WO2024067516A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024067516A1
WO2024067516A1 PCT/CN2023/121212 CN2023121212W WO2024067516A1 WO 2024067516 A1 WO2024067516 A1 WO 2024067516A1 CN 2023121212 W CN2023121212 W CN 2023121212W WO 2024067516 A1 WO2024067516 A1 WO 2024067516A1
Authority
WO
WIPO (PCT)
Prior art keywords
interval
sta
superframe
data transmission
frequency domain
Prior art date
Application number
PCT/CN2023/121212
Other languages
English (en)
French (fr)
Inventor
唐云帅
阮卫
马云思
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067516A1 publication Critical patent/WO2024067516A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/11Semi-persistent scheduling

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method and device.
  • WLANs wireless local area networks
  • WLANs mostly operate in low-frequency bands.
  • spectrum resources in low-frequency bands have become very crowded. Therefore, the current focus is on using high-frequency bands (such as millimeter wave bands) to obtain more abundant available spectrum resources.
  • the high-frequency communication protocols stipulate that the communication on the high-frequency band follows the carrier sense multiple access with collision avoidance (CSMA/CA) mechanism.
  • the CSMA/CA mechanism can be, for example, a clear channel assessment (CCA).
  • CCA is to detect the signals of other devices that may exist in the channel through pilot signal detection or energy detection, and use this to determine whether the current channel is idle.
  • AP access point
  • STA multiple stations
  • the STA can immediately send an uplink signal to the AP.
  • the result of CCA is that the channel is busy (that is, the channel is occupied)
  • the STA will not immediately send an uplink signal to the AP, thereby avoiding interference.
  • the receiving end cannot determine when the sending end sends a signal, so a long time of detection is required, resulting in high power consumption of the receiving end.
  • the present application provides a communication method and device for realizing communication between an AP and a STA on a high-frequency band through dynamic scheduling through mutual cooperation between a low-frequency band and a high-frequency band. Compared with obtaining transmission resources on a high-frequency band through competition, the power consumption of an AP or a STA can be effectively reduced.
  • an embodiment of the present application provides a communication method, which can be applied to an AP or a component (such as a circuit or a chip) in an AP.
  • the AP sends time synchronization information through a first frequency domain resource, and the time synchronization information is used to indicate the start time of a first superframe; and in the first superframe, the AP communicates with the station STA in a dynamic scheduling manner through a second frequency domain resource; wherein the frequency corresponding to the first frequency domain resource is lower than the frequency corresponding to the second frequency domain resource.
  • the AP sends time synchronization information to the STA through the first frequency domain resource, so that the start time of the first superframe is synchronized between the AP and the STA, and then the AP and the STA can communicate in the first superframe by means of dynamic scheduling through the second frequency domain resource.
  • the power consumption of the AP or STA can be effectively reduced, and the data transmission delay can be reduced; and the dynamic scheduling method can realize the flexible allocation of time domain resources, which is convenient for improving resource utilization.
  • the first superframe includes an announcement transmission interval and a data transmission interval; within the first superframe, communication with the STA is carried out in a dynamic scheduling manner through the second frequency domain resources, including: within the announcement transmission interval, sending first scheduling information to the STA through the second frequency domain resources, the first scheduling information is used to indicate the first time domain resources allocated to the STA within the data transmission interval; on the first time domain resources, data transmission is carried out with the STA through the second frequency domain resources.
  • the announcement transmission interval includes K announcement transmission sub-intervals, each of the K announcement transmission sub-intervals corresponds to at least one STA associated with the AP, the K announcement transmission sub-intervals include a first announcement transmission sub-interval, the first announcement transmission sub-interval corresponds to the STA, and K is a positive integer; sending the first scheduling information to the STA through the second frequency domain resources within the announcement transmission interval includes: sending the first scheduling information to the STA through the second frequency domain resources within the first announcement transmission sub-interval.
  • the STA can detect the scheduling information from the AP in the corresponding public transmission sub-interval without detecting in other announcement transmission sub-intervals, thereby saving the power consumption of the STA.
  • the data transmission interval includes a downlink data transmission interval and/or an uplink data transmission interval
  • the downlink data transmission interval includes multiple downlink data transmission sub-intervals
  • the uplink data transmission interval includes multiple uplink data transmission sub-intervals
  • the first time domain resource includes at least one downlink data transmission sub-interval among the multiple downlink data transmission sub-intervals
  • the first time domain resource includes at least one uplink data transmission sub-interval among the multiple uplink data transmission sub-intervals.
  • the AP by dividing the downlink data transmission sub-intervals or uplink data transmission sub-intervals into a plurality of sub-intervals, it is convenient for the AP to indicate the first time domain resource allocated to the STA through the first scheduling information, thereby saving the overhead of transmission resources.
  • the data transmission interval includes the downlink data transmission interval and the uplink data transmission interval
  • the multiple downlink data transmission sub-intervals are continuous in the time domain
  • the multiple uplink data transmission sub-intervals are continuous in the time domain
  • the downlink data transmission interval and the uplink data transmission interval include a first time interval
  • the first time interval is used for the AP and/or the STA to perform transmit and receive switching.
  • the first superframe also includes a scheduling request interval; the method also includes: within the scheduling request interval, receiving a scheduling request from the STA through the second frequency domain resources, the scheduling request being used to request allocation of a second time domain resource to the STA within a data transmission interval of a second superframe; the second superframe is a superframe after the first superframe.
  • the scheduling request interval includes N scheduling request sub-intervals, each of the N scheduling request sub-intervals corresponds to at least one STA associated with the AP, the N scheduling request sub-intervals include a first scheduling request sub-interval, the first scheduling request sub-interval corresponds to the STA, and N is a positive integer; within the scheduling request interval, receiving a scheduling request from the STA through the second frequency domain resources, including: within the first scheduling request sub-interval, receiving a scheduling request from the STA through the second frequency domain resources.
  • the first superframe includes a third time interval
  • the start time of the third time interval is the start time of the first superframe
  • the third time interval is used for the AP and/or the STA to perform transmit-receive switching.
  • communicating with the STA is performed by dynamically scheduling the second frequency domain resources, including: performing idle channel evaluation in the third time interval; if the result of the idle channel evaluation is that the channel is idle, then in the first superframe, communicating with the STA is performed by dynamically scheduling the second frequency domain resources.
  • the method also includes: sending indication information through a first frequency domain resource, the indication information indicating the duration of a beamforming training cycle, the beamforming training cycle including at least one superframe, the first superframe being any one of the at least one superframe; when the first superframe is the first superframe in the beamforming training cycle, the first superframe also includes an A-BFT interval, and the A-BFT interval is used for the AP and the STA to perform beamforming training.
  • the method further includes: sending configuration information via the first frequency domain resources, wherein the configuration information is used to configure the second frequency domain resources.
  • an embodiment of the present application provides a communication method, which can be applied to a STA or a component (such as a circuit or a chip) in a STA.
  • the STA receives time synchronization information from an AP through a first frequency domain resource, and the time synchronization information is used to indicate the start time of a first superframe; within the first superframe, the STA communicates with the AP in a dynamic scheduling manner through a second frequency domain resource; wherein the frequency corresponding to the first frequency domain resource is lower than the frequency corresponding to the second frequency domain resource.
  • the first superframe includes an announcement transmission interval and a data transmission interval; within the first superframe, communicating with the AP in a dynamic scheduling manner is adopted through the second frequency domain resources, including: within the announcement transmission interval, receiving first scheduling information from the AP through the second frequency domain resources, the first scheduling information is used to indicate the first time domain resources allocated to the STA within the data transmission interval; on the first time domain resources, data transmission is performed with the AP through the second frequency domain resources.
  • the announcement transmission interval includes K announcement transmission sub-intervals, each of the K announcement transmission sub-intervals corresponds to at least one STA associated with the AP, the K announcement transmission sub-intervals include a first announcement transmission sub-interval, the first announcement transmission sub-interval corresponds to the STA, and K is a positive integer; receiving the first scheduling information from the AP through the second frequency domain resources within the announcement transmission interval includes: receiving the first scheduling information from the AP through the second frequency domain resources within the first announcement transmission sub-interval.
  • the data transmission interval includes a downlink data transmission interval and/or an uplink data transmission interval
  • the downlink data transmission interval includes multiple downlink data transmission sub-intervals
  • the uplink data transmission interval includes multiple uplink data transmission sub-intervals
  • the first time domain resource includes at least one downlink data transmission sub-interval among the multiple downlink data transmission sub-intervals
  • the first time domain resource includes at least one uplink data transmission sub-interval among the multiple uplink data transmission sub-intervals.
  • the data transmission interval includes the downlink data transmission interval and the uplink data transmission interval
  • the multiple downlink data transmission sub-intervals are continuous in the time domain, and the multiple uplink data transmission sub-intervals are continuous in the time domain;
  • the downlink data transmission interval and the uplink data transmission interval include a first time interval, and the first time interval is used for the AP and/or the STA to perform transceiver switching.
  • the first superframe also includes a scheduling request interval; the method also includes: within the scheduling request interval, sending a scheduling request to the AP through the second frequency domain resources, the scheduling request being used to request allocation of a second time domain resource to the STA within the data transmission interval of the second superframe; the second superframe is a superframe after the first superframe.
  • the scheduling request interval includes N scheduling request sub-intervals, each of the N scheduling request sub-intervals corresponds to at least one STA associated with the AP, the N scheduling request sub-intervals include a first scheduling request sub-interval, the first scheduling request sub-interval corresponds to the STA, and N is a positive integer; within the scheduling request interval, sending a scheduling request to the AP through the second frequency domain resources, including: within the first scheduling request sub-interval, sending the scheduling request to the AP through the second frequency domain resources.
  • the first superframe includes a third time interval
  • the start time of the third time interval is the start time of the first superframe
  • the third time interval is used for the AP and/or the STA to perform transmit-receive switching.
  • communicating with the AP is performed by dynamically scheduling the second frequency domain resources, including: performing idle channel evaluation in the third time interval; if the result of the idle channel evaluation is that the channel is idle, then in the first superframe, communicating with the AP is performed by dynamically scheduling the second frequency domain resources.
  • the method also includes: receiving indication information from the AP through a first frequency domain resource, the indication information indicating the duration of a beamforming training cycle, the beamforming training cycle including at least one superframe, the first superframe being any one of the at least one superframe; when the first superframe is the first superframe in the beamforming training cycle, the first superframe also includes an A-BFT interval, and the A-BFT interval is used for the AP and the STA to perform beamforming training.
  • the method further includes: receiving configuration information from the AP via the first frequency domain resources, wherein the configuration information is used to configure the second frequency domain resources.
  • an embodiment of the present application provides a communication method, which can be applied to an AP or a component (such as a circuit or chip) in an AP.
  • the AP sends time synchronization information through a first frequency domain resource, and the time synchronization information is used to indicate the start time of a first superframe; and the AP sends second scheduling information through the first frequency domain resource, and the second scheduling information is used to indicate a data transmission interval within the first superframe; and in the data transmission interval, communicate with the STA through the second frequency domain resource.
  • the AP sends time synchronization information to the STA through the first frequency domain resource, so that the start time of the first superframe is synchronized between the AP and the STA; and the AP sends semi-static scheduling information to the STA through the first frequency domain resource, so that the AP and the STA can communicate through the second frequency domain resource on the semi-static scheduling resource in the first superframe.
  • the power consumption of the AP or STA can be effectively reduced.
  • the data transmission interval includes at least one time unit, each of the at least one time unit includes a downlink data transmission interval and an uplink data transmission interval; the downlink data transmission interval and the uplink data transmission interval include a second time interval, and the second time interval is used for the AP and/or the STA to perform transmit and receive switching.
  • the second time interval is between two adjacent time units in the at least one time unit.
  • the first superframe also includes a third time interval, the start time of the third time interval is the start time of the first superframe, and the third time interval is used for the AP and/or the STA to perform transmit and receive switching.
  • communicating with the STA through the second frequency domain resources during the data transmission interval includes: performing an idle channel assessment during the third time interval; if the result of the idle channel assessment is that the channel is idle, communicating with the STA through the second frequency domain resources during the data transmission interval.
  • the method also includes: sending indication information through a first frequency domain resource, the indication information indicating the duration of a beamforming training cycle, the beamforming training cycle including at least one superframe, the first superframe being any one of the at least one superframe; when the first superframe is the first superframe in the beamforming training cycle, the first superframe also includes an A-BFT interval, and the A-BFT interval is used for the AP and the STA to perform beamforming training.
  • the method further includes: sending configuration information via the first frequency domain resource, wherein the configuration information is used to configure The second frequency domain resources.
  • an embodiment of the present application provides a communication method, which can be applied to a STA or a component (such as a circuit or a chip) in the STA.
  • the STA receives time synchronization information from an AP through a first frequency domain resource, and the time synchronization information is used to indicate the start time of a first superframe; and the STA receives second scheduling information from the AP through the first frequency domain resource, and the second scheduling information is used to indicate a data transmission interval within the first superframe; and in the data transmission interval, communicate with the AP through the second frequency domain resource.
  • the data transmission interval includes at least one time unit, each of the at least one time unit includes a downlink data transmission interval and an uplink data transmission interval; the downlink data transmission interval and the uplink data transmission interval include a second time interval, and the second time interval is used for the AP and/or the STA to perform transmit and receive switching.
  • the second time interval is between two adjacent time units in the at least one time unit.
  • the first superframe also includes a third time interval, the start time of the third time interval is the start time of the first superframe, and the third time interval is used for the AP and/or the STA to perform transmit and receive switching.
  • communicating with the AP is performed via a second frequency domain resource, including: performing an idle channel assessment during the third time interval; if a result of the idle channel assessment is that the channel is idle, then during the data transmission interval, communicating with the AP is performed via the second frequency domain resource.
  • the method also includes: receiving indication information from the AP through the first frequency domain resource, the indication information indicating the duration of the beamforming training cycle, the beamforming training cycle including at least one superframe, the first superframe being any one of the at least one superframe; when the first superframe is the first superframe in the beamforming training cycle, the first superframe also includes an A-BFT interval, and the A-BFT interval is used for the AP and the STA to perform beamforming training.
  • the method further includes: receiving configuration information from an AP via the first frequency domain resources, wherein the configuration information is used to configure the second frequency domain resources.
  • the present application provides a communication device, which has the functions of implementing the first to fourth aspects mentioned above.
  • the communication device includes modules or units or means corresponding to the operations involved in the first to fourth aspects mentioned above.
  • the modules or units or means can be implemented by software, or by hardware, or the corresponding software can be implemented by hardware.
  • the communication device includes a processing unit and a communication unit, wherein the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices; the processing unit can be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit can correspond to the operations involved in the first to fourth aspects above.
  • the communication device includes a processor, which can be used to couple with a memory.
  • the memory can store necessary computer programs or instructions for implementing the functions involved in the first to fourth aspects above.
  • the processor can execute the computer program or instructions stored in the memory, and when the computer program or instructions are executed, the communication device implements the method in any possible design or implementation of the first to fourth aspects above.
  • the communication device includes a processor and a memory, and the memory can store necessary computer programs or instructions for implementing the functions involved in the first to fourth aspects above.
  • the processor can execute the computer program or instructions stored in the memory, and when the computer program or instructions are executed, the communication device implements the method in any possible design or implementation of the first to fourth aspects above.
  • the communication device includes a processor and an interface circuit, wherein the processor is used to communicate with other devices through the interface circuit and execute the method in any possible design or implementation of the first to fourth aspects above.
  • the processor can be implemented by hardware or by software.
  • the processor can be a logic circuit, an integrated circuit, etc.; when implemented by software, the processor can be a general-purpose processor, which is implemented by reading the software code stored in the memory.
  • the above processors can be one or more, and the memory can be one or more.
  • the memory can be integrated with the processor, or the memory can be separately set from the processor. In the specific implementation process, the memory can be integrated with the processor on the same chip, or can be set on different chips respectively.
  • the embodiment of the present application does not limit the type of memory and the setting method of the memory and the processor.
  • the present application provides a communication system, which may include a first communication device and a second communication device; wherein the first communication device is used to execute the communication method provided in the first aspect, and the second communication device is used to execute the communication method provided in the second aspect; or, the first communication device is used to execute the communication method provided in the third aspect, and the second communication device is used to execute the communication method provided in the third aspect.
  • the communication method provided by the fourth aspect may include a first communication device and a second communication device; wherein the first communication device is used to execute the communication method provided in the first aspect, and the second communication device is used to execute the communication method provided in the second aspect; or, the first communication device is used to execute the communication method provided in the third aspect, and the second communication device is used to execute the communication method provided in the third aspect.
  • the present application provides a computer-readable storage medium, in which computer-readable instructions are stored.
  • a computer reads and executes the computer-readable instructions, the computer executes a method in any possible design of the first to fourth aspects above.
  • the present application provides a computer program product.
  • the computer executes the method in any possible design of the first to fourth aspects above.
