WO2023115285A1 - 一种天线副瓣的抑制方法及天线阵列 - Google Patents

一种天线副瓣的抑制方法及天线阵列 Download PDF

Info

Publication number
WO2023115285A1
WO2023115285A1 PCT/CN2021/139820 CN2021139820W WO2023115285A1 WO 2023115285 A1 WO2023115285 A1 WO 2023115285A1 CN 2021139820 W CN2021139820 W CN 2021139820W WO 2023115285 A1 WO2023115285 A1 WO 2023115285A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
power
array
unit
sub
Prior art date
Application number
PCT/CN2021/139820
Other languages
English (en)
French (fr)
Inventor
王强
冯杰
刘旭
蒲涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/139820 priority Critical patent/WO2023115285A1/zh
Publication of WO2023115285A1 publication Critical patent/WO2023115285A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/28Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude

Definitions

  • the present application relates to the field of wireless communication, and more specifically, to a method for suppressing antenna sidelobes and an antenna array.
  • the application provides a method for suppressing antenna sidelobes and an antenna array.
  • the side lobe level of the antenna is suppressed internally, and the power loss of the antenna is reduced at the same time.
  • a method for suppressing side lobes of an antenna includes an antenna array and a feeding unit, and the feeding unit is used to feed power to the antenna array through N power amplifiers, and the N power amplifiers include N 1 first power amplifier, the rated power of the power amplifier is P 1 , the method includes generating the first current distribution of the antenna array according to the expected side lobe level, the first current distribution is M in the antenna array
  • the discrete current distribution of the antenna unit, or the first current distribution is the continuous line source current distribution corresponding to the antenna array; the first sub-array and the second sub-array in the antenna array are determined according to the first current distribution, and the first sub-array is determined according to the first current distribution.
  • a sub-array includes M 1 first antenna units, the first transmit power of each antenna unit in the M 1 first antenna units is greater than the first threshold, the second sub-array includes M 2 second antenna units, the The first transmit power of each antenna unit in the M 2 second antenna units is less than or equal to the first threshold, and the first antenna unit is connected to one of the N 1 first power amplifiers through a 1-point M 1 power divider , the second antenna unit is connected to one of the N 1 first power amplifiers through a 1-point M 2 power divider, the sum of the first transmission powers of the M 1 first antenna units, and the rated power P 1 The difference is less than the first error, the difference between the sum of the first transmission powers of the M 2 second antenna units and the rated power P 1 is less than the first error, the first transmission power is determined by the first current distribution, Wherein, M 1 , M 2 , N, and N 1 are positive integers, and M 1 ⁇ 1, M 2 >M 1 , and N ⁇ N 1 .
  • an antenna array can be obtained, and the antenna array can include the first sub-array and the second sub-array, the first sub-array includes M 1 first antenna elements, and the M 1 first antenna elements
  • An antenna unit can be fed by a first power amplifier in N power amplifiers (the first power amplifier is connected to the first sub-array through a 1-point M1 power divider); the second sub-array includes M2 The second antenna unit, the M 2 second antenna units can be fed by one of the first power amplifiers (the first power amplifier is connected to the first sub-array through a 1-point M 2 power divider), the second antenna
  • the antenna units in the unit are antenna units to be combined, M 1 and M 2 are positive integers, and M 1 ⁇ 1, M 2 >M 1 .
  • the power loss of the antenna array can be reduced by combining the antenna units in the first sub-array and the second sub-array (connecting to a 1M power splitter).
  • a first transmit power distribution is determined according to the first current distribution, where the first current distribution is a discrete current distribution of M antenna elements in the antenna array, and the first A transmission power distribution includes the first transmission powers of the M antenna units, and the value of the first transmission power is in one-to-one correspondence with the current values in the discrete current distribution.
  • a first spacing distribution is determined according to the first transmission power distribution, and the first spacing distribution includes the first spacing distribution of each antenna unit in the M 1 first antenna units.
  • a spacing, and the second spacing of each antenna element in the M 2 second antenna elements wherein, the first spacing is the product of the spacing base and the first scaling factor ⁇ 1 , and the ⁇ 1 is the rated power P 1 and the ratio of the first transmit power sum of the M1 first antenna elements, the second spacing is the product of the spacing base and the second scaling factor ⁇ 2 , and the ⁇ 2 is the rated power P1 and the M The ratio of the sum of the first transmit powers of the two second antenna units.
  • the third distance in the first distance distribution is greater than the second threshold, the third distance is adjusted to a fourth distance, and the fourth distance is less than or equal to the first distance.
  • the third interval is any interval in the first interval distribution.
  • a second transmission power distribution is determined according to the first distance distribution, and the second transmission power distribution includes the rated power P 1 , and/or the rated power P 1 and a third scaling factor ⁇ 3 , where ⁇ 3 is a ratio of the fourth pitch to the third pitch.
  • the first current distribution is a continuous line source current distribution corresponding to the antenna array, and the sum of the rated powers of the N1 first power amplifiers is equal to
  • the sum of the transmitting power of the antenna elements, N 1 N, determines the antenna of the first length in the antenna, the integral of the continuous line source current distribution on the first length is equal to the first power value, the first power value Be the ratio of the first rated power value to N1 , the first rated power value is the sum of the rated power of the first power amplifiers of N1 rated power; determine the first in the antenna array according to the value of the first length subarray and second subarray.
  • the first sub-array includes the M 1 first antenna units.
  • the second length is determined according to the value of M2 ; the second subarray is set on the antenna of the second length in the antenna, and the second subarray of the second length A value less than the value of the first length.
  • the value of M2 is greater than the fourth threshold, it is determined that the antenna of the second length is at the same starting position as the antenna of the first length, and the continuous line source
  • the integral of the current distribution over the second length is equal to a second power value, which is smaller than the first power value.
  • a third subarray in the antenna array is determined according to the first transmission power distribution, the third subarray includes M3 third antenna elements, and the M The maximum value of the first transmit power of the antenna elements in the 3 third antenna elements is less than or equal to the minimum value of the first transmit power of the antenna elements in the M 2 second antenna elements, and the geometry of the M 3 third sub-arrays The distance from the center to the center of the antenna array is greater than the distance from the geometric center of the second sub-array to the center of the antenna array, and the second antenna unit is connected to the N1 first power amplifiers through a 1- M3 power divider One, the difference between the first transmit power sum of the M 3 first antenna units and the rated power of the first power amplifier is less than the first error, wherein M 3 is a positive integer, and M 3 >M 2 .
  • the N power amplifiers further include N 2 second power amplifiers, and the rated power P 2 of the second power amplifier is greater than the rated power P 1 , according to the The first transmission power distribution determines the fourth sub-array in the antenna array, the fourth sub-array includes M 4 fourth antenna units, and the minimum value of the first transmission power corresponding to the fourth antenna unit is greater than or equal to the first The maximum value of the first transmission power corresponding to the antenna unit, the distance from the geometric center of the fourth subarray to the center of the antenna array is smaller than the distance from the geometric center of the first antenna unit to the center of the antenna array, and the M 4 The difference between the sum of the first transmit power of the fourth antenna unit and the rated power of the second power amplifier is less than the first error, and the fourth antenna unit is connected to the N 2 second One of the power amplifiers, wherein, M 4 is a positive integer, N 2 and M 4 ⁇ 1.
  • the number of the fourth antenna units is equal to the number of the first antenna units.
  • the second spacing distribution is determined, the second spacing distribution includes the spacing of each antenna element in the M 1 first antenna elements, and the M 2 second antenna elements The spacing of each antenna element in the antenna elements, the spacing of each antenna element in the M 3 third antenna elements, and the spacing of each antenna element in the M 4 fourth antenna elements, and the spacing in the second spacing distribution equally spaced.
  • the second transmit power of each antenna unit in the second subarray is determined, the second subarray includes the first unit and the second unit, if the second If the distance from the geometric center of an antenna unit to the center of the antenna array is greater than the distance from the second unit to the center of the antenna array, the second transmit power of the first unit is smaller than the second transmit power of the second unit, and the The power value in the second transmit power distribution includes the sum of the second transmit power of each antenna element in the second subarray.
  • the second antenna unit and/or the third antenna unit are connected to the power amplifier through a phase shifting unit.
  • an antenna array is provided, the antenna array is fed by a feeding unit through N power amplifiers, and the N power amplifiers include N1 first power amplifiers, and the rated power of the first power amplifier is P 1 , the antenna array includes: a first sub-array, the first sub-array includes M 1 first antenna units, the first transmit power of each antenna unit in the M 1 first antenna units is greater than a first threshold, the The sum of the first transmitting powers of M 1 first antenna units, and the difference between the rated power P 1 is less than the first error, and the first antenna unit is connected to the N 1 first powers through a 1-point M 1 power divider One of the amplifiers; a second sub-array, the second sub-array includes M 2 second antenna units, and the first transmission power of each antenna unit in the M 2 second antenna units is less than or equal to the first threshold, The second antenna unit is connected to one of the N1 first power amplifiers through a 1-point M2 power divider, and the difference between the sum of the first transmission powers of the
  • the spacing of the M1 first antenna elements is the product of the spacing base and the first scaling factor ⁇ 1 , where ⁇ 1 is the rated power P1 and the The ratio of the sum of the first transmitting powers of the M 1 first antenna elements, the spacing of the M 2 second antenna elements is the product of the spacing base and the second scaling factor ⁇ 2 , and the ⁇ 2 is the rated power P 1 A ratio to the sum of the first transmit powers of the M 2 second antenna elements.
  • the distance between any one of the M 1 first antenna elements and the M 2 second antenna elements is less than or equal to a second threshold.
  • the integral of the continuous line source current distribution corresponding to the two antenna elements on the first length is equal to the first power value, and the first length is the antenna length corresponding to the M 2 second antenna elements; or, the M 1 first antennas
  • the integral of the continuous line source current distribution corresponding to each antenna element in the unit on the first length is equal to the first power value, and the first length includes the antenna length corresponding to each antenna element; wherein, the first power value is the first A ratio of a rated power value to N1 , where the first rated power value is the sum of rated powers of N1 first power amplifiers with rated power.
  • the antenna array further includes a third subarray, the third subarray includes M 3 third antenna units, and the M 3 third antenna units are The maximum value of the first transmission power of the antenna unit is less than or equal to the minimum value of the first transmission power of the antenna unit in the M 2 second antenna units, and the distance from the geometric center of the M 3 third sub-arrays to the center of the antenna array , greater than the distance from the geometric center of the second sub-array to the center of the antenna array, the second antenna unit is connected to one of the N 1 first power amplifiers through a 1-point M 3 power divider, and the M 3 first power amplifiers The difference between the sum of the first transmitting powers of the antenna units and the rated power of the first power amplifier is smaller than the first error, wherein M 3 is a positive integer, and M 3 >M 2 .
  • the N power amplifiers further include N 2 second power amplifiers, the rated power P 2 of the second power amplifier is greater than the rated power P 1 , the antenna
  • the array also includes: a fourth sub-array, the fourth sub-array includes M 4 fourth antenna units, and the minimum value of the first transmission power corresponding to the fourth antenna unit is greater than or equal to the first transmission power corresponding to the first antenna unit.
  • the maximum value of transmit power the distance from the geometric center of the fourth subarray to the center of the antenna array is less than the distance from the geometric center of the first antenna unit to the center of the antenna array, and the first of the M 4 fourth antenna units
  • the difference between the sum of the transmit power and the rated power of the second power amplifier is less than the first error
  • the fourth antenna unit is connected to one of the N2 second power amplifiers through a 1-point M4 power divider, wherein , M 4 is a positive integer, N 2 and M 4 ⁇ 1.
  • the number of the fourth antenna units is equal to the number of the first antenna units.
  • the M 1 first antenna units, the M 2 second antenna units, the M 3 third antenna units, and the M 4 fourth antenna units are equally spaced.
  • the second antenna unit and/or the third antenna unit are connected to the power amplifier through a phase shifting unit.
  • the 1-minute M2 power divider is connected to the first unit in the second sub-array through the first transmission line, and the 1-minute M2 power divider is connected through the first transmission line.
  • Two transmission lines connect the second unit in the second sub-array, if the distance d 1 from the geometric center of the first unit to the center of the antenna array is greater than the distance d 2 from the geometric center of the second unit to the center of the antenna array, then The line width w 1 of the first transmission line is smaller than the line width w 2 of the second transmission line, and the second antenna unit includes the first unit and the second unit.
  • a third aspect provides an antenna device, including the second aspect and the antenna array in any possible implementation manner of the second aspect.
  • a communication device including the antenna device described in the third aspect.
  • Figure 1 is a schematic diagram of the architecture of a communication system applicable to the embodiment of the present application
  • Fig. 2 is a schematic block diagram of an antenna device.
  • Fig. 3 is a schematic block diagram of a power divider.
  • Figure 4 is a schematic diagram of the current distribution on a continuous line source.
  • Fig. 5 is a schematic flowchart of a method for suppressing antenna sidelobes provided by an embodiment of the present application.
  • Fig. 6 is a schematic flowchart of another antenna sidelobe suppression method provided by an embodiment of the present application.
  • Fig. 7 is a schematic flowchart of another antenna sidelobe suppression method provided by an embodiment of the present application.
  • Fig. 8 is a directional diagram of an antenna array provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an antenna device provided by an embodiment of the present application.
  • CDMA code division multiple access
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunications system
  • WiMAX worldwide interconnection microwave access
  • WLAN wireless local area network
  • 5G wireless local area network
  • 5G fifth generation
  • 6G sixth generation
  • satellite communication system satellite communication system
  • future mobile communication system etc.
  • Fig. 1 is a schematic structural diagram of a communication system applicable to an embodiment of the present application.
  • the communication system may include a satellite 101, and the satellite 101 may be a geostationary earth orbit (GEO) satellite, a non-geostationary earth orbit (NGEO) satellite or a plurality of satellites composed of the two satellite.
  • the communication system may also include a ground station 102, such as a mobile satellite phone, or various fixed terminals, such as a communication ground station.
  • the communication system 100 may also include a satellite measurement and control center, a network control center (network control center, NCC), and various gateway stations (gateways), etc. (not shown in the figure).
  • the satellite can transmit downlink data to the ground station 102 by using a downlink frequency band (for example, 3.4-4.2 GHz).
  • the ground station 102 may also use the uplink frequency band of the satellite (for example, 5.85-6.425 GHz) to transmit uplink data to the satellite.
  • the communication system 100 may further include at least one access network device 103 and at least one terminal device 104, where the terminal device 104 is located within the coverage of one or more cells (carriers) provided by the access network device 103.
  • the terminal device 104 can work in accordance with carrier aggregation (carrier aggregation, CA), dual connectivity (dual connectivity, DC) or coordinated multi-point transmission, wherein multiple serving cells for the terminal device 104
  • carrier aggregation carrier aggregation, CA
  • dual connectivity dual connectivity
  • coordinated multi-point transmission wherein multiple serving cells for the terminal device 104
  • the cell also provides wireless resources for terminal equipment.
  • Terminal devices and terminal devices, and access network devices and access network devices may be connected to each other in a wired or wireless manner.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the terminal devices in the embodiments of the present application may include various handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem with wireless communication functions, as well as various forms of terminals, mobile stations (mobile station, MS), terminal (terminal) or soft terminal, etc.
  • terminals mobile stations (mobile station, MS), terminal (terminal) or soft terminal, etc.
  • the user equipment in this embodiment of the present application may refer to an access terminal, a subscriber unit, a user station, a mobile station, a mobile station, a relay station, a remote station, a remote terminal, a mobile device, a user terminal (user terminal), a terminal device (terminal equipment), wireless communication equipment, user agent or user device.
  • the user equipment can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, user equipment in 5G networks or users in future evolved public land mobile networks (PLMN) Devices or user equipment in the future Internet of Vehicles, etc., are not limited in this application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile networks
  • the access network device 103 in the embodiment of the present application may be a device for communicating with the terminal device 104, and the access network device may be a (wireless) access network device (radio access network, (R) AN). It is used to manage wireless resources, provide access services for user equipment, and complete the forwarding of control signals and terminal equipment data between terminal equipment and the core network.
  • the access network device 103 may also be understood as a base station in a traditional network.
  • the communication system 100 shown in FIG. 1 can be regarded as a communication system in which a satellite communication system and a mobile communication system coexist.
  • the satellite 101 will receive the signal of the ground station 102 for the uplink frequency band of the satellite 5.85-6.425 GHz.
  • the 6GHz sidelobe signal of the antenna of the access network device 103 is too high, it will interfere with the receiver of the satellite 101; for the downlink frequency band 3.4-4.2GHz of the satellite 101, the ground station 102 will receive the signal of the satellite 101.
  • the ground station The 3.5 GHz sidelobe of the antenna 102 is too high, and may receive interference signals from the antenna of the access network device 103 . Therefore, for the satellite interference scenario, it is necessary to realize the interference suppression of the sidelobe of the base station antenna or ground station antenna in a large area, that is, the base station antenna needs to have the lowest average sidelobe energy within a large angle range.
  • the basic function of an antenna is energy conversion and directional radiation or reception of electromagnetic waves.
  • the performance of the antenna directly affects the use of radio equipment.
  • the antenna device may include a feed unit and a radiation unit.
  • the feeding unit may include a feeding circuit (feeding network), which is used to connect the radiating part of the antenna device and the external feeder, process the electrical signal transmitted by the feeder, and convert the processed electrical signal with a certain amplitude and phase transmitted to the radiating part, and radiated outward from the radiating part.
  • the radiating section may include at least one independent antenna array, which may include at least one antenna element.
  • the feeding unit can also include at least one power amplifier (power amplifier, PA), which is used to amplify the input power and feed it to the antenna for radiation; the output end of each power amplifier can be connected to a power divider, and the power divider The output port of the power amplifier transmits the input power of the power amplifier to at least one antenna unit after distribution through the branch of the feed circuit.
  • power amplifiers used in one antenna device have the same rated power in order to facilitate operation and save the manufacturing cost of the antenna device.
  • the antenna device may further include a remote radio unit (remote radio unit, RRU), configured to transmit electrical signals to the feed circuit through a feed line.
  • the antenna device may also be included in an active antenna processing unit (active antenna unit, AAU), and is used to transmit electrical signals to a radio frequency branch in the AAU through a feeder.
  • FIG. 2 is a schematic block diagram of an antenna device.
  • the antenna array is formed by arranging certain basic antennas (antenna units) together according to the principle of electromagnetic waves interfering in space. It can also be called an antenna array.
  • a flat panel used as a base station antenna antenna array.
  • the form of element antenna used by the antenna array depends on many other factors such as operating frequency, frequency bandwidth, environment, and manufacturing cost.
  • the radiation field of the antenna array can be the vector sum of the radiation fields of each antenna element, and its characteristics depend on the type, position, arrangement, and excitation amplitude and phase of the antenna elements.
  • a power amplifier (also known as a power amplifier) is used to amplify the transmitted or received weak radio frequency signal, so that the signal can be successfully fed back to the antenna and transmitted, or the receiver can successfully receive the signal, so as to achieve higher quality and better communication over long distances.
  • multiple power amplifiers are connected to the feeding circuit of the antenna device, and the maximum output capabilities of the multiple power amplifiers are the same, for example, the maximum output capabilities can be represented by rated power.
  • the multiple power amplifiers are connected to the antenna units in the antenna array through a power distributor. When the antenna array is required to meet a certain sidelobe requirement, it is necessary to reduce the transmit power of some antenna elements, thereby reducing the output power of some power amplifiers. In this case, it will cause the power loss of this part of the power amplifier, that is, its output power is less than rated power.
  • a power divider (also called a power divider) can be used to redistribute and recombine signal power, as shown in (a) of Figure 3, which can be regarded as a simple multi-port network circuit structure.
  • the loss of the power splitter including reflection loss and transmission loss
  • the input power of the input signal end of the power splitter is P 1
  • the output power of the output signal end is P 2 , P 3 , P 4 ...P n
  • P 1 P 2 +P 3 +P 4 +...P n (wherein n is a positive integer).
  • the power divider can divide the input signal power (for example, the input signal power can be the output power of the power amplifier) into at least two signal powers, and the power divider can also be called 1-point M (one input port, M output port) power divider, M is a positive integer greater than or equal to 2. It can be understood that when M is greater than 2, the function of 1 minute M can be realized by a 1 minute M power divider; or, it can also be realized by a combination of multiple 1 minute 2, 1 minute 3 power dividers, for example, The function of 1 to 8 can be realized by combining two 1 to 3 power dividers and one 1 to 2 power divider.
  • the power divider can realize the internal power distribution through the transmission line (microstrip line or stripline network), specifically, it can be a T-junction power divider or a Wilkinson power divider.
