WO2023098823A1 - 信号发送方法及装置 - Google Patents
信号发送方法及装置 Download PDFInfo
- Publication number
- WO2023098823A1 WO2023098823A1 PCT/CN2022/135931 CN2022135931W WO2023098823A1 WO 2023098823 A1 WO2023098823 A1 WO 2023098823A1 CN 2022135931 W CN2022135931 W CN 2022135931W WO 2023098823 A1 WO2023098823 A1 WO 2023098823A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna array
- receiving end
- signals
- signal
- antenna
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 126
- 238000003491 array Methods 0.000 claims description 108
- 238000004891 communication Methods 0.000 claims description 96
- 230000015654 memory Effects 0.000 claims description 23
- 238000012545 processing Methods 0.000 claims description 21
- 238000004590 computer program Methods 0.000 claims description 17
- 230000008054 signal transmission Effects 0.000 claims description 13
- 238000003672 processing method Methods 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 25
- 238000010586 diagram Methods 0.000 description 19
- 208000004350 Strabismus Diseases 0.000 description 14
- 230000010363 phase shift Effects 0.000 description 13
- 230000008569 process Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000007774 longterm Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/246—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0025—Modular arrays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0408—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
- H01Q3/34—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
- H01Q3/36—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
Definitions
- the present application relates to the field of communication technologies, and in particular to a signal sending method and device.
- millimeter wave communication or terahertz communication has become a hotspot of research and development in the industry because it is expected to solve the increasing demand for wireless speed due to its abundant frequency band resources.
- millimeter-wave communication or terahertz communication can use a large number of wireless frequency bands, high-frequency carriers will also bring greater wireless propagation attenuation (including free attenuation of electromagnetic energy and molecular absorption losses, etc.), thus limiting the propagation distance. And reduce the spectral efficiency.
- the communication system usually needs to be equipped with an antenna array to provide energy gain.
- the present application provides a signal sending method and device, which can effectively improve the utilization efficiency of frequency domain resources when sending signals through an antenna array.
- the embodiment of the present application provides a signal processing method, the method comprising:
- the sending end obtains at least two first signals through the first channel; the sending end sends the at least two first signals to at least two receiving ends according to the first antenna array, and one receiving end corresponds to one of the first signal, the subbands corresponding to each of the first signals in the at least two first signals are different, one receiving end corresponds to one beam, and the direction of the beam corresponding to each receiving end in the at least two receiving ends Differently, the beam is formed by the first antenna array.
- the transmitting end can send the first signal to at least two receiving ends respectively according to an antenna array (such as the first antenna array), that is, the transmitting end can transmit the first signal to at least two beams according to the first antenna array.
- the receiving end within the coverage area sends the first signal. Therefore, the utilization efficiency of frequency domain resources is effectively improved.
- the at least two receiving ends include a first receiving end
- the sending of the at least two first signals to at least two receiving ends by the sending end according to the first antenna array includes: the The sending end sends at least two signals corresponding to the first receiving end to the first receiving end through at least two antenna arrays, the at least two antenna arrays include the first antenna array, and the The at least two signals corresponding to the first receiving end include the first signal, and the at least two signals corresponding to the first receiving end respectively correspond to different subbands.
- a receiving end can also be served by beams corresponding to at least two subbands at the same time, thus enabling the receiving end to realize large-bandwidth communication and improving the communication capacity of the system at the same time. It can be understood that for descriptions provided in the embodiments of the present application, reference may also be made to the descriptions of FIG. 5 to FIG. 11 .
- the at least two antenna arrays further include a second antenna array; the direction of the i-th beam formed by the first antenna array is the same as that of the i-th beam formed by the second antenna array
- the directions are the same, the i is an integer greater than or equal to 1 and an integer less than or equal to L, and the L is the number of beams formed by the first antenna array or the number of beams formed by the second antenna array.
- the subband corresponding to the i-th beam formed by the first antenna array is different from the sub-band corresponding to the i-th beam formed by the second antenna array.
- the at least two antenna arrays further include a second antenna array; the direction of the i-th beam formed by the first antenna array is the same as that of the i-th beam formed by the second antenna array different directions, the i is an integer greater than or equal to 1 and an integer less than or equal to L, where L is the number of beams formed by the first antenna array or the number of beams formed by the second antenna array.
- the bandwidth scheduled by the first antenna array is the same as the bandwidth scheduled by the second antenna array; or, the bandwidth scheduled by the first antenna array is the same as the bandwidth scheduled by the second antenna array
- the bandwidths are different; or, the bandwidth scheduled by the first antenna array partially overlaps the bandwidth scheduled by the second antenna array.
- the method further includes: the transmitting end determining the at least two receiving ends according to a direction of a beam formed by the first antenna array.
- the method further includes: the transmitting end determining a beam direction of the first antenna array according to areas where the at least two receiving ends are located.
- the bandwidth scheduled by the sending end is greater than or equal to a first threshold.
- the size of the subband scheduled by the first antenna array is smaller than or equal to the second threshold.
- the at least two receiving ends include a second receiving end
- the sending of the at least two first signals to at least two receiving ends by the sending end according to the first antenna array includes: the The sending end sends the first signal to the second receiving end through the first antenna array; or, the sending end sends the signal corresponding to the second receiving end to the second receiving end through at least two antenna arrays
- At least two signals; the at least two antenna arrays include the first antenna array, the at least two signals corresponding to the second receiving end include the first signal, and the at least two signals corresponding to the second receiving end
- the at least two signals corresponding to the terminals respectively correspond to different subbands.
- the at least two antenna arrays that send signals to the second receiving end may be the same as or different from the at least two antenna arrays that send signals to the first receiving end.
- an embodiment of the present application provides a signal sending method, the method including:
- the sending end obtains at least two signals through at least two channels, one channel corresponds to one signal; the sending end sends the at least two signals to the first receiving end according to at least two antenna arrays, one signal corresponds to one antenna array, and The subbands corresponding to each of the at least two signals are different, the first receiving end corresponds to at least two beams, and the direction of each beam in the at least two beams.
- the at least two antenna arrays include a first antenna array and a second antenna array.
- the embodiments of the present application provide a communication device, configured to execute the method in the first aspect, the second aspect, or other possible implementation manners.
- the communication device includes a unit for performing the method in the first aspect or any possible implementation manner of the first aspect.
- an embodiment of the present application provides a communication device, where the communication device includes a processor configured to execute the method described in the first aspect or any possible implementation manner of the first aspect.
- the processor is used to execute a program stored in the memory, and when the program is executed, the method shown in the first aspect, the second aspect, or any possible implementation manner is executed.
- the memory is located outside the communication device.
- the memory is located in the above communication device.
- the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
- the communication device further includes a transceiver, where the transceiver is configured to receive a signal or send a signal.
- the embodiment of the present application provides a communication device, the communication device includes a logic circuit and an interface, the logic circuit is coupled to the interface; the logic circuit is configured to obtain at least two first signal; the interface, configured to output the at least two first signals.
- the logic circuit is used to acquire at least two signals through at least two channels; the interface is used to output the at least two signals.
- the embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program.
- a computer program When it is run on a computer, the above-mentioned first aspect, the second aspect or any possible The method shown in the implementation is executed.
- the embodiment of the present application provides a computer program product, the computer program product includes a computer program or computer code, when it is run on a computer, the above-mentioned first aspect, second aspect or any possible implementation manner The indicated method is executed.
- an embodiment of the present application provides a computer program.
- the computer program When the computer program is run on a computer, the method shown in the first aspect, the second aspect, or any possible implementation manner is executed.
- the embodiment of the present application provides a communication system, the communication system includes a sending end and a receiving end, and the sending end is used to execute the method shown in the first aspect, the second aspect or any possible implementation .
- FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
- FIG. 2 is a schematic diagram of a signal transmission scenario provided by an embodiment of the present application.
- FIG. 3 is a schematic diagram of another signal transmission scenario provided by an embodiment of the present application.
- FIG. 4 is a schematic flowchart of a signal sending method provided in an embodiment of the present application.
- FIG. 5 is a schematic diagram of a scenario of a signal sending method provided by an embodiment of the present application.
- Fig. 6a is a schematic flowchart of a signal sending method provided by an embodiment of the present application.
- FIG. 6b is a schematic diagram of a scenario of a signal sending method provided by an embodiment of the present application.
- FIG. 7 to FIG. 11 are schematic diagrams of scenarios of a signal sending method provided by an embodiment of the present application.
- FIG. 12 to FIG. 14 are schematic structural diagrams of a communication device provided by an embodiment of the present application.
- an embodiment means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
- the occurrences of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It is understood explicitly and implicitly by those skilled in the art that the embodiments described herein can be combined with other embodiments.
- At least one (item) means one or more
- “multiple” means two or more
- “at least two (items)” means two or three and three
- “and/or” is used to describe the association relationship of associated objects, which means that there can be three kinds of relationships, for example, "A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time A case where A and B can be singular or plural.
- the character “/” generally indicates that the contextual objects are an "or” relationship.
- “At least one of the following” or similar expressions refer to any combination of these items. For example, at least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ".
- the method provided by this application can be applied to various communication systems, for example, it can be an Internet of Things (Internet of Things, IoT) system, a narrowband Internet of Things (NB-IoT) system, a long term evolution (long term evolution) , LTE) system, or a fifth-generation (5th-generation, 5G) communication system, and a new communication system (such as 6G) that will appear in future communication development.
- IoT Internet of Things
- NB-IoT narrowband Internet of Things
- LTE long term evolution
- 5th-generation, 5G fifth-generation
- 6G new communication system
- the method provided in this application can also be applied to a wireless local area network (wireless local area network, WLAN) system, such as wireless-fidelity (wireless-fidelity, Wi-Fi) and the like.
- WLAN wireless local area network
- the technical solution provided by this application can also be applied to machine type communication (machine type communication, MTC), inter-machine communication long term evolution technology (long term evolution-machine, LTE-M), device-to-device (device-to-device, D2D) network , machine to machine (M2M) network, Internet of things (IoT) network, industrial Internet or other networks.
- MTC machine type communication
- LTE-M inter-machine communication long term evolution technology
- device-to-device device-to-device
- D2D machine to machine
- M2M machine to machine
- IoT Internet of things
- the IoT network may include, for example, the Internet of Vehicles.
- V2X vehicle-to-everything
- X can represent anything
- the V2X can include: vehicle-to-vehicle (V2V) communication, Vehicle to infrastructure (V2I) communication, vehicle to pedestrian (V2P) or vehicle to network (V2N) communication, etc.
- V2V vehicle-to-vehicle
- V2I Vehicle to infrastructure
- V2P vehicle to pedestrian
- V2N vehicle to network
- terminal devices may communicate with each other through D2D technology, M2M technology, or V2X technology.
- FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application. As shown in FIG. 1 , the communication system includes: a network device 101 and a terminal device 102 .
- the network device may be a next generation node B (next generation node B, gNB), a next generation evolved base station (next generation evolved nodeB, ng-eNB), or a network device in 6G communication, etc.
- the network device may be any device with a wireless transceiver function, including but not limited to the above-mentioned base stations (including base stations deployed on satellites).
- the base station may also be a base station in a future communication system such as a sixth generation communication system.
- the network device may be an access node, a wireless relay node, a wireless backhaul node, etc. in a wireless local area network (wireless fidelity, WiFi) system.
- wireless local area network wireless fidelity, WiFi
- the network device may be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
- the network device may be a wearable device or a vehicle-mounted device.
- the network device may also be a small station, a transmission reception point (transmission reception point, TRP) (or may also be called a transmission point), and the like. It can be understood that the network device may also be a base station in a future evolving public land mobile network (public land mobile network, PLMN), etc.
- PLMN public land mobile network
- a base station may consist of a centralized unit (CU) and a distributed unit (DU). That is, the functions of the base station in the access network are split, and part of the functions of the base station are deployed in a CU, and the remaining functions are deployed in the DU. And multiple DUs share one CU, which can save costs and facilitate network expansion.
- the CU can also be divided into CU-control plane (control plane, CP) and CU-user plane (user plan, UP).
- the base station may also be an open radio access network (open radio access network, ORAN) architecture, etc., and this application does not limit the specific type of the base station.
- the terminal equipment may also be called user equipment (user equipment, UE), terminal, and so on.
- a terminal device is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water, such as on a ship.
- Terminal equipment can be mobile phone, tablet computer (Pad), computer with wireless transceiver function, virtual reality (virtual reality, VR) terminal equipment, augmented reality (augmented reality, AR) terminal equipment, industrial control (industrial control) ), wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety , wireless terminals in a smart city, wireless terminals in a smart home, etc.
- the terminal device may also be a terminal device in a future 6G network or a terminal device in a future evolved PLMN.
- terminal equipment shown in this application may not only include vehicles (such as automobiles) in the Internet of Vehicles, but also include vehicle-mounted devices or vehicle-mounted terminals in the Internet of Vehicles.
- vehicle-mounted devices or vehicle-mounted terminals in the Internet of Vehicles.
- the specific form is not limited.
- the numbers of network devices and terminal devices shown in FIG. 1 are only examples, and should not be construed as limitations on this embodiment of the present application.
- the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
- the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
- Beam squint When the antenna array implements beam steering through a phase shifter, the signal energy cannot be fully focused within the frequency range. Exemplarily, if it is desired that the signal energy transmitted by the antenna array be focused in a certain direction, a certain phase compensation may be set through a phase shifter to achieve this. However, such phase compensation can usually only be aimed at one frequency (such as the center frequency of the carrier), so that the signal energy can be superimposed in the set direction. For signals other than this frequency, the direction of energy superposition is not the set direction, but has a certain offset, which is called beam squint. Beam squint causes signals with different frequency components to converge in different directions.
- Digital channel the channel from the baseband digital port to the radio frequency (radio frequency, RF) link.
- a data stream also called a baseband signal
- the data stream obtained through baseband processing can be converted into an analog signal through a digital to analog converter (DAC).
- DAC digital to analog converter
- digital channels can be used to transmit data streams.
- the data stream transmitted by one digital channel may include signals corresponding to multiple subbands, the signals corresponding to the multiple subbands carry data corresponding to multiple receiving ends, and the signals corresponding to one subband carry data corresponding to one receiving end.
- the sending end may include one or more digital channels.
- the multiple digital channels can simultaneously transmit multiple data streams, thereby improving the throughput of the system.
- the multiple data streams can be isolated by one or more of time division multiplexing, frequency division multiplexing, or space division multiplexing, so as to ensure that the sending end can transmit multiple data streams through multiple digital channels .
- An antenna corresponding to a digital channel can be called an antenna array.
- the sending end may include one or more antenna arrays.
- an antenna array may include multiple antenna elements.
- the antenna element may also be referred to as an antenna unit or an antenna element, and the specific name of the antenna element is not limited in this embodiment of the present application. It can be understood that the antenna array shown in the embodiment of the present application may also be referred to as an array for short.
- Phase shifter One antenna element or multiple antenna elements in the antenna array can correspond to a phase shifter.
- the phase shift parameter of the phase shifter is used to configure the phase shifter, for example, the purpose of adjusting the beam direction can be achieved by changing the phase shift parameter of the phase shifter.
- the embodiment of the present application does not limit the manner of adjusting the amplitude and/or phase of each antenna element in the antenna array.
- one phase shifter corresponds to one antenna element in FIG. 5, FIG. 6a and FIG. 7 to FIG.
- Subbands The transmitter can divide the bandwidth scheduled by the antenna array into multiple subbands. That is to say, a sub-band may be understood as a part of continuous bandwidth in the bandwidth available to the antenna array, or as a sub-bandwidth or a sub-frequency band, or the like.
- the bandwidth occupied by an antenna array when sending signals is called the bandwidth scheduled by the antenna array, or the bandwidth used by the antenna array.
- the bandwidth when the sending end sends the first signal is referred to as the bandwidth scheduled by the first antenna array that sends the first signal.
- the different subbands shown in the embodiment of the present application can be understood as different frequency domain resources.
- Beam direction The direction of the beam can be adjusted by changing the phase shift parameter of the phase shifter.
- the direction of the beam shown in the embodiment of the present application may be used to indicate the direction of the center frequency of the subband corresponding to the beam.
- the direction of the beam corresponding to each of the at least two receiving ends shown in the embodiment of the present application is different, which can be understood as: the direction of the center frequency of the subband corresponding to each receiving end is different, or, each The directions of the center frequencies of the subbands corresponding to the two receivers are not equal.
- different beam coverages shown in the embodiments of the present application may also be understood as different center frequencies of subbands corresponding to the beams.
- the same direction of the two beams (or more than two beams) shown in the embodiment of this application means that the coverage of the two beams is the same in a certain area, or that the directions of the two beams have a certain error
- the allowed range is the same.
- the two beams have the same direction means that the two beams overlap by 80% or more within the range covered by the 3dB beam width.
- the two beams have the same direction means that the two beams overlap by 90% or more within the range covered by the 3dB beam width.