  • the present application provides a chip, comprising a processor, wherein the processor is coupled to a memory and is used to read and execute a software program stored in the memory to implement a method in any possible design of the first to fourth aspects above.
  • FIG1 is a schematic diagram of a network architecture applicable to an embodiment of the present application.
  • FIG2 is a schematic diagram of an AP MLD provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a link between an AP MLD and a non-AP MLD provided in an embodiment of the present application;
  • FIG4 is a structural example of a beacon interval provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a flow chart corresponding to a communication method provided in Embodiment 1 of the present application;
  • FIG6 is a schematic diagram of the structure of a first superframe provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of a beamforming training cycle provided in an embodiment of the present application.
  • FIG8 is a flow chart of the communication method according to the second embodiment of the present application.
  • FIG9 is a schematic diagram of the structure of a first superframe provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of a beamforming training cycle provided in an embodiment of the present application.
  • FIG11 is a possible exemplary block diagram of a device involved in an embodiment of the present application.
  • FIG12 is a schematic diagram of the structure of an AP provided in an embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of a STA provided in an embodiment of the present application.
  • WLAN may include one or more basic service sets (BSS), and the network nodes in the basic service set include access points (AP) and stations (STA).
  • IEEE 802.11ad introduces personal basic service sets (PBSS) and personal basic service set control nodes (PBSS control points, PCP) based on the original BSS.
  • PBSS personal basic service sets
  • PCP personal basic service set control nodes
  • Each personal basic service set can include an AP/PCP and multiple non-AP/PCPs associated with the AP/PCP.
  • non-AP/PCP can be called STA
  • PCP can be understood as the name of the role of AP in PBSS.
  • the embodiments of the present application may also be applicable to wireless local area networks such as the Internet of Things (IoT) network or the Vehicle to X (V2X) network.
  • IoT Internet of Things
  • V2X Vehicle to X
  • the embodiments of the present application may also be applicable to other possible communication systems, such as the Long Term Evolution (LTE) communication system, the LTE frequency division duplex (FDD) communication system, the LTE time division duplex (TDD) communication system, the universal mobile telecommunication system (UMTS), the worldwide interoperability for microwave access (WiMAX) communication system, the fifth generation (5G) communication system, and future evolving communication systems.
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • FIG1 a network architecture diagram of a WLAN applicable to the application embodiment is shown, and FIG1 takes the WLAN including 1 AP and 2 STAs as an example.
  • the STA associated with the AP can receive wireless frames sent by the AP and can also send wireless frames to the AP.
  • the embodiment of the present application will be described by taking the communication between AP and STA as an example. It can be understood that the embodiment of the present application can also be applied to communication between APs, for example, each AP can communicate with each other through a distributed system (DS), and can also be applied to communication between STAs.
  • DS distributed system
  • AP is an access point for terminal devices (such as mobile phones) to enter the wired (or wireless) network. It is mainly deployed in homes, buildings and campuses. The typical coverage radius is tens of meters to hundreds of meters. Of course, it can also be deployed outdoors. AP is equivalent to a bridge connecting wired networks and wireless networks. Its main function is to connect various wireless network clients together and then connect the wireless network to Ethernet.
  • AP can be a terminal device (such as a mobile phone) or a network device (such as a router) with a wireless fidelity (Wi-Fi) chip.
  • Wi-Fi wireless fidelity
  • the AP may be a device supporting the 802.11be standard, or may be a device supporting multiple WLAN standards of the 802.11 family such as 802.11ax, 802.11ay, 802.11ac, 802.11n, 802.11g, 802.11b, 802.11a, and 802.11be next generation.
  • STA can be a wireless communication chip, a wireless sensor or a wireless communication terminal, etc., and can also be called a user.
  • STA can be a mobile phone that supports Wi-Fi communication function, a tablet computer that supports Wi-Fi communication function, a set-top box that supports Wi-Fi communication function, a smart TV that supports Wi-Fi communication function, a smart wearable device that supports Wi-Fi communication function, a vehicle-mounted communication device that supports Wi-Fi communication function, and a computer that supports Wi-Fi communication function, etc.
  • STA can support the 802.11be standard, or can also support multiple WLAN standards of the 802.11 family such as 802.11ax, 802.11ay, 802.11ac, 802.11n, 802.11g, 802.11b, 802.11a, and 802.11be next generation.
  • FIG. 1 the number of APs and STAs shown in FIG. 1 is only an example, and may be more or less.
  • the AP and STA involved in FIG1 may be communication devices with dual-mode communication functions, that is, communication devices with low-frequency (LF) band (or channel or link) communication mode and high-frequency (HF) band communication mode.
  • the low-frequency band includes, for example, sub 1 GHz, 2.4 GHz, 5 GHz, 6 GHz, etc.
  • the high-frequency band includes, for example, 45 GHz, 60 GHz, etc.
  • the communication device with dual-mode communication function may be a dual-band dual-concurrent (DBDC) device, or may be a multi-link device (MLD), which are described below respectively.
  • DBDC dual-band dual-concurrent
  • MLD multi-link device
  • the DBDC device integrates two independent and complete links, including two baseband processors and RF front-ends, thus supporting independent operation in two frequency bands.
  • AP and STA are DBDC devices
  • AP is DBDC device 1
  • STA is DBDC device 2
  • AP and STA can perform signaling interaction on the low-frequency link to establish a low-frequency link connection; and, perform signaling interaction on the high-frequency link to establish a high-frequency link connection.
  • MLD supports multi-link operation technology.
  • MLD has multiple radio frequency modules, which work in different frequency bands.
  • the frequency band of MLD can be all or part of sub 1GHz, 2.4GHz, 5GHz, 6GHz and high frequency 60GHz.
  • MLD can include AP MLD and/or non-AP MLD.
  • non-AP MLD can be STA MLD.
  • AP MLD may include one or more affiliated sites, each of which has its own media access control (MAC) address.
  • the affiliated sites of AP MLD include AP1 and AP2, the low MAC address of AP1 is link address 1, and the low MAC address of AP2 is link address 2.
  • AP MLD also has an upper MAC address, called the MLD MAC address.
  • AP MLD and non-AP MLD can establish multi-link connection through signaling interaction on low-frequency link.
  • AP MLD includes AP1 and AP2
  • AP1 includes AP1PHY, AP1 low-layer MAC and high-layer MAC
  • AP2 includes AP2PHY, AP2 low-layer MAC and high-layer MAC, where AP1 and AP2 share high-layer MAC
  • non-AP MLD includes STA1 and STA2
  • STA1 includes STA1PHY, STA1 low-layer MAC and high-layer MAC
  • STA2 includes STA2PHY, STA2 low-layer MAC and high-layer MAC, where STA1 and STA2 share high-layer MAC
  • AP1 and STA1 are connected through link 1
  • AP2 and STA2 are connected through link 2.
  • non-AP MLD When establishing multiple links, non-AP MLD sends an association request frame on link 1.
  • the association request frame carries the STA side information of link 1 and the STA side information of link 2.
  • the association request frame can carry the multi-link element field.
  • the multi-link element field is used to carry the information of non-AP MLD and the information of the sites in non-AP MLD.
  • AP MLD sends an association response frame on link 1.
  • the association response frame carries the AP side information of link 1 and the AP side information of link 2, so that STA1 and STA2 of non-AP MLD can establish associations with AP1 and AP2 of AP MLD respectively.
  • the AP when the AP initiates beamforming training, the AP is called the initiator, and the STA It can be called the responder; when the STA initiates beamforming training, the STA can be called the initiator and the AP can be called the responder. That is to say, the party that initiates the beamforming training can be called the initiator, and the party that responds to the beamforming training can be called the responder.
  • the party that initiates the beamforming training can also be called the responder, and the party that responds to the beamforming training can be called the initiator; or, one party of the beamforming training is fixedly called the initiator, and the other party of the beamforming training is fixedly called the responder.
  • the initiator will initiate beamforming training and can also respond to the beamforming training initiated by the responder; similarly, the responder will also initiate beamforming training and can also respond to the beamforming training initiated by the initiator.
  • beamforming training may include a sector level sweeping (SLS) process and/or a beam refinement protocol (BRP) process.
  • SLS process includes an initiator sector sweep (ISS) and/or a responder sector sweep (RSS).
  • the ISS may include an initiator transmission of sector sweep (I-TXSS) and/or an initiator reception of sector sweep (I-RXSS).
  • the RSS may include a responder transmission of sector sweep (R-TXSS) and/or a responder reception of sector sweep (R-RXSS).
  • the AP can send multiple sector sweep (SSW) frames directionally on the high frequency band; correspondingly, the STA can receive at least one SSW frame from the AP in a quasi-omnidirectional manner on the high frequency band, and then the STA can determine the AP's best transmitting antenna and best transmitting sector corresponding to the STA, and feed back the identifier of the best transmitting antenna and the identifier of the best transmitting sector to the AP.
  • SSW sector sweep
  • the AP can send multiple SSW frames quasi-omnidirectionally on the high-frequency band; accordingly, the STA can directionally receive at least one SSW frame on the high-frequency band, and then the STA can determine the best receiving antenna and the best receiving sector of the STA corresponding to the AP based on the reception quality of at least one SSW frame.
  • STA can send multiple SSW frames directionally on the high-frequency band; accordingly, AP can quasi-omnidirectionally receive at least one SSW frame from STA on the high-frequency band, and then AP can determine the best transmitting antenna and best transmitting sector of STA corresponding to AP, and feed back the identifier of the best transmitting antenna and the identifier of the best transmitting sector to STA.
  • STA can send multiple SSW frames quasi-omnidirectionally on the high-frequency band; accordingly, AP can directionally receive at least one SSW frame on the high-frequency band, and then AP can determine the best receiving antenna and best receiving sector of AP corresponding to STA.
  • ISS i.e., I-TXSS and/or I-RXSS
  • DL BFT downlink beamforming training
  • AP corresponds to the best transmitting antenna and best transmitting sector of STA, that is, the best transmitting antenna and best transmitting sector of downlink
  • STA corresponds to the best receiving antenna and best receiving sector of AP, that is, the best receiving antenna and best receiving sector of downlink.
  • the above RSS (i.e., R-TXSS and/or R-RXSS) can also be called uplink beamforming training (UL BFT).
  • STA corresponds to the best transmit antenna and best transmit sector of AP, that is, the best transmit antenna and best transmit sector of uplink
  • AP corresponds to the best receive antenna and best receive sector of STA, that is, the best receive antenna and best receive sector of uplink.
  • the SLS process is usually used for transmit beam training
  • the BRP process is usually used for receive beam training and iterative refinement. If the AP or STA uses only one transmit antenna mode, receive beam training may be performed as part of the SLS phase.
  • the beacon interval (BI) is introduced in high-frequency communication protocols (such as 802.11ad and 802.11ay protocols).
  • Figure 4 is a schematic diagram of the structure of the beacon interval. As shown in Figure 4, the beacon interval is divided into a beacon header indication (BHI) and a data transmission interval (DTI). Among them, BHI includes a beacon transmission interval (BTI), an association beamforming training (A-BFT) interval, and an announcement transmission interval (ATI).
  • BHI beacon transmission interval
  • A-BFT association beamforming training
  • ATI announcement transmission interval
  • BTI It is the time interval from the first directional multi-gigabit (DMG) beacon frame sent by the AP in the beacon interval to the end of the transmission of the last DMG beacon frame in the same beacon interval.
  • DMG multi-gigabit
  • A-BFT can be used for multiple STAs to associate with an AP, as well as RSS; frames transmitted in the A-BFT interval may include SSW frames, SSW feedback frames (or short SSW frames, short SSW feedback frames), etc.
  • ATI used by the AP to poll the STA for cached data information, or the AP to send announcements (such as management frames), or the AP to allocate resources in the DTI to the STA, that is, to divide the resources in the DTI into several sub-intervals.
  • DTI It can include several sub-intervals. According to different access forms, these sub-intervals can be divided into contention based access period (CBAP) and service period (SP).
  • CBAP is the STA communication period. The transmission period of the channel accessed through a contention-based manner; SP is the resource allocated to a specific STA.
  • the high-frequency communication protocol regards the communication on the high-frequency band as an independent communication technology, and stipulates that the communication on the high-frequency band follows the CSMA/CA mechanism, and the CSMA/CA mechanism can be, for example, CCA.
  • the CSMA/CA mechanism can be, for example, CCA.
  • the AP needs to perform CCA.
  • the result of CCA is that the channel is idle
  • the AP can immediately send a downlink signal to the STA.
  • the result of CCA is that the channel is busy (that is, the channel is occupied)
  • the AP will not immediately send a downlink signal to the STA, thereby avoiding interference.
  • the STA needs to perform CCA.
  • the STA can immediately send an uplink signal to the AP.
  • the result of CCA is that the channel is busy (that is, the channel is occupied)
  • the STA will not immediately send an uplink signal to the AP, thereby avoiding interference.
  • the AP or STA obtains transmission resources by competing.
  • the receiving end cannot determine when the transmitting end sends a signal, so a long time of detection is required, resulting in high power consumption of the receiving end.
  • an embodiment of the present application provides a communication method, which realizes communication between AP and STA on the high-frequency band through dynamic scheduling or semi-static scheduling through mutual cooperation between low-frequency band and high-frequency band. Compared with obtaining transmission resources on the high-frequency band through competition, it can effectively reduce the power consumption of AP or STA.
  • the method provided in the embodiment of the present application is described in detail below in conjunction with specific embodiments.
  • the method provided in the embodiment of the present application is applied to the network architecture shown in Figure 1 as an example.
  • the method can be performed by two communication devices, such as a first communication device and a second communication device, wherein the first communication device can be an AP or a communication device that can support the AP to implement the functions required by the method, and of course it can also be other communication devices, such as a chip or a chip system.
  • the second communication device can be a STA or a communication device that can support the STA to implement the functions required by the method, and of course it can also be other communication devices, such as a chip or a chip system.
  • the method is performed by AP and STA as an example, that is, the first communication device is an AP and the second communication device is a STA.
  • FIG5 is a schematic diagram of a process flow corresponding to the communication method provided in Embodiment 1 of the present application. As shown in FIG5 , the process may include:
  • an AP sends time synchronization information via a first frequency domain resource, where the time synchronization information is used to indicate a start time of a first superframe.
  • the first frequency domain resources and the second frequency domain resources are introduced.
  • the first frequency domain resource is different from the second frequency domain resource described below, and the frequency corresponding to the first frequency domain resource is lower than the frequency corresponding to the second frequency domain resource.
  • the frequency domain resource can be understood as a frequency range, and the frequency corresponding to the first frequency domain resource is lower than the frequency corresponding to the second frequency domain resource, which can mean: the highest frequency corresponding to the first frequency domain resource is lower than the lowest frequency corresponding to the second frequency domain resource.
  • the first frequency domain resource is a frequency domain resource in a low frequency band
  • the second frequency domain resource is a frequency domain resource in a high frequency band.
  • the time synchronization information may include the start time information of the first superframe and the number or frame number of the first superframe, and the start time information represents a specific time, for example, the specific time represented by the start time information is X1 year X2 month X3 day X4 hours X5 minutes X6 seconds X7 milliseconds X8 nanoseconds.
  • the STA may use the specific time represented by the start time information as the start time of the first superframe.
  • the start time information of the first superframe is used for the AP and the STA to align the start time of the first superframe.
  • the start time of the first superframe may also be replaced by the frame boundary of the first superframe.
  • the time synchronization information also includes time information of a first time accuracy and time information of a second time accuracy.
  • the first time accuracy is lower than the second time accuracy, for example, the first time accuracy may be at the microsecond (us) level (such as 1 to 25us), and the second time accuracy may be at the nanosecond (ns) level.
  • the time information of the first time accuracy and the time information of the second time accuracy are used for the AP and STA to achieve time synchronization.
  • the start time of the subsequent superframe can be determined according to the frame length of the superframe (for example, it can be indicated to the STA by the AP through the low frequency band).
  • the STA can also perform time synchronization tracking on the low frequency band.
  • the AP may send a low-frequency beacon frame on the first frequency domain resource, and the low-frequency beacon frame includes time information of the first time precision.
  • the AP may also send a high-frequency beacon frame (such as a DMG beacon frame) on the first frequency domain resource.
  • a high-frequency beacon frame such as a DMG beacon frame
  • two extension fields may be designed in the high-frequency beacon frame, one of which includes time information of the second time precision, and the other includes the start time information of the first superframe.
  • the AP may send a low-frequency beacon frame on the first frequency domain resource, where the low-frequency beacon frame includes a first time accuracy.
  • Time information Furthermore, in the embodiment of the present application, two extension fields may be designed in the low-frequency beacon frame, wherein one extension field includes time information of the second time precision, and the other extension field includes the start time information of the first superframe.
  • the AP may send the time synchronization information in a broadcast or multicast manner on the first frequency domain resource, and then multiple STAs may receive the time synchronization information.