  • the analysis of the antenna array is to analyze and determine the radiation characteristics of the antenna array, including the radiation pattern of the antenna array, half-power lobe width, directivity coefficient, sidelobe level, etc. Radiation characteristics, including antenna array pattern, half-power lobe width, directivity coefficient, sidelobe level, etc.
  • the total number of units for example, the total number of units in a linear array N, the total number of units in a planar array M ⁇ N;
  • the synthesis of the antenna array is the inverse problem of its analysis, that is, the above four parameters of the antenna array are synthesized under the given radiation characteristics, so that some radiation characteristics of the antenna array meet the given requirements, for example, the side lobe electric field level to meet the requirements.
  • Common antenna array synthesis methods include Chebyshev synthesis method, Taylor synthesis method, etc. The Taylor synthesis method will be briefly introduced below.
  • the side lobe levels of its pattern are nearly equal in a certain area close to the main lobe, and then decrease monotonically, which is beneficial to improve the antenna directivity.
  • the Taylor synthesis method is a method designed for continuous line sources, but it can be discretized according to the sampling theorem. In other words, the Taylor distribution of a continuous line source can be approximated by a discrete array amplitude distribution with a sufficient number of elements.
  • the current distribution on a Taylor continuous line source antenna can be expressed as:
  • S n (m) represents the Taylor pattern function
  • L is the length of the continuous line source antenna, is before The boundary point between a nearly equal sidelobe and a sidelobe that decays with a certain regularity.
  • the Taylor synthesis method can suppress the sidelobe level to -35dB, but the Taylor synthesis method uses unequal power distribution, that is, the transmit power of each antenna unit is not equal, and in the active antenna system, each antenna unit or each n (n ⁇ 4) antenna units are connected (connected through a power divider) to a power amplifier, and the rated power of each power amplifier is equal, which will lead to insufficient power usage of the power amplifier in the feeding network, that is, reducing the power of the antenna device
  • the output power leads to a decrease in the maximum transmission power of the antenna, which affects the coverage of the antenna. For example, 30dB Taylor rejection can result in a power loss of 3.15dB.
  • an embodiment of the present application provides a method for suppressing antenna side lobes.
  • the antenna includes an antenna array and a feed unit, the feed unit is used to feed the antenna array through N power amplifiers, and the N power amplifiers include N1 first power amplifiers whose rated power is P1 , the method
  • the sidelobe level of the antenna is suppressed within a certain angular spatial range, and at the same time, lower power loss is achieved.
  • the first, second and various numbers are only for convenience of description, for distinguishing objects, and are not used to limit the embodiment of this application range. For example, distinguishing between different antenna elements, etc. It is not intended to describe a particular order or sequence. It is to be understood that the terms so described are interchangeable under appropriate circumstances in order to enable descriptions other than the embodiments of the application.
  • Fig. 5 is a schematic flowchart of a method for suppressing antenna sidelobes provided by an embodiment of the present application, and the method includes at least the following steps.
  • the first current distribution is a discrete current distribution of M antenna elements in the antenna array, the M antenna elements are symmetrical about the center of the array, and M is a positive integer.
  • M can be determined according to experience or actual needs, for example, the value of M is 44, and the embodiment of the present application does not limit the number of antenna elements in the antenna array.
  • the length of the array antenna corresponding to the continuous line source is L, and L is a constant greater than 0, and the value of L is known; the number of active channels of the antenna array (the number of power amplifiers ) is N, and N is a positive integer greater than or equal to 2, and the sum of the rated powers of the N power amplifiers is equal to the sum of the transmit powers of the antenna elements in the antenna array, or in other words, assuming that the N power amplifiers are all used to send to the Antenna element output power in an antenna array.
  • the first current distribution is the current distribution of the continuous line source.
  • the first current distribution may be the current distribution of the Taylor continuous line source, and the first current distribution is shown in formula (1).
  • the rated power of the power amplifier, the transmit power of the antenna elements in the antenna array, and the output power of the power amplifier to the antenna elements in the antenna array all refer to The power normalized according to the rated power of the power amplifier, for example, if the rated power of the power amplifier is 1, then the transmitting power of the antenna elements in the antenna array, and the output power of the power amplifier to the antenna elements in the antenna array The power value of is in the range [0,1].
  • the first power distribution can be generated according to the first current distribution; the first sub-array and the second sub-array can be determined according to the first power distribution.
  • Array
  • the first power distribution includes the first transmission power of the M antenna units, for example, the first power distribution may be determined according to the square of the current value in the first current distribution.
  • Determining the sub-array according to the first power distribution includes: determining M1 first antenna units among the M antenna units according to the first power distribution, and the first antenna units in the antenna array are formed by the first antenna units Subarray.
  • the first transmit power corresponding to the first antenna unit is greater than or equal to a first threshold, and the value range of the first threshold can be designed according to actual conditions, for example, the value range of the first threshold is [0.4, 0.6]; the The absolute value of the difference between the sum of the first transmission powers of M 1 first antenna units and the rated power of the first power divider is less than or equal to the first error, for example, the value range of the first error is [0.1 , 0.4].
  • Determining the second sub-array according to the first power distribution includes: determining M 2 second antenna units among the M antenna units according to the first power distribution, and the second antenna unit constitutes the second sub-array in the antenna array Array.
  • the first transmit power corresponding to the second antenna unit is less than the first threshold, and the difference between the sum of the first transmit power of the second antenna unit and the rated power of the power amplifier is less than the first error.
  • the first transmit power of the second antenna unit is less than the first threshold, that is, it can be understood that the transmit power of the second antenna unit is greatly different from the rated power of the first power amplifier, if each of the second antenna units
  • the antenna units are respectively connected to a first power amplifier, and the power loss of the first power amplifier is relatively large. Connecting the second antenna unit in the second sub-array to one of the first power amplifiers through a 1- M2 power divider can reduce the power loss of the first power amplifier.
  • the antenna with the first length on the antenna can be determined according to the first current distribution; the first sub-array and the second sub-array can be determined according to the value of the first length Array.
  • the integral of the Taylor continuous line source current distribution of the antenna over the first length is equal to the first power value
  • the first power value is the ratio of the first rated power value to N1
  • the first rated power value is N is the sum of the rated powers of the first power amplifiers of 1 rated powers.
  • the first rated power value may be a normalized power value, that is, the first rated power value is 1/N 1 .
  • the third threshold is 0.4 ⁇ ; or, if the value of the first length is less than the third threshold, on the antenna of the first length M 1 first antenna units are set, and the first sub-array includes the first antenna units.
  • the length of the antenna and the first length both refer to the electrical length, and the electrical length may be determined by the physical length and the wavelength of the transmitted electromagnetic wave.
  • the length of a certain continuous line source on the antenna mentioned below refers to the electrical length.
  • the thresholds compared with the length of the antenna, the first length and the length of a certain continuous line source are also represented by electrical lengths, for example, the third threshold, and the description of the same situation will be omitted below.
  • an antenna array can be obtained, and the antenna array can include the first sub-array and the second sub-array, the first sub-array includes M 1 first antenna elements, and the M 1 first antenna elements
  • An antenna unit can be fed by a first power amplifier in N power amplifiers (the first power amplifier is connected to the first sub-array through a 1-point M1 power divider); the second sub-array includes M2 The second antenna unit, the M 2 second antenna units can be fed by one of the first power amplifiers (the first power amplifier is connected to the first sub-array through a 1-point M 2 power divider), the second antenna
  • the antenna units in the unit are antenna units to be combined, M 1 and M 2 are positive integers, and M 1 ⁇ 1, M 2 >M 1 .
  • the power loss of the antenna array can be reduced by combining the antenna units in the first sub-array and the second sub-array (connecting to a 1M power splitter).
  • a third subarray in the antenna array may also be determined, where M3 third antenna elements are included in the third subarray, and the third antenna in the third subarray
  • the maximum value of the first transmit power of the unit is less than or equal to the minimum value of the first transmit power of the second antenna unit in the second sub-array, and M 3 >M 2 .
  • the first power distribution may also include a power value that is lower than the first transmit power corresponding to the second antenna unit in the second subarray, and the power value is lower than the first transmit power corresponding to the second antenna unit in the second subarray. If the difference between the sum of the power values of the transmit power and the rated power of the first power amplifier is smaller than the first error, then the third sub-array is composed of antenna elements corresponding to the power values.
  • the geometric center of the third subarray is farther from the center of the antenna array than the geometric center of the second subarray, or in other words, the antenna in the third subarray that is closest to the center of the antenna array
  • the distance from the unit to the center of the antenna array is greater than the distance from the antenna unit farthest from the center of the antenna array in the second sub-array to the center of the antenna array.
  • the distance from the geometric center of the second sub-array to the center of the antenna array is greater than the distance from the geometric center of the first sub-array to the center of the antenna array.
  • the N power amplifiers may also include N 2 second power amplifiers, the rated power P 2 of the second power amplifier is greater than the rated power P 1 , and the antenna can also be determined according to the first transmission power distribution.
  • the fourth sub-array in the array, the fourth sub-array includes M 4 fourth antenna units, the minimum value of the first transmission power corresponding to the fourth antenna unit is greater than or equal to the first transmission power corresponding to the first antenna unit
  • the maximum value of power the distance from the geometric center of the fourth sub-array to the center of the antenna array is less than the distance from the geometric center of the first antenna unit to the center of the antenna array, the first transmission of the M 4 fourth antenna units
  • the difference between the sum of the power and the rated power of the second power amplifier is less than the first error, and the fourth antenna unit is connected to one of the N 2 second power amplifiers through a 1-point M4 power divider, wherein, M 4 is a positive integer, N 2 and M 4 ⁇ 1.
  • the center of the antenna array may refer to the position on the antenna corresponding to the maximum value of the continuous line source current distribution of the antenna.
  • the method may further include S530, determining a distance between the first antenna unit and the second antenna unit.
  • the spacing of the first antenna unit may be determined by the first scaling factor and the spacing base, that is, the spacing base is determined by scaling the spacing base by the first scaling factor.
  • the value of the first scaling factor may be a ratio of the rated power P 1 to the sum of the first transmission powers of the M 1 first antenna units. Scaling the spacing base by the first scaling factor can increase the power density per unit aperture under the condition that the transmitting power remains unchanged, so that the transmitting power of the first antenna unit is equal to the rated power of the power amplifier. In other words, when the rated power of the power amplifier is constant, the power density (that is, the current density) can be equivalently increased by reducing the distance between the antennas.
  • the spacing of the second antenna elements may be determined by a second scaling factor and a spacing base.
  • the value of the second scaling factor may be a ratio of the rated power P 1 to the sum of the first transmission powers of the M 2 second antenna units. It can be understood that the first scaling factor and the second scaling factor are greater than or equal to 1.
  • the distance between the first antenna unit and the second antenna unit is greater than the second threshold
  • the distance between the first antenna unit greater than the second threshold can also be adjusted to be less than or equal to the second threshold, by adjusting the The distance between the first antenna elements can control the scanning grating lobes of the antenna, that is, when the distance between the antennas is greater than the second threshold, the sidelobe of the antenna will rise at a large scanning angle, and the performance of the antenna will decrease.
  • the first antenna unit may include antenna units distributed at equal intervals and antenna units at unequal intervals.
  • the spacing distribution of the third antenna unit and the fourth antenna unit is similar to that of the first antenna unit and the second antenna unit.
  • the antenna units in the antenna array may also be equally spaced, that is, the antenna units in the first sub-array, the second sub-array, the third sub-array and the fourth sub-array are all equally spaced and equally spaced.
  • spacing is the spacing base.
  • the power (actual radiated power) of the antenna elements in each sub-array can be distributed according to the Taylor current distribution. Assignments are made to determine the transmit power for each antenna element. And for a certain subarray, if it includes at least two antenna units, for example, a first unit and a second unit, if the distance from the geometric center of the first antenna unit to the center of the antenna array is greater than the distance from the second unit to the antenna array center distance, the power of the first unit is less than the power of the second unit. For a power divider connected to the sub-array, the line width of the transmission line connected to the first unit is smaller than the line width of the transmission line connected to the second unit.
  • the antenna sidelobe suppression method provided by the embodiment of the present application is described in detail below in conjunction with FIG. 6 and FIG. 7.
  • the antenna includes an antenna array and a feed unit, and the feed unit is used to feed power to the antenna array through N power amplifiers.
  • the N power amplifiers include N 1 first power amplifiers, and the rated power of the power amplifier is P 1 .
  • Fig. 6 is a schematic flowchart of a method for suppressing antenna side lobes provided by an embodiment of the present application.
  • the first current distribution is the discrete current distribution of M antenna elements in the antenna array. Include at least the following steps.
  • the first current distribution is a discrete current distribution of M antenna units in the antenna array, the M antenna units are symmetrical about the center of the antenna array, and M is a positive integer.
  • M is a positive integer.
  • the value of M may be determined according to experience or actual requirements, and the embodiment of the present application does not limit the number of antenna elements in the antenna array.
  • the value of M in the embodiment of the present application is 44, and it is first assumed that the 44 antenna elements are equally spaced to be 0.4 ⁇ (spacing base). It should be understood that the number of antenna units is only an example, and the base distance is only for subsequent determination of the actual distance between the antenna units, and the base distance can be other, and the number of antenna units and the base distance should not constitute the technical solution of the present application. any restrictions.
  • the first current distribution may be a Taylor current distribution (a pitch of 0.4 ⁇ ). For example, it is desired to suppress the side lobe level to -30dB, then the first current distribution of each unit obtained according to formula (3) is shown in the first row of Table 1 and Table 2. Since the Taylor current distribution is symmetrical, only half of the current distribution data is taken in Table 1 and Table 2; if the number of antenna elements is an odd number, the full array calculation is sufficient.
  • the first power distribution is the first transmission power distribution of the M antenna units, and the first transmission power may be understood as a theoretical value of the transmission power of each antenna unit in the antenna array determined according to the first current distribution.
  • the first transmission power can be understood as the ratio of the transmission power of each antenna unit to the rated power P when each antenna unit is respectively connected to a power amplifier with a rated power P.
  • the first power distribution can be obtained by squaring the current value in the first current distribution.
  • the first power distribution of the M antenna units is shown in the second row of Table 1 and Table 2; or, the first power distribution is shown in the second row of Table 3 and Table 4.
  • the difference between the first power distribution shown in Table 3 and Table 4 and the first power distribution shown in Table 1 and Table 2 is that the antenna unit station in the first power distribution shown in Table 3 and Table 4
  • the proportion of the rated power of the first power amplifier is even smaller. It can be seen from the table that the transmit power of each unit decreases from right to left (from the center position of the antenna array to the edge position), and the first transmit power of the antenna unit at the center position of the antenna array is the largest.
  • each antenna unit is connected to a power amplifier with the same rated power, the power loss of the power amplifier connected to the array unit at the center is the smallest; and from the center position to the edge position of the antenna array, the power loss of the power amplifier connected to each antenna unit increase in turn.
  • the combination criterion may include: the difference between the first power of the adjacent n antenna units and the rated power of the first power amplifier is smaller than the first error, and the description of the first error refers to S520, which will not be repeated here .
  • the first antenna unit among the M antenna units may be determined according to the first power distribution and the combination criterion, and the transmission power of each antenna unit in the first antenna unit is greater than or equal to a first threshold, and the first threshold
  • the value of can be determined according to the actual situation. For example, as shown in Table 1 and Table 2, the antenna unit in the antenna unit whose first transmission power is greater than or equal to 0.60 can be determined as the first antenna unit; 3 and Table 4, the antenna unit among the antenna units whose first transmission power is greater than or equal to 0.32 is determined as the first antenna unit.
  • the number of the first antenna units can be determined through the combination criterion, and the difference between the rated powers of the first antenna units and the first power amplifier is smaller than the first error.
  • the number of the first antenna elements can be 1, for example, the first transmit power of "9" antenna elements is 0.62, the first transmit power of the antenna elements If it is greater than the first threshold and the difference with the rated power of the first power amplifier is smaller than the first error, then the "9" antenna units form the first sub-array.
  • the number of the first antenna elements can also be greater than 1, for example, the first transmit power of the "8" antenna elements is 0.34, and the first transmit power of the antenna elements The power is greater than the first threshold, and the difference between the sum of the first transmission power of the "8" antenna unit and the adjacent "7" antenna unit and the rated power of the first power amplifier is smaller than the first error. Then the first sub-array is formed by the "8" antenna units and the "7" antenna units.
  • the second antenna unit among the M antenna units may also be determined according to the first power distribution and the combination criterion, and the transmit power of each antenna unit in the first antenna unit is less than the first threshold.
  • the first transmit power of the "10" antenna element is 0.55, which is less than the first threshold, and the "10" antenna element has the same power as the adjacent "11" antenna element If the difference between the sum of the first transmit power and the rated power of the first power amplifier is less than the first error, the second sub-array is formed by the "10" antenna unit and the "11" antenna unit.
  • the first transmission power of the "9” antenna unit is 0.31
  • the first transmission power of the antenna unit is less than the first threshold
  • the "9” antenna unit and The difference between the sum of the first transmission powers of adjacent "10" and “11” antenna elements and the rated power of the first power amplifier is smaller than the first error.
  • the second sub-array is formed by the "9” antenna unit, the "10” antenna unit and the "11” antenna unit.
  • the power loss in the antenna device can be reduced by connecting M 1 antenna elements in the antenna array to one of the first power amplifiers, and connecting M 2 second antenna elements to one of the first power amplifiers, wherein, M 1 , M 2 , is a positive integer, and M 1 ⁇ 1, M 2 >M 1 .
  • the M1 power divider refers to the transmission line.
  • the third subarray in the antenna array can also be determined through the first power distribution, the third subarray includes M 3 third antenna units, and the antennas in the M 3 third antenna units
  • the maximum value of the first transmitting power of the unit is less than or equal to the minimum value of the first transmitting power of the antenna unit in the M 2 second antenna units, and the second antenna unit is connected to the N 1 th One of the power amplifiers, the difference between the sum of the first transmission powers of the M3 first antenna elements and the rated power of the first power amplifier is less than the first error, where M3 is a positive integer, and M 3 >M 2 .
  • the first transmit power of "12" antenna elements is 0.48, which is smaller than the first transmit power of "11" antenna elements in the second sub-array, and "12" antenna elements If the difference between the sum of the first transmission power of the "antenna unit and the adjacent "13” antenna unit and the "14” antenna unit and the rated power of the first power amplifier is less than the first error, then the "12" ” antenna unit, “13” antenna unit and “14” antenna unit constitute the second sub-array. It can be seen from the first power distribution that the distance from the geometric center of the third sub-array to the center of the antenna array is greater than the distance from the geometric center of the second sub-array to the center of the antenna array.
  • an antenna array can be obtained, and the antenna array can include the first sub-array, the second sub-array and the third sub-array, and the third sub-array includes M 3 third antenna elements , the antenna units in the third sub-array can be connected to a first power amplifier through a 1-point M 3 power divider, and M 3 >M 2 .
  • the first sub-array, the second sub-array and the third sub-array in the antenna array are determined by determining the first power distribution, and the antenna elements in the first sub-array, the second sub-array and the third sub-array are The combination can reduce the power loss of the antenna device.
  • the array antenna also includes sub-arrays that are distributed symmetrically or approximately symmetrically with the first sub-array, the second sub-array and the third sub-array, and for the sake of brevity, related descriptions of the symmetrical sub-arrays are omitted.
  • the N power amplifiers also include N 2 second power amplifiers, the rated power of the second power amplifiers is greater than the rated power of the first power divider, and the antenna array can also be determined through the first power distribution
  • the fourth sub-array includes M 4 fourth antenna units, and the minimum value of the first transmit power corresponding to the fourth antenna unit is greater than or equal to the first transmit power corresponding to the first antenna unit
  • the maximum value of , the distance from the geometric center of the fourth subarray to the center of the antenna array is less than the distance from the geometric center of the first antenna unit to the center of the antenna array, and the first transmit power of the M 4 fourth antenna units
