector training.
  • the AP can send one or more SSW frames in each of the AP's multiple transmission directions, and each transmission direction can correspond to a transmission antenna and a transmission sector of the transmission antenna.
  • the STA can quasi-omnidirectionally receive at least one SSW frame from the AP on the high-frequency band, and then the STA can determine the AP's best transmission antenna and best transmission sector corresponding to the STA, and feed back the identifier of the best transmission antenna and the identifier of the best transmission sector to the AP (for example, it can be fed back to the AP through the SSW frame in the R-TXSS sub-phase).
  • the AP can send multiple SSW frames quasi-omnidirectionally on the high-frequency band to perform AP receiving sector training; accordingly, the STA can directionally receive at least one SSW frame on the high-frequency band, and then the STA can determine the STA's best receiving antenna and best receiving sector corresponding to the AP based on the reception quality of at least one SSW frame.
  • the reception quality of the SSW frame may include at least one of the following: received signal power or strength, signal interference noise, ratio (signal to interference plus noise ratio, SINR), bit error rate, etc.
  • ISS i.e., I-TXSS and/or I-RXSS
  • DL BFT downlink beamforming training
  • AP corresponds to the best transmitting antenna and best transmitting sector of STA, that is, the best transmitting antenna and best transmitting sector of downlink
  • STA corresponds to the best receiving antenna and best receiving sector of AP, that is, the best receiving antenna and best receiving sector of downlink.
  • the RSS phase may include a responder transmission of sector sweep (R-TXSS) subphase and/or a responder reception of sector sweep (R-RXSS) subphase.
  • R-TXSS responder transmission of sector sweep
  • R-RXSS responder reception of sector sweep
  • the STA can send multiple SSW frames, such as SSW frame 4, SSW frame 5, and SSW frame 6, directionally on the high frequency band to train the STA's transmission sectors.
  • the AP can receive at least one SSW frame from the STA in a quasi-omnidirectional manner on the high frequency band, and then the AP can determine the STA's best transmission antenna and best transmission sector corresponding to the AP, and feed back the identifier of the best transmission antenna and the identifier of the best transmission sector to the STA (for example, through a sector scanning feedback frame).
  • the STA can send multiple SSW frames quasi-omnidirectionally on the high-frequency band to perform STA receiving sector training; accordingly, the AP can directionally receive at least one SSW frame on the high-frequency band, and then the AP can determine the AP's optimal receiving antenna and optimal receiving sector corresponding to the STA.
  • RSS i.e., R-TXSS and/or R-RXSS
  • UL BFT uplink beamforming training
  • STA corresponds to the best transmit antenna and best transmit sector of AP, that is, the best transmit antenna and best transmit sector of uplink
  • AP corresponds to the best receive antenna and best receive sector of STA, that is, the best receive antenna and best receive sector of uplink.
  • directional transmission may refer to: using different transmitting antennas to transmit in different transmitting sectors in turn;
  • directional reception may refer to: using different receiving antennas to receive in different receiving sectors in turn.
  • the AP can send the sector scanning feedback frame to the STA on the high frequency band according to the best transmitting antenna and the best transmitting sector of the AP corresponding to the STA.
  • the sector scanning feedback frame includes the identifier of the best transmitting antenna and the identifier of the best transmitting sector of the STA corresponding to the AP.
  • the STA may send the sector scan confirmation frame to the AP in the high frequency band according to the best transmitting antenna and best transmitting sector of the STA corresponding to the AP.
  • the result of the SLS phase can be confirmed through the sector scanning feedback frame and the sector scanning confirmation frame.
  • whether to perform the BRP process can also be determined through the sector scanning feedback frame and the sector scanning confirmation frame.
  • the SLS process may include multiple of the above four stages, or the BRP process may be started after a round of the above four stages.
  • the beamforming training of the BRP process is different from the beamforming training in the SLS process.
  • the beamforming training of the BRP process can refer to the prior art, and the embodiments of the present application are not limited to this.
  • the beacon interval is introduced in high-frequency communication protocols (such as 802.11ad and 802.11ay protocols).
  • Figure 5 is a schematic diagram of the structure of the beacon interval. As shown in Figure 5, the beacon interval is divided into a beacon header indication (BHI) and a data transmission interval (DTI). Among them, BHI includes BTI, A-BFT and announcement transmission interval (ATI).
  • BHI includes BTI, A-BFT and announcement transmission interval (ATI).
  • BTI It is the time interval from the first DMG beacon frame sent by the AP in the beacon interval to the end of the transmission of the last DMG beacon frame in the same beacon interval. Among them, multiple DMG beacon frames sent by the AP in the BTI can be used for ISS.
  • A-BFT can be used for multiple STAs to associate with an AP, as well as RSS; frames transmitted in the A-BFT interval may include SSW frames, SSW feedback frames (or short SSW frames, short SSW feedback frames), etc.
  • ATI used by the AP to poll the STA for cached data information, or the AP to send announcements (such as management frames), or the AP to allocate resources in the DTI to the STA.
  • DTI can be divided into several sub-intervals. According to different access forms, these sub-intervals can be divided into contention based access period (CBAP) and service period (SP). Among them, CBAP is the transmission period in which STA accesses the channel through contention; SP is the transmission period for scheduling without contention.
  • CBAP contention based access period
  • SP service period
  • ISS includes I-TXSS and/or I-RXSS.
  • the AP can perform I-TXSS within the BTI, that is, the AP can send multiple DMG beacon frames in a broadcast manner within the BTI. Accordingly, after each of the multiple STAs receives at least one DMG beacon frame quasi-omnidirectionally within the BTI, the AP can determine the best transmitting antenna and the best transmitting sector corresponding to each STA based on the reception quality of at least one DMG beacon frame.
  • multiple STAs include STA1, STA2 and STA3.
  • STA1 can receive at least one DMG beacon frame quasi-omnidirectionally within the BTI, and determine the best transmitting antenna and best transmitting sector of the AP corresponding to STA1 according to the reception quality of at least one DMG beacon frame
  • STA2 can receive at least one DMG beacon frame quasi-omnidirectionally within the BTI, and determine the best transmitting antenna and best transmitting sector of the AP corresponding to STA2 according to the reception quality of at least one DMG beacon frame
  • STA3 can receive at least one DMG beacon frame quasi-omnidirectionally within the BTI, and determine the best transmitting antenna and best transmitting sector of the AP corresponding to STA3 according to the reception quality of at least one DMG beacon frame.
  • the A-BFT interval may include multiple A-BFT time slots (referred to as time slots for short). For example, if the A-BFT interval includes 8 time slots, it can be understood that the length of the A-BFT is 8.
  • the above-mentioned multiple STAs can select the time slots in the A-BFT interval by competition and communicate with the AP in the selected time slots.
  • multiple STAs can select the time slots in the A-BFT interval by random backoff, such as STA1 selects time slot 0, STA2 selects time slot 3, and STA3 selects time slot 5.
  • STA1 can communicate with the AP in time slot 0.
  • STA1 can perform R-TXSS in time slot 0, that is, STA1 can send multiple SSW frames to the AP in a direction in time slot 0; accordingly, after the AP quasi-omnidirectionally receives at least one SSW frame from STA1, it can determine the best transmitting antenna and the best transmitting sector of STA1 corresponding to the AP according to the reception quality of at least one SSW frame, and send an SSW feedback frame to STA1 in time slot 0, and the SSW feedback frame includes the identifier of the best transmitting antenna and the identifier of the best transmitting sector of STA1 corresponding to the AP.
  • multiple STAs select time slots in the A-BFT interval by competing.
  • competition conflicts may occur (for example, two or more STAs select the same time slot), thereby affecting the communication between STA and AP.
  • STA1 and STA2 both select time slot 0 by competing.
  • STA1 and STA2 both communicate with AP in time slot 0, which may cause abnormal communication between AP and STA1 and STA2.
  • an embodiment of the present application provides a communication method, in which the AP can indicate to the STA the time domain resources allocated to the STA within the time domain resource set, and then the AP and the STA can communicate on the allocated time domain resources, avoiding competition conflicts caused by multiple STAs selecting time slots within the time domain resource set through competition.
  • the communication method provided by the embodiment of the present application is described in detail below in conjunction with Embodiments 1 to 4.
  • the method provided by the embodiment of the present application is applied to the network architecture shown in Figure 1 as an example.
  • the method can be performed by two communication devices, such as a first communication device and a second communication device, wherein the first communication device can be an AP or a communication device that can support the AP to implement the functions required by the method, and of course it can also be other communication devices, such as a chip or a chip system.
  • the second communication device can be a STA or a communication device that can support the STA to implement the functions required by the method, and of course it can also be other communication devices, such as a chip or a chip system.
  • the method is performed by AP and STA as an example, that is, the first communication device is an AP and the second communication device is a STA.
  • FIG6 is a flow chart of the communication method provided in the first embodiment of the present application. As shown in FIG6, the flow may include:
  • the AP sends a first frame, the first frame includes first indication information, and the first indication information indicates a first time domain resource allocated to a first STA in a time domain resource set; accordingly, the first STA receives the first frame.
  • the time domain resource set may include time domain resources used for beamforming training during the association process.
  • the time domain resource set may be an A-BFT interval
  • the first time domain resource may include at least one time slot within the A-BFT interval.
  • the AP may send the first frame on the first frequency domain resource or the second frequency domain resource.
  • the first frequency domain resource is different from the second frequency domain resource, and the frequency corresponding to the first frequency domain resource is smaller than the frequency corresponding to the second frequency domain resource.
  • the frequency domain resource may be understood as a frequency range, and the frequency corresponding to the first frequency domain resource is smaller than the frequency corresponding to the second frequency domain resource, which may mean that the highest frequency corresponding to the first frequency domain resource is smaller than the lowest frequency corresponding to the second frequency domain resource.
  • the first frequency domain resource is a frequency domain resource in a low frequency band
  • the second frequency domain resource is a frequency domain resource in a low frequency band. It is the frequency domain resource of high frequency band.
  • the first indication information may include time slot allocation information (expressed as A-BFT slot allocation), and the time slot allocation information may include multiple bits, each bit corresponding to a time slot in the A-BFT interval.
  • the A-BFT interval includes 8 time slots (i.e., time slot 0 to time slot 7)
  • the time slot allocation information may include 8 bits (i.e., bit 0 to bit 7), bit 0 corresponds to time slot 0, bit 1 corresponds to time slot 1, and so on.
  • bit 0 when the value of bit 0 is 1, it indicates that the first time domain resources allocated by the AP to the first STA include time slot 0, and when the value of bit 0 is 0, it indicates that the first time domain resources allocated by the AP to the first STA do not include time slot 0; or vice versa.
  • the first indication information also includes other possible information, such as address information of the first STA.
  • the AP communicates with a first STA on a first time domain resource.
  • communication between the AP and the first STA on the first time domain resources may include: the first STA sends a second frame to the AP on the first time domain resources and the second frequency domain resources, the second frame is used for the first beamforming training, for example, the first beamforming training may be a responder sector scan (i.e., the responder sends a sector scan and/or the responder receives a sector scan); optionally, when the first beamforming training is a responder sending a sector scan, communication between the AP and the first STA on the first time domain resources may also include: the AP sends a third frame to the first STA on the first time domain resources and the second frequency domain resources, the third frame includes feedback information of the first beamforming training, for example, the feedback information of the first beamforming training includes an identifier of the first STA's best transmitting antenna corresponding to the AP and an identifier of the best transmitting sector.
  • the first beamforming training may be a responder sector scan (i.e., the responder sends
  • the AP can indicate to the first STA the time domain resources allocated to the first STA in the time domain resource set, and then the AP and the first STA can communicate on the allocated time domain resources.
  • the embodiment of the present invention can effectively avoid communication anomalies caused by competition conflicts and improve the communication efficiency between the AP and the first STA; in addition, when multiple STAs select time slots by competing in the time domain resource set, some time slots may not be selected, thereby causing waste of resources.
  • the AP allocates time domain resources to the STA, which can avoid waste of resources caused by competition and improve the utilization rate of time domain resources in the time domain resource set.
  • both AP and STA can be MLD, for example, AP is AP MLD and STA is non AP MLD.
  • FIG7 is a flow chart of the communication method according to the second embodiment of the present application. As shown in FIG7 , the flow may include:
  • S701 The AP establishes a multi-link connection with a first STA.