  • the AP may send the low-frequency beacon frame and the high-frequency beacon frame in a broadcast manner on the first frequency domain resource; in the second possible implementation described above, the AP may send the low-frequency beacon frame in a broadcast manner on the first frequency domain resource.
  • the AP can also send high-frequency beacon frames on the low-frequency band (such as broadcasting high-frequency beacon frames).
  • the AP can broadcast high-frequency beacon frames through the high-frequency band within the BTI.
  • the broadcast signal needs to cover all directions and the attenuation on the high-frequency band is relatively serious, in order to ensure that the broadcast signal can be correctly received, the AP needs to send the broadcast signal on multiple sectors to ensure that all locations can be covered, which will cause the AP to consume more power.
  • the coverage range of the low-frequency band is larger. Sending high-frequency beacon frames through the low-frequency band can achieve more reliable transmission and facilitate reducing the power consumption of the AP.
  • S502 The AP and the STA communicate with each other in a first superframe by using second frequency domain resources in a dynamic scheduling manner.
  • the AP may send configuration information through the first frequency domain resource, the configuration information is used to configure the second frequency domain resource, for example, the configuration information may include the frequency point and/or bandwidth of the second frequency domain resource, etc. Alternatively, the frequency point and/or bandwidth of the second frequency domain may also be predefined.
  • the AP may communicate with multiple STAs in the first superframe by means of dynamic scheduling through the second frequency domain resources.
  • the multiple STAs include the first STA, and the following description will be made by taking the communication between the AP and the first STA as an example.
  • the AP may send first scheduling information to the first STA through the second frequency domain resources in the first superframe, and the first scheduling information is used to indicate the first time domain resources allocated to the first STA in the first superframe, and the first time domain resources may be used for one uplink data transmission or for one downlink data transmission. That is to say, in dynamic scheduling, the resources for each uplink transmission or downlink transmission performed by the first STA may be allocated to the first STA by the AP through scheduling information.
  • the first superframe may include an announcement transmission interval and a data transmission interval.
  • the first superframe also includes at least one of the following: a schedule request (SR) interval; an A-BFT interval; or a third time interval.
  • SR schedule request
  • FIG6 is a schematic diagram of the structure of the first superframe; wherein (a) in FIG6 is a possible structural example of the first superframe, and (b) in FIG6 is another possible structural example of the first superframe.
  • the start time of the third time interval is the start time of the first superframe
  • the end time of the third time interval is the start time of the A-BFT interval
  • the end time of the A-BFT interval is the start time of the announcement transmission interval
  • the end time of the announcement transmission interval is the start time of the data transmission interval
  • the end time of the data transmission interval is the start time of the scheduling request interval
  • the end time of the scheduling request interval is the end time of the first superframe.
  • the embodiment of the present application may not limit the specific positions of the various intervals included in the first superframe, and the positional relationship illustrated in FIG6 above is only a possible example.
  • the announcement transmission interval can be used by the AP to send scheduling information to multiple STAs through the second frequency domain resources.
  • the AP can send first scheduling information to the first STA through the second frequency domain resources within the announcement transmission interval, and the first scheduling information is used to indicate the first time domain resources allocated to the first STA within the data transmission interval.
  • the announcement transmission interval may include K announcement transmission sub-intervals, each of the K announcement transmission sub-intervals corresponds to at least one STA, and K is a positive integer.
  • each announcement transmission sub-interval corresponds to one STA or one STA group, and one STA group may include one or more STAs.
  • the AP can send the first scheduling information to the first STA through the second frequency domain resource in the first announcement transmission subinterval. In this way, the first STA can detect the scheduling information from the AP in the first common transmission subinterval without detecting it in other announcement transmission subintervals, thereby saving the power consumption of the first STA.
  • the correspondence between the STA and the announcement transmission sub-interval may be indicated by the AP to the STA.
  • the AP may send indication information to the first STA on the first frequency domain resource, and the indication information indicates that the first STA is associated with the first announcement transmission sub-interval among the K announcement transmission sub-intervals.
  • the correspondence between the STA and the announcement transmission sub-interval complies with a preset rule, which may be predefined by the protocol.
  • the data transmission interval can also be called SP.
  • the data transmission interval can be used for the AP to communicate with multiple STAs through the second frequency domain resources. For example, if the AP sends first scheduling information to the first STA (the first scheduling information indicates the first time domain resource allocated by the AP to the first STA in the data transmission interval), the AP and the first STA can perform data transmission on the first time domain resource through the second frequency domain resource.
  • the data transmission interval may include a downlink data transmission interval and/or an uplink data transmission interval
  • FIG6 is illustrated by taking the data transmission interval including the downlink data transmission interval and the uplink data transmission interval as an example.
  • the downlink data transmission interval may include multiple downlink data transmission sub-intervals (also referred to as D-SPs), and the durations of the multiple downlink data transmission sub-intervals may be the same
  • the uplink data transmission interval may include multiple uplink data transmission sub-intervals (also referred to as U-SPs), and the durations of the multiple uplink data transmission sub-intervals may be the same.
  • multiple downlink data transmission subintervals are continuous in the time domain, that is, the downlink data transmission interval is a continuous time domain resource; multiple uplink data transmission subintervals are continuous in the time domain, that is, the uplink data transmission interval is a continuous time domain resource.
  • SIFS short inter-frame space
  • multiple uplink or downlink data transmission subintervals in the embodiment of the present invention are continuous in the time domain, which is convenient for improving resource utilization.
  • a first time interval is included between the downlink data transmission interval and the uplink data transmission interval, and the first time interval is used for AP and/or STA to perform transceiver switching (or uplink and downlink switching).
  • the first time domain resource may include at least one downlink data transmission subinterval among multiple downlink data transmission subintervals, in which case the at least one downlink data transmission subinterval is used for one downlink data transmission.
  • the first time domain resource includes at least one uplink data transmission subinterval among multiple uplink data transmission subintervals, in which case the at least one uplink data transmission subinterval is used for one uplink data transmission.
  • the first scheduling information indicates the first time domain resource. For example, taking the first time domain resource as a time domain resource for downlink data transmission as an example, when the downlink data transmission interval may include multiple downlink data transmission sub-intervals, the first scheduling information may include multiple bits, and the multiple bits correspond one-to-one to the multiple downlink data transmission sub-intervals, for example, bit 1 corresponds to downlink data transmission sub-interval 1, when the value of bit 1 is 1, it indicates that the first time domain resource includes downlink data transmission sub-interval 1, and when the value of bit 1 is 0, it indicates that the first time domain resource does not include downlink data transmission sub-interval 1.
  • the scheduling request interval can be used for multiple STAs to send scheduling requests to the AP through the second frequency domain resources.
  • the first STA can send a scheduling request to the AP through the second frequency domain resources within the scheduling request interval, and the scheduling request is used to request that the second time domain resources be allocated to the first STA within the data transmission interval of the second superframe.
  • the second superframe is the superframe after the first superframe, for example, the second superframe can be the next superframe of the first superframe.
  • the scheduling request interval may include N scheduling request sub-intervals, each of the N scheduling request sub-intervals corresponds to at least one STA, and N is a positive integer.
  • each scheduling request sub-interval corresponds to one STA or one STA group, and one STA group may include one or more STAs.
  • the first STA may send a scheduling request to the AP through the second frequency domain resources within the first scheduling request subinterval.
  • the correspondence between the STA and the scheduling request subinterval may be indicated by the AP to the STA; or the correspondence between the STA and the scheduling request subinterval complies with a preset rule, which may be predefined by the protocol.
  • a preset rule which may be predefined by the protocol.
  • the A-BFT interval can be used for the AP and multiple STAs to perform beamforming training through the second frequency domain resources.
  • the AP and the first STA can perform beamforming training through the second frequency domain resources within the A-BFT interval; wherein the beamforming training may include the SLS process and/or the BRP process, that is, the frames transmitted by the AP and the first STA within the A-BFT interval may include SSW frames and/or BRP frames, which can be specifically indicated to the STA by the AP through the first frequency domain resources.
  • the A-BFT interval may include a U-BFT interval and a D-BFT interval.
  • the U-BFT interval is used to perform uplink beamforming training
  • the D-BFT interval is used to perform downlink beamforming training.
  • a fourth time interval is included between the U-BFT interval and the D-BFT interval, and the fourth time interval is used for the AP and/or STA to perform transceiver switching.
  • the U-BFT interval may include multiple U-BFT sub-intervals, and a fifth time interval is included between two adjacent U-BFT sub-intervals, and the fifth time interval is used to perform beam switching, for example, the fifth time interval may be a short beamforming inter-frame space (SBIFS).
  • the D-BFT interval may include multiple D-BFT sub-intervals, and a fifth time interval is included between two adjacent D-BFT sub-intervals.
  • the third time interval may be used by the AP and/or STA to perform a transceiver switch.
  • the third time interval may also be used by the AP and/or STA to perform a transceiver switch. Perform a clear channel assessment.
  • the AP may perform an idle channel assessment in the third time interval. If the result of the idle channel assessment is that the channel is idle, the AP may communicate with at least one STA in the first superframe, for example, the AP may send scheduling information to at least one STA in the announcement transmission interval, and perform data transmission with at least one STA in the data transmission interval. If the result of the idle channel assessment is that the channel is busy, the AP may not send scheduling information in the announcement transmission interval of the first superframe.
  • the STA may perform an idle channel assessment within a third time interval. If the result of the idle channel assessment is that the channel is idle, the STA may send a scheduling request within the scheduling request interval of the first superframe. If the result of the idle channel assessment is that the channel is busy, the STA may not send a scheduling request within the scheduling request interval of the first superframe.
  • the AP and/or STA performs idle channel assessment in the third time interval of the first superframe, and decides whether to send information in the first superframe according to the result of the idle channel assessment, thereby effectively avoiding interference.
  • the AP and/or STA since the AP and/or STA only needs to perform idle channel assessment once in the first superframe, it is convenient to save power consumption of the AP and/or STA.
  • the AP sends time synchronization information to the STA through the first frequency domain resource, so that the start time of the first superframe is synchronized between the AP and the STA, and then the AP and the STA can communicate in the first superframe by means of dynamic scheduling through the second frequency domain resource.
  • the power consumption of the AP or STA can be effectively reduced, and the data transmission delay can be reduced (for example, the transmission delay of the physical layer can reach the millisecond level); and the dynamic scheduling method can realize the flexible allocation of time domain resources, which is convenient for improving resource utilization.
  • first superframe in the above embodiment 1 may be any superframe in the beamforming training cycle.
  • the beamforming training cycle introduced in the embodiment of the present application is described below in conjunction with FIG.
  • Figure 7 is a schematic diagram of a beamforming training cycle.
  • the beamforming training cycle may include at least one superframe, for example, the beamforming training cycle includes m superframes, namely superframe 1, superframe 2, ... superframe m.
  • At least one superframe may include a first type superframe and m-1 second type superframes.
  • the first type superframe may be the first superframe (i.e., superframe 1) of the beamforming training cycle.
  • superframes 2 to m are all second type superframes.
  • the first type superframe may also be a superframe from superframe 2 to superframe m of the beamforming training cycle.
  • the embodiment of the present application does not limit the specific position of the first type superframe in the beamforming training cycle.
  • the difference between the first type superframe and the second type superframe is that the first type superframe includes an A-BFT interval, while the second type superframe does not include an A-BFT interval.
  • the first type superframe may be shown as (a) in FIG6
  • the second type superframe may be shown as (b) in FIG6 .
  • the AP may send beamforming training cycle information on the first frequency domain resource, and the beamforming cycle information is used to indicate the time allocation of each superframe included in the beamforming cycle.
  • the AP may send the beamforming training cycle information through an extended field in a high-frequency beacon frame, or may send the beamforming training cycle information through an extended field in a low-frequency beacon frame, or may send the beamforming training cycle information through other signaling transmitted on a low-frequency band, without specific limitation.
  • the beamforming training period information may include at least one of the following:
  • a beacon interval includes an A-BFT interval, that is, the beacon interval and the beamforming training cycle are the same.
  • the AP can send high-frequency beacon frames in the low-frequency band and perform beamforming training in the high-frequency band, that is, the beacon frame period and the beamforming training period can be decoupled. Therefore, in the embodiment of the present application, the beacon frame period may be equal to the beamforming training period, or the beacon frame period may not be equal to the beamforming training period, so that a more flexible setting can be achieved.
  • the duration of the beamforming training cycle can be set by the AP according to actual needs and indicated to the STA.
  • Duration of the first type superframe may be 5 ms, 1 ms or 0.5 ms.
  • Time allocation information of the first type superframe may include at least one of the following: duration or type information of the third time interval; time allocation information of the A-BFT interval; time allocation information of the announcement transmission interval; time allocation information of the data transmission interval; and time allocation information of the scheduling request interval.
  • multiple time interval types may be predefined, and different types correspond to different durations. Further, after the AP indicates the type of the third time interval to the STA, the STA may determine the type of the third time interval according to the correspondence between the type and the duration.
  • the time allocation information of the A-BFT interval may include at least one of the following: the duration of the A-BFT interval; the duration of the U-BFT interval; the duration of the U-BFT sub-interval; the number of U-BFT intervals; the duration of the D-BFT interval; the duration of the D-BFT sub-interval; the number of D-BFT intervals; The duration or type information of the fourth time interval; the duration or type information of the fifth time interval.
  • the time allocation information of the announcement transmission interval may include at least one of the following: the duration of the announcement transmission interval; the number of the announcement transmission sub-intervals; and the duration of the announcement transmission sub-intervals.
  • the time allocation information of the data transmission interval may include at least one of the following: the duration of the data transmission interval; the duration of the downlink data transmission interval; the duration of the downlink data transmission sub-interval; the number of downlink data transmission sub-intervals; the length of the uplink data transmission interval; the length of the uplink data transmission sub-interval; the number of uplink data transmission sub-intervals; the length and/or type information of the first time interval.
  • the time allocation information of the scheduling request interval may include at least one of the following: the duration of the scheduling request interval; the number of scheduling request sub-intervals; and the duration of the scheduling request sub-intervals.
  • Duration of the second type superframe may be the same as the duration of the first type superframe.
  • Time allocation information of the second type superframe may refer to the time allocation information of the first type.
  • the time allocation information of the second type superframe may multiplex the time allocation information of the first type superframe.
  • the AP can indicate the time allocation of the superframe to the STA through the first frequency domain resource, and the specific indication method may not be limited in the embodiment of the present application. In other possible embodiments, the time allocation of the superframe or the time allocation of one or some intervals in the superframe may also be pre-agreed by the protocol.
  • FIG8 is a flow chart of the communication method provided in the second embodiment of the present application. As shown in FIG8, the flow may include:
  • An AP sends time synchronization information via a first frequency domain resource, where the time synchronization information is used to indicate a start time of a first superframe.
  • S801 may refer to S501 in the first embodiment.
  • the AP sends second scheduling information through the first frequency domain resources, where the second scheduling information is used to indicate a data transmission interval within a first superframe; accordingly, the STA receives the second scheduling information on the first frequency domain resources.
  • the AP may send the second scheduling information in a broadcast or multicast manner through the first frequency domain resources.
  • the AP may send the second scheduling information through an extension field in a high-frequency beacon frame, or may send the second scheduling information through an extension field in a low-frequency beacon frame, or may send the second scheduling information through other signaling transmitted on a low-frequency band, without specific limitation.
  • S803 The AP and the STA perform data transmission using the second frequency domain resources within the data transmission interval.
  • the above-mentioned second scheduling information can be understood as semi-static scheduling information.
  • the AP can allocate periodic uplink and downlink time domain resources within the data transmission interval.
  • the AP can send the second scheduling information on the first frequency domain resources, and the second scheduling information is used to indicate the periodic uplink and downlink time domain resources within the data transmission interval.
  • the AP and the STA can perform data transmission through the second frequency domain resources on the periodic uplink and downlink time domain resources.
  • the first superframe may include a data transmission interval.
  • the first superframe also includes at least one of the following: an A-BFT interval; a third time interval.
  • Figure 9 is a schematic diagram of the structure of the first superframe; wherein (a) in Figure 9 is a possible structural example of the first superframe, and (b) in Figure 9 is another possible structural example of the first superframe.
  • the start time of the third time interval is the start time of the first superframe
  • the end time of the third time interval is the start time of the A-BFT interval
  • the end time of the A-BFT interval is the start time of the data transmission interval
  • the end time of the data transmission interval is the end time of the first superframe.
  • the embodiments of the present application may not limit the specific positions of the various intervals included in the first superframe, and the positional relationship illustrated in Figure 9 above is only a possible example.
  • the data transmission interval may include at least one time unit, and each time unit in the at least one time unit includes a downlink data transmission interval and an uplink data transmission interval.
  • a second time interval is included between the downlink data transmission interval and the uplink data transmission interval, and the second time interval is used for the AP and/or STA to perform transceiver switching.