  • the sum, the difference with the rated power of the second power amplifier is less than the first error
  • the fourth antenna unit is connected to one of the N 2 second power amplifiers through a 1-point M 4 power divider, wherein, M 4 is a positive integer, N 2 and M 4 ⁇ 1.
  • the first transmit power of the "8" antenna elements is 0.69, which is greater than the first transmit power of the "9" antenna elements in the first sub-array, and the "8" antenna elements If the difference between the first transmit power of the "antenna unit” and the rated power of the first power amplifier is less than the first error, the "8" antenna units form the fourth sub-array. It can be seen from the first power distribution that the distance from the geometric center of the fourth sub-array to the center of the antenna array is smaller than the distance from the geometric center of the first sub-array to the center of the antenna array.
  • the combination criterion may also include: the number of combined antenna elements is less than or equal to a threshold value, for example, the value of the threshold value may be 8, so as to avoid too many mid-edge antenna elements being driven, thereby affecting array scanning or produce grating lobes.
  • the method may further include S650, performing normalization on the fourth power distribution P 4 to obtain a fifth power distribution P 5 .
  • the power value may be greater than 1, that is, exceed the rated power of the power amplifier, and the fourth power distribution can be normalized so that the power value in the fourth power distribution is converted to [0 , within the range of 1].
  • the normalization method is: reduce the maximum power value greater than 1 in the second power distribution to 1, and determine the scaling ratio, and scale other values in the second power distribution in the same proportion according to the scaling ratio, to obtain A third power distribution after the second power is normalized.
  • the normalization method is only an example, and the normalization method can also be other methods, such as range method, standardization method, etc., as long as the power value in the second power distribution can be converted to [0, 1 ] range.
  • the method may further include S660, determining the spacing (actual spacing) of antenna elements in each sub-array according to the fifth power distribution P5 .
  • Determining the actual distance between antenna elements in each sub-array according to the fifth power distribution can be divided into two situations.
  • the scaling factor ⁇ corresponding to each sub-array is determined according to the normalized fourth power distribution (fifth power distribution).
  • This scaling factor is used to scale the above spacing base (0.4 ⁇ ) to determine the actual antenna element spacing.
  • the fifth power distribution includes the sum of the first transmit power after the antenna units in each subarray are combined.
  • the value of the scaling factor corresponding to each sub-array may be the ratio of the rated power of the first power amplifier to the sum of the sum of the first transmission power after the antenna elements in each sub-array are combined, for example, the ⁇ 1 is the ratio of the rated power P 1 to the sum of the first transmission power of the M 1 first antenna elements, the second spacing is the product of the spacing base and the second scaling factor ⁇ 2 , and the ⁇ 2 is the rated power A ratio of P 1 to the sum of the first transmitting powers of the M 2 second antenna elements.
  • the scaling factor ⁇ corresponding to each sub-array is shown in the fifth row.
  • the scaled actual spacing of the antenna elements in each sub-array is the product of the corresponding scaling factor and the spacing base.
  • the scaled spacing between antenna elements of each sub-array is shown in the sixth row.
  • the method may further include S653, reconstructing the first distance distribution.
  • the actual distance between antenna elements in each sub-array after scaling may be greater than a second threshold, for example, the second threshold is 0.5 ⁇ .
  • the second threshold is 0.5 ⁇ .
  • Reconstructing the first spacing distribution may include: adjusting the first spacing value in the first spacing distribution to make it less than or equal to the second threshold (an example of the second spacing value), the antenna array shown in Table 1 and Table 2 , the adjusted first spacing distribution ⁇ 2 is shown in the seventh row.
  • the second threshold an example of the second spacing value
  • the method may further include S654, determining a second transmit power distribution PM according to the adjusted first distance distribution.
  • the combined power (rated power of the first power divider) corresponding to each antenna unit in the fifth power distribution can be adjusted according to the adjusted spacing , that is, determine the second transmission power distribution.
  • the second transmit power distribution includes the rated power of the first power divider (1 after normalization), and/or the product of the rated power of the first power divider and a third scaling factor ⁇ 3 , the ⁇ 3 is the ratio of the second spacing value to the first spacing value. It can be understood that if the spacing of the elements in a certain sub-array is not adjusted, the transmission power of the combined power value of the sub-array remains unchanged.
  • the power after the combination of the sub-arrays is the product of the rated power of the first power divider and the third scaling factor ⁇ 3 , and in the antenna array shown in Table 1 and Table 2, the second transmission power distribution is as follows shown in the eighth line.
  • the method may further include S655, determining a first radiation power distribution P m of the antenna elements in each subarray according to the second transmission power distribution P M and the first spacing distribution.
  • the first radiation power distribution includes the distribution of the radiation power of each antenna unit, and the first radiation power of the antenna units in each sub-array may satisfy Taylor distribution.
  • the first radiated power of the antenna unit farther away from the center of the antenna array in the sub-array is smaller than that of the antenna unit closer to the center of the antenna array in the sub-array.
  • the distance from the antenna unit to the center of the antenna array may be the distance from the geometric center of the antenna unit to the center of the antenna array.
  • the second sub-array includes a first unit and a second unit, and the distance from the geometric center of the first unit to the center of the antenna array is greater than the distance from the geometric center of the second unit to the center of the antenna array, then the second The first radiation power of a unit is smaller than the first radiation power of the second unit.
  • the method may further include determining a second radiation power distribution P m of the antenna elements in each sub-array according to the second transmission power distribution P M and the second spacing distribution.
  • the second radiation power of the antenna elements in each sub-array may satisfy a Taylor distribution.
  • the first radiation power of the antenna elements that are farther away from the center of the antenna array in the sub-array is smaller than that of the antenna elements that are closer to the center of the antenna array in the sub-array.
  • the power loss of the antenna array is 0.18dB, that is, the power loss of the power amplifier in the antenna array is 0.18dB, or in other words, when a certain Under the sidelobe condition, the maximum output power capability of the antenna device drops by 0.18dB.
  • the antenna array is shaped by the unit with a 90° wave width, and the shaped pattern is shown in Figure 8.
  • the sidelobe level of the embodiment of the present application is similar to the Taylor suppression level, and the sidelobe level is average The value is lower than the average sidelobe level when the current is evenly distributed. Only in the range of ⁇ 0 ⁇ 60°, there are 5 higher side lobes. This is because: using the reciprocal of the power to correct the spacing will cause the antenna aperture to expand, so there will be some deviations between the current distribution and the Taylor distribution, thus Causes part of the beam's sidelobes to lift.
  • the power loss of the antenna array is 0.64 dB.
  • the antenna array is shaped by elements with a 90° wave width, and the shaped pattern is close to the Taylor pattern, and the average side lobe level is lower than the average side lobe level of the Taylor current distribution.
  • a phase shift unit can be used to enhance the edge scanning capability; the fourth threshold can be determined based on actual experience, for example, the fourth threshold is 4.
  • the phase shifting unit mentioned above may be a delay line, a Schiffman (Schiffman) phase shifter or other structures or devices that generate a phase difference, which is not limited in the present application.
  • the method may further include S670, determining the physical spacing of each antenna unit according to the first spacing distribution of antenna units in each subarray.
  • the distance in the first distance distribution is the electrical length
  • the physical distance is the physical length.
  • the first line shows the number of the antenna unit, and the distance between the geometric center of the antenna unit numbered "1" and the center of the antenna array is the smallest.
  • each row of data in Table 2 is the same as in Table 1 (see the first column from the left in Table 1), the first row shows the number of the antenna unit, and the geometric center of the antenna unit numbered "22" is the same as the antenna The center of the array has the largest distance.
  • the first row shows the number of the antenna unit, and the distance between the geometric center of the antenna unit numbered "1" and the center of the antenna array is the smallest.
  • each row of data in Table 4 is the same as in Table 3 (see the first column from the left in Table 3), the first row shows the number of the antenna unit, and the geometric center of the antenna unit numbered "22" is the same as that of the antenna The center of the array has the largest distance.
  • Fig. 7 is a schematic flowchart of another antenna sidelobe suppression method provided by the embodiment of the present application.
  • the length of the array antenna is L (electrical length), and L is a constant greater than 0.
  • the array antenna has The number of source channels (the number of first power amplifiers) is N, and N is a positive integer greater than or equal to 2, and the sum of the rated powers of the N first power amplifiers is equal to the sum of the transmit powers of the antenna elements on the antenna, or in other words, It is assumed that all of the N first power amplifiers are used to output power to the antenna array in the antenna. Taking the left or right half of the antenna array (corresponding to the antenna with a length of L/2) to describe the method of the embodiment of the present application, the method includes at least the following steps.
  • the first current distribution is the Taylor continuous line source current distribution of the antenna, and the first current distribution can be determined according to formula (1); assuming that the sum of the rated powers of the N first power amplifiers is 1 (normalized After 200 Hz), the power loss is 0, the first power value represents the output power value of each power amplifier in the N first power amplifiers, and the first power value is: 1/N.
  • Determining the antenna of the first length according to the first current distribution and the first power value includes: determining the first length so that the integral of the first current distribution function over the first length is equal to the first power value. That is, the first length can be determined according to formula (3):
  • the difference between L 2 and L 1 may represent the first length, 0 ⁇ L 1 ⁇ L, 0 ⁇ L 2 ⁇ L. It can be understood that the number of antennas with the first length is equal to the number of power amplifiers. For convenience of description, when the first length is determined for the first time, the starting position of the first length may be the edge position of the antenna.
  • the value of the first length decreases successively from the edge position of the antenna to the center position of the antenna.
  • the value of the first length includes at least one first value and at least one second value, the first value is greater than or equal to a fifth threshold (for example, 0.6 ⁇ ), and the second value is smaller than the fifth threshold.
  • the value of the first length may further include a third value, where the third value is greater than or equal to the fifth threshold (for example, 0.6 ⁇ ) and greater than the first value.
  • the fifth threshold for example, 0.6 ⁇
  • Determining the first subarray according to the value of the first length, and determining the second subarray includes: determining the number of antenna elements in the first subarray and the second subarray according to the value of the first length.
  • M 2 second antenna units can be set on the antenna corresponding to the first length, and the M 2 second antenna units are antennas in the second sub-array unit, the M 2 second antenna units are equally spaced, the M 2 second antenna units are antenna units that need to be combined, and M 2 is a positive integer greater than or equal to 2.
  • the value of M 2 can be It is: ceil (first length/spacing base), ceil(*) represents an upward rounding function; if the value of the first length includes the second value, a first antenna unit can be set on the antenna corresponding to the first length , the first sub-array is composed of M 1 first antenna units, where M 1 is a positive integer.
  • an antenna array can be obtained, and the antenna array can include the first subarray and the second subarray, the first subarray includes M1 first antenna units, and the first antenna unit There is no need to combine with other antenna units, that is, each antenna unit in the first antenna unit is connected to a power amplifier in the feed unit; the second sub-array includes M 2 second antenna units, and in the second antenna unit
  • the antenna unit is the antenna unit that needs to be combined, that is, the second antenna unit can be connected to a power amplifier through a 1- M2 power divider, and M1 and M2 are positive integers.
  • the first sub-array and the second sub-array in the antenna array are determined by determining the value of the first length, and combining the second antenna elements in the second sub-array can reduce the power loss of the antenna array.
  • Table 5 shows the distribution of antenna elements when the value of N is equal to 24, and the theoretical power loss value of the antenna array is 0.
  • the antenna array is shaped by the unit with a 90° wave width, and the shaped pattern is close to the Taylor pattern, and the average side lobe level is lower than that of the Taylor current distribution.
  • the second number of antenna elements in the third sub-array may also be determined according to the value of the first length.
  • the process of determining the number of second antenna units in the third sub-array according to the value of the first length may refer to determining the number of the second antenna units in the second sub-array.
  • M 3 second antenna units can be set on the antenna corresponding to the first length, and the M 3 second antenna units are antenna units in the third sub-array, and the M 3 second antenna units are also required to be combined
  • the antenna unit, M 3 is a positive integer greater than M 2 .
  • an antenna array can be obtained, and the antenna array can include the first sub-array, the second sub-array and the third sub-array, and the first antenna unit does not need to be combined with other antenna units , that is, each antenna unit in the first antenna unit is connected to a power amplifier in the feed unit; the second sub-array includes M 2 second antenna units, and the third sub-array includes M 3 second antenna units , the antenna unit in the second antenna unit is an antenna unit that needs to be combined, that is, the second antenna unit can be connected to a power amplifier through a 1-M power divider, and M 3 >M 2 , M 1 , M 2 , M 3 is a positive integer.
  • the power loss of the antenna array can be reduced by combining the antenna elements in the second sub-array and the third sub-array.
  • a phase shift unit can be used to enhance the edge scanning capability; the fourth threshold can be determined based on actual experience, for example, the fourth threshold is 4.
  • the method may further include S730, determining a second length according to the first length.
  • the starting position of the antenna of the second length is the same as that of the antenna of the first length, the integral of the continuous line source current distribution on the second length is equal to a second power value, and the second power value is smaller than the first power value.
  • the second power value is determined by the first power value and a loss coefficient, and the value range of the loss coefficient may be (0,1), that is, the power divider has relatively small power loss.
  • the second length is determined such that the integral of the continuous line source current distribution on the second length is equal to the second power value, and then The second antenna unit is arranged on the second length.
  • the second length is used to re-determine the number of the second antenna elements in the second sub-array, so that the number of the second antenna elements in the second sub-array is smaller than the fifth threshold, thereby avoiding driving the antenna elements There are many.
  • the second length is determined so that the integral of the continuous line source current distribution on the second length is equal to the second power value , and then disposing the second antenna unit on the second length.
  • K is a positive integer.
  • the second error is, for example, ⁇ 0.1 ⁇ ⁇ 0.2 ⁇ .
  • the integral multiple of the first length and the base of the pitch is greater than the second error. It can be understood that setting the second antenna units at equal intervals on the first length will not make the spacing of the second antenna units too large or too small (spacing base ⁇ error).
  • the spacing base is 0.4 ⁇
  • an antenna unit (first antenna unit) is set on the first length and its spacing is relatively large (greater than the spacing base+0.2 ⁇ ), which will cause secondary The lobe is lifted; setting an antenna unit with a small spacing (less than the spacing base -0.1 ⁇ ) will cause too strong coupling between the units.
  • the first length can be made to be close to an integer multiple of the pitch base, thereby avoiding that the pitch of the second antenna element is too small, or that the pitch of the first antenna element is too large, thereby enhancing the scanning range or avoiding the Coupling between.
  • This step can be understood as modifying the number of corresponding antenna elements in the second subarray in Table 5, and the number of antenna elements included in the amended second subarray is as shown in Table 6 (the data of the symmetrical half of the antenna elements in the antenna array) shown in .
  • the method may further include S740, determining the power distribution (radiation power distribution) of each antenna unit in the second sub-array and/or the third sub-array.
  • each antenna unit in the second sub-array and the third sub-array may represent the power distribution of each output port of the power divider connected to the second antenna unit.
  • the antenna units in the second sub-array and the third sub-array can be connected to a power splitter through a phase shifting unit.
  • the antenna sidelobe suppression method provided by the embodiment of the present application is described above with reference to FIG. 5 to FIG. 8 , and the antenna device provided by the present application is described below in conjunction with FIG. 9 .
  • FIG. 9 is a schematic block diagram of an antenna device provided in an embodiment of the present application.
  • the antenna device includes an antenna array, the antenna array may include the first sub-array and the second sub-array, the first sub-array includes M 1 first antenna units, and the M 1 first antenna units may pass through N A first power amplifier in the power amplifier (this first power amplifier connects this first sub-array by 1 minute M 1 power splitter) feeds;
  • This second sub-array includes M 2 second antenna units, and the M 2 second antenna units can be fed by one of the first power amplifiers (the first power amplifier is connected to the first sub-array through a 1- M2 power splitter), and the antenna units in the second antenna units are required
  • the combined antenna units, M 1 and M 2 are positive integers, and M 1 ⁇ 1, and M 2 >M 1 .
  • the power loss of the antenna array can be reduced by combining the antenna units in the first sub-array and the second sub-array (connecting to a 1M power divider).
  • the above 1M power splitter is connected to the one power amplifier.
  • the function of the 1m can also be realized by a combination of multiple 1m power dividers.
  • the antenna array further includes a third sub-array
  • the third sub-array includes M 3 third antenna units
  • the maximum first transmit power of the third antenna units in the third sub-array is The value is less than or equal to the minimum value of the first transmission power of the second antenna unit in the second subarray, and M 3 >M 2 .
  • the first power distribution may also include a power value that is lower than the first transmit power corresponding to the second antenna unit in the second subarray, and the power value is lower than the first transmit power corresponding to the second antenna unit in the second subarray. If the difference between the sum of the power values of the transmit power and the rated power of the first power amplifier is smaller than the first error, then the third sub-array is composed of antenna elements corresponding to the power values.
  • the geometric center of the third subarray is farther from the center of the antenna array than the geometric center of the second subarray, or in other words, the antenna in the third subarray that is closest to the center of the antenna array
  • the distance from the unit to the center of the antenna array is greater than the distance from the antenna unit farthest from the center of the antenna array in the second sub-array to the center of the antenna array.
  • the distance from the geometric center of the second sub-array to the center of the antenna array is greater than the distance from the geometric center of the first sub-array to the center of the antenna array.
  • the N power amplifiers may also include N 2 second power amplifiers, the rated power P 2 of the second power amplifier is greater than the rated power P 1 , and the antenna array may also include a fourth sub-array,
  • the fourth sub-array includes M 4 fourth antenna units, the minimum value of the first transmission power corresponding to the fourth antenna unit is greater than or equal to the maximum value of the first transmission power corresponding to the first antenna unit, and the fourth The distance from the geometric center of the sub-array to the center of the antenna array is less than the distance from the geometric center of the first antenna unit to the center of the antenna array, and the sum of the first transmission powers of the M4 fourth antenna units and the second The difference of the rated power of the power amplifier is less than the first error, and the fourth antenna unit is connected to one of the N 2 second power amplifiers through a 1-point M 4 power divider, wherein M 4 is a positive integer, and N 2 And M 4 ⁇ 1.
  • the center of the antenna array may refer to the position on the antenna corresponding to the maximum value of the continuous line source current distribution of the antenna.
  • the antenna units of each sub-array in the antenna array satisfy the first spacing distribution or the second spacing distribution.
  • first spacing distribution and the second spacing distribution reference may be made to the description in the method, which will not be repeated here.
  • the farthest distance from the center of the antenna array in the sub-array is The line width of the transmission line in the 1-M power device corresponding to the antenna unit is smaller than the line width of the transmission line in the 1-M power device corresponding to the antenna unit in the sub-array that is closer to the center of the antenna array.
  • the distance from an element to the center of the antenna array may be the distance from the geometric center of the antenna element to the center of the antenna array.
  • the second sub-array includes a first unit and a second unit, and the second sub-array is connected to the first power amplifier through a 1- M2 power divider, and the geometric center of the first unit is connected to the center of the antenna array. If the distance is greater than the distance from the geometric center of the second unit to the center of the antenna array, the line width of the transmission line connected to the first unit in the 1M2 power divider is smaller than the line width of the transmission line connected to the second unit.
  • the power amplifier in the antenna device can be connected to the transmitting channel or the receiving channel through the phase shift unit, as shown in (a) and (b) of FIG. 9 respectively.
  • part of the power amplifiers in the antenna device may be connected to the transmit channel through the phase shift unit, and part of the power amplifier may be connected to the receive channel, which is not limited in this application.
  • the antenna array also includes a feed network.
  • the structure of the feed network can be regarded as a collection of 1-M power dividers according to a tree topology, where M is a positive integer greater than or equal to 2.
  • the feed network is used to feed the antenna array.
  • the rated power of the power amplifiers in this feeding network is the same.
  • the output end of the 1-to-N power divider may also be connected to a phase shifting unit.
  • the same rated power of the power amplifiers in the feed network is only an application scenario of the embodiment of the present application, and does not constitute a limitation to the present application.
  • all or part of the power dividers in the feed network The rated power can fluctuate within a certain range.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线副瓣的抑制方法及天线阵列,天线包括馈电单元,用于通过N个功率放大器向天线阵列馈电,N个功率放大器包括N1个额定功率为P1的第一功率放大器。方法包括根据期望的副瓣电平生成第一电流分布,第一电流分布为天线阵列中天线单元的离散电流分布,或者天线的连续线源电流分布;根据第一电流分布确定天线阵列中的第一子阵和第二子阵,通过将第一子阵中的M1个天线单元通过1分M1功率分配器连接第一功率放大器中的一个、将第二子阵中的M2个天线单元通过1分M2功率分配器连接第一功率放大器中的一个,可降低天线的功率损失,其中,M1,M2,N,N1为正整数,且M1≥1,M2>M1,N≥N1。