  • the AP can establish multi-link connections with multiple STAs respectively, and the multiple STAs include a first STA and, optionally, a second STA.
  • the first STA as an example, after the AP establishes a multi-link connection with the first STA, the high-frequency link information of the first STA can be obtained, and then it can be determined that the first STA supports the high-frequency link.
  • the AP sends M first frames on the second frequency domain resources, and the M first frames are used for second beamforming training; accordingly, the first STA receives at least one first frame among the M first frames on the second frequency domain resources, where M is a positive integer.
  • the AP may send M first frames in a broadcast or multicast manner on the second frequency domain resources, and accordingly, multiple STAs (such as the first STA and the second STA) may receive at least one of the M first frames on the second frequency domain resources.
  • multiple STAs such as the first STA and the second STA
  • the second beamforming training can be an initiator sector scan (i.e., the initiator sends a sector scan and/or the initiator receives a sector scan).
  • the AP can send M first frames directionally on the second frequency domain resources, and the M first frames are used for the initiator to send a sector scan.
  • the AP can send M first frames in the M sending sectors of the AP on the second frequency domain resources, that is, each sending sector sends a first frame, so as to reduce the overhead of the sector scan.
  • the AP can also send multiple first frames in each sending sector. In the embodiment of the present application, the example is taken that the AP sends a first frame in each sending sector.
  • the AP can also quasi-omnidirectionally send M first frames on the second frequency domain resources, and the M first frames are used for the initiator to receive a sector scan; in the second embodiment, the example of using M first frames for the initiator to send a sector scan is taken.
  • the AP may send M first frames within a BTI that is adjacent to the A-BFT interval.
  • the AP can determine the STAs that need to communicate within the A-BFT interval. For example, the AP can determine the STAs that need to communicate within the A-BFT interval from multiple STAs that support high-frequency links; wherein, there can be multiple specific implementations for the AP to determine whether a certain STA among multiple STAs needs to communicate within the A-BFT interval, such as the AP can determine whether the STA has performed RSS. If not, it can be determined that the STA needs to communicate within the A-BFT interval; if RSS has been performed, it can be determined that the STA does not need to communicate within the A-BFT interval. When the AP determines that multiple STAs all need to communicate within the A-BFT interval, When the AP allocates time domain resources to multiple STAs, the AP may send M first frames on the second frequency domain resources in a broadcast or multicast manner.
  • the embodiments of the present application do not limit the specific implementation of AP allocating time domain resources to multiple STAs. For example, when the A-BFT interval includes 8 time slots and 10 STAs need to communicate within the A-BFT interval, the AP can select 8 STAs from the 10 STAs and allocate 1 time slot to each of the 8 STAs, and the remaining 2 STAs are not allocated time slots.
  • the first frame may include indication information corresponding to multiple STAs respectively, for example, the first frame includes first indication information corresponding to the first STA and second indication information corresponding to the second STA, the first indication information indicates the first time domain resources allocated to the first STA within the A-BFT interval, and the second indication information indicates the second time domain resources allocated to the second STA within the A-BFT interval.
  • the first frame including indication information corresponding to multiple STAs respectively.
  • the first frame may be a DMG beacon frame, or may be other possible frames.
  • FIG8 is a structural example of a DMG beacon frame.
  • the DMG beacon frame may include: a frame control field, a duration field, a basic service set identification (BSSID) field, a frame body field, and a frame check sequence (FCS) field.
  • BSSID basic service set identification
  • FCS frame check sequence
  • the embodiment of the present application may define two new fields in the frame body field, namely, the allocation control field (denoted as A-BFT allocation control) and the allocation field (denoted as A-BFT allocation).
  • the allocation control field includes an allocation flag (allocation flag), the number of allocation fields (number of A-BFT allocation), and a reserved field;
  • the allocation field may include an element identifier (element ID), a receiver address (receiver address, RA), a transmitter address (transmitter address, TA), time slot allocation information (A-BFT slot allocation), and a reserved field.
  • element ID element identifier
  • receiver address receiver address
  • transmitter address transmitter address
  • TA time slot allocation information
  • A-BFT slot allocation time slot allocation
  • the value of the allocation flag is 1, and the number of A-BFT allocation indicates that the number of A-BFT allocation fields is 2, namely A-BFT allocation field 1 and A-BFT allocation field 2.
  • the RA field includes the address information of the first STA
  • the TA field includes the address information of the AP
  • the A-BFT slot allocation field includes 10000000 (that is, the time slot allocated by the AP to the first STA is time slot 0).
  • the RA field includes the address information of the second STA
  • the TA field includes the address information of the AP
  • the A-BFT slot allocation field includes 01000000 (that is, the time slot allocated by the AP to the second STA is time slot 1).
  • the first STA when the first STA receives at least one first frame among M first frames, it can determine that the time slot allocated by the AP to the first STA is time slot 0 according to the A-BFT allocation field 1 carried by the first frame; when the second STA receives at least one first frame among M first frames, it can determine that the time slot allocated by the AP to the first STA is time slot 1 according to the A-BFT allocation field 2 carried by the first frame.
  • the frame body field of the first frame may also include an SSW field, and the SSW field may include an identifier of a transmission sector used to send the first frame and an identifier of a transmission antenna used to send the first frame.
  • the first STA may also determine the best transmission antenna and best transmission sector of the AP corresponding to the first STA based on the reception quality of at least one first frame; similarly, the second STA may also determine the best transmission antenna and best transmission sector of the AP corresponding to the second STA based on the reception quality of at least one first frame.
  • the STA (such as the first STA or the A STA may receive M first frames, or may receive only the first frame among the M first frames. And the number of first frames received by different STAs may also be different.
  • the first STA sends N second frames to the AP on the first time domain resource and the second frequency domain resource, and the N second frames are used for second beamforming training; accordingly, the AP may receive at least one second frame among the N second frames on the first time domain resource and the second frequency domain resource, where N is a positive integer.
  • the first STA can send N second frames directionally.
  • the second frame may include an identifier of the best transmitting antenna of the AP corresponding to the second STA and an identifier of the best transmitting sector.
  • the second frame can be an SSW frame, or other possible frames (such as short SSW frames), which are not specifically limited.
  • the AP can quasi-omnidirectionally receive at least one second frame of the N second frames, and determine the best transmitting antenna and the best transmitting sector of the first STA corresponding to the AP based on the reception quality of at least one second frame.
  • the first STA is taken as an example here.
  • the second STA can send multiple SSW frames to the AP on the second time domain resources and the second frequency domain resources, and the multiple SSW frames are used for sector scanning of the second STA.
  • the method may further include:
  • the AP sends a third frame to the first STA on the first time domain resources and the second frequency domain resources, where the third frame includes feedback information of the first beamforming training; accordingly, the first STA receives the third frame on the first time domain resources and the second frequency domain resources.
  • the sector scanning feedback information sent by the responder is used to indicate the best transmitting antenna and best transmitting sector of the first STA corresponding to the AP.
  • the sector scanning feedback information sent by the responder includes the identifier of the best transmitting antenna and the identifier of the best transmitting sector of the first STA corresponding to the AP.
  • the first STA sends a confirmation frame of the third frame to the AP using the first time domain resources and the second frequency domain resources.
  • the AP and the first STA can transmit the third frame and the confirmation frame of the third frame on the high frequency band within the first time domain resource.
  • the third frame can be an SSW feedback frame
  • the confirmation frame of the third frame can be an SSW confirmation frame
  • the third frame and the confirmation frame of the third frame can also be other possible frames.
  • the AP may also send the third frame to the first STA on the first frequency domain resources, and the first STA may also send a confirmation frame of the third frame to the AP on the first frequency domain resources. That is, the AP and the first STA may transmit the third frame and the confirmation frame of the third frame on the low frequency band.
  • the time domain resources occupied by the third frame and the confirmation frame of the third frame transmitted on the low frequency band are not limited.
  • the first indication information can be carried in the frame used to initiate the sector scan (such as the DMG beacon frame), that is, the AP can send time slot allocation information to the first STA through the DMG beacon frame, which is relatively simple to implement; and the AP does not need to send time slot allocation information through additional frames, which is convenient for saving transmission resources.
  • both AP and STA can be MLD, for example, AP is AP MLD and STA is non AP MLD.
  • FIG9A and FIG9B are schematic diagrams of a process flow corresponding to the communication method provided in Embodiment 3 of the present application. As shown in FIG9A and FIG9B , the process flow may include:
  • S901 The AP establishes a multi-link connection with a first STA.
  • the AP may establish multi-link connections with multiple STAs respectively, where the multiple STAs include a first STA and, optionally, a second STA.
  • the multiple STAs include a first STA and, optionally, a second STA.
  • S701 of the second embodiment refer to the description in S701 of the second embodiment.
  • the AP sends a first frame to the first STA on the first frequency domain resource, the first frame includes first indication information, and the first indication information indicates a first time domain resource allocated to the first STA within a time domain resource set; accordingly, the first STA receives the first frame.
  • the AP may send the first frame to the first STA at the low frequency band, and the first STA may receive the first frame at the low frequency band.
  • the first frame may be a newly designed frame in the embodiment of the present application, for example, the first frame may be called an A-BFT allocation poll (A-BFT slot allocation poll) frame.
  • FIG. 10 is a structural example of the first frame provided in the embodiment of the present application. As shown in FIG. 10 , the first frame includes a frame control field, a duration field, an RA field, a TA field, an A-BFT slot allocation field, and an FCS field. Among them, the meaning of the A-BFT slot allocation field can refer to the description above.
  • the RA field in the first frame includes the address information of the first STA
  • the TA field includes the address information of the AP
  • the A-BFT slot allocation field includes 10000000 (that is, the time slot allocated by the AP to the first STA is time slot 0).
  • the AP may send the first frame to the first STA in a unicast manner. Accordingly, after the first STA receives the first frame, It can be determined according to the first frame that the time slot allocated by the AP to the first STA is time slot 0.
  • the time domain resources occupied by the first frame transmitted on the low-frequency band are located before the start time of the A-BFT interval, so that the first STA can obtain the time domain resources allocated by the AP to the first STA before the start time of the A-BFT interval.
  • the AP can also send other A-BFT slot allocation polls to other STAs on the first frequency domain resources.
  • the AP can also send an A-BFT slot allocation poll frame a to the second STA on the first frequency domain resources, and the A-BFT slot allocation poll frame a includes the second indication information.
  • the AP can send A-BFT slot allocation polls to multiple STAs on the first frequency domain resources respectively.
  • the AP sends M fourth frames on the second frequency domain resources, where the M fourth frames are used for second beamforming training; accordingly, the first STA receives at least one fourth frame among the M fourth frames on the second frequency domain resources.
  • the fourth frame may be a DMG beacon frame, or may be other possible frames.
  • the specific implementation of the AP sending M fourth frames on the second frequency domain resources can refer to the description of the AP sending M first frames on the second frequency domain resources in Example 2.
  • the difference is that the first frame in Example 2 includes the first indication information, while the fourth frame in Example 3 may not include the first indication information.
  • the first STA sends N second frames to the AP on the first time domain resources and the second frequency domain resources, and the N second frames are used for the first beamforming training; accordingly, the AP can receive at least one second frame among the N second frames on the first time domain resources and the second frequency domain resources.
  • the method may further include:
  • the AP sends a third frame to the first STA on the first time domain resources and the second frequency domain resources, where the third frame includes feedback information of the first beamforming training; accordingly, the first STA receives the third frame on the first time domain resources and the second frequency domain resources.
  • the first STA sends a confirmation frame of the third frame to the AP using the first time domain resources and the second frequency domain resources.
  • S904 to S906 may refer to S703 to S705 in the second embodiment.
  • the AP can send the time slot allocation information to the first STA on the low frequency band. Since the coverage of the low frequency band is larger, the probability that the first STA successfully receives the time slot allocation information can be increased.
  • both the AP and the STA may be DBDC devices.
  • FIGS 11A and 11B are schematic diagrams of a process flow corresponding to a communication method provided in Embodiment 4 of the present application. As shown in Figures 11A and 11B, the process may include:
  • the AP sends M fourth frames on the second frequency domain resources, and the M fourth frames are used for second beamforming training; accordingly, the first STA receives at least one fourth frame among the M fourth frames on the second frequency domain resources.