  • the data transmission interval includes multiple time units, the downlink data transmission interval occurs periodically, and the uplink data transmission interval also occurs periodically.
  • the description of the A-BFT interval and the third time interval can refer to Example 1 and will not be repeated here.
  • the AP sends time synchronization information to the STA through the first frequency domain resources, so that the start time of the first superframe is synchronized between the AP and the STA; and the AP sends semi-static scheduling information to the STA through the first frequency domain resources, so that the AP and the STA can communicate through the second frequency domain resources on the semi-static scheduling resources within the first superframe.
  • the power consumption of the AP or STA can be effectively reduced; and in the semi-static scheduling, since the downlink transmission resources and the uplink transmission resources can appear alternately, the data transmission delay can be more effectively reduced to meet the transmission requirements of low-latency services.
  • first superframe in the above-mentioned second embodiment may be any superframe in the beamforming training cycle.
  • the beamforming training cycle introduced in the embodiment of the present application is introduced below in conjunction with FIG.
  • FIG10 is a schematic diagram of a beamforming training cycle.
  • the beamforming training cycle may include a first type superframe and m-1 second type superframes.
  • the first type superframe may be the first superframe (i.e., superframe 1) of the beamforming training cycle.
  • superframes 2 to m are all second type superframes.
  • the difference between the first type superframe and the second type superframe is that the first type superframe includes an A-BFT interval, while the second type superframe does not include an A-BFT interval.
  • the first type superframe may be shown as (a) in FIG9
  • the second type superframe may be shown as (b) in FIG9 .
  • FIG. 10 It can be understood that the difference between FIG. 10 and FIG. 7 is that the structure of the superframe included in the beamforming training period is different. Except for this difference, the other contents can refer to the description in FIG. 7.
  • frequency synchronization can be achieved through the collaboration of high-frequency bands and low-frequency bands.
  • the AP or STA can obtain frequency offset estimation information on the low-frequency band, and then use the frequency offset estimation information on the low-frequency band to perform frequency synchronization on the high-frequency band; or, the AP or STA can obtain frequency offset estimation information on the high-frequency band, and then use the frequency offset estimation information on the high-frequency band to perform frequency synchronization on the low-frequency band.
  • other possible information can also be transmitted on the low-frequency band.
  • information with low latency requirements such as confirmation information, feedback information, channel measurement information, beam measurement information, etc.
  • confirmation information can all be transmitted more reliably through the low-frequency band.
  • the waste of time and power consumption caused by high-frequency beam scanning can be avoided, so that the high-frequency band can focus on efficient point-to-point transmission.
  • the STA when there is no data transmission on the high-frequency link, in order to maintain the connection of the high-frequency link, the STA may need to periodically communicate with the AP on the high-frequency link (such as periodically receiving high-frequency beacon frames on the high-frequency link, etc.), which may increase the standby power consumption.
  • the signaling in the standby state when there is no data transmission on the high-frequency link, the signaling in the standby state can be transmitted through the low-frequency band to maintain the connection of the high-frequency link, thereby reducing the standby power consumption on the high-frequency link.
  • the first communication device and the second communication device may include hardware structures and/or software modules corresponding to the execution of each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the present application.
  • the first communication device and the second communication device can be divided into functional units according to the above method example.
  • each functional unit can be divided according to each function, or two or more functions can be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of software functional units.
  • FIG11 shows a possible exemplary block diagram of the device involved in the embodiments of the present application.
  • the device 1100 may include: a processing unit 1102 and a communication unit 1103.
  • the processing unit 1102 is used to control and manage the actions of the device 1100.
  • the communication unit 1103 is used to support the communication between the device 1100 and other devices.
  • the communication unit 1103 is also called a transceiver unit, and may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the device 1100 may also include a storage unit 1101 for storing program code and/or data of the device 1100.
  • the device 1100 may be the first communication device (such as an AP) in the above embodiment, or may be a component (such as a circuit or a chip) disposed in the AP.
  • the processing unit 1102 may support the device 1100 in executing the actions of the AP in the above method examples. Alternatively, the processing unit 1102 mainly executes the internal actions of the AP in the method examples, and the communication unit 1103 may support the communication between the device 1100 and other devices.
  • the communication unit 1103 is used to: send time synchronization information through the first frequency domain resource, and the time synchronization information is used to indicate the start time of the first superframe; the processing unit 1102 is used to: communicate with the station STA in the first superframe by dynamically scheduling through the second frequency domain resource; wherein the frequency corresponding to the first frequency domain resource is lower than the frequency corresponding to the second frequency domain resource. Frequency of.
  • the device 1100 may be the second communication device (such as STA) in the above embodiment, or may also be a component (such as a circuit or chip) disposed in the STA.
  • the processing unit 1102 may support the device 1100 in performing the actions of the STA in the above method examples. Alternatively, the processing unit 1102 mainly performs the internal actions of the STA in the method examples, and the communication unit 1103 may support the communication between the device 1100 and other devices.
  • the communication unit 1103 is used to: receive time synchronization information from the AP through the first frequency domain resources, and the time synchronization information is used to indicate the start time of the first superframe; the processing unit 1102 is used to: communicate with the AP in the first superframe by dynamically scheduling through the second frequency domain resources; wherein the frequency corresponding to the first frequency domain resources is lower than the frequency corresponding to the second frequency domain resources.
  • each unit in the above device can be fully or partially integrated into one physical entity, or they can be physically separated.
  • the units in the device can all be implemented in the form of software calling through processing elements; they can also be all implemented in the form of hardware; some units can also be implemented in the form of software calling through processing elements, and some units can be implemented in the form of hardware.
  • each unit can be a separately established processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, and called and executed by a certain processing element of the device. The function of the unit.
  • processing element described here can also be a processor, which can be an integrated circuit with signal processing capabilities.
  • each operation of the above method or each unit above can be implemented by an integrated logic circuit of hardware in the processor element or in the form of software calling through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above method, such as one or more application specific integrated circuits (ASIC), or one or more digital singnal processors (DSP), or one or more field programmable gate arrays (FPGA), or a combination of at least two of these integrated circuit forms.
  • ASIC application specific integrated circuits
  • DSP digital singnal processors
  • FPGA field programmable gate arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a processor, such as a general-purpose central processing unit (CPU), or other processors that can call programs.
  • CPU general-purpose central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above unit for receiving is an interface circuit of the device, which is used to receive signals from other devices.
  • the receiving unit is an interface circuit of the chip used to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device, which is used to send signals to other devices.
  • the sending unit is an interface circuit of the chip used to send signals to other chips or devices.
  • FIG. 12 there is shown a schematic diagram of the structure of a communication device provided in an embodiment of the present application, which is used to implement the operation of the first communication device (eg, AP) in the above embodiment.
  • the first communication device eg, AP
  • the communication device 1200 may include a processor 1201, a memory 1202, and an interface circuit 1203.
  • the processor 1201 may be used to process the communication protocol and the communication data, and to control the communication device 1200.
  • the memory 1202 may be used to store programs and data, and the processor 1201 may execute the method performed by the AP in the embodiment of the present application based on the program.
  • the interface circuit 1203 may be used for the communication device 1200 to communicate with other devices, and the communication may be wired communication or wireless communication, and the interface circuit may also be replaced by a transceiver.
  • the above memory 1202 may also be externally connected to the communication device 1200, in which case the communication device 1200 may include an interface circuit 1203 and a processor 1201.
  • the above interface circuit 1203 may also be externally connected to the communication device 1200, in which case the communication device 1200 may include a memory 1202 and a processor 1201.
  • the communication device 1200 may include a processor 1201.
  • the communication device shown in FIG12 can implement various processes involving the AP in the above method embodiment.
  • the operations and/or functions of each module in the communication device shown in FIG12 are respectively to implement the corresponding processes in the above method embodiment.
  • the communication device includes: an antenna 1310, a radio frequency part 1320, and a signal processing part 1330.
  • the antenna 1310 is connected to the radio frequency part 1320.
  • the radio frequency part 1320 receives information sent by the AP through the antenna 1310, and sends the information sent by the AP to the signal processing part 1330 for processing.
  • the signal processing part 1330 processes the information of the STA and sends it to the radio frequency part 1320.
  • the radio frequency part 1320 processes the information of the STA and sends it to the AP through the antenna 1310.
  • the signal processing section 1330 may include a modulation and demodulation subsystem for processing each communication protocol layer of data; and may also include The central processing subsystem is used to process the STA operating system and application layer. In addition, it can also include other subsystems, such as the multimedia subsystem, the peripheral subsystem, etc. The multimedia subsystem is used to control the camera, screen display, etc., and the peripheral subsystem is used to connect with other devices.
  • the modem subsystem can be a separate chip.
  • the modem subsystem may include one or more processing elements 1331, for example, a main control CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 1332 and an interface circuit 1333.
  • the storage element 1332 is used to store data and programs, but the program used to execute the method executed by the STA in the above method may not be stored in the storage element 1332, but in a memory outside the modem subsystem, and the modem subsystem loads and uses it when in use.
  • the interface circuit 1333 is used to communicate with other subsystems.
  • the modem subsystem may be implemented by a chip, which includes at least one processing element and an interface circuit, wherein the processing element is used to execute each step of any of the methods executed by the above STA, and the interface circuit is used to communicate with other devices.
  • the unit for STA to implement each step in the above method may be implemented in the form of a processing element scheduler, for example, the device for STA includes a processing element and a storage element, and the processing element calls a program stored in the storage element to execute the method executed by STA in the above method embodiment.
  • the storage element may be a storage element on the same chip as the processing element, that is, an on-chip storage element.
  • the program for executing the method executed by STA in the above method may be in a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads the program from the off-chip storage element to the on-chip storage element to call and execute the method executed by STA in the above method embodiment.
  • the unit of the STA implementing each step in the above method may be configured as one or more processing elements, which are arranged on the modem subsystem.
  • the processing elements here may be integrated circuits, such as one or more ASICs, or one or more DSPs, or one or more FPGAs, or a combination of these integrated circuits. These integrated circuits may be integrated together to form a chip.
  • the units of STA implementing the above steps can be integrated together and implemented in the form of SOC, and the SOC chip is used to implement the above method.
  • the chip can integrate at least one processing element and storage element, and the processing element calls the stored program of the storage element to implement the above STA execution method; or, the chip can integrate at least one integrated circuit to implement the above STA execution method; or, the above implementation methods can be combined, and the functions of some units are implemented by the processing element calling the program, and the functions of some units are implemented by the integrated circuit.
  • the above apparatus for STA may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any one of the STA execution methods provided in the above method embodiments.
  • the processing element may execute part or all of the steps executed by STA in a first manner: that is, by calling a program stored in a storage element; or in a second manner: by combining an integrated logic circuit of hardware in a processor element with instructions to execute part or all of the steps executed by STA; of course, part or all of the steps executed by STA may also be executed in combination with the first manner and the second manner.
  • the processing element here is the same as described above, and can be implemented by a processor, and the function of the processing element can be the same as the function of the processing unit described in Figure 11.
  • the processing element can be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more microprocessors DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be implemented by a memory, and the function of the storage element can be the same as the function of the storage unit described in Figure 11.
  • the storage element can be a memory, or a general term for multiple memories.
  • the STA shown in FIG13 can implement various processes related to the STA in the above method embodiment.
  • the operations and/or functions of each module in the STA shown in FIG13 are respectively to implement the corresponding processes in the above method embodiment.
  • An embodiment of the present application also provides a communication system, which may include an AP and a STA, wherein the AP is used to execute the steps on the AP side of the above method embodiment, and the STA is used to execute the steps on the STA side of the above method embodiment.
  • a communication system which may include an AP and a STA, wherein the AP is used to execute the steps on the AP side of the above method embodiment, and the STA is used to execute the steps on the STA side of the above method embodiment.
  • system and “network” in the embodiments of the present application can be used interchangeably.
  • “At least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist, for example, A and/or B, which can represent: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • “At least one of the following (individuals)” or similar expressions thereof refer to any combination of these items, including any combination of single items (individuals) or plural items (individuals).