Description

一种天线副瓣的抑制方法及天线阵列 技术领域
本申请涉及无线通信领域,更具体地,涉及一种天线副瓣的抑制方法及天线阵列。
背景技术
卫星和5G应用之间的频谱共享提出了它们如何共存的问题。例如,针对卫星的上行频段5.85~6.425GHz,卫星会接收地面站的信号,这个时候若基站天线的6GHz副瓣信号过高会干扰卫星的接收机;针对卫星的下行频段3.4~4.2GHz,地面站会接收卫星的信号,这时若卫星接收天线的3.5GHz的副瓣过高,会接收基站天线的干扰信号。针对卫星干扰的场景,需要在一片大的区域内实现基站天线副瓣的干扰抑制,即需要基站天线在大角度范围内,副瓣能量的平均值最低。传统的天线通过调节功率放大器的发射功率,从而抑制副瓣,但这种方式会降低功率放大器的输出功率,从而降低了天线设备的最大输出功率。
发明内容
本申请提供一种天线副瓣的抑制方法及天线阵列,通过将该天线阵列中部分天线单元进行合路,连接该N个功率放大器中的1驱M功率放大器,可以实现在一定角度的空间范围内抑制该天线的副瓣电平,同时降低该天线的功率损失。
第一方面,提供了一种天线副瓣的抑制方法,该天线包括天线阵列和馈电单元,该馈电单元用于通过N个功率放大器向该天线阵列馈电,该N个功率放大器包括N 1个第一功率放大器,该一功率放大器的额定功率为P 1,该方法包括根据期望的副瓣电平生成该天线阵列的第一电流分布,该第一电流分布为该天线阵列中M个天线单元的离散电流分布,或者,该第一电流分布为该天线阵列对应的连续线源电流分布;根据该第一电流分布确定该天线阵列中的第一子阵和第二子阵,该第一子阵包括M 1个第一天线单元,该M 1个第一天线单元中每个天线单元的第一发射功率大于第一阈值,该第二子阵包括M 2个第二天线单元,该M 2个第二天线单元中的每个天线单元的第一发射功率小于等于该第一阈值,该第一天线单元通过1分M 1功率分配器连接该N 1个第一功率放大器中的一个,该第二天线单元通过1分M 2功率分配器连接该N 1个第一功率放大器中的一个,该M 1个第一天线单元的第一发射功率之和,与该额定功率P 1的差值小于第一误差,该M 2个第二天线单元的第一发射功率之和,与该额定功率P 1的差值小于第一误差,该第一发射功率由该第一电流分布确定,其中,M 1,M 2,N,N 1为正整数,且M 1≥1,M 2>M 1,N≥N 1
根据本申请实施例的方法,可以得到一种天线阵列,该天线阵列可以包括该第一子阵和第二子阵,该第一子阵包括M 1个第一天线单元,该M 1个第一天线单元可以通过N个功率放大器中的一个第一功率放大器(该第一功率放大器通过1分M 1功率分配器连接该第一子阵)进行馈电;该第二子阵包括M 2个第二天线单元,该M 2个第二天线单元可以通过一个该第一功率放大器进行馈电(该第一功率放大器通过1分M 2功率分配器连接该第一子阵),该第二天线单元中的天线单元为需合路的天线单元,M 1,M 2,为正整数, 且M 1≥1,M 2>M 1。通过将该第一子阵、第二子阵中的天线单元进行合路(连接1分M功率分配器)可以降低该天线阵列的功率损失。
结合第一方面,在第一方面的某些实现方式中,根据该第一电流分布确定第一发射功率分布,该第一电流分布为该天线阵列中M个天线单元的离散电流分布,该第一发射功率分布包括该M个天线单元的第一发射功率,该第一发射功率的值与该离散电流分布中的电流值一一对应。
结合第一方面,在第一方面的某些实现方式中,根据该第一发射功率分布确定第一间距分布,该第一间距分布包括该M 1个第一天线单元中每个天线单元的第一间距,以及该M 2个第二天线单元中每个天线单元的的第二间距;其中,该第一间距为间距基数与第一缩放因子α 1的乘积,该α 1为该额定功率P 1与该M 1个第一天线单元的该第一发射功率之和的比值,该第二间距为间距基数与第二缩放因子α 2的乘积,该α 2为该额定功率P 1与该M 2个第二天线单元的该第一发射功率之和的比值。
结合第一方面,在第一方面的某些实现方式中,若该第一间距分布中第三间距大于第二阈值,将该第三间距调整为第四间距,该第四间距小于等于该第二阈值,该第三间距为该第一间距分布中的任一间距。
结合第一方面,在第一方面的某些实现方式中,根据该第一间距分布确定第二发射功率分布,该第二发射功率分布包括该额定功率P 1,和/或该额定功率P 1与第三缩放因子α 3的乘积,该α 3为该第四间距与该第三间距的比值。
结合第一方面,在第一方面的某些实现方式中,该第一电流分布为该天线阵列对应的连续线源电流分布,该N 1个第一功率放大器的额定功率之和等于该天线上天线单元的发射功率之和,N 1=N,确定该天线中上的第一长度的天线,该连续线源电流分布在该第一长度上的积分等于第一功率值,该第一功率值为第一额定功率值与N 1的比值,该第一额定功率值为N 1个额定功率的第一功率放大器的额定功率之和;根据该第一长度的值确定该天线阵列中的第一子阵和第二子阵。
结合第一方面,在第一方面的某些实现方式中,若该第一长度的值大于第三阈值,在该第一长度的天线上设置M 2个该第二天线单元,该第二子阵包括该M 2个第二天线单元,M 2的值由该第一长度的值和间距基数确定;或者,若该第一长度的值小于等于第三阈值,在该第一长度的天线上设置M 1个该第一天线单元,该第一子阵包括该M 1个第一天线单元。
结合第一方面,在第一方面的某些实现方式中,根据该M 2的值确定第二长度;在该天线中该第二长度的天线上设置该第二子阵,该第二长度的值小于该第一长度的值。
结合第一方面,在第一方面的某些实现方式中,若该M 2的值大于第四阈值,确定该第二长度的天线与该第一长度的天线起始位置相同,该连续线源电流分布在该第二长度上的积分等于第二功率值,该第二功率值小于该第一功率值。
结合第一方面,在第一方面的某些实现方式中,根据该第一发射功率分布确定该天线阵列中的第三子阵,该第三子阵包括M 3个第三天线单元,该M 3个第三天线单元中的天线单元的第一发射功率的最大值小于等于该M 2个第二天线单元中天线单元的第一发射功率的最小值,该M 3个第三子阵的几何中心到该天线阵列中心的距离,大于该第二子阵的几何中心到该天线阵列中心的距离,该第二天线单元通过1分M 3功率分配器连接该N 1个第一功率放大器中的一个,该M 3个第一天线单元的第一发射功率之和,与该第一功率 放大器的额定功率的差值小于该第一误差,其中,M 3为正整数,且M 3>M 2
结合第一方面,在第一方面的某些实现方式中,该N个功率放大器还包括N 2个第二功率放大器,该第二功率放大器的额定功率P 2大于该额定功率P 1,根据该第一发射功率分布确定该天线阵列中的第四子阵,该第四子阵包括M 4个第四天线单元,该第四天线单元对应的该第一发射功率的最小值大于等于该第一天线单元对应的该第一发射功率的最大值,该第四子阵的几何中心到该天线阵列中心的距离,小于该第一天线单元的几何中心到该天线阵列中心的距离,该M 4个第四天线单元的第一发射功率之和,与该第二功率放大器的额定功率的差值小于该第一误差,该第四天线单元通过1分M 4功率分配器连接该N 2个第二功率放大器中的一个,其中,M 4为正整数,N 2且M 4≥1。
结合第一方面,在第一方面的某些实现方式中,该第四天线单元的数目等于该第一天线单元的数目。
结合第一方面,在第一方面的某些实现方式中,确定第二间距分布,该第二间距分布包括该M 1个第一天线单元中每个天线单元的间距,该M 2个第二天线单元中每个天线单元的间距,该M 3个第三天线单元中每个天线单元的间距,以及该M 4个第四天线单元中每个天线单元的间距,该第二间距分布中的间距相等。
结合第一方面,在第一方面的某些实现方式中,确定该第二子阵中每个天线单元的第二发射功率,该第二子阵包括第一单元和第二单元,若该第一天线单元的几何中心到该天线阵列中心的距离大于该第二单元到该天线阵列中心的距离,则该第一单元的该第二发射功率小于该第二单元的该第二发射功率,该第二发射功率分布中的功率值包括该第二子阵中每个天线单元的第二发射功率之和。
结合第一方面,在第一方面的某些实现方式中,该第二天线单元和/或该第三天线单元通过移相单元连接该功率放大器。
第二方面,提供一种天线阵列,该天线阵列由馈电单元通过N个功率放大器进行馈电,该N个功率放大器包括N 1个第一功率放大器,该第一功率放大器的额定功率为P 1,该天线阵列包括:第一子阵,该第一子阵包括M 1个第一天线单元,该M 1个第一天线单元中每个天线单元的第一发射功率大于第一阈值,该M 1个第一天线单元的第一发射功率之和,与该额定功率P 1的差值小于第一误差,该第一天线单元通过1分M 1功率分配器连接该N 1个第一功率放大器中的一个;第二子阵,该第二子阵包括M 2个第二天线单元,该M 2个第二天线单元中的每个天线单元的第一发射功率小于等于该第一阈值,该第二天线单元通过1分M 2功率分配器连接该N 1个第一功率放大器中的一个,该M 2个第二天线单元的第一发射功率之和,与该额定功率P 1的差值小于第一误差,该第一发射功率由第一电流分布确定,该第一天线单元的几何中心到该天线阵列中心的距离,小于该第二天线单元的几何中心到该天线阵列中心的距离;其中,该第一电流分布由期望的副瓣电平生成,该第一电流分布为该天线阵列中M个天线单元的离散电流分布,或者,该第一电流分布为该天线阵列对应的连续线源电流分布,M 1,M 2,N,N 1为正整数,且M 1≥1,M 2>M 1,N≥N 1
结合第二方面,在第二方面的某些实现方式中,该M 1个第一天线单元的间距为间距基数与第一缩放因子α 1的乘积,该α 1为该额定功率P 1与该M 1个第一天线单元的该第一发射功率之和的比值,该M 2个第二天线单元的间距为间距基数与第二缩放因子α 2的乘积,该α 2为该额定功率P 1与该M 2个第二天线单元的该第一发射功率之和的比值。
结合第二方面,在第二方面的某些实现方式中,该M 1个第一天线单元以及该M 2个第二天线单元中的任一天线单元的间距小于等于第二阈值。
结合第二方面,在第二方面的某些实现方式中,该N 1个功率放大器的额定功率之和等于该天线上天线单元的发射功率之和,且N 1=N,该M 2个第二天线单元对应的连续线源电流分布在第一长度上的积分等于第一功率值,该第一长度为该M 2个第二天线单元对应的天线长度;或者,该M 1个第一天线单元中每个天线单元对应的连续线源电流分布在第一长度上的积分等于第一功率值,该第一长度包括该每个天线单元对应的天线长度;其中,该第一功率值为第一额定功率值与N 1的比值,该第一额定功率值为N 1个额定功率的第一功率放大器的额定功率之和。
结合第二方面,在第二方面的某些实现方式中,该天线阵列还包括第三子阵,该第三子阵包括M 3个第三天线单元,该M 3个第三天线单元中的天线单元的第一发射功率的最大值小于等于该M 2个第二天线单元中天线单元的第一发射功率的最小值,该M 3个第三子阵的几何中心到该天线阵列中心的距离,大于该第二子阵的几何中心到该天线阵列中心的距离,该第二天线单元通过1分M 3功率分配器连接该N 1个第一功率放大器中的一个,该M 3个第一天线单元的第一发射功率之和,与该第一功率放大器的额定功率的差值小于该第一误差,其中,M 3为正整数,且M 3>M 2
结合第二方面,在第二方面的某些实现方式中,该N个功率放大器还包括N 2个第二功率放大器,该第二功率放大器的额定功率P 2大于该额定功率P 1,该天线阵列还包括:第四子阵,该第四子阵包括M 4个第四天线单元,该第四天线单元对应的该第一发射功率的最小值大于等于该第一天线单元对应的该第一发射功率的最大值,该第四子阵的几何中心到该天线阵列中心的距离,小于该第一天线单元的几何中心到该天线阵列中心的距离,该M 4个第四天线单元的第一发射功率之和,与该第二功率放大器的额定功率的差值小于该第一误差,该第四天线单元通过1分M 4功率分配器连接该N 2个第二功率放大器中的一个,其中,M 4为正整数,N 2且M 4≥1。
结合第二方面,在第二方面的某些实现方式中,该第四天线单元的数目等于该第一天线单元的数目。
结合第二方面,在第二方面的某些实现方式中,该M 1个第一天线单元,该M 2个第二天线单元,该M 3个第三天线单元,以及该M 4个第四天线单元为等间距分布。
结合第二方面,在第二方面的某些实现方式中,其特征在于,该第二天线单元和/或该第三天线单元通过移相单元连接该功率放大器。
结合第二方面,在第二方面的某些实现方式中,该1分M 2功率分配器通过第一传输线连接该第二子阵中的第一单元,该1分M 2功率分配器通过第二传输线连接该第二子阵中的第二单元,若该第一单元的几何中心到该天线阵列中心的距离d 1,大于该第二单元几何中心到该天线阵列中心的距离d 2,则该第一传输线的线宽w 1小于该第二传输线的线宽w 2,该第二天线单元包括该第一单元和该第二单元。
第三方面,提供了一种天线设备,包括第二方面及第二方面的任一种可能实现方式中的天线阵列。
第四方面,提供了一种通信设备,包括第三方面所述的天线设备。
附图说明
图1是适用于本申请实施例的通信系统的架构示意图
图2是一种天线设备的示意性框图。
图3是一种功率分配器的示意性框图。
图4是连续线源上的电流分布示意图。
图5是本申请实施例提供的一种天线副瓣的抑制方法的示意性流程图。
图6是本申请实施例提供的另一种天线副瓣的抑制方法的示意性流程图。
图7是本申请实施例提供的另一种天线副瓣的抑制方法的示意性流程图。
图8是本申请实施例提供的天线阵列的方向图。
图9是本申请实施例提供的天线设备的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如,码分多址(code division multiple access,CDMA)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、无线局域网(wireless local area network,WLAN)、第五代(5th generation,5G)系统或NR通信系统、第六代(6th generation,6G)移动通信系统、卫星通信系统、以及未来的移动通信系统等。
图1是适用于本申请实施例的通信系统的架构示意图。
如图1所示,该通信系统可以包括卫星101,该卫星101可以是静止轨道(geostationary earth orbit,GEO)卫星、非静止轨道(none-geostationary earth orbit,NGEO)卫星或者两者构成的多颗卫星。该通信系统中还可以包括地面站102,例如,移动卫星电话,也可以是各种固定终端,例如,通信地面站等。该通信系统100中还可以包括卫星测控中心、网络控制中心(network control center,NCC)以及各类关口站(gateway)等(图中未示出)。在该通信系统中,卫星可以使用下行频段(例如,3.4~4.2GHz)向地面站102传输下行数据。地面站102也可以使用卫星的上行频段(例如,5.85~6.425GHz)向卫星传输上行数据。
该通信系统100还可以包括至少一个接入网设备103,以及至少一个终端设备104,终端设备104位于该接入网设备103提供的一个或多个小区(载波)的覆盖范围内。当为终端设备104的服务小区有多个时,可以按照载波聚合(carrier aggregation,CA)、双连接(dual connectivity,DC)或协作多点传输方式工作,其中,多个为终端设备104的服务小区同时为终端设备提供无线资源。终端设备和终端设备之间,以及接入网设备和接入网设备之间可以通过有线或无线的方式相互连接。该通信系统中还可以包括其它网络设备,如无线中继设备和无线回传设备等,在图1中未画出。
本申请实施例中的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的终端、移动台(mobile station,MS)、终端(terminal)或软终端等等。例如,水表、电表、传感器等。示例性地,本申请实施例中的用户设备可以指接入终端、用户单元、用户站、移 动站、移动台、中继站、远方站、远程终端、移动设备、用户终端(user terminal)、终端设备(terminal equipment)、无线通信设备、用户代理或用户装置。用户设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的用户设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的用户设备或者未来车联网中的用户设备等,本申请对此并不限定。
本申请实施例中的接入网设备103可以是用于与终端设备104通信的设备,该接入网设备设备可以是(无线)接入网设备(radio access network,(R)AN),用于管理无线资源,为用户设备提供接入服务,进而完成控制信号和终端设备数据在终端设备和核心网之间的转发。该接入网设备103也可以理解为传统网络中的基站。
图1所示的通信系统100可以看作卫星通信系统和移动通信系统共存的通信系统,在该通信系统中,针对卫星的上行频段5.85~6.425GHz,卫星101会接收地面站102的信号,这个时候若接入网设备103的天线的6GHz副瓣信号过高会干扰卫星101的接收机;针对卫星101的下行频段3.4~4.2GHz,地面站102会接收卫星101的信号,这时若地面站102天线的3.5GHz的副瓣过高,会接收接入网设备103天线的干扰信号。因此,针对卫星干扰的场景,需要在一片大的区域内实现基站天线或地面站天线副瓣的干扰抑制,即需要基站天线在大角度范围内,副瓣能量的平均值最低。
为便于理解,先对本申请中涉及到的一些概念做简单介绍。
1、天线
天线(天线设备)的基本功能是能量转换和电磁波的定向辐射或接收。天线的性能直接影响到无线电设备的使用。天线设备可以包括馈电单元和辐射单元。其中,馈电单元可以包括馈电电路(馈电网络),用于连接天线设备的辐射部分与外部的馈线,将馈线传输的电信号进行处理,并将处理后的一定幅度、相位的电信号传输至辐射部分,由辐射部分向外辐射。该辐射部分可以包括至少一个独立的天线阵列,该天线阵列可以包括至少一个天线单元。该馈电单元还可以包括至少一个功率放大器(power amplifier,PA),用于将输入的功率放大后馈送到天线上辐射出去;每个功率放大器的输出端可以连接一个功率分配器,该功率分配器的输出端口通过馈电电路的支路将该功率放大器的输入功率经过分配传输到至少一个天线单元。通常,为了操作简便及节省天线设备的制造成本,在一个天线设备中使用的功率放大器具有相同的额定功率。可选地,该天线设备还可以包括射频拉远单元(remote radio unit,RRU),用于通过馈线向该馈电电路传输电信号。可选地,该天线设备还可以包括在有源天线处理单元(active antenna unit,AAU)中,用于通过馈线向该AAU中的射频支路传输电信号。如图2所示为一种天线设备的示意性框图。