  • Embodiment 3 the specific implementation of the AP sending M fourth frames on the second frequency domain resources may refer to Embodiment 3.
  • the first STA sends a fifth frame to the AP on the first frequency domain resources, where the fifth frame includes feedback information of the second beamforming training; accordingly, the AP receives the fifth frame from the first STA on the first frequency domain resources.
  • the feedback information of the second beamforming training is used to indicate the best transmitting antenna and the best transmitting sector of the AP corresponding to the first STA.
  • the first STA determines the best transmitting antenna and the best transmitting sector of the AP corresponding to the first STA, it can establish a low-frequency band link with the AP (or the first STA has previously established a low-frequency band link with the AP) and send the fifth frame to the AP on the low-frequency band. Accordingly, after the AP receives the fifth frame on the low-frequency band, since the fifth frame includes the feedback information of the second beamforming training, the AP can determine that the first STA supports the high-frequency link based on the fifth frame, and allocate the first time domain resources within the A-BFT interval to the first STA. In other words, the feedback information of the second beamforming training is used to indicate that the first STA supports the high-frequency link (i.e., supports the second frequency domain resources).
  • the AP may also send a confirmation frame of the fifth frame to the first STA on the first frequency domain resources.
  • the AP sends a first frame to the first STA on a first frequency domain resource, where the first frame includes first indication information.
  • the specific implementation of the AP sending the first frame to the first STA on the first frequency domain resource may refer to S902 in the third embodiment.
  • S1103 may also be replaced by: the AP sends a first frame to the first STA on the second frequency domain resource, and the first frame includes the first indication information.
  • the AP may select the optimal sector scan for the first STA based on the AP.
  • the AP uses the best transmitting antenna and the best transmitting sector to send the first frame to the first STA. That is, the AP can use the best transmitting antenna in the high frequency band and send the first frame to the first STA in the best transmitting sector.
  • the first STA sends N second frames to the AP on the first time domain resources and the second frequency domain resources, and the N second frames are used for first beamforming training; accordingly, the AP can receive at least one second frame among the N second frames on the first time domain resources and the second frequency domain resources.
  • the method further includes:
  • the AP sends a third frame to the first STA on the first time domain resources and the second frequency domain resources, where the third frame includes feedback information of the first beamforming training; accordingly, the first STA receives the third frame on the first time domain resources and the second frequency domain resources.
  • the first STA sends a confirmation frame of the third frame to the AP using the first time domain resources and the second frequency domain resources.
  • S1104 to S1106 may refer to S703 to S705 in the second embodiment.
  • the AP can send the time slot allocation information to the first STA on the low frequency band, and since the coverage of the low frequency band is larger, the probability that the first STA successfully receives the time slot allocation information can be increased.
  • the AP can send the time slot allocation information to the first STA on the high frequency band according to the best transmitting antenna and the best transmitting sector of the AP corresponding to the first STA, thereby increasing the probability that the first STA successfully receives the time slot allocation information.
  • Embodiment 1 to Embodiment 4 can refer to each other.
  • different implementations or different examples can also refer to each other.
  • step numbers of the flowcharts described in Examples 1 to 4 are only examples of the execution process and do not constitute a limitation on the order of execution of the steps. There is no strict execution order between the steps that have no temporal dependency relationship with each other in the embodiments of the present application. Not all the steps shown in the flowcharts are required to be executed. Some steps can be deleted based on each flowchart according to actual needs, or other possible steps can be added based on each flowchart according to actual needs.
  • the first communication device and the second communication device may include hardware structures and/or software modules corresponding to the execution of each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the present application.
  • the first communication device and the second communication device can be divided into functional units according to the above method example.
  • each functional unit can be divided according to each function, or two or more functions can be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of software functional units.
  • Figure 12 shows a possible exemplary block diagram of the device involved in the embodiments of the present application.
  • the device 1200 may include: a processing unit 1202 and a communication unit 1203.
  • the processing unit 1202 is used to control and manage the actions of the device 1200.
  • the communication unit 1203 is used to support the communication between the device 1200 and other devices.
  • the communication unit 1203 is also called a transceiver unit, and may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the device 1200 may also include a storage unit 1201 for storing program code and/or data of the device 1200.
  • the device 1200 may be the first communication device (such as an AP) in the above embodiment, or may also be a component (such as a circuit or a chip) disposed in the AP.
  • the processing unit 1202 may support the device 1200 in executing the actions of the AP in the above method examples. Alternatively, the processing unit 1202 mainly executes the internal actions of the AP in the method examples, and the communication unit 1203 may support the communication between the device 1200 and other devices.
  • the communication unit 1203 is used to: send a first frame, the first frame including first indication information, the first indication information indicating a first time domain resource allocated to a second communication device within a time domain resource set, the time domain resource set including time domain resources for beamforming training during an association process; and, communicate with the second communication device on the first time domain resource.
  • the device 1200 may be a second communication device (such as a STA) in the above embodiment, or may be a component (such as a circuit or a chip) disposed in the STA.
  • the processing unit 1202 may support the device 1200 in performing the actions of the STA in the above method examples.
  • the processing unit 1202 mainly performs the internal actions of the STA in the method examples, and the communication unit 1203 may support the device 1200 in communicating with other devices. Communication between devices.
  • the communication unit 1203 is used to: receive a first frame from a first communication device, the first frame including first indication information, the first indication information indicating a first time domain resource allocated to the second communication device within a time domain resource set, the time domain resource set including time domain resources for beamforming training during an association process; and, communicate with the first communication device on the first time domain resource.
  • each unit in the above device can be fully or partially integrated into one physical entity, or they can be physically separated.
  • the units in the device can all be implemented in the form of software calling through processing elements; they can also be all implemented in the form of hardware; some units can also be implemented in the form of software calling through processing elements, and some units can be implemented in the form of hardware.
  • each unit can be a separately established processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, and called and executed by a certain processing element of the device. The function of the unit.
  • processing element described here can also be a processor, which can be an integrated circuit with signal processing capabilities.
  • each operation of the above method or each unit above can be implemented by an integrated logic circuit of hardware in the processor element or in the form of software calling through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above method, such as one or more application specific integrated circuits (ASIC), or one or more digital singnal processors (DSP), or one or more field programmable gate arrays (FPGA), or a combination of at least two of these integrated circuit forms.
  • ASIC application specific integrated circuits
  • DSP digital singnal processors
  • FPGA field programmable gate arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a processor, such as a general-purpose central processing unit (CPU), or other processors that can call programs.
  • CPU general-purpose central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above unit for receiving is an interface circuit of the device, which is used to receive signals from other devices.
  • the receiving unit is an interface circuit of the chip used to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device, which is used to send signals to other devices.
  • the sending unit is an interface circuit of the chip used to send signals to other chips or devices.
  • FIG. 13 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application, it is used to implement the operation of the first communication device (eg, AP) in the above embodiment.
  • the first communication device eg, AP
  • the communication device 1300 may include a processor 1301, a memory 1302, and an interface circuit 1303.
  • the processor 1301 may be used to process the communication protocol and the communication data, and to control the communication device 1300.
  • the memory 1302 may be used to store programs and data, and the processor 1301 may execute the method executed by the AP in the embodiment of the present application based on the program.
  • the interface circuit 1303 may be used for the communication device 1300 to communicate with other devices, and the communication may be wired communication or wireless communication, and the interface circuit may also be replaced by a transceiver.
  • the above memory 1302 may also be externally connected to the communication device 1300, in which case the communication device 1300 may include an interface circuit 1303 and a processor 1301.
  • the above interface circuit 1303 may also be externally connected to the communication device 1300, in which case the communication device 1300 may include a memory 1302 and a processor 1301.
  • the communication device 1300 may include a processor 1301.
  • the communication device shown in FIG13 can implement various processes involving the AP in the above method embodiment.
  • the operations and/or functions of each module in the communication device shown in FIG13 are respectively to implement the corresponding processes in the above method embodiment.
  • the communication device includes: an antenna 1410, a radio frequency part 1420, and a signal processing part 1430.
  • the antenna 1410 is connected to the radio frequency part 1420.
  • the radio frequency part 1420 receives information sent by the AP through the antenna 1410, and sends the information sent by the AP to the signal processing part 1430 for processing.
  • the signal processing part 1430 processes the information of the STA and sends it to the radio frequency part 1420.
  • the radio frequency part 1420 processes the information of the STA and sends it to the AP through the antenna 1410.
  • the signal processing part 1430 may include a modulation and demodulation subsystem for processing each communication protocol layer of the data; it may also include a central processing subsystem for processing the STA operating system and the application layer; in addition, it may also include other subsystems, such as a multimedia subsystem, a peripheral subsystem, etc., wherein the multimedia subsystem is used to control the camera, screen display, etc., and the peripheral subsystem is used to connect to other devices.
  • the modulation and demodulation subsystem may be a separately provided chip.
  • the modem subsystem may include one or more processing elements 1431, including, for example, a host CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 1432 and an interface circuit 1433.
  • the storage element 1432 is used to store data and programs, but the program used to execute the method executed by the STA in the above method may not be stored in the storage element 1432, but stored in a memory outside the modem subsystem, and loaded and used by the modem subsystem when in use.
  • the interface circuit 1433 is used to communicate with other subsystems.
  • the modem subsystem may be implemented by a chip, which includes at least one processing element and an interface circuit, wherein the processing element is used to execute each step of any of the methods executed by the above STA, and the interface circuit is used to communicate with other devices.
  • the unit for STA to implement each step in the above method may be implemented in the form of a processing element scheduler, for example, the device for STA includes a processing element and a storage element, and the processing element calls a program stored in the storage element to execute the method executed by STA in the above method embodiment.
  • the storage element may be a storage element on the same chip as the processing element, that is, an on-chip storage element.
  • the program for executing the method executed by STA in the above method may be in a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads the program from the off-chip storage element to the on-chip storage element to call and execute the method executed by STA in the above method embodiment.
  • the unit of the STA implementing each step in the above method may be configured as one or more processing elements, which are arranged on the modem subsystem.
  • the processing elements here may be integrated circuits, such as one or more ASICs, or one or more DSPs, or one or more FPGAs, or a combination of these integrated circuits. These integrated circuits may be integrated together to form a chip.
  • the units of STA implementing the above steps can be integrated together and implemented in the form of SOC, and the SOC chip is used to implement the above method.
  • the chip can integrate at least one processing element and storage element, and the processing element calls the stored program of the storage element to implement the above STA execution method; or, the chip can integrate at least one integrated circuit to implement the above STA execution method; or, the above implementation methods can be combined, and the functions of some units are implemented by the processing element calling the program, and the functions of some units are implemented by the integrated circuit.
  • the above apparatus for STA may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any one of the STA execution methods provided in the above method embodiments.
  • the processing element may execute part or all of the steps executed by STA in a first manner: that is, by calling a program stored in a storage element; or in a second manner: by combining an integrated logic circuit of hardware in a processor element with instructions to execute part or all of the steps executed by STA; of course, part or all of the steps executed by STA may also be executed in combination with the first manner and the second manner.
  • the processing element here can be implemented by a processor as described above, and the function of the processing element can be the same as the function of the processing unit described in Figure 12.
  • the processing element can be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or one or more microprocessors DSP, or one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be implemented by a memory, and the function of the storage element can be the same as the function of the storage unit described in Figure 12.
  • the storage element can be a memory, or a general term for multiple memories.
  • the STA shown in FIG14 can implement various processes related to the STA in the above method embodiment.
  • the operations and/or functions of each module in the STA shown in FIG14 are respectively to implement the corresponding processes in the above method embodiment.
  • An embodiment of the present application also provides a communication system, which may include an AP and a STA, wherein the AP is used to execute the steps on the AP side of the above method embodiment, and the STA is used to execute the steps on the STA side of the above method embodiment.
  • a communication system which may include an AP and a STA, wherein the AP is used to execute the steps on the AP side of the above method embodiment, and the STA is used to execute the steps on the STA side of the above method embodiment.
  • system and “network” in the embodiments of the present application can be used interchangeably.
  • “At least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist, for example, A and/or B, which can represent: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • “At least one of the following (individuals)” or similar expressions thereof refer to any combination of these items, including any combination of single items (individuals) or plural items (individuals).