- the direction of the i-th beam formed by the first antenna array is different from the direction of the i-th beam formed by the second antenna array
- the directions of the two beams are the same, which means that the receiving end is within the 3dB beamwidth coverage of the two beams at the same time.
- FIG. 2 is a schematic diagram of a signal transmission scenario provided by an embodiment of the present application. As shown in Figure 2, suppose the sender wants to send a departure angle of The distance between the antenna elements is d a , so the distance between adjacent elements reaching the wave plane is The phase difference satisfies formula (1):
- c represents the speed of light
- f is the frequency of the transmitted signal
- ⁇ is the wavelength of the signal.
- a phase shifter can be used to reversely compensate the phase of the signal sent by the antenna according to ⁇ , so that all signals have the same phase when they reach the wave plane, thereby achieving the purpose of energy superposition.
- each antenna element transmits a signal with frequency f, then at the departure angle
- the phase change in direction can be represented by a normalized vector that satisfies formula (3):
- N is the number of antenna elements.
- phase shifters used for compensation are generally considered to be frequency-insensitive (ie compensate the same phase for signals at all frequencies).
- the phase compensation is often set according to the center frequency of the carrier, so as to offset the phase change in direction.
- the signal at frequency f is at the departure angle
- the normalized energy gain (also called beam gain or power gain, etc.) in the direction can satisfy the following formula:
- the coefficients of the phase control system are An antenna array with f ⁇ f c will deviate from the focus in the direction of . That is to say, when the phased array is used to achieve directional energy gain for the signal, the signal components of different frequencies point in different directions (that is, the phenomenon of beam squint).
- the bandwidth scheduled by the antenna array can be divided into multiple subbands. Therefore, when the phase shift parameter is selected, the energy of the signal corresponding to each subband will propagate in different directions. It can also be understood that each subband The corresponding signals correspond to beams in different directions (it can also be understood that different subbands correspond to different narrow beams).
- FIG. 3 is a schematic diagram of another signal transmission scenario provided by an embodiment of the present application.
- the phase shift parameter can be set according to the above formula (3) and/or formula (4), so that the beam formed by the antenna array points to the UE.
- the beamformer and/or phase shifter of the antenna array are set, due to the phenomenon of beam squint, the energy of each subband reaching a certain UE is different, and the beam pointing to the direction of the UE (ie The middlemost beam in the solid line part of FIG. 3 ) can transmit the maximum signal energy, and its corresponding subband will be scheduled to serve the UE.
- the signal energy that the corresponding beams can transmit is too small, these spectrum resources cannot be effectively used.
- the system bandwidth gradually increases (for example, with the development of the communication system, the system bandwidth gradually increases), if the method shown in FIG. bandwidth communication.
- the system bandwidth is large, and at the same time, a large bandwidth needs to be configured for the UE so that the UE can effectively use the large bandwidth for communication.
- the method shown in FIG. 3 there are many invalid beams, which cause most frequency domain resources to be wasted.
- the method shown in FIG. 3 may also cause the UE to be unable to effectively utilize large bandwidth for communication.
- the embodiment of the present application provides the first signal transmission method and device, when transmitting a signal through an antenna array, the bandwidth that can be scheduled by the antenna array can be effectively used, so that at least two subbands of the bandwidth scheduled by the antenna array can be The corresponding beams are effectively used to serve at least two receivers in different coverage areas, improving the utilization efficiency of frequency domain resources.
- the sending end may respectively send signals to a receiving end through multiple antenna arrays.
- the sending end may send signals to multiple receiving ends through multiple antenna arrays.
- the sending end may respectively send the first signal to multiple receiving ends through an antenna array such as the first antenna array.
- the method provided in the embodiment of the present application may be any one of the above methods, or may be a combination of the above methods.
- a receiving end can be served by beams corresponding to at least two subbands at the same time, thus enabling the receiving end to realize large-bandwidth communication (as compared to the method shown in FIG. 3 , the receiving end can use The bandwidth increases), which improves the channel capacity of the receiving end.
- the sending end shown in the embodiment of the present application may include the network device shown in FIG. 1
- the receiving end may include the terminal device shown in FIG. 1 .
- the sending end may include a terminal device.
- the sending end and the receiving end may also be terminal devices as shown in FIG. 1
- the sending end is a terminal device with a network function in V2X.
- the sending end may be a base station configured with a large-scale antenna array.
- the large-scale antenna array can be understood as an antenna array with a large number of antenna elements. For example, when the number of antenna elements in the antenna array is greater than or equal to 128, or greater than or equal to 256, the antenna array may be called a large-scale antenna array. It can be understood that the description of the large-scale antenna array shown in the embodiment of the present application is only an example, and should not be interpreted as a limitation to the embodiment of the present application.
- Fig. 4 is a schematic flow chart of a signal sending method provided by an embodiment of the present application. As shown in Fig. 4, the method includes:
- the sending end acquires at least two first signals through a first channel.
- the above-mentioned first channel may include a digital channel, and the description about the digital channel may refer to the above, and will not be described in detail here. Understandably, the digital channel may also be called a data channel.
- the embodiment of the present application does not limit the name of the first channel. It can be understood that the first channel shown here can be understood as a digital channel, or a data channel.
- the sending end acquires at least two first signals through one digital channel.
- the sending end may perform time-domain resource and/or frequency-domain resource mapping according to time-frequency resources of different receiving ends, so as to obtain at least two signals.
- the first signal may be understood as a signal sent through the first antenna array, that is, all signals sent through the first antenna array may be referred to as first signals.
- the at least two first signals may be first signals of at least two receiving ends. That is to say, although the signals sent through the first antenna array are called first signals, the first signals sent to different receiving ends may be different.
- the "simultaneously" shown here can be understood as the signal obtained by the sending end is obtained through a digital channel.
- the different receiving ends shown in the embodiment of the present application refer to being respectively located within coverage areas of different beams. That is to say, the difference between the different receiving ends shown in the embodiments of the present application lies in that they are located within the coverage of different beams, or that the beams corresponding to different receiving ends have different directions, or that the beams corresponding to different receiving ends have different directions. .
- UE1 to UE5 shown in FIG. 5 are respectively located in coverage areas of different beams.
- the embodiment of the present application does not limit the number of receivers included in the coverage of one beam. A larger number of UE1 may also be included in the coverage of beam 1 as shown in FIG. 5 . That is, the drawings in the present application are illustrated by taking one UE included in the coverage of one beam as an example, which should not be understood as a limitation to the embodiment of the present application.
- the sending end sends at least two first signals to at least two receiving ends according to the first antenna array.
- one receiving end corresponds to one first signal
- the subband corresponding to each first signal in at least two first signals is different
- one receiving end corresponds to one beam
- the subband corresponding to each receiving end in at least two receiving ends The directions of the beams are different.
- the beam may be formed by the first antenna array. That is to say, the first antenna array can form at least two beams, each beam corresponds to a different subband, and the first antenna array can send signals to the receiving end through beams corresponding to different subbands.
- the number of beams formed by the first antenna array is the same as the number of subbands scheduled by the first antenna array.
- the single beam formed by the first antenna array may also be referred to as a narrow beam.
- the direction of the beam corresponding to each of the at least two receiving ends shown above is different, which can also be understood as: the direction of the beam corresponding to each of the at least two receiving ends is different, or, the at least The beams corresponding to each of the two receiving ends have different coverages.
- the transmitting end may determine the at least two receiving ends according to the direction of the beam formed by the first antenna array, that is, determine the receiving end served by the first antenna array. That is to say, after the phase-shift parameter setting of the first antenna array is completed, the first antenna array can determine the receiving end that can receive the first signal according to the direction of the beam and/or the coverage of the beam.
- the transmitting end may determine the direction of the beam of the first antenna array according to the area where the receiving end is located, such as determining the phase shift parameter of the first antenna array (only for example, as can also be understood as Determine the beamformer, etc.) etc.
- the sending end can determine the direction of the beam according to the area where the receiving end is located, thereby determining the phase shifting parameters of the phase shifter.
- the transmitting end may simultaneously serve receiving ends within different coverage areas by scheduling different sub-band resources.
- the sending end may adjust the direction of the beam through beamforming technology.
- the embodiment of the present application does not limit how the sending end adjusts the direction of the beam.
- the beam squint can be effectively used, for example, by adjusting the phase shift parameters when the first antenna array transmits signals, so that the different beams formed by the first antenna array can be effectively used, so that the different beams Receiver services within coverage.
- the bandwidth scheduled by the sender is greater than or equal to the first threshold.
- the bandwidth scheduled by the sending end is greater than or equal to the configured bandwidth of the receiving end.
- the bandwidth scheduled by the sending end that is, the available bandwidth shown above
- the embodiment of the present application not only enables the sending end to send the first signal to receiving ends in different coverage areas; The different corresponding subbands can also avoid interference among the first signals as much as possible.
- the transmitting end may set the size of the subband according to the coverage of the beam formed by it.
- the transmitting end may set the size of the subband according to the isolation between each beam formed by it.
- the sending end may determine the size of the subband according to the system bandwidth and the degree of beam pointing squint, and the size of the subband is not limited in this embodiment of the present application. It can be understood that the bandwidth scheduled by the sending end shown in the embodiment of the present application can also be understood as the system bandwidth.
- the configured bandwidth of the receiving end indicates the bandwidth configured by the network device for the receiving end, for example, it can also be understood as the available bandwidth of the receiving end.
- the size of the subband scheduled by the first antenna array is less than or equal to the second threshold, or the subband corresponding to the first signal cannot exceed the second threshold (for example, the bandwidth of the subband cannot exceed the second threshold) . That is to say, if the second threshold is too large, the receiving end will not be able to effectively use the subband corresponding to the first signal due to beam squint.
- the second threshold may be determined according to the size of the subband of the first signal and/or the angle of departure of the first signal.
- the second threshold may be determined according to the subband size of the first signal, the departure angle of the first signal, and the number of elements of the first antenna array.
- the phase shift coefficient vector of the phase shifter is The energy concentration direction of the first signal is Then for the first signal component of the non-center frequency f * in the subband corresponding to the first signal in the direction energy gain on Formula (6) can be satisfied:
- the transpose of the vector representing the phase shift parameter Indicates that each antenna element is in the direction of energy concentration when sending a signal with frequency f *
- the phase change vector on , N represents the number of antenna elements of the first antenna array, d a represents the spacing between adjacent antenna elements, Indicates the energy concentration direction of the first signal, and may also indicate the departure angle of the first signal, fc indicates the center frequency of the sub-band of the first signal, and f * indicates the non-center frequency of the sub-band of the first signal.
- the energy is reduced to 0 at the first null position.
- the frequency corresponding to the first null satisfies formula (7):
- the upper threshold of the subband corresponding to the first signal (ie, the second threshold) needs to satisfy the formula (8):
- the upper threshold i.e. the second threshold
- the sending end may include multiple antenna arrays, where the multiple antenna arrays include the first antenna array. Whether the subbands divided by each antenna array in the multiple antenna arrays have the same size is not limited in this embodiment of the present application.
- the transmitting end can only send signals to one receiving end according to one antenna array, that is, the transmitting end can only send signals to the receiving end within the coverage of one effective beam.
- the sending end can send the first signal to at least two receiving ends respectively according to one antenna array (such as the first antenna array), that is, the sending end can send the first signal to at least two receiving ends according to the first antenna array.
- the receiving end within the coverage of the beams sends the first signal. Therefore, the utilization efficiency of frequency domain resources is effectively improved.
- the sending end may include an antenna array, such as a first antenna array. Therefore, the following uses the first antenna array as an example to illustrate the signal sending method provided in the embodiment of the present application.
- FIG. 5 is a schematic diagram of a scenario of a signal transmission method provided by an embodiment of the present application.
- the leftmost numbers 1 to 5 represent the subbands divided by the first antenna array (array 1 as shown in FIG. 5 ).
- different numbers may indicate that the frequency domain resources corresponding to the subbands are different, and the arrows from bottom to top indicate from the lowest frequency of the bandwidth to the highest frequency of the bandwidth.
- the phenomenon of beam squint it can be known that the higher the frequency, the more the beam corresponding to the frequency deviates toward the normal direction of the antenna array.
- the direction of the beam can be as shown in Fig. 5 , that is, the direction of the beam corresponding to subband 1 is biased toward the normal direction of the antenna array, the direction of the beam corresponding to subband 2, the direction of the beam corresponding to subband 3, the direction of the beam corresponding to subband 4, and the direction of the beam corresponding to subband 5 Sequentially deviate from the normal direction of the antenna array. It can be understood that the following descriptions about the subband and the direction of the beam are also applicable.
- subband sizes represented by numbers 1 to 5 are not limited.
- the subbands indicated by the numbers 1 to 5 may be continuous. Alternatively, an isolation zone or the like may be included between every two adjacent subbands, which is not limited in this embodiment of the present application.
- the subband 1 scheduled by the first antenna array, the number 1 in the beam, and UE1 are corresponding.
- the beam corresponding to subband 1 is beam 1
- UEs within the coverage of beam 1 include UE1 (it can also be understood that the direction of beam 1 is the area where UE1 is located).
- the description for number 1 is also applicable to numbers 2 to 5, and will not be described in detail here.
- the beam directions also referred to as beam directions
- one subband may correspond to one beam, and the frequency domain resources corresponding to the subbands are different. Therefore, when the transmitting end sends the first signal to UE1 to UE5 at the same time, the interference between UE1 to UE5 can be almost ignored.
- FIG. 5 only exemplarily shows 5 subbands, and this embodiment of the present application does not limit the number of subbands divided by the first antenna array.
- the first antenna array shown in FIG. 5 can acquire five first signals through the digital channel 1, and then send the five first signals simultaneously.
- Fig. 5 uses the base station as the transmitting end and the UE as the receiving end as an example to illustrate the method provided by the embodiment of the present application, but it should not be construed as a limitation to the embodiment of the present application.
- energy distributions of signals corresponding to different subbands may correspond to different beams. That is, by means of frequency division multiplexing, a single antenna array can serve multiple receivers at the same time, and at the same time, multiple receivers (that is, multiple receivers in different coverage areas) can realize narrowband communication.
- the sending end may include at least two antenna arrays, and the at least two antenna arrays include the first antenna array.
- at least two antenna arrays may be used to send signals to the first receiving end.
- the sending end may also send a signal to the second receiving end through one antenna array in the at least two antenna arrays.
- the sending end may also send signals to the second receiving end through at least two antenna arrays.
- the at least two antenna arrays that send signals to the second receiving end may be the same as the at least two antenna arrays that send signals to the first receiving end; or, they are different, which is not limited in this embodiment of the present application. The differences shown here may include the case where the antenna arrays do not overlap at all, or include the case where at least one antenna array overlaps.
- the above-mentioned at least two receiving ends include a first receiving end
- the above-mentioned sending end sending the above-mentioned at least two first signals to at least two receiving ends according to the first antenna array includes:
- the at least two antenna arrays include the first antenna array, and the at least two signals corresponding to the first receiving end
- the signals include the first signal, and the at least two signals corresponding to the first receiving end respectively correspond to different subbands.
- the first receiving end may receive at least two signals, and the at least two signals are respectively sent through different subbands of different antenna arrays.
- the sending end may send two signals to the first receiving end through two antenna arrays, that is, one antenna array corresponds to one signal.
- the sending end can simultaneously send the first signal and the second signal to the first receiving end through the first antenna array and the second antenna array, the first signal is sent by the first antenna array through the first subband, and the second signal is the second signal
- the two-antenna array transmits through the second sub-band.
- the first signal and the second signal are obtained through different digital channels respectively.
- the sending end may send three signals to the first receiving end through three antenna arrays, etc., which will not be listed here.
- the description about the first receiving end is also applicable to the second receiving end, for example, the sending end may send a signal corresponding to the second receiving end to the second receiving end through one or more antenna arrays.
- the antenna array that sends signals to the first receiving end may be the same as the antenna array that sends signals to the second receiving end, and may also partially overlap, or may not overlap at all, which is not limited in this embodiment of the present application.
- the receiving end it may not perceive whether the received signal is one signal or two signals.
- the receiving end only receives the signal sent by the sending end through space division multiplexing and/or frequency division multiplexing.
- the frequency division multiplexing shown in the embodiment of the present application can be understood as sending signals corresponding to different frequency domain resources at the same time
- the space division multiplexing can be understood as sending signals corresponding to the same frequency domain resources to the receiving end through multiple antenna arrays at the same time.
- Signal space division multiplexing can also be realized through dual polarization.
- the at least two antenna arrays shown in the embodiment of the present application may be all antenna arrays in the transmitting end, or may be part of the antenna arrays in the transmitting end, which is not limited in the embodiment of the present application. That is to say, the embodiment of the present application does not limit the sending end to serve one receiving end through several antenna arrays.
- the sending end may first serve the first receiving end through an antenna array such as the first antenna array, if the configured bandwidth of the first receiving end is larger than the first antenna array can schedule bandwidth, the first receiving end can be served by multiple antenna arrays.