  • At least one of A, B and C includes A, B, C, AB, AC, BC or ABC.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, timing, priority or importance of multiple objects.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) that contain computer-usable program code.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种通信方法及装置。其中方法包括:AP通过第一频域资源发送时间同步信息,时间同步信息用于指示第一超帧的起始时间;以及,AP在第一超帧内,通过第二频域资源采用动态调度的方式与STA通信;第一频域资源对应的频率低于第二频域资源对应的频率。采用该方法,AP通过第一频域资源向STA发送时间同步信息,以使得AP与STA之间实现第一超帧的起始时间的同步,进而AP与STA可以在第一超帧内通过第二频域资源采用动态调度的方式进行通信;如此,相比于通过竞争的方式来获取高频频段上的传输资源来说,可以有效降低AP或STA的功耗。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年09月30日提交中国专利局、申请号为202211216870.3、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
目前无线局域网(wireless local area networks,WLAN)大多工作在低频频段,随着使用低频频段的设备的增加,低频频段的频谱资源变得非常拥挤。因此,当前关注于使用高频频段(比如毫米波频段)来获取更加丰富的可用频谱资源。
电工电子工程师协会(institute of electrical and electronics engineers,IEEE)的高频通信协议(比如802.11ad和802.11ay)中规定高频频段上的通信遵循带有冲突避免的载波侦听多路访问(carrier sense multiple access with collision avoid,CSMA/CA)机制,CSMA/CA机制比如可以为空闲信道评估(clear channel assessment,CCA)。其中,CCA是通过导频信号检测或者能量检测来发现信道中可能存在的其他设备的信号,并以此来判断当前信道是否空闲。以接入点(access point,AP)和多个站点(station,STA)之间的通信为例,在STA向AP发送上行信号之前,STA需要执行CCA,当CCA的结果为信道空闲时,STA可以立即向AP发送上行信号,当CCA的结果为信道忙碌(即信道被占用)时,STA不会立即向AP发送上行信号,从而避免干扰的发生。
然而,采用上述方式,接收端无法确定发送端何时发送信号,从而需要长时间检测,导致接收端的功耗较大。
发明内容
本申请提供了一种通信方法及装置,用于通过低频频段和高频频段的相互协作,实现AP和STA在高频频段上通过动态调度的方式进行通信,相比于通过竞争的方式来获取高频频段上的传输资源来说,可以有效降低AP或STA的功耗。
第一方面,本申请实施例提供一种通信方法,该方法可以应用于AP或AP中的部件(如电路或芯片)。以该方法应用于AP为例,在该方法中,AP通过第一频域资源发送时间同步信息,所述时间同步信息用于指示第一超帧的起始时间;以及,在所述第一超帧内,通过第二频域资源采用动态调度的方式与站点STA通信;其中,所述第一频域资源对应的频率低于所述第二频域资源对应的频率。
采用上述方法,AP通过第一频域资源向STA发送时间同步信息,以使得AP与STA之间实现第一超帧的起始时间的同步,进而AP与STA可以在第一超帧内通过第二频域资源采用动态调度的方式进行通信。如此,相比于通过竞争的方式来获取高频频段上的传输资源来说,可以有效降低AP或STA的功耗,降低数据传输时延;且采用动态调度的方式,可以实现时域资源的灵活分配,便于提高资源利用率。
在一种可能的设计中,所述第一超帧包括公告传输间隔和数据传输间隔;在所述第一超帧内,通过第二频域资源采用动态调度的方式与STA通信,包括:在所述公告传输间隔内,通过第二频域资源向STA发送第一调度信息,所述第一调度信息用于指示在所述数据传输间隔内为所述STA分配的第一时域资源;在所述第一时域资源上,通过所述第二频域资源与所述STA进行数据传输。
在一种可能的设计中,所述公告传输间隔包括K个公告传输子间隔,所述K个公告传输子间隔中每个公告传输子间隔对应所述AP关联的至少一个STA,所述K个公告传输子间隔包括第一公告传输子间隔,所述第一公告传输子间隔对应所述STA,K为正整数;所述在所述公告传输间隔内,通过第二频域资源向STA发送第一调度信息,包括:在所述第一公告传输子间隔内,通过所述第二频域资源向所述STA发送所述第一调度信息。
如此,通过设置公告传输子间隔与STA之间的对应关系,使得STA可以在对应的公共传输子间隔内检测来自AP的调度信息,而无需在其它公告传输子间隔内进行检测,从而便于节省STA的功耗。
在一种可能的设计中,所述数据传输间隔包括下行数据传输间隔和/或上行数据传输间隔,所述下行数据传输间隔包括多个下行数据传输子间隔,所述上行数据传输间隔包括多个上行数据传输子间隔;所述第一时域资源包括所述多个下行数据传输子间隔中的至少一个下行数据传输子间隔;或者,所述第一时域资源包括所述多个上行数据传输子间隔中的至少一个上行数据传输子间隔。
如此,通过划分多个下行数据传输子间隔或上行数据传输子间隔,便于AP通过第一调度信息来指示为STA分配的第一时域资源,节省传输资源的开销。
在一种可能的设计中,当所述数据传输间隔包括所述下行数据传输间隔和所述上行数据传输间隔时,所述多个下行数据传输子间隔在时域上连续,所述多个上行数据传输子间隔在时域上连续;所述下行数据传输间隔和所述上行数据传输间隔之间包括第一时间间隔,所述第一时间间隔用于所述AP和/或所述STA执行收发切换。
如此,多个上行或下行数据传输子间隔在时域上连续,便于提高资源利用率。
在一种可能的设计中,所述第一超帧还包括调度请求间隔;所述方法还包括:在所述调度请求间隔内,通过所述第二频域资源接收来自所述STA的调度请求,所述调度请求用于请求在第二超帧的数据传输间隔内为所述STA分配第二时域资源;所述第二超帧为所述第一超帧之后的超帧。
在一种可能的设计中,所述调度请求间隔包括N个调度请求子间隔,所述N个调度请求子间隔中每个调度请求子间隔对应所述AP关联的至少一个STA,所述N个调度请求子间隔包括第一调度请求子间隔,所述第一调度请求子间隔对应所述STA,N为正整数;在所述调度请求间隔内,通过所述第二频域资源接收来自所述STA的调度请求,包括:在所述第一调度请求子间隔内,通过所述第二频域资源接收来自所述STA的调度请求。
在一种可能的设计中,所述第一超帧包括第三时间间隔,所述第三时间间隔的起始时间为所述第一超帧的起始时间,所述第三时间间隔用于所述AP和/或所述STA执行收发切换。
在一种可能的设计中,在所述第一超帧内,通过第二频域资源采用动态调度的方式与STA通信,包括:在所述第三时间间隔执行空闲信道评估;若所述空闲信道评估的结果为信道空闲,则在所述第一超帧内,通过第二频域资源采用动态调度的方式与STA通信。
在一种可能的设计中,所述方法还包括:通过第一频域资源发送指示信息,所述指示信息指示波束赋形训练周期的时长,所述波束赋形训练周期包括至少一个超帧,所述第一超帧为所述至少一个超帧中的任一个超帧;当所述第一超帧为所述波束赋形训练周期内的首个超帧时,所述第一超帧还包括A-BFT间隔,所述A-BFT间隔用于所述AP与所述STA进行波束赋形训练。
在一种可能的设计中,所述方法还包括:通过第一频域资源发送配置信息,所述配置信息用于配置所述第二频域资源。
第二方面,本申请实施例提供一种通信方法,该方法可以应用于STA或STA中的部件(如电路或芯片)。以该方法应用于STA为例,在该方法中,STA通过第一频域资源接收来自AP的时间同步信息,所述时间同步信息用于指示第一超帧的起始时间;在所述第一超帧内,通过第二频域资源采用动态调度的方式与所述AP通信;其中,所述第一频域资源对应的频率低于所述第二频域资源对应的频率。
在一种可能的设计中,所述第一超帧包括公告传输间隔和数据传输间隔;在所述第一超帧内,通过第二频域资源采用动态调度的方式与所述AP通信,包括:在所述公告传输间隔内,通过第二频域资源接收来自所述AP的第一调度信息,所述第一调度信息用于指示在所述数据传输间隔内为所述STA分配的第一时域资源;在所述第一时域资源上,通过所述第二频域资源与所述AP进行数据传输。
在一种可能的设计中,所述公告传输间隔包括K个公告传输子间隔,所述K个公告传输子间隔中每个公告传输子间隔对应所述AP关联的至少一个STA,所述K个公告传输子间隔包括第一公告传输子间隔,所述第一公告传输子间隔对应所述STA,K为正整数;所述在所述公告传输间隔内,通过第二频域资源接收来自所述AP的第一调度信息,包括:在所述第一公告传输子间隔内,通过所述第二频域资源接收来自所述AP的所述第一调度信息。
在一种可能的设计中,所述数据传输间隔包括下行数据传输间隔和/或上行数据传输间隔,所述下行数据传输间隔包括多个下行数据传输子间隔,所述上行数据传输间隔包括多个上行数据传输子间隔;所述第一时域资源包括所述多个下行数据传输子间隔中的至少一个下行数据传输子间隔;或者,所述第一时域资源包括所述多个上行数据传输子间隔中的至少一个上行数据传输子间隔。
在一种可能的设计中,当所述数据传输间隔包括所述下行数据传输间隔和所述上行数据传输间隔时, 所述多个下行数据传输子间隔在时域上连续,所述多个上行数据传输子间隔在时域上连续;所述下行数据传输间隔和所述上行数据传输间隔之间包括第一时间间隔,所述第一时间间隔用于所述AP和/或所述STA执行收发切换。
在一种可能的设计中,所述第一超帧还包括调度请求间隔;所述方法还包括:在所述调度请求间隔内,通过所述第二频域资源向所述AP发送调度请求,所述调度请求用于请求在第二超帧的数据传输间隔内为所述STA分配第二时域资源;所述第二超帧为所述第一超帧之后的超帧。
在一种可能的设计中,所述调度请求间隔包括N个调度请求子间隔,所述N个调度请求子间隔中每个调度请求子间隔对应所述AP关联的至少一个STA,所述N个调度请求子间隔包括第一调度请求子间隔,所述第一调度请求子间隔对应所述STA,N为正整数;在所述调度请求间隔内,通过所述第二频域资源向所述AP发送调度请求,包括:在所述第一调度请求子间隔内,通过所述第二频域资源向所述AP发送所述调度请求。
在一种可能的设计中,所述第一超帧包括第三时间间隔,所述第三时间间隔的起始时间为所述第一超帧的起始时间,所述第三时间间隔用于所述AP和/或所述STA执行收发切换。
在一种可能的设计中,在所述第一超帧内,通过第二频域资源采用动态调度的方式与所述AP通信,包括:在所述第三时间间隔执行空闲信道评估;若所述空闲信道评估的结果为信道空闲,则在所述第一超帧内,通过第二频域资源采用动态调度的方式与所述AP通信。
在一种可能的设计中,所述方法还包括:通过第一频域资源接收来自所述AP的指示信息,所述指示信息指示波束赋形训练周期的时长,所述波束赋形训练周期包括至少一个超帧,所述第一超帧为所述至少一个超帧中的任一个超帧;当所述第一超帧为所述波束赋形训练周期内的首个超帧时,所述第一超帧还包括A-BFT间隔,所述A-BFT间隔用于所述AP与所述STA进行波束赋形训练。
在一种可能的设计中,所述方法还包括:通过第一频域资源接收来自所述AP的配置信息,所述配置信息用于配置所述第二频域资源。
可以理解的是,上述第二方面所描述的方法与第一方面所描述的方法相对应,第二方面中相关技术特征的有益效果可以参照第一方面的描述,不再赘述。
第三方面,本申请实施例提供一种通信方法,该方法可以应用于AP或AP中的部件(如电路或芯片)。以该方法应用于AP为例,在该方法中,AP通过第一频域资源发送时间同步信息,所述时间同步信息用于指示第一超帧的起始时间;以及,AP通过第一频域资源发送第二调度信息,所述第二调度信息用于指示第一超帧内的数据传输间隔;在数据传输间隔内,通过第二频域资源与STA进行通信。
采用上述方法,AP通过第一频域资源向STA发送时间同步信息,以使得AP与STA之间实现第一超帧的起始时间的同步;以及,AP通过第一频域资源向STA发送半静态调度信息,进而AP与STA可以在第一超帧内的半静态调度资源上,通过第二频域资源进行通信。如此,相比于通过竞争的方式来获取高频频段上的传输资源来说,可以有效降低AP或STA的功耗。
在一种可能的设计中,所述数据传输间隔包括至少一个时间单元,所述至少一个时间单元中每个时间单元包括下行数据传输间隔和上行数据传输间隔;所述下行数据传输间隔和所述上行数据传输间隔之间包括第二时间间隔,所述第二时间间隔用于所述AP和/或所述STA执行收发切换。
如此,由于下行传输资源和上行传输资源可以交替出现,从而可以更有效地降低数据传输时延,满足低时延业务的传输需求。
在一种可能的设计中,所述至少一个时间单元中相邻的两个时间单元之间包括所述第二时间间隔。
在一种可能的设计中,所述第一超帧还包括第三时间间隔,所述第三时间间隔的起始时间为所述第一超帧的起始时间,所述第三时间间隔用于所述AP和/或所述STA执行收发切换。
在一种可能的设计中,在数据传输间隔内,通过第二频域资源与STA进行通信,包括:在所述第三时间间隔执行空闲信道评估;若所述空闲信道评估的结果为信道空闲,则在数据传输间隔内,通过第二频域资源与STA进行通信。
在一种可能的设计中,所述方法还包括:通过第一频域资源发送指示信息,所述指示信息指示波束赋形训练周期的时长,所述波束赋形训练周期包括至少一个超帧,所述第一超帧为所述至少一个超帧中的任一个超帧;当所述第一超帧为所述波束赋形训练周期内的首个超帧时,所述第一超帧还包括A-BFT间隔,所述A-BFT间隔用于所述AP与所述STA进行波束赋形训练。
在一种可能的设计中,所述方法还包括:通过第一频域资源发送配置信息,所述配置信息用于配置 所述第二频域资源。
第四方面,本申请实施例提供一种通信方法,该方法可以应用于STA或STA中的部件(如电路或芯片)。以该方法应用于STA为例,在该方法中,STA通过第一频域资源接收来自AP的时间同步信息,所述时间同步信息用于指示第一超帧的起始时间;以及,STA通过第一频域资源接收来自AP的第二调度信息,所述第二调度信息用于指示第一超帧内的数据传输间隔;在数据传输间隔内,通过第二频域资源与AP进行通信。
在一种可能的设计中,所述数据传输间隔包括至少一个时间单元,所述至少一个时间单元中每个时间单元包括下行数据传输间隔和上行数据传输间隔;所述下行数据传输间隔和所述上行数据传输间隔之间包括第二时间间隔,所述第二时间间隔用于所述AP和/或所述STA执行收发切换。
在一种可能的设计中,所述至少一个时间单元中相邻的两个时间单元之间包括所述第二时间间隔。
在一种可能的设计中,所述第一超帧还包括第三时间间隔,所述第三时间间隔的起始时间为所述第一超帧的起始时间,所述第三时间间隔用于所述AP和/或所述STA执行收发切换。
在一种可能的设计中,在数据传输间隔内,通过第二频域资源与AP进行通信,包括:在所述第三时间间隔执行空闲信道评估;若所述空闲信道评估的结果为信道空闲,则在数据传输间隔内,通过第二频域资源与AP进行通信。
在一种可能的设计中,所述方法还包括:通过第一频域资源接收来自AP的指示信息,所述指示信息指示波束赋形训练周期的时长,所述波束赋形训练周期包括至少一个超帧,所述第一超帧为所述至少一个超帧中的任一个超帧;当所述第一超帧为所述波束赋形训练周期内的首个超帧时,所述第一超帧还包括A-BFT间隔,所述A-BFT间隔用于所述AP与所述STA进行波束赋形训练。
在一种可能的设计中,所述方法还包括:通过第一频域资源接收来自AP的配置信息,所述配置信息用于配置所述第二频域资源。
可以理解的是,上述第四方面所描述的方法与第三方面所描述的方法相对应,第四方面中相关技术特征的有益效果可以参照第三方面的描述,不再赘述。
第五方面,本申请提供一种通信装置,所述通信装置具备实现上述第一方面至第四方面的功能,比如,所述通信装置包括执行上述第一方面至第四方面涉及操作所对应的模块或单元或手段(means),所述模块或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第一方面至第四方面涉及的操作相对应。
在一种可能的设计中,所述通信装置包括处理器,处理器可以用于与存储器耦合。所述存储器可以保存实现上述第一方面至第四方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面至第四方面中任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第一方面至第四方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面至第四方面中任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和接口电路,其中,处理器用于通过所述接口电路与其它装置通信,并执行上述第一方面至第四方面中任意可能的设计或实现方式中的方法。
可以理解地,上述第五方面中,处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。此外,以上处理器可以为一个或多个,存储器可以为一个或多个。存储器可以与处理器集成在一起,或者存储器与处理器分离设置。在具体实现过程中,存储器可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第六方面,本申请提供一种通信系统,该通信系统可以包括第一通信装置和第二通信装置;其中,第一通信装置用于执行上述第一方面所提供的通信方法,第二通信装置用于执行上述第二方面所提供的通信方法;或者,第一通信装置用于执行上述第三方面所提供的通信方法,第二通信装置用于执行上述 第四方面所提供的通信方法
第七方面,本申请提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面至第四方面的任一种可能的设计中的方法。
第八方面,本申请提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面至第四方面的任一种可能的设计中的方法。
第九方面,本申请提供一种芯片,所述芯片包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面至第四方面的任一种可能的设计中的方法。
附图说明
图1为本申请实施例适用的一种网络架构示意图;
图2为本申请实施例提供的一种AP MLD示意图;
图3为本申请实施例提供的AP MLD和non AP MLD之间的链路示意图;
图4为本申请实施例提供的信标间隔的结构示例;
图5为本申请实施例一提供的通信方法所对应的流程示意图;
图6为本申请实施例提供的第一超帧的结构示意图;
图7为本申请实施例提供的波束赋形训练周期示意图;
图8为本申请实施例二提供的通信方法所对应的流程示意图;
图9为本申请实施例提供的第一超帧的结构示意图;
图10为本申请实施例提供的波束赋形训练周期示意图;
图11为本申请实施例中所涉及的装置的可能的示例性框图;
图12为本申请实施例提供的一种AP的结构示意图;
图13为本申请实施例提供的一种STA的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例可以适用于WLAN中,比如可以适用于WLAN当前采用的电气电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11系列协议中的任意一种协议。其中,WLAN可以包括一个或多个基本服务集(basic service set,BSS),基本服务集中的网络节点包括接入点(access point,AP)和站点(station,STA)。此外,IEEE 802.11ad在原有的BSS基础上,引入个人基本服务集(personal basic service set,PBSS)和个人基本服务集控制节点(PBSS control point,PCP),每个个人基本服务集可以包含一个AP/PCP和多个关联于该AP/PCP的non AP/PCP,本申请实施例中non AP/PCP可以称为STA,PCP可以理解为AP在PBSS里的角色的称呼。