  • At least one of A, B and C includes A, B, C, AB, AC, BC or ABC.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, timing, priority or importance of multiple objects.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) that contain computer-usable program code.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种通信方法及装置。其中方法包括:第一通信装置发送第一帧,第一帧包括第一指示信息,第一指示信息指示在时域资源集合内为第二通信装置分配的第一时域资源,时域资源集合包括用于在关联过程中进行波束赋形训练的时域资源;第一通信装置在第一时域资源上与第二通信装置通信。采用该方法,第一通信装置可以向第二通信装置指示在时域资源集合内为第二通信装置分配的时域资源,相比于多个通信装置在时域资源集合内通过竞争的方式选择时域资源的方式来说,可以避免竞争冲突而导致的通信异常,提高第一通信装置和第二通信装置之间的通信效率。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年09月30日提交中国专利局、申请号为202211231747.9、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
目前无线局域网(wireless local area networks,WLAN)大多工作在低频频段,随着使用低频频段的设备的增加,低频频段的频谱资源变得非常拥挤。因此,当前关注于使用高频频段(比如毫米波频段)来获取更加丰富的可用频谱资源。
电气电子工程师协会(institute of electrical and electronics engineers,IEEE)的高频通信协议(比如802.11ad和802.11ay)中引入了信标间隔(beacon interval,BI)。接入点(access point,AP)可在信标间隔内的信标传输间隔(beacon transmission interval,BTI)内发送定向多千兆比特(directional multi-gigabit,DMG)信标帧(beacon frame),DMG信标帧可包括信标间隔内的关联-波束赋形训练(association beamforming training,A-BFT)间隔的时长;相应地,多个站点(station,STA)接收到DMG信标帧后,可以通过竞争的方式选择A-BFT间隔内的时隙,并在选择的时隙上与AP通信。
然而,多个STA通过竞争的方式选择A-BFT间隔内的时隙时,可能会出现竞争冲突,从而影响STA与AP之间的通信。
发明内容
本申请提供了一种通信方法及装置,用于实现AP在时域资源集合内为STA分配的时域资源,避免多个STA在时域资源集合内通过竞争的方式选择时域资源而导致的竞争冲突。
第一方面,本申请实施例提供一种通信方法,该方法可以应用于第一通信装置。在该方法中,第一通信装置发送第一帧,所述第一帧包括第一指示信息,所述第一指示信息指示在时域资源集合内为第二通信装置分配的第一时域资源,所述时域资源集合包括用于在关联过程中进行波束赋形训练的时域资源;所述第一通信装置在所述第一时域资源上,与所述第二通信装置通信。
采用该方法,第一通信装置可以向第二通信装置指示在时域资源集合内为第二通信装置分配的时域资源,相比于多个通信装置在时域资源集合内通过竞争的方式选择时域资源的方式来说,可以避免竞争冲突而导致的通信异常,提高第一通信装置和第二通信装置之间的通信效率。此外,当多个通信装置在时域资源集合内通过竞争的方式选择时隙时,还可能会导致某些时隙未被选择,从而造成资源浪费,而采用上述方法,通过第一通信装置为第二通信装置分配时域资源,可以避免竞争导致的资源浪费,提高时域资源集合中的时域资源的利用率。
在一种可能的设计中,所述第一通信装置在所述第一时域资源上,与所述第二通信装置通信,包括:所述第一通信装置在所述第一时域资源上,接收来自所述第二通信装置的第二帧,所述第二帧用于第一波束赋形训练。
在一种可能的设计中,所述第一通信装置在所述第一时域资源上,与所述第二通信装置通信,还包括:所述第一通信装置在所述第一时域资源上,向所述第二通信装置发送第三帧,所述第三帧包括所述第一波束赋形训练的反馈信息。
在一种可能的设计中,所述第一通信装置发送所述第一帧,包括:所述第一通信装置在第一频域资源或第二频域资源上发送所述第一帧;其中,所述第一频域资源对应的频率小于所述第二频域资源对应的频率。
在一种可能的设计中,当所述第一通信装置在所述第二频域资源上发送所述第一帧时,所述第一帧还用于第二波束赋形训练。
如此,可以通过用于波束赋形训练的帧来向第二通信装置发送第一指示信息,实现较为简便;且AP无需通过额外的帧来发送第一指示信息,便于节省传输资源。
在一种可能的设计中,所述第一帧还包括第二指示信息,所述第二指示信息指示在所述时域资源集合内为第三通信装置分配的第二时域资源。
如此,第一通信装置可以通过广播或组播的方式发送第一帧,第一帧包括为多个通信装置分配的时域资源信息,从而可以提高传输效率。
在一种可能的设计中,当所述第一通信装置在所述第一频域资源上发送所述第一帧时,所述方法还包括:所述第一通信装置在所述第二频域资源上发送第四帧,所述第四帧用于第二波束赋形训练。
在一种可能的设计中,所述第一通信装置在第一频域资源或第二频域资源上发送所述第一帧之前,所述方法还包括:所述第一通信装置在所述第二频域资源上发送第四帧,所述第四帧用于第二波束赋形训练;所述第一通信装置在所述第一频域资源上接收来自所述第二通信装置的第五帧,所述第五帧包括所述第二波束赋形训练的反馈信息。
如此,当第一通信装置和第二通信装置均为DBDC设备时,第一通信装置可以根据第五帧所包括的第二波束赋形训练的反馈信息,获知第二通信装置支持高频链路,进而可以在时域资源集合内为第二通信装置分配的时域资源。
在一种可能的设计中,所述反馈信息用于指示所述第一通信装置在所述第二频域资源上对应于所述第二通信装置的最佳发送天线和/或最佳发送扇区;所述第一通信装置在所述第二频域资源上,发送所述第一帧,包括:所述第一通信装置根据所述最佳发送天线和/或所述最佳发送扇区,在所述第二频域资源上,发送所述第一帧。
如此,第一通信装置可以在第二频域资源上使用最佳发送天线、在最佳发送扇区向第一STA发送第一帧,从而可以增加通信距离。
第二方面,本申请实施例提供一种通信方法,该方法可以应用于第二通信装置。在该方法中,第二通信装置接收来自第一通信装置的第一帧,所述第一帧包括第一指示信息,所述第一指示信息指示在时域资源集合内为所述第二通信装置分配的第一时域资源,所述时域资源集合包括用于在关联过程中进行波束赋形训练的时域资源;所述第二通信装置在所述第一时域资源上,与所述第一通信装置通信。
在一种可能的设计中,所述第二通信装置在所述第一时域资源上,与所述第一通信装置通信,包括:所述第二通信装置在所述第一时域资源上,向所述第一通信装置发送第二帧,所述第二帧用于第一波束赋形训练。
在一种可能的设计中,所述第二通信装置在所述第一时域资源上,与所述第一通信装置通信,还包括:所述第二通信装置在所述第一时域资源上,接收来自所述第一通信装置的第三帧,所述第三帧包括所述第一波束赋形训练的反馈信息。
在一种可能的设计中,所述第二通信装置接收来自所述第一通信装置的所述第一帧,包括:所述第二通信装置在第一频域资源或第二频域资源上接收来自所述第一通信装置的所述第一帧;其中,所述第一频域资源对应的频率小于所述第二频域资源对应的频率。
在一种可能的设计中,当所述第二通信装置在所述第二频域资源上接收来自所述第一通信装置的所述第一帧时,所述第一帧还用于第二波束赋形训练。
在一种可能的设计中,当所述第二通信装置在所述第一频域资源上接收来自所述第一通信装置的所述第一帧时,所述方法还包括:所述第二通信装置在所述第二频域资源上接收来自所述第一通信装置的第四帧,所述第四帧用于第二波束赋形训练。
在一种可能的设计中,所述第二通信装置在第一频域资源或第二频域资源上接收来自所述第一通信装置的所述第一帧之前,所述方法还包括:所述第二通信装置在所述第二频域资源上接收来自所述第一通信装置的第四帧,所述第四帧用于第二波束赋形训练;所述第二通信装置在所述第一频域资源上向所述第一通信装置发送第五帧,所述第五帧包括所述第二波束赋形训练的反馈信息。
可以理解的是,上述第二方面所描述的方法与第一方面所描述的方法相对应,第二方面中相关技术特征的有益效果可以参照第一方面的描述,不再赘述。
第三方面,本申请提供一种通信装置,所述通信装置具备实现上述第一方面或第二方面的功能,比如,所述通信装置包括执行上述第一方面或第二方面涉及操作所对应的模块或单元或手段(means),所述模块或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信;处理单元可以用于执行该通信装置的一些内部操作。处理单 元、通信单元执行的功能可以和上述第一方面或第二方面涉及的操作相对应。
在一种可能的设计中,所述通信装置包括处理器,处理器可以用于与存储器耦合。所述存储器可以保存实现上述第一方面或第二方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面或第二方面中任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第一方面或第二方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面或第二方面中任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和接口电路,其中,处理器用于通过所述接口电路与其它装置通信,并执行上述第一方面或第二方面中任意可能的设计或实现方式中的方法。
可以理解地,上述第三方面中,处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。此外,以上处理器可以为一个或多个,存储器可以为一个或多个。存储器可以与处理器集成在一起,或者存储器与处理器分离设置。在具体实现过程中,存储器可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第四方面,本申请提供一种通信系统,该通信系统可以包括第一通信装置和第二通信装置;其中,第一通信装置用于执行上述第一方面所提供的通信方法,第二通信装置用于执行上述第二方面所提供的通信方法。
第五方面,本申请提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面或第二方面的任一种可能的设计中的方法。
第六方面,本申请提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面或第二方面的任一种可能的设计中的方法。
第七方面,本申请提供一种芯片,所述芯片包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面或第二方面的任一种可能的设计中的方法。
附图说明
图1为本申请实施例适用的一种网络架构示意图;
图2为本申请实施例提供的一种AP MLD示意图;
图3为本申请实施例提供的AP MLD和non AP MLD之间的链路示意图;
图4为本申请实施例提供的一种可能的SLS过程示意图;
图5为本申请实施例提供的信标间隔的结构示例;
图6为本申请实施例一提供的通信方法所对应的流程示意图;
图7为本申请实施例二提供的通信方法所对应的流程示意图;
图8为本申请实施例提供的DMG信标帧的结构示例;
图9A和图9B为本申请实施例三提供的通信方法所对应的流程示意图;
图10为本申请实施例提供的第一帧的结构示意图;
图11A和图11B为本申请实施例四提供的通信方法所对应的流程示意图;
图12为本申请实施例中所涉及的装置的可能的示例性框图;
图13为本申请实施例提供的一种AP的结构示意图;
图14为本申请实施例提供的一种STA的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例可以适用于WLAN中,比如可以适用于WLAN当前采用的IEEE 802.11系列协议中的任意一种协议。其中,WLAN可以包括一个或多个基本服务集(basic service set,BSS),基本服务集中 的网络节点包括AP和STA。此外,IEEE 802.11ad在原有的BSS基础上,引入个人基本服务集(personal basic service set,PBSS)和个人基本服务集控制节点(PBSS control point,PCP),每个个人基本服务集可以包含一个AP/PCP和多个关联于该AP/PCP的non AP/PCP,本申请实施例中non AP/PCP可以称为STA,PCP可以理解为AP在PBSS里的角色的称呼。
本申请实施例也可以适用于物联网(internet of things,IoT)网络或车联网(vehicle to X,V2X)网络等无线局域网中。当然,本申请实施例还可以适用于其它可能的通信系统,例如长期演进(long term evolution,LTE)通信系统、LTE频分双工(frequency division duplex,FDD)通信系统、LTE时分双工(time division duplex,TDD)通信系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)通信系统、以及未来演进的通信系统等。
下文以本申请实施例适用于WLAN为例。参见图1,示出了本申请实施例适用的一种WLAN的网络架构图,图1是以该WLAN包括1个AP和2个STA为例。其中,与AP关联的STA,能够接收该AP发送的无线帧,也能够向该AP发送无线帧。本申请实施例将以AP和STA之间的通信为例进行描述,可以理解的是,本申请实施例也可以适用于AP与AP之间的通信,例如各个AP之间可通过分布式系统(distributed system,DS)相互通信,也可以适用于STA与STA之间的通信。
