WO2024067518A1 - 一种扇区扫描方法及装置 - Google Patents

一种扇区扫描方法及装置 Download PDF

Info

Publication number
WO2024067518A1
WO2024067518A1 PCT/CN2023/121216 CN2023121216W WO2024067518A1 WO 2024067518 A1 WO2024067518 A1 WO 2024067518A1 CN 2023121216 W CN2023121216 W CN 2023121216W WO 2024067518 A1 WO2024067518 A1 WO 2024067518A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
frequency domain
training sequences
sector
frame
Prior art date
Application number
PCT/CN2023/121216
Other languages
English (en)
French (fr)
Inventor
马云思
阮卫
唐云帅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067518A1 publication Critical patent/WO2024067518A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0491Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more sectors, i.e. sector diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present application relates to the field of communication technology, and in particular to a sector scanning method and device.
  • WLANs wireless local area networks
  • WLANs mostly operate in low-frequency bands.
  • spectrum resources in low-frequency bands have become very crowded. Therefore, the current focus is on using high-frequency bands (such as millimeter wave bands) to obtain more abundant available spectrum resources.
  • the millimeter wave frequency band has a large path loss problem
  • beamforming technology is introduced in the millimeter wave frequency band, that is, to enhance the signal in the target direction and weaken the signal in the direction of non-targets or obstacles, so as to improve the transmission distance and system performance.
  • the transmitting end of millimeter wave communication can use the form of a beam to transmit communication signals in a certain transmission direction, so that the transmitted power is more concentrated in the transmission direction.
  • the receiving end of millimeter wave communication can also receive communication signals in a certain receiving direction.
  • Directional communication can be achieved through beamforming technology, which can effectively offset the path loss.
  • the beam training of the beamforming technology may include a sector level sweeping (SLS) process, in which the initiator and the responder use a sector sweep (SSW) frame to perform sector sweeping.
  • SLS sector level sweeping
  • SSW sector sweep
  • the present application provides a sector scanning method and device, which are used to implement sector scanning by a first communication device and a second communication device using a training sequence, thereby effectively improving the efficiency of the sector scanning.
  • the first communication device and the second communication device use a new SSW frame (i.e., a training sequence) for sector scanning.
  • a new SSW frame i.e., a training sequence
  • the new SSW frame does not include redundant information such as a preamble code and a physical frame header, the throughput can be effectively improved, thereby improving the efficiency of the sector scanning.
  • the first frame also includes first indication information, where the first indication information indicates a start time of the sector scan.
  • the second communication device can determine the start time of the sector scan according to the first indication information.
  • the first communication device and the second communication device can align the start time of the sector scan, thereby avoiding the first communication device or the second communication device not knowing when to start the sector scan, which may result in a long search for the sector scan and cause high power consumption.
  • the first indication information includes an offset, and the time interval between the start time and the reception time of the first frame is equal to the offset.
  • the information of the M training sequences includes second indication information and/or third indication information; wherein the second indication information indicates the types of the M training sequences, and the third indication information indicates the value of M.
  • the first communication device and the second communication device can align their understanding of the M training sequences, and the first communication device sends information of the M training sequences to the second communication device, so that the first communication device can flexibly control the second communication device.
  • the training sequence includes a cyclic prefix, a length of the cyclic prefix is greater than a channel memory length, and the channel is used to transmit the training sequence.
  • the inter-symbol interference introduced by the multipath channel can be effectively avoided; at the same time, a low-complexity frequency domain correlation method can be used at the receiving end to detect the training sequence.
  • the receiving end of the training sequence determines the reception quality of the training sequence (such as a correlation peak of the training sequence) based on a frequency domain method; when the training sequence does not include a cyclic prefix, the receiving end of the training sequence determines the reception quality of the training sequence based on a time domain method.
  • the first frame also includes fourth indication information, and the fourth indication information indicates that the sector scan is sent by the initiator; the first communication device and the second communication device perform the sector scan on the second frequency domain resources according to the information of the M training sequences, including: the first communication device sends the M training sequences on the second frequency domain resources; the first communication device receives a second frame from the second communication device on the first frequency domain resources or the second frequency domain resources, and the second frame includes identification information of the first training sequence among the M training sequences, and the identification information of the first training sequence is used to determine the best transmitting antenna and/or best transmitting sector of the first communication device corresponding to the second communication device on the second frequency domain resources.
  • the STA receives at least one SSW frame quasi-omnidirectionally, measures the reception quality of at least one SSW frame, and demodulates at least one SSW frame to obtain the identifier of the transmitting antenna and the identifier of the transmitting sector used to send at least one SSW frame, thereby determining the best transmitting antenna and the best transmitting sector of the AP corresponding to the STA, and sending the identifier of the best transmitting antenna and the identifier of the best transmitting sector to the AP.
  • the reliability of the STA demodulating the SSW frames received quasi-omnidirectionally is low.
  • the STA can select a training sequence with better reception quality according to the reception quality of the training sequence, and then send the identification information of the training sequence to the AP.
  • the AP can determine the best transmitting antenna and the best transmitting sector of the AP corresponding to the STA according to the identification information of the training sequence, thereby avoiding demodulating the SSW frames received quasi-omnidirectionally and improving the accuracy of the beam training result.
  • the first communication device sends the M training sequences on the second frequency domain resources, including: the first communication device sends the M training sequences on the second frequency domain resources, respectively, on M transmitting sectors of the first communication device.
  • the first communication device can send a training sequence on each transmitting sector, so as to reduce the overhead of sector scanning.
  • the identification information of the first training sequence is a sending order number of the first training sequence in the M training sequences.
  • the first frame also includes fourth indication information, and the fourth indication information indicates that the sector scan is a sector scan received by the initiator; the first communication device and the second communication device perform the sector scan on the second frequency domain resources according to the information of the M training sequences, including: the first communication device sends M training sequences on the second frequency domain resources, and the M training sequences are used to determine the best receiving antenna and/or best receiving sector of the second communication device corresponding to the first communication device on the second frequency domain resources.
  • the first frame also includes fourth indication information, and the fourth indication information indicates that the sector scan is a sector scan sent by the responding party; the first communication device and the second communication device perform the sector scan on the second frequency domain resources according to the information of the M training sequences, including: the first communication device receives N3 training sequences from the second communication device on the second frequency domain resources, and the N3 training sequences belong to the M training sequences, N3 is an integer greater than 0, and N3 is less than or equal to M; the first communication device sends a second frame to the second communication device on the first frequency domain resources or the second frequency domain resources, and the second frame includes identification information of a second training sequence among the N3 training sequences, and the identification information of the second training sequence is used to determine the best transmitting antenna and/or best transmitting sector of the second communication device corresponding to the first communication device on the second frequency domain resources.
  • the identification information of the second training sequence is a sending order number of the second training sequence in the M training sequences.
  • the first frame also includes fourth indication information, and the fourth indication information indicates that the sector scan is a sector scan received by the responding party; the first communication device and the second communication device perform the sector scan on the second frequency domain resources according to the information of the M training sequences, including: the first communication device receives N4 training sequences from the second communication device on the second frequency domain resources, the N4 training sequences belong to the M training sequences, N4 is an integer greater than 0, and N4 is less than or equal to M; the first communication device determines the best receiving antenna and/or best receiving sector of the first communication device corresponding to the second communication device on the second frequency domain resources based on the reception quality of the N4 training sequences.
  • the first communication device receives N4 training sequences from the second communication device on the second frequency domain resource, including: the first communication device receives N4 training sequences from the second communication device on the second frequency domain resource in the N4 receiving sectors of the first communication device.
  • the controller 100 receives N4 training sequences from the second communication device respectively.
  • an embodiment of the present application provides a sector scanning method, which can be applied to a second communication device.
  • the method includes: the second communication device receives a first frame from a first communication device on a first frequency domain resource or a second frequency domain resource, the first frame includes information of M training sequences, the M training sequences are used to perform sector scanning on the second frequency domain resource, and M is an integer greater than 1; the second communication device and the first communication device perform the sector scanning on the second frequency domain resource according to the information of the M training sequences; wherein the frequency corresponding to the first frequency domain resource is less than the frequency corresponding to the second frequency domain resource.
  • the first frame also includes first indication information, where the first indication information indicates a start time of the sector scan.
  • the first indication information includes an offset, and the time interval between the start time and the reception time of the first frame is equal to the offset.
  • the information of the M training sequences includes second indication information and/or third indication information; wherein the second indication information indicates the types of the M training sequences, and the third indication information indicates the value of M.
  • the training sequence includes a cyclic prefix, a length of the cyclic prefix is greater than a channel memory length, and the channel is used to transmit the training sequence.
  • the first frame also includes fourth indication information, and the fourth indication information indicates that the sector scan is sent by the initiator; the second communication device and the first communication device perform the sector scan on the second frequency domain resources according to the information of the M training sequences, including: the second communication device receives N1 training sequences from the first communication device on the second frequency domain resources, and the N1 training sequences belong to the M training sequences, N1 is an integer greater than 0, and N1 is less than or equal to M; the second communication device sends a second frame to the first communication device on the first frequency domain resources or the second frequency domain resources, and the second frame includes identification information of the first training sequence among the N1 training sequences, and the identification information of the first training sequence is used to determine the best transmitting antenna and/or best transmitting sector of the first communication device corresponding to the second communication device on the second frequency domain resources.
  • the identification information of the first training sequence is a sending order number of the first training sequence in the M training sequences.
  • the first frame also includes fourth indication information, and the fourth indication information indicates that the sector scan is a sector scan received by the initiator; the second communication device and the first communication device perform the sector scan on the second frequency domain resources according to the information of the M training sequences, including: the second communication device receives N2 training sequences from the first communication device on the second frequency domain resources, the N2 training sequences belong to the M training sequences, N2 is an integer greater than 0, and N2 is less than or equal to M; the second communication device determines the best receiving antenna and/or best receiving sector of the second communication device corresponding to the first communication device on the second frequency domain resources according to the reception quality of the N2 training sequences.
  • the second communication device receives N2 training sequences from the first communication device on the second frequency domain resources, including: the second communication device receives N2 training sequences from the first communication device on the second frequency domain resources, respectively on N2 receiving sectors of the second communication device.
  • the first frame also includes fourth indication information, and the fourth indication information indicates that the sector scan is a sector scan sent by the responding party; the second communication device and the first communication device perform the sector scan on the second frequency domain resources according to the information of the M training sequences, including: the second communication device sends the M training sequences on the second frequency domain resources; the second communication device receives a second frame from the first communication device on the first frequency domain resources or the second frequency domain resources, and the second frame includes identification information of the second training sequence among the M training sequences, and the identification information of the second training sequence is used to determine the best transmitting antenna and/or best transmitting sector of the second communication device corresponding to the first communication device on the second frequency domain resources.
  • the second communication device sends the M training sequences on the second frequency domain resources, including: the second communication device sends the M training sequences on the second frequency domain resources, respectively, on M transmitting sectors of the second communication device.
  • the identification information of the second training sequence is a sending order number of the second training sequence in the M training sequences.
  • the first frame further includes fourth indication information, wherein the fourth indication information indicates that the sector scan is a sector scan received by the responding party; the second communication device and the first communication device perform the sector scan on the second frequency domain resource according to information of the M training sequences, including: the second communication device sends the M training sequences on the second frequency domain resource.
  • the M training sequences are used to determine the best receiving antenna and/or the best receiving sector of the first communication device corresponding to the second communication device on the second frequency domain resources.
  • the present application provides a communication device, which has the function of implementing the first aspect or the second aspect mentioned above.
  • the communication device includes a module or unit or means corresponding to the operations involved in the first aspect or the second aspect mentioned above.
  • the module or unit or means can be implemented by software, or by hardware, or the corresponding software can be implemented by hardware.
  • the communication device includes a processing unit and a communication unit, wherein the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices; the processing unit can be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit can correspond to the operations involved in the first aspect or the second aspect above.
  • the communication device includes a processor, which can be used to couple with a memory.
  • the memory can store necessary computer programs or instructions for implementing the functions involved in the first aspect or the second aspect.
  • the processor can execute the computer program or instructions stored in the memory, and when the computer program or instructions are executed, the communication device implements the method in any possible design or implementation of the first aspect or the second aspect.
  • the communication device includes a processor and a memory
  • the memory can store necessary computer programs or instructions for implementing the functions involved in the first aspect or the second aspect.
  • the processor can execute the computer program or instructions stored in the memory, and when the computer program or instructions are executed, the communication device implements the method in any possible design or implementation of the first aspect or the second aspect.
  • the communication device includes a processor and an interface circuit, wherein the processor is used to communicate with other devices through the interface circuit and execute the method in any possible design or implementation of the first aspect or the second aspect above.
  • the present application provides a communication system, which may include a first communication device and a second communication device; wherein the first communication device is used to execute the sector scanning method provided in the first aspect, and the second communication device is used to execute the sector scanning method provided in the second aspect.
  • the present application provides a computer-readable storage medium, in which computer-readable instructions are stored.
  • a computer reads and executes the computer-readable instructions, the computer executes a method in any possible design of the first aspect or the second aspect mentioned above.
  • the present application provides a computer program product.
  • the computer reads and executes the computer program product, the computer executes the method in any possible design of the first aspect or the second aspect mentioned above.
  • the present application provides a chip, comprising a processor, wherein the processor is coupled to a memory and is used to read and execute a software program stored in the memory to implement a method in any possible design of the first aspect or the second aspect above.
  • FIG1 is a schematic diagram of a network architecture applicable to an embodiment of the present application.
  • FIG2 is a schematic diagram of an AP MLD provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a link between an AP MLD and a non-AP MLD provided in an embodiment of the present application;
  • FIG4 is a schematic diagram of a possible SLS process provided in an embodiment of the present application.
  • FIG5 is a structural example of an SSW frame, an SSW field, and an SSW feedback field provided in an embodiment of the present application;
  • FIG6 is a schematic diagram of a flow chart corresponding to a sector scanning method provided in an embodiment of the present application.
  • FIG7 is an example of three types of training sequences provided in an embodiment of the present application.
  • FIG8 is a structural example of an improved SSW field and an SSW feedback field provided in an embodiment of the present application.
  • FIGS. 9A and 9B are schematic diagrams of an I-TXSS process provided in an embodiment of the present application.
  • FIGS. 10A and 10B are schematic diagrams of an I-RXSS process provided in an embodiment of the present application.
  • FIGS. 11A and 11B are schematic diagrams of the R-TXSS process provided in an embodiment of the present application.
  • FIGS. 12A and 12B are schematic diagrams of the R-RXSS process provided in an embodiment of the present application.
  • FIG13 is a possible exemplary block diagram of a device involved in an embodiment of the present application.
  • FIG14 is a schematic diagram of the structure of an AP provided in an embodiment of the present application.
  • FIG. 15 is a schematic diagram of the structure of a STA provided in an embodiment of the present application.
  • WLAN may include one or more basic service sets (BSS), and the network nodes in the basic service set include access points (AP) and stations (STA).
  • IEEE 802.11ad introduces personal basic service sets (PBSS) and personal basic service set control nodes (PBSS control points, PCP) based on the original BSS.
  • PBSS personal basic service sets
  • PCP personal basic service set control nodes
  • Each personal basic service set can include an AP/PCP and multiple non-AP/PCPs associated with the AP/PCP.
  • non-AP/PCP can be called STA
  • PCP can be understood as the name of the role of AP in PBSS.
  • the embodiments of the present application may also be applicable to wireless local area networks such as the Internet of Things (IoT) network or the Vehicle to X (V2X) network.
  • IoT Internet of Things
  • V2X Vehicle to X
  • the embodiments of the present application may also be applicable to other possible communication systems, such as the Long Term Evolution (LTE) communication system, the LTE frequency division duplex (FDD) communication system, the LTE time division duplex (TDD) communication system, the universal mobile telecommunication system (UMTS), the worldwide interoperability for microwave access (WiMAX) communication system, the fifth generation (5G) communication system, and future evolving communication systems.
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • FIG1 a network architecture diagram of a WLAN applicable to the application embodiment is shown, and FIG1 takes the WLAN including 1 AP and 2 STAs as an example.
  • the STA associated with the AP can receive wireless frames sent by the AP and can also send wireless frames to the AP.
  • the embodiment of the present application will be described by taking the communication between AP and STA as an example. It can be understood that the embodiment of the present application can also be applied to communication between APs, for example, each AP can communicate with each other through a distributed system (DS), and can also be applied to communication between STAs.
  • DS distributed system
  • AP can be an access point for terminal devices (such as mobile phones) to enter wired (or wireless) networks. It is mainly deployed in homes, buildings and parks, with a typical coverage radius of tens to hundreds of meters. Of course, it can also be deployed outdoors. AP is equivalent to a bridge connecting wired networks and wireless networks. Its main function is to connect various wireless network clients together and then connect the wireless network to Ethernet.
  • AP can be a terminal device (such as a mobile phone) or a network device (such as a router) with a wireless fidelity (Wi-Fi) chip.
  • Wi-Fi wireless fidelity
  • AP can be a device that supports the 802.11be standard, or it can also be a device that supports multiple WLAN standards of the 802.11 family such as 802.11ax, 802.11ay, 802.11ac, 802.11n, 802.11g, 802.11b, 802.11a and 802.11be next generation.
  • STA can be a wireless communication chip, a wireless sensor or a wireless communication terminal, etc., and can also be called a user.
  • STA can be a mobile phone that supports Wi-Fi communication function, a tablet computer that supports Wi-Fi communication function, a set-top box that supports Wi-Fi communication function, a smart TV that supports Wi-Fi communication function, a smart wearable device that supports Wi-Fi communication function, a vehicle-mounted communication device that supports Wi-Fi communication function, and a computer that supports Wi-Fi communication function, etc.
  • STA can support the 802.11be standard, or can also support multiple WLAN standards of the 802.11 family such as 802.11ax, 802.11ay, 802.11ac, 802.11n, 802.11g, 802.11b, 802.11a, and 802.11be next generation.
  • FIG. 1 the number of APs and STAs shown in FIG. 1 is only an example, and may be more or less.
  • the AP and STA involved in FIG1 may be communication devices with dual-mode communication functions, that is, communication devices with low-frequency (LF) band (or channel or link) communication mode and high-frequency (HF) band communication mode.
  • the low-frequency band includes, for example, sub 1 GHz, 2.4 GHz, 5 GHz, 6 GHz, etc.
  • the high-frequency band includes, for example, 45 GHz, 60 GHz, etc.
  • the communication device with dual-mode communication function may be a dual-band dual-concurrent (DBDC) device, or may be a multi-link device (MLD), which are described below respectively.
  • DBDC dual-band dual-concurrent
  • MLD multi-link device
  • the DBDC device integrates two independent and complete links, including two baseband processors and RF front-ends, thus supporting independent operation in two frequency bands.
  • AP and STA are DBDC devices
  • AP is DBDC device 1
  • STA is DBDC device 2