本申请实施例也可以适用于物联网(internet of things,IoT)网络或车联网(vehicle to X,V2X)网络等无线局域网中。当然,本申请实施例还可以适用于其它可能的通信系统,例如长期演进(long term evolution,LTE)通信系统、LTE频分双工(frequency division duplex,FDD)通信系统、LTE时分双工(time division duplex,TDD)通信系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)通信系统、以及未来演进的通信系统等。
下文以本申请实施例适用于WLAN为例。参见图1,示出了本申请实施例适用的一种WLAN的网络架构图,图1是以该WLAN包括1个AP和2个STA为例。其中,与AP关联的STA,能够接收该AP发送的无线帧,也能够向该AP发送无线帧。本申请实施例将以AP和STA之间的通信为例进行描述,可以理解的是,本申请实施例也可以适用于AP与AP之间的通信,例如各个AP之间可通过分布式系统(distributed system,DS)相互通信,也可以适用于STA与STA之间的通信。
AP可以为终端设备(如手机)进入有线(或无线)网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网络和无线网络的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。比如,AP可以是带有无线保真(wireless fidelity,Wi-Fi)芯片的终端设备(如手机)或者网络设备(如路 由器)。本申请实施例中,AP可以为支持802.11be制式的设备,或者也可以为支持802.11ax、802.11ay、802.11ac、802.11n、802.11g、802.11b、802.11a以及802.11be下一代等802.11家族的多种WLAN制式的设备。
STA可以为无线通讯芯片、无线传感器或无线通信终端等,也可称为用户。例如,STA可以为支持Wi-Fi通讯功能的移动电话、支持Wi-Fi通讯功能的平板电脑、支持Wi-Fi通讯功能的机顶盒、支持Wi-Fi通讯功能的智能电视、支持Wi-Fi通讯功能的智能可穿戴设备、支持Wi-Fi通讯功能的车载通信设备和支持Wi-Fi通讯功能的计算机等等。可选地,STA可以支持802.11be制式,或者也可以支持802.11ax、802.11ay、802.11ac、802.11n、802.11g、802.11b、802.11a、802.11be下一代等802.11家族的多种WLAN制式。
可以理解的是,图1中所示意的AP和STA的数量仅是举例,还可以更多或者更少。
图1中所涉及的AP和STA可以为具有双模通信功能的通信装置,也就是具有低频(low frequency,LF)频段(或信道或链路)通信模式,和高频(highfrequency,HF)频段通信模式的通信装置。其中,低频频段比如包括sub 1吉赫兹(GHz),2.4GHz,5GHz,6GHz等,高频频段比如包括45GHz,60GHz等。
示例性地,具有双模通信功能的通信装置可以为双频双并发(dual-band dual-concurrent,DBDC)设备,或者也可以为多链路设备(multi-link device,MLD)。下面分别进行说明。
(1)DBDC设备
DBDC设备集成了两套独立且完整的链路,含两套基带处理器和射频前端,从而可支持在两个频段独立工作。
当AP和STA均为DBDC设备时,比如AP为DBDC设备1,STA为DBDC设备2,此种情形下,AP与STA可以在低频链路上进行信令交互,以建立低频链路连接;以及,在高频链路上进行信令交互,以建立高频链路连接。
(2)MLD
在IEEE 802.11be协议中,MLD支持多链路操作技术,MLD具有多个射频模块,分别工作在不同频段上,例如MLD工作的频段可以为sub 1GHz,2.4GHz,5GHz,6GHz以及高频60GHz的全部或者一部分。MLD可以包括AP MLD和/或非接入点(non-AP)MLD,例如non-AP MLD可以是STA MLD。
示例性地,以AP MLD为例,AP MLD可以包括一个或多个附属(affiliated)站点,每个附属站点有各自的媒体访问控制(media access control,MAC)地址(address)。如图2所示,AP MLD的附属站点包括AP1和AP2,AP1的低层(low)MAC地址为链路地址1,AP2的低层MAC地址为链路地址2。此外,AP MLD还有一个高层(upper)MAC地址,称为MLD MAC地址。
AP MLD和non-AP MLD可以通过在低频链路上的信令交互建立多链路连接。如图3所示,AP MLD包括AP1和AP2,AP1包括AP1PHY、AP1低层MAC和高层MAC,AP2包括AP2PHY、AP2低层MAC和高层MAC,其中AP1和AP2之间共享高层MAC,non-AP MLD包括STA1和STA2,STA1包括STA1PHY、STA1低层MAC和高层MAC,STA2包括STA2PHY、STA2低层MAC和高层MAC,其中STA1和STA2之间共享高层MAC,AP1和STA1之间通过链路1连接,AP2和STA2之间通过链路2连接。
在多链路建立时,non-AP MLD在链路1上发送关联请求(association request)帧,关联请求帧携带链路1的STA侧信息和链路2的STA侧信息。比如,关联请求帧可以携带多链路元素(multi-link element)字段,multi-link element字段用于承载non-AP MLD的信息以及non-AP MLD中站点的信息。AP MLD在链路1上发送关联响应(association response)帧,关联响应帧携带链路1侧的AP侧信息,还携带链路2的AP侧信息,从而实现non-AP MLD的STA1和STA2分别与AP MLD的AP1和AP2建立关联。
下面先对本申请实施例所涉及的相关技术特征进行解释说明。这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限定。
(1)波束赋形训练
由于高频频段存在路径损耗大的问题,因此,不同设备之间在高频频段通信时,需要进行波束赋形训练。在图1所示意的网络架构中,当AP发起波束赋形训练时,AP可称为发起方(initiator),STA 可称为响应方(responder);当STA发起波束赋形训练时,STA可称为发起方,AP可称为响应方。也就是说,可将发起波束赋形训练的一方称为发起方,将响应波束赋形训练的一方称为响应方。可选地,在一些其它可能的场景中,也可将发起波束赋形训练的一方称为响应方,将响应波束赋形训练的一方称为发起方;或者,将波束赋形训练的一方固定称为发起方,将波束赋形训练的另一方固定称为响应方,发起方会发起波束赋形训练,也可响应响应方发起的波束赋形训练;同样地,响应方也会发起波束赋形训练,也可响应发起方发起的波束赋形训练。
在高频通信协议(比如802.11ad和802.11ay协议)中,波束赋形训练可以包括扇区级扫描(sector level sweeping,SLS)过程和/或波束改进协议(beam refinement protocol,BRP)过程。其中,SLS过程包括发起方扇区扫描(initiator sector sweep,ISS)和/或响应方扇区扫描(responder sector sweep,RSS)。其中,ISS可以包括发起方发送扇区扫描(initiator transmission of sector sweep,I-TXSS)和/或发起方接收扇区扫描(initiator reception of sector sweep,I-RXSS)。RSS可以包括响应方发送扇区扫描(responder transmission of sector sweep,R-TXSS)和/或响应方接收扇区扫描(responder reception of sector sweep,R-RXSS)。
在I-TXSS中,AP可以在高频频段上,定向发送多个扇区扫描(sector sweep,SSW)帧;相应地,STA可以在高频频段上,准全向接收来自AP的至少一个SSW帧,进而STA可确定AP对应于STA的最佳发送天线和最佳发送扇区,并将最佳发送天线的标识和最佳发送扇区的标识反馈给AP。
在I-RXSS中,AP可以在高频频段上,准全向发送多个SSW帧;相应地,STA可以在高频频段上,定向接收至少一个SSW帧,进而STA可以根据至少一个SSW帧的接收质量,确定STA对应于AP的最佳接收天线和最佳接收扇区。
在R-TXSS中,STA可以在高频频段上,定向发送多个SSW帧;相应地,AP可以在高频频段上,准全向接收来自STA的至少一个SSW帧,进而AP可确定STA对应于AP的最佳发送天线和最佳发送扇区,并将最佳发送天线的标识和最佳发送扇区的标识反馈给STA。
在R-RXSS中,STA可以在高频频段上,准全向发送多个SSW帧;相应地,AP可以在高频频段上,定向接收至少一个SSW帧,进而AP可确定AP对应于STA的最佳接收天线和最佳接收扇区。
可以理解的是,上述ISS(即I-TXSS和/或I-RXSS)也可以称为下行波束赋形训练(downlink beamforming training,DL BFT)。其中,AP对应于STA的最佳发送天线和最佳发送扇区,即为下行的最佳发送天线和最佳发送扇区;STA对应于AP的最佳接收天线和最佳接收扇区,即为下行的最佳接收天线和最佳接收扇区。
上述RSS(即R-TXSS和/或R-RXSS)也可以称为上行波束赋形训练(uplink beamforming training,UL BFT)。其中,STA对应于AP的最佳发送天线和最佳发送扇区,即为上行的最佳发送天线和最佳发送扇区;AP对应于STA的最佳接收天线和最佳接收扇区,即为上行的最佳接收天线和最佳接收扇区。
此外,SLS过程通常用于发送波束训练,BRP过程通常用于接收波束训练及迭代求精。若AP或STA仅采用一个发送天线模式,则接收波束训练可能会作为SLS阶段的一部分进行。
(2)信标间隔
高频通信协议(比如802.11ad和802.11ay协议)中引入了信标间隔(beacon interval,BI)。图4为信标间隔的结构示意图。如图4所示,信标间隔分为信标头指示(beacon header indication,BHI)和数据传输间隔(data transmission interval,DTI)。其中,BHI包括信标传输间隔(beacon transmission interval,BTI)、关联-波束赋形训练(association beamforming training,A-BFT)间隔以及公告传输间隔(announcement transmission interval,ATI)。
BTI:是从AP在信标间隔中发送的第一个定向多千兆比特(directional multi-gigabit,DMG)信标帧(beacon frame)开始,到同一个信标间隔内最后一个DMG信标帧传输结束之间的时间区间。其中,AP在BTI内发送的多个DMG信标帧可用于ISS。
A-BFT:可用于多个STA与AP进行关联,以及RSS;在A-BFT间隔中传输的帧可以包括SSW帧、SSW反馈帧(或短SSW帧、短SSW反馈帧)等。
ATI:用于AP向STA轮询缓存数据信息,或AP发送公告(如管理帧),或AP向STA分配DTI中的资源,即将DTI中的资源分为若干个子区间。
DTI:可以包括若干个子区间,根据接入的形式的不同,这若干个子区间可以分为基于竞争接入期间(contention based access period,CBAP)和服务区间(service period,SP)。其中,CBAP是STA通 过竞争的方式接入信道的传输时段;SP是分配给特定STA的资源。
目前,高频通信协议是将高频频段上的通信作为一项独立的通信技术,规定高频频段上的通信遵循CSMA/CA机制,CSMA/CA机制比如可以为CCA。比如,在AP向STA发送下行信号之前,AP需要执行CCA,当CCA的结果为信道空闲时,AP可以立即向STA发送下行信号,当CCA的结果为信道忙碌(即信道被占用)时,AP不会立即向STA发送下行信号,从而避免干扰的发生。类似地,在STA向AP发送上行信号之前,STA需要执行CCA,当CCA的结果为信道空闲时,STA可以立即向AP发送上行信号,当CCA的结果为信道忙碌(即信道被占用)时,STA不会立即向AP发送上行信号,从而避免干扰的发生。
也就是说,AP或STA是通过竞争的方式来获取传输资源。采用上述方式,接收端无法确定发送端何时发送信号,从而需要长时间检测,导致接收端的功耗较大。
基于此,本申请实施例提供一种通信方法,通过低频频段和高频频段的相互协作,实现AP和STA在高频频段上通过动态调度或半静态调度的方式进行通信,相比于通过竞争的方式来获取高频频段上的传输资源来说,可以有效降低AP或STA的功耗。
下面结合具体实施例对本申请实施例提供的通信方法进行详细描述。在具体实施例中,将以本申请实施例所提供的方法应用于图1所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置,其中,第一通信装置可以是AP或能够支持AP实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片或芯片系统。第二通信装置可以是STA或能够支持STA实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片或芯片系统。为了便于介绍,在下文中,以该方法由AP和STA执行为例,也就是,以第一通信装置是AP、第二通信装置是STA为例。
实施例一
图5为本申请实施例一提供的通信方法所对应的流程示意图。如图5所示,该流程可以包括:
S501,AP通过第一频域资源发送时间同步信息,时间同步信息用于指示第一超帧的起始时间。
(1)对第一频域资源和第二频域资源进行介绍。
示例性地,第一频域资源不同于下文中的第二频域资源,第一频域资源对应的频率低于第二频域资源对应的频率。其中,频域资源可以理解为一段频率范围,第一频域资源对应的频率低于第二频域资源对应的频率,可以是指:第一频域资源对应的最高频率低于第二频域资源对应的最低频率。比如,第一频域资源为低频频段的频域资源,第二频域资源为高频频段的频域资源。
(2)对时间同步信息所包括的内容进行介绍。
示例性地,时间同步信息可以包括第一超帧的起始时间信息和第一超帧的编号或帧号,起始时间信息表征一个具体时间,比如起始时间信息表征的具体时间为X1年X2月X3日X4时X5分X6秒X7毫秒X8纳秒。此种情形下,STA可以将起始时间信息表征的具体时间作为第一超帧的起始时间。第一超帧的起始时间信息用于AP和STA对齐第一超帧的起始时间。在其它可能的实施例中,第一超帧的起始时间也可以替换为第一超帧的帧边界。
可选地,时间同步信息还包括第一时间精度的时间信息和第二时间精度的时间信息。其中,第一时间精度低于第二时间精度,比如第一时间精度可以为微秒(us)级(如1~25us),第二时间精度可以为纳秒(ns)级。第一时间精度的时间信息和第二时间精度的时间信息用于AP和STA实现时间同步。
可以理解的是,STA通过时间同步信息确定第一超帧的起始时间后,可以根据超帧的帧长(比如可以由AP通过低频频段指示给STA),确定后续超帧的起始时间。此外,STA还可以在低频频段上进行时间同步跟踪。
(3)对AP发送时间同步的具体实现进行介绍。
AP通过第一频域资源发送时间同步信息的具体实现可以有多种,此处描述两种可能的实现。
第一种可能的实现,AP可以在第一频域资源上发送低频信标帧,低频信标帧包括第一时间精度的时间信息。AP还可以在第一频域资源上发送高频信标帧(比如DMG信标帧),本申请实施例可以在高频信标帧中设计两个扩展字段,其中一个扩展字段包括第二时间精度的时间信息,另一个扩展字段包括第一超帧的起始时间信息。
第二种可能的实现,AP可以在第一频域资源上发送低频信标帧,低频信标帧包括第一时间精度的 时间信息。进一步地,本申请实施例可以在低频信标帧中设计两个扩展字段,其中一个扩展字段包括第二时间精度的时间信息,另一个扩展字段包括第一超帧的起始时间信息。
示例性地,AP可以在第一频域资源上以广播或组播的方式发送时间同步信息,进而可能会有多个STA接收到时间同步信息。比如,在上述第一种可能的实现中,AP可以在第一频域资源上以广播的方式发送低频信标帧和高频信标帧;在上述第二种可能的实现中,AP可以在第一频域资源上以广播的方式发送低频信标帧。
此外,当采用上述第二种可能的实现时,AP还可以在低频频段上发送高频信标帧(比如广播高频信标帧)。在前文所描述的信标间隔内,AP可以在BTI内通过高频频段广播高频信标帧,然而,由于广播信号需要覆盖所有方向,而高频频段上的衰减比较严重,为了保证广播信号能被正确接收,AP需要在多个扇区上发送广播信号,以保证所有位置都能覆盖,从而会导致AP的功耗较大。而低频频段的覆盖范围较大,通过低频频段发送高频信标帧,可以实现更可靠的传输,且便于降低AP的功耗。
S502,AP与STA在第一超帧内,通过第二频域资源采用动态调度的方式进行通信。
示例性地,AP可以通过第一频域资源发送配置信息,配置信息用于配置第二频域资源,比如配置信息可以包括第二频域资源的频点和/或带宽等。或者,第二频域的频点和/或带宽也可以是预先定义的。
示例性地,AP可以与多个STA在第一超帧内,通过第二频域资源采用动态调度的方式进行通信。比如多个STA包括第一STA,下文将以AP与第一STA之间的通信为例进行描述。在动态调度中,AP可以在第一超帧内通过第二频域资源向第一STA发送第一调度信息,第一调度信息用于指示在第一超帧内为第一STA分配的第一时域资源,第一时域资源可以用于一次上行数据传输或者用于一次下行数据传输。也就是说,在动态调度中,第一STA每次执行上行传输或下行传输的资源均可以由AP通过调度信息为第一STA分配。
示例性地,第一超帧可以包括公告传输间隔和数据传输间隔。可选地,第一超帧还包括以下至少一项:调度请求(schedule request,SR)间隔;A-BFT间隔;第三时间间隔。
图6为第一超帧的结构示意图;其中,图6中的(a)为第一超帧的一种可能的结构示例,图6中的(b)为第一超帧的又一种可能的结构示例。以图6中的(a)为例,第三时间间隔的起始时间为第一超帧的起始时间,第三时间间隔的结束时间为A-BFT间隔的起始时间,A-BFT间隔的结束时间为公告传输间隔的起始时间,公告传输间隔的结束时间为数据传输间隔的起始时间,数据传输间隔的结束时间为调度请求间隔的起始时间,调度请求间隔的结束时间为第一超帧的结束时间。可以理解的是,本申请实施例对第一超帧所包括的各种间隔的具体位置可以不做限定,上述图6所示意的位置关系仅为一种可能的示例。
(1)公告传输间隔
公告传输间隔可以用于AP通过第二频域资源向多个STA发送调度信息。比如,AP可以在公告传输间隔内,通过第二频域资源向第一STA发送第一调度信息,第一调度信息用于指示在数据传输间隔内为第一STA分配的第一时域资源。
作为一种可能的实现,公告传输间隔可以包括K个公告传输子间隔,K个公告传输子间隔中每个公告传输子间隔对应至少一个STA,K为正整数。比如,每个公告传输子间隔对应一个STA或一个STA组,一个STA组可以包括一个或多个STA。
若第一STA对应的公告传输子间隔为第一公告传输子间隔,则AP可以在第一公告传输子间隔内,通过第二频域资源向第一STA发送第一调度信息。如此,第一STA可以在第一公共传输子间隔内检测来自AP的调度信息,而无需在其它公告传输子间隔内进行检测,从而便于节省第一STA的功耗。
其中,STA与公告传输子间隔之间的对应关系可以是由AP指示给STA的。比如,以第一STA为例,AP与第一STA关联后,AP可以在第一频域资源上向第一STA发送指示信息,指示信息指示第一STA关联K个公告传输子间隔中的第一公告传输子间隔。
或者,STA与公告传输子间隔之间的对应关系符合预设规则,预设规则可以是协议预先定义的。比如,预设规则可以为i=FmodK;其中,i表示第一STA对应的公告传输子间隔的编号,比如K个公告传输子间隔的编号分别为0,1,……K-1;F表示第一STA的标识信息,第一STA的标识信息可以为序列号;mod表示取余预算。