AP可以为终端设备(如手机)进入有线(或无线)网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网络和无线网络的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。比如,AP可以是带有无线保真(wireless fidelity,Wi-Fi)芯片的终端设备(如手机)或者网络设备(如路由器)。本申请实施例中,AP可以为支持802.11be制式的设备,或者也可以为支持802.11ax、802.11ay、802.11ac、802.11n、802.11g、802.11b、802.11a以及802.11be下一代等802.11家族的多种WLAN制式的设备。
STA可以为无线通讯芯片、无线传感器或无线通信终端等,也可称为用户。例如,STA可以为支持Wi-Fi通讯功能的移动电话、支持Wi-Fi通讯功能的平板电脑、支持Wi-Fi通讯功能的机顶盒、支持Wi-Fi通讯功能的智能电视、支持Wi-Fi通讯功能的智能可穿戴设备、支持Wi-Fi通讯功能的车载通信设备和支持Wi-Fi通讯功能的计算机等等。可选地,STA可以支持802.11be制式,或者也可以支持802.11ax、802.11ay、802.11ac、802.11n、802.11g、802.11b、802.11a、802.11be下一代等802.11家族的多种WLAN制式。
可以理解的是,图1中所示意的AP和STA的数量仅是举例,还可以更多或者更少。
图1中所涉及的AP和STA可以为具有双模通信功能的通信装置,也就是具有低频(low frequency,LF)频段(或信道或链路)通信模式,和高频(highfrequency,HF)频段通信模式的通信装置。其中,低频频段比如包括sub 1吉赫兹(GHz),2.4GHz,5GHz,6GHz等,高频频段比如包括60GHz等。
示例性地,具有双模通信功能的通信装置可以为双频双并发(dual-band dual-concurrent,DBDC)设备,或者也可以为多链路设备(multi-link device,MLD)。下面分别进行说明。
(1)DBDC设备
DBDC设备集成了两套独立且完整的链路,含两套基带处理器和射频前端,从而可支持在两个频段独立工作。
当AP和STA均为DBDC设备时,比如AP为DBDC设备1,STA为DBDC设备2,此种情形下,AP与STA可以在低频链路上进行信令交互,以建立低频链路连接;以及,在高频链路上进行信令交互,以建立高频链路连接。
(2)MLD
在IEEE 802.11be协议中,MLD支持多链路操作技术,MLD具有多个射频模块,分别工作在不同频段上,例如MLD工作的频段可以为sub 1GHz,2.4GHz,5GHz,6GHz以及高频60GHz的全部或者一部分。MLD可以包括AP MLD和/或非接入点(non-AP)MLD,例如non-AP MLD可以是STA MLD。
示例性地,以AP MLD为例,AP MLD可以包括一个或多个附属(affiliated)站点,每个附属站点有各自的媒体访问控制(media access control,MAC)地址(address)。如图2所示,AP MLD的附属站点包括AP1和AP2,AP1的低层(low)MAC地址为链路地址1,AP2的低层MAC地址为链路地址 2。此外,AP MLD还有一个高层(upper)MAC地址,称为MLD MAC地址。
AP MLD和non-AP MLD可以通过在低频链路上的信令交互建立多链路连接。如图3所示,AP MLD包括AP1和AP2,AP1包括AP1PHY、AP1低层MAC和高层MAC,AP2包括AP2PHY、AP2低层MAC和高层MAC,其中AP1和AP2之间共享高层MAC,non-AP MLD包括STA1和STA2,STA1包括STA1PHY、STA1低层MAC和高层MAC,STA2包括STA2PHY、STA2低层MAC和高层MAC,其中STA1和STA2之间共享高层MAC,AP1和STA1之间通过链路1连接,AP2和STA2之间通过链路2连接。
在多链路建立时,non-AP MLD在链路1上发送关联请求(association request)帧,关联请求帧携带链路1的STA侧信息和链路2的STA侧信息。比如,关联请求帧可以携带多链路元素(multi-link element)字段,multi-link element字段用于承载non-AP MLD的信息以及non-AP MLD中站点的信息。AP MLD在链路1上发送关联响应(association response)帧,关联响应帧携带链路1侧的AP侧信息,还携带链路2的AP侧信息,从而实现non-AP MLD的STA1和STA2分别与AP MLD的AP1和AP2建立关联。
下面先对本申请实施例所涉及的相关技术特征进行解释说明。这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限定。
(1)波束赋形训练
由于高频频段存在路径损耗大的问题,因此,不同设备之间在高频频段通信时,需要进行波束赋形训练。在图1所示意的网络架构中,当AP发起波束赋形训练时,AP可称为发起方(initiator),STA可称为响应方(responder);当STA发起波束赋形训练时,STA可称为发起方,AP可称为响应方。也就是说,可将发起波束赋形训练的一方称为发起方,将响应波束赋形训练的一方称为响应方。可选地,在一些其它可能的场景中,也可将发起波束赋形训练的一方称为响应方,将响应波束赋形训练的一方称为发起方;或者,将波束赋形训练的一方固定称为发起方,将波束赋形训练的另一方固定称为响应方,发起方会发起波束赋形训练,也可响应响应方发起的波束赋形训练;同样地,响应方也会发起波束赋形训练,也可响应发起方发起的波束赋形训练。
在高频通信协议(比如802.11ad和802.11ay协议)中,波束赋形训练可以包括扇区级扫描(sector level sweeping,SLS)过程和/或波束改进协议(beam refinement protocol,BRP)过程。图4为一种可能的SLS过程示意图。如图4所示,SLS过程包括四个阶段,分别为发起方扇区扫描(initiator sector sweep,ISS)阶段、响应方扇区扫描(responder sector sweep,RSS)阶段、扇区扫描(sector sweep,SSW)反馈(feedback)帧的传输阶段,以及扇区扫描确认(SSW acknowledgement,SSW Ack)帧的传输阶段,通过该四个阶段建立发起方和响应方之间的基本链路,发起方可以获得发起方对应于响应方的最优发送扇区和最优接收扇区,而响应方也可以获得响应方对应于发起方的最优发送扇区和最优接收扇区,也就是说,可以选择出发送波束和接收波束,从而利用发送波束和接收波束的增益。本申请实施例中,以AP为发起方,STA为响应方为例。
下面分别对这四个阶段进行详细说明。
(1.1)ISS阶段
ISS阶段可以包括发起方发送扇区扫描(initiator transmission of sector sweep,I-TXSS)子阶段和/或发起方接收扇区扫描(initiator reception of sector sweep,I-RXSS)子阶段。图4中是以ISS阶段包括I-TXSS子阶段为例进行示意的。
在I-TXSS子阶段中,AP可以在高频频段上,定向发送多个SSW帧,比如SSW帧1、SSW帧2、SSW帧3,以便进行AP的发送扇区训练。比如,AP可以在AP的多个发送方向中的每个发送方向上发送一个或多个SSW帧,每个发送方向可以对应一个发送天线和该发送天线的一个发送扇区。相应地,STA可以在高频频段上,准全向接收来自AP的至少一个SSW帧,进而STA可确定AP对应于STA的最佳发送天线和最佳发送扇区,并将最佳发送天线的标识和最佳发送扇区的标识反馈给AP(比如可以通过R-TXSS子阶段中的SSW帧反馈给AP)。
在I-RXSS子阶段中,AP可以在高频频段上,准全向发送多个SSW帧,以便进行AP的接收扇区训练;相应地,STA可以在高频频段上,定向接收至少一个SSW帧,进而STA可以根据至少一个SSW帧的接收质量,确定STA对应于AP的最佳接收天线和最佳接收扇区。
示例性地,上述SSW帧的接收质量可以包括以下至少一项:接收信号功率或强度、信号干扰噪声 比(signal to interference plus noise ratio,SINR)、误比特率等。
可以理解的是,上述ISS(即I-TXSS和/或I-RXSS)也可以称为下行波束赋形训练(downlink beamforming training,DL BFT)。其中,AP对应于STA的最佳发送天线和最佳发送扇区,即为下行的最佳发送天线和最佳发送扇区;STA对应于AP的最佳接收天线和最佳接收扇区,即为下行的最佳接收天线和最佳接收扇区。
(1.2)RSS阶段
RSS阶段可以包括响应方发送扇区扫描(responder transmission of sector sweep,R-TXSS)子阶段和/或响应方接收扇区扫描(responder reception of sector sweep,R-RXSS)子阶段。图4中是以RSS阶段包括R-TXSS子阶段为例进行示意的。
在R-TXSS子阶段中,STA可以在高频频段上,定向发送多个SSW帧,比如SSW帧4、SSW帧5、SSW帧6,以便进行STA的发送扇区训练。相应地,AP可以在高频频段上,准全向接收来自STA的至少一个SSW帧,进而AP可确定STA对应于AP的最佳发送天线和最佳发送扇区,并将最佳发送天线的标识和最佳发送扇区的标识反馈给STA(比如通过扇区扫描反馈帧反馈给STA)。
在R-RXSS子阶段中,STA可以在高频频段上,准全向发送多个SSW帧,以便进行STA的接收扇区训练;相应地,AP可以在高频频段上,定向接收至少一个SSW帧,进而AP可确定AP对应于STA的最佳接收天线和最佳接收扇区。
可以理解的是,上述RSS(即R-TXSS和/或R-RXSS)也可以称为上行波束赋形训练(uplink beamforming training,UL BFT)。其中,STA对应于AP的最佳发送天线和最佳发送扇区,即为上行的最佳发送天线和最佳发送扇区;AP对应于STA的最佳接收天线和最佳接收扇区,即为上行的最佳接收天线和最佳接收扇区。
本申请实施例中,“定向发送”可以是指:利用不同发送天线在不同发送扇区轮流发送;“定向接收”可以是指:利用不同接收天线在不同接收扇区轮流接收。
(1.3)扇区扫描反馈帧的传输阶段
在扇区扫描反馈帧的传输阶段中,AP可以在高频频段上,根据AP对应于STA的最佳发送天线和最佳发送扇区,向STA发送扇区扫描反馈帧。其中,扇区扫描反馈帧包括STA对应于AP的最佳发送天线的标识和最佳发送扇区的标识。
(1.4)扇区扫描确认帧的传输阶段
在扇区扫描确认帧的传输阶段中,STA可以在高频频段上,根据STA对应于AP的最佳发送天线和最佳发送扇区,向AP发送扇区扫描确认帧。
如此,通过扇区扫描反馈帧和扇区扫描确认帧可对SLS阶段的结果进行确认,此外,还可以通过扇区扫描反馈帧和扇区扫描确认帧确定是否要进行BRP过程。
可以理解的是,SLS过程可以包括多个上述的四个阶段,也可以在一轮上述四个阶段后,开始执行BRP过程,BRP过程的波束赋形训练和SLS过程中的波束赋形训练不同,BRP过程的波束赋形训练可以参照现有技术,本申请实施例对此不做限定。
(2)信标间隔
高频通信协议(比如802.11ad和802.11ay协议)中引入了信标间隔。图5为信标间隔的结构示意图。如图5所示,信标间隔分为信标头指示(beacon header indication,BHI)和数据传输间隔(data transmission interval,DTI)。其中,BHI包括BTI、A-BFT以及公告传输间隔(announcement transmission interval,ATI)。
BTI:是从AP在信标间隔中发送的第一个DMG信标帧开始,到同一个信标间隔内最后一个DMG信标帧传输结束之间的时间区间。其中,AP在BTI内发送的多个DMG信标帧可用于ISS。
A-BFT:可用于多个STA与AP进行关联,以及RSS;在A-BFT间隔中传输的帧可以包括SSW帧、SSW反馈帧(或短SSW帧、短SSW反馈帧)等。
ATI:用于AP向STA轮询缓存数据信息,或AP发送公告(如管理帧),或AP向STA分配DTI中的资源。
DTI:可以分为若干个子区间,根据接入的形式的不同,这若干个子区间可以分为基于竞争接入期间(contention based access period,CBAP)和服务区间(service period,SP)。其中,CBAP是STA通过竞争的方式接入信道的传输时段;SP是进行调度的传输时段,无需进行竞争。
下面对BTI和A-BFT内的实现进行详细介绍。
(2.1)BTI
如前文所述,ISS包括I-TXSS和/或I-RXSS。作为一种可能的实现,AP可以在BTI内执行I-TXSS,即AP可以在BTI内以广播的方式定向发送多个DMG信标帧。相应地,多个STA中的每个STA在BTI内准全向接收到至少一个DMG信标帧后,可以根据至少一个DMG信标帧的接收质量,确定AP对应于每个STA的最佳发送天线和最佳发送扇区。
比如,多个STA包括STA1、STA2和STA3,则STA1可以在BTI内准全向接收到至少一个DMG信标帧后,并根据至少一个DMG信标帧的接收质量确定AP对应于STA1的最佳发送天线和最佳发送扇区;STA2可以在BTI内准全向接收到至少一个DMG信标帧后,并根据至少一个DMG信标帧的接收质量确定AP对应于STA2的最佳发送天线和最佳发送扇区;STA3可以在BTI内准全向接收到至少一个DMG信标帧后,并根据至少一个DMG信标帧的接收质量确定AP对应于STA3的最佳发送天线和最佳发送扇区。
(2.2)A-BFT
A-BFT间隔可以包括多个A-BFT时隙(简称为时隙),比如A-BFT间隔包括8个时隙,则可以理解为A-BFT的长度为8。