  • AP and STA can perform signaling interaction on the low-frequency link to establish a low-frequency link connection; and, perform signaling interaction on the high-frequency link to establish a high-frequency link connection.
  • MLD supports multi-link operation technology.
  • MLD has multiple radio frequency modules, which work in different frequency bands.
  • the frequency band of MLD can be all or part of sub 1GHz, 2.4GHz, 5GHz, 6GHz and high frequency 60GHz.
  • MLD can include AP MLD and/or non-AP MLD.
  • non-AP MLD can be STA MLD.
  • AP MLD may include one or more affiliated sites, each of which has its own media access control (MAC) address.
  • the affiliated sites of AP MLD include AP1 and AP2, the low MAC address of AP1 is link address 1, and the low MAC address of AP2 is link address 2.
  • AP MLD also has an upper MAC address, called the MLD MAC address.
  • AP MLD and non-AP MLD can establish multi-link connection through signaling interaction on low-frequency link.
  • AP MLD includes AP1 and AP2
  • AP1 includes AP1PHY, AP1 low-layer MAC and high-layer MAC
  • AP2 includes AP2PHY, AP2 low-layer MAC and high-layer MAC, where AP1 and AP2 share high-layer MAC
  • non-AP MLD includes STA1 and STA2
  • STA1 includes STA1PHY, STA1 low-layer MAC and high-layer MAC
  • STA2 includes STA2PHY, STA2 low-layer MAC and high-layer MAC, where STA1 and STA2 share high-layer MAC
  • AP1 and STA1 are connected through link 1
  • AP2 and STA2 are connected through link 2.
  • non-AP MLD When establishing multiple links, non-AP MLD sends an association request frame on link 1.
  • the association request frame carries the STA side information of link 1 and the STA side information of link 2.
  • the association request frame can carry the multi-link element field.
  • the multi-link element field is used to carry the information of non-AP MLD and the information of the sites in non-AP MLD.
  • AP MLD sends an association response frame on link 1.
  • the association response frame carries the AP side information of link 1 and the AP side information of link 2, so that STA1 and STA2 of non-AP MLD can establish associations with AP1 and AP2 of AP MLD respectively.
  • the AP when the AP initiates beam training, the AP can be called an initiator and the STA can be called a responder; when the STA initiates beam training, the STA can be called an initiator and the AP can be called a responder. That is, the party that initiates beam training can be called an initiator, and the party that responds to beam training can be called a responder.
  • the party that initiates beam training can also be called a responder, and the party that responds to beam training can be called an initiator; or, the party that initiates beam training is fixedly called the initiator, and the other party of beam training is fixedly called the responder.
  • the initiator can initiate beam training and can also respond to beam training initiated by the responder; similarly, the responder can also initiate beam training and can also respond to beam training initiated by the initiator.
  • FIG4 is a schematic diagram of a possible SLS process.
  • the SLS process includes four stages, namely, an initiator sector sweep (ISS) stage, a responder sector sweep (RSS) stage, a sector sweep feedback (SSW Feedback) frame transmission stage, and a sector sweep confirmation (SSW acknowledgment, SSW Ack) frame transmission stage.
  • ISS initiator sector sweep
  • RSS responder sector sweep
  • SSW Feedback sector sweep feedback
  • SSW Ack sector sweep confirmation
  • the initiator can obtain the optimal sending sector and the optimal receiving sector of the initiator corresponding to the responder, and the responder can also obtain the optimal sending sector and the optimal receiving sector of the responder corresponding to the initiator. That is, the sending beam and the receiving beam can be selected to utilize the gain of the sending beam and the receiving beam.
  • the AP is taken as the initiator and the STA is taken as the responder.
  • the ISS phase may include an initiator transmission of sector sweep (I-TXSS) subphase and/or an initiator reception of sector sweep (I-RXSS) subphase.
  • I-TXSS initiator transmission of sector sweep
  • I-RXSS initiator reception of sector sweep
  • FIG4 illustrates an example in which the ISS phase includes the I-TXSS subphase.
  • the AP can send multiple SSW frames, such as SSW frame 1, SSW frame 2, and SSW frame 3, directionally on the high-frequency band to perform AP transmission sector training.
  • the AP can send one or more SSW frames in each of the AP's multiple transmission directions, and each transmission direction can correspond to a transmission antenna and a transmission sector of the transmission antenna.
  • the STA can quasi-omnidirectionally receive at least one SSW frame from the AP on the high-frequency band, and then the STA can determine the AP's best transmission antenna and best transmission sector corresponding to the STA, and feed back the identifier of the best transmission antenna and the identifier of the best transmission sector to the AP (for example, it can be fed back to the AP through the SSW frame in the R-TXSS sub-phase).
  • the AP can send multiple SSW frames quasi-omnidirectionally on the high-frequency band to perform AP receiving sector training; accordingly, the STA can directionally receive at least one SSW frame on the high-frequency band, and then the STA can determine the STA's best receiving antenna and best receiving sector corresponding to the AP based on the reception quality of at least one SSW frame.
  • the reception quality of the above-mentioned SSW frame may include at least one of the following: received signal power or strength, signal to interference plus noise ratio (SINR), bit error rate, etc.
  • SINR signal to interference plus noise ratio
  • ISS i.e., I-TXSS and/or I-RXSS
  • DL BFT downlink beamforming training
  • AP corresponds to the best transmitting antenna and best transmitting sector of STA, that is, the best transmitting antenna and best transmitting sector of downlink
  • STA corresponds to the best receiving antenna and best receiving sector of AP, that is, the best receiving antenna and best receiving sector of downlink.
  • the RSS phase may include a responder transmission of sector sweep (R-TXSS) subphase and/or a responder reception of sector sweep (R-RXSS) subphase.
  • R-TXSS responder transmission of sector sweep
  • R-RXSS responder reception of sector sweep
  • the STA can send multiple SSW frames, such as SSW frame 4, SSW frame 5, and SSW frame 6, directionally on the high frequency band to train the STA's transmission sectors.
  • the AP can receive at least one SSW frame from the STA in a quasi-omnidirectional manner on the high frequency band, and then the AP can determine the STA's best transmission antenna and best transmission sector corresponding to the AP, and feed back the identifier of the best transmission antenna and the identifier of the best transmission sector to the STA (for example, through a sector scanning feedback frame).
  • the STA can send multiple SSW frames quasi-omnidirectionally on the high-frequency band to perform STA receiving sector training; accordingly, the AP can directionally receive at least one SSW frame on the high-frequency band, and then the AP can determine the AP's optimal receiving antenna and optimal receiving sector corresponding to the STA.
  • RSS i.e., R-TXSS and/or R-RXSS
  • UL BFT uplink beamforming training
  • STA corresponds to the best transmit antenna and best transmit sector of AP, that is, the best transmit antenna and best transmit sector of uplink
  • AP corresponds to the best receive antenna and best receive sector of STA, that is, the best receive antenna and best receive sector of uplink.
  • directional transmission may refer to: using different transmitting antennas to transmit in different transmitting sectors in turn;
  • directional reception may refer to: using different receiving antennas to receive in different receiving sectors in turn.
  • the AP can send the sector scanning feedback frame to the STA on the high frequency band according to the best transmitting antenna and the best transmitting sector of the AP corresponding to the STA.
  • the sector scanning feedback frame includes the identifier of the best transmitting antenna and the identifier of the best transmitting sector of the STA corresponding to the AP.
  • the STA may send the sector scan confirmation frame to the AP in the high frequency band according to the best transmitting antenna and best transmitting sector of the STA corresponding to the AP.
  • the result of the SLS phase can be confirmed through the sector scanning feedback frame and the sector scanning confirmation frame.
  • whether to perform the BRP process can also be determined through the sector scanning feedback frame and the sector scanning confirmation frame.
  • the SLS process may include multiple of the above four stages, or the BRP process may be started after a round of the above four stages.
  • the beam training of the BRP process is different from the beam training in the SLS process.
  • the beam training of the BRP process can refer to the prior art, and the embodiments of the present application are not limited to this.
  • the SSW frame transmitted in the SLS phase is used to perform the sector scanning function.
  • the SSW frame is used to perform the sector scanning function as an example.
  • other possible frames defined in the current protocol can also be used to perform the sector scanning function, such as a directional multi-gigabit (DMG) beacon frame or a short SSW frame.
  • DMG directional multi-gigabit
  • the SSW frame may include: a frame control field, a duration field, a receiver address (RA) field, a transmitter address (TA) field, a sector scan field (SSW field), a sector scan feedback field (SSW feedback field), and a frame check sequence (FCS) field.
  • the frame control field, the duration field, the receiver address field, and the transmitter address field can be understood as a MAC frame header, and the rest can be understood as a payload.
  • the SSW frame can also include a preamble and a physical frame header.
  • the preamble, physical frame header and other information in the SSW frame can be understood as information used to demodulate the SSW frame.
  • the SSW field in the SSW frame sent directionally by the AP may include: a direction field, a count down (CDOWN) field, a sector ID field, an antenna ID field, and a receive sector scan length (RXSS length) field.
  • the sector ID field includes the ID of the sector used to send the SSW frame
  • the antenna ID field includes the ID of the antenna used to send the SSW frame.
  • the SSW field in the SSW frame sent directionally by the STA may also include the above-mentioned multiple fields.
  • the SSW feedback field in the SSW frame sent directionally by the STA may include: a sector select field, an antenna select field, a reserved bit, a polling request field, and a reserved bit.
  • the sector select field includes the identifier of the best transmission sector of the AP corresponding to the STA
  • the antenna select field includes the identifier of the best transmission antenna of the AP corresponding to the STA, that is, the STA feeds back the identifier of the best transmission antenna of the AP corresponding to the STA and the identifier of the best transmission sector to the AP through the SSW feedback field in the SSW frame.
  • the sector scanning feedback frame may also include the SSW feedback field shown in FIG. 5 , that is, the AP feeds back the identifier of the best transmitting antenna and the identifier of the best transmitting sector corresponding to the AP to the STA through the SSW feedback field in the sector scanning feedback frame.
  • the AP and STA use SSW frames for sector scanning.
  • the frames used for sector scanning include redundant information such as preambles and physical frame headers, the frame length of the SSW frames is relatively long, which affects the efficiency of sector scanning.
  • an embodiment of the present application provides a sector scanning method, which effectively improves the efficiency of sector scanning by using a new SSW frame (including only a training sequence) to perform sector scanning.
  • the method provided in the embodiment of the present application is applied to the network architecture shown in Figure 1 as an example.
  • the method can be performed by two communication devices, such as a first communication device and a second communication device, wherein the first communication device can be an AP or a communication device that can support the AP to implement the functions required by the method, and of course it can also be other communication devices, such as a chip or a chip system.
  • the second communication device can be a STA or a communication device that can support the STA to implement the functions required by the method, and of course it can also be other communication devices, such as a chip or a chip system.
  • the method is performed by AP and STA as an example, that is, the first communication device is an AP and the second communication device is a STA.
  • FIG6 is a schematic diagram of a process flow corresponding to a sector scanning method provided in an embodiment of the present application. As shown in FIG6 , the process flow may include:
  • AP sends a first frame on the first frequency domain resources or the second frequency domain resources, the first frame includes information of M training sequences, the M training sequences are used to perform sector scanning on the second frequency domain resources, M is an integer greater than 1; accordingly, STA receives the first frame from AP on the first frequency domain resources.
  • the AP sends a first frame on the first frequency domain resource or the second frequency domain resource, which may mean that the AP sends the first frame omnidirectionally or quasi-omnidirectionally on the first frequency domain resource or the second frequency domain resource.
  • the STA receives the first frame from the AP on the first frequency domain resource or the second frequency domain resource, which may mean that the STA receives the first frame from the AP omnidirectionally or quasi-omnidirectionally on the first frequency domain resource or the second frequency domain resource.
  • the first frequency domain resources and the second frequency domain resources are introduced.
  • the first frequency domain resource is different from the second frequency domain resource, and the frequency corresponding to the first frequency domain resource is smaller than the frequency corresponding to the second frequency domain resource.
  • the frequency domain resource can be understood as a frequency range, and the frequency corresponding to the first frequency domain resource is smaller than the frequency corresponding to the second frequency domain resource.
  • the rate may mean that the highest frequency corresponding to the first frequency domain resource is less than the lowest frequency corresponding to the second frequency domain resource.
  • the first frequency domain resource is a frequency domain resource of a low frequency band
  • the second frequency domain resource is a frequency domain resource of a high frequency band.
  • the AP may send the first frame omnidirectionally on the low frequency band, or the AP may send the first frame quasi-omnidirectionally on the high frequency band.
  • the embodiments of the present application will be described below by taking the AP sending the first frame omnidirectionally on the low frequency band as an example.
  • the training sequence can be used to perform the sector scanning function (different from the prior art in which the sector scanning function is performed by the SSW frame). That is to say, the embodiment of the present application designs a new SSW frame, which can only include the training sequence but not other redundant information such as the preamble and the physical frame header, thereby improving the throughput and further improving the efficiency of the sector scanning.
  • the training sequence may be a known bit sequence, for example, the training sequence may be a Golay sequence, or a ZC sequence, or other possible sequences, which are not specifically limited.
  • the training sequence may not have (or include) a cyclic prefix, in which case the frame length of the new SSW frame is equal to the length of the training sequence; alternatively, the training sequence may also have a cyclic prefix, in which case the frame length of the new SSW frame is equal to the sum of the length of the training sequence and the length of the cyclic prefix of the training sequence.
  • the embodiment of the present application does not limit the length of the cyclic prefix.
  • the length of the cyclic prefix can be determined based on the channel memory length, which is a channel used to transmit the training sequence.
  • the length of the cyclic prefix is greater than the channel memory length, thereby avoiding inter-symbol interference introduced by the multipath channel, and at the same time, a low-complexity frequency domain correlation method can be used at the receiving end to detect the training sequence.
  • the length of the training sequence corresponding to type 1 is 512 bits, and the length of the cyclic prefix is 128 bits; when the type of the training sequence included in the new SSW frame is type 1, the frame length of the new SSW frame is 640 bits.
  • the length of the training sequence corresponding to type 2 is 1024 bits, and the length of the cyclic prefix is 256 bits; when the type of the training sequence included in the new SSW frame is type 2, the frame length of the new SSW frame is 1280 bits.
  • the length of the training sequence corresponding to type 3 is 2048 bits, and the length of the cyclic prefix is 1024 bits; when the type of the training sequence included in the new SSW frame is type 3, the frame length of the new SSW frame is 3072 bits.
  • the specific type of the training sequence may be pre-defined by the protocol; or, it may be indicated by the AP to the STA through the first frame, and refer to the description of the first frame for details.
  • the first frame may be a DMG beacon frame, or may be an SSW frame, or may be any other possible frame, without specific limitation.
  • the embodiment of the present application may improve the SSW field in the SSW frame, such as deleting some fields in the SSW field, and adding some fields to the SSW field.
  • the deleted fields include, for example, the sector identification field, the antenna identification field, the receiving sector scan length field, etc.
  • the newly added fields include, for example, the starting offset field, the training sequence type field, and the quasi-omni TX field. See Figure 8 for an example of some fields included in the improved SSW field.
  • the information of the M training sequences includes the second indication information and/or the third indication information.
  • the first frame may include at least one of the first indication information, the second indication information, the third indication information and the fourth indication information.
  • the first indication information is used to indicate the start time of the sector scan.
  • the first indication information may include relative time information, and the relative time information is an offset relative to a reference time, and the reference time may be, for example, the reception time of the first frame.
  • the STA may determine the start time of the sector scan according to the reception time of the first frame and the offset, and the time interval between the start time of the sector scan and the reception time of the first frame is equal to the offset.
  • the unit of the offset may be one or more microseconds, or one or more nanoseconds, or other possible time units, such as the unit of the offset is 100 nanoseconds.
  • the first indication information may include absolute time information, where the absolute time information represents a specific time.
  • the specific time represented by the absolute time information is X1 year X2 month X3 day X4 hours X5 minutes X6 seconds X7 milliseconds X8 nanoseconds.
  • the STA may use the specific time represented by the absolute time information as the start time of the sector scan.
  • the first indication information may be carried in the start offset field of the first frame, and the number of bits included in the start offset field may be set according to actual needs, for example, the start offset field includes 16 bits.
  • the first frame may not include the first indication information.
  • the offset may be predefined by the protocol, and then after the STA receives the first frame, it may determine the start time of the sector scan based on the reception time of the first frame and the predefined offset.
  • the second indication information indicates the type of the training sequence.
  • the protocol may predefine multiple types of training sequences, such as type 1, type 2, and type 3. Then, the AP may indicate the specific type of the training sequence through the second indication information.
  • the second indication information may include an identifier of the type of the training sequence.
  • the second indication information may be carried in the training sequence type field of the first frame, and the number of bits included in the training sequence type field may be set according to actual needs, for example, the training sequence type field includes 8 bits.
  • the first frame may not include the second indication information.
  • the specific type of the training sequence may be predefined by the protocol.
  • the third indication information indicates the value used for M.
  • antenna 1 corresponds to two sectors
  • antenna 2 corresponds to three sectors, that is, the AP has a total of five sectors. If the AP sends one training sequence in each sector, the value of M can be 5, and if the AP sends two training sequences in each sector, the value of M can be 10.
  • the third indication information may be carried in the CDOWN field of the first frame.
  • the first frame may not include the third indication information.
  • the value of M may be predefined by the protocol.
  • the fourth indication information indicates the type of sector scanning.
  • the type of sector scanning may be I-TXSS, I-RXSS, R-TXSS or R-RXSS.
  • the fourth indication information can be carried in the direction field and the quasi-omnidirectional transmission field.
  • the direction field includes 1 bit (referred to as bit 1)
  • the quasi-omnidirectional transmission field includes 1 bit (referred to as bit 2).
  • bit 1 when the value of bit 1 is 0 and the value of bit 2 is 0, the type of sector scanning is I-TXSS; when the value of bit 1 is 0 and the value of bit 2 is 1, the type of sector scanning is I-RXSS; when the value of bit 1 is 1 and the value of bit 2 is 0, the type of sector scanning is R-TXSS; when the value of bit 1 is 1 and the value of bit 2 is 1, the type of sector scanning is R-RXSS.
  • the first frame including the first indication information, the second indication information, the third indication information and the fourth indication information is taken as an example. That is, after the STA receives the first frame, it can determine the start time of the sector scan according to the first indication information, determine the type of the training sequence according to the second indication information, determine the value of M according to the third indication information, and determine the type of the sector scan according to the fourth indication information.
  • the STA can determine the M time domain positions where the M training sequences are located, and can also determine the duration of the sector scan according to the start time, the type of the training sequence, and the value of M. For example, the STA can determine the duration (expressed as t) of the time domain position where the training sequence is located according to the type of the training sequence. If the interval between different training sequences in the M training sequences is a preset frame interval (expressed as T), the STA can determine the duration of the sector scan as: M*t+(M-1)*T.
  • the STA can start sector scanning at the start time. For example, for I-TXSS and I-RXSS, the STA can start searching for the training sequence from the AP at the start time, and for R-TXSS and R-RXSS, the STA can start sending the training sequence at the start time; or, after the STA determines the start time, it can also start sector scanning near the start time. For example, the STA can start detecting the SSW frame from the AP 400ns before the start time, so as to avoid missing the SSW frame.
  • the AP and the STA perform sector scanning on the second frequency domain resources according to information of M training sequences.
  • the type of sector scanning may be I-TXSS, I-RXSS, R-TXSS or R-TXSS.
  • S602 The specific implementation of S602 is described below for each of the four types of sector scanning.
  • S602 may include:
  • the AP sends M training sequences on the second frequency domain resources, and the M training sequences are used by the initiator to send sector scans.
  • the AP may send M training sequences in a directionally manner on the second frequency domain resource.
  • the AP may send M training sequences in the M sending sectors of the AP on the second frequency domain resource, that is, each sending sector sends one training sequence, so as to reduce the overhead of sector scanning.
  • the AP may also send multiple training sequences on each sending sector.
  • the AP sends one training sequence in each sending sector as an example.
  • the sending order numbers of the M training sequences sent by the AP on the second frequency domain resource are 1, 2, ... M.
  • the training sequence numbered 1 is located at time domain position 1
  • the training sequence numbered 2 is located at time domain position 2, and so on.
  • the AP may store the corresponding relationship between the sending order numbers of the M training sequences and the identifiers of the transmitting antennas and the identifiers of the transmitting sectors, as shown in Table 1, which is an example of a possible corresponding relationship.
  • Table 1 Correspondence between the transmission order numbers of the M training sequences and the identifiers of the transmitting antennas and the identifiers of the transmitting sectors
  • the STA receives N1 training sequences on the second frequency domain resources.
  • the STA may receive N1 training sequences quasi-omnidirectionally on the second frequency domain resource, wherein the N1 training sequences belong to M training sequences, and N1 is less than or equal to M; that is, although the AP sends M training sequences directionally on the second frequency domain resource, the STA may receive M training sequences or may only receive some of the M training sequences.
  • the STA can search for the training sequence at each time domain position according to the M time domain positions where the M training sequences are located. For example, if the STA receives the training sequence at time domain position 1, it can be determined that the sending order number of the training sequence is 1; if the STA does not receive the training sequence at time domain position 2, but receives the training sequence at time domain position 3, it can be determined that the sending order number of the training sequence is 3, and so on.
  • the STA may send the second frame omnidirectionally or quasi-omnidirectionally on the first frequency domain resource or the second frequency domain resource.