- the sending end may also serve the first receiving end by invoking the second antenna array.
- the sending end may select a subband not used by the first receiving end, and make the selected subband point to the first receiving end through beam weight setting .
- the second antenna array is already serving other receivers (that is, the beamformer has been determined)
- it can be determined whether there is a bandwidth in the configured bandwidth of the transmitter that can be sent to the first receiver under the current beamformer. If it exists, the signal with the bandwidth is sent to the first receiving end. If not present, consider other antenna arrays. It can be understood that the method in which the transmitting end configures the antenna array for the receiving end shown here is only an example, and should not be construed as a limitation to this embodiment of the present application.
- Fig. 6a is a schematic flowchart of a signal sending method provided by an embodiment of the present application. As shown in Fig. 6a, the method includes:
- the sending end obtains at least two signals through at least two channels, and one channel corresponds to one signal.
- the sending end sends at least two signals to the first receiving end according to the at least two antenna arrays.
- One signal corresponds to one antenna array, and the subbands corresponding to each of the at least two signals are different, the first receiving end corresponds to at least two beams, and the direction of each beam of the at least two beams.
- the first receiving end may receive the signal from the sending end.
- the at least two antenna arrays include a first antenna array and a second antenna array.
- Fig. 6b is a schematic diagram of another signal sending method provided by an embodiment of the present application.
- the receiving end UE shown in FIG. 6b
- the receiving end may receive signals sent from Z antenna arrays.
- the subbands scheduled by each of the Z antenna arrays are different.
- the directions of the beams corresponding to the subbands scheduled by each antenna array are the same.
- each antenna array divides its scheduled bandwidth into 5 subbands, if a beam formed by a subband in each antenna array can point to the UE, then the UE can receive signals from Z beams at most.
- the UE effectively realizes large-bandwidth communication and effectively increases communication efficiency.
- FIG. 6 b only shows three antenna arrays as an example, that is, the antenna arrays whose ellipsis is omitted are antenna arrays, and the beams formed with the antenna arrays.
- FIG. 6b It can be understood that for the specific description of FIG. 6b, reference may also be made to FIG. 7 to FIG. 10 shown below, which will not be described in detail here.
- each antenna array (such as including Z antenna arrays) can generate L beams (corresponding to L subbands) when transmitting signals (only for example, and the subbands divided by different antenna arrays may be different) .
- the L beams may correspond to L areas, and one beam corresponds to one area (it can also be understood that one beam corresponds to one receiving end within a coverage range).
- the L beams formed by one antenna array have different coverage areas, which may also be understood as the directions of the L beams formed by one antenna array are different.
- Z is an integer greater than or equal to 2
- L is an integer greater than or equal to 2.
- the transmitting end includes Z antenna arrays, and the bandwidth scheduled by each antenna array can include L subbands, that is, each antenna array can schedule L subbands, and the bandwidth used by a receiving end includes at most Z subbands corresponding to Bandwidth, that is, the sending end can send beams in up to Z directions to the receiving end, or it can also be understood as the receiving end can receive signals sent from Z beams at most. It can be understood that each of the Z subbands corresponding to a receiving end is different.
- the i-th beam formed by the first antenna array has the same direction as the i-th beam formed by the second antenna array, and i is an integer greater than or equal to 1 and less than or equal to L.
- the corresponding directions of the L beams formed by each antenna array are the same, which can also be understood as: the directions of the corresponding beams in each antenna array are the same, or the beam directions of the corresponding positions of each antenna array are the same.
- the directions of the L beams formed by each antenna array are correspondingly the same.
- the subband corresponding to the i-th beam formed by the first antenna array is different from the sub-band corresponding to the i-th beam formed by the second antenna array. That is to say, when the directions of the corresponding beams are the same, the subbands corresponding to the corresponding beams are different.
- Embodiment 1 and Embodiment 2 shown below It can be understood that Embodiment 1 and Embodiment 2 are illustrated by taking the same number of beams formed by each antenna array as an example, which should not be construed as a limitation to this embodiment of the present application.
- the direction of the i-th beam formed by the first antenna array is different from the direction of the i-th beam formed by the second antenna array, and i is an integer greater than or equal to 1 and less than or equal to L.
- i is an integer greater than or equal to 1 and less than or equal to L.
- the directions of the L beams formed by each antenna array are correspondingly different.
- the directions of the corresponding beams may be the same or different.
- the corresponding beams refer to beams at the same position in at least two antenna arrays. That is, the directions of the first beam in the first antenna array and the first beam in the second antenna array may be the same or different.
- the transmitting end may transmit the first signal to the second receiving end through the first antenna array; or, the transmitting end may transmit the signal corresponding to the second receiving end to the second receiving end through at least two antenna arrays .
- the at least two antenna arrays include a first antenna array, the at least two signals corresponding to the second receiving end include the first signal, and the at least two signals corresponding to the second receiving end respectively correspond to different subbands.
- the at least two antenna arrays that send signals to the second receiving end may be the same as or different from the at least two antenna arrays that send signals to the first receiving end.
- the at least two antenna arrays sending signals to the second antenna array further include a second antenna array and/or a third antenna array.
- the bandwidth scheduled by the first antenna array is different from the bandwidth scheduled by the second antenna array.
- the L beams formed by at least two antenna arrays point to the same direction.
- the L beams formed by each antenna array point to the same direction.
- the direction of the i-th beam formed by the first antenna array is the same as the direction of the i-th beam formed by the second antenna array.
- the subband corresponding to the i-th beam formed by the first antenna array is different from the sub-band corresponding to the i-th beam formed by the second antenna array. Therefore, from the perspective of the far field, it can be considered that the L spatial areas covered by each beam are the same, that is, the receiving end in each coverage area can receive signals sent from different antenna arrays.
- the transmitting end may send signals to the first receiving end through a part of the antenna array, for example, the part of the antenna array includes the first antenna array and the second antenna array; for another example, the part of the antenna array includes the first antenna array, the second antenna array
- the transmitting end can transmit signals to the first receiving end through all antenna arrays (that is, each antenna array in all antenna arrays transmits signals to the first receiving end through a subband The first receiving end sends a signal).
- FIG. 7 is a schematic diagram of a scenario of a signal sending method provided by an embodiment of the present application.
- each antenna array can form three beams, and the subbands corresponding to the three beams are different. Meanwhile, each antenna array schedules different bandwidths.
- the bandwidth scheduled by the first antenna array is the bandwidth represented by numbers 1 to 3.
- the number 1, the number 2 and the number 3 may represent different subbands respectively, for example, the subband 1, the subband 2 and the subband 3 may be adjacent.
- the center frequency of the subband 1 is greater than the center frequency of the subband 2, and the center frequency of the subband 2 is greater than the center frequency of the subband 3.
- the second antenna array array 2 as shown in Figure 7
- the third antenna array array 3 as shown in Figure 7
- the fourth antenna array array 4 as shown in Figure 7
- the directions of the beams formed by each antenna array are correspondingly the same.
- the direction of beam 1 formed by the first antenna array, the direction of beam 4 formed by the second antenna array, the direction of beam 7 formed by the third antenna array, and the direction of beam 10 formed by the fourth antenna array are the same.
- the direction of beam 2 formed by the first antenna array, the direction of beam 5 formed by the second antenna array, the direction of beam 8 formed by the third antenna array, and the direction of beam 11 formed by the fourth antenna array are the same.
- the direction of beam 3 formed by the first antenna array, the direction of beam 6 formed by the second antenna array, the direction of beam 9 formed by the third antenna array, and the direction of beam 12 formed by the fourth antenna array are the same.
- the configured bandwidths of UE1, UE2, and UE3 may be bandwidths corresponding to subband 1 to subband 12.
- the bandwidth actually used by the receiving end is smaller than its configured bandwidth, the sending end can more flexibly determine the receiving end it can serve.
- the configured bandwidth of UE1 may be the bandwidth corresponding to subband 1, subband 4, subband 7, and subband 10, and the configured bandwidth of UE2 may be subband 2, subband 5, subband 8, and subband
- the bandwidth corresponding to 11, the configured bandwidth of UE3 may be the bandwidth corresponding to subband 3, subband 6, subband 9, and subband 12.
- the configured bandwidth of UE1 may be one of bandwidths corresponding to subband 1, subband 4, subband 7, and subband 10, and bandwidths corresponding to subband 2, subband 5, subband 8, and subband 11. and.
- the configured bandwidth of UE1 may be the sum of bandwidths corresponding to subband 1, subband 4, subband 7, and subband 10, and bandwidths corresponding to subband 3, subband 6, subband 9, and subband 12. It can be understood that for descriptions about UE2 and UE3, reference may be made to UE1, which will not be listed here. With regard to this implementation manner, it can be more applicable to the situation where the location of the UE moves, so that the receiving end can flexibly schedule the bandwidth.
- the bandwidths scheduled by each antenna array are completely independent, that is, the bandwidth ranges do not overlap (also may be referred to as disjoint), and thus the subbands do not overlap.
- the bandwidth scheduled for each antenna array is included in the configured bandwidth of the first receiving end. Therefore, the interference between different receiving ends can be effectively improved.
- the bandwidth occupied by the signal sent by each antenna array is completely independent, so the receiving end within each coverage area can receive the signal sent by different beams, and the subbands corresponding to the different beams are different. That is to say, the receiving ends within the L coverage areas can all receive signals corresponding to the Z subbands (one subband in each antenna array).
- the method shown in the embodiment of the present application is simple to implement, and the anti-interference ability of the receiving end in different coverage areas is strong.
- the antenna array in the transmitting end occupies a total of Z*L subbands, and the receiving ends within L different coverage areas can implement broadband communication in Z subbands. It can be understood that the method shown in FIG. 7 can also be understood as a signal sending method based on an independent bandwidth policy.
- the bandwidth scheduled by the first antenna array partially overlaps with the bandwidth scheduled by the second antenna array.
- the subbands scheduled by the first antenna array partially overlap with the subbands scheduled by the second antenna array.
- the L beams formed by at least two antenna arrays point to the same direction.
- the L beams formed by each antenna array point to the same direction.
- FIG. 8 is a schematic diagram of a scenario of another signal sending method provided by an embodiment of the present application.
- each antenna array can form three beams, and the subbands corresponding to the three beams are different. Meanwhile, the bandwidths scheduled by each antenna array partially overlap.
- the scheduled bandwidth of the first antenna array (array 1 shown in FIG. 8 ) is the bandwidth represented by numbers 1 to 3.
- the number 1, number 2 and number 3 may represent different subbands, such as subband 1, subband 2 and subband 3, respectively.
- the bandwidth scheduled by the second antenna array is the bandwidth corresponding to subband 2 to subband 4
- the bandwidth scheduled by the third antenna array is subband Bandwidths corresponding to subbands 3 to 5
- bandwidths scheduled by the fourth antenna array are bandwidths corresponding to subbands 4 to 6.
- the directions of the beams formed by each antenna array are correspondingly the same.
- the direction of beam 1 formed by the first antenna array, the direction of beam 2 formed by the second antenna array, the direction of beam 3 formed by the third antenna array, and the direction of beam 4 formed by the fourth antenna array are the same.
- the direction of beam 2 formed by the first antenna array, the direction of beam 3 formed by the second antenna array, the direction of beam 4 formed by the third antenna array, and the direction of beam 5 formed by the fourth antenna array are the same.
- the direction of beam 3 formed by the first antenna array, the direction of beam 4 formed by the second antenna array, the direction of beam 5 formed by the third antenna array, and the direction of beam 6 formed by the fourth antenna array are the same. It can be understood that reference can be made to FIG. 7 and the like for places not described in detail about FIG. 8 .
- the bandwidths scheduled by each antenna array partially overlap, for example, the bandwidth occupied by the signals sent by each antenna array (that is, the bandwidth corresponding to the L beams) is misplaced (for example, adjacent antenna arrays multiplex L-1 subbands).
- the beam directions corresponding to the same subband in different antenna arrays are different, or the subbands corresponding to the beams in the same direction are different.
- the embodiment of the present application does not limit the number of subbands multiplexed by adjacent antenna arrays, however, the number of multiplexed subbands is greater than or equal to 1 and less than L-1.
- signals of the same subband are sent to different receiving ends through space division multiplexing, which effectively saves bandwidth resources.
- the transmitting end occupies Z+L-1 subbands when sending signals, it can ensure that the receiving ends in L different coverage areas can realize broadband communication of Z subbands.
- the method shown in FIG. 8 can also be understood as a signal sending method for dislocation bandwidth measurement.
- the methods shown in FIG. 7 and FIG. 8 can also be collectively referred to as a signal transmission method based on the same coverage but different bandwidths.
- the method for sending a signal at the sending end is illustrated below with an example.
- the number of sub-bands of each antenna array is three, therefore, if the center frequencies of the three sub-bands of the first antenna array (just an example) are respectively represented by f1, f2, f3 Indicates that f1, f2 and f3 increase or decrease sequentially.
- the middle frequency of the first antenna array is the frequency corresponding to the second subband, that is, f2, and the direction of the beam corresponding to the second subband is, for example, area 2. Therefore, according to the introduction of the above formula (4), it can be known that the phase shift parameter of the first antenna array can satisfy the following formula (10):
- the transmitting end may set the center frequency of each subband according to the center frequency of the bandwidth scheduled by the first antenna array.
- the bandwidth scheduled by the first antenna array is the same as the bandwidth scheduled by the second antenna array.
- the direction of the i-th beam formed by the first antenna array is different from the direction of the i-th beam formed by the second antenna array, and i is an integer greater than or equal to 1 and less than or equal to L. Meanwhile, among the L beams formed by the first antenna array, at least one beam has the same direction as that of the L beams formed by the second antenna array.
- FIG. 9 is a schematic diagram of a scenario of another signal sending method provided by an embodiment of the present application.
- each antenna array can form three beams, and the subbands corresponding to the three beams are different. Meanwhile, each antenna array schedules the same bandwidth. However, the direction of the i-th beam formed by each antenna array is different.
- the bandwidth scheduled by the first antenna array (array 1 shown in FIG. 9 ) is the bandwidth represented by numbers 1 to 3.
- the number 1, number 2 and number 3 may represent different subbands, such as subband 1, subband 2 and subband 3, respectively.
- the direction of beam 1 corresponding to subband 1 points to the area where UE1 is located, the direction of beam 2 corresponding to subband 2 points to the area where UE2 is located, and the direction of beam 3 corresponding to subband 3 points to the area where UE3 is located.
- the direction of beam 1 corresponding to subband 1 points to the area where UE2 is located that is, the direction of beam 1 formed by the first antenna array is the same as that of the second antenna array.
- the directions of the beam 1 formed by the two antennas are different. It can be understood that the explanations about the second antenna array, the third antenna array (array 3 as shown in FIG. 9 ) and the fourth antenna array (array 4 as shown in FIG. 9 ) can refer to the first antenna array, which is not repeated here. Describe in detail.
- each of the Z antenna arrays included in the transmitting end can form L beams, and can cover Z+L-1 areas in total.
- the method can cover more areas, thereby serving more receivers, thereby further saving bandwidth resources.
- the bandwidth scheduled by the first antenna array is the same as the bandwidth scheduled by the second antenna array.
- each antenna array schedules the same bandwidth.
- the direction of the i-th beam formed by the first antenna array is different from the direction of the i-th beam formed by the second antenna array, and i is an integer greater than or equal to 1 and less than or equal to L.
- the directions of the L beams formed by the first antenna array are completely different from the directions of the L beams formed by the second antenna array.
- FIG. 10 is a schematic diagram of a scenario of another signal sending method provided by an embodiment of the present application.
- each antenna array can form three beams, and the subbands corresponding to the three beams are different. Meanwhile, each antenna array schedules the same bandwidth.
- the direction of the beam formed by the first antenna array is completely different from the direction of the beam formed by the second antenna array (including the case of no overlap at all).
- the direction of the beam formed by the first antenna array (array 1 shown in FIG. 10 ) points to the area where UE1 is located, the area where UE2 is located, and the area where UE3 is located.
- the directions of the beams formed by the second antenna array (array 2 shown in FIG.
- the directions of the beams formed by the third antenna array include the area where UE7 is located, the area where UE8 is located, and the area where UE9 is located. It can be understood that reference can be made to the above for the specific description of FIG. 10 , and details are not described here again.
- the methods shown in FIG. 9 and FIG. 10 may also be referred to as a signal transmission method based on the same bandwidth but different coverage. It can be understood that for the methods shown in FIG. 9 and FIG. 10 , the bandwidth scheduled by each antenna array is the same, and the bandwidth scheduled by the antenna array can be the system bandwidth, so the transmitting end can divide the subbands more flexibly, so as to pass each subband Send the signal with the corresponding beam.
- the method for sending a signal at the sending end is illustrated below with an example.
- the center frequencies of the three subbands of the first antenna array are represented by f1, f2, and f3 respectively, and these three center frequencies belong to [fmin, fmax] (ie, the configured bandwidth of the receiving end) interval.