(2)数据传输间隔
数据传输间隔也可以称为SP,数据传输间隔可以用于AP与多个STA通过第二频域资源进行数据 传输。比如,若AP向第一STA发送了第一调度信息(第一调度信息指示AP在数据传输间隔内为第一STA分配的第一时域资源),则AP与第一STA可以在第一时域资源上通过第二频域资源进行数据传输。
作为一种可能的实现,如图6所示,数据传输间隔可以包括下行数据传输间隔和/或上行数据传输间隔,图6中是以数据传输间隔可以包括下行数据传输间隔和上行数据传输间隔为例进行示意的。其中,下行数据传输间隔可以包括多个下行数据传输子间隔(也可以称为D-SP),多个下行数据传输子间隔的时长可以相同;上行数据传输间隔可以包括多个上行数据传输子间隔(也可以称为U-SP),多个上行数据传输子间隔的时长可以相同。
进一步地,多个下行数据传输子间隔在时域上连续,即下行数据传输间隔是一段连续的时域资源;多个上行数据传输子间隔在时域上连续,即上行数据传输间隔是一段连续的时域资源。相比于现有技术来说,由于现有技术中不同帧之间具有短帧间隔(short inter-frame space,SIFS)(由于发送帧之前需要执行CCA,信道空闲的情况下才能发送帧,因此,不同帧之间具有SIFS),而本发明实施例中的多个上行或下行数据传输子间隔在时域上连续,便于提高资源利用率。此外,下行数据传输间隔和上行数据传输间隔之间包括第一时间间隔,第一时间间隔用于AP和/或STA执行收发切换(或者说上下行切换)。
上述第一时域资源可以包括多个下行数据传输子间隔中的至少一个下行数据传输子间隔,此种情形下,这至少一个下行数据传输子间隔用于一次下行数据传输。或者,第一时域资源包括多个上行数据传输子间隔中的至少一个上行数据传输子间隔,此种情形下,这至少一个上行数据传输子间隔用于一次上行数据传输。
其中,第一调度信息指示第一时域资源的方式可以有多种。比如,以第一时域资源为用于下行数据传输的时域资源为例,当下行数据传输间隔可以包括多个下行数据传输子间隔时,第一调度信息可以包括多个比特位,这多个比特位与多个下行数据传输子间隔一一对应,比如比特位1对应下行数据传输子间隔1,当比特位1的取值为1时,表示第一时域资源包括下行数据传输子间隔1,当比特位1的取值为0时,表示第一时域资源不包括下行数据传输子间隔1。
(3)调度请求间隔
调度请求间隔可以用于多个STA通过第二频域资源向AP发送调度请求。比如,第一STA可以在调度请求间隔内,通过第二频域资源向AP发送调度请求,调度请求用于请求在第二超帧的数据传输间隔内为第一STA分配第二时域资源。其中,第二超帧为第一超帧之后的超帧,比如第二超帧可以为第一超帧的下一个超帧。
作为一种可能的实现,调度请求间隔可以包括N个调度请求子间隔,N个调度请求子间隔中每个调度请求子间隔对应至少一个STA,N为正整数。比如,每个调度请求子间隔对应一个STA或一个STA组,一个STA组可以包括一个或多个STA。
若第一STA对应的调度请求子间隔为第一调度请求子间隔,则第一STA可以在第一调度请求子间隔内,通过第二频域资源向AP发送调度请求。
其中,STA与调度请求子间隔之间的对应关系可以是由AP指示给STA的;或者,STA与调度请求子间隔之间的对应关系符合预设规则,预设规则可以是协议预先定义的。具体可以参照上文STA与公告传输子间隔之间的对应关系的描述。
(4)A-BFT间隔
A-BFT间隔可以用于AP与多个STA通过第二频域资源进行波束赋形训练。比如,AP与第一STA可以在A-BFT间隔内,通过第二频域资源进行波束赋形训练;其中,波束赋形训练可以包括SLS过程和/或BRP过程,也就是说,AP与第一STA在A-BFT间隔内传输的帧可以包括SSW帧和/或BRP帧,具体可以由AP通过第一频域资源指示给STA。
作为一种可能的实现,如图6所示,A-BFT间隔可以包括U-BFT间隔和D-BFT间隔。U-BFT间隔用于执行上行波束赋形训练,D-BFT间隔用于执行下行波束赋形训练。U-BFT间隔和D-BFT间隔之间包括第四时间间隔,第四时间间隔用于AP和/或STA执行收发切换。进一步地,U-BFT间隔可以包括多个U-BFT子间隔,相邻的两个U-BFT子间隔之间包括第五时间间隔,第五时间间隔用于执行波束切换,比如第五时间间隔可以为短波束赋形帧间隔((short beamforming inter-frame space,SBIFS)。D-BFT间隔可以包括多个D-BFT子间隔,相邻的两个D-BFT子间隔之间包括第五时间间隔。
(5)第三时间间隔
第三时间间隔可以用于AP和/或STA执行收发切换,可选地,第三时间间隔还用于AP和/或STA 执行空闲信道评估。
比如,AP可以在第三时间间隔内执行空闲信道评估,若空闲信道评估的结果为信道空闲,则AP可以在第一超帧内与至少一个STA通信,比如AP可以在公告传输间隔内向至少一个STA发送调度信息,以及在数据传输间隔内与至少一个STA进行数据传输。若空闲信道评估的结果为信道忙碌,则AP可以不在第一超帧的公告传输间隔内发送调度信息。
又比如,STA可以在第三时间间隔内执行空闲信道评估,若空闲信道评估的结果为信道空闲,则STA可以在第一超帧的调度请求间隔内发送调度请求;若空闲信道评估的结果为信道忙碌,则STA可以不在第一超帧的调度请求间隔内发送调度请求。
如此,通过AP和/或STA在第一超帧的第三时间间隔内执行空闲信道评估,并根据空闲信道评估的结果来决定在第一超帧内是否发送信息,从而可以有效避免干扰。且,由于AP和/或STA只需在第一超帧内执行一次空闲信道评估,从而便于节省AP和/或STA的功耗。
采用上述方法,AP通过第一频域资源向STA发送时间同步信息,以使得AP与STA之间实现第一超帧的起始时间的同步,进而AP与STA可以在第一超帧内通过第二频域资源采用动态调度的方式进行通信。如此,相比于通过竞争的方式来获取高频频段上的传输资源来说,可以有效降低AP或STA的功耗,降低数据传输时延(比如物理层的传输时延可以达到毫秒级);且采用动态调度的方式,可以实现时域资源的灵活分配,便于提高资源利用率。
此外,上述实施例一中的第一超帧可以为波束赋形训练周期内的任一个超帧。下面结合图7对本申请实施例引入的波束赋形训练周期进行介绍。
图7为波束赋形训练周期示意图。如图7所示,波束赋形训练周期可以包括至少一个超帧,比如波束赋形训练周期包括m个超帧,分别为超帧1、超帧2、……超帧m。至少一个超帧可以包括一个第一类型超帧和m-1个第二类型超帧。第一类型超帧可以为波束赋形训练周期的首个超帧(即超帧1),此种情形下,超帧2至超帧m均为第二类型超帧。可以理解的是,第一类型超帧也可以为波束赋形训练周期的超帧2至超帧m中的某一个超帧,本申请实施例对第一类型超帧在波束赋形训练周期内的具体位置不做限定。
第一类型超帧与第二类型超帧的区别在于,第一类型超帧包括A-BFT间隔,第二类型超帧不包括A-BFT间隔。比如,第一类型超帧可以如图6中的(a)所示,第二类型超帧可以如图6中的(b)所示。
作为一种可能的实现,AP可以在第一频域资源上发送波束赋形训练周期信息,波束赋形周期信息用于指示波束赋形周期所包括的各个超帧的时间分配情况。比如AP可以通过高频信标帧中的扩展字段发送波束赋形训练周期信息,或者也可以通过低频信标帧中的扩展字段发送波束赋形训练周期信息,或者也可以通过低频频段上传输的其它信令来发送波束赋形训练周期信息,具体不做限定。
示例性地,波束赋形训练周期信息可以包括以下至少一项:
1)波束赋形训练周期的时长。根据前文信标间隔的介绍可以看出,一个信标间隔内包括一个A-BFT间隔,也就是说,信标间隔和波束赋形训练周期相同。而本发明实施例中,AP可以在低频频段上发送高频信标帧,在高频频段上进行波束赋形训练,即信标帧周期和波束赋形训练周期可以是解耦的,因此,本申请实施例中,信标帧周期可以等于波束赋形训练周期,或者信标帧周期也可以不等于波束赋形训练周期,从而可以实现更灵活的设置。其中,波束赋形训练周期的时长可以由AP根据实际需要进行设置并指示给STA。
2)波束赋形训练周期包括的超帧的个数,比如m的取值。
3)第一类型超帧的时长,比如第一类型超帧的时长可以为5ms、1ms或0.5ms。
4)第一类型超帧的时间分配信息。示例性地,第一类型超帧的时间分配信息可以包括以下至少一项:第三时间间隔的时长或类型信息;A-BFT间隔的时间分配信息;公告传输间隔的时间分配信息;数据传输间隔的时间分配信息;调度请求间隔的时间分配信息。
示例性地,可以预先定义多种时间间隔类型,不同类型对应不同的时长。进而,AP向STA指示第三时间间隔的类型后,STA可以根据类型和时长的对应关系,确定出第三时间间隔的类型。
A-BFT间隔的时间分配信息可以包括以下至少一项:A-BFT间隔的时长;U-BFT间隔的时长;U-BFT子间隔的时长;U-BFT间隔的个数;D-BFT间隔的时长;D-BFT子间隔的时长;D-BFT间隔的个数; 第四时间间隔的时长或类型信息;第五时间间隔的时长或类型信息。
公告传输间隔的时间分配信息可以包括以下至少一项:公告传输间隔的时长;公告传输子间隔的个数;公告传输子间隔的时长。
数据传输间隔的时间分配信息可以包括以下至少一项:数据传输间隔的时长;下行数据传输间隔的时长;下行数据传输子间隔的时长;下行数据传输子间隔的个数;上行数据传输间隔的时长;上行数据传输子间隔的时长;上行数据传输子间隔的个数;第一时间间隔的时长和/或类型信息。
调度请求间隔的时间分配信息可以包括以下至少一项:调度请求间隔的时长;调度请求子间隔的个数;调度请求子间隔的时长。
5)第二类型超帧的时长。第二类型超帧的时长可以与第一类型超帧的时长相同。
6)第二类型超帧的时间分配信息。第二类型超帧的时间分配信息可以参照第一类型的时间分配信息。比如,第二类型超帧的时间分配信息可以复用第一类型超帧的时间分配信息。
也就是说,AP可以通过第一频域资源向STA指示超帧的时间分配情况,具体的指示方式本申请实施例可以不做限定。在其它可能的实施例中,超帧的时间分配情况或者超帧内某一或某些间隔的时间分配情况也可以由协议预先约定。
实施例二
图8为本申请实施例二提供的通信方法所对应的流程示意图。如图8所示,该流程可以包括:
S801,AP通过第一频域资源发送时间同步信息,时间同步信息用于指示第一超帧的起始时间。
此处,S801的具体实现可以参照实施例一中的S501。
S802,AP通过第一频域资源发送第二调度信息,第二调度信息用于指示第一超帧内的数据传输间隔;相应地,STA在第一频域资源上接收第二调度信息。
示例性地,AP可以通过第一频域资源以广播或组播的方式发送第二调度信息。比如,AP可以通过高频信标帧中的扩展字段发送第二调度信息,或者也可以通过低频信标帧中的扩展字段发送第二调度信息,或者也可以通过低频频段上传输的其它信令来发送第二调度信息,具体不做限定。
S803,AP与STA在数据传输间隔内,通过第二频域资源进行数据传输。
上述第二调度信息可以理解为半静态调度信息。作为一种可能的实现,在半静态调度中,AP可以在数据传输间隔内分配周期性的上下行时域资源,比如AP可以在第一频域资源上发送第二调度信息,第二调度信息用于指示数据传输间隔内周期性的上下行时域资源。进而,AP与STA可以在周期性的上下行时域资源上,通过第二频域资源进行数据传输。
如上所述,第一超帧可以包括数据传输间隔,可选地,第一超帧还包括以下至少一项:A-BFT间隔;第三时间间隔。
图9为第一超帧的结构示意图;其中,图9中的(a)为第一超帧的一种可能的结构示例,图9中的(b)为第一超帧的又一种可能的结构示例。以图9中的(a)为例,第三时间间隔的起始时间为第一超帧的起始时间,第三时间间隔的结束时间为A-BFT间隔的起始时间,A-BFT间隔的结束时间为数据传输间隔的起始时间,数据传输间隔的结束时间为第一超帧的结束时间。可以理解的是,本申请实施例对第一超帧所包括的各种间隔的具体位置可以不做限定,上述图9所示意的位置关系仅为一种可能的示例。
示例性地,如图9所示,数据传输间隔可以包括至少一个时间单元,至少一个时间单元中每个时间单元包括下行数据传输间隔和上行数据传输间隔。下行数据传输间隔和上行数据传输间隔之间包括第二时间间隔,第二时间间隔用于AP和/或STA执行收发切换。当数据传输间隔包括多个时间单元时,下行数据传输间隔周期性出现,上行数据传输间隔也是周期性出现。A-BFT间隔和第三时间间隔的描述可以参照实施例一,不再赘述。
采用上述方法,AP通过第一频域资源向STA发送时间同步信息,以使得AP与STA之间实现第一超帧的起始时间的同步;以及,AP通过第一频域资源向STA发送半静态调度信息,进而AP与STA可以在第一超帧内的半静态调度资源上,通过第二频域资源进行通信。如此,相比于通过竞争的方式来获取高频频段上的传输资源来说,可以有效降低AP或STA的功耗;且在半静态调度中,由于下行传输资源和上行传输资源可以交替出现,从而可以更有效地降低数据传输时延,满足低时延业务的传输需求。
此外,上述实施例二中的第一超帧可以为波束赋形训练周期内的任一个超帧。下面结合图10对本申请实施例引入的波束赋形训练周期进行介绍。
图10为波束赋形训练周期示意图。如图10所示,波束赋形训练周期可以包括一个第一类型超帧和m-1个第二类型超帧。第一类型超帧可以为波束赋形训练周期的首个超帧(即超帧1),此种情形下,超帧2至超帧m均为第二类型超帧。第一类型超帧与第二类型超帧的区别在于,第一类型超帧包括A-BFT间隔,第二类型超帧不包括A-BFT间隔。比如,第一类型超帧可以如图9中的(a)所示,第二类型超帧可以如图9中的(b)所示。
可以理解的是,图10与图7的区别之处在于:波束赋形训练周期所包括的超帧的结构不同,除此区别之外的其它内容,均可以参照图7中的描述。
针对于上述实施例,可以理解的是:
(1)上述侧重描述了实施例一和实施例二之间的差异之处,除差异之处的其它内容,实施例一和实施例二之间可以相互参照;此外,同一实施例中,不同实现方式或不同示例之间也可以相互参照。
(2)上述实施例一和实施例二所描述的方案仅为低频频段与高频频段相互协作的一些示例,高频频段和低频频段相互协作也可以适用到其它可能的场景中,以便于充分利用低频通信技术的优点,简化高频通信技术的设计,以较低的芯片面积和较低的功耗实现高频通信。
举个例子,可以通过高频频段和低频频段协作来实现频率同步,比如AP或STA可以低频频段上获取频偏估计信息,进而利用低频频段上的频偏估计信息,对高频频段进行频率同步;或者,AP或STA可以高频频段上获取频偏估计信息,进而利用高频频段上的频偏估计信息,对低频频段进行频率同步。
再举个例子,除了高频信标帧之外,其它可能的信息也可以在低频频段上传输,比如对时延要求较低的信息,如确认信息、反馈信息、信道测量信息、波束测量信息等,均可通过低频频段进行更可靠的传输,同时避免高频波束扫描导致的时间、功耗浪费,以使得高频频段上可以专注于点对点的高效传输。
再举个例子,现有技术中,当高频链路上没有数据传输时,为了维持高频链路的连接,STA可能需要在高频链路上周期性地与AP进行通信(比如周期性地在高频链路上接收高频信标帧等),从而可能会增加待机功耗。本申请实施例中,当高频链路上没有数据传输时,可以通过低频频段来传输待机状态下的信令,以维持高频链路的连接,从而降低高频链路上的待机功耗。
上述主要从通信装置交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,第一通信装置和第二通信装置可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一通信装置和第二通信装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
图11示出了本申请实施例中所涉及的装置的可能的示例性框图。如图11所示,装置1100可以包括:处理单元1102和通信单元1103。处理单元1102用于对装置1100的动作进行控制管理。通信单元1103用于支持装置1100与其他设备的通信。可选地,通信单元1103也称为收发单元,可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。装置1100还可以包括存储单元1101,用于存储装置1100的程序代码和/或数据。
该装置1100可以为上述实施例中的第一通信装置(比如AP)、或者还可以为设置在AP中的部件(例如电路或者芯片)。处理单元1102可以支持装置1100执行上文中各方法示例中AP的动作。或者,处理单元1102主要执行方法示例中的AP的内部动作,通信单元1103可以支持装置1100与其它设备之间的通信。
比如,在一个实施例中,通信单元1103用于:通过第一频域资源发送时间同步信息,所述时间同步信息用于指示第一超帧的起始时间;处理单元1102用于:在所述第一超帧内,通过第二频域资源采用动态调度的方式与站点STA通信;其中,所述第一频域资源对应的频率低于所述第二频域资源对应 的频率。
该装置1100可以为上述实施例中的第二通信装置(比如STA)、或者还可以为设置在STA中的部件(例如电路或者芯片)。处理单元1102可以支持装置1100执行上文中各方法示例中STA的动作。或者,处理单元1102主要执行方法示例中的STA的内部动作,通信单元1103可以支持装置1100与其它设备之间的通信。
在一个实施例中,通信单元1103用于:通过第一频域资源接收来自AP的时间同步信息,所述时间同步信息用于指示第一超帧的起始时间;处理单元1102用于:在所述第一超帧内,通过第二频域资源采用动态调度的方式与所述AP通信;其中,所述第一频域资源对应的频率低于所述第二频域资源对应的频率。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各操作或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是处理器,比如通用中央处理器(central processing unit,CPU),或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
参见图12,为本申请实施例提供的一种通信装置的结构示意图,用于实现以上实施例中第一通信装置(比如AP)的操作。
如图12所示,通信装置1200可包括处理器1201、存储器1202以及接口电路1203。处理器1201可用于对通信协议以及通信数据进行处理,以及对通信装置1200进行控制。存储器1202可用于存储程序和数据,处理器1201可基于该程序执行本申请实施例中由AP执行的方法。接口电路1203可用于通信装置1200与其他设备进行通信,该通信可以为有线通信或无线通信,该接口电路也可以替换为收发器。
以上存储器1202也可以是外接于通信装置1200,此时通信装置1200可包括接口电路1203以及处理器1201。以上接口电路1203也可以是外接于通信装置1200,此时通信装置1200可包括存储器1202以及处理器1201。当接口电路1203以及存储器1202均外接于通信装置1200时,通信装置1200可包括处理器1201。
图12所示的通信装置能够实现上述方法实施例中涉及AP的各个过程。图12所示的通信装置中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
参见图13,为本申请实施例提供的一种通信装置的结构示意图,用于实现以上实施例中第二通信装置(比如STA)的操作。如图13所示,该通信装置包括:天线1310、射频部分1320、信号处理部分1330。天线1310与射频部分1320连接。在下行方向上,射频部分1320通过天线1310接收AP发送的信息,将AP发送的信息发送给信号处理部分1330进行处理。在上行方向上,信号处理部分1330对STA的信息进行处理,并发送给射频部分1320,射频部分1320对STA的信息进行处理后经过天线1310发送给AP。
信号处理部分1330可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括 中央处理子系统,用于实现对STA操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。
调制解调子系统可以包括一个或多个处理元件1331,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件1332和接口电路1333。存储元件1332用于存储数据和程序,但用于执行以上方法中STA所执行的方法的程序可能不存储于该存储元件1332中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路1333用于与其它子系统通信。