2、天线阵列
天线阵列是根据电磁波在空间相互干涉的原理,把某种基本天线(天线单元)按一定规律排列在一起组成的,也可以称为天线阵,例如,在移动通信系统中,作为基站天线的平板天线阵列。天线阵列采用何种形式的单元天线取决于工作频率、频带宽度、环境、制造成本等诸多其它因素。天线阵列的辐射场可以是各天线单元辐射场的矢量和,其特性取决于天线单元的型式、位置、排列方式及其激励幅度和相位。
3、功率放大器
功率放大器(也称为功放器),用于将发射的或接收的微弱射频信号进行放大,使信号成功反馈到天线并发射出去,或者,使接收机成功接收信号,从而实现更高质量、更远距离的通信。通常天线设备的馈电电路中连接多个功放器,该多个功放器的最大输出能力相同,例如,该最大输出能力可用额定功率表示。该多个功放器通过功率分配器连接天线阵列中的天线单元。当需要天线阵列满足某一副瓣要求时,需要降低部分天线单元的发射功率,从而需要降低部分功放的输出功率,在这种情况下,会导致该部分功放的功率损失,即其输出功率小于额定功率。
4、功率分配器
功率分配器(也称为功分器),可以用于实现信号功率的再分配和重新组合,如图3的(a)所示,其可以看作是一种简单的多端口网络电路结构。在不计算功分器的损失(含反射损失和传输损失)的情况下,假设功分器的输入信号端的输入功率为P 1,输出信号端的输出功率为P 2、P 3、P 4…P n,则有P 1=P 2+P 3+P 4+…P n(其中n为正整数)。以一分二的功分器为例,如图3的(b)中所示,功分器的输入功率为P 1,输出功率为P 2、P 3,如果输出功率P 2=P 3,则为等分功分器,如果输出功率P 2≠P 3,则是不等分功分器。
功率分配器可以将输入的信号功率(例如,该输入的信号功率可以是功放器的输出功率)分为至少两个信号功率,功率分配器也可以称为1分M(一个输入端口,M个输出端口)功率分配器,M为大于等于2的正整数。可以理解的是,当M大于2时,该1分M的功能可以由一个1分M功率分配器实现;或者,也可以由多个1分2、1分3功率分配器组合实现,例如,1分8的功能可以由2个1分3功率分配器和1个1分2功率分配器组合实现。功率分配器可通过传输线(微带线或带状线网络)来实现内部的功率分配,具体可以是T型结功分器或威尔金森功分器。
5、天线阵列的分析
天线阵列的分析是在已知分析确定天线阵列的辐射特性,包括天线阵列的方向图、半功率波瓣宽度、方向性系数、副瓣电平等,如下四个参数的情况下分析确定天线阵列的辐射特性,包括天线阵列的方向图、半功率波瓣宽度、方向性系数、副瓣电平等。
(1)单元总数;例如,直线阵的单元总数N,平面阵的单元总数M×N;
(2)单元在空间的分布;例如直线阵的单元间距d,平面阵的单元间距dx、dy。
(3)各单元的激励幅度分布;
(4)各单元的激励相位分布。
6、天线阵列的综合
天线阵列的综合则是其分析的逆问题,即在给定辐射特性的情况下综合出天线阵列的如上四个参数,使天线阵列的某些辐射特性满足给定的要求,例如,副瓣电平满足要求。常见的天线阵列的综合方法有切比雪夫综合法、泰勒综合法等,下面对泰勒综合法做简单的介绍。
(1)泰勒综合法
采用泰勒综合法设计的泰勒阵列,其方向图在靠近主瓣某个区域内的副瓣电平接近相等,随后单调地减小,有利于提高天线方向性。泰勒综合法是针对连续线源设计的一种方法,但可以根据抽样定理将其离散化。换言之,可用单元数足够多的离散阵列幅度分布来逼近连续线源的泰勒分布。
泰勒连续线源天线上的电流分布可以表示为:
Figure PCTCN2021139820-appb-000001
其中,S n(m)表示泰勒方向图函数,L为连续线源天线的长度,
Figure PCTCN2021139820-appb-000002
是前
Figure PCTCN2021139820-appb-000003
个接近相等的副瓣和以一定的规律衰减的副瓣的分界点。
以等间距d将泰勒连续线源电流(如图4的(a)所示)进行抽样,设共分为N-1段,则有N个节点(即N个单元),如图4的(b)中所示,I 1至I n分别表示1至N个单元的激励幅度。
若以阵列的中心为坐标原点,则各单元的位置表示为:
Figure PCTCN2021139820-appb-000004
离散后的泰勒阵列各单元的激励幅度可用如下公式表示:
Figure PCTCN2021139820-appb-000005
其中,
Figure PCTCN2021139820-appb-000006
泰勒综合法可以将副瓣电平抑制到-35dB,但是泰勒综合法采用了不等功率分配,即每个天线单元的发射功率不等,而在有源天线系统中,每个天线单元或每n个(n≤4)天线单元连接(通过功率分配器连接)一个功率放大器,每个功率放大器的额定功率相等,会导致馈电网络中功率放大器的功率使用不充分,即降低了天线设备的输出功率,导致了天线的最大发射功率的下降,影响天线的覆盖范围。例如,30dB泰勒抑制可以导致3.15dB的功率损失。
有鉴于此,本申请实施例提供一种天线副瓣的抑制方法。该天线包括天线阵列和馈电单元,该馈电单元用于通过N个功率放大器向该天线阵列馈电,该N个功率放大器包括N 1个额定功率为P 1的第一功率放大器,该方法通过将天线阵列中部分天线单元进行合路,连接该N 1个第一功率放大器中的一个,从而在一定角度的空间范围内抑制该天线的副瓣电平,同时实现较低的功率损失。
在介绍本申请实施例的方法之前,为了便于理解本申请实施例,做出以下说明。
在本申请中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请中示出的第一、第二以及各种数字编号(例如,“#1”、“#2”等)仅为描述方便,用于区分的对象,并不用来限制本申请实施例的范围。例如,区分不同的天线单元等。而不是用于描述特定的顺序或先后次序。应该理解这样描述的对象在适当情况下可以互换,以便能够描述本申请的实施例以外的方案。
图5是本申请实施例提供的一种天线副瓣的抑制方法的示意性流程图,该方法至少包括以下几个步骤。
S510,根据期望的副瓣电平生成该天线阵列的第一电流分布。
在一种可能的实现方式中,该第一电流分布为天线阵列中M个天线单元的离散电流分布,该M个天线单元关于阵列中心对称,M为正整数。M的取值可以根据经验或实际 需求确定,例如,M的取值为44,本申请实施例对天线阵列中天线单元的个数不作限定。
示例性地,该第一电流分布可以为泰勒电流分布(间距为0.4λ)。例如,期望将副瓣电平抑制到-30dB,则根据公式(3)得到的M=44时各单元的第一电流分布如表1和表2中的第一行所示。由于泰勒电流分布是对称的,表1和表2中只取电流分布的一半数据;若天线单元的数量是奇数,则进行全阵列计算即可。以下省略对相同情况的说明。
在另一种可能的实现方式中,该阵列天线对应连续线源的长度为L,L为大于0的常数,L的取值为已知;该天线阵列的有源通道数(功率放大器的数目)为N,N为大于等于2的正整数,该N个功率放大器的额定功率之和等于该天线阵列中天线单元的发射功率之和,或者说,假设该N个功率放大器全部用于向该天线阵列中的天线单元输出功率。该第一电流分布为该连续线源的电流分布,示例性地,该第一电流分布可以为泰勒连续线源电流分布,该第一电流分布如公式(1)中所示。
需要说明的是,为了方便描述与理解,在本申请中,功率放大器的额定功率、该天线阵列中天线单元的发射功率以及该功率放大器向该天线阵列中的天线单元输出的功率均指的是按照该功率放大器的额定功率归一化后的功率,例如,功率放大器的额定功率为1,则该天线阵列中天线单元的发射功率,以及该功率放大器向该天线阵列中的天线单元输出的功率的功率值在[0,1]范围内。
S520,根据该第一电流分布确定该天线阵列中的第一子阵和第二子阵。
具体地,若该第一电流分布为该M个天线单元的离散电流分布,则可以根据该第一电流分布生成第一功率分布;根据该第一功率分布确定该第一子阵和第二子阵。
其中,该第一功率分布包括该M个天线单元的第一发射功率,示例性地,该第一功率分布可以根据该第一电流分布中的电流值求平方确定。
根据该第一功率分布确定该一子阵包括:根据该第一功率分布确定该M个天线单元中的M 1个第一天线单元,由该第一天线单元组成该天线阵列中的该第一子阵。该第一天线单元对应的该第一发射功率大于等于第一阈值,该第一阈值的取值范围可以根据实际情况设计,例如,该第一阈值的取值范围为[0.4,0.6];该M 1个第一天线单元的该第一发射功率的和与该第一功率分配器的额定功率的差值的绝对值小于等于第一误差,例如,该第一误差的取值范围为[0.1,0.4]。
根据该第一功率分布确定该二子阵包括:根据该第一功率分布确定该M个天线单元中的M 2个第二天线单元,由该第二天线单元组成该天线阵列中的该第二子阵。该第二天线单元对应的该第一发射功率小于该第一阈值,且该第二天线单元的第一发射功率之和与功率放大器的额定功率的差值小于该第一误差。该第二天线单元的第一发射功率小于该第一阈值,即可以理解为该第二天线单元的发射功率与该第一功率放大器的额定功率相差较大,如果该第二天线单元中的每个天线单元分别连接一个第一功率放大器,该第一功率放大器的功率损失较大。将该第二子阵中的第二天线单元通过1分M 2功率分配器连接该第一功率放大器中的一个,可以减小该第一功率放大器的功率损失。
若该第一电流分布为该连续线源电流分布,则可以根据该第一电流分布确定该天线上的第一长度的天线;根据该第一长度的值确定该第一子阵和第二子阵。
具体地,该天线的泰勒连续线源电流分布在该第一长度上的积分等于第一功率值,该第一功率值为第一额定功率值与N 1的比值,该第一额定功率值为N 1个额定功率的第一功率放大器的额定功率之和。为了方便描述和理解,该第一额定功率值可以是归一化后的功 率值,即该第一功率值为1/N 1
若该第一长度的值大于第三阈值,在该第一长度的天线上设置M 3个该第二天线单元,由该第二天线单元组成该第二子阵,M 3的值可以由该第一长度和间距基数确定,该第三阈值可以根据实际情况确定,例如,该第三阈值为0.4λ;或者,若该第一长度的值小于第三阈值,在该第一长度的天线上设置M 1个该第一天线单元,该第一子阵包括该第一天线单元。
需要说明的是,为了方便计算,在本申请中,该天线的长度、该第一长度均指的是电长度,该电长度可以由物理长度和所传输的电磁波的波长确定。下文除非特别说明,否则下文提及的该天线上的某一个连续线源长度均指的是电长度。可以理解的是,与该天线的长度、该第一长度以及某一个连续线源长度作比较的阈值也均用电长度表示,例如,该第三阈值,以下省略对相同情况的说明。
根据本申请实施例的方法,可以得到一种天线阵列,该天线阵列可以包括该第一子阵和第二子阵,该第一子阵包括M 1个第一天线单元,该M 1个第一天线单元可以通过N个功率放大器中的一个第一功率放大器(该第一功率放大器通过1分M 1功率分配器连接该第一子阵)进行馈电;该第二子阵包括M 2个第二天线单元,该M 2个第二天线单元可以通过一个该第一功率放大器进行馈电(该第一功率放大器通过1分M 2功率分配器连接该第一子阵),该第二天线单元中的天线单元为需合路的天线单元,M 1,M 2,为正整数,且M 1≥1,M 2>M 1。通过将该第一子阵、第二子阵中的天线单元进行合路(连接1分M功率分配器)可以降低该天线阵列的功率损失。
可选地,根据该第一功率分布还可以确定该天线阵列中的第三子阵,该第三子阵中的包括M 3个第三天线单元,该第三子阵中的该第三天线单元的第一发射功率的最大值小于等于该第二子阵中的第二天线单元的第一发射功率的最小值,且M 3>M 2。或者说,该第一功率分布中还可以包括小于该第二子阵中第二天线单元对应的第一发射功率的功率值,且该小于该第二子阵中第二天线单元对应的第一发射功率的功率值之和与该第一功率放大器的额定功率的差值小于该第一误差,则由该功率值对应的天线单元组成该第三子阵。
可以理解的是,该第三子阵的几何中心相对于该第二子阵的几何中心,距离该天线阵列中心更远,或者说,该第三子阵中的距离该天线阵列中心最近的天线单元到该天线阵列中心的距离,大于该第二子阵中的距离该天线阵列中心最远的天线单元到该天线阵列中心的距离。该第二子阵的几何中心到该天线阵列中心的距离大于该第一子阵几何中心到该天线阵列中心的距离。
可选地,该N个功率放大器中还可以包括N 2个第二功率放大器,该第二功率放大器的额定功率P 2大于该额定功率P 1,根据该第一发射功率分布还可以确定该天线阵列中的第四子阵,该第四子阵包括M 4个第四天线单元,该第四天线单元对应的该第一发射功率的最小值大于等于该第一天线单元对应的该第一发射功率的最大值,该第四子阵的几何中心到该天线阵列中心的距离,小于该第一天线单元的几何中心到该天线阵列中心的距离,该M 4个第四天线单元的第一发射功率之和,与该第二功率放大器的额定功率的差值小于该第一误差,该第四天线单元通过1分M 4功率分配器连接该N 2个第二功率放大器中的一个,其中,M 4为正整数,N 2且M 4≥1。
需要说明的是,在本申请中,天线阵列中心可以指该天线的连续线源电流分布的最大值所对应的该天线上的位置。
可选地,该方法还可以包括S530,确定该第一天线单元和该第二天线单元的间距。
具体地,在一种可能的实现方式中,该第一天线单元的间距可以由第一缩放因子和间距基数确定,即通过第一缩放因子缩放该间距基数确定。其中,第一缩放因子的取值可以为额定功率P 1与该M 1个第一天线单元的所述第一发射功率之和的比值。通过该第一缩放因子缩放该间距基数可以在发射功率不变的情况下,提升单位口径下的功率密度,使得该第一天线单元的发射功率等于该功率放大器的额定功率。或者说在功率放大器额定功率一定的情况下,通过缩小天线的间距,可以等效的提升功率密度(即电流密度)。
该第二天线单元的间距可以由第二缩放因子和间距基数确定。其中,第二缩放因子的取值可以为额定功率P 1与该M 2个第二天线单元的所述第一发射功率之和的比值。可以理解,该第一缩放因子、第二缩放因子大于等于1。
可选地,若该第一天线单元以及该第二天线单元的间距大于第二阈值,还可以将该第一天线单元中大于该第二阈值的间距调整为小于等于该二阈值,通过调整该第一天线单元的间距可以控制天线的扫描栅瓣,即当天线间距大于该第二阈值时,大扫描角度下天线的副瓣会抬升,天线的性能会下降。经过调整后,该第一天线单元中可能包括等间距分布的天线单元和不等间距的天线单元。
该第三天线单元和第四天线单元的间距分布和该第一天线单元、第二天线单元类似。
在另一种可能的实现方式中,该天线阵列中的天线单元还可以等间距分布,即该第一子阵、第二子阵、第三子阵以及第四子阵中的天线单元均为等间距分布且间距相等。例如,间距为间距基数。通过将天线阵列中的天线单元设置相等的间距,可以使得所有天线单元的设计和加工可以归一,从而降低技术开发成本和加工成本。
后续,还可以根据该第一子阵、第二子阵、第三子阵以及第四子阵中天线单元的间距,按照泰勒电流分布对每个子阵中的天线单元的功率(实际辐射功率)进行分配,确定每个天线单元的发射功率。且对于某个子阵,如果其包括至少两个天线单元,例如,第一单元和第二单元,若该第一天线单元的几何中心到该天线阵列中心的距离大于该第二单元到该天线阵列中心的距离,则该第一单元的功率小于该第二单元的功率。对于连接该子阵的一个功率分配器,其连接该第一单元的传输线的线宽小于连接该第二单元的传输线的线宽。
下面结合图6和图7详细介绍本申请实施例提供的天线副瓣的抑制方法,该天线包括天线阵列和馈电单元,该馈电单元用于通过N个功率放大器向该天线阵列馈电,该N个功率放大器包括N 1个第一功率放大器,该一功率放大器的额定功率为P 1
图6是本申请实施例提供的一种天线副瓣的抑制方法的示意性流程图,图6所示的方法中该第一电流分布为天线阵列中M个天线单元的离散电流分布,该方法至少包括以下几个步骤。
S610,根据期望的副瓣电平生成第一电流分布I 1
该第一电流分布为天线阵列中M个天线单元的离散电流分布,该M个天线单元关于天线阵列中心对称,M为正整数。M的取值可以根据经验或实际需求确定,本申请实施例对天线阵列中天线单元的个数不作限定。
为了方便说明,本申请实施例中M的取值为44,并且首先假设该44个天线单元间距相等为0.4λ(间距基数)。应理解,该天线单元数仅为示例,该间距基数仅是为了后续确定该天线单元的实际间距,且该间距基数可以为其他,该天线单元数以及该间距基数不应构成对本申请技术方案的任何限制。
示例性地,该第一电流分布可以为泰勒电流分布(间距为0.4λ)。例如,期望将副瓣电平抑制到-30dB,则根据公式(3)得到的各单元的第一电流分布如表1和表2中的第一行所示。由于泰勒电流分布是对称的,表1和表2中只取电流分布的一半数据;若天线单元的数量是奇数,则进行全阵列计算即可。
S620,根据该第一电流分布确定第一功率分布P 1
该第一功率分布为该M个天线单元的第一发射功率分布,该第一发射功率可以理解为根据该第一电流分布确定的该天线阵列中各天线单元的发射功率的理论值。或者说,该第一发射功率可以理解为,当每个天线单元分别连接一个额定功率为P的功率放大器时,该每个天线单元的发射功率占该额定功率P的比例。示例性地,第一功率分布可以通过该第一电流分布中的电流值求平方得到。
该M个天线单元的第一功率分布如表1和表2中的第二行所示;或者,该第一功率分布如表3和表4中的第二行所示。表3和表4所示的该第一功率分布与表1和表2中所示的该第一功率分配的区别在于:表3和表4所示的该第一功率分布中天线单元站该第一功率放大器额定功率的比例更小。从表中可以看出,各单元的发射功率从右向左(天线阵列中心位置至边缘位置)依次递减,且天线阵列中心位置的天线单元的第一发射功率为最大。即若每个天线单元连接相同额定功率的功率放大器,则中心位置的阵列单元连接的功率放大器的功率损失最小;而从天线阵列的中心位置到边缘位置,各天线单元连接的功率放大器的功率损失依次增加。
S630,根据该第一功率分布以及合路准则确定该天线阵列中的第一子阵和第二子阵。
其中,合路准则可以包括:相邻n个天线单元的第一功率和与第一功率放大器的额定功率的差值小于该第一误差,该第一误差的说明参考S520,在此不再赘述。
具体地,可以根据该第一功率分布以及合路准则确定M个天线单元中的第一天线单元,该第一天线单元中的每个天线单元的发射功率大于等于第一阈值,该第一阈值的取值可以根据实际情况确定,例如,如表1和表2中所示,可以将第一发射功率大于等于0.60的天线单元中的天线单元确定为该第一天线单元;再如,如表3和表4中所示,将第一发射功率大于等于0.32的天线单元中的天线单元确定为该第一天线单元。且通过合路准则可以确定该第一天线单元的数目,该第一天线单元与该第一功率放大器的额定功率的差值小于第一误差。