- f1, f2, and f3 of different antenna arrays may not be exactly the same, but they all belong to the interval of [fmin, fmax]. As long as the corresponding frequencies are not much different, they can all be considered the same.
- f1 gets the phase shift coefficient pointing to area 1 to satisfy the formula (12):
- the direction of the beam corresponding to f3 of the first antenna array can also be made to point to area 3 .
- f1 of the second antenna array can also be directed to area 2 through the same method.
- each of the Z antenna arrays included in the transmitting end can form L beams, and can cover Z*L areas in total.
- the method can cover more areas, thereby serving more receivers, thereby further saving bandwidth resources.
- the frequency shown above in the present application may be represented by f, or may be represented by italic f.
- Parameters such as frequency or angle in the above formula are expressed in italics, such as f, That is, the embodiment of the present application does not limit the specific expression form of the parameters.
- the system configuration bandwidth is large enough, the signal transmission method with the same coverage but different bandwidths shown in the embodiment of the present application may be used.
- the system configuration bandwidth is not large enough, the signal transmission method of the same bandwidth but different coverage shown in the embodiment of the present application may be used.
- FIG. 11 is a schematic diagram of a scenario of another signal sending method provided by an embodiment of the present application.
- each antenna array can form three beams, and the subbands corresponding to the three beams are different. Meanwhile, each antenna array schedules different bandwidths. Directions of beams formed by at least two antenna arrays at the transmitting end partially overlap, and/or directions of beams formed by at least two antenna arrays at the transmitting end do not overlap.
- the direction of the beam formed by the first antenna array points to include the area where UE1 is located, the area where UE2 is located, and the area where UE3 is located.
- the direction of the beam formed by the second antenna array points to the area where UE2 is located, the area where UE3 is located, and the area where UE4 is located.
- the direction of the beam formed by the third antenna array includes the area where UE3 is located, the area where U4 is located, and the area where UE5 is located, which will not be listed here.
- the array 1 is the first antenna array and the array 2 is the second antenna array as an example. In a specific implementation, this embodiment of the present application does not limit specific positions of the first antenna array and the second antenna array.
- the influence of beam squint is utilized.
- a method in which different subbands of different antenna arrays can be scheduled to the same area is added.
- the purpose of achieving large-bandwidth communication with the effective bandwidth of the receiving end in this area is realized.
- the spectrum efficiency of the system is effectively improved by combining with space division multiplexing.
- the method provided in the embodiment of the present application can also direct different subbands of different antenna arrays to different areas, thereby improving the coverage of the system.
- beam scanning refers to the scanning of the wave velocity in the coverage area of the system.
- the communication device eg, including the sending end and/or receiving end
- the communication device requires a higher system rate, and thus the system bandwidth will also increase.
- the high frequency has a large bandwidth that can be utilized
- the use of high frequency is the trend of spectrum in the future.
- the method provided by the embodiment of the present application can effectively realize large-bandwidth communication of a communication device by effectively utilizing beam squint.
- the present application divides the communication device into functional modules according to the above method embodiments.
- each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
- the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in this application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
- the communication device according to the embodiment of the present application will be described in detail below with reference to FIG. 12 to FIG. 14 .
- FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application. As shown in FIG. 12 , the communication device includes a processing unit 1201 and a transceiver unit 1202 .
- the communication device may be the sending end shown above or a chip in the sending end, or the like. That is, the communication device can be used to perform the steps or functions performed by the sending end in the above method embodiments.
- the processing unit 1201 is configured to obtain at least two first signals through a first channel
- the transceiver unit 1202 is configured to send at least two first signals to at least two receiving ends according to the first antenna array.
- the transceiving unit 1202 is specifically configured to send at least two signals corresponding to the first receiving end to the first receiving end through at least two antenna arrays.
- the transceiving unit 1202 is specifically configured to send at least two signals corresponding to the second receiving end to the second receiving end through at least two antenna arrays.
- the transceiver unit 1202 is specifically configured to send at least two signals corresponding to the first receiving end to the first receiving end through at least two antenna arrays, and send the first signal to the second receiving end through the first antenna array .
- the transceiver unit 1202 is specifically configured to send at least two signals corresponding to the first receiving end to the first receiving end through at least two antenna arrays, and send signals corresponding to the first receiving end through at least two antenna arrays to the second receiving end. At least two signals corresponding to the second receiving end.
- the processing unit 1201 is configured to obtain at least two signals through at least two channels, and one channel corresponds to one signal;
- the transceiver unit 1202 is configured to send the at least two signals to the first receiving end according to the at least two antenna arrays.
- the descriptions about the first channel, the subband, the first antenna array, the receiving end, the first receiving end, etc. can also refer to the introductions in the above method embodiments (including Fig. 4 to Fig. 11 ), here I won't go into details one by one.
- transceiver unit and the processing unit shown in the embodiments of the present application are only examples.
- the specific functions or steps performed by the transceiver unit and the processing unit reference can be made to the above method embodiments, and no further details are given here.
- the processing unit 1201 may be one or more processors
- the transceiver unit 1202 may be a transceiver, or the transceiver unit 1202 may also be a sending unit and a receiving unit
- the sending unit may be a transmitter
- the receiving unit may be a receiver
- the sending unit and the receiving unit are integrated into one device, such as a transceiver.
- the processor and the transceiver may be coupled, and the connection manner of the processor and the transceiver is not limited in the embodiment of the present application.
- the communication device 130 includes one or more processors 1320 and a transceiver 1310 .
- the processor 1320 is used to obtain at least two first signals through the first channel; the transceiver 1310 is used to send the at least two first signals Two first signals.
- the transceiver 1310 is specifically configured to send at least two signals corresponding to the second receiving end to the second receiving end through at least two antenna arrays.
- the transceiver 1310 is specifically configured to send at least two signals corresponding to the first receiving end to the first receiving end through at least two antenna arrays, and send the first signal to the second receiving end through the first antenna array .
- the transceiver 1310 is specifically configured to send at least two signals corresponding to the first receiving end to the first receiving end through at least two antenna arrays, and send at least two signals corresponding to the first receiving end to the second receiving end through at least two antenna arrays. At least two signals corresponding to the second receiving end.
- the processor 1320 is configured to acquire at least two signals through at least two channels, one channel corresponding to one signal;
- the transceiver 1310 is configured to send the at least two signals to the first receiving end according to the at least two antenna arrays.
- the transceiver may include a receiver and a transmitter, the receiver is used to perform a function (or operation) of reception, and the transmitter is used to perform a function (or operation) of transmission ). And the transceiver is used to communicate with other devices/devices through the transmission medium.
- the communication device 130 may further include one or more memories 1330 (shown by dotted lines in FIG. 13 ) for storing program instructions and/or data.
- the memory 1330 is coupled to the processor 1320 .
- the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
- Processor 1320 may cooperate with memory 1330 .
- the processor 1320 may execute program instructions stored in the memory 1330 .
- a specific connection medium among the transceiver 1310, the processor 1320, and the memory 1330 is not limited.
- the memory 1330, the processor 1320, and the transceiver 1310 are connected through the bus 1340.
- the bus is represented by a thick line in FIG. 13, and the connection between other components is only for schematic illustration. , is not limited.
- the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 13 , but it does not mean that there is only one bus or one type of bus.
- the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, etc., and may realize Or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