上述多个STA(比如STA1、STA2和STA3)可以通过竞争的方式选择A-BFT间隔内的时隙,并在选择的时隙上与AP通信。示例性地,多个STA可以通过随机回退的方式来选择A-BFT间隔内的时隙,比如STA1选择时隙0,STA2选择时隙3,STA3选择时隙5。
以STA1为例,STA1可以在时隙0内与AP进行通信。具体来说,作为一种可能的实现,STA1可以在时隙0内执行R-TXSS,即STA1可以在时隙0内向AP定向发送多个SSW帧;相应地,AP准全向接收来自STA1的至少一个SSW帧后,可以根据至少一个SSW帧的接收质量,确定STA1对应于AP的最佳发送天线和最佳发送扇区,并在时隙0内向STA1发送SSW反馈帧,SSW反馈帧包括STA1对应于AP的最佳发送天线的标识和最佳发送扇区的标识。
根据上述描述可以看出,多个STA是通过竞争的方式选择A-BFT间隔内的时隙。然而,多个STA通过竞争的方式选择A-BFT间隔内的时隙时,可能会出现竞争冲突(比如两个或更多个STA选择同一时隙),从而影响STA与AP之间的通信。比如,STA1和STA2通过竞争的方式都选择了时隙0,此种情形下,STA1和STA2都在时隙0与AP通信,从而可能导致AP与STA1、STA2之间的通信异常。
基于此,本申请实施例提供一种通信方法,AP可以向STA指示在时域资源集合内为STA分配的时域资源,进而AP和STA可以在分配的时域资源上通信,避免多个STA在时域资源集合内通过竞争的方式选择时隙而导致竞争冲突。
下面结合实施例一至实施例四对本申请实施例提供的通信方法进行详细描述。在实施例一至实施例四中,将以本申请实施例所提供的方法应用于图1所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置,其中,第一通信装置可以是AP或能够支持AP实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片或芯片系统。第二通信装置可以是STA或能够支持STA实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片或芯片系统。为了便于介绍,在下文中,以该方法由AP和STA执行为例,也就是,以第一通信装置是AP、第二通信装置是STA为例。
实施例一
图6为本申请实施例一提供的通信方法所对应的流程示意图。如图6所示,该流程可以包括:
S601,AP发送第一帧,第一帧包括第一指示信息,第一指示信息指示在时域资源集合内为第一STA分配的第一时域资源;相应地,第一STA接收第一帧。
此处,时域资源集合可以包括用于在关联过程中进行波束赋形训练的时域资源,比如时域资源集合可以为A-BFT间隔,第一时域资源可以包括A-BFT间隔内的至少一个时隙。
示例性地,AP可以在第一频域资源或第二频域资源上发送第一帧。其中,第一频域资源不同于第二频域资源,第一频域资源对应的频率小于第二频域资源对应的频率。其中,频域资源可以理解为一段频率范围,第一频域资源对应的频率小于第二频域资源对应的频率,可以是指:第一频域资源对应的最高频率小于第二频域资源对应的最低频率。比如,第一频域资源为低频频段的频域资源,第二频域资源 为高频频段的频域资源。
示例性地,第一指示信息可以包括时隙分配信息(表示为A-BFT slot allocation),时隙分配信息可以包括多个比特位,每个比特位对应A-BFT间隔内的一个时隙。比如,A-BFT间隔包括8个时隙(即时隙0至时隙7),则时隙分配信息可以包括8个比特位(即比特位0至比特位7),比特位0对应时隙0,比特位1对应时隙1,以此类推。以比特位0为例,当比特位0的取值为1时,表示AP为第一STA分配的第一时域资源包括时隙0,当比特位0的取值为0时,表示AP为第一STA分配的第一时域资源不包括时隙0;或者反之。
可选地,第一指示信息还包括其它可能的信息,比如还包括第一STA的地址信息。
S602,AP与第一STA在第一时域资源上通信。
示例性地,AP与第一STA在第一时域资源上通信可以包括:第一STA在第一时域资源和第二频域资源上向AP发送第二帧,第二帧用于第一波束赋形训练,比如第一波束赋形训练可以为响应方扇区扫描(即响应方发送扇区扫描和/或响应方接收扇区扫描);可选地,当第一波束赋形训练为响应方发送扇区扫描时,AP与第一STA在第一时域资源上通信还可以包括:AP在第一时域资源和第二频域资源上向第一STA发送第三帧,第三帧包括第一波束赋形训练的反馈信息,比如第一波束赋形训练的反馈信息包括第一STA对应于AP的最佳发送天线的标识和最佳发送扇区的标识。
采用上述方法,AP可以向第一STA指示在时域资源集合内为第一STA分配的时域资源,进而AP和第一STA可以在分配的时域资源上通信。相比于多个STA在时域资源集合内通过竞争的方式选择时隙的方式来说,本发明实施例可以有效避免竞争冲突而导致的通信异常,提高AP和第一STA之间的通信效率;此外,当多个STA在时域资源集合内通过竞争的方式选择时隙时,还可能会导致某些时隙未被选择,从而造成资源浪费,而采用上述方法,通过AP为STA分配时域资源,可以避免竞争导致的资源浪费,提高时域资源集合中的时域资源的利用率。
下面结合实施例二至实施例四对实施例一的具体实现进行介绍。
实施例二
在实施例二中,AP和STA可以均为MLD,比如AP为AP MLD,STA为non AP MLD。
图7为本申请实施例二提供的通信方法所对应的流程示意图。如图7所示,该流程可以包括:
S701,AP与第一STA建立多链路连接。
示例性地,AP可以与多个STA分别建立多链路连接,多个STA包括第一STA,可选地,还包括第二STA。以第一STA为例,AP与第一STA建立多链路连接后,可以获取到第一STA的高频链路信息,进而可以确定第一STA支持高频链路。
S702,AP在第二频域资源上发送M个第一帧,M个第一帧用于第二波束赋形训练;相应地,第一STA在第二频域资源上接收M个第一帧中的至少一个第一帧,M为正整数。
(1)对AP发送M个第一帧的相关实现进行介绍。
示例性地,AP可以在第二频域资源上以广播或组播的方式发送M个第一帧,相应地,多个STA(比如第一STA和第二STA)可以在第二频域资源上接收M个第一帧中的至少一个第一帧。
示例性地,第二波束赋形训练可以为发起方扇区扫描(即发起方发送扇区扫描和/或发起方接收扇区扫描)。AP可以在第二频域资源上定向发送M个第一帧,M个第一帧用于发起方发送扇区扫描。比如,AP可以在第二频域资源上,在AP的M个发送扇区分别发送M个第一帧,即每个发送扇区发送一个第一帧,以便于减少扇区扫描的开销。当然,AP也可以在每个发送扇区上发送多个第一帧,本申请实施例中是以AP在每个发送扇区发送一个第一帧为例。可以理解的是,AP也可以在第二频域资源上准全向发送M个第一帧,M个第一帧用于发起方接收扇区扫描;实施例二中将以M个第一帧用于发起方发送扇区扫描为例。
示例性地,AP可以在BTI内发送M个第一帧,该BTI与A-BFT间隔相邻。
示例性地,AP发送M个第一帧之前,可以确定需要在A-BFT间隔内通信的STA。比如,AP可以从支持高频链路的多个STA中,确定出需要在A-BFT间隔内通信的STA;其中,AP判断多个STA中的某一STA中是否需要在A-BFT间隔内通信的具体实现可以有多种,比如AP可以判断该STA是否已进行过RSS,若未进行过RSS,则可以确定该STA需要在A-BFT间隔内通信;若已进行过RSS,则可以确定该STA不需要在A-BFT间隔内通信。当AP确定多个STA均需要在A-BFT间隔内通信的STA 时,AP可以为多个STA分配时域资源,并在第二频域资源上以广播或组播的方式发送M个第一帧。
本申请实施例对AP为多个STA分配时域资源的具体实现不做限定。比如,当A-BFT间隔包括8个时隙,且有10个STA需要在A-BFT间隔内通信时,AP可以从这10个STA中选择8个STA,并为这8个STA中的每个STA分配1个时隙,剩余的2个STA未分配时隙。
(2)对第一帧进行介绍。
示例性地,第一帧可以包括多个STA分别对应的指示信息,比如第一帧包括第一STA对应的第一指示信息和第二STA对应的第二指示信息,第一指示信息指示在A-BFT间隔内为第一STA分配的第一时域资源,第二指示信息指示在A-BFT间隔内为第二STA分配的第二时域资源。
其中,第一帧包括多个STA分别对应的指示信息的实现可以有多种。
作为一种可能的实现,第一帧可以为DMG信标帧,或者还可以为其它可能的帧。以第一帧为DMG信标帧为例,图8为DMG信标帧的一种结构示例,如图8所示,DMG信标帧可以包括:帧控制(frame control)字段、持续时间(duration)字段、基本服务集标识(basic service set identification,BSSID)字段、帧体(frame body)字段、帧校验序列(frame check sequence,FCS)字段。
继续参见图8,本申请实施例可以在帧体字段中定义两个新字段,分别为分配控制字段(表示为A-BFT allocation control)和分配字段(表示为A-BFT allocation)。其中,分配控制字段包括分配标志(allocation flag)、分配字段的数量(number of A-BFT allocation)、保留字段;分配字段可以包括元素标识(element ID)、接收地址(receiver address,RA)、发送地址(transmitter address,TA)、时隙分配信息(A-BFT slot allocation)、保留字段。这些字段的具体含义可以参见表1。
表1:字段的含义
在一个示例中,若第一帧包括第一指示信息和第二指示信息,则allocation flag的取值为1,number of A-BFT allocation指示A-BFT allocation字段的数量为2,分别A-BFT allocation字段1和A-BFT allocation字段2。
A-BFT allocation字段1中,RA字段包括第一STA的地址信息,TA字段包括AP的地址信息,A-BFT slot allocation字段包括10000000(即AP为第一STA分配的时隙为时隙0)。
A-BFT allocation字段2中,RA字段包括第二STA的地址信息,TA字段包括AP的地址信息,A-BFT slot allocation字段包括01000000(即AP为第二STA分配的时隙为时隙1)。
如此,从STA的角度来看,当第一STA接收到M个第一帧中的至少一个第一帧后,可以根据第一帧所携带的A-BFT allocation字段1确定AP为第一STA分配的时隙为时隙0;当第二STA接收到M个第一帧中的至少一个第一帧后,可以根据第一帧所携带的A-BFT allocation字段2确定AP为第一STA分配的时隙为时隙1。
此外,第一帧的帧体字段中还可以包括SSW字段,SSW字段可以包括用于发送第一帧的发送扇区的标识、用于发送第一帧的发送天线的标识。进而,第一STA还可以根据至少一个第一帧的接收质量,确定AP对应于第一STA的最佳发送天线和最佳发送扇区;同样地,第二STA还可以根据至少一个第一帧的接收质量,确定AP对应于第二STA的最佳发送天线和最佳发送扇区。
可以理解的是,虽然AP在第二频域资源上定向发送了M个第一帧,而STA(比如第一STA或第 二STA)有可能接收到M个第一帧,也有可能仅接收到M个第一帧中的第一帧。且不同STA接收到的第一帧的数量也有可能不同。
S703,第一STA在第一时域资源、第二频域资源上向AP发送N个第二帧,N个第二帧用于第二波束赋形训练;相应地,AP可以在第一时域资源、第二频域资源上接收N个第二帧中的至少一个第二帧。其中,N为正整数。
示例性地,以第二波束赋形训练为响应方发送扇区扫描,即N个第二帧用于响应方发送扇区扫描为例,第一STA可以定向发送N个第二帧。比如,第二帧可以包括AP对应于第二STA的最佳发送天线的标识和最佳发送扇区的标识。其中,第二帧可以为SSW帧,或者其它可能的帧(比如短SSW帧),具体不做限定。相应地,AP可以准全向接收N个第二帧中的至少一个第二帧,并根据至少一个第二帧的接收质量,确定第一STA对应于AP的最佳发送天线和最佳发送扇区。
可以理解的是,此处是以第一STA为例,类似地,第二STA可以在第二时域资源、第二频域资源上向AP发送多个SSW帧,多个SSW帧用于第二STA的扇区扫描。
可选地,当N个第二帧用于响应方发送扇区扫描时,上述方法还可以包括:
S704,AP在第一时域资源、第二频域资源上向第一STA发送第三帧,第三帧包括第一波束赋形训练的反馈信息;相应地,第一STA在第一时域资源、第二频域资源上接收第三帧。
此处,响应方发送扇区扫描的反馈信息用于指示第一STA对应于AP的最佳发送天线和最佳发送扇区。比如,响应方发送扇区扫描的反馈信息包括第一STA对应于AP的最佳发送天线的标识和最佳发送扇区的标识。
S705,第一STA在第一时域资源、第二频域资源上向AP发送第三帧的确认帧。
也就是说,AP和第一STA可以在第一时域资源内,在高频频段上传输第三帧和第三帧的确认帧。示例性地,第三帧可以为SSW反馈帧,第三帧的确认帧可以为SSW确认帧;或者第三帧和第三帧的确认帧也可以为其它可能的帧。
在其它可能的实施例中,AP也可以在第一频域资源上向第一STA发送第三帧,以及第一STA也可以在第一频域资源上向AP发送第三帧的确认帧。也就是说,AP和第一STA可以在低频频段上传输第三帧和第三帧的确认帧,本申请实施例中,对低频频段上传输的第三帧和第三帧的确认帧所占用的时域资源不做限定。
采用上述方法,第一指示信息可以承载在用于发起方扇区扫描的帧(比如DMG信标帧)中,也就是说,AP可以通过DMG信标帧向第一STA发送时隙分配信息,实现较为简便;且AP无需通过额外的帧来发送时隙分配信息,便于节省传输资源。
实施例三
在实施例三中,AP和STA可以均为MLD,比如AP为AP MLD,STA为non AP MLD。
图9A和图9B为本申请实施例三提供的通信方法所对应的流程示意图。如图9A和图9B所示,该流程可以包括:
S901,AP与第一STA建立多链路连接。
示例性地,AP可以与多个STA分别建立多链路连接,多个STA包括第一STA,可选地,还包括第二STA。具体参照实施例二S701中的描述。