  • the STA sends the second frame omnidirectionally on the low frequency band, and accordingly, the AP may receive the second frame omnidirectionally on the low frequency band.
  • the STA sends the second frame quasi-omnidirectionally on the high frequency band, and accordingly, the AP may receive the second frame quasi-omnidirectionally on the high frequency band.
  • the STA will take the example of sending the second frame omnidirectionally on the low frequency band as an example.
  • the second frame may include identification information of a first training sequence among the M training sequences, and the identification information of the first training sequence is used to determine the best transmitting antenna and/or best transmitting sector of the AP corresponding to the STA on the second frequency domain resource.
  • the identification information of the first training sequence may be a transmission order number of the first training sequence among the M training sequences.
  • the STA may select the first training sequence from the N1 training sequences according to the reception quality of the N1 training sequences, and send the transmission order number of the first training sequence to the AP through the second frame.
  • the reception quality of the training sequence may refer to the correlation peak of the training sequence.
  • the STA may use a frequency domain method to detect the correlation peak of the training sequence, or may use a time domain sliding window to detect the correlation peak of the training sequence point by point.
  • the STA may determine the detection method according to whether the training sequence has a cyclic prefix.
  • the STA may use a frequency domain method to detect the correlation peak of the training sequence.
  • the STA may use a time domain sliding window to detect the correlation peak point by point.
  • the specific implementation of time domain and frequency domain detection may refer to the prior art.
  • STA selecting the first training sequence from the N1 training sequences according to the reception qualities of the N1 training sequences.
  • the STA may select the training sequence with the best reception quality from the N1 training sequences as the first training sequence, that is, the reception quality of the first training sequence may be greater than or equal to the reception quality of other training sequences in the N1 training sequences.
  • the STA may select the training sequence with the best reception quality as the first training sequence according to the reception quality of the received N1 training sequences.
  • the AP can determine the best transmission antenna and the best transmission sector of the AP corresponding to the STA according to the corresponding relationship shown in Table 1 above.
  • the second frame may be an SSW feedback frame, or other possible frames, which are not specifically limited.
  • the embodiment of the present application may improve the SSW feedback field in the SSW feedback frame, such as deleting some fields in the SSW feedback field, and adding a new field to the SSW feedback field.
  • the deleted fields include, for example, the sector select field, the antenna select field, etc.
  • the newly added fields include, for example, the training sequence selection field, and the training sequence selection field may include the identification information of the above-mentioned first training sequence. Referring to FIG. 8, a partial field shown in the improved SSW feedback field is shown. example.
  • the AP may send a confirmation frame of the second frame, that is, an SSW feedback confirmation frame, to the STA.
  • a confirmation frame of the second frame that is, an SSW feedback confirmation frame
  • the AP may send the SSW feedback confirmation frame to the STA on the first frequency domain resource or the second frequency domain resource.
  • the sending sequence number can also be called the sending sequence number.
  • the identification information of the first training sequence is the sending sequence number of the first training sequence.
  • the identification information of the first training sequence can also be a countdown corresponding to the first training sequence. For example, the countdown corresponding to the training sequence with a sending sequence number of 1 is M, the countdown corresponding to the training sequence with a sending sequence number of 2 is M-1, and so on.
  • S602 may include:
  • the AP sends M training sequences on the second frequency domain resources, and the M training sequences are used for the initiator to receive sector scanning.
  • the AP may send M training sequences quasi-omnidirectionally on the second frequency domain resources.
  • STA receives N2 training sequences on the second frequency domain resources.
  • the STA can directionally receive N2 training sequences on the second frequency domain resource, for example, the STA can respectively receive N2 training sequences in the N2 receiving sectors of the STA, that is, each receiving sector receives one training sequence.
  • the N2 training sequences belong to M training sequences, and N2 is less than or equal to M; that is, although the AP quasi-omnidirectionally sends M training sequences on the second frequency domain resource, the STA may receive M training sequences, or may only receive some of the M training sequences.
  • the STA determines the best receiving antenna and the best receiving sector of the STA corresponding to the AP based on the reception quality of the N2 training sequences.
  • the STA may determine the best receiving antenna and/or best receiving sector of the STA corresponding to the AP based on the receiving antenna and/or receiving sector corresponding to the training sequence with the best receiving quality among the N2 training sequences.
  • the STA can determine the value of M based on the first frame, when the STA determines that the value of M is small (that is, the number of training sequences sent by the AP is small), the STA can select some antennas for beam training according to the application scenario requirements, or perform coarse receiving beam training through sector merging; when the STA determines that the value of M is large (that is, the number of training sequences sent by the AP is large), the STA can end the beam training in advance to reduce power consumption. For example, when M is less than the number of receiving sectors of the STA, the STA can determine that the value of M is small, and when M is greater than the number of receiving sectors of the STA, the STA can determine that the value of M is large.
  • S602 may include:
  • the STA sends M training sequences on the second frequency domain resources, and the M training sequences are used for the responder to send sector scans.
  • the STA may send M training sequences in a directionally manner on the second frequency domain resource.
  • the STA may send M training sequences in the M sending sectors of the STA on the second frequency domain resource, that is, each sending sector sends a training sequence, so as to reduce the overhead of sector scanning.
  • the STA may also send multiple training sequences on each sending sector.
  • the STA sends one training sequence in each sending sector as an example.
  • the AP receives N3 training sequences on the second frequency domain resources.
  • the AP may quasi-omnidirectionally receive N3 training sequences on the second frequency domain resource, wherein the N3 training sequences belong to M training sequences, and N3 is less than or equal to M. That is, although the STA sends M training sequences directionally on the second frequency domain resource, the AP may receive M training sequences or may only receive some of the M training sequences.
  • the AP sends a second frame to the STA on the first frequency domain resources or the second frequency domain resources; accordingly, the STA receives the second frame from the AP.
  • the second frame may include identification information of a second training sequence among the M training sequences, and the identification information of the second training sequence is used to determine the best transmitting antenna and/or best transmitting sector of the STA corresponding to the AP on the second frequency domain resource.
  • the identification information of the second training sequence may be a transmission order number of the second training sequence among the M training sequences.
  • sector scanning in R-TXSS can refer to the description in I-TXSS and will not be repeated here.
  • S602 may include:
  • the STA sends M training sequences on the second frequency domain resources, and the M training sequences are used for the receiving party to receive sector scanning.
  • the STA may send M training sequences quasi-omnidirectionally on the second frequency domain resources.
  • the AP directionally receives N4 training sequences on the second frequency domain resources.
  • the AP may directionally receive N4 training sequences on the second frequency domain resource, wherein the N4 training sequences belong to M training sequences, and N4 is less than or equal to M. That is, although the STA quasi-omnidirectionally sends M training sequences on the second frequency domain resource, the AP may receive M training sequences or may only receive some of the M training sequences.
  • the AP determines the best receiving antenna and best receiving sector of the AP corresponding to the STA based on the reception quality of the N4 training sequences.
  • a new SSW frame (including only a training sequence) is used for sector scanning.
  • the new SSW frame does not include redundant information such as a preamble code and a physical frame header, the throughput can be effectively improved, thereby improving the efficiency of the sector scanning.
  • the AP can send the first frame to the STA on the low frequency band, and the AP or the STA can send or receive a new SSW frame (i.e., a training sequence) on the high frequency band.
  • a new SSW frame i.e., a training sequence
  • the sector scan is completed by the mutual cooperation of the low frequency band and the high frequency band, which can effectively improve the overall communication efficiency and throughput of the network.
  • the AP since the coverage range of the low frequency band is larger, the AP sends the first frame on the low frequency band, which can increase the probability that the STA successfully receives the first frame.
  • the STA receives at least one SSW frame quasi-omnidirectionally, measures the reception quality of at least one SSW frame, and demodulates at least one SSW frame to obtain the identifier of the transmitting antenna and the identifier of the transmitting sector used to send at least one SSW frame, thereby determining the best transmitting antenna and the best transmitting sector of the AP corresponding to the STA, and sending the identifier of the best transmitting antenna and the identifier of the best transmitting sector to the AP.
  • the STA can select the training sequence with the best reception quality according to the reception quality of the training sequence, and then send the transmission sequence number of the training sequence to the AP.
  • the AP can determine the best transmitting antenna and the best transmitting sector of the AP corresponding to the STA according to the transmission sequence number of the training sequence, thereby avoiding demodulating the SSW frames received quasi-omnidirectionally and improving the accuracy of the beam training result.
  • the STA may search for the SSW frame for a long time, resulting in high power consumption of the STA.
  • the AP can notify the STA of the start time of the sector scan (and the duration of the sector scan) through the first frame, so that the STA can start searching for the training sequence according to the start time, effectively reducing the power consumption of the STA.
  • the AP can send the first frame to a specific STA (such as the above STA) in a unicast manner, or the AP can also send the first frame in a broadcast manner.
  • the first frame includes a receiving address field.
  • the receiving address field includes the address of the specific STA;
  • the receiving address field includes a broadcast address (for example, when all bits of the receiving address field are set to 0, the receiving address is the broadcast address).
  • the above is based on the example of the AP sending the first frame in a unicast manner, that is, the example of the AP performing sector scanning with a STA.
  • the AP can perform sector scanning with multiple STAs at the same time.
  • the first frame may include an SSW field, and the SSW field includes the first indication information to the fourth indication information.
  • the AP and the STA may perform corresponding sector scanning according to the first indication information to the fourth indication information.
  • the first frame may include multiple SSW fields.
  • the first frame includes an SSW field 1 and an SSW field 2; wherein the SSW field 1 includes the first indication information 1 (indicating offset 1), the second indication information 1 (indicating type 1), the third indication information 1 (indicating that the value of M is M1) and the fourth indication information 1 (indicating that the sector scanning is I-TXSS), and the SSW field 2 includes the first indication information 2 (indicating offset 2), the second indication information 2 (indicating type 2), the third indication information 2 (indicating that the value of M is M2) and the fourth indication information 2 (indicating that the sector scanning is I-RXSS).
  • the AP and the STA may perform I-TXSS according to the SSW field 1, and perform I-RXSS according to the SSW field 2.
  • the first communication device and the second communication device may include hardware structures and/or software modules corresponding to the execution of each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Professional and technical personnel can come to each specific application to Different methods may be used to implement the described functionality, but such implementation should not be considered beyond the scope of this application.
  • FIG13 shows a possible exemplary block diagram of the device involved in the embodiments of the present application.
  • the device 1300 may include: a processing unit 1302 and a communication unit 1303.
  • the processing unit 1302 is used to control and manage the actions of the device 1300.
  • the communication unit 1303 is used to support the communication between the device 1300 and other devices.
  • the communication unit 1303 is also called a transceiver unit, and may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the device 1300 may also include a storage unit 1301 for storing program code and/or data of the device 1300.
  • the device 1300 may be the first communication device (such as an AP) in the above embodiment, or may be a component (such as a circuit or a chip) disposed in the AP.
  • the processing unit 1302 may support the device 1300 in executing the actions of the AP in the above method examples. Alternatively, the processing unit 1302 mainly executes the internal actions of the AP in the method examples, and the communication unit 1303 may support the communication between the device 1300 and other devices.
  • the communication unit 1303 is used to: send a first frame on a first frequency domain resource, the first frame including information of M training sequences, the M training sequences being used to perform sector scanning on a second frequency domain resource, M being an integer greater than 1; and, with the second communication device, performing the sector scanning on the second frequency domain resource based on the information of the M training sequences; wherein the frequency corresponding to the first frequency domain resource is less than the frequency corresponding to the second frequency domain resource.
  • the device 1300 may be the second communication device (such as STA) in the above embodiment, or may also be a component (such as a circuit or chip) disposed in the STA.
  • the processing unit 1302 may support the device 1300 in performing the actions of the STA in the above method examples.
  • the processing unit 1302 mainly performs the internal actions of the STA in the method examples, and the communication unit 1303 may support the communication between the device 1300 and other devices.
  • the communication unit 1303 is used to: receive a first frame from a first communication device on a first frequency domain resource or a second frequency domain resource, the first frame including information of M training sequences, the M training sequences being used to perform sector scanning on the second frequency domain resource, M being an integer greater than 1; and perform the sector scanning on the second frequency domain resource with the first communication device based on the information of the M training sequences; wherein the frequency corresponding to the first frequency domain resource is less than the frequency corresponding to the second frequency domain resource.
  • each unit in the above device can be fully or partially integrated into one physical entity, or they can be physically separated.
  • the units in the device can all be implemented in the form of software calling through processing elements; they can also be all implemented in the form of hardware; some units can also be implemented in the form of software calling through processing elements, and some units can be implemented in the form of hardware.
  • each unit can be a separately established processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, and called and executed by a certain processing element of the device. The function of the unit.
  • processing element described here can also be a processor, which can be an integrated circuit with signal processing capabilities.
  • each operation of the above method or each unit above can be implemented by an integrated logic circuit of hardware in the processor element or in the form of software calling through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above method, such as one or more application specific integrated circuits (ASIC), or one or more digital singnal processors (DSP), or one or more field programmable gate arrays (FPGA), or a combination of at least two of these integrated circuit forms.
  • ASIC application specific integrated circuits
  • DSP digital singnal processors
  • FPGA field programmable gate arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a processor, such as a general-purpose central processing unit (CPU), or other processors that can call programs.
  • CPU general-purpose central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above unit for receiving is an interface circuit of the device, which is used to receive signals from other devices.
  • the receiving unit is an interface circuit of the chip used to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device, which is used to send signals to other devices.
  • the sending unit is an interface circuit of the chip used to send signals to other chips or devices.
  • FIG. 14 there is shown a schematic diagram of the structure of a communication device provided in an embodiment of the present application, which is used to implement the operation of the first communication device (eg, AP) in the above embodiment.
  • the first communication device eg, AP
  • the communication device 1400 may include a processor 1401, a memory 1402, and an interface circuit 1403.
  • the processor 1401 may be used to process the communication protocol and communication data, and to control the communication device 1400.
  • the memory 1402 may be used to store programs and data, and the processor 1401 may execute the method executed by the AP in the embodiment of the present application based on the program.
  • the interface circuit 1403 may be used to communicate
  • the communication device 1400 communicates with other devices, the communication may be wired communication or wireless communication, and the interface circuit may also be replaced by a transceiver.
  • the communication device shown in FIG14 can implement various processes involving the AP in the above method embodiment.
  • the operations and/or functions of each module in the communication device shown in FIG14 are respectively to implement the corresponding processes in the above method embodiment.
  • the communication device includes: an antenna 1510, a radio frequency part 1520, and a signal processing part 1530.
  • the antenna 1510 is connected to the radio frequency part 1520.
  • the radio frequency part 1520 receives information sent by the AP through the antenna 1510, and sends the information sent by the AP to the signal processing part 1530 for processing.
  • the signal processing part 1530 processes the information of the STA and sends it to the radio frequency part 1520.
  • the radio frequency part 1520 processes the information of the STA and sends it to the AP through the antenna 1510.
  • the signal processing part 1530 may include a modulation and demodulation subsystem for processing each communication protocol layer of the data; it may also include a central processing subsystem for processing the STA operating system and the application layer; in addition, it may also include other subsystems, such as a multimedia subsystem, a peripheral subsystem, etc., wherein the multimedia subsystem is used to control the camera, screen display, etc., and the peripheral subsystem is used to connect to other devices.
  • the modulation and demodulation subsystem may be a separately set chip.
  • the modem subsystem may include one or more processing elements 1531, for example, a main control CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 1532 and an interface circuit 1533.
  • the storage element 1532 is used to store data and programs, but the program used to execute the method executed by the STA in the above method may not be stored in the storage element 1532, but in a memory outside the modem subsystem, and the modem subsystem loads and uses it when in use.
  • the interface circuit 1533 is used to communicate with other subsystems.
  • the modem subsystem may be implemented by a chip, which includes at least one processing element and an interface circuit, wherein the processing element is used to execute each step of any of the methods executed by the above STA, and the interface circuit is used to communicate with other devices.
  • the unit for STA to implement each step in the above method may be implemented in the form of a processing element scheduler, for example, the device for STA includes a processing element and a storage element, and the processing element calls a program stored in the storage element to execute the method executed by STA in the above method embodiment.
  • the storage element may be a storage element on the same chip as the processing element, that is, an on-chip storage element.
  • the program for executing the method executed by STA in the above method may be in a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads the program from the off-chip storage element to the on-chip storage element to call and execute the method executed by STA in the above method embodiment.
  • the unit of the STA implementing each step in the above method may be configured as one or more processing elements, which are arranged on the modem subsystem.
  • the processing elements here may be integrated circuits, such as one or more ASICs, or one or more DSPs, or one or more FPGAs, or a combination of these integrated circuits. These integrated circuits may be integrated together to form a chip.
  • the units of STA implementing the above steps can be integrated together and implemented in the form of SOC, and the SOC chip is used to implement the above method.
  • the chip can integrate at least one processing element and storage element, and the processing element calls the stored program of the storage element to implement the above STA execution method; or, the chip can integrate at least one integrated circuit to implement the above STA execution method; or, the above implementation methods can be combined, and the functions of some units are implemented by the processing element calling the program, and the functions of some units are implemented by the integrated circuit.
  • the above apparatus for STA may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any one of the STA execution methods provided in the above method embodiments.
  • the processing element may execute part or all of the steps executed by STA in a first manner: that is, by calling a program stored in a storage element; or in a second manner: by combining an integrated logic circuit of hardware in a processor element with instructions to execute part or all of the steps executed by STA; of course, part or all of the steps executed by STA may also be executed in combination with the first manner and the second manner.
  • the processing element here is the same as described above and can be implemented by a processor.
  • the function of the processing element can be the same as the function of the processing unit described in FIG. 13.
  • the processing element can be a general-purpose processor, such as a CPU, or can be configured to implement the above
  • the storage element may be one or more integrated circuits of a method, such as one or more ASICs, or one or more microprocessors DSPs, or one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element may be implemented by a memory, and the function of the storage element may be the same as the function of the storage unit described in FIG. 13.
  • the storage element may be a memory, or a general term for multiple memories.
  • the STA shown in FIG15 can implement various processes related to the STA in the above method embodiment.
  • the operations and/or functions of each module in the STA shown in FIG15 are respectively to implement the corresponding processes in the above method embodiment.
  • An embodiment of the present application also provides a communication system, which may include an AP and a STA, wherein the AP is used to execute the steps on the AP side of the above method embodiment, and the STA is used to execute the steps on the STA side of the above method embodiment.
  • a communication system which may include an AP and a STA, wherein the AP is used to execute the steps on the AP side of the above method embodiment, and the STA is used to execute the steps on the STA side of the above method embodiment.
  • system and “network” in the embodiments of the present application can be used interchangeably.
  • “At least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist, for example, A and/or B, which can represent: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • “At least one of the following (individuals)” or similar expressions thereof refer to any combination of these items, including any combination of single items (individuals) or plural items (individuals).
  • At least one of A, B and C includes A, B, C, AB, AC, BC or ABC.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, timing, priority or importance of multiple objects.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) that contain computer-usable program code.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种扇区扫描方法及装置。其中方法包括:第一通信装置在第一频域资源或第二频域资源上发送第一帧,第一帧包括M个训练序列的信息,M个训练序列用于在第二频域资源上进行扇区扫描;第一通信装置与第二通信装置根据M个训练序列的信息,在第二频域资源上进行所述扇区扫描;其中,所述第一频域资源对应的频率小于所述第二频域资源对应的频率。如此,本申请实施例中,第一通信装置与第二通信装置使用新的SSW帧(即训练序列)进行扇区扫描,相比于使用SSW帧进行扇区扫描来说,由于新的SSW帧不包括前导码、物理帧头等冗余信息,从而可以有效提高吞吐量,进而提高扇区扫描的效率。