- a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
- the memory may include but not limited to hard disk drive (hard disk drive, HDD) or solid-state drive (solid-state drive, SSD) and other non-volatile memory, random access memory (Random Access Memory, RAM), Erasable Programmable ROM (EPROM), Read-Only Memory (ROM) or Portable Read-Only Memory (Compact Disc Read-Only Memory, CD-ROM), etc.
- the memory is any storage medium that can be used to carry or store program codes in the form of instructions or data structures, and can be read and/or written by a computer (such as the communication device shown in this application, etc.), but is not limited thereto.
- the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, and is used for storing program instructions and/or data.
- the processor 1320 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs.
- the memory 1330 is mainly used to store software programs and data.
- the transceiver 1310 may include a control circuit and an antenna, and the control circuit is mainly used for converting a baseband signal to a radio frequency signal and processing the radio frequency signal.
- Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
- Input and output devices, such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
- the processor 1320 can read the software program in the memory 1330, interpret and execute the instructions of the software program, and process the data of the software program.
- the processor 1320 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
- the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1320, and the processor 1320 converts the baseband signal into data and processes the data deal with.
- the radio frequency circuit and the antenna can be set independently from the processor for baseband processing.
- the radio frequency circuit and antenna can be arranged remotely from the communication device. .
- the communication device shown in the embodiment of the present application may have more components than those shown in FIG. 13 , which is not limited in the embodiment of the present application.
- the method performed by the processor and the transceiver shown above is only an example, and for the specific steps performed by the processor and the transceiver, reference may be made to the method introduced above.
- the processing unit 1201 may be one or more logic circuits, and the transceiver unit 1202 may be an input-output interface, or called a communication interface, or an interface circuit , or interfaces and so on.
- the transceiver unit 1202 may also be a sending unit and a receiving unit, the sending unit may be an output interface, and the receiving unit may be an input interface, and the sending unit and the receiving unit are integrated into one unit, such as an input and output interface.
- the communication device shown in FIG. 14 includes a logic circuit 1401 and an interface 1402 .
- the above-mentioned processing unit 1201 can be realized by a logic circuit 1401
- the transceiver unit 1202 can be realized by an interface 1402
- the logic circuit 1401 may be a chip, a processing circuit, an integrated circuit or a system on chip (SoC) chip, etc.
- the interface 1402 may be a communication interface, an input/output interface, or a pin.
- FIG. 14 takes the aforementioned communication device as a chip as an example, and the chip includes a logic circuit 1401 and an interface 1402 .
- the logic circuit and the interface may also be coupled to each other.
- the embodiment of the present application does not limit the specific connection manner of the logic circuit and the interface.
- the logic circuit 1401 is used to obtain at least two first signals through the first channel; the interface 1402 is used to obtain at least two first signals according to the first antenna array The at least two first signals are output to at least two receiving ends.
- the interface 1402 shown in the embodiment of the present application is used to output at least two first signals to at least two receiving ends according to the first antenna array, and can also be understood as: a logic circuit 1401, and the control interface 1402 outputs at least two first signal.
- a logic circuit 1401 and the control interface 1402 outputs at least two first signal.
- the interface 1402 is specifically configured to send at least two signals corresponding to the second receiving end to the second receiving end through at least two antenna arrays.
- the interface 1402 is specifically configured to send at least two signals corresponding to the first receiving end to the first receiving end through at least two antenna arrays, and send the first signal to the second receiving end through the first antenna array.
- the interface 1402 is specifically configured to send at least two signals corresponding to the first receiving end to the first receiving end through at least two antenna arrays, and send at least two signals corresponding to the first receiving end to the second receiving end through at least two antenna arrays. At least two signals corresponding to the second receiving end.
- the logic circuit 1401 is configured to obtain at least two signals through at least two channels, and one channel corresponds to one signal;
- the interface 1402 is configured to send the at least two signals to the first receiving end according to the at least two antenna arrays.
- the communication device shown in the embodiment of the present application may implement the method provided in the embodiment of the present application in the form of hardware, or may implement the method provided in the embodiment of the present application in the form of software, which is not limited in the embodiment of the present application.
- the present application also provides a computer program, which is used to realize the operation and/or processing performed by the sending end in the method provided in the present application.
- the present application also provides a computer-readable storage medium, where computer code is stored in the computer-readable storage medium, and when the computer code is run on the computer, the computer is made to perform the operations performed by the sender in the method provided by the present application and/or or process.
- the present application also provides a computer program product, the computer program product includes computer code or computer program, when the computer code or computer program is run on the computer, the operation performed by the sender in the method provided by the present application and/or Processing is performed.
- the disclosed systems, devices and methods may be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division. In actual implementation, there may be other division methods.
- multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
- the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
- the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to realize the technical effects of the solutions provided by the embodiments of the present application.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
- the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
- the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
- the storage medium includes several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
- the aforementioned readable storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (random access memory, RAM), magnetic disk or optical disk, etc., which can store program codes. medium.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种信号处理方法及装置,该方法包括:发送端通过第一通道获取至少两个第一信号;所述发送端根据第一天线阵列向至少两个接收端发送所述至少两个第一信号,一个所述接收端对应一个所述第一信号,所述至少两个第一信号中每个第一信号所对应的子带不同,一个所述接收端对应一个波束,所述至少两个接收端中每个接收端所对应的波束的方向不同,所述波束由所述第一天线阵列形成。本申请实施例提供的方法可以有效提高频域资源的利用效率。
Description
本申请要求于2021年12月02日提交中国专利局、申请号为202111467841.X、申请名称为“信号发送方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,尤其涉及一种信号发送方法及装置。
在未来的通信系统中,由于毫米波通信或太赫兹通信因其丰富的频段资源有望解决日益增长的无线速率需求,因此成为工业界研究和开发的热点。虽然毫米波通信或太赫兹通信可以使用大量的无线频带,但高频率的载波也会带来更大的无线传播衰减(其中包括电磁能量的自由衰减和分子吸收损耗等),从而限制了传播距离并降低了频谱效率。
为了改善高频通信存在的传播损耗,通信系统通常需配备天线阵列来提供能量增益。
由此,如何有效利用天线阵列发送信号亟待解决。
发明内容
本申请提供一种信号发送方法及装置,通过天线阵列发送信号时可以有效提高频域资源的利用效率。
第一方面,本申请实施例提供一种信号处理方法,所述方法包括:
发送端通过第一通道获取至少两个第一信号;所述发送端根据第一天线阵列向至少两个接收端发送所述至少两个第一信号,一个所述接收端对应一个所述第一信号,所述至少两个第一信号中每个第一信号所对应的子带不同,一个所述接收端对应一个波束,所述至少两个接收端中每个接收端所对应的波束的方向不同,所述波束由所述第一天线阵列形成。
本申请实施例所示的方法中,发送端可以根据一个天线阵列(如第一天线阵列)分别向至少两个接收端发送第一信号,即发送端可以根据第一天线阵列向至少两个波束的覆盖范围内的接收端发送第一信号。从而,有效提高了频域资源的利用效率。
在一种可能的实现方式中,所述至少两个接收端包括第一接收端,所述发送端根据第一天线阵列向至少两个接收端发送所述至少两个第一信号包括:所述发送端通过至少两个天线阵列向所述第一接收端发送与所述第一接收端对应的至少两个信号,所述至少两个天线阵列包括所述第一天线阵列,所述与所述第一接收端对应的至少两个信号包括所述第一信号,所述与所述第一接收端对应的至少两个信号分别对应不同的子带。
一个接收端还能够同时被至少两个子带所对应的波束服务,因此使得接收端实现了大带宽通信,同时提高了系统的通信容量。可理解,关于本申请实施例提供的说明还可以参考图5至图11的说明。
在一种可能的实现方式中,所述至少两个天线阵列还包括第二天线阵列;所述第一天线阵列形成的第i个波束的方向与所述第二天线阵列形成的第i个波束的方向相同,所述i为大于或等于1的整数,且小于或等于L的整数,所述L为所述第一天线阵列形成的波束数量或者所述第二天线阵列形成的波束数量。
在一种可能的实现方式中,所述第一天线阵列形成的第i个波束所对应的子带与所述第二天线阵列形成的第i个波束所对应的子带不同。
在一种可能的实现方式中,所述至少两个天线阵列还包括第二天线阵列;所述第一天线阵列形成的第i个波束的方向与所述第二天线阵列形成的第i个波束的方向不同,所述i为大于或等于1的整数,且小于或等于L的整数,所述L为所述第一天线阵列形成的波束数量或者所述第二天线阵列形成的波束数量。
在一种可能的实现方式中,所述第一天线阵列调度的带宽和所述第二天线阵列调度的带宽相同;或者,所述第一天线阵列调度的带宽和所述第二天线阵列调度的带宽不同;或者,所述第一天线阵列调度的带宽和所述第二天线阵列调度的带宽部分重叠。
在一种可能的实现方式中,所述方法还包括:所述发送端根据所述第一天线阵列形成的波束的方向确定所述至少两个接收端。
在一种可能的实现方式中,所述方法还包括:所述发送端根据所述至少两个接收端所在的区域确定所述第一天线阵列的波束的方向。
在一种可能的实现方式中,所述发送端调度的带宽大于或等于第一阈值。
在一种可能的实现方式中,所述第一天线阵列所调度的子带大小小于或等于第二阈值。
在一种可能的实现方式中,所述至少两个接收端包括第二接收端,所述发送端根据第一天线阵列向至少两个接收端发送所述至少两个第一信号包括:所述发送端通过第一天线阵列向所述第二接收端发送所述第一信号;或者,所述发送端通过至少两个天线阵列向所述第二接收端发送与所述第二接收端对应的至少两个信号;所述至少两个天线阵列包括所述第一天线阵列,所述与所述第二接收端对应的至少两个信号包括所述第一信号,所述与所述第二接收端对应的至少两个信号分别对应不同的子带。
可理解,向第二接收端发送信号的至少两个天线阵列可以与向第一接收端发送信号的至少两个天线阵列相同,也可以不同。
第二方面,本申请实施例提供一种信号发送方法,所述方法包括:
发送端通过至少两个通道获取至少两个信号,一个通道对应一个信号;所述发送端根据至少两个天线阵列向第一接收端发送所述至少两个信号,一个信号对应一个天线阵列,且所述至少两个信号中每个信号所对应的子带不同,所述第一接收端对应至少两个波束,且所述至少两个波束中每个波束的方向。
在一种可能的实现方式中,所述至少两个天线阵列包括第一天线阵列和第二天线阵列。
可理解,关于第二方面的说明还可以参考第一方面中关于第一接收端的说明,这里不再详述。或者,关于本申请实施例提供的方法可以参考下文关于图6a的说明。
第三方面,本申请实施例提供一种通信装置,用于执行第一方面、第二方面或意可能的实现方式中的方法。该通信装置包括具有执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法。或者,该处理器用于执行存储器中存储的程序,当该程序被执行时,上述第一方面、第二方面或任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信 号。
第五方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;所述逻辑电路,用于通过第一通道获取至少两个第一信号;所述接口,用于输出所述至少两个第一信号。