该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上STA执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,STA实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于STA的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中STA执行的方法。存储元件可以为与处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中STA所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中STA执行的方法。
在又一种实现中,STA实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
STA实现以上方法中各个步骤的单元可以集成在一起,以SOC的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上STA执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上STA执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于STA的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种STA执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行STA执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行STA执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行STA执行的部分或全部步骤。
这里的处理元件同以上描述,可以通过处理器实现,处理元件的功能可以和图11中所描述的处理单元的功能相同。示例性地,处理元件可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以通过存储器实现,存储元件的功能可以和图11中所描述的存储单元的功能相同。存储元件可以是一个存储器,也可以是多个存储器的统称。
图13所示的STA能够实现上述方法实施例中涉及STA的各个过程。图13所示的STA中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本申请实施例还提供一种通信系统,该通信系统可以包括AP和STA,其中,AP用于执行上述方法实施例中AP侧的步骤,STA用于执行上述方法实施例中STA侧的步骤。
本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一种”是指一种或者多种,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (25)

  1. 一种通信方法,其特征在于,所述方法应用于接入点AP,所述方法包括:
    通过第一频域资源发送时间同步信息,所述时间同步信息用于指示第一超帧的起始时间;
    在所述第一超帧内,通过第二频域资源采用动态调度的方式与站点STA通信;
    其中,所述第一频域资源对应的频率低于所述第二频域资源对应的频率。
  2. 根据权利要求1所述的方法,其特征在于,所述第一超帧包括公告传输间隔和数据传输间隔;
    在所述第一超帧内,通过第二频域资源采用动态调度的方式与STA通信,包括:
    在所述公告传输间隔内,通过第二频域资源向STA发送第一调度信息,所述第一调度信息用于指示在所述数据传输间隔内为所述STA分配的第一时域资源;
    在所述第一时域资源上,通过所述第二频域资源与所述STA进行数据传输。
  3. 根据权利要求2所述的方法,其特征在于,所述公告传输间隔包括K个公告传输子间隔,所述K个公告传输子间隔中每个公告传输子间隔对应所述AP关联的至少一个STA,所述K个公告传输子间隔包括第一公告传输子间隔,所述第一公告传输子间隔对应所述STA,K为正整数;
    所述在所述公告传输间隔内,通过第二频域资源向STA发送第一调度信息,包括:
    在所述第一公告传输子间隔内,通过所述第二频域资源向所述STA发送所述第一调度信息。
  4. 根据权利要求2或3所述的方法,其特征在于,所述数据传输间隔包括下行数据传输间隔和/或上行数据传输间隔,所述下行数据传输间隔包括多个下行数据传输子间隔,所述上行数据传输间隔包括多个上行数据传输子间隔;
    所述第一时域资源包括所述多个下行数据传输子间隔中的至少一个下行数据传输子间隔;或者,所述第一时域资源包括所述多个上行数据传输子间隔中的至少一个上行数据传输子间隔。
  5. 根据权利要求4中任一项所述的方法,其特征在于,当所述数据传输间隔包括所述下行数据传输间隔和所述上行数据传输间隔时,所述多个下行数据传输子间隔在时域上连续,所述多个上行数据传输子间隔在时域上连续;
    所述下行数据传输间隔和所述上行数据传输间隔之间包括第一时间间隔,所述第一时间间隔用于所述AP和/或所述STA执行收发切换。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述第一超帧还包括调度请求间隔;
    所述方法还包括:
    在所述调度请求间隔内,通过所述第二频域资源接收来自所述STA的调度请求,所述调度请求用于请求在第二超帧的数据传输间隔内为所述STA分配第二时域资源;
    所述第二超帧为所述第一超帧之后的超帧。
  7. 根据权利要求6所述的方法,其特征在于,所述调度请求间隔包括N个调度请求子间隔,所述N个调度请求子间隔中每个调度请求子间隔对应所述AP关联的至少一个STA,所述N个调度请求子间隔包括第一调度请求子间隔,所述第一调度请求子间隔对应所述STA,N为正整数;
    在所述调度请求间隔内,通过所述第二频域资源接收来自所述STA的调度请求,包括:
    在所述第一调度请求子间隔内,通过所述第二频域资源接收来自所述STA的调度请求。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一超帧包括第三时间间隔,所述第三时间间隔的起始时间为所述第一超帧的起始时间,所述第三时间间隔用于所述AP和/或所述STA执行收发切换。
  9. 根据权利要求8所述的方法,其特征在于,在所述第一超帧内,通过第二频域资源采用动态调度的方式与STA通信,包括:
    在所述第三时间间隔执行空闲信道评估;
    若所述空闲信道评估的结果为信道空闲,则在所述第一超帧内,通过第二频域资源采用动态调度的方式与STA通信。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    通过第一频域资源发送指示信息,所述指示信息指示波束赋形训练周期的时长,所述波束赋形训练周期包括至少一个超帧,所述第一超帧为所述至少一个超帧中的任一个超帧;
    当所述第一超帧为所述波束赋形训练周期内的首个超帧时,所述第一超帧还包括关联-波束赋形训练A-BFT间隔,所述A-BFT间隔用于所述AP与所述STA进行波束赋形训练。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    通过第一频域资源发送配置信息,所述配置信息用于配置所述第二频域资源。
  12. 一种通信方法,其特征在于,所述方法应用于STA,所述方法包括:
    通过第一频域资源接收来自AP的时间同步信息,所述时间同步信息用于指示第一超帧的起始时间;
    在所述第一超帧内,通过第二频域资源采用动态调度的方式与所述AP通信;
    其中,所述第一频域资源对应的频率低于所述第二频域资源对应的频率。
  13. 根据权利要求12所述的方法,其特征在于,所述第一超帧包括公告传输间隔和数据传输间隔;
    在所述第一超帧内,通过第二频域资源采用动态调度的方式与所述AP通信,包括:
    在所述公告传输间隔内,通过第二频域资源接收来自所述AP的第一调度信息,所述第一调度信息用于指示在所述数据传输间隔内为所述STA分配的第一时域资源;
    在所述第一时域资源上,通过所述第二频域资源与所述AP进行数据传输。
  14. 根据权利要求13所述的方法,其特征在于,所述公告传输间隔包括K个公告传输子间隔,所述K个公告传输子间隔中每个公告传输子间隔对应所述AP关联的至少一个STA,所述K个公告传输子间隔包括第一公告传输子间隔,所述第一公告传输子间隔对应所述STA,K为正整数;
    所述在所述公告传输间隔内,通过第二频域资源接收来自所述AP的第一调度信息,包括:
    在所述第一公告传输子间隔内,通过所述第二频域资源接收来自所述AP的所述第一调度信息。
  15. 根据权利要求13或14所述的方法,其特征在于,所述数据传输间隔包括下行数据传输间隔和/或上行数据传输间隔,所述下行数据传输间隔包括多个下行数据传输子间隔,所述上行数据传输间隔包括多个上行数据传输子间隔;
    所述第一时域资源包括所述多个下行数据传输子间隔中的至少一个下行数据传输子间隔;或者,所述第一时域资源包括所述多个上行数据传输子间隔中的至少一个上行数据传输子间隔。
  16. 根据权利要求15中任一项所述的方法,其特征在于,当所述数据传输间隔包括所述下行数据传输间隔和所述上行数据传输间隔时,所述多个下行数据传输子间隔在时域上连续,所述多个上行数据传输子间隔在时域上连续;
    所述下行数据传输间隔和所述上行数据传输间隔之间包括第一时间间隔,所述第一时间间隔用于所述AP和/或所述STA执行收发切换。
  17. 根据权利要求13至16中任一项所述的方法,其特征在于,所述第一超帧还包括调度请求间隔;
    所述方法还包括:
    在所述调度请求间隔内,通过所述第二频域资源向所述AP发送调度请求,所述调度请求用于请求在第二超帧的数据传输间隔内为所述STA分配第二时域资源;
    所述第二超帧为所述第一超帧之后的超帧。
  18. 根据权利要求17所述的方法,其特征在于,所述调度请求间隔包括N个调度请求子间隔,所述N个调度请求子间隔中每个调度请求子间隔对应所述AP关联的至少一个STA,所述N个调度请求子间隔包括第一调度请求子间隔,所述第一调度请求子间隔对应所述STA,N为正整数;
    在所述调度请求间隔内,通过所述第二频域资源向所述AP发送调度请求,包括:
    在所述第一调度请求子间隔内,通过所述第二频域资源向所述AP发送所述调度请求。
  19. 根据权利要求12至18中任一项所述的方法,其特征在于,所述第一超帧包括第三时间间隔,所述第三时间间隔的起始时间为所述第一超帧的起始时间,所述第三时间间隔用于所述AP和/或所述STA执行收发切换。
  20. 根据权利要求19所述的方法,其特征在于,在所述第一超帧内,通过第二频域资源采用动态调度的方式与所述AP通信,包括:
    在所述第三时间间隔执行空闲信道评估;
    若所述空闲信道评估的结果为信道空闲,则在所述第一超帧内,通过第二频域资源采用动态调度的方式与所述AP通信。
  21. 根据权利要求12至20中任一项所述的方法,其特征在于,所述方法还包括:
    通过第一频域资源接收来自所述AP的指示信息,所述指示信息指示波束赋形训练周期的时长,所述波束赋形训练周期包括至少一个超帧,所述第一超帧为所述至少一个超帧中的任一个超帧;
    当所述第一超帧为所述波束赋形训练周期内的首个超帧时,所述第一超帧还包括A-BFT间隔,所 述A-BFT间隔用于所述AP与所述STA进行波束赋形训练。
  22. 根据权利要求12至21中任一项所述的方法,其特征在于,所述方法还包括:
    通过第一频域资源接收来自所述AP的配置信息,所述配置信息用于配置所述第二频域资源。
  23. 一种通信装置,其特征在于,包括处理器,所述处理器和存储器耦合,所述存储器中存储有计算机程序;所述处理器用于调用所述存储器中的计算机程序,使得所述通信装置执行如权利要求1至11中任一项所述的方法或者如权利要求12至22中任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被计算机执行时,实现如权利要求1至11中任一项所述的方法或者如权利要求12至22中任一项所述的方法。
  25. 一种计算机程序产品,其特征在于,当计算机读取并执行所述计算机程序产品时,使得计算机执行如权利要求1至11中任一项所述的方法或者如权利要求12至22中任一项所述的方法。
PCT/CN2023/121212 2022-09-30 2023-09-25 一种通信方法及装置 WO2024067516A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211216870.3A CN117812725A (zh) 2022-09-30 2022-09-30 一种通信方法及装置
CN202211216870.3 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024067516A1 true WO2024067516A1 (zh) 2024-04-04

Family

ID=90418842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121212 WO2024067516A1 (zh) 2022-09-30 2023-09-25 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117812725A (zh)
WO (1) WO2024067516A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105165088A (zh) * 2013-05-03 2015-12-16 高通股份有限公司 用于下行链路频域复用传输的系统和方法
WO2021078214A1 (zh) * 2019-10-24 2021-04-29 华为技术有限公司 通信方法及装置
WO2021187844A1 (ko) * 2020-03-14 2021-09-23 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 무선 통신 단말
CN113853825A (zh) * 2019-05-10 2021-12-28 交互数字专利控股公司 用于支持bss边缘用户传输的方法
WO2022132024A1 (en) * 2020-12-18 2022-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, network node, and methods performed thereby, for handling transmission of data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105165088A (zh) * 2013-05-03 2015-12-16 高通股份有限公司 用于下行链路频域复用传输的系统和方法
CN113853825A (zh) * 2019-05-10 2021-12-28 交互数字专利控股公司 用于支持bss边缘用户传输的方法
WO2021078214A1 (zh) * 2019-10-24 2021-04-29 华为技术有限公司 通信方法及装置
WO2021187844A1 (ko) * 2020-03-14 2021-09-23 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 무선 통신 단말
WO2022132024A1 (en) * 2020-12-18 2022-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, network node, and methods performed thereby, for handling transmission of data

Also Published As

Publication number Publication date
CN117812725A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
KR102295532B1 (ko) 플로팅 주 링크와의 링크 어그리게이션
EP3820225B1 (en) Multi access point coordination of target wake time schedules
CN108809370B (zh) 用于使用无线网络中的多个频带进行通信的系统
US20140313949A1 (en) Signaling and procedure design for cellular cluster contending on license-exempt bands
US20190215851A1 (en) Data transmission method and related device
WO2019029508A1 (zh) 随机接入方法、终端、网络设备及计算机可读存储介质
US20170118770A1 (en) Methods and apparatus for selecting enhanced distributed channel access parameters for multi-user transmissions
JP2024095647A (ja) 通信方法および通信装置
US20150036640A1 (en) Method and apparatus for ascynchronous direct link setup in wlan system
WO2015081718A1 (zh) 无线网络的通信处理方法及装置
CN118402309A (zh) 多链路操作(mlo)期间的受限目标唤醒时间(r-twt)的低时延解决方案
EP3966948A1 (en) Sharing transmission opportunity with beamforming
EP3975637B1 (en) Method and device for adjusting pdcch monitoring period
US20230156707A1 (en) System and methods for dynamic scheduling in new radio with user equipment
WO2022022340A1 (zh) 一种通信方法及装置
TW202308444A (zh) 受限目標喚醒時間(twt)服務時段中的訊務管理
WO2024067516A1 (zh) 一种通信方法及装置
AU2021323751B2 (en) Channel access method and communication device
CN107509251B (zh) 一种退避方法和装置
WO2024067517A1 (zh) 一种通信方法及装置
WO2024148549A1 (en) Efficient way of twt overlapping
WO2023098633A1 (zh) 一种通信方法和装置
WO2024208041A1 (zh) 一种参考信号的指示方法、装置和系统
US12082219B2 (en) System and methods for dynamic scheduling in new radio with user equipment
US12120674B2 (en) System and methods for dynamic scheduling in new radio with base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870745

Country of ref document: EP

Kind code of ref document: A1