Description

一种扇区扫描方法及装置
相关申请的交叉引用
本申请要求在2022年09月30日提交中国专利局、申请号为202211217584.9、申请名称为“一种扇区扫描方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种扇区扫描方法及装置。
背景技术
目前无线局域网(wireless local area networks,WLAN)大多工作在低频频段,随着使用低频频段的设备的增加,低频频段的频谱资源变得非常拥挤。因此,当前关注于使用高频频段(比如毫米波频段)来获取更加丰富的可用频谱资源。
由于毫米波频段存在路径损耗大的问题,因此,为了抵消路径损耗,在毫米波频段引入了波束赋形技术,即在目标方向增强信号,在非目标或障碍物的方向减弱信号,以提高传输距离和系统性能。具体来说,在波束赋形技术中,毫米波通信的发射端可以采用波束的形式在某一发送方向发射通信信号,使发射的功率较为集中地汇聚于该发送方向上,同时,毫米波通信的接收端也可以在某一接收方向接收通信信号,通过波束赋形技术可以实现定向通信,从而可以很好地抵消路径损耗。
波束赋形技术的波束训练可包括扇区级扫描(sector level sweeping,SLS)过程,在SLS过程中,发起方和响应方使用扇区扫描(sector sweep,SSW)帧进行扇区扫描。然而,由于目前的SSW帧的帧长较长,从而导致扇区扫描的效率较低。
发明内容
本申请提供了一种扇区扫描方法及装置,用于实现第一通信装置与第二通信装置使用训练序列进行扇区扫描,从而可以有效提高扇区扫描的效率。
第一方面,本申请实施例提供一种扇区扫描方法,该方法可以应用于第一通信装置。该方法包括:第一通信装置在第一频域资源上发送第一帧,所述第一帧包括M个训练序列的信息,所述M个训练序列用于在第二频域资源上进行扇区扫描,M为大于1的整数;所述第一通信装置与所述第二通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描;其中,所述第一频域资源对应的频率小于所述第二频域资源对应的频率。
采用上述方法,第一通信装置与第二通信装置使用新的SSW帧(即训练序列)进行扇区扫描,相比于使用SSW帧进行扇区扫描来说,由于新的SSW帧不包括前导码、物理帧头等冗余信息,从而可以有效提高吞吐量,进而提高扇区扫描的效率。
在一种可能的设计中,所述第一帧还包括第一指示信息,所述第一指示信息指示所述扇区扫描的起始时间。
如此,第二通信装置可以根据第一指示信息确定扇区扫描的起始时间。也就是说,第一通信装置和第二通信装置可以对齐扇区扫描的起始时间,从而避免第一通信装置或第二通信装置不知晓何时开始扇区扫描,进而可能会长时间搜索扇区扫描导致功耗较大。
在一种可能的设计中,所述第一指示信息包括偏移量,所述起始时间与所述第一帧的接收时间之间的时间间隔等于所述偏移量。
在一种可能的设计中,所述M个训练序列的信息包括第二指示信息和/或第三指示信息;其中,所述第二指示信息指示所述M个训练序列的类型,所述第三指示信息指示所述M的取值。
如此,第一通信装置和第二通信装置可以对齐对M个训练序列的理解,且由第一通信装置向第二通信装置发送M个训练序列的信息,便于第一通信装置对第二通信装置进行灵活控制。
在一种可能的设计中,所述训练序列包括循环前缀,所述循环前缀的长度大于信道记忆长度,所述信道用于传输所述训练序列。
如此,当循环前缀的长度大于信道记忆长度时,可有效避免多径信道引入的符号间干扰;同时在接收端可采用低复杂度的频域相关方法检测训练序列。
在一种可能的设计中,当训练序列包括循环前缀时,训练序列的接收端根据频域方法确定训练序列的接收质量(比如训练序列的相关峰值);当训练序列不包括循环前缀时,训练序列的接收端根据时域方法确定训练序列的接收质量。
在一种可能的设计中,所述第一帧还包括第四指示信息,所述第四指示信息指示所述扇区扫描为发起方发送扇区扫描;所述第一通信装置与所述第二通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描,包括:所述第一通信装置在所述第二频域资源上发送所述M个训练序列;所述第一通信装置在所述第一频域资源或所述第二频域资源上接收来自所述第二通信装置的第二帧,所述第二帧包括所述M个训练序列中第一训练序列的标识信息,所述第一训练序列的标识信息用于确定所述第一通信装置在所述第二频域资源上对应于所述第二通信装置的最佳发送天线和/或最佳发送扇区。
如此,在现有的发起方发送扇区扫描(I-TXSS)中,AP定向发送多个SSW帧后,STA准全向接收至少一个SSW帧,并测量至少一个SSW帧的接收质量,以及解调至少一个SSW帧得到用于发送至少一个SSW帧的发送天线的标识和发送扇区的标识,进而确定AP对应于STA的最佳发送天线和最佳发送扇区,并向AP发送最佳发送天线的标识和最佳发送扇区的标识。然而,由于高频频段的路径损耗大,STA解调准全向接收的SSW帧的可靠性较低,若SSW帧解调失败,则可能会导致波束训练结果不够准确。而本发明实施例中,STA接收到训练序列后,可以根据训练序列的接收质量,选择接收质量较好的训练序列,进而向AP发送该训练序列的标识信息,AP根据训练序列的标识信息可以确定出AP对应于STA的最佳发送天线和最佳发送扇区,从而可以避免解调准全向接收的SSW帧,提高波束训练结果的准确性。
在一种可能的设计中,所述第一通信装置在所述第二频域资源上发送所述M个训练序列,包括:所述第一通信装置在所述第二频域资源上,在所述第一通信装置的M个发送扇区上分别发送所述M个训练序列。
如此,第一通信装置可以在每个发送扇区上发送一个训练序列,便于减少扇区扫描的开销。
在一种可能的设计中,所述第一训练序列的标识信息为所述第一训练序列在所述M个训练序列中的发送顺序编号。
在一种可能的设计中,所述第一帧还包括第四指示信息,所述第四指示信息指示所述扇区扫描为发起方接收扇区扫描;所述第一通信装置与所述第二通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描,包括:所述第一通信装置在所述第二频域资源上发送M个训练序列,所述M个训练序列用于确定所述第二通信装置在所述第二频域资源上对应于所述第一通信装置的最佳接收天线和/或最佳接收扇区。
在一种可能的设计中,所述第一帧还包括第四指示信息,所述第四指示信息指示所述扇区扫描为响应方发送扇区扫描;所述第一通信装置与所述第二通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描,包括:所述第一通信装置在所述第二频域资源上接收来自所述第二通信装置的N3个训练序列,所述N3个训练序列属于所述M个训练序列,N3为大于0的整数,且N3小于或等于M;所述第一通信装置在所述第一频域资源或所述第二频域资源上向所述第二通信装置发送第二帧,所述第二帧包括所述N3个训练序列中第二训练序列的标识信息,所述第二训练序列的标识信息用于确定所述第二通信装置在所述第二频域资源上对应于所述第一通信装置的最佳发送天线和/或最佳发送扇区。
在一种可能的设计中,所述第二训练序列的标识信息为所述第二训练序列在所述M个训练序列中的发送顺序编号。
在一种可能的设计中,所述第一帧还包括第四指示信息,所述第四指示信息指示所述扇区扫描为响应方接收扇区扫描;所述第一通信装置与所述第二通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描,包括:所述第一通信装置在所述第二频域资源上接收来自所述第二通信装置的N4个训练序列,所述N4个训练序列属于所述M个训练序列,N4为大于0的整数,且N4小于或等于M;所述第一通信装置根据所述N4个训练序列的接收质量,确定所述第一通信装置在所述第二频域资源上对应于所述第二通信装置的最佳接收天线和/或最佳接收扇区。
在一种可能的设计中,所述第一通信装置在所述第二频域资源上接收来自所述第二通信装置的N4个训练序列,包括:所述第一通信装置在所述第二频域资源上,在所述第一通信装置的N4个接收扇区 上分别接收来自所述第二通信装置的N4个训练序列。
第二方面,本申请实施例提供一种扇区扫描方法,该方法可以应用于第二通信装置。该方法包括:第二通信装置在第一频域资源或第二频域资源上接收来自第一通信装置的第一帧,所述第一帧包括M个训练序列的信息,所述M个训练序列用于在所述第二频域资源上进行扇区扫描,M为大于1的整数;所述第二通信装置与所述第一通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描;其中,所述第一频域资源对应的频率小于所述第二频域资源对应的频率。
在一种可能的设计中,所述第一帧还包括第一指示信息,所述第一指示信息指示所述扇区扫描的起始时间。
在一种可能的设计中,所述第一指示信息包括偏移量,所述起始时间与所述第一帧的接收时间之间的时间间隔等于所述偏移量。
在一种可能的设计中,所述M个训练序列的信息包括第二指示信息和/或第三指示信息;其中,所述第二指示信息指示所述M个训练序列的类型,所述第三指示信息指示所述M的取值。
在一种可能的设计中,所述训练序列包括循环前缀,所述循环前缀的长度大于信道记忆长度,所述信道用于传输所述训练序列。
在一种可能的设计中,所述第一帧还包括第四指示信息,所述第四指示信息指示所述扇区扫描为发起方发送扇区扫描;所述第二通信装置与所述第一通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描,包括:所述第二通信装置在所述第二频域资源上接收来自所述第一通信装置的N1个训练序列,所述N1个训练序列属于所述M个训练序列,N1为大于0的整数,且N1小于或等于M;所述第二通信装置在所述第一频域资源或所述第二频域资源上向所述第一通信装置发送第二帧,所述第二帧包括所述N1个训练序列中第一训练序列的标识信息,所述第一训练序列的标识信息用于确定所述第一通信装置在所述第二频域资源上对应于所述第二通信装置的最佳发送天线和/或最佳发送扇区。
在一种可能的设计中,所述第一训练序列的标识信息为所述第一训练序列在所述M个训练序列中的发送顺序编号。
在一种可能的设计中,所述第一帧还包括第四指示信息,所述第四指示信息指示所述扇区扫描为发起方接收扇区扫描;所述第二通信装置与所述第一通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描,包括:所述第二通信装置在所述第二频域资源上接收来自所述第一通信装置的N2个训练序列,所述N2个训练序列属于所述M个训练序列,N2为大于0的整数,且N2小于或等于M;所述第二通信装置根据所述N2个训练序列的接收质量,确定所述第二通信装置在所述第二频域资源上对应于所述第一通信装置的最佳接收天线和/或最佳接收扇区。
在一种可能的设计中,所述第二通信装置在所述第二频域资源上接收来自所述第一通信装置的N2个训练序列,包括:所述第二通信装置在所述第二频域资源上,在所述第二通信装置的N2个接收扇区上分别接收来自所述第一通信装置的N2个训练序列。
在一种可能的设计中,所述第一帧还包括第四指示信息,所述第四指示信息指示所述扇区扫描为响应方发送扇区扫描;所述第二通信装置与所述第一通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描,包括:所述第二通信装置在所述第二频域资源上发送所述M个训练序列;所述第二通信装置在所述第一频域资源或所述第二频域资源上接收来自所述第一通信装置的第二帧,所述第二帧包括所述M个训练序列中第二训练序列的标识信息,所述第二训练序列的标识信息用于确定所述第二通信装置在所述第二频域资源上对应于所述第一通信装置的最佳发送天线和/或最佳发送扇区。
在一种可能的设计中,所述第二通信装置在所述第二频域资源上发送所述M个训练序列,包括:所述第二通信装置在所述第二频域资源上,在所述第二通信装置的M个发送扇区上分别发送所述M个训练序列。
在一种可能的设计中,所述第二训练序列的标识信息为所述第二训练序列在所述M个训练序列中的发送顺序编号。
在一种可能的设计中,所述第一帧还包括第四指示信息,所述第四指示信息指示所述扇区扫描为响应方接收扇区扫描;所述第二通信装置与所述第一通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描,包括:所述第二通信装置在所述第二频域资源上发送所述M个训练 序列,所述M个训练序列用于确定所述第一通信装置在所述第二频域资源上对应于所述第二通信装置的最佳接收天线和/或最佳接收扇区。
可以理解的是,上述第二方面所描述的方法与第一方面所描述的方法相对应,第二方面中相关技术特征的有益效果可以参照第一方面的描述,不再赘述。
第三方面,本申请提供一种通信装置,所述通信装置具备实现上述第一方面或第二方面的功能,比如,所述通信装置包括执行上述第一方面或第二方面涉及操作所对应的模块或单元或手段(means),所述模块或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第一方面或第二方面涉及的操作相对应。
在一种可能的设计中,所述通信装置包括处理器,处理器可以用于与存储器耦合。所述存储器可以保存实现上述第一方面或第二方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面或第二方面中任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第一方面或第二方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面或第二方面中任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和接口电路,其中,处理器用于通过所述接口电路与其它装置通信,并执行上述第一方面或第二方面中任意可能的设计或实现方式中的方法。
可以理解地,上述第三方面中,处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。此外,以上处理器可以为一个或多个,存储器可以为一个或多个。存储器可以与处理器集成在一起,或者存储器与处理器分离设置。在具体实现过程中,存储器可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第四方面,本申请提供一种通信系统,该通信系统可以包括第一通信装置和第二通信装置;其中,第一通信装置用于执行上述第一方面所提供的扇区扫描方法,第二通信装置用于执行上述第二方面所提供的扇区扫描方法。
第五方面,本申请提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面或第二方面的任一种可能的设计中的方法。
第六方面,本申请提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面或第二方面的任一种可能的设计中的方法。
第七方面,本申请提供一种芯片,所述芯片包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面或第二方面的任一种可能的设计中的方法。
附图说明
图1为本申请实施例适用的一种网络架构示意图;
图2为本申请实施例提供的一种AP MLD示意图;
图3为本申请实施例提供的AP MLD和non AP MLD之间的链路示意图;
图4为本申请实施例提供的一种可能的SLS过程示意图;
图5为本申请实施例提供的SSW帧、SSW字段以及SSW反馈字段的结构示例;
图6为本申请实施例提供的扇区扫描方法所对应的流程示意图;
图7为本申请实施例提供的三种类型的训练序列示例;
图8为本申请实施例提供的改进后的SSW字段和SSW反馈字段的结构示例;
图9A和图9B为本申请实施例提供的I-TXSS流程示意图;
图10A和图10B为本申请实施例提供的I-RXSS流程示意图;
图11A和图11B为本申请实施例提供的R-TXSS流程示意图;
图12A和图12B为本申请实施例提供的R-RXSS流程示意图;
图13为本申请实施例中所涉及的装置的可能的示例性框图;
图14为本申请实施例提供的一种AP的结构示意图;
图15为本申请实施例提供的一种STA的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例可以适用于WLAN中,比如可以适用于WLAN当前采用的电气电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11系列协议中的任意一种协议。其中,WLAN可以包括一个或多个基本服务集(basic service set,BSS),基本服务集中的网络节点包括接入点(access point,AP)和站点(station,STA)。此外,IEEE 802.11ad在原有的BSS基础上,引入个人基本服务集(personal basic service set,PBSS)和个人基本服务集控制节点(PBSS control point,PCP),每个个人基本服务集可以包含一个AP/PCP和多个关联于该AP/PCP的non AP/PCP,本申请实施例中non AP/PCP可以称为STA,PCP可以理解为AP在PBSS里的角色的称呼。
本申请实施例也可以适用于物联网(internet of things,IoT)网络或车联网(vehicle to X,V2X)网络等无线局域网中。当然,本申请实施例还可以适用于其它可能的通信系统,例如长期演进(long term evolution,LTE)通信系统、LTE频分双工(frequency division duplex,FDD)通信系统、LTE时分双工(time division duplex,TDD)通信系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)通信系统、以及未来演进的通信系统等。
下文以本申请实施例适用于WLAN为例。参见图1,示出了本申请实施例适用的一种WLAN的网络架构图,图1是以该WLAN包括1个AP和2个STA为例。其中,与AP关联的STA,能够接收该AP发送的无线帧,也能够向该AP发送无线帧。本申请实施例将以AP和STA之间的通信为例进行描述,可以理解的是,本申请实施例也可以适用于AP与AP之间的通信,例如各个AP之间可通过分布式系统(distributed system,DS)相互通信,也可以适用于STA与STA之间的通信。
AP可以为终端设备(如手机)进入有线(或无线)网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网络和无线网络的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。比如,AP可以是带有无线保真(wireless fidelity,Wi-Fi)芯片的终端设备(如手机)或者网络设备(如路由器)。本申请实施例中,AP可以为支持802.11be制式的设备,或者也可以为支持802.11ax、802.11ay、802.11ac、802.11n、802.11g、802.11b、802.11a以及802.11be下一代等802.11家族的多种WLAN制式的设备。
STA可以为无线通讯芯片、无线传感器或无线通信终端等,也可称为用户。例如,STA可以为支持Wi-Fi通讯功能的移动电话、支持Wi-Fi通讯功能的平板电脑、支持Wi-Fi通讯功能的机顶盒、支持Wi-Fi通讯功能的智能电视、支持Wi-Fi通讯功能的智能可穿戴设备、支持Wi-Fi通讯功能的车载通信设备和支持Wi-Fi通讯功能的计算机等等。可选地,STA可以支持802.11be制式,或者也可以支持802.11ax、802.11ay、802.11ac、802.11n、802.11g、802.11b、802.11a、802.11be下一代等802.11家族的多种WLAN制式。
可以理解的是,图1中所示意的AP和STA的数量仅是举例,还可以更多或者更少。
图1中所涉及的AP和STA可以为具有双模通信功能的通信装置,也就是具有低频(low frequency,LF)频段(或信道或链路)通信模式,和高频(highfrequency,HF)频段通信模式的通信装置。其中,低频频段比如包括sub 1吉赫兹(GHz),2.4GHz,5GHz,6GHz等,高频频段比如包括45GHz,60GHz等。
示例性地,具有双模通信功能的通信装置可以为双频双并发(dual-band dual-concurrent,DBDC)设备,或者也可以为多链路设备(multi-link device,MLD)。下面分别进行说明。
(1)DBDC设备
DBDC设备集成了两套独立且完整的链路,含两套基带处理器和射频前端,从而可支持在两个频段独立工作。
当AP和STA均为DBDC设备时,比如AP为DBDC设备1,STA为DBDC设备2,此种情形下,AP与STA可以在低频链路上进行信令交互,以建立低频链路连接;以及,在高频链路上进行信令交互,以建立高频链路连接。
(2)MLD
在IEEE 802.11be协议中,MLD支持多链路操作技术,MLD具有多个射频模块,分别工作在不同频段上,例如MLD工作的频段可以为sub 1GHz,2.4GHz,5GHz,6GHz以及高频60GHz的全部或者一部分。MLD可以包括AP MLD和/或非接入点(non-AP)MLD,例如non-AP MLD可以是STA MLD。