或者,所述逻辑电路,用于通过至少两个通道获取至少两个信号;所述接口,用于输出所述至少两个信号。
第六方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面、第二方面或任意可能的实现方式所示的方法被执行。
第七方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第一方面、第二方面或任意可能的实现方式所示的方法被执行。
第八方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第一方面、第二方面或任意可能的实现方式所示的方法被执行。
第九方面,本申请实施例提供一种通信系统,所述通信系统包括发送端和接收端,所述发送端用于执行如第一方面、第二方面或任意可能的实现方式所示的方法。
上述第二方面至第九方面达到的技术效果可以参考第一方面的技术效果或下文所示的方法实施例中的有益效果,此处不再重复赘述。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种信号发送的场景示意图;
图3是本申请实施例提供的另一种信号发送的场景示意图;
图4是本申请实施例提供的一种信号发送方法的流程示意图;
图5是本申请实施例提供的一种信号发送方法的场景示意图;
图6a是本申请实施例提供的一种信号发送方法的流程示意图;
图6b是本申请实施例提供的一种信号发送方法的场景示意图;
图7至图11是本申请实施例提供的一种信号发送方法的场景示意图;
图12至图14是本申请实施例提供的一种通信装置的结构示意图。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式 地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
本申请提供的方法可以应用于各类通信系统,例如,可以是物联网(internet of things,IoT)系统、窄带物联网(narrow band internet of things,NB-IoT)系统、长期演进(long term evolution,LTE)系统,也可以是第五代(5th-generation,5G)通信系统,以及未来通信发展中出现的新的通信系统(如6G)等。以及本申请提供的方法还可以应用于无线局域网(wireless local area network,WLAN)系统,如无线保真(wireless-fidelity,Wi-Fi)等。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(long term evolution-machine,LTE-M)、设备到设备(device-todevice,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络、工业互联网或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车与任何事物(vehicle-to-everything,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。示例性的,下文示出的图1中,终端设备与终端设备之间便可以通过D2D技术、M2M技术或V2X技术通信等。
图1是本申请实施例提供的一种通信系统的架构示意图。如图1所示,该通信系统包括:网络设备101和终端设备102。
示例性的,网络设备可以是下一代节点B(next generation node B,gNB)、下一代演进型基站(next generation evolved nodeB,ng-eNB)、或者6G通信中的网络设备等。网络设备可以是任意一种具有无线收发功能的设备,包括但不限于以上所示的基站(包括部署于卫星上的基站)。该基站还可以是未来通信系统如第六代通信系统中的基站。可选的,该网络设备可以为无线局域网(wireless fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。可选的,该网络设备可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。可选的,该网络设备可以是可穿戴设备或车载设备等。可选的,该网络设备还可以是小站,传输接收节点(transmission reception point,TRP)(或也可以称为传输点)等。可理解,该网络设备还可以是未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站等等。
在一些部署中,基站(如gNB)可以由集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)构成。即对接入网中的基站的功能进行拆分,将基站的部分功能部署在一个CU,将剩余功能部署在DU。且多个DU共用一个CU,可以节省成本,以及易于网络扩展。在基站的另一些部署中,CU还可以划分为CU-控制面(control plane,CP)和CU-用户面(user plan,UP)等。在基站的又一些部署中,基站还可以是开放的无线接入网(open radio access network,ORAN)架构等等,本申请对于基站的具体类型不作限定。
示例性的,该终端设备也可称为用户设备(user equipment,UE)、终端等。终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。可理解,该终端设备还可以是未来6G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可理解,本申请示出的终端设备不仅可以包括车联网中的车辆(如汽车)、而且还可以包括车联网中的车载设备或车载终端等,本申请对于该终端设备应用于车联网时的具体形态不作限定。图1所示的网络设备和终端设备的数量仅为示例,不应将其理解为对本申请实施例的限定。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以下介绍本申请涉及的术语。
波束斜视(beam squint):在天线阵列通过移相器实现波束转向时,信号能量在频段范围内无法完全聚焦的现象。示例性的,若希望通过天线阵列发送的信号能量在某一方向聚焦时,可以通过移相器设置一定的相位补偿来实现。但这样的相位补偿通常只能针对一种频率(如载波中心频率),使其信号能量在设置的方向上叠加。对于非该频率的信号,能量叠加的方向并非是设置的方向,而是有一定的偏移,由此称为波束斜视。波束斜视导致了不同频率分量的信号,朝着不同方向汇聚。
数字通道:基带数字端口到射频(radio frequency,RF)链路的通道。例如,基带处理得到的数据流(也可以称为基带信号)到达RF之间的通道。例如,通过该数字通道可以将经过基带处理得到的数据流通过数模转换器(digital to analog converter,DAC)变成模拟信号。示例性的,数字通道可以用于传输数据流。一个数字通道传输的数据流可以包括多个子带对应的信号,该多个子带对应的信号携带多个接收端对应的数据,一个子带对应的信号携带一个接收端对应的数据。本申请实施例中,发送端可以包括一个或多个数字通道。当发送端包括多个数字通道的情况下,该多个数字通道可以同时传输多个数据流,从而提高了系统的吞吐量。示例性的,该多个数据流可以通过时分复用、频分复用或空分复用中的一项或多项被隔离开,从而保证发送端可以通过多个数字通道传输多个数据流。
天线阵列:一个数字通道对应的天线可以称为是一个天线阵列。本申请所示的方法中,发送端可以包括一个或多个天线阵列。示例性的,一个天线阵列可以包括多个天线阵元。该天线阵元也可以称为天线单元或天线阵子等,本申请实施例对于该天线阵元的具体名称不作限定。可理解,本申请实施例所示的天线阵列也可以简称为阵列。
移相器:天线阵列中一个天线阵元或多个天线阵元可以对应一个移相器。示例性的,移相器的移相参数用于配置移相器,如通过改变移相器的移相参数可以达到调整波束方向的目的。可理解,本申请实施例对于天线阵列中每个天线阵元的幅度和/或相位的调整方式不作限 定。可理解,本申请实施例关于图5、图6a以及图7至图11中是以一个移相器对应一个天线阵元为例示出的,但是不应将其理解为对本申请实施例的限定。
子带:发送端可以将天线阵列调度的带宽划分为多个子带。也就是说,子带可以理解为是天线阵列可利用的带宽中部分连续带宽,或者理解为是子带宽或子频带等。本申请所示的方法中,将一个天线阵列发送信号时占用的带宽称为该天线阵列调度的带宽,或者,称为该天线阵列使用的带宽。例如,发送端发送第一信号时的带宽称为发送该第一信号的第一天线阵列调度的带宽。可理解,本申请实施例所示的不同子带可以理解为是不同的频域资源。
波束的方向:通过改变移相器的移相参数可以调整波束的方向。需要说明的是,本申请实施例所示的波束的方向可以用于表示该波束所对应的子带的中心频率的方向。例如,本申请实施例所示的至少两个接收端中每个接收端所对应的波束的方向不同,可以理解为:每个接收端所对应的子带的中心频率的方向不同,或者,每个接收端所对应的子带的中心频率的指向不同等。类似的,本申请实施例所示的波束的覆盖范围不同,也可以理解为与波束对应的子带的中心频率不同。
本申请实施例所示的两个波束(或两个以上的波束)的方向相同指的是:两个波束的覆盖范围在一定区域内是相同的,或者,两个波束的方向在一定的误差允许范围内是相同的。示例性的,两个波束的方向相同指的是这两个波束在3dB波束宽度所覆盖的范围内有80%或80%以上的重叠。又如,两个波束的方向相同指的是这两个波束在3dB波束宽度所覆盖的范围内有90%或90%以上的重叠等。又如,针对一个接收端来说,通过至少两个天线阵列所对应的波束向该接收端发送信号时,如第一天线阵列形成的第i个波束的方向与第二天线阵列形成的第i个波束的方向相同,指的是该接收端同时在这两个波束的3dB波束宽度覆盖范围内。
其中,c表示光速,f是发送的信号的频率,λ是信号的波长。
对于带宽较小的信号来说,可以认为发送的信号的频率就是载波频率,即f=f
c。该情况下,可以使用移相器将天线发送的信号的相位根据Δθ反向补偿,使得所有信号到达波平面时相位相同,从而达到能量叠加的目的。
然而,在毫米波通信或太赫兹通信中,由于其频谱效率低但频谱资源丰富的特点,通常需要传输大带宽的信号来提升通信速率。设B为信号的带宽,则发送的信号的频率满足公式(2):
其中,N是天线阵元的数量。关于其他参数的含义可以参考上述描述。
由上述公式可以看出,各天线阵元发送信号在离去角
方向上的相位变化是和频率f相关的,然而用于补偿的移相器通常被认为是无频率选择性响应的(如对所有频率的信号补偿相同的相位)。在实际应用中,往往根据载波中心频率,设置相位补偿,从而抵消各信号在离去角
方向上相位变化。这样的归一化移相参数的向量可以满足如下公式:
关于各参数的含义可以参考上述描述,这里不再详述。
可理解,本申请实施例上述所示的公式(2)至公式(5)仅为示例,不应将其理解为对本申请实施例的限定。
(2)当
时,f=f
c时信号分量的波束能量增益可达最大。对于f≠f
c的信号分量,f偏离f
c越多,能量增益越小。并且,波束离去角
越靠近±90°,f≠f
c的信号分量增益减少的越明显。天线阵元数量N越大,f≠f
c的信号分量增益减少的越明显。
同时,若使用相位控制系数为
的天线阵列,则只能使f=f
c的信号分量产生在
方向上产生最大的能量增益,而f≠f
c的信号分量在
方向上的能量增益将减少。这是因为相位控制系系数为
的天线阵列会将f≠f
c的信号在偏离
的方向上聚焦。也就是说,利用相控阵对信号实现定向能量增益时,不同频率的信号分量指向方向不一样(即波束斜视的现象)。
同时,天线阵列所调度带宽可以被划分为多个子带,由此,当移相参数选定时,每个子带所对应的信号的能量将朝着不同的方向传播,也可以理解为每个子带所对应的信号对应不同方向的波束(也可以理解为是不同子带对应不同的窄波束)。
图3是本申请实施例提供的另一种信号发送的场景示意图。当发送端需要发送信号时,可以根据上述公式(3)和/或公式(4)设置移相参数,从而使得天线阵列所形成的波束指向UE。如图3所示,当天线阵列的波束成形器和/或移相器被设置后,由于波束斜视的现象,每个子带到达某个UE的能量是不同的,其中指向UE方向的波束(即图3实线部分的最中间的波束)能传递最大的信号能量,其对应的子带将被调度为该UE服务。其余的子带(如图3虚线部分的波束),由于对应的波束所能传递的信号能量太小,因此这些频谱资源无法被有效利用。
也就是说,图3所示的发送信号的方法中,通过天线阵列发送信号时,只有部分子带所对应的波束能被有效利用(即有效波束),其余的子带可以认为是无效波束。或者,也可以理 解为是通过天线阵列发送信号时只能为一类UE(即图3实线部分的波束的覆盖范围内的UE)服务。同时,图3所示的方法中,UE被配置的带宽常常比较小,由此根据上述公式(5)可知,当UE配置的带宽比较小时,波束斜视的影响可忽略。
然而,随着系统带宽逐渐增加(如随着通信系统的发展,系统带宽逐渐增加),如果仍使用图3所示的方法发送信号,则会使得UE只能使用部分带宽,导致UE无法实现大带宽通信。尤其是在毫米波通信和/或太赫兹通信场景,由于其丰富的频段资源,系统带宽较大,同时需要为UE配置大带宽,使得UE能够有效利用大带宽通信。然而,图3所示的方法中,无效波束较多,由此造成大部分频域资源的浪费。可选的,图3所示的方法还会导致UE无法有效利用大带宽通信。
鉴于此,本申请实施例提供第一种信号发送方法及装置,通过天线阵列发送信号时,可以有效利用该天线阵列所能调度的带宽,使得该天线阵列所调度的带宽的至少两个子带所对应的波束被有效利用,从而为至少两个不同覆盖范围内的接收端服务,提高频域资源的利用效率。可选的,发送端可以通过多个天线阵列分别向一个接收端发送信号。可选的,发送端可以通过多个天线阵列分别向多个接收端发送信号。可选的,发送端可以通过一个天线阵列如第一天线阵列分别向多个接收端发送第一信号。本申请实施例提供的方法可以是上述任一种方法,也可以是上述方法的结合等。可选的,本申请实施例中,一个接收端能够同时被至少两个子带所对应的波束服务,因此使得接收端实现了大带宽通信(如相对于图3所示的方法接收端可利用的带宽增大),提高了接收端的信道容量。
可理解,本申请实施例所示的发送端可以包括图1所示的网络设备,接收端可以包括图1所示的终端设备。或者,发送端可以包括终端设备。或者,该发送端和该接收端还可以是如图1所示的终端设备,且该发送端是V2X中具有网络功能的终端设备。示例性的,发送端可以是配置有大规模天线阵列的基站。该大规模天线阵列可以理解为天线阵元的个数较多的天线阵列。例如,当天线阵列中的天线阵元的数量大于或等于128个,或则,大于或等于256个等时,该天线阵列可以称为大规模天线阵列。可理解,本申请实施例所示的大规模天线阵列的说明仅为示例,不应将其理解为对本申请实施例的限定。
图4是本申请实施例提供的一种信号发送方法的流程示意图,如图4所示,该方法包括:
401、发送端通过第一通道获取至少两个第一信号。
上述第一通道可以包括数字通道,关于该数字通道的说明可以参考上文,这里不再详述。可理解,该数字通道也可以称为数据通道。本申请实施例对于第一通道的名称不作限定。可理解,这里所示的第一通道可以理解为是一个数字通道,或一个数据通道。如发送端通过一个数字通道获取至少两个第一信号。示例性的,发送端可以根据不同接收端的时频资源进行时域资源和/或频域资源映射等,从而获得至少两个信号。
第一信号可以理解为是通过第一天线阵列发送出去的信号,即通过第一天线阵列发送出去的信号都可以称为第一信号。该第一天线阵列同时发送至少两个第一信号时,该至少两个第一信号可以是至少两个接收端的第一信号。也就是说,尽管通过第一天线阵列发送的信号都称为第一信号,但是发送给不同接收端的第一信号可以是不同的。需要说明的是,这里所示的“同时”可以理解为发送端所获取的信号是通过一个数字通道获得的。
需要说明的是,本申请实施例所示的不同接收端指的是分别位于不同波束的覆盖范围内。也就是说,本申请实施例所示的不同接收端的区别在于:位于不同波束的覆盖范围内,或者,不同接收端所对应的波束的指向不同,或者,不同接收端所对应的波束的方向不同。举例来说,图5所示的UE1至UE5分别位于不同波束的覆盖范围内。本申请实施例对于一个波束 的覆盖范围内所包括的接收端的数量不作限定。如图5所示的波束1的覆盖范围内还可以包括更多数量的UE1。即本申请的附图是以一个波束的覆盖范围内包括一个UE为例说明的,不应将其理解为对本申请实施例的限定。
402、发送端根据第一天线阵列向至少两个接收端发送至少两个第一信号。
其中,一个接收端对应一个第一信号,至少两个第一信号中每个第一信号所对应的子带不同,一个接收端对应一个波束,至少两个接收端中每个接收端所对应的波束的方向不同。该波束可以由第一天线阵列形成。也就是说,第一天线阵列可以形成至少两个波束,每个波束所对应的子带不同,该第一天线阵列可以通过不同的子带所对应的波束向接收端发送信号。
关于子带与波束的关系可以参考上文关于波束斜视的介绍或关于图2和图3的介绍等,这里不再一一详述。示例性的,第一天线阵列形成的波束的数量与第一天线阵列调度的子带数量相同。当发送端分别向接收端发送第一信号时,对应的,接收端接收第一信号。
可理解,第一天线阵列形成的单个波束还可以称为是窄波束。上述所示的至少两个接收端中每个接收端所对应的波束的方向不同,还可以理解为:该至少两个接收端中每个接收端所对应的波束的指向不同,或者,该至少两个接收端中每个接收端所对应的波束的覆盖范围不同。
在一种可能的实现方式中,发送端可以根据第一天线阵列所形成的波束的方向确定上述至少两个接收端,即确定第一天线阵列服务的接收端。也就是说,在第一天线阵列的移相参数设置完成之后,该第一天线阵列可以根据波束的方向和/或波束的覆盖范围确定可以接收到第一信号的接收端。
在另一种可能的实现方式中,发送端可以根据接收端所在的区域确定第一天线阵列的波束的方向,如确定该第一天线阵列的移相参数(仅为示例,如还可以理解为确定波束成形器等)等。例如,接收端已经确定的情况下,则表示波束的覆盖范围需要覆盖该接收端,由此,发送端可以根据接收端所在的区域确定波束的方向,从而确定移相器的移相参数等。又例如,发送端可以通过调度不同的子带资源来同时服务不同覆盖范围内的接收端。又例如,发送端可以通过波束赋形技术调整波束的方向。本申请实施例对于发送端如何调整波束的指向不作限定。在系统带宽比较大的情况下,由于波束斜视的影响,如果仍然通过一个天线阵列为一个波束的覆盖范围内的接收端服务,会导致带宽的浪费。因此,本申请实施例中,可以有效利用波束斜视,如通过调整第一天线阵列发送信号时的移相参数,使得第一天线阵列形成的不同波束都能够被有效利用,从而为该不同波束的覆盖范围内的接收端服务。
可理解,本申请实施例关于波束与接收端的说明,下文同样适用,如对于图6a、以及实施例一至实施例四等均适用。
本申请实施例中,发送端调度的带宽大于或等于第一阈值。同时,发送端调度的带宽大于或等于接收端被配置的带宽。当发送端调度的带宽(即上文所示的可利用带宽)较大时,通过本申请实施例,不仅使得发送端能够向不同覆盖范围内的接收端发送第一信号;而且由于接收端所对应的子带不同还可以尽量避免各个第一信号之间的干扰。示例性的,发送端可以根据其形成的波束的覆盖范围设置子带的大小。又如,发送端可以根据其形成的每个波束之间的隔离度设置子带的大小。又如,发送端可以根据系统带宽及波束指向斜视的程度确定子带的大小等,本申请实施例对于子带的大小不作限定。可理解,本申请实施例所示的发送端调度的带宽还可以理解为系统带宽。接收端被配置的带宽表示网络设备为该接收端配置的带宽,如也可以理解为是该接收端可使用的带宽。
本申请实施例中,第一天线阵列调度的子带的大小小于或等于第二阈值,又或者第一信 号所对应的子带不能超过第二阈值(如子带的带宽不能超过第二阈值)。也就是说,该第二阈值如果过大,会由于波束斜视的现象导致接收端无法有效利用该第一信号所对应的子带。示例性的,该第二阈值可以根据第一信号的子带大小和/或第一信号的离去角确定。又如,该第二阈值可以根据第一信号的子带大小、第一信号的离去角以及第一天线阵列的阵元数量确定。示例性的,假设子带的中心频率为f
c,移相器的移相系数向量为
第一信号的能量集中方向为
则对于该第一信号所对应的子带中的非中心频率f
*的第一信号分量在方向
上的能量增益
可以满足公式(6):
其中,
表示移相参数的向量的转置,
表示每个天线阵元在发送频率f
*为的信号时,在能量集中方向
上的相位变化向量,N表示第一天线阵列的天线阵元的数量,d
a表示相邻的天线阵元之间的间距,
表示第一信号的能量集中的方向,也可以表示第一信号的离去角,f
c表示第一信号的子带的中心频率,f
*表示第一信号的子带的非中心频率。可理解,公式(6)仅为示例,不应将其理解为对本申请实施例的限定。
根据公式(6)可知:上述函数是关于正弦函数的表达式,且该函数存在一个主瓣,峰值在f
*=f
c时取得,随着f
*偏离f
c,能量逐渐减小。在第一零陷位置能量缩减为0。该第一零陷所对应的频率满足公式(7):
根据公式(7)可知:第一信号所对应的子带的上限阈值(即第二阈值)需要满足公式(8):
可理解,关于公式(7)至公式(9)中涉及的参数可以参考公式(6)。
可理解,本申请实施例所示的第一信号的子带的说明同样适用于其他信号,下文不再一一赘述。
可选的,发送端可以包括多个天线阵列,该多个天线阵列包括第一天线阵列。该多个天线阵列中每个天线阵列所划分的子带的大小是否相同,本申请实施例不作限定。
相对于图3来说,发送端根据一个天线阵列只能向一个接收端发送信号,即发送端只能 向一个有效波束的覆盖范围内的接收端发送信号。然而,本申请实施例所示的方法中,发送端可以根据一个天线阵列(如第一天线阵列)分别向至少两个接收端发送第一信号,即发送端可以根据第一天线阵列向至少两个波束的覆盖范围内的接收端发送第一信号。从而,有效提高了频域资源的利用效率。
在本申请的一些实施例中,发送端可以包括一个天线阵列,如第一天线阵列。因此,以下将以第一天线阵列为例说明本申请实施例提供的信号发送方法。
图5是本申请实施例提供的一种信号发送方法的场景示意图,如图5所示,最左边的数字1至5表示第一天线阵列(如图5所示的阵列1)划分的子带,不同的数字可以表示子带所对应的频域资源是不同的,从下往上的箭头表示从带宽的最低频率到带宽的最高频率。根据波束斜视的现象可知,频率越高,则与该频率对应的波束越向天线阵列的法线方向偏移。因此,由于子带1的中心频率、子带2的中心频率、子带3的中心频率、子带4的中心频率和子带5的中心频率依次减小,因此,波束的方向可以如图5所示,即子带1对应的波束的方向偏向天线阵列的法线方向,子带2对应的波束方向、子带3对应的波束方向、子带4对应的波束方向和子带5对应的波束的方向依次偏离天线阵列的法线方向。可理解,关于子带与波束的方向之间的说明下文同样适用。
可理解,本申请实施例对于数字1至数字5所表示的子带大小的具体数值不作限定。示例性的,该数字1至数字5所表示的子带之间可以是连续的。或者,每两个相邻子带之间可以包括隔离带等,本申请实施例对此不作限定。第一天线阵列调度的子带1、波束中的数字1以及UE1是对应的。如子带1所对应的波束为波束1,该波束1的覆盖范围内的UE包括UE1(也可以理解为该波束1的方向为UE1所在的区域)。对于数字1的说明同样的适用于数字2至数字5,这里不再一一详述。
本申请实施例中,由于不同子带所对应的波束方向(也可以称为波束的指向)不同,则可以为5个不同覆盖范围内的接收端服务。如一个子带可以对应一个波束,且子带所对应的频域资源不同,因此当发送端同时向UE1至UE5发送第一信号时,几乎可以忽略该UE1至UE5之间的干扰。通过第一天线阵列向至少两个不同覆盖范围内的发送端发送信号,即通过频分复用的方式有效提高了频域资源的利用效率。