例如,如表1和表2中所示的天线阵列中,该第一天线单元的数目可以为1,例如,“9”天线单元的第一发射功率为0.62,该天线单元的第一发射功率大于该第一阈值,且与该第一功率放大器的额定功率的差值小于该第一误差,则由该“9”天线单元构成该第一子阵。
再如,如表3和表4中所示天线阵列中,该第一天线单元的数目也可以大于1,例如,“8”天线单元的第一发射功率为0.34,该天线单元的第一发射功率大于该第一阈值,且“8”天线单元与相邻的“7”天线单元的第一发射功率的和,与该第一功率放大器的额定功率的差值小于该第一误差。则由该“8”天线单元和“7”天线单元构成该第一子阵。
还可以根据该第一功率分布以及合路准则确定M个天线单元中的第二天线单元,该第一天线单元中的每个天线单元的发射功率小于该第一阈值。
例如,如表1和表2中所示的天线阵列,“10”天线单元的第一发射功率为0.55,其小于该第一阈值,且“10”天线单元与相邻的“11”天线单元的第一发射功率的和,与该第 一功率放大器的额定功率的差值小于该第一误差,则由该“10”天线单元和“11”天线单元构成该第二子阵。
再如,如表3和表4中所示的天线阵列,“9”天线单元的第一发射功率为0.31,该天线单元的第一发射功率小于该第一阈值,且“9”天线单元与相邻的“10”、“11”天线单元的第一发射功率的和,与该第一功率放大器的额定功率的差值小于该第一误差。则由该“9”天线单元、“10”天线单元以及“11”天线单元构成该第二子阵。
通过将该天线阵列中的M 1个天线单元连接一个该第一功率放大器,以及将M 2个第二天线单元连接一个该第一功率放大器可以减少该天线设备中的功率损失,其中,M 1,M 2,为正整数,且M 1≥1,M 2>M 1
在本申请中,M 1=1时,该第一天线单元通过传输线连接该第一功率放大器,或者说,本申请中,1分M 1功率分配器,当M 1为1时,该1分M 1功率分配器指的是传输线。
可选地,通过该第一功率分布还可以确定该天线阵列中的第三子阵,该第三子阵中的包括M 3个第三天线单元,该M 3个第三天线单元中的天线单元的第一发射功率的最大值小于等于该M 2个第二天线单元中天线单元的第一发射功率的最小值,该第二天线单元通过1分M 3功率分配器连接该N 1个第一功率放大器中的一个,该M 3个第一天线单元的第一发射功率之和,与该第一功率放大器的额定功率的差值小于该第一误差,其中,M 3为正整数,且M 3>M 2
例如,如表1和表2中所示的天线阵列,“12”天线单元的第一发射功率为0.48,其小于第二子阵中的“11”天线单元的第一发射功率,且“12”天线单元与相邻的“13”天线单元,以及“14”天线单元的第一发射功率的和,与该第一功率放大器的额定功率的差值小于该第一误差,则由该“12”天线单元、“13”天线单元以及“14”天线单元构成该第二子阵。由该第一功率分布可知,该第三子阵的几何中心到该天线阵列中心的距离,大于该第二子阵的几何中心到该天线阵列中心的距离。
根据本申请实施例的方法,可以得到一种天线阵列,该天线阵列可以包括该第一子阵,该第二子阵和第三子阵,该第三子阵包括M 3个第三天线单元,该第三子阵中的天线单元可以通过1分M 3功率分配器连接一个第一功率放大器,且M 3>M 2。通过确定该第一功率分布确定了该天线阵列中的该第一子阵,第二子阵以及第三子阵,将该第一子阵、第二子阵以及第三子阵中的天线单元进行合路可以降低该天线设备的功率损失。
可以理解的是,该阵列天线还包括与该第一子阵,第二子阵以及第三子阵对称分布或近似对称分布的子阵,为了简便,省略了对对称子阵的相关描述。
可选地,该N个功率放大器还包括N 2个第二功率放大器,该第二功率放大器的额定功率大于该第一功率分配器的额定功率,通过该第一功率分布还可以确定该天线阵列中的第四子阵,该第四子阵包括M 4个第四天线单元,该第四天线单元对应的该第一发射功率的最小值大于等于该第一天线单元对应的该第一发射功率的最大值,该第四子阵的几何中心到该天线阵列中心的距离,小于该第一天线单元的几何中心到该天线阵列中心的距离,该M 4个第四天线单元的第一发射功率之和,与该第二功率放大器的额定功率的差值小于该第一误差,该第四天线单元通过1分M 4功率分配器连接该N 2个第二功率放大器中的一个,其中,M 4为正整数,N 2且M 4≥1。
例如,如表1和表2中所示的天线阵列,“8”天线单元的第一发射功率为0.69,其大于第一子阵中的“9”天线单元的第一发射功率,且“8”天线单元的第一发射功率,与 该第一功率放大器的额定功率的差值小于该第一误差,则由该“8”天线单元构成该第四子阵。由该第一功率分布可知,该第四子阵的几何中心到该天线阵列中心的距离,小于该第一子阵的几何中心到该天线阵列中心的距离。
可选地,该合路准则还可以包括:合路的天线单元的数量小于等于阈值,例如,该阈值的取值可以为8,避免驱动的中边缘天线单元数过多,从而影响阵列扫描或产生栅瓣。
可选地,该方法还可以包括S640,根据该第一功率分布确定第四功率分布P 4,该第四功率分布包括各子阵合路后的发射功率之和,如表1中第三行所示为M=44时第四功率分布。
可选地,该方法还可以包括S650,将该第四功率分布P 4进行归一化得到第五功率分布P 5
将各子阵中天线单元合路后其功率值可能大于1,即超过功率放大器的额定功率,可以将该第四功率分布进行归一化,以使得第四功率分布中功率值转换到[0,1]的范围内。例如,该归一化方法为:将第二功率分布中的大于1的最大功率值缩小为1,并确定缩放比例,根据该缩放比例将第二功率分布中的其他值进行同比例缩放,得到该第二功率归一化后的第三功率分布。
应理解,上述归一化方法仅为示例,该归一化方法还可以是其他方法,例如,极差法,标准化法等等,只要能够将第二功率分布中功率值转换到[0,1]的范围即可。
可选地,该方法还可以包括S660,根据第五功率分布P 5确定各子阵中天线单元的间距(实际间距)。
根据第五功率分布确定各子阵中天线单元的实际间距可以分为两种情况。
情况一,各子阵中天线单元的间距满足第一间距分布,该第一间距分布由各子阵对应的缩放因子和间距基数确定。
具体地,如图6的(b)中所示S651,根据归一化后的第四功率分布(第五功率分布)确定各子阵对应的缩放因子α。
该缩放因子用于对上述间距基数(0.4λ)进行缩放以确定实际的天线单元间距。由上述可知,该第五功率分布包括各子阵中天线单元合路后的第一发射功率的和。其中,各子阵对应的缩放因子的取值可以分别为该第一功率放大器的额定功率与各子阵中天线单元合路后的第一发射功率的和之和的比值,例如,该α 1为该额定功率P 1与该M 1个第一天线单元的该第一发射功率之和的比值,该第二间距为间距基数与第二缩放因子α 2的乘积,该α 2为该额定功率P 1与该M 2个第二天线单元的该第一发射功率之和的比值。在表1和表2中所示的天线阵列中,各子阵对应的缩放因子α如第五行所示。
S652,根据各子阵对应的缩放因子α确定各子阵中天线单元的实际间距ζ 1
示例性地,缩放后的各子阵中天线单元的实际间距为其对应的缩放因子与间距基数的乘积。在表1和表2中所示的天线阵列中,缩放后的各子阵的天线单元间距如第六行所示。
可选地,该方法还可以包括S653,重构该第一间距分布。
经过缩放后的各子阵中的天线单元实际间距可能会大于第二阈值,例如,该第二阈值为0.5λ。在阵列扫描的时,较大的间距可能会导致天线的栅瓣增加,对该缩放后的实际天线间距进行重构可以避免该情况。
重构该第一间距分布可以包括:调整第一间距分布中的第一间距值使其小于等于该第二阈值(第二间距值的一例),在表1和表2中所示的天线阵列中,调整后的第一间距分 布ζ 2如第七行所示。
可选地,该方法还可以包括S654,根据调整后的第一间距分布确定第二发射功率分布P M
由于根据缩放因子对第一间距分布进行了调整,相应地,可以根据调整后的间距对第五功率分布中各天线单元对应的合路后的功率(第一功率分配器的额定功率)进行调整,即确定第二发射功率分布。该第二发射功率分布包括该第一功率分配器的额定功率(归一化后为1),和/或该第一功率分配器的额定功率与第三缩放因子α 3的乘积,该α 3为该第二间距值与该第一间距值的比值。可以理解的是,若没有对某个子阵中的单元的间距进行调整,该子阵合路后的功率值发射功率保持不变,如对某个子阵中的天线单元的间距进行了调整,则该子阵合路后的功率为该第一功率分配器的额定功率与该第三缩放因子α 3的乘积,在表1和表2中所示的天线阵列中,该第二发射功率分布如第八行所示。
可选地,该方法还可以包括S655,根据第二发射功率分布P M以及该第一间距分布确定各子阵中天线单元的第一辐射功率分布P m
该第一辐射功率分布包括各天线单元的辐射功率的分布,各子阵中的天线单元的第一辐射功率可以满足泰勒分布。对于某个子阵,若其包括至少两个天线单元,则该子阵中距离天线阵列中心的距离较远的天线单元的该第一辐射功率小于,该子阵中距离天线阵列中心的距离较近的天线单元,应理解,天线单元到天线阵列中心的距离可以是该天线单元的几何中心到该天线阵列中心的距离。
例如,该第二子阵包括第一单元和第二单元,且该第一单元的几何中心到该天线阵列中心的距离大于该第二单元的几何中心到该天线阵列中心的距离,则该第一单元的该第一辐射功率小于该第二单元的该第一辐射功率。
情况二,确定各子阵中天线单元满足第二间距分布ζ 3,且该第二间距分布中的间距值相等。
可选地,该方法还可以包括根据第二发射功率分布P M以及该第二间距分布确定各子阵中天线单元的第二辐射功率分布P m。各子阵中的天线单元的第二辐射功率可以满足泰勒分布。同样,对于某个子阵,该子阵中距离天线阵列中心的距离较远的天线单元的该第一辐射功率小于,该子阵中距离天线阵列中心的距离较近的天线单元。
根据表1和表2中得到的各天线单元的第一辐射功率分布可知,该天线阵列的功率损失为0.18dB,即该天线阵列中功率放大器的功率损失为0.18dB,或者说,在满足一定副瓣条件下,该天线设备最大输出功率能力下降0.18dB。对该天线阵列采用90°波宽的单元进行赋形,赋形的方向图如图8所示,可以看出,本申请实施例副瓣电平和泰勒抑制电平相近,且副瓣电平平均值低于电流均匀分布时的副瓣电平平均值。只是在±0~±60°范围内,起了5个较高的副瓣,这是因为:采用功率的倒数修正间距,会导致天线口径扩大,所以电流分布与泰勒分布会有一些偏差,从而导致波束的部分副瓣抬升。
或者,根据表1和表2中各天线单元的第二辐射功率分布可知,该天线阵列的功率损失为0.64dB。同样,对该天线阵列采用90°波宽的单元进行赋形,赋形的方向图和泰勒方向图接近,且副瓣电平平均值低于泰勒电流分布的副瓣电平平均值。
可选地,若各子阵中天线单元数量大于第四阈值,可以采用移相单元,增强边缘的扫描能力;该第四阈值可以根据实际经验确定,例如,该第四阈值取值为4。
上述提及的移相单元可以是延迟线、希夫曼(Schiffman)移相器或其他产生相位差的 结构或器件,本申请对此并不做限制。
可选地,该方法还可以包括S670,根据各子阵中天线单元第一间距分布确定各天线单元的物理间距。该第一间距分布中的间距为电长度,该物理间距即为物理长度,根据电长度确定物理长度的方法可参考现有相关方法。
表1
Figure PCTCN2021139820-appb-000007
其中,第一行所示为天线单元的编号,且编号“1”的天线单元几何中心到天线阵列中心的距离最小。
表2
Figure PCTCN2021139820-appb-000008
表2中每行数据的含义和表1中相同(见表1中左起第一列所示),第一行所示为天线单元的编号,且编号“22”的天线单元几何中心到天线阵列中心的距离最大。
表3
Figure PCTCN2021139820-appb-000009
其中,第一行所示为天线单元的编号,且编号“1”的天线单元的几何中心到天线阵列中心的距离最小。
表4
Figure PCTCN2021139820-appb-000010
表4中每行数据的含义和表3中相同(见表3中左起第一列所示),第一行所示为天线单元的编号,且编号“22”的天线单元几何中心到天线阵列中心的距离最大。
图7是本申请实施例提供的另一种天线副瓣的抑制方法的示意性流程图,该方法中假设阵列天线的长度为L(电长度),L为大于0的常数,阵列天线的有源通道数(第一功率放大器的数目)为N,N为大于等于2的正整数,该N个第一功率放大器的额定功率之和等于该天线上天线单元的发射功率之和,或者说,假设该N个第一功率放大器全部用于向该天线中的天线阵列输出功率。取天线阵列的左或右半部分(对应L/2长度的天线)来说明本申请实施例的方法,该方法至少包括以下几个步骤。
S710,根据第一电流分布以及第一功率值确定第一长度的天线。
具体地,该第一电流分布为该天线的泰勒连续线源电流分布,该第一电流分布可以根据公式(1)确定;假设该N个第一功率放大器的额定功率之和为1(归一化后),功率损失为0,该第一功率值表示该N个第一功率放大器中的每个功率放大器的输出功率值,该第一功率值为:1/N。
根据第一电流分布以及第一功率值确定第一长度的天线包括:确定该第一长度,使得该第一电流分布函数在该第一长度上的积分等于该第一功率值。即可以根据公式(3)确定该第一长度:
Figure PCTCN2021139820-appb-000011
其中,L 2与L 1的差值可以表示该第一长度,0≤L 1<L,0<L 2<L。可以理解的是,该第一长度的天线的数目等于功率放大器的数目。为了方便说明,首次确定该第一长度时,该第一长度的起始位置可以为天线边缘位置。
根据公式(3),以及该第一电流分布可知,该第一长度的值从天线边缘位置至天线中心位置依次递减。且该第一长度的值包括至少一个第一值、和至少一个第二值,该第一值大于等于第五阈值(例如,0.6λ),该第二值小于该第五阈值。
可选地,该第一长度的值还可以包括第三值,该第三值大于等于该第五阈值(例如,0.6λ)且大于该第一值。
S720,根据该第一长度的值确定第一子阵和第二子阵。
根据该第一长度的值确定第一子阵,第二子阵包括:根据该第一长度的值确定该第一子阵、第二子阵中的天线单元数。
具体地,若该第一长度的值包括第一值,在该第一长度对应的天线上可以设置M 2个第二天线单元,该M 2个第二天线单元为第二子阵中的天线单元,该M 2个第二天线单元等间距分布,该M 2个第二天线单元为需合路的天线单元,M 2为大于等于2的正整数,示例性地,M 2的取值可以为:ceil(第一长度/间距基数),ceil(*)表示向上取整函数;若该第一长度的值包括该第二值,该第一长度对应的天线上可以设置一个第一天线单元,由M 1个该第一天线单元组成第一子阵,M 1为正整数。
根据本申请实施例的方法,可以得到一种天线阵列,该天线阵列可以包括该第一子阵和该第二子阵,该第一子阵包括M 1第一天线单元,该第一天线单元无需与其他天线单元合路,即该第一天线单元中的每个天线单元连接馈电单元中的一个功率放大器;该第二子阵包括M 2个第二天线单元,该第二天线单元中的天线单元为需合路的天线单元,即该第二天线单元可以通过1分M 2功率分配器连接一个功率放大器,M 1,M 2为正整数。通过确定该第一长度的值确定了该天线阵列中的该第一子阵和第二子阵,将该第二子阵中的第二天线单元进行合路可以降低该天线阵列的功率损失。表5中所示为N的取值等于24时的天线单元分布,该天线阵列的功率损失理论值为0。对该天线阵列采用90°波宽的单元进行赋形,赋形的方向图和泰勒方向图接近,且副瓣电平平均值低于泰勒电流分布时的副瓣电平平均值。
可选地,还可以根据该第一长度的值确定第三子阵中的第二天线单元数。
根据该第一长度的值确定第三子阵中的第二天线单元数的过程可以参考确定该第二子阵中该第二天线单元的数目。该第一长度对应的天线上可以设置M 3个第二天线单元,该M 3个第二天线单元为第三子阵中的天线单元,该M 3个第二天线单元同样为需合路的 天线单元,M 3为大于M 2的正整数。
根据本申请实施例的方法,可以得到一种天线阵列,该天线阵列可以包括该第一子阵,该第二子阵和该第三子阵,该第一天线单元无需与其他天线单元合路,即该第一天线单元中的每个天线单元连接馈电单元中的一个功率放大器;该第二子阵包括M 2个第二天线单元,该第三子阵包括M 3个第二天线单元,该第二天线单元中的天线单元为需合路的天线单元,即该第二天线单元可以通过1分M功率分配器连接一个功率放大器,且M 3>M 2,M 1,M 2,M 3为正整数。通过将该第二子阵以及第三子阵中的天线单元进行合路可以降低该天线阵列的功率损失。
可选地,若该第二天线单元数量大于该第四阈值,可以采用移相单元,增强边缘的扫描能力;该第四阈值可以根据实际经验确定,例如,该第四阈值取值为4。
可选地,该方法还可以包括S730,根据该第一长度确定第二长度。
该第二长度的天线与该第一长度的天线起始位置相同,该连续线源电流分布在该第二长度上的积分等于第二功率值,该第二功率值小于该第一功率值。例如,该第二功率值由第一功率值和损失系数确定,该损失系数的取值范围可以为(0,1),即功率分配器存在较小的功率损失。
具体地,当该第二子阵中的M 2的值大于第五阈值时,确定该第二长度,使得该连续线源电流分布在该第二长度上的积分等于该第二功率值,接着在该第二长度上设置该第二天线单元。或者说,该第二长度用于重新确定该第二子阵中的第二天线单元的数目,使得该第二子阵中第二天线单元的数目小于该第五阈值,从而避免驱动的天线单元数较多。
可选地,当该第一长度与,K倍间距基数之差大于第二误差时,确定该第二长度,使得该连续线源电流分布在该第二长度上的积分等于该第二功率值,接着在该第二长度上设置该第二天线单元。其中,K正整数。该第二误差例如为±0.1λ~0.2λ。该第一长度与间距基数的整数倍大于第二误差可以理解为,在该第一长度上设置等间距的第二天线单元,不会使得该第二天线单元的间距过大或过小(间距基数±误差)。例如,该间距基数为0.4λ,如果该第二长度为0.6λ,在该第一长度上设置一个天线单元(第一天线单元)其间距较大(大于间距基数+0.2λ),会导致副瓣抬升;设置一个天线单元其间距较小(小于间距基数-0.1λ),会导致单元间耦合太强。
通过确定该第二长度,可以使得该第一长度接近间距基数的整数倍,从而可以避免该第二天线单元的间距过小,或第一天线单元的间距过大,从而增强扫描范围或避免单元间耦合。该步骤可以理解为对表5中第二子阵中对应的天线单元的数目进行修正,修正后的第二子阵包括的天线单元数如表6(天线阵列中对称的一半天线单元的数据)中所示。
进一步地,该方法还可以包括S740,确定该第二子阵和/或该第三子阵中各天线单元的功率分布(辐射功率分布)。