示例性地,以AP MLD为例,AP MLD可以包括一个或多个附属(affiliated)站点,每个附属站点有各自的媒体访问控制(media access control,MAC)地址(address)。如图2所示,AP MLD的附属站点包括AP1和AP2,AP1的低层(low)MAC地址为链路地址1,AP2的低层MAC地址为链路地址2。此外,AP MLD还有一个高层(upper)MAC地址,称为MLD MAC地址。
AP MLD和non-AP MLD可以通过在低频链路上的信令交互建立多链路连接。如图3所示,AP MLD包括AP1和AP2,AP1包括AP1PHY、AP1低层MAC和高层MAC,AP2包括AP2PHY、AP2低层MAC和高层MAC,其中AP1和AP2之间共享高层MAC,non-AP MLD包括STA1和STA2,STA1包括STA1PHY、STA1低层MAC和高层MAC,STA2包括STA2PHY、STA2低层MAC和高层MAC,其中STA1和STA2之间共享高层MAC,AP1和STA1之间通过链路1连接,AP2和STA2之间通过链路2连接。
在多链路建立时,non-AP MLD在链路1上发送关联请求(association request)帧,关联请求帧携带链路1的STA侧信息和链路2的STA侧信息。比如,关联请求帧可以携带多链路元素(multi-link element)字段,multi-link element字段用于承载non-AP MLD的信息以及non-AP MLD中站点的信息。AP MLD在链路1上发送关联响应(association response)帧,关联响应帧携带链路1侧的AP侧信息,还携带链路2的AP侧信息,从而实现non-AP MLD的STA1和STA2分别与AP MLD的AP1和AP2建立关联。
如背景技术所述,由于高频频段存在路径损耗大的问题,因此,不同设备之间在高频频段通信时,需要进行波束训练。在图1所示意的网络架构中,当AP发起波束训练时,AP可称为发起方(initiator),STA可称为响应方(responder);当STA发起波束训练时,STA可称为发起方,AP可称为响应方。也就是说,可将发起波束训练的一方称为发起方,将响应波束训练的一方称为响应方。可选地,在一些其它可能的场景中,也可将发起波束训练的一方称为响应方,将响应波束训练的一方称为发起方;或者,将波束训练的一方固定称为发起方,将波束训练的另一方固定称为响应方,发起方会发起波束训练,也可响应响应方发起的波束训练;同样地,响应方也会发起波束训练,也可响应发起方发起的波束训练。
下面先对本申请实施例所涉及的波束训练相关的技术特征进行解释说明。这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限定。
(1)SLS过程
在现有短距高频通信协议(比如802.11ad和802.11ay协议)中,波束训练包括SLS过程,可选地,还包括波束改进协议(beam refinement protocol,BRP)过程。图4为一种可能的SLS过程示意图。如图4所示,SLS过程包括四个阶段,分别为发起方扇区扫描(initiator sector sweep,ISS)阶段、响应方扇区扫描(responder sector sweep,RSS)阶段、扇区扫描反馈(SSW Feedback)帧的传输阶段,以及扇区扫描确认(SSW acknowledgement,SSW Ack)帧的传输阶段,通过该四个阶段建立发起方和响应方之间的基本链路,发起方可以获得发起方对应于响应方的最优发送扇区和最优接收扇区,而响应方也可以获得响应方对应于发起方的最优发送扇区和最优接收扇区,也就是说,可以选择出发送波束和接收波束,从而利用发送波束和接收波束的增益。本申请实施例中,以AP为发起方,STA为响应方为例。
下面分别对这四个阶段进行详细说明。
(1.1)ISS阶段
ISS阶段可以包括发起方发送扇区扫描(initiator transmission of sector sweep,I-TXSS)子阶段和/或发起方接收扇区扫描(initiator reception of sector sweep,I-RXSS)子阶段。图4中是以ISS阶段包括I-TXSS子阶段为例进行示意的。
在I-TXSS子阶段中,AP可以在高频频段上,定向发送多个SSW帧,比如SSW帧1、SSW帧2、SSW帧3,以便进行AP的发送扇区训练。比如,AP可以在AP的多个发送方向中的每个发送方向上发送一个或多个SSW帧,每个发送方向可以对应一个发送天线和该发送天线的一个发送扇区。相应地,STA可以在高频频段上,准全向接收来自AP的至少一个SSW帧,进而STA可确定AP对应于STA的最佳发送天线和最佳发送扇区,并将最佳发送天线的标识和最佳发送扇区的标识反馈给AP(比如可以通过R-TXSS子阶段中的SSW帧反馈给AP)。
在I-RXSS子阶段中,AP可以在高频频段上,准全向发送多个SSW帧,以便进行AP的接收扇区训练;相应地,STA可以在高频频段上,定向接收至少一个SSW帧,进而STA可以根据至少一个SSW帧的接收质量,确定STA对应于AP的最佳接收天线和最佳接收扇区。
示例性地,上述SSW帧的接收质量可以包括以下至少一项:接收信号功率或强度、信号干扰噪声比(signal to interference plus noise ratio,SINR)、误比特率等。
可以理解的是,上述ISS(即I-TXSS和/或I-RXSS)也可以称为下行波束赋形训练(downlink beamforming training,DL BFT)。其中,AP对应于STA的最佳发送天线和最佳发送扇区,即为下行的最佳发送天线和最佳发送扇区;STA对应于AP的最佳接收天线和最佳接收扇区,即为下行的最佳接收天线和最佳接收扇区。
(1.2)RSS阶段
RSS阶段可以包括响应方发送扇区扫描(responder transmission of sector sweep,R-TXSS)子阶段和/或响应方接收扇区扫描(responder reception of sector sweep,R-RXSS)子阶段。图4中是以RSS阶段包括R-TXSS子阶段为例进行示意的。
在R-TXSS子阶段中,STA可以在高频频段上,定向发送多个SSW帧,比如SSW帧4、SSW帧5、SSW帧6,以便进行STA的发送扇区训练。相应地,AP可以在高频频段上,准全向接收来自STA的至少一个SSW帧,进而AP可确定STA对应于AP的最佳发送天线和最佳发送扇区,并将最佳发送天线的标识和最佳发送扇区的标识反馈给STA(比如通过扇区扫描反馈帧反馈给STA)。
在R-RXSS子阶段中,STA可以在高频频段上,准全向发送多个SSW帧,以便进行STA的接收扇区训练;相应地,AP可以在高频频段上,定向接收至少一个SSW帧,进而AP可确定AP对应于STA的最佳接收天线和最佳接收扇区。
可以理解的是,上述RSS(即R-TXSS和/或R-RXSS)也可以称为上行波束赋形训练(uplink beamforming training,UL BFT)。其中,STA对应于AP的最佳发送天线和最佳发送扇区,即为上行的最佳发送天线和最佳发送扇区;AP对应于STA的最佳接收天线和最佳接收扇区,即为上行的最佳接收天线和最佳接收扇区。
本申请实施例中,“定向发送”可以是指:利用不同发送天线在不同发送扇区轮流发送;“定向接收”可以是指:利用不同接收天线在不同接收扇区轮流接收。
(1.3)扇区扫描反馈帧的传输阶段
在扇区扫描反馈帧的传输阶段中,AP可以在高频频段上,根据AP对应于STA的最佳发送天线和最佳发送扇区,向STA发送扇区扫描反馈帧。其中,扇区扫描反馈帧包括STA对应于AP的最佳发送天线的标识和最佳发送扇区的标识。
(1.4)扇区扫描确认帧的传输阶段
在扇区扫描确认帧的传输阶段中,STA可以在高频频段上,根据STA对应于AP的最佳发送天线和最佳发送扇区,向AP发送扇区扫描确认帧。
如此,通过扇区扫描反馈帧和扇区扫描确认帧可对SLS阶段的结果进行确认,此外,还可以通过扇区扫描反馈帧和扇区扫描确认帧确定是否要进行BRP过程。
可以理解的是,SLS过程可以包括多个上述的四个阶段,也可以在一轮上述四个阶段后,开始执行BRP过程,BRP过程的波束训练和SLS过程中的波束训练不同,BRP过程的波束训练可以参照现有技术,本申请实施例对此不做限定。
(2)SSW帧
SLS阶段所传输的SSW帧用于执行扇区扫描功能,本申请实施例中是以SSW帧执行扇区扫描功能为例。在其它可能的示例中,也可以使用目前协议中所定义的其它可能的帧来执行扇区扫描功能,比如方向多吉比特(directional multi-gigabit,DMG)信标帧或者短SSW帧。
如图5所示,SSW帧可以包括:帧控制(frame control)字段、持续时间(duration)字段、接收地址(receiver address,RA)字段、发送地址(transmitter address,TA)字段、扇区扫描字段(SSW field)、扇区扫描反馈字段(SSW feedback field)、帧校验序列(frame check sequence,FCS)字段。其中,帧控制字段、持续时间字段、接收地址字段、发送地址字段可以理解为MAC帧头,其余部分可以理解为负荷。
此外,AP或STA发送SSW帧时,还需要通过物理层的封装,因此,SSW帧还可以包括前导码和物理帧头。其中,SSW帧中的前导码、物理帧头等信息可以理解为用于解调SSW帧的信息。
为便于描述本申请实施例的方案,此处分别对SSW字段和SSW字段进行简要说明。可以理解的是,SSW帧所包括的各个字段的含义均可以参照现有协议。
(2.1)SSW字段
如图5所示,在I-TXSS子阶段中,AP定向发送的SSW帧中的SSW字段可以包括:方向(direction)字段、倒计数(count down,CDOWN)字段、扇区标识(sector ID)字段、天线标识(antenna ID)字段、接收扇区扫描长度(RXSS length)字段。其中,扇区标识字段包括用于发送SSW帧的扇区的标识,天线标识字段包括用于发送SSW帧的天线的标识。如此,STA接收到SSW帧后,通过解调SSW帧可以得到用于发送该SSW帧的扇区的标识和天线的标识。
可以理解的是,在R-TXSS子阶段中,STA定向发送的SSW帧中的SSW字段也可以包括上述多个字段。
(2.2)SSW反馈字段
如图5所示,在R-TXSS子阶段中,STA定向发送的SSW帧中的SSW反馈字段可以包括:选择扇区(sector select)字段、选择天线(antenna select)字段、保留位(reserved)、轮询请求字段和保留位。其中,选择扇区字段包括AP对应于STA的最佳发送扇区的标识,选择天线字段包括AP对应于STA的最佳发送天线的标识,即STA通过SSW帧中的SSW反馈字段将AP对应于STA的最佳发送天线的标识和最佳发送扇区的标识反馈给AP。
可以理解的是,扇区扫描反馈帧也可以包括图5所示意的SSW反馈字段,即AP通过扇区扫描反馈帧中的SSW反馈字段将STA对应于AP的最佳发送天线的标识和最佳发送扇区的标识反馈给STA。
根据上述描述可以看出,在SLS过程中,AP和STA使用SSW帧进行扇区扫描。然而,由于扇区扫描使用的帧(比如SSW帧)均包括前导码、物理帧头等冗余信息,从而导致SSW帧的帧长较长,影响扇区扫描的效率。
基于此,本申请实施例提供一种扇区扫描方法,通过使用新的SSW帧(仅包括训练序列)来进行扇区扫描,有效提高扇区扫描的效率。
下面结合具体实施例对本申请实施例提供的扇区扫描方法进行详细描述。在具体实施例中,将以本申请实施例所提供的方法应用于图1所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置,其中,第一通信装置可以是AP或能够支持AP实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片或芯片系统。第二通信装置可以是STA或能够支持STA实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片或芯片系统。为了便于介绍,在下文中,以该方法由AP和STA执行为例,也就是,以第一通信装置是AP、第二通信装置是STA为例。
图6为本申请实施例提供的扇区扫描方法所对应的流程示意图。如图6所示,该流程可以包括:
S601,AP在第一频域资源或第二频域资源上发送第一帧,第一帧包括M个训练序列的信息,M个训练序列用于在第二频域资源上进行扇区扫描,M为大于1的整数;相应地,STA在第一频域资源上接收来自AP的第一帧。
示例性地,AP在第一频域资源或第二频域资源上发送第一帧,可以是指:AP在第一频域资源或第二频域资源上全向或准全向发送第一帧。STA在第一频域资源或第二频域资源上接收来自AP的第一帧,可以是指:STA在第一频域资源或第二频域资源上全向或准全向接收来自AP的第一帧。
(1)对第一频域资源和第二频域资源进行介绍。
示例性地,第一频域资源不同于第二频域资源,第一频域资源对应的频率小于第二频域资源对应的频率。其中,频域资源可以理解为一段频率范围,第一频域资源对应的频率小于第二频域资源对应的频 率,可以是指:第一频域资源对应的最高频率小于第二频域资源对应的最低频率。比如,第一频域资源为低频频段的频域资源,第二频域资源为高频频段的频域资源。
也就是说,AP可以在低频频段上全向发送第一帧,或者AP也可以在高频频段上准全向发送第一帧。本申请实施例下文中将以AP在低频频段上全向发送第一帧为例进行描述。
(2)对训练序列进行介绍。
本申请实施例中,训练序列可用于执行扇区扫描功能(区别于现有技术中通过SSW帧来执行扇区扫描功能)。也就是说,本申请实施例设计了一种新的SSW帧,新的SSW帧可以仅包括训练序列,而不包括前导码、物理帧头等其它冗余信息,从而可以提高吞吐量,进而提高扇区扫描的效率。
示例性地,训练序列可以为一段已知的比特序列,比如训练序列可以为格雷(golay)序列,或者ZC序列,又或者其它可能的序列,具体不做限定。
示例性地,训练序列可以不具有(或不包括)循环前缀,此种情形下,新的SSW帧的帧长等于训练序列的长度;或者,训练序列也可以具有循环前缀,此种情形下,新的SSW帧的帧长等于训练序列的长度与训练序列的循环前缀的长度之和。本申请实施例对循环前缀的长度不做限定,在一个示例中,可以根据信道记忆长度确定循环前缀的长度,该信道为用于传输训练序列的信道。比如,循环前缀的长度大于信道记忆长度,从而可避免多径信道引入的符号间干扰,同时在接收端可采用低复杂度的频域相关方法检测训练序列。
以训练序列为格雷序列为例,如图7所示,为本申请实施例提供的三种类型的训练序列示例。其中,类型1对应的训练序列的长度为512个比特,循环前缀的长度为128个比特;当新的SSW帧包括的训练序列的类型为类型1时,新的SSW帧的帧长为640个比特。类型2对应的训练序列的长度为1024个比特,循环前缀的长度为256个比特;当新的SSW帧包括的训练序列的类型为类型2时,新的SSW帧的帧长为1280个比特。类型3对应的训练序列的长度为2048个比特,循环前缀的长度为1024个比特;当新的SSW帧包括的训练序列的类型为类型3时,新的SSW帧的帧长为3072个比特。
可以理解的是,训练序列的类型具体为哪种类型可以是协议预先定义的;或者,也可以是AP通过第一帧指示给STA的,具体参照第一帧的描述。
(3)对第一帧进行介绍。
示例性地,第一帧可以为DMG信标帧,或者也可以为SSW帧,又或者其它可能的帧,具体不做限定。以第一帧为SSW帧为例,本申请实施例可以对SSW帧中的SSW字段进行改进,比如删除SSW字段中的一些字段,以及在SSW字段新增一些字段。其中,删除的字段比如为扇区标识字段、天线标识字段、接收扇区扫描长度字段等。新增的字段比如为起始偏移字段、训练序列类型(training sequence type)字段、准全向发送(quasi-omni TX)字段。参见图8所示,为改进后的SSW字段所包括的部分字段示例。
示例性地,M个训练序列的信息包括第二指示信息和/或第三指示信息。在一个示例中,第一帧可以包括第一指示信息、第二指示信息、第三指示信息和第四指示信息中的至少一项。
(3.1)第一指示信息用于指示扇区扫描的起始时间。
作为一种可能的实现,第一指示信息可以包括相对时间信息,相对时间信息为相对于参考时间的偏移量,参考时间比如可以为第一帧的接收时间。此种情形下,STA可以根据第一帧的接收时间和偏移量确定扇区扫描的起始时间,扇区扫描的起始时间与第一帧的接收时间之间的时间间隔等于偏移量。示例性地,偏移量的单位可以为一个或多个微秒,或一个或多个纳秒,或其它可能的时间单元,比如偏移量的单位100纳秒。
作为又一种可能的实现,第一指示信息可以包括绝对时间信息,绝对时间信息表征一个具体时间。比如,绝对时间信息表征的具体时间为X1年X2月X3日X4时X5分X6秒X7毫秒X8纳秒。此种情形下,STA可以将绝对时间信息表征的具体时间作为扇区扫描的起始时间。
示例性地,第一指示信息可以承载于第一帧的起始偏移字段,起始偏移字段所包括的比特的个数可以根据实际需要设置,比如起始偏移字段包括16个比特。
可以理解的是,第一帧可以不包括第一指示信息,此种情形下,可以由协议预先定义偏移量,进而STA接收到第一帧后,可以根据第一帧的接收时间和预先定义的偏移量确定扇区扫描的起始时间。
(3.2)第二指示信息指示训练序列的类型。
作为一种可能的实现,协议可以预先定义多种类型的训练序列,比如上述类型1、类型2和类型3, 进而AP可以通过第二指示信息指示训练序列的类型具体为哪种类型。比如,第二指示信息可以包括训练序列的类型的标识。
示例性地,第二指示信息可以承载于第一帧的训练序列类型字段,训练序列类型字段所包括的比特的个数可以根据实际需要设置,比如训练序列类型字段包括8个比特。
可以理解的是,第一帧可以不包括第二指示信息,此种情形下,可以由协议预先定义训练序列的类型具体为哪种类型。
(3.3)第三指示信息指示用于M的取值。
比如,以I-TXSS为例,假设AP包括2个天线,分别为天线1和天线2,天线1对应2个扇区,天线2对应3个扇区,即AP共具有5个扇区。若AP在每个扇区发送一个训练序列,则M的取值可以为5,若AP在每个扇区发送两个训练序列,则M个取值可以为10。
示例性地,第三指示信息可以承载于第一帧的CDOWN字段。
可以理解的是,第一帧可以不包括第三指示信息,此种情形下,可以由协议预先定义M的取值。
(3.4)第四指示信息指示扇区扫描的类型。
本申请实施例中,扇区扫描的类型可以为I-TXSS、I-RXSS、R-TXSS或R-RXSS。
示例性地,第四指示信息可以承载于方向字段和准全向发送字段。其中,方向字段包括1个比特(称为比特1),准全向发送字段包括1个比特(称为比特2)。比如,当比特1的取值为0,比特2的取值为0时,扇区扫描的类型为I-TXSS;当比特1的取值为0,比特2的取值为1时,扇区扫描的类型为I-RXSS;当比特1的取值为1,比特2的取值为0时,扇区扫描的类型为R-TXSS;当比特1的取值为1,比特2的取值为1时,扇区扫描的类型为R-RXSS。
本申请实施例中,将以第一帧包括第一指示信息、第二指示信息、第三指示信息和第四指示信息为例,即STA接收到第一帧后,可以根据第一指示信息确定扇区扫描的起始时间,根据第二指示信息确定训练序列的类型,根据第三指示信息确定M的取值,根据第四指示信息确定扇区扫描的类型。
进一步地,STA根据起始时间、训练序列的类型和M的取值,可以确定出M个训练序列所在的M个时域位置,以及还可以确定出扇区扫描的持续时间。比如,STA可以根据训练序列的类型,确定训练序列所在的时域位置的时长(表示为t),若M个训练序列中不同训练序列之间的间隔为预设的帧间隔(表示为T),则STA可以确定扇区扫描的持续时间为:M*t+(M-1)*T。
此外,STA确定起始时间后,可以在起始时间开始进行扇区扫描,比如针对于I-TXSS和I-RXSS,STA可以在起始时间开始搜索来自AP的训练序列,针对于R-TXSS和R-RXSS,STA可以起始时间开始发送训练序列;或者,STA确定起始时间后,也可以在起始时间的附近开始进行扇区扫描。比如,STA可以在起始时间之前的400ns处,开始检测来自AP的SSW帧,从而可以避免错过SSW帧。
S602,AP与STA根据M个训练序列的信息,在第二频域资源上进行扇区扫描。
如上所述,扇区扫描的类型可以为I-TXSS、I-RXSS、R-TXSS或R-TXSS,下面分别针对这四种类型的扇区扫描,对S602的具体实现进行描述。
(1)I-TXSS
当第四指示信息指示扇区扫描的类型为I-TXSS时,参见图9A和图9B所示,S602可以包括:
S6021-a,AP在第二频域资源上发送M个训练序列,M个训练序列用于发起方发送扇区扫描。
示例性地,AP可以在第二频域资源上定向发送M个训练序列,比如AP可以在第二频域资源上,在AP的M个发送扇区分别发送M个训练序列,即每个发送扇区发送一个训练序列,以便于减少扇区扫描的开销。当然,AP也可以在每个发送扇区上发送多个训练序列,本申请实施例中是以AP在每个发送扇区发送一个训练序列为例。
具体来说,如图9B所示,AP在第二频域资源上发送的M个训练序列的发送顺序编号依次为1,2,……M。其中,编号为1的训练序列位于时域位置1,编号为2的训练序列位于时域位置2,以此类推。示例性地,AP可以保存有M个训练序列的发送顺序编号与发送天线的标识、发送扇区的标识的对应关系,参见表1所示,为一种可能的对应关系示例。
表1:M个训练序列的发送顺序编号与发送天线的标识、发送扇区的标识的对应关系

S6022-a,STA在第二频域资源上接收N1个训练序列。
示例性地,STA可以在第二频域资源上准全向接收N1个训练序列。其中,N1个训练序列属于M个训练序列,N1小于或等于M;也就是说,虽然AP在第二频域资源上定向发送了M个训练序列,而STA有可能接收到M个训练序列,也有可能仅接收到M个训练序列中的部分训练序列。
具体来说,STA可以根据M个训练序列所在的M个时域位置,在每个时域位置上搜索训练序列。比如,若STA在时域位置1上接收到训练序列,则可以确定该训练序列的发送顺序编号为1;若STA在时域位置2上未接收到训练序列,而在时域位置3上接收到训练序列,则可以确定该训练序列的发送顺序编号为3,以此类推。
S6023-a,STA在第一频域资源或第二频域资源上向AP发送第二帧;相应地,AP在第一频域资源或第二频域资源接收来自STA的第二帧。
示例性地,STA可以在第一频域资源或第二频域资源上全向或准全向发送第二帧。比如,STA在低频频段上全向发送第二帧,相应地,AP可以在低频频段上全向接收第二帧。又比如,STA在高频频段上准全向发送第二帧,相应地,AP可以在高频频段上准全向接收第二帧。本申请实施例中,将以STA在低频频段上全向发送第二帧为例进行描述。
示例性地,第二帧可以包括M个训练序列中第一训练序列的标识信息,第一训练序列的标识信息用于确定AP在第二频域资源上对应于STA的最佳发送天线和/或最佳发送扇区。比如,第一训练序列的标识信息可以为第一训练序列在M个训练序列中的发送顺序编号。
具体来说,STA可以根据N1个训练序列的接收质量,从N1个训练序列中选择第一训练序列,并通过第二帧向AP发送第一训练序列的发送顺序编号。示例性地,训练序列的接收质量可以是指训练序列的相关峰值。STA获取训练序列的接收质量的检测方法可以有多种。示例性地,STA可采用频域方法检测训练序列的相关峰值,或者也可以采用时域滑动窗逐点检测训练序列的相关峰值。作为一种可能的实现,STA可以根据训练序列是否具有循环前缀,来确定检测方法。比如,当训练序列具有循环前缀时,STA可采用频域方法检测训练序列的相关峰值,当训练序列不具有循环前缀时,STA可采用时域滑动窗逐点检测相关峰值,时域和频域检测的具体实现可以参照现有技术。
其中,STA根据N1个训练序列的接收质量,从N1个训练序列中选择第一训练序列的具体实现可以有多种。
比如,STA可以从N1个训练序列中选择接收质量最好的训练序列作为第一训练序列,即第一训练序列的接收质量可以大于或等于N1个训练序列中其它训练序列的接收质量。此种情形下,STA可以在M个时域位置上检测完训练序列之后,根据接收到的N1训练序列的接收质量,选择接收质量最好的训练序列作为第一训练序列。
又比如,STA可以从N1个训练序列中选择一个接收质量大于或等于阈值的训练序列作为第一训练序列。此种情形下,在一个示例中,STA在每次接收到一个训练序列后,便可判断该训练序列的接收质量是否大于或等于阈值;若该训练序列的接收质量小于阈值,则STA继续接收下一个训练序列,若该训练序列的接收质量大于或等于阈值,则STA可将该训练序列作为第一训练序列,并停止接收训练序列(即可提前停止接收训练序列),从而便于节省STA的功耗。
相应地,AP接收到第一训练序列的发送顺序编号后,根据上述表1所示意的对应关系,可以确定出AP对应于STA的最佳发送天线和最佳发送扇区。
示例性地,第二帧可以为SSW反馈帧,或者其它可能的帧,具体不做限定。以第二帧为SSW反馈帧为例,本申请实施例可以对SSW反馈帧中的SSW反馈字段进行改进,比如删除SSW反馈字段中的一些字段,以及在SSW反馈字段新增一个字段。其中,删除的字段比如为选择扇区(sector Select)字段、选择天线(antenna select)字段等。新增的字段比如为选择训练序列字段,选择训练序列字段可以包括上述第一训练序列的标识信息。参见图8所示,为改进后的SSW反馈字段所包括的部分字段示 例。
可选地,AP接收到第二帧后,可以向STA发送第二帧的确认帧,即SSW反馈确认帧。比如,AP可以在第一频域资源或第二频域资源上向STA发送SSW反馈确认帧。
可以理解的是,发送顺序编号也可以称为发送顺序序号。上述是第一训练序列的标识信息为第一训练序列的发送顺序编号为例,在其它可能的示例中,第一训练序列的标识信息也可以为第一训练序列对应的倒计数。比如,发送顺序编号为1的训练序列对应的倒计数为M,发送顺序编号为2的训练序列对应的倒计数为M-1,以此类推。
(2)I-RXSS
当第四指示信息指示扇区扫描的类型为I-RXSS时,参见图10A和图10B所示,S602可以包括:
S6021-b,AP在第二频域资源上发送M个训练序列,M个训练序列用于发起方接收扇区扫描。
示例性地,AP可以在第二频域资源上准全向发送M个训练序列。
S6022-b,STA在第二频域资源上接收N2个训练序列。
示例性地,STA可以在第二频域资源上定向接收N2个训练序列,比如STA可以在STA的N2个接收扇区分别接收N2个训练序列,即每个接收扇区接收一个训练序列。其中,N2个训练序列属于M个训练序列,N2小于或等于M;也就是说,虽然AP在第二频域资源上准全向发送了M个训练序列,而STA有可能接收到M个训练序列,也有可能仅接收到M个训练序列中的部分训练序列。
作为一种可能的实现,AP可以获取STA的接收扇区数量,进而根据STA的接收扇区数量确定需要发送的训练序列的数量。比如,STA共有5个接收扇区,则AP可以发送5个训练序列(即M=5),从而可以有效避免AP发送的训练序列的数量过多或过少。
S6023-b,STA根据N2个训练序列的接收质量,确定STA对应于AP的最佳接收天线和最佳接收扇区。
示例性地,STA可以将N2个训练序列中接收质量最好的训练序列对应的接收天线和/或接收扇区确定出STA对应于AP的最佳接收天线和/或最佳接收扇区。
可以理解的是,由于STA可以根据第一帧确定M的取值,因此,当STA判断M的取值较小(即AP发送的训练序列的个数较少)时,STA可根据应用场景需求,选择部分天线进行波束训练,或者通过扇区合并进行粗接收波束训练;当STA判断M的取值较大(即AP发送的训练序列的个数较多)时,STA可提前结束波束训练,从而减少功耗。比如,当M小于STA的接收扇区数量时,STA可判断M的取值较小,当M大于STA的接收扇区数量时,STA可判断M的取值较大。
(3)R-TXSS
当第四指示信息指示扇区扫描的类型为R-TXSS时,参见图11A和图11B所示,S602可以包括:
S6021-c,STA在第二频域资源上发送M个训练序列,M个训练序列用于响应方发送扇区扫描。
示例性地,STA可以在第二频域资源上定向发送M个训练序列,比如STA可以在第二频域资源上,在STA的M个发送扇区分别发送M个训练序列,即每个发送扇区发送一个训练序列,以便于减少扇区扫描的开销。当然,STA也可以在每个发送扇区上发送多个训练序列,本申请实施例中是以STA在每个发送扇区发送一个训练序列为例。
S6022-c,AP在第二频域资源上接收N3个训练序列。
示例性地,AP可以在第二频域资源上准全向接收N3个训练序列。其中,N3个训练序列属于M个训练序列,N3小于或等于M。也就是说,虽然STA在第二频域资源上定向发送了M个训练序列,而AP有可能接收到M个训练序列,也有可能仅接收到M个训练序列中的部分训练序列。
S6023-c,AP在第一频域资源或第二频域资源上向STA发送第二帧;相应地,STA接收来自AP的第二帧。
示例性地,第二帧可以包括M个训练序列中第二训练序列的标识信息,第二训练序列的标识信息用于确定STA在第二频域资源上对应于AP的最佳发送天线和/或最佳发送扇区。比如,第二训练序列的标识信息可以为第二训练序列在M个训练序列中的发送顺序编号。
示例性地,R-TXSS中扇区扫描的具体实现可以参照I-TXSS中的描述,不再赘述。
(4)R-RXSS
当第四指示信息指示扇区扫描的类型为R-RXSS时,参见图12A和图12B所示,S602可以包括:
S6021-d,STA在第二频域资源上发送M个训练序列,M个训练序列用于接收方接收扇区扫描。
示例性地,STA可以在第二频域资源上准全向发送M个训练序列。
S6022-d,AP在第二频域资源上定向接收N4个训练序列。
示例性地,AP可以在第二频域资源上定向接收N4个训练序列。其中,N4个训练序列属于M个训练序列,N4小于或等于M。也就是说,虽然STA在第二频域资源上准全向发送了M个训练序列,而AP有可能接收到M个训练序列,也有可能仅接收到M个训练序列中的部分训练序列。
S6023-d,AP根据N4个训练序列的接收质量,确定AP对应于STA的最佳接收天线和最佳接收扇区。
示例性地,R-RXSS中扇区扫描的具体实现可以参照I-RXSS中的描述,不再赘述。
根据上述描述可以看出:一方面,本申请实施例中使用新的SSW帧(仅包括训练序列)进行扇区扫描,相比于使用SSW帧进行扇区扫描来说,由于新的SSW帧不包括前导码、物理帧头等冗余信息,从而可以有效提高吞吐量,进而提高扇区扫描的效率。
又一方面,本申请实施例中,AP可以在低频频段上向STA发送第一帧,以及AP或STA可以在高频频段上发送或接收新的SSW帧(即训练序列)。如此,通过低频频段与高频频段的相互协作来完成扇区扫描,可以有效提高网络的整体通信效率和吞吐量。此外,由于低频频段的覆盖范围较大,因此,AP在低频频段上发送第一帧,可以提高STA成功接收第一帧的概率。
又一方面,以I-TXSS为例,在现有的I-TXSS中,AP定向发送多个SSW帧后,STA准全向接收至少一个SSW帧,并测量至少一个SSW帧的接收质量,以及解调至少一个SSW帧得到用于发送至少一个SSW帧的发送天线的标识和发送扇区的标识,进而确定AP对应于STA的最佳发送天线和最佳发送扇区,并向AP发送最佳发送天线的标识和最佳发送扇区的标识。然而,由于高频频段的路径损耗大,STA解调准全向接收的SSW帧的可靠性较低,若SSW帧解调失败,则可能会导致波束训练结果不够准确。而本发明实施例中,STA接收到训练序列后,可以根据训练序列的接收质量,选择接收质量最好的训练序列,进而向AP发送该训练序列的发送顺序编号,AP根据训练序列的发送顺序编号可以确定出AP对应于STA的最佳发送天线和最佳发送扇区,从而可以避免解调准全向接收的SSW帧,提高波束训练结果的准确性。
又一方面,以I-TXSS为例,在现有的I-TXSS中,由于STA不知晓何时开始扇区扫描,进而STA可能会长时间搜索SSW帧,从而导致STA的功耗较大。而本发明实施例中,AP可以通过第一帧通知STA扇区扫描的起始时间(和扇区扫描的持续时间),从而使得STA可以根据起始时间开始搜索训练序列,有效降低STA的功耗。
此外,针对于上述实施例,可以理解的是:(1)AP可以以单播的方式向特定STA(比如上述STA)发送第一帧,或者AP也可以以广播的方式发送第一帧。比如,第一帧包括接收地址字段,当AP以单播的方式发送第一帧时,接收地址字段包括特定STA的地址;当AP以广播的方式发送第一帧时,接收地址字段包括广播地址(比如,当接收地址字段的所有比特置为0时,接收地址即为广播地址)。上述是以AP以单播的方式发送第一帧为例,即是以AP与一个STA进行扇区扫描为例,当AP以广播的方式发送第一帧时,AP可以同时与多个STA进行扇区扫描,具体可以参照AP与一个STA进行扇区扫描的实现。
(2)如上所述,第一帧可以包括一个SSW字段,SSW字段包括第一指示信息至第四指示信息,AP和STA可以根据第一指示信息至第四指示信息执行相应的扇区扫描。在其它可能的实施例中,第一帧可以包括多个SSW字段。比如,第一帧包括SSW字段1和SSW字段2;其中,SSW字段1包括第一指示信息1(指示偏移量1)、第二指示信息1(指示类型1)、第三指示信息1(指示M的取值为M1)和第四指示信息1(指示扇区扫描为I-TXSS),SSW字段2包括第一指示信息2(指示偏移量2)、第二指示信息2(指示类型2)、第三指示信息2(指示M的取值为M2)和第四指示信息2(指示扇区扫描为I-RXSS)。进而,AP和STA可以根据SSW字段1执行I-TXSS,以及根据SSW字段2执行I-RXSS。
上述主要从通信装置交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,第一通信装置和第二通信装置可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来 使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一通信装置和第二通信装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
图13示出了本申请实施例中所涉及的装置的可能的示例性框图。如图13所示,装置1300可以包括:处理单元1302和通信单元1303。处理单元1302用于对装置1300的动作进行控制管理。通信单元1303用于支持装置1300与其他设备的通信。可选地,通信单元1303也称为收发单元,可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。装置1300还可以包括存储单元1301,用于存储装置1300的程序代码和/或数据。
该装置1300可以为上述实施例中的第一通信装置(比如AP)、或者还可以为设置在AP中的部件(例如电路或者芯片)。处理单元1302可以支持装置1300执行上文中各方法示例中AP的动作。或者,处理单元1302主要执行方法示例中的AP的内部动作,通信单元1303可以支持装置1300与其它设备之间的通信。
比如,在一个实施例中,通信单元1303用于:在第一频域资源上发送第一帧,所述第一帧包括M个训练序列的信息,所述M个训练序列用于在第二频域资源上进行扇区扫描,M为大于1的整数;以及,与所述第二通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描;其中,所述第一频域资源对应的频率小于所述第二频域资源对应的频率。
该装置1300可以为上述实施例中的第二通信装置(比如STA)、或者还可以为设置在STA中的部件(例如电路或者芯片)。处理单元1302可以支持装置1300执行上文中各方法示例中STA的动作。或者,处理单元1302主要执行方法示例中的STA的内部动作,通信单元1303可以支持装置1300与其它设备之间的通信。
在一个实施例中,通信单元1303用于:在第一频域资源或第二频域资源上接收来自第一通信装置的第一帧,所述第一帧包括M个训练序列的信息,所述M个训练序列用于在所述第二频域资源上进行扇区扫描,M为大于1的整数;与所述第一通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描;其中,所述第一频域资源对应的频率小于所述第二频域资源对应的频率。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各操作或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是处理器,比如通用中央处理器(central processing unit,CPU),或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
参见图14,为本申请实施例提供的一种通信装置的结构示意图,用于实现以上实施例中第一通信装置(比如AP)的操作。
如图14所示,通信装置1400可包括处理器1401、存储器1402以及接口电路1403。处理器1401可用于对通信协议以及通信数据进行处理,以及对通信装置1400进行控制。存储器1402可用于存储程序和数据,处理器1401可基于该程序执行本申请实施例中由AP执行的方法。接口电路1403可用于通 信装置1400与其他设备进行通信,该通信可以为有线通信或无线通信,该接口电路也可以替换为收发器。
以上存储器1402也可以是外接于通信装置1400,此时通信装置1400可包括接口电路1403以及处理器1401。以上接口电路1403也可以是外接于通信装置1400,此时通信装置1400可包括存储器1402以及处理器1401。当接口电路1403以及存储器1402均外接于通信装置1400时,通信装置1400可包括处理器1401。
图14所示的通信装置能够实现上述方法实施例中涉及AP的各个过程。图14所示的通信装置中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
参见图15,为本申请实施例提供的一种通信装置的结构示意图,用于实现以上实施例中第二通信装置(比如STA)的操作。如图15所示,该通信装置包括:天线1510、射频部分1520、信号处理部分1530。天线1510与射频部分1520连接。在下行方向上,射频部分1520通过天线1510接收AP发送的信息,将AP发送的信息发送给信号处理部分1530进行处理。在上行方向上,信号处理部分1530对STA的信息进行处理,并发送给射频部分1520,射频部分1520对STA的信息进行处理后经过天线1510发送给AP。
信号处理部分1530可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对STA操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。
调制解调子系统可以包括一个或多个处理元件1531,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件1532和接口电路1533。存储元件1532用于存储数据和程序,但用于执行以上方法中STA所执行的方法的程序可能不存储于该存储元件1532中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路1533用于与其它子系统通信。
该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上STA执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,STA实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于STA的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中STA执行的方法。存储元件可以为与处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中STA所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中STA执行的方法。
在又一种实现中,STA实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
STA实现以上方法中各个步骤的单元可以集成在一起,以SOC的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上STA执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上STA执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于STA的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种STA执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行STA执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行STA执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行STA执行的部分或全部步骤。
这里的处理元件同以上描述,可以通过处理器实现,处理元件的功能可以和图13中所描述的处理单元的功能相同。示例性地,处理元件可以是通用处理器,例如CPU,还可以是被配置成实施以上方 法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以通过存储器实现,存储元件的功能可以和图13中所描述的存储单元的功能相同。存储元件可以是一个存储器,也可以是多个存储器的统称。
图15所示的STA能够实现上述方法实施例中涉及STA的各个过程。图15所示的STA中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本申请实施例还提供一种通信系统,该通信系统可以包括AP和STA,其中,AP用于执行上述方法实施例中AP侧的步骤,STA用于执行上述方法实施例中STA侧的步骤。
本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一种”是指一种或者多种,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (29)

  1. 一种扇区扫描方法,其特征在于,所述方法包括:
    第一通信装置在第一频域资源或第二频域资源上发送第一帧,所述第一帧包括M个训练序列的信息,所述M个训练序列用于在所述第二频域资源上进行扇区扫描,M为大于1的整数;
    所述第一通信装置与所述第二通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描;
    其中,所述第一频域资源对应的频率小于所述第二频域资源对应的频率。
  2. 根据权利要求1所述的方法,其特征在于,所述第一帧还包括第一指示信息,所述第一指示信息指示所述扇区扫描的起始时间。
  3. 根据权利要求2所述的方法,其特征在于,所述第一指示信息包括偏移量,所述起始时间与所述第一帧的接收时间之间的时间间隔等于所述偏移量。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述M个训练序列的信息包括第二指示信息和/或第三指示信息;
    其中,所述第二指示信息指示所述M个训练序列的类型,所述第三指示信息指示所述M的取值。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述训练序列包括循环前缀,所述循环前缀的长度大于信道记忆长度,所述信道用于传输所述训练序列。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一帧还包括第四指示信息,所述第四指示信息指示所述扇区扫描为发起方发送扇区扫描;
    所述第一通信装置与所述第二通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描,包括:
    所述第一通信装置在所述第二频域资源上发送所述M个训练序列;
    所述第一通信装置在所述第一频域资源或所述第二频域资源上接收来自所述第二通信装置的第二帧,所述第二帧包括所述M个训练序列中第一训练序列的标识信息,所述第一训练序列的标识信息用于确定所述第一通信装置在所述第二频域资源上对应于所述第二通信装置的最佳发送天线和/或最佳发送扇区。
  7. 根据权利要求6所述的方法,其特征在于,所述第一通信装置在所述第二频域资源上发送所述M个训练序列,包括:
    所述第一通信装置在所述第二频域资源上,在所述第一通信装置的M个发送扇区上分别发送所述M个训练序列。
  8. 根据权利要求6所述的方法,其特征在于,所述第一训练序列的标识信息为所述第一训练序列在所述M个训练序列中的发送顺序编号。
  9. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一帧还包括第四指示信息,所述第四指示信息指示所述扇区扫描为发起方接收扇区扫描;
    所述第一通信装置与所述第二通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描,包括:
    所述第一通信装置在所述第二频域资源上发送M个训练序列,所述M个训练序列用于确定所述第二通信装置在所述第二频域资源上对应于所述第一通信装置的最佳接收天线和/或最佳接收扇区。
  10. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一帧还包括第四指示信息,所述第四指示信息指示所述扇区扫描为响应方发送扇区扫描;
    所述第一通信装置与所述第二通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描,包括:
    所述第一通信装置在所述第二频域资源上接收来自所述第二通信装置的N3个训练序列,所述N3个训练序列属于所述M个训练序列,N3为大于0的整数,且N3小于或等于M;
    所述第一通信装置在所述第一频域资源或所述第二频域资源上向所述第二通信装置发送第二帧,所述第二帧包括所述N3个训练序列中第二训练序列的标识信息,所述第二训练序列的标识信息用于确定所述第二通信装置在所述第二频域资源上对应于所述第一通信装置的最佳发送天线和/或最佳发送扇区。
  11. 根据权利要求10所述的方法,其特征在于,所述第二训练序列的标识信息为所述第二训练序列在所述M个训练序列中的发送顺序编号。
  12. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一帧还包括第四指示信息,所述第四指示信息指示所述扇区扫描为响应方接收扇区扫描;
    所述第一通信装置与所述第二通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描,包括:
    所述第一通信装置在所述第二频域资源上接收来自所述第二通信装置的N4个训练序列,所述N4个训练序列属于所述M个训练序列,N4为大于0的整数,且N4小于或等于M;
    所述第一通信装置根据所述N4个训练序列的接收质量,确定所述第一通信装置在所述第二频域资源上对应于所述第二通信装置的最佳接收天线和/或最佳接收扇区。
  13. 根据权利要求12所述的方法,其特征在于,所述第一通信装置在所述第二频域资源上接收来自所述第二通信装置的N4个训练序列,包括:
    所述第一通信装置在所述第二频域资源上,在所述第一通信装置的N4个接收扇区上分别接收来自所述第二通信装置的N4个训练序列。
  14. 一种扇区扫描方法,其特征在于,所述方法包括:
    第二通信装置在第一频域资源或第二频域资源上接收来自第一通信装置的第一帧,所述第一帧包括M个训练序列的信息,所述M个训练序列用于在所述第二频域资源上进行扇区扫描,M为大于1的整数;
    所述第二通信装置与所述第一通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描;
    其中,所述第一频域资源对应的频率小于所述第二频域资源对应的频率。
  15. 根据权利要求14所述的方法,其特征在于,所述第一帧还包括第一指示信息,所述第一指示信息指示所述扇区扫描的起始时间。
  16. 根据权利要求15所述的方法,其特征在于,所述第一指示信息包括偏移量,所述起始时间与所述第一帧的接收时间之间的时间间隔等于所述偏移量。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述M个训练序列的信息包括第二指示信息和/或第三指示信息;
    其中,所述第二指示信息指示所述M个训练序列的类型,所述第三指示信息指示所述M的取值。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述训练序列包括循环前缀,所述循环前缀的长度大于信道记忆长度,所述信道用于传输所述训练序列。
  19. 根据权利要求14至18中任一项所述的方法,其特征在于,所述第一帧还包括第四指示信息,所述第四指示信息指示所述扇区扫描为发起方发送扇区扫描;
    所述第二通信装置与所述第一通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描,包括:
    所述第二通信装置在所述第二频域资源上接收来自所述第一通信装置的N1个训练序列,所述N1个训练序列属于所述M个训练序列,N1为大于0的整数,且N1小于或等于M;
    所述第二通信装置在所述第一频域资源或所述第二频域资源上向所述第一通信装置发送第二帧,所述第二帧包括所述N1个训练序列中第一训练序列的标识信息,所述第一训练序列的标识信息用于确定所述第一通信装置在所述第二频域资源上对应于所述第二通信装置的最佳发送天线和/或最佳发送扇区。
  20. 根据权利要求19所述的方法,其特征在于,所述第一训练序列的标识信息为所述第一训练序列在所述M个训练序列中的发送顺序编号。
  21. 根据权利要求14至18中任一项所述的方法,其特征在于,所述第一帧还包括第四指示信息,所述第四指示信息指示所述扇区扫描为发起方接收扇区扫描;
    所述第二通信装置与所述第一通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描,包括:
    所述第二通信装置在所述第二频域资源上接收来自所述第一通信装置的N2个训练序列,所述N2个训练序列属于所述M个训练序列,N2为大于0的整数,且N2小于或等于M;
    所述第二通信装置根据所述N2个训练序列的接收质量,确定所述第二通信装置在所述第二频域资源上对应于所述第一通信装置的最佳接收天线和/或最佳接收扇区。
  22. 根据权利要求21所述的方法,其特征在于,所述第二通信装置在所述第二频域资源上接收来自 所述第一通信装置的N2个训练序列,包括:
    所述第二通信装置在所述第二频域资源上,在所述第二通信装置的N2个接收扇区上分别接收来自所述第一通信装置的N2个训练序列。
  23. 根据权利要求14至18中任一项所述的方法,其特征在于,所述第一帧还包括第四指示信息,所述第四指示信息指示所述扇区扫描为响应方发送扇区扫描;
    所述第二通信装置与所述第一通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描,包括:
    所述第二通信装置在所述第二频域资源上发送所述M个训练序列;
    所述第二通信装置在所述第一频域资源或所述第二频域资源上接收来自所述第一通信装置的第二帧,所述第二帧包括所述M个训练序列中第二训练序列的标识信息,所述第二训练序列的标识信息用于确定所述第二通信装置在所述第二频域资源上对应于所述第一通信装置的最佳发送天线和/或最佳发送扇区。
  24. 根据权利要求23所述的方法,其特征在于,所述第二通信装置在所述第二频域资源上发送所述M个训练序列,包括:
    所述第二通信装置在所述第二频域资源上,在所述第二通信装置的M个发送扇区上分别发送所述M个训练序列。
  25. 根据权利要求24所述的方法,其特征在于,所述第二训练序列的标识信息为所述第二训练序列在所述M个训练序列中的发送顺序编号。
  26. 根据权利要求14至18中任一项所述的方法,其特征在于,所述第一帧还包括第四指示信息,所述第四指示信息指示所述扇区扫描为响应方接收扇区扫描;
    所述第二通信装置与所述第一通信装置根据所述M个训练序列的信息,在所述第二频域资源上进行所述扇区扫描,包括:
    所述第二通信装置在所述第二频域资源上发送所述M个训练序列,所述M个训练序列用于确定所述第一通信装置在所述第二频域资源上对应于所述第二通信装置的最佳接收天线和/或最佳接收扇区。
  27. 一种通信装置,其特征在于,包括处理器,所述处理器和存储器耦合,所述存储器中存储有计算机程序;所述处理器用于调用所述存储器中的计算机程序,使得所述通信装置执行如权利要求1至13中任一项所述的方法或者如权利要求14至26中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被计算机执行时,实现如权利要求1至13中任一项所述的方法或者如权利要求14至26中任一项所述的方法。
  29. 一种计算机程序产品,其特征在于,当计算机读取并执行所述计算机程序产品时,使得计算机执行如权利要求1至13中任一项所述的方法或者如权利要求14至26中任一项所述的方法。
PCT/CN2023/121216 2022-09-30 2023-09-25 一种扇区扫描方法及装置 WO2024067518A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211217584.9 2022-09-30
CN202211217584.9A CN117895980A (zh) 2022-09-30 2022-09-30 一种扇区扫描方法及装置

Publications (1)

Publication Number Publication Date
WO2024067518A1 true WO2024067518A1 (zh) 2024-04-04

Family

ID=90476310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121216 WO2024067518A1 (zh) 2022-09-30 2023-09-25 一种扇区扫描方法及装置

Country Status (2)

Country Link
CN (1) CN117895980A (zh)
WO (1) WO2024067518A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160380685A1 (en) * 2015-06-25 2016-12-29 Intel IP Corporation Techniques using a first band of communication to synchronize beamforming for a second band of communication
CN108023627A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 波束赋形训练方法及装置
CN110870218A (zh) * 2017-07-06 2020-03-06 交互数字专利控股公司 毫米波系统中的多信道多输入多输出波束成形训练
CN110890910A (zh) * 2018-09-07 2020-03-17 华为技术有限公司 扇区扫描方法及相关装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160380685A1 (en) * 2015-06-25 2016-12-29 Intel IP Corporation Techniques using a first band of communication to synchronize beamforming for a second band of communication
CN108023627A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 波束赋形训练方法及装置
CN110870218A (zh) * 2017-07-06 2020-03-06 交互数字专利控股公司 毫米波系统中的多信道多输入多输出波束成形训练
CN110890910A (zh) * 2018-09-07 2020-03-17 华为技术有限公司 扇区扫描方法及相关装置

Also Published As

Publication number Publication date
CN117895980A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
US10506606B2 (en) Method and apparatus for aligning antenna beams in high-low frequency co-site network
US20200045574A1 (en) Method and system for directional-band relay enhancements
KR101639540B1 (ko) 무선랜에서 스캐닝 방법 및 장치
KR102195782B1 (ko) 무선 근거리 네트워크들에서 균일한 다수의 액세스 포인트들의 커버리지에 대한 매체 액세스 제어를 위한 방법 및 장치
US20150382171A1 (en) Long-range device discovery with directional transmissions
US10075977B2 (en) Method and device for transmitting data in wireless LAN
US20180124866A1 (en) Techniques for high efficiency basic service set operation
KR20100042228A (ko) 멀티캐스트 프레임 전송방법 및 중복 프레임 검출 방법
WO2020001454A1 (zh) 波束赋形训练的方法和装置
US10911116B2 (en) Wireless communication method and wireless communication apparatus
KR20150013120A (ko) 액티브 스캐닝 방법 및 장치
US11363589B2 (en) Collision mitigation for directional response in millimeter wave wireless local area network system
US10660125B2 (en) Base station apparatus, wireless terminal apparatus, and wireless communication method
US20070066299A1 (en) Method and apparatus to transmit and receive data in a wireless communication system having smart antennas
TWI790186B (zh) Pcp/ap通訊裝置及通訊方法
US11234174B2 (en) Zero latency BSS transition with on-channel tunneling (OCT)
US11395156B2 (en) Downlink data transmission method, network device, and terminal
WO2017190359A1 (zh) 一种训练包发送方法及装置
WO2024067518A1 (zh) 一种扇区扫描方法及装置
WO2024067515A1 (zh) 一种通信方法及装置
WO2024067517A1 (zh) 一种通信方法及装置
WO2019223665A1 (zh) 下行数据的传输方法、网络设备及终端
WO2024067516A1 (zh) 一种通信方法及装置
WO2023165360A1 (zh) 一种实现感知的方法和装置
WO2023179368A1 (zh) 感知方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870747

Country of ref document: EP

Kind code of ref document: A1