可理解,图5仅示例性示出了5个子带,本申请实施例对于第一天线阵列所划分的子带的数量不作限定。可理解,图5所示的第一天线阵列可以通过数字通道1获取五个第一信号,然后同时发送该五个第一信号。可理解,图5是以发送端为基站,接收端为UE为例来说明本申请实施例提供的方法,但是,不应将其理解为对本申请实施例的限定。
本申请实施例中,不同子带所对应的信号的能量分布可以对应不同的波束。即通过频分复用的方式使得单个天线阵列可以同时服务多个接收端,同时也可以使多个接收端(即多个不同覆盖范围内的接收端)实现窄带通信。
在本申请的另一些实施例中,发送端可以包括至少两个天线阵列,该至少两个天线阵列中包括第一天线阵列。示例性的,通过至少两个天线阵列可以向第一接收端发送信号。可选的,发送端还可以通过该至少两个天线阵列中的一个天线阵列向第二接收端发送信号。可选的,发送端还可以通过至少两个天线阵列向第二接收端发送信号。向第二接收端发送信号的至少两个天线阵列可以与向第一接收端发送信号的至少两个天线阵列相同;或者,不同等,本申请实施例不作限定。这里所示的不同,可以包括天线阵列完全不重叠的情况,或者,包 括至少一个天线阵列重叠的情况。
在一种可能的实现方式中,上述至少两个接收端包括第一接收端,上述发送端根据第一天线阵列向至少两个接收端发送上述至少两个第一信号包括:
通过至少两个天线阵列向上述第一接收端发送与上述第一接收端对应的至少两个信号,上述至少两个天线阵列包括上述第一天线阵列,上述与上述第一接收端对应的至少两个信号包括上述第一信号,上述与上述第一接收端对应的至少两个信号分别对应不同的子带。
也就是说,第一接收端可能接收到至少两个信号,该至少两个信号分别是通过不同的天线阵列的不同子带发送的。示例性的,发送端可以通过两个天线阵列向第一接收端发送两个信号,即一个天线阵列对应一个信号。如发送端可以通过第一天线阵列和第二天线阵列同时向第一接收端发送第一信号和第二信号,第一信号是第一天线阵列通过第一子带发送的,第二信号是第二天线阵列通过第二子带发送的。同时,该第一信号和该第二信号分别是通过不同数字通道获取的。又如,发送端可以通过三个天线阵列向第一接收端发送三个信号等,这里不再一一列举。
可理解,关于第一接收端的说明同样适用于第二接收端,如发送端可以通过一个或多个天线阵列向该第二接收端发送与该第二接收端对应的信号。但是,向第一接收端发送信号的天线阵列可能与向第二接收端发送信号的天线阵列相同,也可以部分重叠,也可能完全不重叠,本申请实施例对此不作限定。
需要说明的是,对于接收端来说,其可能并不会感知到其接收到的信号是一个信号还是两个信号。接收端只是接收到了发送端的通过空分复用和/或频分复用发送的信号。可理解,本申请实施例所示的频分复用可以理解为同时发送不同频域资源所对应的信号,空分复用可以理解为通过多个天线阵列同时向接收端发送相同频域资源的信号。当然,空分复用也可以通过双极化方式实现。
本申请实施例所示的至少两个天线阵列可以是发送端中的全部天线阵列,也可以是发送端中的部分天线阵列,本申请实施例对此不作限定。也就是说,本申请实施例对于发送端是通过几个天线阵列为一个接收端服务的不作限定。示例性的,以第一接收端为例,发送端可以先通过一个天线阵列如第一天线阵列服务该第一接收端,如果第一接收端被配置的带宽大于第一天线阵列所能调度的带宽,则可以通过多个天线阵列为该第一接收端服务。例如,发送端还可以通过调用第二天线阵列服务该第一接收端。示例性的,若第二发送阵列没有服务别的接收端,则发送端可以选择一个第一接收端未采用的子带,通过波束权值设定使该选定的子带指向第一接收端。若第二天线阵列已经在服务其他接收端(即波束成形器已经确定),则可以判断发射机的配置带宽中是否存在频段能够在当前波束成形器下发送给第一接收端的带宽。如果存在,则发送具有该带宽的信号给第一接收端。如果不存在,则考虑其他天线阵列。可理解,这里所示的发送端为接收端配置天线阵列的方法仅为示例,不应将其理解为对本申请实施例的限定。
可理解,关于本申请实施例的具体说明还可以参考下文所示的实施例一至实施例四,这里先不一一详述。
在本申请的又一些实施例中,发送端还可以通过至少两个天线阵列向一个接收端发送信号。图6a是本申请实施例提供的一种信号发送方法的流程示意图,如图6a所示,该方法包括:
601、发送端通过至少两个通道获取至少两个信号,一个通道对应一个信号。
602、发送端根据至少两个天线阵列向第一接收端发送至少两个信号。
其中,一个信号对应一个天线阵列,且至少两个信号中每个信号所对应的子带不同,第一接收端对应至少两个波束,且至少两个波束中每个波束的方向。对应的,第一接收端可以接收来自发送端的信号。
在一种可能的实现方式中,所述至少两个天线阵列包括第一天线阵列和第二天线阵列。
可理解,关于图6a的说明,可以参考上述关于图4的说明,这里不再一一详述。或者,也可以参考下文所示的图6b。
图6b是本申请实施例提供的另一种信号发送方法的场景示意图。如图6b所示,接收端(如图6b所示的UE)可以接收到来自Z个天线阵列所发送的信号。同时,这Z个天线阵列中每个天线阵列所调度的子带是不同的。但是,每个天线阵列所调度的子带所对应的波束的方向是相同的。如每个天线阵列将其调度的带宽划分为5个子带,如果每个天线阵列中都有一个子带所形成的波束可以指向该UE,则该UE最多可以接收到来自Z个波束的信号。由此,由于不同波束所对应的子带不同,因此该UE有效实现了大带宽通信,有效增加了通信效率。
可理解,图6b仅示例性示出了三个天线阵列,即省略号省略的是天线阵列,以及与该天线阵列形成的波束。
可理解,关于图6b的具体说明还可以参考下文所示的图7至图10,这里先不一一详述。
针对上述各个实施例,每个天线阵列(如包括Z个天线阵列)在发射信号时可以产生L个波束(对应L个子带)(仅为示例,如不同天线阵列所划分的子带可能不同)。该L个波束可以对应L个区域,一个波束对应一个区域(也可以理解为一个波束对应一个覆盖范围内的接收端)。同时,一个天线阵列所形成的L个波束的覆盖范围不同,也可以理解为一个天线阵列形成的L个波束的方向不同。Z为大于或等于2的整数,L为大于或等于2的整数。示例性的,发送端包括Z个天线阵列,每个天线阵列调度的带宽可以包括L个子带,即每个天线阵列可以调度L个子带,则一个接收端使用的带宽最多包括Z个子带对应的带宽,即发送端可以向接收端发送最多Z个方向的波束,或者,也可以理解为接收端最多可以接收到来自Z个波束发送的信号。可理解,一个接收端所对应的Z个子带中每个子带是不同的。
可选的,第一天线阵列形成的第i个波束的方向与第二天线阵列形成的第i个波束的方向相同,i为大于或等于1,且小于或等于L的整数。可理解,每个天线阵列形成的L个波束的方向对应相同也可以理解为:每个天线阵列中对应波束的方向相同,或者,每个天线阵列对应位置的波束方向相同等。示例性的,每个天线阵列形成的L个波束的方向对应相同。
本申请实施例中,第一天线阵列形成的第i个波束所对应的子带与第二天线阵列形成的第i个波束所对应的子带不同。也就是说,对应波束的方向相同时,该对应波束所对应的子带是不同的。关于该说明可以参考下文所示的实施例一和实施例二。可理解,实施例一和实施例二是以每个天线阵列形成的波束数量相同为例示出的,不应将其理解为对本申请实施例的限定。
可选的,第一天线阵列形成的第i个波束的方向与第二天线阵列形成的第i个波束的方向不同,i为大于或等于1,且小于或等于L的整数。示例性的,每个天线阵列形成的L个波束的方向对应不同。关于该说明可以参考下文所示的实施例三和实施例四。
本申请实施例中,当每个天线阵列所划分的子带数量相同时,即每个天线阵列所形成的波束的数量相同时,对应波束的方向可以相同,也可以不同。该对应波束指的是至少两个天线阵列中相同位置的波束。即第一天线阵列中的第一个波束与第二天线阵列中的第一个波束 的方向可以相同,也可以不同。
需要说明的是,发送端可以通过第一天线阵列向第二接收端发送第一信号;或者,该发送端可以通过至少两个天线阵列向第二接收端发送与该第二接收端对应的信号。该至少两个天线阵列包括第一天线阵列,与第二接收端对应的至少两个信号包括第一信号,与第二接收端对应的至少两个信号分别对应不同的子带。可理解,向第二接收端发送信号的至少两个天线阵列可以与向第一接收端发送信号的至少两个天线阵列相同,也可以不同。可选的,向第二天线阵列发送信号的至少两个天线阵列还包括第二天线阵列和/或第三天线阵列。
以下将结合具体实施例说明本申请实施例提供的方法。
实施例一、
第一天线阵列调度的带宽和第二天线阵列调度的带宽不同。
可选的,至少有两个天线阵列形成的L个波束所指向的方向对应相同。可选的,每个天线阵列形成的L个波束所指向的方向对应相同。如第一天线阵列形成的第i个波束的方向与第二天线阵列形成的第i个波束的方向相同。同时,该第一天线阵列形成的第i个波束所对应的子带与第二天线阵列形成的第i个波束所对应的子带不同。因此,从远场来看可认为每个波束覆盖的L个空间区域是相同的,也就是说,每个覆盖区域内的接收端可以接收到来自不同天线阵列发送的信号。
可理解,发送端可以通过部分天线阵列向第一接收端发送信号,如该部分天线阵列包括第一天线阵列和第二天线阵列;又如,该部分天线阵列包括第一天线阵列、第二天线阵列和第三天线阵列,关于第三天线阵列的说明可以参考第一天线阵列和第二天线阵列的描述,这里不再详述。或者,本申请实施例还适用于发送端中的所有天线阵列,如该发送端可以通过所有的天线阵列向第一接收端发送信号(即所有的天线阵列中每个天线阵列通过一个子带向第一接收端发送信号)。
图7是本申请实施例提供的一种信号发送方法的场景示意图。如图7所示,每个天线阵列可以形成三个波束,且该三个波束所对应的子带不同。同时,每个天线阵列调度的带宽不同。例如,第一天线阵列(如图7所示的阵列1)调度的带宽为数字1至数字3所代表的带宽。该数字1、数字2和数字3可以分别表示不同的子带,如子带1、子带2和子带3可以是相邻的。示例性的,该子带1的中心频率大于子带2的中心频率,子带2的中心频率大于子带3的中心频率。同样的,对于第二天线阵列(如图7所示的阵列2)、第三天线阵列(如图7所示的阵列3)和第四天线阵列(如图7所示的阵列4)的说明可以参考第一天线阵列。需要说明的是,本申请实施例所示的子带是相邻的并不表示每个子带之间是完全邻接的,考虑到不同波束之间的干扰,因此相邻子带之间可以有保护间隔。
如图7所示,每个天线阵列所形成的波束的方向对应相同。如第一天线阵列形成的波束1的方向、第二天线阵列形成的波束4的方向、第三天线阵列形成的波束7的方向以及第四天线阵列形成的波束10的方向是相同的。又如第一天线阵列形成的波束2的方向、第二天线阵列形成的波束5的方向、第三天线阵列形成的波束8的方向以及第四天线阵列形成的波束11的方向是相同的。如第一天线阵列形成的波束3的方向、第二天线阵列形成的波束6的方向、第三天线阵列形成的波束9的方向以及第四天线阵列形成的波束12的方向是相同的。
可选的,UE1、UE2和UE3被配置的带宽可以是子带1至子带12所对应的带宽。针对该种实现方式,尽管接收端实际使用的带宽小于其被配置的带宽,但是发送端可以更灵活确定其可以服务的接收端。
可选的,UE1被配置的带宽可以是子带1、子带4、子带7和子带10所对应的带宽,UE2被配置的带宽可以是子带2、子带5、子带8和子带11所对应的带宽,UE3被配置的带宽可以是子带3、子带6、子带9和子带12所对应的带宽。针对该种实现方式,在UE的位置固定不动时,可以有效地实现UE的大带宽通信。
可选的,UE1被配置的带宽可以是子带1、子带4、子带7和子带10所对应的带宽,以及子带2、子带5、子带8和子带11所对应的带宽之和。或者,UE1被配置的带宽可以是子带1、子带4、子带7和子带10所对应的带宽,以及子带3、子带6、子带9和子带12所对应的带宽之和。可理解,关于UE2和UE3的说明可以参考UE1,这里不再一一列举。针对该种实现方式,可以更适用于UE的位置移动的情况,从而使得接收端可以灵活的调度带宽。
可理解,关于UE被配置的带宽与子带之间的说明,下文所示的实施例同样适用。
本申请实施例中,每个天线阵列调度的带宽是完全独立的,即带宽范围不重叠(也可以称为不相交),由此各个子带之间也不重叠。但是,每个天线阵列调度的带宽都包含于第一接收端被配置的带宽中。由此,可以有效改善不同接收端之间的干扰。
本申请实施例中,每个天线阵列发送的信号占用的带宽是完全独立的,则每个覆盖范围内的接收端可以接收到不同波束发送的信号,该不同波束所对应的子带不同。也就是说,在L个覆盖范围内的接收端都可以接收到Z个子带(每个天线阵列中的一个子带)所对应的信号。本申请实施例所示的方法实现简单,不同覆盖范围内的接收端的抗干扰能力强。本申请实施例中,发送端中的天线阵列总共占用Z*L个子带,L个不同覆盖范围内的接收端都能实现Z个子带的宽带通信。可理解,图7所示的方法还可以理解为基于独立带宽策略的信号发送方法。
实施例二、
第一天线阵列调度的带宽和第二天线阵列调度的带宽部分重叠。或者,也可以理解为,第一天线阵列所调度的子带与第二天线阵列所调度的子带部分重叠。
可选的,至少有两个天线阵列形成的L个波束所指向的方向对应相同。可选的,每个天线阵列形成的L个波束所指向的方向对应相同。关于波束的方向的具体说明,以及向第一接收端发送信号的天线阵列的数量的说明可以参考上述实施例一,这里不再详述。
图8是本申请实施例提供的又一种信号发送方法的场景示意图。如图8所示,每个天线阵列可以形成三个波束,且该三个波束所对应的子带不同。同时,每个天线阵列调度的带宽部分重叠。例如,第一天线阵列(如图8所示的阵列1)调度的带宽为数字1至数字3所代表的带宽。该数字1、数字2和数字3可以分别表示不同的子带,如子带1、子带2和子带3。第二天线阵列(如图8所示的阵列2)调度的带宽为子带2至子带4所对应的带宽、第三天线阵列(如图8所示的阵列3)调度的带宽为子带3至子带5所对应的带宽、第四天线阵列(如图8所示的阵列4)调度的带宽为子带4至子带6所对应的带宽。
如图8所示,每个天线阵列所形成的波束的方向对应相同。如第一天线阵列形成的波束1的方向、第二天线阵列形成的波束2的方向、第三天线阵列形成的波束3的方向以及第四天线阵列形成的波束4的方向是相同的。又如第一天线阵列形成的波束2的方向、第二天线阵列形成的波束3的方向、第三天线阵列形成的波束4的方向以及第四天线阵列形成的波束5的方向是相同的。如第一天线阵列形成的波束3的方向、第二天线阵列形成的波束4的方向、第三天线阵列形成的波束5的方向以及第四天线阵列形成的波束6的方向是相同的。可理解,关于图8未详细描述的地方可以参考图7等。
本申请实施例中,每个天线阵列所调度的带宽部分重叠,如每个天线阵列发送的信号所 占用的带宽(即L个波束所对应的带宽)是错位的(如相邻天线阵列复用L-1个子带)。同时,不同天线阵列中的相同子带所对应的波束方向不同,或者,相同方向的波束所对应的子带是不同的。
需要说明的是,本申请实施例对于相邻天线阵列所复用的子带的数量不作限定,但是,复用的子带的数量大于或等于1,且小于L-1。
本申请实施例提供的方法,相同子带的信号通过空分复用的方式发送给不同的接收端,有效节约了带宽资源。从频谱效率来看,发送端发送信号时占用Z+L-1个子带,就可以保证L个不同覆盖范围内的接收端都能实现Z个子带的宽带通信。可理解,图8所示的方法还可以理解为错位带宽测量的信号发送方法。同时,图7和图8所示的方法还可以统一称为基于同覆盖异带宽的信号发送方法。
针对实施例一和实施例二来说,下文举例说明发送端发送信号的方法。例如,针对图7和图8来说,每个天线阵列的子带数量为三个,因此,如将第一天线阵列(仅为示例)的三个子带的中心频率分别用f1、f2、f3表示,f1、f2和f3依次增加或减小。则第一天线阵列的中间频率为第二个子带所对应的频率,即f2,该第二个子带对应的波束的指向如为区域2。由此,根据上文公式(4)的介绍,可知该第一天线阵列的移相参数可以满足如下公式(10):
其中,
是指向区域1的方向。同理,f1与f3之间的关系。也就是说,发送端可以根据第一天线阵列调度的带宽的中心频率来设置各个子带的中心频率。可理解,以上所示的公式(10)和公式(11)的例子仅为示例,不应将其理解为对本申请实施例的限定。
实施例三、
第一天线阵列调度的带宽和第二天线阵列调度的带宽相同。第一天线阵列形成的第i个波束的方向与第二天线阵列形成的第i个波束的方向不同,i为大于或等于1,且小于或等于L的整数。同时,第一天线阵列形成的L个波束中,与第二天线阵列形成的L个波束中至少有一个波束的方向相同。
图9是本申请实施例提供的又一种信号发送方法的场景示意图。如图9所示,如图9所示,每个天线阵列可以形成三个波束,且该三个波束所对应的子带不同。同时,每个天线阵列调度的带宽相同。但是,每个天线阵列形成的第i个波束的方向不同。例如,第一天线阵列(如图9所示的阵列1)调度的带宽为数字1至数字3所代表的带宽。该数字1、数字2和数字3可以分别表示不同的子带,如子带1、子带2和子带3。子带1所对应的波束1的方向指向UE1所在区域,子带2所对应的波束2的方向指向UE2所在的区域,子带3所对应的波束3的方向指向UE3所在的区域。类似的,对于第二天线阵列(如图9所示的阵列2)来说,子带1所对应的波束1的方向指向UE2所在的区域,即第一天线阵列形成的波束1的方 向与第二天线形成的波束1的方向不同。可理解,关于第二天线阵列、第三天线阵列(如图9所示的阵列3)和第四天线阵列(如图9所示的阵列4)的说明可以参考第一天线阵列,这里不再一一详述。
本申请实施例中,发送端所包括的Z个天线阵列中每个天线阵列可以形成L个波束,且一共可以覆盖Z+L-1个区域。该方法可以覆盖更多的区域,从而为更多的接收端服务,从而进一步节约了带宽资源。
实施例四、
第一天线阵列调度的带宽和第二天线阵列调度的带宽相同。可选的,每个天线阵列调度的带宽相同。第一天线阵列形成的第i个波束的方向与第二天线阵列形成的第i个波束的方向不同,i为大于或等于1,且小于或等于L的整数。同时,第一天线阵列形成的L个波束中的方向,与第二天线阵列形成的L个波束的方向完全不同。
图10是本申请实施例提供的又一种信号发送方法的场景示意图。如图10所示,如图10所示,每个天线阵列可以形成三个波束,且该三个波束所对应的子带不同。同时,每个天线阵列调度的带宽相同。但是,第一天线阵列形成的波束的方向与第二天线阵列形成的波束的方向完全不同(也包括完全不重叠的情况)。例如,第一天线阵列(如图10所示的阵列1)所形成的波束的方向指向包括UE1所在的区域、UE2所在的区域和UE3所在的区域。第二天线阵列(如图10所示的阵列2)所形成的波束的方向指向包括UE4所在的区域、UE5所在的区域和UE6所在的区域。第三天线阵列(如图10所示的阵列3)所形成的波束的方向指向包括UE7所在的区域、UE8所在的区域和UE9所在的区域。可理解,关于图10的具体说明可以参考上文,这里不再详述。
可理解,图9和图10所示的方法还可以称为基于同带宽异覆盖的信号发送方法。可理解,针对图9和图10所示的方法来说,每个天线阵列调度的带宽相同,天线阵列调度的带宽可以是系统带宽,因此发送端可以更灵活地划分子带,从而通过每个子带所对应的波束发送信号。
针对实施例三和实施例四来说,下文举例说明发送端发送信号的方法。例如,如以图9为例,第一天线阵列的3个子带的中心频率分别用f1,f2,f3表示,且这三个中心频率属于[fmin,fmax](即接收端被配置的带宽)的区间。需要说明的是,不同天线阵列的f1,f2,f3,可能不是完全相同的,但都属于[fmin,fmax]的区间,只要对应频率差异不大,都可以认为是相同的。对于阵列1,f1得到指向区域1的移相系数满足公式(12):
同理,根据公式(13)所示的方法,也可以使得第一天线阵列的f3所对应的波束的方向指向区域3。对于第二天线阵列,通过同样的方法,也可以使得第二天线阵列的f1指向区域2。以此类推,则可以保证每个子带所对应的波束能够指向对应的区域。
本申请实施例中,发送端所包括的Z个天线阵列中每个天线阵列可以形成L个波束,且一共可以覆盖Z*L个区域。该方法可以覆盖更多的区域,从而为更多的接收端服务,从而进一步节约了带宽资源。
可理解,当系统配置带宽足够大时,则可以采用本申请实施例所示的同覆盖异带宽的信号发送方法。当系统配置带宽不够大时,则可以采用本申请实施例所示的同带宽异覆盖的信号发送方法。
可理解,以上所示的各个实施例中,其中一个实施例未详细描述的实现方式可以参考其他实施例,这里不再一一详述。示例性的,结合上文所示的实施例,图11是本申请实施例提供的又一种信号发送方法的场景示意图。如图11所示,每个天线阵列可以形成三个波束,且该三个波束所对应的子带不同。同时,每个天线阵列调度的带宽不同。发送端中至少有两个天线阵列形成的波束的方向部分重叠,和/或,发送端中至少有两个天线阵列形成的波束的方向不重叠。例如,第一天线阵列(如图11所示的阵列1)所形成的波束的方向指向包括UE1所在的区域、UE2所在的区域和UE3所在的区域。第二天线阵列(如图11所示的阵列2)所形成的波束的方向指向包括UE2所在的区域、UE3所在的区域和UE4所在的区域。第三天线阵列(如图11所示的阵列3)所形成的波束的方向指向包括UE3所在的区域、U4所在的区域和UE5所在的区域,这里不再一一列举。
需要说明的是,本申请实施例所示的附图中是以阵列1为第一天线阵列,阵列2为第二天线阵列为例示出的。在具体实现中,本申请实施例对于第一天线阵列和第二天线阵列的具体位置不作限定。
在大阵列相控阵的架构下,利用波束斜视影响。增加了不同天线阵列的不同子带可以调度给同一区域的方法。实现了该区域接收端有效带宽实现大带宽通信的目的。通过与空分复用的结合有效提高了系统的频谱效率。同时,本申请实施例提供的方法还可以将不同天线阵列的不同子带指向不同区域,提升系统的覆盖范围。尤其是对于有些情况例如需要波束扫描情况,可以有效降低用户接入的时间。例如,波束扫描指对系统覆盖区域完成波速的扫描,通过本申请实施例提供的方法每个天线阵列可以形成多个波束,从而增加了单个天线阵列在同一时刻的覆盖范围,通过频分复用,增加了天线阵列的覆盖范围,减少了扫描的时间。
同时,对于未来通信,或万物互联来说,通信装置(如包括发送端和/或接收端)对系统速率要求更高,由此系统带宽也会增加。同时,由于高频有大带宽可以被利用,因此使用高频是未来频谱的趋势。同时为了解决高频信号传播衰减大的问题,使用多个天线阵列发送信号是必然选择。由此,本申请实施例提供的方法,通过有效利用波束斜视,可以有效实现通信装置的大带宽通信。
以下将介绍本申请实施例提供的通信装置。
本申请根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图12至图14详细描述本申请实施例的通信装置。
图12是本申请实施例提供的一种通信装置的结构示意图,如图12所示,该通信装置包括处理单元1201和收发单元1202。
该通信装置可以是上文示出的发送端或发送端中的芯片等。即该通信装置可以用于执行上文方法实施例中由发送端执行的步骤或功能等。
示例性的,处理单元1201,用于通过第一通道获取至少两个第一信号;
收发单元1202,用于根据第一天线阵列向至少两个接收端发送至少两个第一信号。
可选的,收发单元1202,具体用于通过至少两个天线阵列向第一接收端发送与第一接收端对应的至少两个信号。
可选的,收发单元1202,具体用于通过至少两个天线阵列向第二接收端发送与该第二接收端对应的至少两个信号。
可选的,收发单元1202,具体用于通过至少两个天线阵列向第一接收端发送与第一接收端对应的至少两个信号,以及通过第一天线阵列向第二接收端发送第一信号。
可选的,收发单元1202,具体用于通过至少两个天线阵列向第一接收端发送与该第一接收端对应的至少两个信号,以及通过至少两个天线阵列向第二接收端发送与该第二接收端对应的至少两个信号。
示例性的,处理单元1201,用于通过至少两个通道获取至少两个信号,一个通道对应一个信号;
收发单元1202,用于根据至少两个天线阵列向第一接收端发送所述至少两个信号。
本申请实施例中,关于第一通道、子带、第一天线阵列、接收端、第一接收端等的说明还可以参考上文方法实施例(包括图4至图11)中的介绍,这里不再一一详述。