S902,AP在第一频域资源上向第一STA发送第一帧,第一帧包括第一指示信息,第一指示信息指示在时域资源集合内为第一STA分配的第一时域资源;相应地,第一STA接收第一帧。
也就是说,AP可以在低频频段上向第一STA发送第一帧,第一STA可以在低频频段上接收第一帧。
作为一种可能的实现,第一帧可以为本申请实施例新设计的帧,比如第一帧可以称为A-BFT分配轮询(A-BFT slot allocation poll)帧。图10为本申请实施例提供的第一帧的结构示例,如图10所示,第一帧包括帧控制字段、持续时间字段、RA字段、TA字段、A-BFT slot allocation字段、FCS字段。其中,A-BFT slot allocation字段的含义可以参照上文的描述。比如,第一帧中的RA字段包括第一STA的地址信息,TA字段包括AP的地址信息,A-BFT slot allocation字段包括10000000(即AP为第一STA分配的时隙为时隙0)。
示例性地,AP可以以单播的方式向第一STA发送第一帧,相应地,第一STA接收到第一帧后, 可以根据第一帧确定AP为第一STA分配的时隙为时隙0。
本申请实施例中,对低频频段上传输的第一帧所占用的时域资源不做限定,比如第一帧所占用的时域资源位于A-BFT间隔的起始时间之前,以便于第一STA在A-BFT间隔的起始时间之前可以获知AP为第一STA分配的时域资源。
可以理解的是,AP还可以在第一频域资源上向其他STA发送其它A-BFT slot allocation poll,比如AP还可以在第一频域资源上向第二STA发送A-BFT slot allocation poll帧a,A-BFT slot allocation poll帧a包括第二指示信息。也就是说,AP可以在第一频域资源上分别向多个STA发送A-BFT slot allocation poll。
S903,AP在第二频域资源上发送M个第四帧,M个第四帧用于第二波束赋形训练;相应地,第一STA在第二频域资源上接收M个第四帧中的至少一个第四帧。
示例性地,第四帧可以为DMG信标帧,或者还可以为其它可能的帧。
AP在第二频域资源上发送M个第四帧的具体实现,可以参照实施例二中AP在第二频域资源上发送M个第一帧的描述。区别在于,实施例二中的第一帧包括第一指示信息,而实施例三中的第四帧可以不包括第一指示信息。
S904,第一STA在第一时域资源、第二频域资源上向AP发送N个第二帧,N个第二帧用于第一波束赋形训练;相应地,AP可以在第一时域资源、第二频域资源上接收N个第二帧中的至少一个第二帧。
可选地,当N个第二帧用于响应方发送扇区扫描时,上述方法还可以包括:
S905,AP在第一时域资源、第二频域资源上向第一STA发送第三帧,第三帧包括第一波束赋形训练的反馈信息;相应地,第一STA在第一时域资源、第二频域资源上接收第三帧。
S906,第一STA在第一时域资源、第二频域资源上向AP发送第三帧的确认帧。
上述S904至S906的具体实现可以参照实施例二中S703至S705。
采用上述方法,AP可以在低频频段上向第一STA发送时隙分配信息,由于低频频段的覆盖范围较大,从而可以提高第一STA成功接收时隙分配信息的概率。
实施例四
在实施例四中,AP和STA可以均为DBDC设备。
图11A和图11B为本申请实施例四提供的通信方法所对应的流程示意图。如图11A和图11B所示,该流程可以包括:
S1101,AP在第二频域资源上发送M个第四帧,M个第四帧用于第二波束赋形训练;相应地,第一STA在第二频域资源上接收M个第四帧中的至少一个第四帧。
此处,AP在第二频域资源上发送M个第四帧的具体实现可以参照实施例三。
S1102,第一STA在第一频域资源上向AP发送第五帧,第五帧包括第二波束赋形训练的反馈信息;相应地,AP在第一频域资源上接收来自第一STA的第五帧。
以第二波束赋形训练为发起方发送扇区扫描为例,第二波束赋形训练的反馈信息用于指示AP对应于第一STA的最佳发送天线和最佳发送扇区。
示例性地,第一STA确定出AP对应于第一STA的最佳发送天线和最佳发送扇区后,可以与AP建立低频频段链路(或者第一STA之前已与AP建立有低频频段链路),并在低频频段上向AP发送第五帧。相应地,AP在低频频段上接收到第五帧后,由于第五帧包括第二波束赋形训练的反馈信息,进而AP可以根据第五帧,确定第一STA支持高频链路,并为第一STA分配A-BFT间隔内的第一时域资源。也就是说,第二波束赋形训练的反馈信息用于指示第一STA支持高频链路(即支持第二频域资源)。
可选地,AP在第一频域资源上接收来自第一STA的第五帧后,还可以在第一频域资源上向第一STA发送第五帧的确认帧。
S1103,AP在第一频域资源上向第一STA发送第一帧,第一帧包括第一指示信息。
此处,AP在第一频域资源上向第一STA发送第一帧的具体实现可以参照实施例三中的S902。
可以理解的是,在其它可能的实施例中,S1103也可以替换为:AP在第二频域资源上向第一STA发送第一帧,第一帧包括第一指示信息。示例性地,AP在第一频域资源上接收到来自第一STA的第五帧后,由于第五帧包括发起方发送扇区扫描的反馈信息,进而AP可以根据AP对应于第一STA的最佳 发送天线和最佳发送扇区,向第一STA发送第一帧,即AP可以在高频频段上使用最佳发送天线、在最佳发送扇区向第一STA发送第一帧。
S1104,第一STA在第一时域资源、第二频域资源上向AP发送N个第二帧,N个第二帧用于第一波束赋形训练;相应地,AP可以在第一时域资源、第二频域资源上接收N个第二帧中的至少一个第二帧。
可选地,当N个第二帧用于响应方发送扇区扫描时,上述方法还包括:
S1105,AP在第一时域资源、第二频域资源上向第一STA发送第三帧,第三帧包括第一波束赋形训练的反馈信息;相应地,第一STA在第一时域资源、第二频域资源上接收第三帧。
S1106,第一STA在第一时域资源、第二频域资源上向AP发送第三帧的确认帧。
上述S1104至S1106的具体实现可以参照实施例二中S703至S705。
采用上述方法,AP可以在低频频段上向第一STA发送时隙分配信息,由于低频频段的覆盖范围较大,从而可以提高第一STA成功接收时隙分配信息的概率。或者,AP可以在高频频段上根据AP对应于第一STA的最佳发送天线和最佳发送扇区,向第一STA发送时隙分配信息,从而可以提高第一STA成功接收时隙分配信息的概率。
针对于上述实施例一至实施例四,可以理解的是:
(1)上述侧重描述了实施例一至实施例四中不同实施例之间的差异之处,除差异之处的其它内容,实施例一至实施例四之间可以相互参照;此外,同一实施例中,不同实现方式或不同示例之间也可以相互参照。
(2)实施例一至实施例四所描述的各个流程图的步骤编号仅为执行流程的一种示例,并不构成对步骤执行的先后顺序的限制,本申请实施例中相互之间没有时序依赖关系的步骤之间没有严格的执行顺序。各个流程图中所示意的步骤并非全部是必须执行的步骤,可以根据实际需要在各个流程图的基础上删除部分步骤,或者也可以根据实际需要在各个流程图的基础上增添其它可能的步骤。
上述主要从通信装置交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,第一通信装置和第二通信装置可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一通信装置和第二通信装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
图12示出了本申请实施例中所涉及的装置的可能的示例性框图。如图12所示,装置1200可以包括:处理单元1202和通信单元1203。处理单元1202用于对装置1200的动作进行控制管理。通信单元1203用于支持装置1200与其他设备的通信。可选地,通信单元1203也称为收发单元,可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。装置1200还可以包括存储单元1201,用于存储装置1200的程序代码和/或数据。
该装置1200可以为上述实施例中的第一通信装置(比如AP)、或者还可以为设置在AP中的部件(例如电路或者芯片)。处理单元1202可以支持装置1200执行上文中各方法示例中AP的动作。或者,处理单元1202主要执行方法示例中的AP的内部动作,通信单元1203可以支持装置1200与其它设备之间的通信。
比如,在一个实施例中,通信单元1203用于:发送第一帧,所述第一帧包括第一指示信息,所述第一指示信息指示在时域资源集合内为第二通信装置分配的第一时域资源,所述时域资源集合包括用于在关联过程中进行波束赋形训练的时域资源;以及,在所述第一时域资源上,与所述第二通信装置通信。
该装置1200可以为上述实施例中的第二通信装置(比如STA)、或者还可以为设置在STA中的部件(例如电路或者芯片)。处理单元1202可以支持装置1200执行上文中各方法示例中STA的动作。或者,处理单元1202主要执行方法示例中的STA的内部动作,通信单元1203可以支持装置1200与其它 设备之间的通信。
在一个实施例中,通信单元1203用于:接收来自第一通信装置的第一帧,所述第一帧包括第一指示信息,所述第一指示信息指示在时域资源集合内为所述第二通信装置分配的第一时域资源,所述时域资源集合包括用于在关联过程中进行波束赋形训练的时域资源;以及,在所述第一时域资源上,与所述第一通信装置通信。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各操作或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是处理器,比如通用中央处理器(central processing unit,CPU),或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
参见图13,为本申请实施例提供的一种通信装置的结构示意图,用于实现以上实施例中第一通信装置(比如AP)的操作。
如图13所示,通信装置1300可包括处理器1301、存储器1302以及接口电路1303。处理器1301可用于对通信协议以及通信数据进行处理,以及对通信装置1300进行控制。存储器1302可用于存储程序和数据,处理器1301可基于该程序执行本申请实施例中由AP执行的方法。接口电路1303可用于通信装置1300与其他设备进行通信,该通信可以为有线通信或无线通信,该接口电路也可以替换为收发器。
以上存储器1302也可以是外接于通信装置1300,此时通信装置1300可包括接口电路1303以及处理器1301。以上接口电路1303也可以是外接于通信装置1300,此时通信装置1300可包括存储器1302以及处理器1301。当接口电路1303以及存储器1302均外接于通信装置1300时,通信装置1300可包括处理器1301。
图13所示的通信装置能够实现上述方法实施例中涉及AP的各个过程。图13所示的通信装置中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
参见图14,为本申请实施例提供的一种通信装置的结构示意图,用于实现以上实施例中第二通信装置(比如STA)的操作。如图14所示,该通信装置包括:天线1410、射频部分1420、信号处理部分1430。天线1410与射频部分1420连接。在下行方向上,射频部分1420通过天线1410接收AP发送的信息,将AP发送的信息发送给信号处理部分1430进行处理。在上行方向上,信号处理部分1430对STA的信息进行处理,并发送给射频部分1420,射频部分1420对STA的信息进行处理后经过天线1410发送给AP。
信号处理部分1430可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对STA操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。
调制解调子系统可以包括一个或多个处理元件1431,例如,包括一个主控CPU和其它集成电路。 此外,该调制解调子系统还可以包括存储元件1432和接口电路1433。存储元件1432用于存储数据和程序,但用于执行以上方法中STA所执行的方法的程序可能不存储于该存储元件1432中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路1433用于与其它子系统通信。
该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上STA执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,STA实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于STA的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中STA执行的方法。存储元件可以为与处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中STA所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中STA执行的方法。
在又一种实现中,STA实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
STA实现以上方法中各个步骤的单元可以集成在一起,以SOC的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上STA执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上STA执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于STA的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种STA执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行STA执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行STA执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行STA执行的部分或全部步骤。
这里的处理元件同以上描述,可以通过处理器实现,处理元件的功能可以和图12中所描述的处理单元的功能相同。示例性地,处理元件可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以通过存储器实现,存储元件的功能可以和图12中所描述的存储单元的功能相同。存储元件可以是一个存储器,也可以是多个存储器的统称。
图14所示的STA能够实现上述方法实施例中涉及STA的各个过程。图14所示的STA中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本申请实施例还提供一种通信系统,该通信系统可以包括AP和STA,其中,AP用于执行上述方法实施例中AP侧的步骤,STA用于执行上述方法实施例中STA侧的步骤。
本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一种”是指一种或者多种,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一通信装置发送第一帧,所述第一帧包括第一指示信息,所述第一指示信息指示在时域资源集合内为第二通信装置分配的第一时域资源,所述时域资源集合包括用于在关联过程中进行波束赋形训练的时域资源;
    所述第一通信装置在所述第一时域资源上,与所述第二通信装置通信。
  2. 根据权利要求1所述的方法,其特征在于,所述第一通信装置在所述第一时域资源上,与所述第二通信装置通信,包括:
    所述第一通信装置在所述第一时域资源上,接收来自所述第二通信装置的第二帧,所述第二帧用于第一波束赋形训练。
  3. 根据权利要求2所述的方法,其特征在于,所述第一通信装置在所述第一时域资源上,与所述第二通信装置通信,还包括:
    所述第一通信装置在所述第一时域资源上,向所述第二通信装置发送第三帧,所述第三帧包括所述第一波束赋形训练的反馈信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一通信装置发送所述第一帧,包括:
    所述第一通信装置在第一频域资源或第二频域资源上发送所述第一帧;
    其中,所述第一频域资源对应的频率小于所述第二频域资源对应的频率。
  5. 根据权利要求4所述的方法,其特征在于,当所述第一通信装置在所述第二频域资源上发送所述第一帧时,所述第一帧还用于第二波束赋形训练。
  6. 根据权利要求5所述的方法,其特征在于,所述第一帧还包括第二指示信息,所述第二指示信息指示在所述时域资源集合内为第三通信装置分配的第二时域资源。
  7. 根据权利要求4所述的方法,其特征在于,当所述第一通信装置在所述第一频域资源上发送所述第一帧时,所述方法还包括:
    所述第一通信装置在所述第二频域资源上发送第四帧,所述第四帧用于第二波束赋形训练。
  8. 根据权利要求4所述的方法,其特征在于,所述第一通信装置在第一频域资源或第二频域资源上发送所述第一帧之前,所述方法还包括:
    所述第一通信装置在所述第二频域资源上发送第四帧,所述第四帧用于第二波束赋形训练;
    所述第一通信装置在所述第一频域资源上接收来自所述第二通信装置的第五帧,所述第五帧包括所述第二波束赋形训练的反馈信息。
  9. 根据权利要求8所述的方法,其特征在于,所述反馈信息用于指示所述第一通信装置在所述第二频域资源上对应于所述第二通信装置的最佳发送天线和/或最佳发送扇区;
    所述第一通信装置在所述第二频域资源上,发送所述第一帧,包括:
    所述第一通信装置根据所述最佳发送天线和/或所述最佳发送扇区,在所述第二频域资源上,发送所述第一帧。
  10. 一种通信方法,其特征在于,所述方法包括:
    第二通信装置接收来自第一通信装置的第一帧,所述第一帧包括第一指示信息,所述第一指示信息指示在时域资源集合内为所述第二通信装置分配的第一时域资源,所述时域资源集合包括用于在关联过程中进行波束赋形训练的时域资源;
    所述第二通信装置在所述第一时域资源上,与所述第一通信装置通信。
  11. 根据权利要求10所述的方法,其特征在于,所述第二通信装置在所述第一时域资源上,与所述第一通信装置通信,包括:
    所述第二通信装置在所述第一时域资源上,向所述第一通信装置发送第二帧,所述第二帧用于第一波束赋形训练。
  12. 根据权利要求11所述的方法,其特征在于,所述第二通信装置在所述第一时域资源上,与所述第一通信装置通信,还包括:
    所述第二通信装置在所述第一时域资源上,接收来自所述第一通信装置的第三帧,所述第三帧包括所述第一波束赋形训练的反馈信息。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述第二通信装置接收来自所述第一通信装置的所述第一帧,包括:
    所述第二通信装置在第一频域资源或第二频域资源上接收来自所述第一通信装置的所述第一帧;
    其中,所述第一频域资源对应的频率小于所述第二频域资源对应的频率。
  14. 根据权利要求13所述的方法,其特征在于,当所述第二通信装置在所述第二频域资源上接收来自所述第一通信装置的所述第一帧时,所述第一帧还用于第二波束赋形训练。
  15. 根据权利要求13所述的方法,其特征在于,当所述第二通信装置在所述第一频域资源上接收来自所述第一通信装置的所述第一帧时,所述方法还包括:
    所述第二通信装置在所述第二频域资源上接收来自所述第一通信装置的第四帧,所述第四帧用于第二波束赋形训练。
  16. 根据权利要求13所述的方法,其特征在于,所述第二通信装置在第一频域资源或第二频域资源上接收来自所述第一通信装置的所述第一帧之前,所述方法还包括:
    所述第二通信装置在所述第二频域资源上接收来自所述第一通信装置的第四帧,所述第四帧用于第二波束赋形训练;
    所述第二通信装置在所述第一频域资源上向所述第一通信装置发送第五帧,所述第五帧包括所述第二波束赋形训练的反馈信息。
  17. 一种通信装置,其特征在于,包括处理器,所述处理器和存储器耦合,所述存储器中存储有计算机程序;所述处理器用于调用所述存储器中的计算机程序,使得所述通信装置执行如权利要求1至9中任一项所述的方法或者如权利要求10至16中任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被计算机执行时,实现如权利要求1至9中任一项所述的方法或者如权利要求10至16中任一项所述的方法。
  19. 一种计算机程序产品,其特征在于,当计算机读取并执行所述计算机程序产品时,使得计算机执行如权利要求1至9中任一项所述的方法或者如权利要求10至16中任一项所述的方法。
PCT/CN2023/121213 2022-09-30 2023-09-25 一种通信方法及装置 WO2024067517A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211231747.9 2022-09-30
CN202211231747.9A CN117812714A (zh) 2022-09-30 2022-09-30 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024067517A1 true WO2024067517A1 (zh) 2024-04-04

Family

ID=90428674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121213 WO2024067517A1 (zh) 2022-09-30 2023-09-25 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117812714A (zh)
WO (1) WO2024067517A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170111099A1 (en) * 2015-10-16 2017-04-20 Lg Electronics Inc. Multiple beamforming training
CN107852618A (zh) * 2015-10-23 2018-03-27 华为技术有限公司 用于在无线网络中执行关联波束成形训练的方法和装置
CN108023627A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 波束赋形训练方法及装置
WO2019100918A1 (zh) * 2017-11-24 2019-05-31 华为技术有限公司 一种信息指示方法和装置
CN110649947A (zh) * 2018-06-26 2020-01-03 华为技术有限公司 波束赋形训练的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170111099A1 (en) * 2015-10-16 2017-04-20 Lg Electronics Inc. Multiple beamforming training
CN107852618A (zh) * 2015-10-23 2018-03-27 华为技术有限公司 用于在无线网络中执行关联波束成形训练的方法和装置
CN108023627A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 波束赋形训练方法及装置
WO2019100918A1 (zh) * 2017-11-24 2019-05-31 华为技术有限公司 一种信息指示方法和装置
CN109842938A (zh) * 2017-11-24 2019-06-04 华为技术有限公司 一种信息指示方法和装置
CN110649947A (zh) * 2018-06-26 2020-01-03 华为技术有限公司 波束赋形训练的方法和装置

Also Published As

Publication number Publication date
CN117812714A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
CN108476518B (zh) 用于为不同站选择增强型分布式信道接入参数的方法和装置
US8787328B2 (en) Method and apparatus for reserving data channel in a wireless access system
US20140313949A1 (en) Signaling and procedure design for cellular cluster contending on license-exempt bands
EP4294070A2 (en) Beamforming training method and apparatus
WO2017008044A1 (en) Method and system for directional-band relay enhancements
JP2016534597A (ja) ワイヤレスネットワークにおいて応答インジケーション延期を動的に設定するためのシステム、方法、及びデバイス
KR20100042228A (ko) 멀티캐스트 프레임 전송방법 및 중복 프레임 검출 방법
US20180124866A1 (en) Techniques for high efficiency basic service set operation
US9609678B2 (en) Method and apparatus for asynchronous Direct Link Setup in WLAN system
US11924839B2 (en) Data transmission method and apparatus
US20210136599A1 (en) Coordinated Multi-Access-Point AP Transmission Method, Related Apparatus, and System
US20170118770A1 (en) Methods and apparatus for selecting enhanced distributed channel access parameters for multi-user transmissions
US11234174B2 (en) Zero latency BSS transition with on-channel tunneling (OCT)
WO2020052459A1 (zh) 波束训练的方法和装置
WO2015037958A1 (ko) 무선랜에서 멀티캐스트 프레임을 수신하는 방법 및 장치
US20230354383A1 (en) Groupcast feedback method, apparatus, and system
US20160353484A1 (en) Efficient random scheduled channel access
CN108260180B (zh) 传输方法、站点和接入点
WO2024067517A1 (zh) 一种通信方法及装置
CN107509251B (zh) 一种退避方法和装置
WO2024067515A1 (zh) 一种通信方法及装置
WO2024067518A1 (zh) 一种扇区扫描方法及装置
WO2024067516A1 (zh) 一种通信方法及装置
WO2023221921A1 (zh) 通信方法、装置及系统
WO2023179368A1 (zh) 感知方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870746

Country of ref document: EP

Kind code of ref document: A1