具体地,根据第二子阵、第三子阵中的第二天线单元的功率和为该第一功率值或第二功率值,按照泰勒电流分布进行功率分配,得到第二子阵、该第三子阵中各天线单元的功率分配。该第二子阵、该第三子阵中各天线单元的辐射功率分布,可以表示连接该第二天线单元的功率分配器的每个输出端口的功率分布。
可选地,若该第二子阵、该第三子阵中天线单元可以通过移相单元连接功率分配器。
表5
Figure PCTCN2021139820-appb-000012
表6
Figure PCTCN2021139820-appb-000013
Figure PCTCN2021139820-appb-000014
以上结合图5至图8介绍了本申请实施例提供的天线副瓣的抑制方法,以下结合图9介绍本申请提供天线设备。
如图9为本申请实施例提供的天线设备的示意性框图。该天线设备包括一个天线阵列,该天线阵列可以包括该第一子阵和第二子阵,该第一子阵包括M 1个第一天线单元,该M 1个第一天线单元可以通过N个功率放大器中的一个第一功率放大器(该第一功率放大器通过1分M 1功率分配器连接该第一子阵)进行馈电;该第二子阵包括M 2个第二天线单元,该M 2个第二天线单元可以通过一个该第一功率放大器进行馈电(该第一功率放大器通过1分M 2功率分配器连接该第一子阵),该第二天线单元中的天线单元为需合路的天线单元,M 1,M 2,为正整数,且M 1≥1,M 2>M 1。通过将该第一子阵、第二子阵中的天线单元进行合路(连接1分M功率分配器)可以降低该天线阵列的功率损失。
可以理解的是,以上1分M功率分配器连接该一个功率放大器。该1分M的功能也可以由多个1分m功率分配器组合实现。
可选地,该天线阵列中还包括第三子阵,该第三子阵中的包括M 3个第三天线单元,该第三子阵中的该第三天线单元的第一发射功率的最大值小于等于该第二子阵中的第二天线单元的第一发射功率的最小值,且M 3>M 2。或者说,该第一功率分布中还可以包括小于该第二子阵中第二天线单元对应的第一发射功率的功率值,且该小于该第二子阵中第二天线单元对应的第一发射功率的功率值之和与该第一功率放大器的额定功率的差值小于该第一误差,则由该功率值对应的天线单元组成该第三子阵。
可以理解的是,该第三子阵的几何中心相对于该第二子阵的几何中心,距离该天线阵列中心更远,或者说,该第三子阵中的距离该天线阵列中心最近的天线单元到该天线阵列中心的距离,大于该第二子阵中的距离该天线阵列中心最远的天线单元到该天线阵列中心的距离。该第二子阵的几何中心到该天线阵列中心的距离大于该第一子阵几何中心到该天线阵列中心的距离。
可选地,该N个功率放大器中还可以包括N 2个第二功率放大器,该第二功率放大器的额定功率P 2大于该额定功率P 1,该天线阵列中还可以包括第四子阵,该第四子阵包括M 4个第四天线单元,该第四天线单元对应的该第一发射功率的最小值大于等于该第一天线单元对应的该第一发射功率的最大值,该第四子阵的几何中心到该天线阵列中心的距离,小于该第一天线单元的几何中心到该天线阵列中心的距离,该M 4个第四天线单元的第一发射功率之和,与该第二功率放大器的额定功率的差值小于该第一误差,该第四天线单元通过1分M 4功率分配器连接该N 2个第二功率放大器中的一个,其中,M 4为正整数,N 2且M 4≥1。
需要说明的是,在本申请中,天线阵列中心可以指该天线的连续线源电流分布的最大值所对应的该天线上的位置。
该天线阵列中各子阵的天线单元满足第一间距分布或第二间距分布,该第一间距分布和该第二间距分布可参考方法中的描述,在此不再赘述。
在该天线阵列中,对于某个子阵,若其包括至少两个天线单元,且通过1分M功率分配器连接该至少两个天线单元,则该子阵中距离天线阵列中心的距离较远的天线单元对应的该1分M功率器中传输线的线宽小于,该子阵中距离天线阵列中心的距离较近的天线单元对应的该1分M功率器中传输线的线宽,应理解,天线单元到天线阵列中心的距离可以是该天线单元的几何中心到该天线阵列中心的距离。
例如,该第二子阵包括第一单元和第二单元,且该第二子阵通过1分M 2功率分配器连接该第一功率放大器,该第一单元的几何中心到该天线阵列中心的距离大于该第二单元的几何中心到该天线阵列中心的距离,则该1分M 2功率分配器中连接该第一单元的传输线的线宽小于连接该第二单元的传输线的线宽。
该天线设备中功率放大器可以通过相移单元连接发射通道或接收通道,分别如图9的(a)和图9的(b)中所示。或者,该天线设备中部分功率放大器可以通过相移单元连接发射通道,部分连接接收通道,本申请对此不做限定。
该天线阵列还包括馈电网络,该馈电网络的结构可以看作由1分M功率分配器按照树形拓扑结构集合在一起,M为大于等于2的正整数。该馈电网络用于向该天线阵列馈电。该馈电网络中的功率放大器的额定功率相同。可选地,该1分N功率分配器的输出端还可以连接移相单元。
应理解,该馈电网络中的功率放大器的额定功率相同仅是本申请实施例的一种应用场景,并不构成对本申请的限定,例如,该馈电网络中的全部或部分功率分配器的额定功率可以在一定的范围内波动。
本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种天线副瓣的抑制方法,其特征在于,所述天线包括天线阵列和馈电单元,所述馈电单元用于通过N个功率放大器向所述天线阵列馈电,所述N个功率放大器包括N 1个第一功率放大器,所述一功率放大器的额定功率为P 1,所述方法包括:
    根据期望的副瓣电平生成所述天线阵列的第一电流分布,所述第一电流分布为所述天线阵列中M个天线单元的离散电流分布,或者,所述第一电流分布为所述天线阵列对应的连续线源电流分布;
    根据所述第一电流分布确定所述天线阵列中的第一子阵和第二子阵,所述第一子阵包括M 1个第一天线单元,所述M 1个第一天线单元中每个天线单元的第一发射功率大于第一阈值,所述第二子阵包括M 2个第二天线单元,所述M 2个第二天线单元中的每个天线单元的第一发射功率小于等于所述第一阈值,所述第一天线单元通过1分M 1功率分配器连接所述N 1个第一功率放大器中的一个,所述第二天线单元通过1分M 2功率分配器连接所述N 1个第一功率放大器中的一个,所述M 1个第一天线单元的第一发射功率之和,与所述额定功率P 1的差值小于第一误差,所述M 2个第二天线单元的第一发射功率之和,与所述额定功率P 1的差值小于第一误差,所述第一发射功率由所述第一电流分布确定,其中,M 1,M 2,N,N 1为正整数,且M 1≥1,M 2>M 1,N≥N 1
  2. 根据权利要求1所述的方法,其特征在于,所述在根据所述第一电流分布确定所述天线阵列中的第一子阵和第二子阵之前,所述方法还包括:
    根据所述第一电流分布确定第一发射功率分布,所述第一电流分布为所述天线阵列中M个天线单元的离散电流分布,所述第一发射功率分布包括所述M个天线单元的第一发射功率,所述第一发射功率的值与所述离散电流分布中的电流值一一对应。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    根据所述第一发射功率分布确定第一间距分布,所述第一间距分布包括所述M 1个第一天线单元中每个天线单元的第一间距,以及所述M 2个第二天线单元中每个天线单元的的第二间距;
    其中,所述第一间距为间距基数与第一缩放因子α 1的乘积,所述α 1为所述额定功率P 1与所述M 1个第一天线单元的所述第一发射功率之和的比值,所述第二间距为间距基数与第二缩放因子α 2的乘积,所述α 2为所述额定功率P 1与所述M 2个第二天线单元的所述第一发射功率之和的比值。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    若所述第一间距分布中第三间距大于第二阈值,将所述第三间距调整为第四间距,所述第四间距小于等于所述第二阈值,所述第三间距为所述第一间距分布中的任一间距。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    根据所述第一间距分布确定第二发射功率分布,所述第二发射功率分布包括所述额定功率P 1,和/或所述额定功率P 1与第三缩放因子α 3的乘积,所述α 3为所述第四间距与所述第三间距的比值。
  6. 根据权利要求1所述的方法,其特征在于,所述第一电流分布为所述天线阵列对应的连续线源电流分布,所述N 1个第一功率放大器的额定功率之和等于所述天线上天线 单元的发射功率之和,N 1=N,所述根据所述第一电流分布确定所述天线阵列中的第一子阵和第二子阵,包括:
    确定所述天线中上的第一长度的天线,所述连续线源电流分布在所述第一长度上的积分等于第一功率值,所述第一功率值为第一额定功率值与N 1的比值,所述第一额定功率值为N 1个额定功率的第一功率放大器的额定功率之和;
    根据所述第一长度的值确定所述天线阵列中的第一子阵和第二子阵。
  7. 根据权利要求6所述的方法,其特征在于,根据所述第一长度的值确定所述天线阵列中的第一子阵和第二子阵包括:
    若所述第一长度的值大于第三阈值,在所述第一长度的天线上设置M 2个所述第二天线单元,所述第二子阵包括所述M 2个第二天线单元,M 2的值由所述第一长度的值和间距基数确定;或者,
    若所述第一长度的值小于等于第三阈值,在所述第一长度的天线上设置M 1个所述第一天线单元,所述第一子阵包括所述M 1个第一天线单元。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    根据所述M 2的值确定第二长度;
    在所述天线中所述第二长度的天线上设置所述第二子阵,所述第二长度的值小于所述第一长度的值。
  9. 根据权利要求8所述的方法,其特征在于,根据所述M 2的值确定第二长度包括:
    若所述M 2的值大于第四阈值,确定所述第二长度的天线与所述第一长度的天线起始位置相同,所述连续线源电流分布在所述第二长度上的积分等于第二功率值,所述第二功率值小于所述第一功率值。
  10. 根据权利要求2至5中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一发射功率分布确定所述天线阵列中的第三子阵,所述第三子阵包括M 3个第三天线单元,所述M 3个第三天线单元中的天线单元的第一发射功率的最大值小于等于所述M 2个第二天线单元中天线单元的第一发射功率的最小值,所述M 3个第三子阵的几何中心到所述天线阵列中心的距离,大于所述第二子阵的几何中心到所述天线阵列中心的距离,所述第二天线单元通过1分M 3功率分配器连接所述N 1个第一功率放大器中的一个,所述M 3个第一天线单元的第一发射功率之和,与所述第一功率放大器的额定功率的差值小于所述第一误差,其中,M 3为正整数,且M 3>M 2
  11. 根据权利要求2至5中任一项所述的方法,其特征在于,所述N个功率放大器还包括N 2个第二功率放大器,所述第二功率放大器的额定功率P 2大于所述额定功率P 1,所述方法还包括:
    根据所述第一发射功率分布确定所述天线阵列中的第四子阵,所述第四子阵包括M 4个第四天线单元,所述第四天线单元对应的所述第一发射功率的最小值大于等于所述第一天线单元对应的所述第一发射功率的最大值,所述第四子阵的几何中心到所述天线阵列中心的距离,小于所述第一天线单元的几何中心到所述天线阵列中心的距离,所述M 4个第四天线单元的第一发射功率之和,与所述第二功率放大器的额定功率的差值小于所述第一误差,所述第四天线单元通过1分M 4功率分配器连接所述N 2个第二功率放大器中的一个,其中,M 4为正整数,N 2且M 4≥1。
  12. 根据权利要求11所述的方法,其特征在于,所述第四天线单元的数目等于所述 第一天线单元的数目。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    确定第二间距分布,所述第二间距分布包括所述M 1个第一天线单元中每个天线单元的间距,所述M 2个第二天线单元中每个天线单元的间距,所述M 3个第三天线单元中每个天线单元的间距,以及所述M 4个第四天线单元中每个天线单元的间距,所述第二间距分布中的间距相等。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    确定所述第二子阵中每个天线单元的第二发射功率,所述第二子阵包括第一单元和第二单元,若所述第一天线单元的几何中心到所述天线阵列中心的距离大于所述第二单元到所述天线阵列中心的距离,则所述第一单元的所述第二发射功率小于所述第二单元的所述第二发射功率,所述第二发射功率分布中的功率值包括所述第二子阵中每个天线单元的第二发射功率之和。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述第二天线单元和/或所述第三天线单元通过移相单元连接所述功率放大器。
  16. 一种天线阵列,其特征在于,所述天线阵列由馈电单元通过N个功率放大器进行馈电,所述N个功率放大器包括N 1个第一功率放大器,所述第一功率放大器的额定功率为P 1,所述天线阵列包括:
    第一子阵,所述第一子阵包括M 1个第一天线单元,所述M 1个第一天线单元中每个天线单元的第一发射功率大于第一阈值,所述M 1个第一天线单元的第一发射功率之和,与所述额定功率P 1的差值小于第一误差,所述第一天线单元通过1分M 1功率分配器连接所述N 1个第一功率放大器中的一个;
    第二子阵,所述第二子阵包括M 2个第二天线单元,所述M 2个第二天线单元中的每个天线单元的第一发射功率小于等于所述第一阈值,所述第二天线单元通过1分M 2功率分配器连接所述N 1个第一功率放大器中的一个,所述M 2个第二天线单元的第一发射功率之和,与所述额定功率P 1的差值小于第一误差,所述第一发射功率由第一电流分布确定,所述第一天线单元的几何中心到所述天线阵列中心的距离,小于所述第二天线单元的几何中心到所述天线阵列中心的距离;
    其中,所述第一电流分布由期望的副瓣电平生成,所述第一电流分布为所述天线阵列中M个天线单元的离散电流分布,或者,所述第一电流分布为所述天线阵列对应的连续线源电流分布,M 1,M 2,N,N 1为正整数,且M 1≥1,M 2>M 1,N≥N 1
  17. 根据权利要求16所述的天线阵列,其特征在于,所述M 1个第一天线单元的间距为间距基数与第一缩放因子α 1的乘积,所述α 1为所述额定功率P 1与所述M 1个第一天线单元的所述第一发射功率之和的比值,所述M 2个第二天线单元的间距为间距基数与第二缩放因子α 2的乘积,所述α 2为所述额定功率P 1与所述M 2个第二天线单元的所述第一发射功率之和的比值。
  18. 根据权利要求17所述的天线阵列,其特征在于,所述M 1个第一天线单元以及所述M 2个第二天线单元中的任一天线单元的间距小于等于第二阈值。
  19. 根据权利要求16所述的天线阵列,其特征在于,所述N 1个功率放大器的额定功率之和等于所述天线上天线单元的发射功率之和,且N 1=N,
    所述M 2个第二天线单元对应的连续线源电流分布在第一长度上的积分等于第一功率 值,所述第一长度为所述M 2个第二天线单元对应的天线长度;或者,
    所述M 1个第一天线单元中每个天线单元对应的连续线源电流分布在第一长度上的积分等于第一功率值,所述第一长度包括所述每个天线单元对应的天线长度;
    其中,所述第一功率值为第一额定功率值与N 1的比值,所述第一额定功率值为N 1个额定功率的第一功率放大器的额定功率之和。
  20. 根据权利要求16至18中任一项所述的天线阵列,其特征在于,所述天线阵列还包括:
    第三子阵,所述第三子阵包括M 3个第三天线单元,所述M 3个第三天线单元中的天线单元的第一发射功率的最大值小于等于所述M 2个第二天线单元中天线单元的第一发射功率的最小值,所述M 3个第三子阵的几何中心到所述天线阵列中心的距离,大于所述第二子阵的几何中心到所述天线阵列中心的距离,所述第二天线单元通过1分M 3功率分配器连接所述N 1个第一功率放大器中的一个,所述M 3个第一天线单元的第一发射功率之和,与所述第一功率放大器的额定功率的差值小于所述第一误差,其中,M 3为正整数,且M 3>M 2
  21. 根据权利要求16至18中任一项所述的天线阵列,其特征在于,所述N个功率放大器还包括N 2个第二功率放大器,所述第二功率放大器的额定功率P 2大于所述额定功率P 1,所述天线阵列还包括:
    第四子阵,所述第四子阵包括M 4个第四天线单元,所述第四天线单元对应的所述第一发射功率的最小值大于等于所述第一天线单元对应的所述第一发射功率的最大值,所述第四子阵的几何中心到所述天线阵列中心的距离,小于所述第一天线单元的几何中心到所述天线阵列中心的距离,所述M 4个第四天线单元的第一发射功率之和,与所述第二功率放大器的额定功率的差值小于所述第一误差,所述第四天线单元通过1分M 4功率分配器连接所述N 2个第二功率放大器中的一个,其中,M 4为正整数,N 2且M 4≥1。
  22. 根据权利要求21所述的天线阵列,其特征在于,所述第四天线单元的数目等于所述第一天线单元的数目。
  23. 根据权利要求21或22所述的天线阵列,其特征在于,所述M 1个第一天线单元,所述M 2个第二天线单元,所述M 3个第三天线单元,以及所述M 4个第四天线单元为等间距分布。
  24. 根据权利要求20至23中任一项所述的天线阵列,其特征在于,所述第二天线单元和/或所述第三天线单元通过移相单元连接所述功率放大器。
  25. 根据权利要求16至24中任一项所述的天线阵列,其特征在于,所述1分M 2功率分配器通过第一传输线连接所述第二子阵中的第一单元,所述1分M 2功率分配器通过第二传输线连接所述第二子阵中的第二单元,若所述第一单元的几何中心到所述天线阵列中心的距离d 1,大于所述第二单元几何中心到所述天线阵列中心的距离d 2,则所述第一传输线的线宽w 1小于所述第二传输线的线宽w 2,所述第二天线单元包括所述第一单元和所述第二单元。
  26. 一种天线设备,其特征在于,包括如权利要求16至24中任一项所述的天线阵列。
  27. 一种通信设备,其特征在于,包括如权利要求25所述的天线设备。
PCT/CN2021/139820 2021-12-20 2021-12-20 一种天线副瓣的抑制方法及天线阵列 WO2023115285A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/139820 WO2023115285A1 (zh) 2021-12-20 2021-12-20 一种天线副瓣的抑制方法及天线阵列

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/139820 WO2023115285A1 (zh) 2021-12-20 2021-12-20 一种天线副瓣的抑制方法及天线阵列

Publications (1)

Publication Number Publication Date
WO2023115285A1 true WO2023115285A1 (zh) 2023-06-29

Family

ID=86900788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139820 WO2023115285A1 (zh) 2021-12-20 2021-12-20 一种天线副瓣的抑制方法及天线阵列

Country Status (1)

Country Link
WO (1) WO2023115285A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715518A (zh) * 2014-01-24 2014-04-09 厦门大学 泰勒-指数复合不等距模组化阵列天线的设计方法
CN105612659A (zh) * 2013-06-19 2016-05-25 上海贝尔股份有限公司 幅度锥形化的波束切换天线系统
CN109301435A (zh) * 2017-07-25 2019-02-01 上海汇珏网络通信设备有限公司 阵列天线
CN110545113A (zh) * 2018-05-28 2019-12-06 上海华为技术有限公司 一种射频信号发射方法、装置和系统
CN214898882U (zh) * 2021-04-06 2021-11-26 广州智讯通信系统有限公司 一种应用于车辆通信系统的低副瓣天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105612659A (zh) * 2013-06-19 2016-05-25 上海贝尔股份有限公司 幅度锥形化的波束切换天线系统
CN103715518A (zh) * 2014-01-24 2014-04-09 厦门大学 泰勒-指数复合不等距模组化阵列天线的设计方法
CN109301435A (zh) * 2017-07-25 2019-02-01 上海汇珏网络通信设备有限公司 阵列天线
CN110545113A (zh) * 2018-05-28 2019-12-06 上海华为技术有限公司 一种射频信号发射方法、装置和系统
CN214898882U (zh) * 2021-04-06 2021-11-26 广州智讯通信系统有限公司 一种应用于车辆通信系统的低副瓣天线

Similar Documents

Publication Publication Date Title
US11145979B2 (en) High gain and large bandwidth antenna incorporating a built-in differential feeding scheme
US20230024260A1 (en) Antenna module and radio frequency apparatus including the same
US20180108985A1 (en) Antenna array and network device
WO2021147613A1 (zh) 一种全双工通信方法及装置
CN114883797A (zh) 双频双极化天线单元、子阵移相模块及相控阵天线阵列
US11276941B2 (en) Broadband antenna
Khalid et al. $2\times 2$ MIMO antenna with defected ground structure for mm-wave 5G applications
CN116247428B (zh) 一种毫米波阵列天线
WO2023115285A1 (zh) 一种天线副瓣的抑制方法及天线阵列
WO2022206520A1 (zh) 一种信号转发方法和装置
Olwal et al. Antenna research directions for 6G: A brief overview through sampling literature
Apoorva et al. Design of mmwave dual band antenna for 5G wireless
JP2022092589A (ja) 集積型整合ネットワークを備えたバラン
Baharom et al. Multiple-element PIFA MIMO antenna system design for future 5G wireless communication applications
Hovsepian et al. Wideband beam steering using a 4-arm spiral array for simultaneous transmit and receive (STAR) operation
CN106992802B (zh) 用于用户终端的信号收发装置、用户终端和信号传输方法
Piltyay et al. Electromagnetic performance of waveguide polarizers with sizes obtained by single-mode technique and by trust region optimization
Son et al. Phased array antenna for bi-static simultaneous transmit and receive (STAR) system
CN112397882A (zh) 一种用于高轨卫星宽波束高增益测距天线
EP2924801B1 (en) Feed network and antenna
Ma et al. Massive MIMO system level performance results of a dense antenna array
WO2023010563A1 (zh) 一种无线通信方法及装置、终端设备、网络设备
WO2022198518A1 (zh) 配置发射功率的方法和终端设备
Sharma et al. A Comprehensive Review of Theory and Designing of 28GHz 5th Generation MIMO Antenna
WO2023098823A1 (zh) 信号发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968439

Country of ref document: EP

Kind code of ref document: A1