可理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。
以上介绍了本申请实施例的发送端,以下介绍所述发送端可能的产品形态。应理解,但凡具备上述图12所述的发送端的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的发送端的产品形态仅限于此。
在一种可能的实现方式中,图12所示的通信装置中,处理单元1201可以是一个或多个处理器,收发单元1202可以是收发器,或者收发单元1202还可以是发送单元和接收单元,发送单元可以是发送器,接收单元可以是接收器,该发送单元和接收单元集成于一个器件,例如收发器。本申请实施例中,处理器和收发器可以被耦合等,对于处理器和收发器的连接方式,本申请实施例不作限定。
如图13所示,该通信装置130包括一个或多个处理器1320和收发器1310。
示例性的,当该通信装置用于执行上述发送端执行的步骤或方法或功能时,处理器1320,用于通过第一通道获取至少两个第一信号;收发器1310,用于发送该至少两个第一信号。
可选的,收发器1310,具体用于通过至少两个天线阵列向第二接收端发送与该第二接收端对应的至少两个信号。
可选的,收发器1310,具体用于通过至少两个天线阵列向第一接收端发送与第一接收端对应的至少两个信号,以及通过第一天线阵列向第二接收端发送第一信号。
可选的,收发器1310,具体用于通过至少两个天线阵列向第一接收端发送与该第一接收端对应的至少两个信号,以及通过至少两个天线阵列向第二接收端发送与该第二接收端对应的至少两个信号。
示例性的,处理器1320,用于通过至少两个通道获取至少两个信号,一个通道对应一个信号;
收发器1310,用于根据至少两个天线阵列向第一接收端发送所述至少两个信号。
可理解,对于处理器和收发器的具体说明还可以参考图12所示的处理单元和收发单元的介绍,这里不再赘述。或者,对于处理器和收发器的具体说明还可以参考上文所示的方法实施例。
在图13所示的通信装置的各个实现方式中,收发器可以包括接收机和发射机,该接收机用于执行接收的功能(或操作),该发射机用于执行发射的功能(或操作)。以及收发器用于通过传输介质和其他设备/装置进行通信。
可选的,通信装置130还可以包括一个或多个存储器1330(如图13以虚线表示),用于存储程序指令和/或数据。存储器1330和处理器1320耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1320可能和存储器1330协同操作。处理器1320可可以执行存储器1330中存储的程序指令。
本申请实施例中不限定上述收发器1310、处理器1320以及存储器1330之间的具体连接介质。本申请实施例在图13中以存储器1330、处理器1320以及收发器1310之间通过总线1340连接,总线在图13中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成等。
本申请实施例中,存储器可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、只读存储器(Read-Only Memory,ROM)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。存储器是能够用于携带或存储具有指令或数据结构形式的程序代码,并能够由计算机(如本申请示出的通信装置等)读和/或写的任何存储介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
处理器1320主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1330主要用于存储软件程序和数据。收发器1310可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器1320可以读取存储器1330中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1320对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1320,处理器1320 将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
可理解,本申请实施例示出的通信装置还可以具有比图13更多的元器件等,本申请实施例对此不作限定。以上所示的处理器和收发器所执行的方法仅为示例,对于该处理器和收发器具体所执行的步骤可参照上文介绍的方法。
在另一种可能的实现方式中,图12所示的通信装置中,处理单元1201可以是一个或多个逻辑电路,收发单元1202可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发单元1202还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,该发送单元和接收单元集成于一个单元,例如输入输出接口。如图14所示,图14所示的通信装置包括逻辑电路1401和接口1402。即上述处理单元1201可以用逻辑电路1401实现,收发单元1202可以用接口1402实现。其中,该逻辑电路1401可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口1402可以为通信接口、输入输出接口、管脚等。示例性的,图14是以上述通信装置为芯片为例出的,该芯片包括逻辑电路1401和接口1402。
本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。
示例性的,当通信装置用于执行上述发送端执行的方法或功能或步骤时,逻辑电路1401,用于通过第一通道获取至少两个第一信号;接口1402,用于根据第一天线阵列向至少两个接收端输出该至少两个第一信号。
可理解,本申请实施例所示的接口1402,用于根据第一天线阵列向至少两个接收端输出至少两个第一信号,还可以理解为:逻辑电路1401,控制接口1402输出至少两个第一信号。关于接口与逻辑电路的说明,下文同样适用。
可选的,接口1402,具体用于通过至少两个天线阵列向第二接收端发送与该第二接收端对应的至少两个信号。
可选的,接口1402,具体用于通过至少两个天线阵列向第一接收端发送与第一接收端对应的至少两个信号,以及通过第一天线阵列向第二接收端发送第一信号。
可选的,接口1402,具体用于通过至少两个天线阵列向第一接收端发送与该第一接收端对应的至少两个信号,以及通过至少两个天线阵列向第二接收端发送与该第二接收端对应的至少两个信号。
示例性的,逻辑电路1401,用于通过至少两个通道获取至少两个信号,一个通道对应一个信号;
接口1402,用于根据至少两个天线阵列向第一接收端发送所述至少两个信号。
可理解,本申请实施例示出的逻辑电路和接口的具体说明仅为示例,对于逻辑电路和接口的具体功能或执行的步骤等,可以参考上述方法实施例,以及图12或图13所示的通信装置等,这里不再详述。
可理解,本申请实施例示出的通信装置可以采用硬件的形式实现本申请实施例提供的方法,也可以采用软件的形式实现本申请实施例提供的方法等,本申请实施例对此不作限定。
此外,本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由发送端执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由发送端执行的操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由发送端执行的操作和/或处理被执行。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案的技术效果。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (21)
- 一种信号发送方法,其特征在于,所述方法包括:发送端通过第一通道获取至少两个第一信号;所述发送端根据第一天线阵列向至少两个接收端发送所述至少两个第一信号,一个所述接收端对应一个所述第一信号,所述至少两个第一信号中每个第一信号所对应的子带不同,一个所述接收端对应一个波束,所述至少两个接收端中每个接收端所对应的波束的方向不同,所述波束由所述第一天线阵列形成。
- 根据权利要求1所述的方法,其特征在于,所述至少两个接收端包括第一接收端,所述发送端根据第一天线阵列向至少两个接收端发送所述至少两个第一信号包括:所述发送端通过至少两个天线阵列向所述第一接收端发送与所述第一接收端对应的至少两个信号,所述至少两个天线阵列包括所述第一天线阵列,所述与所述第一接收端对应的至少两个信号包括所述第一信号,所述与所述第一接收端对应的至少两个信号分别对应不同的子带。
- 根据权利要求2所述的方法,其特征在于,所述至少两个天线阵列还包括第二天线阵列;所述第一天线阵列形成的第i个波束的方向与所述第二天线阵列形成的第i个波束的方向相同,所述i为大于或等于1的整数,且小于或等于L的整数,所述L为所述第一天线阵列形成的波束数量或者所述第二天线阵列形成的波束数量。
- 根据权利要求3所述的方法,其特征在于,所述第一天线阵列形成的第i个波束所对应的子带与所述第二天线阵列形成的第i个波束所对应的子带不同。
- 根据权利要求3所述的方法,其特征在于,所述至少两个天线阵列还包括第二天线阵列;所述第一天线阵列形成的第i个波束的方向与所述第二天线阵列形成的第i个波束的方向不同,所述i为大于或等于1的整数,且小于或等于L的整数,所述L为所述第一天线阵列形成的波束数量或者所述第二天线阵列形成的波束数量。
- 根据权利要求3-5任一项所述的方法,其特征在于,所述第一天线阵列调度的带宽和所述第二天线阵列调度的带宽相同;或者,所述第一天线阵列调度的带宽和所述第二天线阵列调度的带宽不同;或者,所述第一天线阵列调度的带宽和所述第二天线阵列调度的带宽部分重叠。
- 根据权利要求1-6任一项所述的方法,其特征在于,所述至少两个接收端包括第二接收端,所述发送端根据第一天线阵列向至少两个接收端发送所述至少两个第一信号包括:所述发送端通过至少两个天线阵列向所述第二接收端发送与所述第二接收端对应的至少两个信号,所述至少两个天线阵列包括所述第一天线阵列,所述与所述第二接收端对应的至少两个信号包括所述第一信号,所述与所述第二接收端对应的至少两个信号分别对应不同的子带。
- 一种信号发送方法,其特征在于,所述方法包括:发送端通过至少两个通道获取至少两个信号,一个通道对应一个信号;所述发送端根据至少两个天线阵列向第一接收端发送所述至少两个信号,一个信号对应一个天线阵列,且所述至少两个信号中每个信号所对应的子带不同,所述至少两个天线阵列 中每个天线阵列形成的与所述第一接收端对应的波束的方向相同。
- 一种通信装置,其特征在于,所述装置包括:处理单元,用于通过第一通道获取至少两个第一信号;收发单元,用于根据第一天线阵列向至少两个接收端发送所述至少两个第一信号,一个所述接收端对应一个所述第一信号,所述至少两个第一信号中每个第一信号所对应的子带不同,一个所述接收端对应一个波束,所述至少两个接收端中每个接收端所对应的波束的方向不同,所述波束由所述第一天线阵列形成。
- 根据权利要求9所述的装置,其特征在于,所述收发单元,具体用于通过至少两个天线阵列向所述第一接收端发送与所述第一接收端对应的至少两个信号,所述至少两个天线阵列包括所述第一天线阵列,所述与所述第一接收端对应的至少两个信号包括所述第一信号,所述与所述第一接收端对应的至少两个信号分别对应不同的子带。
- 根据权利要求10所述的装置,其特征在于,所述至少两个天线阵列还包括第二天线阵列;所述第一天线阵列形成的第i个波束的方向与所述第二天线阵列形成的第i个波束的方向相同,所述i为大于或等于1的整数,且小于或等于L的整数,所述L为所述第一天线阵列形成的波束数量或者所述第二天线阵列形成的波束数量。
- 根据权利要求11所述的装置,其特征在于,所述第一天线阵列形成的第i个波束所对应的子带与所述第二天线阵列形成的第i个波束所对应的子带不同。
- 根据权利要求10所述的装置,其特征在于,所述至少两个天线阵列还包括第二天线阵列;所述第一天线阵列形成的第i个波束的方向与所述第二天线阵列形成的第i个波束的方向不同,所述i为大于或等于1的整数,且小于或等于L的整数,所述L为所述第一天线阵列形成的波束数量或者所述第二天线阵列形成的波束数量。
- 根据权利要求11-13任一项所述的装置,其特征在于,所述第一天线阵列调度的带宽和所述第二天线阵列调度的带宽相同;或者,所述第一天线阵列调度的带宽和所述第二天线阵列调度的带宽不同;或者,所述第一天线阵列调度的带宽和所述第二天线阵列调度的带宽部分重叠。
- 根据权利要求9-14任一项所述的装置,其特征在于,所述至少两个接收端包括第二接收端,所述收发单元,具体用于通过至少两个天线阵列向所述第二接收端发送与所述第二接收端对应的至少两个信号,所述至少两个天线阵列包括所述第一天线阵列,所述与所述第二接收端对应的至少两个信号包括所述第一信号,所述与所述第二接收端对应的至少两个信号分别对应不同的子带。
- 一种通信装置,其特征在于,所述装置包括:处理单元,用于通过至少两个通道获取至少两个信号,一个通道对应一个信号;收发单元,用于根据至少两个天线阵列向第一接收端发送所述至少两个信号,一个信号对应一个天线阵列,且所述至少两个信号中每个信号所对应的子带不同,所述至少两个天线阵列中每个天线阵列形成的与所述第一接收端对应的波束的方向相同。
- 一种通信装置,其特征在于,包括处理器;所述处理器与存储器耦合;所述存储器用于存储指令;所述处理器用于执行所述指令,以使权利要求1-8任一项所述的方法被执行。
- 一种通信装置,其特征在于,包括逻辑电路和接口,所述逻辑电路和所述接口耦合;所述逻辑电路,用于通过第一通道获取至少两个第一信号;所述接口,用于根据第一天线阵列向至少两个接收端输出所述至少两个第一信号,一个所述接收端对应一个所述第一信号,所述至少两个第一信号中每个第一信号所对应的子带不同,一个所述接收端对应一个波束,所述至少两个接收端中每个接收端所对应的波束的方向不同,所述波束由所述第一天线阵列形成。
- 一种通信装置,其特征在于,包括逻辑电路和接口,所述逻辑电路和所述接口耦合;所述逻辑电路,用于通过至少两个通道获取至少两个信号,一个通道对应一个信号;所述接口,用于根据至少两个天线阵列向第一接收端输出所述至少两个信号,一个信号对应一个天线阵列,且所述至少两个信号中每个信号所对应的子带不同,所述至少两个天线阵列中每个天线阵列形成的与所述第一接收端对应的波束的方向相同。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序被执行时,权利要求1-8任一项所述的方法被执行。
- 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,所述计算机程序被执行时,权利要求1-8任一项所述的方法被执行。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/731,357 US20240322447A1 (en) | 2021-12-02 | 2024-06-03 | Signal sending method and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111467841.XA CN116232388A (zh) | 2021-12-02 | 2021-12-02 | 信号发送方法及装置 |
CN202111467841.X | 2021-12-02 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/731,357 Continuation US20240322447A1 (en) | 2021-12-02 | 2024-06-03 | Signal sending method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023098823A1 true WO2023098823A1 (zh) | 2023-06-08 |
Family
ID=86577245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/135931 WO2023098823A1 (zh) | 2021-12-02 | 2022-12-01 | 信号发送方法及装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240322447A1 (zh) |
CN (1) | CN116232388A (zh) |
WO (1) | WO2023098823A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101316130A (zh) * | 2007-06-01 | 2008-12-03 | 中国移动通信集团公司 | 闭环模式下共用天线系统和方法 |
US20130272437A1 (en) * | 2012-04-13 | 2013-10-17 | Xr Communications, Llc | Directed mimo communications |
CN106470063A (zh) * | 2015-08-21 | 2017-03-01 | 北京三星通信技术研究有限公司 | 信道方向信息的获取方法和设备 |
CN109995408A (zh) * | 2017-12-29 | 2019-07-09 | 华为技术有限公司 | 一种天线系统及网络设备 |
-
2021
- 2021-12-02 CN CN202111467841.XA patent/CN116232388A/zh active Pending
-
2022
- 2022-12-01 WO PCT/CN2022/135931 patent/WO2023098823A1/zh unknown
-
2024
- 2024-06-03 US US18/731,357 patent/US20240322447A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101316130A (zh) * | 2007-06-01 | 2008-12-03 | 中国移动通信集团公司 | 闭环模式下共用天线系统和方法 |
US20130272437A1 (en) * | 2012-04-13 | 2013-10-17 | Xr Communications, Llc | Directed mimo communications |
CN106470063A (zh) * | 2015-08-21 | 2017-03-01 | 北京三星通信技术研究有限公司 | 信道方向信息的获取方法和设备 |
CN109995408A (zh) * | 2017-12-29 | 2019-07-09 | 华为技术有限公司 | 一种天线系统及网络设备 |
Also Published As
Publication number | Publication date |
---|---|
US20240322447A1 (en) | 2024-09-26 |
CN116232388A (zh) | 2023-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10171149B2 (en) | Apparatus, system and method of wireless backhaul and access communication via a common antenna array | |
EP2562941B1 (en) | Mobile terminal and communication method thereof, base station controller and control method thereof, and multi-cooperative transmission system using the same and method thereof | |
TWI387368B (zh) | 共享一通訊通道之方法及無線通訊系統 | |
KR102188747B1 (ko) | 하이브리드 빔포밍을 이용한 무선 통신 방법 및 장치 | |
US20040162115A1 (en) | Wireless antennas, networks, methods, software, and services | |
KR20130094177A (ko) | 밀리미터파 통신 시스템에서 공간 분할 이중화를 위한 장치 및 방법 | |
US9942778B2 (en) | Virtual base station apparatus and communication method | |
US20140313081A1 (en) | Multiple Beam Formation for RF Chip-Based Antenna Array | |
US20200229003A1 (en) | Access Point Device and Communication Method | |
EP2253084B1 (en) | Mechanism to avoid interference and improve channel efficiency in mm wave wpans | |
JP2018046574A (ja) | 無線パーソナルエリアネットワークでの動的帯域予約を可能にする技術 | |
JP2023531800A (ja) | 知的反射デバイスのための表面要素分割およびノードグループ分け | |
CN109995408B (zh) | 一种天线系统及网络设备 | |
Yao et al. | Multi-beam on-demand power allocation MAC protocol for MIMO terahertz communication networks | |
WO2023098823A1 (zh) | 信号发送方法及装置 | |
WO2022206520A1 (zh) | 一种信号转发方法和装置 | |
JP2022092589A (ja) | 集積型整合ネットワークを備えたバラン | |
US20230015565A1 (en) | Distributed radio frequency communication systems for automotive | |
WO2024114380A2 (zh) | 频段切换方法及装置 | |
WO2023165585A1 (zh) | 通信方法和通信装置 | |
JP2006148388A (ja) | 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム | |
WO2023115285A1 (zh) | 一种天线副瓣的抑制方法及天线阵列 | |
WO2022198518A1 (zh) | 配置发射功率的方法和终端设备 | |
Inthanil et al. | Feedline Separation for Independent Control of Simultaneously Different Tx/Rx Radiation Patterns. | |
CN118283796A (zh) | 通信方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22900627 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |