KR20130094177A - 밀리미터파 통신 시스템에서 공간 분할 이중화를 위한 장치 및 방법 - Google Patents

밀리미터파 통신 시스템에서 공간 분할 이중화를 위한 장치 및 방법 Download PDF

Info

Publication number
KR20130094177A
KR20130094177A KR1020127027689A KR20127027689A KR20130094177A KR 20130094177 A KR20130094177 A KR 20130094177A KR 1020127027689 A KR1020127027689 A KR 1020127027689A KR 20127027689 A KR20127027689 A KR 20127027689A KR 20130094177 A KR20130094177 A KR 20130094177A
Authority
KR
South Korea
Prior art keywords
transmit
receive
antennas
wireless terminal
signal
Prior art date
Application number
KR1020127027689A
Other languages
English (en)
Other versions
KR101841552B1 (ko
Inventor
팔로크 칸
지아오유 피
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20130094177A publication Critical patent/KR20130094177A/ko
Application granted granted Critical
Publication of KR101841552B1 publication Critical patent/KR101841552B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/005Antennas or antenna systems providing at least two radiating patterns providing two patterns of opposite direction; back to back antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/28Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/16Half-duplex systems; Simplex/duplex switching; Transmission of break signals non-automatically inverting the direction of transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Transceivers (AREA)

Abstract

전-이중 밀리미터파 이동 무선 통신을 위한 장치 및 방법이 제공된다. 상기 장치는 밀리미터파를 이용하는 공간 분할 이중화(SDD, Spatial Division Duplex) 이동 통신 시스템을 포함한다. 상기 SDD 이동 통신 시스템은 공간적으로 빔포밍된 제1 전송 빔을 전송하기 위한 복수의 제1 전송 안테나들을 가지는 제1 전송 안테나 어레이와, 공간적으로 빔포밍된 제1 수신 빔을 형성하기 위한 복수의 제1 수신 안테나들을 가지는 제1 수신 안테나 어레이를 포함하는 제1 무선 단말기, 및 제1 무선 단말기의 수신 빔을 향해 지향된 공간적으로 빔포밍된 제2 전송 빔을 전송하기 위한 복수의 제2 전송 안테나들을 가지는 제2 전송 안테나와, 제1 무선 단말기의 전송 빔을 향해 지향되는 공간적으로 빔포밍된 제2 수신 빔을 형성하기 위한 복수의 제2 수신 안테나들을 가지는 제2 수신 안테나 어레이를 포함하는 제2 무선 단말기를 포함한다.

Description

밀리미터파 통신 시스템에서 공간 분할 이중화를 위한 장치 및 방법{APPARATUS AND METHOD FOR SPATIAL DIVISION DUPLEX(SDD) FOR MILLIMETER WAVE COMMUNICATION SYSTEM}
본 발명은 밀리미터파 통신 시스템에서 공간 분할 이중화(SDD, Spatial Division Duplex)를 위한 장치 및 방법에 관한 것이다. 보다 상세하게는, 본 발명은 피어 투 피어(P2P, peer-to-peer) 무선 통신을 위한 밀리미터 전자기파들을 이용하는 공간 분할 이중화 통신 시스템을 위한 장치 및 방법에 관련된 것이다.
이동 통신은 이동 통신 서비스에 대한 가입자의 수가 지금 45억을 초과하여 계속해서 증가함에 따라, 최근에도 발전을 계속하고 있다. 동시에, 새로운 이동 통신 기술 및 시스템은 증가되는 요구를 만족시키기 위해, 그리고, 이동 통신 사용자들에게 보다 나은 이동 통신 어플리케이션들을 제공하기 위해 발전되었다. 그러한 시스템들의 예들은 3GPP2(3rd Generation Partnership Project 2)에 의해 개발된 CDMA2000(Code Division Multiple Access 2000) EvDO(Evolution Data Optimized) 시스템, 그리고, 3GPP(3rd Generation Partnership Project)에 의해 개발된 WCDMA(Wideband CDMA), HSPA(High Speed Packet Access), LTE(Long Term Evolution) 시스템, 그리고, IEEE(the Institute of Electrical and Electronics Engineers)에 의해 개발된 WiMAX(mobile Worldwide Interoperability for Microwave Access) 시스템을 포함한다. 더 많은 사람들이 이동 통신 시스템의 사용자가 되어 감에 따라, 데이터 리치 서비스(data-rich services)는 이러한 시스템들에 걸쳐 제공되었다. 대용량, 높은 처리량, 낮은 대기시간, 및 더 나은 신뢰성을 가지는 이동 통신 시스템에 대한 요구가 증가하고 있다.
밀리미터파들(Millimeter waves)은 30GHz 내지 300GHz의 무선 주파수 범위를 가지는, 무선 파형들(radio waves)이며, 그들의 작은 파장들로 인해 고유한 확산 특성들을 보인다. 예를 들면, 보다 많은 안테나들이 비교적 작은 영역에 수납될 수 있다. 따라서, 작은 폼 팩터에서 높은 이득 안테나를 가능하게 할 수 있다. 밀리미터파 무선 통신 시스템들은 몇 킬로미터 거리에 걸쳐 10 Gbps 데이터 전송율을 달성할 수 있다. 하지만, 현재 기술들은 비용, 복잡도, 전력 소비, 및 폼 팩터와 같은 문제들로 인하여 상용 이동 통신에 아주 적합한 것은 아니다. 최근에 개발 노력들이 짧은 범위 무선 통신을 위한 밀리미터파 무선 통신을 이용하기 위해 있어왔다. 예를 들면, 60GHz 무선 주파수 집적 회로(RFIC, Radio Frequency Integrated Circuits)를 개발하는 데에 있어 진보 및 안테나 솔루션들이 이루어졌다. 하지만, 오늘날의 60GHz RFIC는 여전히 낮은 효율 및 높은 비용으로 어려움을 겪고 있으며, 밀리미터파는 확산 손실로 인해 어려움을 겪고 있다.
밀리미터파들의 확산 손실을 다루기 위하여, 빔포밍(beamforming)이 채택될 수 있다. 빔포밍은 신호 이득을 얻기 위해 적응적인 수신/전송 빔 패턴들을 통해 특정 선택을 이용하는 수신 또는 방향성 신호 전송을 위해 사용되는 신호 처리 기술이다. 전송 시에, 빔포머는 웨이브프론트(wavefront)에서 보강 간섭(constructive interference) 및 상쇄 간섭(destructive interference)의 패턴을 생성하기 위하여, 각 전송 안테나에서 신호의 위상 및 관련된 진폭을 제어한다. 수신시에, 다른 안테나들로부터 정보는 합성되며, 따라서, 방사의 예측된 패턴이 우선적으로 관찰된다.
도 1은 관련된 기술에 따른 빔포밍 전송을 도시한다.
도 1을 참조하면, 전송 안테나 어레이(101)에서 다중 전송 안테나(102)를 가지는 송신기(100)가 도시되었다.
이득 gt1 내지 gtN으로 도 1에 도시된, 전송 빔포밍 가중치, gti는 안테나 어레이(101)의 전송 안테나(102) 중 i번째 것으로부터 전송되는 신호에 적용된다. 이득은 전송 안테나들(102)의 각각으로부터 전송되는 신호의 위상 및 관련된 진폭을 조절하기 위해 사용된다. 신호는 전송 안테나들(102) 각각으로부터 전송을 위해 개별적으로 증폭될 수 있다. 대안적으로, 단일 증폭기 또는 전송 안테나들의 수 보다 작은 수로 번호가 부여되는 증폭기가 사용될 수 있다. 게다가, 빔포밍 가중치 또는 이득들은 신호 증폭 전 또는 신호 증폭 후에 적용될 수 있다.
도 2는 관련된 기술에 따른 빔포밍 수신을 도시한다.
도 2를 참조하면, 수신 안테나 어레이(201)에서 다중 수신 안테나들(202)을 가지는 수신기(200)가 도시되었다.
수신 안테나들(202)의 각각에 의해 수신되는 신호는 저잡음증폭기(LNA, Low-Noise Amplifier)에 의해 증폭된다. gr1 내지 grN으로 도 2에 도시된, 수신 빔포밍 가중치, gri는 수신된 신호에 적용되며, 수신 안테나들(202) 중 i 번째 것으로부터 증폭된다. 이득은 수신 안테나들(202) 각각에 의해 수신된 신호의 위상 및 관련된 진폭을 조절하기 위해 사용된다. 수신 빔포밍 가중치는 이득 조절(gain adjustment)이 될 수 있다. 위상 및 진폭 조절된 신호들은 수신된 신호를 생성하기 위해 조합된다. 수신 빔포밍 이득은 수신 안테나들(202) 각각으로부터 신호들의 간섭 결합(coherent combining) 또는 보강 결합(constructive combining)으로 인해 얻어진다.
도 3은 관련된 기술에 따른 동적 빔포밍을 도시한다.
도 3을 참조하면, 복수의 가중치 gt1 내지 gt5는 전송 빔 TxB의 동상 웨이브프론트(equiphase wavefront)를 형성하기 위해 출력(outgoing) 신호 s(t)에 적용된다.
가중치들 gt1 내지 gt5는 단지 신호 s(t)의 위상을 제어 및/또는 조절하기 위해 사용된다. 신호 s(t)는 각 안테나가 가중치 gt1 내지 gt5 중 대응하는 하나를 가지는, 복수의 안테나들 A1 내지 A5에 적용되며, 안테나 A1 내지 A5 각각은 거리 d 만큼 안테나 A1 내지 A5 중 인접하는 것들로부터 이격된다. 예를 들면, 도 3에 보인 바와 같이, 신호 s(t)는 이의 위상에 대하여 신호 s(t)를 조정하기 위하여, 안테나 A1을 통해 전송되는 신호들에 적용되는,
Figure pct00001
의 가중치 gt1을 가지는 안테나 A1에 적용된다.가중치들 gt2 내지 gt5는 각각 안테나 A2 내지 A5에서 신호 s(t)에 적용된다. 따라서, 안테나들 A1 내지 A5 각각은 도 3에 보인 동상 웨이브프론트를 가지는 특정 방향에서 조정될 수 있는 위상 조절 신호 s(t)를 생성한다. 가중치들 gt1 내지 gt5를 이용하여 안테나 A1 내지 A5에 적용되는 위상 조절은 신호 s(t)의 전송 및 수신 양자 모두에 적용될 수 있다. 따라서, 전송 빔 및 수신 빔은 미리 결정된 방향에서 조절될 수 있다.
도 4는 관련된 기술에 따른 디지털 빔포밍의 실시예를 도시한다.
도 4를 참조하면, 디지털 빔포밍은 송수신기(transceiver, 400)에 의해 수행되는 바와 같이, 성능 및 플렉시빌리티(flexibility)와 같은, 다양한 이득을 얻을 수 있도록 사용될 수 있다. 도 4에 보인 바와 같이, 신호들 s0(t) 내지 s(M-1)t를 포함하는, M, N 개의 신호들은 송수신기(400)의 각각의 안테나들에 의해 전송되어지는 각 전송 경로들을 따라 전송된다. 전송 가중치들 wt0 내지 wt(M-1)는 각 전송 경로들을 따라 신호들 s0(t) 내지 s(M-1)t에 개별적으로 적용된다. 각 전송 경로들은 디지털 대 아날로그 컨버터(DAC, Digital to Analog Converter) DAC1 내지 DACM을 포함한다. 전송된 신호들 s0(t) 내지 s(M-1)t는 수신기(200)의 안테나들 중 각각의 것들에 의해 수신된다. 수신된 신호들 r0(t) 내지 r(N-1)t는 각 수신 경로를 통해 수신된다. 각 수신 경로는 저잡음 증폭기(LNA, Low Noise Amplifier) 및 아날로그 대 디지털 컨버터(ADC, Analog to Digital Converter) ADC1 내지 ADCN을 포함한다. 수신 가중치들 wr0 내지 wr(N-1)은 수신된 신호들 r0(t) 내지 r(N-1)t에 개별적으로 적용된다. 따라서, 디지털 빔포밍을 디지털 신호들에 적용하는 것에 의해, 다양한 채널 조건들에서도, 최적 채널 용량이 성취될 수 있다. 하지만, 많은 양의 하드웨어가 M 또는 N 전체 송수신기들을 가지는 것으로 디지털 빔포밍에 사용된다. 따라서 디지털 빔포밍은 채널 용량을 증가시키는 반면, 하드웨어 복잡도 및 전력 소비 양자 모두를 증가시킨다.
도 5는 관련된 기술에 따른 아날로그 빔포밍의 실시예를 도시한다.
도 5를 참조하면, 아날로그 빔포밍은 송수신기(500)에 의해 수행된다. 도 5의 아날로그 빔포밍에 따라, 도 4에 도시된 바와 같은 DAC들 및 ADC들과 같은 복수의 데이터 컨버터들은 감소될 수 있다. 도 5에 보인 바와 같이, 송수신기(500)에서, 전송 신호 s(t)는 디지털 형식의 전송 신호 s(t)를 아날로그 형식의 전송 신호 s(t)로 변환되도록 DAC(501)를 통해 전달된다. 그런 다음, 이는 대응하는 신호 경로들을 따라 복수의 전송 안테나들(503)에 제공된다. 각 전송 가중치 wt0 내지 wt(M-1)는 대응하는 신호 경로들을 따라 전송 안테나들로 전달되는 각 아날로그 신호 s(t)에 적용된다. 여기서, 각 신호 경로들은 믹서(mixer)를 가진다. 송수신기(500)는 복수의 수신 안테나들(504)을 이용하여 각각 전송 가중치들 wt0 내지 wt(M-1)를 가지는 각 아날로그 신호들 s(t)를 수신한다. 복수의 수신 신호들은 각각의 신호 경로들을 통해 전달된다. 각각의 신호 경로들은 저잡음 증폭기(LNA), 믹서를 가진다. 각각의 수신 가중치들 wr0 내지 wr(N-1)는 복수의 수신 신호들에 적용된다. 그런 다음, 수신되어 가중된 신호들은 수신 신호 r(t)을 형성하기 위해, ADC(502)에 의해 디지털 신호로 변환된다. 따라서, 도 5의 아날로그 빔포밍에서, 오직 하나의 DAC(501) 및 하나의 ADC(502)가 송수신기(500)예서 사용된다. 따라서 복수의 데이터 컨버터들이 감소된다.
도 6은 관련된 기술에 따른 무선 주파수(RF, Radio Frequency) 빔포밍의 예를 도시한다.
도 6을 참조하면, RF 빔포밍은 송수신기(600)에 의해 수행된다. 도 6에 도시된 바와 같이, RF 빔포밍은 빔포밍 동작을 수행하기 위해 사용되는 복수의 믹서들을 감소시킬 수 있다. 송수신기(600)에서, 전송 신호 s(t)는 DAC(601)을 이용하여 디지털 형식으로부터 아날로그 형식으로 변환된다. 그런 다음, 아날로그 형식의 전송 신호 s(t)는 전송되어지도록, 각 신호 경로를 따라 복수의 전송 안테나들(603)에 제공되도록 믹서(602)를 통해 전달된다. 송수신기(600)는 복수의 수신 안테나들(604)을 이용하여 전송된 신호들을 수신한다. 이들 각각은 LNA를 포함하는 개별 신호 경로를 가진다. 그리고, 각 수신 가중치들 wr0 내지 wr(N-1)가 복수의 수신된 신호들에 적용된다. 수신되어 가중된 신호들은 결합기(605)에 의해 결합되고, 그런 다음, 믹서(606)에 의해 믹싱되며, 수신된 신호 r(t)을 형성하기 위해 ADC(607)를 통해 전달된다. 따라서, 믹서는 수신 안테나들(604)의 신호 경로 각각을 따라 배치되지 않는다. 그리고, 낮은 수의 믹서들은 감소된 하드웨어 복잡도 및 전력 소비를 낳는다. 하지만, 빔포밍 제어에서 감소된 유연성(flexibility), 감소된 다중 접속 기능 및 감소된 다중 접속 사용자들은 RF 빔포밍의 제한된 기능의 결과를 낳는다.
WirelessHD 기술, ECMA-387, 및 IEEE 802.15.3c와 같은, 현재의 P2P(peer-to-peer) 밀리미터파 표준들은 시간 분할 이중화(TDD, Time Division Duplex)를 채택한다. 여기서, 통신에서 두 개의 장치들 중 오직 하나만이 주어진 시간에 전송 또는 수신한다. TDD 또는 주파수 분할 이중화(FDD, Frequency Division Duplex)는 종종 종래의 셀룰러 또는 모바일 광대역 시스템들에서 기지국들의 전송된 신호들 및 수신된 신호들을 분할하기 위해 사용된다. 종래의 TDD 시스템에서, 기지국은 하향링크 시간 슬롯들에서 전송하고, 이동 단말들은 상향링크 시간 슬롯들에서 전송한다. 결국, 현재 밀리미터파 표준들은 단지 반-이중 통신들을 지원한다. 다른 말로, 동시 전송 및 수신 동작들은 무선 통신을 위한 현재 P2P 밀리미터파 표준들에서 가능하지 않다.
본 발명의 측면들은 적어도 앞서 언급된 문제들 및/또는 불리한 점들을 다루며, 그리고, 아래에서 설명될 적어도 이득들을 제공한다. 따라서, 본 발명의 측면은 밀리미터파 통신 시스템을 위한 공간 분할 이중화(SDD, Spatial Division Duplex)를 위한 장치 및 방법을 제공하기 위한 것이다.
본 발명의 일 측면에 따라, 전-이중 밀리미터파(full-duplex millimeter wave) 통신 시스템을 위한 무선 단말기가 제공된다. 이러한 장치는 공간적으로 빔포밍된 전송 빔을 형성하기 위한 복수의 전송 안테나들을 가지는 전송 안테나 어레이와, 공간적으로 빔포밍된 수신 빔을 형성하기 위한 복수의 수신 안테나들을 가지는 수신 안테나 어레이를 포함하며, 상기 복수의 전송 안테나들 및 상기 복수의 수신 안테나들은 상기 전송 빔 및 수신 빔 각각의 통신 신호를 위해 동일한 시간에서 동일한 주파수를 사용하며, 그리고, 상기 빔포밍된 전송 빔 및 상기 빔포밍된 수신 빔은 공간적으로 오버랩되지 않는다.
본 발명의 다른 측면에 따른, 밀리미터파를 이용하는 공간 분할 이중화(SDD, Spatial Division Duple) 이동 통신 시스템이 제공된다. 이러한 장치는 공간적으로 빔포밍된 제1 전송 빔을 전송하기 위한 복수의 제1 전송 안테나들을 가지는 제1 전송 안테나 어레이와, 공간적으로 빔포밍된 제1 수신 빔을 형성하기 위해 복수의 제1 수신 안테나들을 가지는 제1 수신 안테나 어레이를 포함하는 제1 무선 단말기, 및 제1 무선 단말기의 수신 빔을 향해 지향된 공간적으로 빔포밍된 제2 전송 빔을 전송하기 위한 복수의 제2 전송 안테나들을 가지는 제2 전송 안테나와, 제1 무선 단말기의 전송 빔을 향해 지향되는 공간적으로 빔포밍된 제2 수신 빔을 형성하기 위한 복수의 제2 수신 안테나들을 가지는 제2 수신 안테나 어레이를 포함하는 제2 무선 단말기를 포함한다.
본 발명의 다른 측면에 따르면, 밀리미터파를 이용하는 공간 분할 이중화(SDD, Spatial Division Duplex) 이동 통신을 위한 방법이 제공된다. 상기 방법은 전송 안테나 어레이의 복수의 전송 안테나들 중 선택된 것들을 이용하여 제1 전송 빔을 형성하는 단계와, 미리 결정된 시간에 미리 결정된 주파수에 따라 상기 제1 전송 빔을 통해 제1 무선 단말기로 제1 신호를 전송하는 단계와, 수신 안테나 어레이의 복수의 수신 안테나들 중 선택된 것들을 이용하여 제1 수신 빔을 형성하는 단계와, 미리 결정된 시간에서 미리 결정된 주파수에 따라 상기 제1 수신 빔을 통해 제2 무선 단말기로부터 제2 신호를 수신하는 단계를 포함하며, 상기 제1 전송 빔 및 상기 제1 수신 빔 각각은 공간적으로 빔포밍되며, 상기 공간적으로 빔포밍된 전송 빔 및 상기 공간적으로 빔포밍된 수신 빔은 공간적으로 오버랩되지 않는다.
본 발명의 다른 측면들, 유리한 점들, 및 핵심적인 특징들은 첨부된 도면들과 함께 취해지며, 본 발명의 실시예를 공개하는 다음의 상세한 설명으로부터 이 기술 분야에서 통상의 지식을 가진자들에게 분명해질 것이다.
앞서 설명된 바와 같이, 무선 통신을 위한 현재의 P2P 밀리미터파 표준들에서 동시 전송 및 수신 동작들이 가능하다. 그리고 근접한 기지국들은 2개의 서로 다른 이동 단말들과 각각 통신하기 위해 동일한 주파수 및 시간 슬롯들을 사용할 수도 있다.
본 발명의 일부 실시예들의 상술한 그리고 다른 측면들, 특징들 그리고 유리한 점들은 첨부된 도면들과 함께 취해지는 다음의 설명들로부터 보다 분명해질 것이다.
도 1은 관련된 기술에 따른 빔포밍 전송을 도시한다;
도 2는 관련된 기술에 따른 빔포밍 수신을 도시한다;
도 3은 관련된 기술에 따른 동적 빔포밍을 도시한다;
도 4는 관련된 기술에 따른 디지털 빔포밍의 실시예를 도시한다;
도 5는 관련된 기술에 따른 아날로그 빔포밍의 실시예를 도시한다;
도 6은 관련된 기술에 따른 무선 주파수(RF, Radio Frequency) 빔포밍의 예를 도시한다;
도 7은 본 발명의 실시예에 따른 전-이중(full-duplex) 밀리미터파 P2P(peer-to-peer) 통신 시스템을 도시한다;
도 8은 본 발명의 실시예에 따른 전-이중 밀리미터파 무선 통신 시스템을 도시한다;
도 9는 본 발명의 실시예에 따른 SDD 밀리미터파 이동 통신 시스템을 도시한다;
도 10은 본 발명의 실시예에 따른 동적 빔포밍에 의한 전송 신호 및 수신 신호 분할을 도시한다;
도 11은 본 발명의 실시예에 따른 전송 및 수신 빔포밍 가중 조절을 도시하는 흐름도이다;
도 12는 본 발명의 다른 실시예에 따른 SDD 시스템을 도시한다.
도 13은 본 발명의 다른 실시예에 따른 SDD를 도시한다;
도 14는 본 발명의 다른 실시예에 따른 SDD 시스템을 도시한다;
도 15는 본 발명의 다른 실시예에 따른 SDD 시스템을 도시한다;
도 16은 본 발명의 실시예에 따른 안테나 요소들의 정렬을 도시한다.
도 17은 본 발명의 다른 실시예에 따른 안테나 요소들의 배열을 도시한다;
도 18은 본 발명의 실시예에 따른 무선 통신 시스템에서 기지국을 도시하는 블록도이다; 그리고,
도 19는 본 발명의 실시예에 따른 무선 통신 시스템에서 이동 단말을 도시하는 블록도이다.
도면들에 걸쳐, 동일한 참조 번호들은 동일하거나, 또는, 유사한 요소들, 특징들, 및 구조들을 설명하기 위해 사용되었음을 유의하여야 한다.
첨부된 도면을 참조로 하는 다음의 설명은 특허청구범위 및 그들과 동치에 의해 정의되는 본 발명의 실시예의 완벽한 이해를 돕기 위해 제공된다. 이는 이해를 돕기 위한 다양한 특정 세부사항들을 포함한다. 하지만, 이들은 단지 예시적인 것으로 간주되어야 한다. 따라서, 이 기술분야에서 통상의 지식을 가진자는 이 문헌에 설명된 실시예들의 다양한 변경 및 수정이 본 발명의 사상 및 범위를 벗어남이 없이 만들어질 수 있음을 이해할 수 있을 것이다. 추가로 잘 알려진 기능들 및 구성들의 설명은 명확히 하고 간략화하기 위해 생략되었다.
다음의 설명 및 청구범위에서 상용된 용어 및 단어들은 사전적인 의미로 제한되는 것은 아니며, 발명자에 의해 본 발명의 명확하고 일관된 이해를 가능하기 하기 위해 사용된다. 따라서, 본 발명의 실시예의 다음의 설명들이 첨부된 특허청구범위들 및 그와 동등한 것들에 의해 정의되는 바와 같이, 본 발명을 한정하는 목적이 아니라, 단순한 설명의 목적으로 제공되고 있음을 이 기술분야에서 통상의 지식을 가진 자들에게 명확해질 것이다.
단수 형식 "a", "an" 및 "the"는 구문상 명확하게 그렇지 않음을 언급하지 않는 경우 복수의 대상을 포함함을 이해하여야 한다. 따라서, 예를 들면, "컴포넌트 표면(a component surface)"에 대한 참조는 하나 이상의 그러한 표면들에 대한 참조를 포함한다.
용어 "실질적으로(substantially)"에 의해, 인용된 특징, 파라미터, 또는 값은 정확히 얻어질 필요는 없지만, 예컨대, 공차들, 측정 에러, 측정 정확도 제한들 및 이 기술분야에서 통상의 지식을 가진 자들에게 알려진 다른 팩터들을 포함하는 편차들 또는 변수들이 제공되도록 의도된 특징들의 효과를 불가능하게 되지는 않는 정도로 통틀어 발생될 수 있다.
본 발명의 실시예들은 "이동 단말(mobile station)"에 적용되도록 설명될 수 있다. 하지만, 이는 단지 포괄적인 용어이며, 모바일 폰, 손바닥 크기의 퍼스널 컴퓨터(PC), PDA(Personal Digital Assistant), HPC(Hand-held PC), 스마트 폰, IMT-2000(International Mobile Telecommunication 2000) 단말기, 무선 랜(Wireless LAN) 단말기, 중계기(repeater), 송수신기(transceiver), 및 통신을 위한 무선 주파수 또는 고주파수 신호를 전송 및/또는 수신하는 어떤 다른 적합한 무선 통신 장치 중 어떤 것이라도 본 발명은 동등하게 적용된다는 점을 이해되어야만 한다. 추가로 본 발명의 실시예들에서 "기지국(base station)"에 적용되어 설명될 수 있다. 하지만, 이는 포괄적인 용어이며, 이는 기지국, eNB(evolved Node B), 중계기(repeater), 무선 네트워크 요소들, 송수신기, 액세스 포인트, 및 통신을 위한 무선 주파수 또는 고주파수 신호를 전송 및/또는 수신하는 어떤 다른 적합한 무선 통신 장치 중 어떤 것이라도 본 발명에 동등하게 적용된다는 점을 이해되어야만 한다. 따라서 용어 "이동 단말" 및 "기지국"의 사용은 어떤 형식의 장치 또는 디바이스에 대한 본 발명의 개념의 적용을 제한하기 위하여 사용되는 것은 아니다. 용어 "무선 단말기(wireless terminal)"은 기지국 및 이동 단말 중 어느 하나를 나타내는 포괄적인 용어이다. 용어 "무선 단말기" 및 "단말기"은 이 문헌에서 상호간에 대체될 수 있게 나타낼 수 있다.
본 발명의 실시예는 무선 통신을 위한 밀리미터 전자기파들을 이용하는 공간 분할 이중화(SDD, Spatial Division Duplex) 통신 시스템을 위한 장치 및 방법을 포함한다.
이 문헌에서 공개되는 다양한 실시예의 SDD 통신 시스템들 및 방법들은 밀리미터파를 이용하는 무선 통신의 콘텍스트 내에 제공된다. 하지만, 본 발명은 그것에 한정되는 것은 아니다. 그리고, SDD 통신 시스템들 및 방법들은 10GHz 내지 30GHz의 주파수를 가지는 무선파들(radio waves), 밀리미터파들과 유사한 특성을 보이는 다른 유사하는 통신 매체들, 또는, 테라헤르쯔(terahertz) 주파수들, 적외선, 가시광선 및 다른 광학 매체를 가지는 전자기파들과 같은, 다른 적합한 통신 매체들에 적용할 수 있다. 본 발명의 실시예에 있어서, 용어 "셀룰러 대역(cellular band)"은 몇백 메가헤르쯔(megahertz) 주파수들 내지 몇 기가헤르쯔(gigahertz) 근처의 주파수들을 나타낸다. 그리고, "밀리미터파 대역(millimeter wave band)"은 몇 십 기가헤르쯔 내지 몇 백 기가헤르쯔 근처의 주파수들을 나타낸다.
밀리미터파는 낮은 주파수를 가지는 무선 파들 보다 높은 확산 손실을 겪고 있다. 이러한 높은 확산 손실은, 밀리미터파가, 예를 들면, 10m 내지 100m의 범위의, 로컬 영역(local-area) 통신에 사용될 때, 또는, 100m 보다 큰 범위인, 광역(wide-area) 통신에서 사용될 때, 더욱 확고하게 될 수 있다. 높은 확산 손실을 극복하기 위하여, 높은 안테나 이득을 가지는 안테나들이 밀리미터파 통신에 사용된다. 밀리미터파의 작은 파장에 기인하여(예컨대, 60GHz 캐리어 주파수에 대해 λ = 5mm), 다중 안테나들을 가지는 안테나 어레이에서, 안테나 크기 및 구분(separation)은 작아질 수 있다. 예를 들면, 안테나 크기 및 구분은 빔포밍의 목적을 위해, λ/2가 될 수 있다. 밀리미터파 안테나의 작은 안테나 크기 및 구분은 작은 영역에서 매우 많은 수의 안테나를 허용한다. 작은 영역에서 복수의 작은 안테나들은 비교적 작은 영역에서 안테나 빔들의 높은 이득을 가능하게 한다. 복수의 안테나들 및 높은 이득의 안테나 빔들은 좁은 안테나 빔들(narrow antenna beams)을 허용한다. 밀리미터파 안테나들의 특성들은 공간 분할 다중 접속(SDMA, Spatial Division Multiple Access) 및 공간 재사용(spatial reuse)과 같은 기술들의 구현을 허용한다.
도 7은 본 발명의 실시예에 따른 전-이중(full-duplex) 밀리미터파 P2P(peer-to-peer) 통신 시스템을 도시한다.
도 7을 참조하면, 전-이중(full-duplex) 밀리미터파 P2P(peer-to-peer) 통신 시스템(700)은 단말기(705) 및 단말기(706)을 포함한다. 각 단말기는 다중 전송 안테나들(702)을 포함하는 전송 안테나 어레이(701) 및 다중 수신 안테나들(704)을 포함하는 수신 안테나 어레이(703)를 가진다. 단말기(705)은 단말기(706)과 양방향 통신하는 상태에 있다. 다른 말로, 단말기(705) 및 단말기(706) 양자 모두는 동일한 시간에 동일한 주파수 상에서 동시에 데이터를 송신하고 수신한다. 하지만, 본 발명은 그것에 제한되지 않으며, 단말기(705) 및 단말기(706)은 다른 주파수들 그리고 다른 시간들에서 데이터를 전송하고 수신하거나, 또는, 다른 적합한 방법들을 통해 통신할 수 있다.
단말기(705) 및 단말기(706)은 전송 및 수신 신호들을 분리하기 위하여 데이터를 전송하고 수신할 때 공간 빔포밍을 이용한다. 단말기(705) 및 단말기(706) 각각의 각 전송 안테나들(702) 및 각 수신 안테나들(704)은 L × N (L by N) 매트릭스의 안테나들을 형성하기 위해, 제1 방향에 배치된 L개의 안테나들 및 상기 제1 방향에 대해 수직인 제2 방향에 배치된 N개의 안테나들을 가진다. 또한, 단말기(705) 및 단말기(706) 각각의 각 전송 안테나들(702) 및 각 수신 안테나들(704)은 분리된 전송 및 수신 신호들을 전송하고 수신하기 위해 상호간에 분리된다. 단말기(705)은 단말기(705)의 수신 안테나들(704)을 향한 방향으로 형성되는 전송 빔 TxB1을 통해 단말기(706)로 데이터를 전송한다. 단말기(706)은 전송 빔 TxB1의 신호를 수신하기 위해, 단말기(705)의 전송 안테나들(702)을 향한 방향으로 형성된 수신 빔 RxB2를 활성화하는 것에 의해 데이터를 수신한다.
단말기(705) 및 단말기(706)은 적어도 하나의 무선 기지국, 또는, 무선 네트워크 리피터(repeater), 또는, 다른 무선 네트워크 요소, 이동 단말, 송수신기, 또는, 통신을 위한 무선 또는 고주파수 신호들을 송수신하는 어떤 다른 적합한 무선 통신 장치가 될 수 있다.
단말기(705)로부터 단말기(706)로 전송 신호 TxB1의 전송과 동시에, 전송 신호는, 도 7에 도시된 바와 같이, 전송 빔 TxB2를 통해 단말기(306)로부터 단말기(705)로 전송될 수 있다. 단말기(706)은 단말기(705)의 수신 안테나들(704)을 향한 방향으로 형성된 전송 빔 TxB2를 통해 단말기(705)로 데이터를 전송한다. 단말기(706)은 전송 빔 TxB2를 수신하기 위해 단말기(704)의 전송 안테나(702)를 향한 방향으로 형성된 수신 빔 RxB1을 활성화하는 것에 의해 데이터를 수신한다.
전-이중 P2P 통신을 지원하기 위해, 각 단말기들(705 및 706) 내의, 전력 증폭기, 업 컨버전 믹서와 같은 다른 전송 회로 및 요소들과 함께, 전송 안테나(702), 다른 전송 회로 및 요소들, 그리고, 저잡음 증폭기(LNA), 다운 컨버전 믹서와 같은 다른 수신회로 또는 다른 수신 회로 및 요소들과 함께 수신 안테나들(702), 또는, 다른 수신 회로 및 요소들은 상호간에 분리되어야 한다. 예를 들면, 도 7에 도시된 바와 같이, 단말기(705) 내의, 전송 회로들 및 수신 회로들 간의 분리는 상호간에 분리된다. 따라서, 전송 빔포밍 및 수신 빔포밍이 수행될 때, 단말기(705)의 전송 회로 및 수신 회로 간의 간섭은 분리로 인해 억제될 수 있다. 간섭의 억제는 단말기(705)이 전송 빔 TxB1 및 수신 빔 RxB1 그리고, 그들의 대응하는 전송 신호 및 수신 신호를 위해 동일한 시간 및 주파수 리소스들을 이용할 수 있도록 한다. 하지만, 본 발명은 그것들로 한정되는 것은 아니며, 전송 및 수신 회로 간의 분리로 인해, 전송 및 수신 빔포밍을 수행하는 데에 있어, 인접한 주파수들을 이용하는 동일한 타이밍 또는 상호간에 매우 근접한 주파수들의 2개의 세트들이 사용될 수 있다.
도 8은 본 발명의 실시예에 따른 전-이중 밀리미터파 무선 통신 시스템을 도시한다.
도 8을 참조하면, 전-이중 밀리미터파 P2P 통신 시스템(400)은 단말기들(805 및 806)을 포함한다. 각각은 다중 전송 안테나들(802)을 포함하는 전송 안테나 어레이(801) 및 다중 수신 안테나들(804)을 포함하는 수신 안테나 어레이(803)를 가진다. 도 7을 참조로 하여 설명된 실시예와 유사하게, 단말기(805)은, 전송 및 수신 빔들 각각을 통해 전송 및 수신 신호들을 분리하기 위해, 데이터를 전송하고 수신할 때 공간 빔포밍을 이용하는 단말기(805)과 양방향 통신 상태에 있다. 각각의 단말기들(805 및 806)의 각 전송 안테나들(802) 및 각 수신 안테나들(804)은 분리된 전송 신호 및 수신 신호를 전송하고 수신하기 위해, 상호간에 분리된다. 단말기들(805 및 806)은 도 7을 참조로 하여 앞서 설명된 바와 유사한 방식에 따라, 상호간에 서로 데이터를 전송하고 수신한다.
단말기(805 및 806) 간에 통신과 동시에, 단말기(806)은 무선 단말기(807)과 통신할 수 있다. 단말기(806)은 무선 단말기(807)로 향하는 방향으로 형성되는 전송 빔 TxB3을 통해 무선 단말기(807)로 데이터를 전송한다. 단말기(806)은 무선 단말기(807)에 의해 전송되는 데이터를 수신하기 위해 무선 단말기(807)을 향하는 방향으로 형성된 수신 빔 RxB3을 활성화하는 것에 의해 무선 단말기(807)로부터 데이터를 수신한다. 무선 단말기(807)은 모바일 또는 무선 폰, 무선 PDA(personal digital assistant), 모바일 컴퓨터, 또는, 다른 유사한 무선 전자 장치들과 같은 무선 통신 시스템 엔드 유저 디바이스가 될 수 있다.
단말기(806)은 단말기(805)과 통신하기 위해 사용되는 동일한 주파수 및 시간을 이용하는 무선 단말기(807)과 통신할 수 있다. 단말기(806)은 전송 빔 TxB3 및 수신 빔 RxB3 상에서 동작하는 빔포밍을 수행한다. 단말기(806)에 의해 수행되는 빔포밍 동작은, 전송 빔 TxB2 및 전송 빔 TxB3 양자 모두가 단말기(806)로부터 각 수신자들, 단말기(805) 및 무선 단말기(807)에게 동시에 전송될 때, 전송 빔 TxB3으로부터 전송 빔 TxB2를 공간적으로 분리한다.
단말기(806)은 단지, 전송을 위한 빔포밍 동작을 수행하기 위해, 각 전송 안테나들(802) 중 선택된 것들을 사용할 수 있다. 예를 들면, 상호간에 공간적으로 분리된 전송 안테나들(802) 중 다른 것들은 전송 빔 TxB2 및 전송 빔 TxB3을 개별적으로 형성하도록 사용될 수 있다. 유사하게, 각각의 수신 안테나들(804) 중 선택된 것들은 수신을 위한 빔포밍 동작을 수행하기 위해, 각각 수신 빔 RxB2 및 수신 빔 RxB3을 형성하도록 사용될 수 있다. 수신 안테나들(804) 중 서로 다르고 공간적으로 분리된 것들은 수신 빔 RxB2 및 수신 빔 RxB3을 개별적으로 형성하도록 사용될 수 있다. 하지만, 본 발명이 그것들에 한정되는 것은 아니며, 공간 빔포밍이 사용되지 않을 수 있고, 단말기(806)로부터 그리고 단말기(806)로 데이터를 전송하고 수신하는 다른 적합한 수단이 사용될 수도 있다.
도 9는 본 발명의 실시예에 따른 SDD 밀리미터파 이동 통신 시스템을 도시한다.
도 9를 참조하면, SDD 밀리미터파 이동 통신 시스템, 또는, 다른 말로, SDD 무선 통신 시스템(900)이 도 9에 도시되었다. SDD 무선 통신 시스템(900)은 3개의 기지국들, BS1, BS2, 및 BS3 및 6개의 이동 단말들, MS1, MS2,…, MS6을 포함한다. 3개의 기지국들 BS1, BS2, 및 BS3 각각은 이동 단말들 MS1 내지 MS6이 위치한, 대응하는 통신 영역, 또는 셀들(101 내지 103)을 가진다. 하지만, 본 발명이 이에 한정되는 것은 아니며, SDD 무선 통신 시스템(400)은 기지국들 및 이동 단말들의 수는 다를 수 있다.
도 9에 보인 바와 같이, 기지국 BS1은 이동 단말들 MS1 및 MS2와 통신하며, 기지국 BS2는 이동 단말들 MS3 및 MS4와 통신하고, 그리고, 기지국 BS3은 이동 단말들 MS5 및 MS6과 통신한다. 기지국 BS1은 동시에, 동일한 시간에 동일한 주파수 상에서 이동 단말 MS2로부터 데이터를 수신하고, 이동 단말 MS1로 데이터를 전송한다. 다른 말로, 기지국 BS1은 동시에 발생하는 시간에서, 2개의 서로 다른 이동 단말들 MS1 및 MS2와 통신하기 위해 동일한 주파수를 사용한다. 하지만, 이동 단말 MS2와 통신하는 것과 동일한 시간에 이동 단말 MS1과 통신하기 위해, 기지국 BS1은 반드시 각 전송 및 수신 신호들을 분리하여야 한다.
전송 및 수신 신호들 간에 분리는 공간 빔포밍에 의해 이루어진다. 따라서, SDD 무선 통신을 허용한다. 공간 빔포밍을 수행하기 위하여, 기지국들 BS1 및 BS2 각각은 수신 안테나들의 세트로부터 분리된 전송 안테나들의 세트로 제공된다. 기지국 BS1 내지 BS3 각각의, 저잡음 증폭기(LNA), 다운 컨버젼 믹서, 또는 다른 수신 회로 및 요소들과 같은 다른 수신 회로와 함께, 수신 안테나들 및 전력 증폭기, 업 컨버젼 믹서, 그리고 다른 전송 회로 및 요소들과 같은 다른 전송 회로 및 요소들과 함께 전송 안테나들은, 기지국들 BS1 내지 BS3의 각각에서 상호간에 서로 분리되어야만 한다. 예를 들면, 기지국 BS1 내의, 전송 회로 및 수신 회로는 상호간에 서로 분리된다. 따라서 전송 및 수신 빔포밍을 수행할 때, 기지국 BS1의 전송 회로 및 수신 회로 간의 간섭은 분리에 의해 억제될 수 있다. 간섭의 억제는 기지국 BS1이 전송 빔 TxB1 및 수신 빔 RxB1과, 그들의 대응하는 전송 및 수신 신호들을 위해, 동일한 타이밍 및 주파수 리소스를 사용할 수 있도록 한다. 하지만, 본 발명이 이에 한정되는 것은 아니며, 전송 및 수신 회로 간의 분리로 인해, 전송 및 수신 빔포밍을 수행하는 데에 있어, 인접한 주파수들을 이용하는 동일한 타이밍 또는 상호간에 매우 근접한 주파수들의 2개의 세트들이 사용될 수 있다.
실시예에 따르면, 2개의 분리된 위상 안테나 어레이가 기지국들 BS1 내지 BS3 각각에서 사용된다. 위상 안테나들 중 하나는 전송 안테나 어레이로 사용되며, 위상 안테나들 중 다른 것은 수신 안테나 어레이로 사용된다. 2개의 안테나 어레이들은 수신되는 신호에 대한 전송되는 신호로부터 간섭을 줄이기 위해, 미리 결정된 거리로 분리된다. 기지국 BS1 내지 BS3은 또한 각 하향링크 및 상향링크 전송을 적절하게 조절해야만 한다. 예를 들면, 기지국 BS1의 경우에 있어서, 수신되는 신호에 대해 전송되는 신호로부터 간섭을 더 억제하기 위해, 전송 빔 TxB1 및 수신 빔 RxB2는 공간 도메인에서 만족스럽게 분리된다.
각 하향링크 및 상향링크 전송을 조절하기 위해, 또는, 다른 말로, 기지국 BS1과 같은 기지국에서 수신 빔포밍 및 전송 빔포밍을 조절하기 위해, 기지국 BS1은 하향링크 및 상향링크 채널 상태 정보를 요구한다. 다양한 방법들이 기지국 BS1과 통신하는 하나 이상의 이동 단말 MS1 내지 MS6과 기지국 BS1 사이의 하향링크 및 상향링크 채널 상태 정보를 얻기 위해 사용될 수 있다. 예를 들면, 기지국 BS1은 하나 이상의 이동 단말들 MS1 내지 MS6 중 하나로부터 하향링크 채널 상태 정보를 수신할 수 있다. 이 하향링크 채널 상태 정보는 하향링크 채널 상태 정보 중 바람직한 하향링크 전송 빔포밍에 관련된 정보를 포함한다. 기지국 BS1은 상향링크 채널에서 사운딩 레퍼런스 신호(sounding reference signal)를 전송하도록 이동 단말들 MS1 내지 MS6 중 하나를 구성할 수 있다. 이에 따라, 기지국 BS1은 상향리크 사운딩 레퍼런스 신호로부터, 상향링크 채널 상태 정보 및 상향링크 수신 빔포밍 정보를 유도할 수 있다. 다른 실시예에 따라서, 상호간에 조정되는 전송 및 수신 안테나들을 가지는 TDD 시스템에서, 기지국은 하향링크 채널 상태 정보와 같이, 상향링크 채널 상태 정보를 사용할 수 있다. 따라서, TDD 시스템에서, 이동 단말들은 기지국에 대해 하향링크 채널 상태 정보를 제공하는 것이 요구되지 않는다.
그런 다음, 하향링크 및 상향링크 채널 상태 정보는 SDD 무선 통신을 수행하기 위해, 하향링크 및 상향링크 통신을 조절하기 위해 사용된다. 그 형성에 있어서 하향링크 및 상향링크 채널 상태에 추가로, 버퍼 상태, 서비스 품질의 측정, 스케줄링 우선권, 또는 다른 유사한 통신 정보와 같은, 다른 정보가 하향링크 및 상향링크 통신을 조절하기 위해 사용될 수 있다. 기지국 BS1과 같은, 기지국은, 미리 결정된 주파수를 이용한 미리 결정된 시간에 전송하도록 제1 이동 단말, 실시예에서 이동 단말 MS2을 결정한다. 따라서, 기지국 BS1은 관련된 전송 빔포밍, 패킷 크기, 변조 및 코딩 스킴(modulation and coding schemes), 및 하향링크 통신을 위한 다른 통신 파라미터들을 결정한다. 기지국 BS1은 또한 미리 결정된 주파수를 이용하여 미리 결정된 시간에서 수신하도록, 제2 이동 단말, 실시예에서 이동 단말 MS1을 결정한다. 따라서, 기지국 BS1은 관련된 수신 빔포밍 패킷 크기, 변조 및 코딩 스킴, 및 상향링크 통신을 위한 다른 통신 파라미터들을 결정한다.
동일한 시간-주파수 리소스를 이용하는 전송 빔포밍 및 수신 빔포밍의 결정은 동일한 시간에 발생할 필요는 없다. 다른 말로, 기지국 BS1은 수신 빔포밍 및 대응하는 미리 결정된 시간 및 미리 결정된 주파수, 먼저 결정될 수 있다. 첫 번째 결정에 이어서, 기지국 BS1은 전송 빔포밍, 그리고, 수신 빔 포밍을 위해 사용되는 것과 동일한 미리 결정된 시간 및 주파수를 결정할 수 있다. 기지국은 하향링크 및 상향링크 통신을 조절하기 위하여, 이동 단말 MS2로 하향링크 그랜트를, 그리고, 이동 단말 MS1로 상향링크 그랜트를 전송할 수 있다. 하향링크 및 상향링크 그랜트 메시지들은 상이한 시간에 전송될 수도 있다. 하지만, 본 발명이 이에 한정되는 것은 아니며, 하향링크 및 상향링크 그랜트 메시지들은 동일한 시간에 전송될 수도 있다.
이동 단말들 MS1 내지 MS6은 이동 단말들 MS1 내지 MS6이 단지 어떤 주어진 시간에 전송하거나, 또는 수신하도록 하는 반 이중 모드에서 동작한다. 다른 말로, 이동 단말들 MS1 내지 MS6은, 기지국들 BS1 내지 BS6으로부터 또는 기지국들 BS1 내지 BS6으로 신호들을 전송하거나, 또는, 수신할 때, 공간 빔포밍을 수행하지 않는다. 따라서, 이동 단말들 MS1 내지 MS6은 기지국들 BS1 내지 BS6 각각의 것들로부터 신호를 수신하고, 기지국들 BS1 내지 BS6 각각의 것들로 신호를 전송할 때 모두, 각각 오직 하나의 안테나를 이용한다. 그러므로, 반 이중 모드에서 동작하는 것에 의해, 이동 단말들 MS1 내지 MS6은 전송 및 수신 신호들 양자 모두를 위해 하나의 안테나를 각각 이용할 수 있다.
도 9에 도시된 바와 같이, 공간 빔포밍은 분리된 전송 및 수신 빔들을 형성하는 기지국들 BS1 내지 BS3 각각을 포함한다. 기지국 BS1은 이동 단말 MS2을 향한 방향으로 전송 빔 TxB1을 활성화시키는 것에 의해 데이터를 이동 단말 MS2에 전송한다. 이동 단말 MS2는 전송 빔 TxB1의 전송되는 신호를 수신하기 위해, 기지국 BS1의 전송 안테나들을 향한 방향에서 수신 빔 RxB1을 활성화시키는 것에 의해 기지국 BS1로부터 데이터를 수신한다.
기지국 BS1이 주어진 주파수 상에서 이동 단말 MS2로 데이터를 전송하는 것과 동시에, 이동 단말 MS1은 이동 단말 MS1과 통신하는 기지국 BS1에 의해 사용되는 동일한 주어진 주파수 상에서 기지국 BS1로 데이터를 전송할 수 있다. 기지국 BS1은 수신 빔 RxB2를 이동 단말 MS1을 향한 방향으로 활성화시키는 것에 의해 이동 단말 MS1로부터 데이터를 수신한다. 이동 단말 MS1은 기지국 BS1을 향한 방향으로 전송 빔 TxB2를 활성화시키는 것에 의해 데이터를 기지국 BS1로 전송한다. 도 5에 도시된 바와 같이, 셀 1에서, 전송 빔 TxB1은 전송 빔 TxB2 및 수신 빔 RxB2는 실질적으로 오버랩되지 않는다. 또한, 셀 1에서, 수신 빔 RxB2는 전송 빔 TxB1 및 수신 빔 RxB1과 실질적으로 오버랩되지 않는다. 기지국 BS1은 전송 빔 TxB1 및 수신 빔 RxB2에 대해 형성되는 빔을 적용한다. 따라서, 전송 빔 TxB1 및 수신 빔 RxB2는 확산의 방향에 관련되어 상호간에 실질적으로 오버랩되지 않는다.
기지국 BS2는 이동 단말 MS3으로 향하는 방향으로 전송 빔 TxB3을 활성화시키는 것에 의해 이동 단말 MS3으로 데이터를 전송한다. 동시에, 기지국 BS2는 기지국 BS2로부터 이동 단말 MS3으로 데이터를 전송하기 위해 사용되는 동일한 주파수 상에서 이동 단말 MS4로부터 데이터를 수신한다. 기지국 BS2는 이동 단말 MS4를 향한 방향으로 수신 빔 RxB3을 활성화시키는 것에 의해 이동 단말 MS4로부터 데이터를 수신한다. 셀 2에서, 이동 단말들 MS3 및 MS4는 어떤 전송 또는 수신 빔들도 형성하지 않는다. 그러므로 전송 빔 TxB3 상에서 전송되는 이동 단말 MS3 전송 신호는 수신 빔 RxB3에 의해 수신되는 이동 단말 MS4 수신 신호에 대해 간섭이 될 수 있다. 하지만, 이동 단말들 MS3 및 MS4 사이에 충분한 공간 분리가 존재한다면, 이 간섭은 심각하지 않을 수 있다. 이동 단말들 MS3 및 MS4 사이의 공간 분할은 기지국 BS2가 빔포밍을 이용하는 것에 의해 전송 빔 TxB3을 수신 빔 RxB3으로부터 공간적으로 분리하도록 한다.
이동 단말 MS5는 기지국 BS3을 향한 방향으로 전송 빔 TxB4를 활성화시키는 것에 의해 기지국 BS3으로 데이터를 전송한다. 기지국 BS3은 이동 단말 MS5를 향한 방향으로 수신 빔 RxB4를 활성화시키는 것에 의해 이동 단말 MS5로부터 데이터를 수신한다. 동시에, 기지국 BS3은 이동 단말 MS6을 향한 방향으로 전송 빔 TxB5를 활성화시키는 것에 의해 데이터를 이동 단말 MS6로 전송할 수 있다. 이동 단말들 MS5 및 MS6 사이의 공간 분할은 기지국 BS3이 빔포밍을 이용하는 것에 의해 수신 빔 RxB4로부터 전송 빔 TxB4를 공간적으로 분리하도록 한다.
본 발명의 실시예에 따르면, 밀리미터파 이동 통신 시스템에 있어서, 제1 기지국은 제1 신호를 전송한다. 한편, 상기 제1 기지국에 인접하여 위치한 제2 기지국은 동일한 시간-주파수 자원들 상에서 제2 신호를 수신한다. 다른 말로, 2개의 인접한 기지국들은 2개의 서로 다른 이동 단말들과 각각 통신하기 위해 동일한 주파수 및 시간 슬롯들을 사용할 수 있다. 예를 들면, 도 5를 참조하면, 기지국 BS2가 기지국 BS1로부터 이동 단말 MS2로 전송되는 제1 신호와 동일한 시간 및 동일한 주파수 상에서 이동 단말 MS4로부터 제2 신호를 수신하는 동안, 기지국 BS1은 제1 신호를 이동 단말 MS2로 전송할 수 있다. 다른 말로, 기지국 BS1에 의해 이동 단말 MS2로 신호를 전송하는 것과 동시에, 동일한 주파수를 이용하여 이동 단말 MS4로부터 기지국 BS2로 다른 신호를 수신하는 것이 가능하다.
서로 다른 인접한 기지국들 BS1 및 BS2에 의한 동일한 주파수 및 시간을 이용하는 동시 전송 및 수신은 기지국들 BS1 및 BS2에서 빔포밍 동작에 의해 이루어지는 밀리미터파의 강력한 방향성에 기인하여 가능하다. 추가로, 기지국 BS2가 제4 신호를 이동 단말 MS3으로 전송하는 동안, 기지국 BS1은 이동 단말 MS1로부터 제3 신호를 수신할 수 있다. 여기서, 기지국 BS1은 기지국 BS2가 이동 단말 MS3으로 제4 신호를 전송한 것과 동일한 주파수 및 동일한 시간상에서 제3 신호를 수신한다. 하지만, 본 발명은 이에 한정되지 않으며, 밀리미터파 이동 통신 시스템에서 어떤 송신기, 수신기, 또는 양자 모두는 빔포밍 동작을 수행할 수 있다.
도 10은 본 발명의 실시예에 따른 동적 빔포밍에 의한 전송 신호 및 수신 신호 분할을 도시한다.
도 10을 참조하면, 송수신기(1000)는 전송 빔 TxB10을 이용하여 이동 단말 MS3으로 전송 신호를 전송하며, 수신 빔 RxB10을 이용하여 이동 단말 MS4로부터 수신 신호를 수신한다.
도 10의 실시예에 따르면, 전송 신호 및 수신 신호는 동적 빔포밍에 의해 상호간에 분리된다. 디지털 형식의 신호 s(t)는 디지털 형식의 신호 s(t)를 아날로그 형식의 신호 s(t)로 변환하기 위해, DAC(1001)로 전송 신호 경로를 따라 전송된다. 믹서(1002)는 전송 안테나들(1003) 각각의 것들에 아날로그 형식의 신호 s(t)의 대응하는 부분들을 제공한다. 전송 가중치 wt0 내지 wt(M-1)은 전송 빔 TxB10을 형성하기 위해 아날로그 형식의 신호 s(t)의 대응하는 부분들에 각각 적용된다. 그런 다음, 가중된 신호 s(t)의 대응하는 부분은 전송 빔 TxB10으로서 전송 안테나들(1003) 각각의 것들로부터 전송시키기 위하여, 각 전력 증폭기(PA, Power Amplifiers)를 통해 전달된다. 전송 빔 TxB10은 이동 단말 MS3으로 전송 신호를 전송한다.
송수신기(1000)는 수신 안테나들(1004)의 각각의 것들을 통해 이동 단말 MS4로부터 수신 신호를 수신한다. 수신 안테나들(1004) 각각의 것들에서 터미네이팅(terminating)되는 각 수신 신호 경로는 수신 신호를 증폭시키기 위해 저잡음 증폭기(LNA, Low Noise Amplifier)를 포함한다. 이는 수신 신호 경로를 따라 이어지고, 도 10에 도시된 바와 같이, 빔포밍된 형상에서 수신 빔 RxB10을 형성하기 위해 각각 적용되는 수신 가중치들 wr0 내지 wr(N-1)을 가진다. 수신된 신호들은 결합기(1005)에 의해 결합되고, 믹서(1006)에 의해 믹싱되며, 그리고, ADC(1007)에 의해 아날로그 형식의 신호에서 디지털 형식의 수신된 신호 r(t)로 변환된다. 빔포밍을 위해 사용되는 송신 가중치들 wt0 내지 wt(M-1) 및 수신 가중치들 wr0 내지 wr(N-1)는 이동 단말 MS3으로 전송되는 전송 신호 s(t)를 최대화하고, 그리고, 이동 단말 MS3으로부터 수신되는 수신 신호 r(t)을 최대화하기 위해 선택된다. 추가적으로, 전송 가중치들 wt0 내지 wt(M-1) 및 수신 가중치들 wr0 내지 wr(N-1)가 송수신기(1000)에서 전송 빔 TxB10 및 수신 빔 RxB10 간에 간섭을 최소화하기 위해 선택된다. 그러므로, 전송 빔포밍 가중치들 wt0 내지 wt(M-1) 및 수신 가중치들 wr0 내지 wr(N-1)이, 송수신기(1000)로부터 이동 단말 MS3으로 전송된 전송 신호 s(t)가 이동 단말 MS4로부터 수신된 수신 신호 r(t)에 과도한 양의 간섭을 생성하지 않도록 선택된다.
도 11은 본 발명의 실시예에 따른 전송 및 수신 빔포밍 가중 조절을 도시하는 흐름도이다.
도 11을 참조하면, S1101 단계에서, 이동 단말은 데이터 소스로부터의 데이터 전송을 수신하기 위하여 선택된다. 데이터 소스는 송수신기, 기지국, 무선 단말기, 또는 신호를 전송할 수 있거나 또는 데이터 전송을 수행할 수 있는 다른 유사한 전자 장치가 될 수 있다. 다음으로, S1102 단계에서, 이동 단말은 데이터가 수신되는 이동 단말로 선택된다. 빔포밍 가중치들은, S1103 단계에서, 빔포밍 정보를 전송 및 수신하거나, 및/또는, 채널 정보를 전송 및 수신하는 것에 따라 추정된다. 하지만, 본 발명은 이에 한정되는 것은 아니며, 빔포밍 가중치들은 다른 적합한 정보에 따라 추정되거나, 또는, 미리 결정된 가중치들로 추정되거나, 또는, 추정되지 않을 수 있다. 그리고 S1103 단계는 수행되지 않거나, 생략될 수 있다. 다음으로, 전송 빔포밍 가중치 및 수신 빔포밍 가중치는 1104 단계에서 선택된다.
전송 빔포밍 가중치 및 수신 빔포밍 가중치는 S1104 단계에서 함께 선택된다. 다른 말로, 전송 빔포밍 가중치 및 수신 빔포밍 가중치는 전송 빔 및 수신 빔 사이에 간섭을 최소화하기 위하여, 동시에 선택된다. 하지만, 본 발명이 이에 한정되는 것은 아니며, 전송 빔포밍 가중치 및 수신 빔포밍 가중치는 다른 시간에 선택될 수 있다. 다음으로, 1105 단계에서 전송 데이터 및 수신 데이터는 전송 및 수신 빔을 통해 각각 전송된다. 1105 단계에서 전송된 전송 데이터는 수신된 수신 데이터가 수신된 것과 동일한 시간에 그리고 동일한 주파수에서 전송된다.
도 12는 본 발명의 다른 실시예에 따른 SDD 시스템을 도시한다.
도 12를 참조하면, 송수신기(1200)는 제1 방향에 대향하는 전송 안테나 어레이(1201) 및 제1 방향과 다른 방향인 제2 방향에 대향하는 수신 안테나 어레이(1202)를 포함한다. 예를 들면, 전송 안테나 어레이(1201) 및 수신 안테나 어레이(1202)는 6각형의 프리즘, 큐브, 삼각형의 프리즘, 피라미드 또는 다양한 다른 적합한 기학적 형상들과 같은, 3차원의 기하학적 형태의 형상을 가지는 다면 안테나(multi-faced antenna)에서 면들을 포함할 수 있다. 도 12의 실시예에 있어서, 전송 신호 s1(t)은 이동 단말 MS1이 배치되는 제1 방향을 따라 전송 안테나 어레이(1201)로부터 이동 단말 MS1로 전송된다. 수신 신호 r2(t)는 제2 방향을 따라 배치되는 이동 단말 MS2에 대면하는 수신 안테나 어레이(1202)에 의해 이동 단말 MS2로부터 수신된다.
전송 및 수신 안테나 어레이(1201 및 1202)는 6각형의 프리즘 형상으로 정렬되는 6개의 안테나 어레이 면들 중 2개이다. 도 12에 도시된 바와 같이, 안테나 어레이 면들 각각은, 송수신기(1200) 근처 전체 둘레의 각 섹션이 대응하는 안테나 어레이 면을 가지도록, 약 60 도를 커버한다. 하지만, 본 발명이 이에 한정되는 것으로 아니며, 안테나 어레이 면들 각각에 의해 커버되는 각도의 수는 안테나 어레이 면들의 기하학적 형상에 대응하는 어떤 적합한 수의 각도가 될 수 있다. 6각의 프리즘 형상 또는 다른 기하학적 형상의 안테나 어레이 면들 간에 이격되는 공간 지향(spatial orientation)은, 전송 신호 s1(t) 및 수신 신호 r2(t) 사이의 공간 분할을 제공한다. 
도 13은 본 발명의 다른 실시예에 따른 SDD를 도시한다.
도 13을 참조하면, 송수신기(1300)는 제1 안테나 면(1302)을 포함하는 다중 안테나 어레이 면들을 가지는 안테나(1301)를 포함한다. 도 13의 실시예에 있어서, 전송 신호 s1(t)은 제1 안테나 어레이 면(1302)을 이용하여 이동 단말 MS1로 전송된다. 그리고, 수신 신호 r1(t)은 제1 안테나 어레이 면(1302)을 이용하는 이동 단말 MS1로부터 수신된다. 다른 말로, 전송 신호 s1(t)은 이동 단말 MS1로부터 수신 신호 r1(t)을 수신하기 위해 사용되는 동일한 안테나 어레이 면, 즉, 제1 안테나 어레이 면(1302)을 이용하여, 이동 단말 MS1로 전송된다.
전송 신호 s1(t)을 이동 단말 MS1로 전송하고, 수신 신호 r1(t)을 이동 단말 MS1로부터 수신하는 양자 모두를 위한 제1 안테나 어레이 면(1302)을 사용하기 위하여, 송수신기는 빔포밍 가중치들을 제1 안테나 어레이 면(1302)의 각 안테나들에 적용시킨다. 더 상세하게는, 송신기(1305) 및 수신기(1306) 모두는 제1 안테나 어레이 면(1302)과 연결된다. 제1 안테나 어레이 면(1302)은 복수의 안테나들을 포함하고, 이들 중 일부는 전송 안테나들(1303)로 사용되고, 이들 중 다른 것들은 수신 안테나들(1304)로 사용된다. 이동 단말 MS1을 향하여 지향된 전송/수신 빔 TRXB의 전송 신호 및 수신 신호 간의 공간 분할을 제공하기 위하여, 전송 빔포밍 가중치들 wt1 내지 wt(M-1) 및 수신 빔포밍 가중치들 wr1 내지 wr(N-1)는 전송 안테나들(1303) 및 수신 안테나들(1304)에 각각 적용된다. 전송 빔포밍 가중치들 wt1 내지 wt(M-1) 및 수신 빔포밍 가중치들 wr1 내지 wr(N-1) 각각의 것들을 조절하는 것은, 전송 신호 s1(t)이 전송/수신 빔 TRXB 내에서 수신 신호 r1(t)로부터 공간적으로 분리될 수 있도록, 전송/수신 빔 TRXB가 공간적으로 조절되도록 한다.
도 14는 본 발명의 다른 실시예에 따른 SDD 시스템을 도시한다.
도 14를 참조하면, 송수신기(1400)는 서로 다른 방향들을 대면하는 복수의 안테나 어레이들을 가지는 안테나(1401)를 포함하며, 이동 단말 MS1이 배치되는 제1 방향에 대면하는 제1 안테나 어레이 면(1402)을 포함한다. 제1 안테나 어레이는 전송 신호 s1(t)을 전송하기 위한 전송 영역 TX 및 수신 신호 r1(t)을 수신하기 위한 수신 영역 RX로 분할된다. 따라서, 전송 신호 s1(t) 및 수신 신호 r1(t)은 전송 영역 TX 및 수신 영역 RX에 각각 배치된 서로 다른 안테나 요소들을 이용한다. 더욱이, 전송 영역 TX의 안테나들 및 수신 영역 RX는 각 안테나 요소들이 서로 간에 섞이지 않도록 상호간에 공간적으로 분리된다.
도 14의 실시예에 있어서, 전송 신호 s1(t)은, 수신 신호 r1(t)이 제1 수신 영역 RX에서 동일한 제1 안테나 어레이 면(1402) 상에 동일한 이동 단말 MS1로부터 수신되는 동안, 전송 영역 TX로부터의 제1 안테나 어레이 면(1402)로부터 이동 단말 MS1에 전송된다. 전송 신호 s1(t) 및 수신 신호 r1(t) 간의 공간 분할은, 동일한 제1 안테나 어레이 면(1402) 상의 전송 영역 TX 및 수신 영역 RX에 각각 배치된 각 전송 및 수신 안테나 요소들 상에 전송 빔포밍 가중치들 wt0 내지 wt(M-1) 및 수신 빔포밍 가중치들 wr0 내지 wr(N-1)을 조절하는 것에 의해 이루어진다.
도 15는 본 발명의 다른 실시예에 따른 SDD 시스템을 도시한다.
도 15를 참조하면, 송수신기(1500), 안테나(1501) 및 제1 안테나 어레이 면(1502)은 도 14의 실시예를 참조로 하여 설명된 것들과 유사하다. 하지만, 도 15의 실시예에 있어서, 전송 신호 s1(t) 및 수신 신호 r2(t)는 2개의 다른 사용자들, 즉, 제1 이동 단말 MS1 및 제2 이동 단말 MS2에 대응한다. 더욱 상세하게는, 전송 빔 TxB1은 이동 단말 MS1을 향해 지향되며, 수신 빔 RxB1은 이동 단말 MS2를 향해 지향된다. 하지만, 전송 빔 TxB1 및 수신 빔 RxB1 모두는 동일한 제1 안테나 어레이 면(1502)로부터 유래된다(originate). 하지만, 전송 빔 TxB1은 제1 안테나 어레이 면(1502)의 전송 영역 TX에 배치된 안테나 요소들을 이용하여 형성된다. 그리고, 수신 빔 RxB1은 제1 안테나 어레이(1502)의 수신 영역 RX에 배치된 안테나 요소들을 이용하여 형성된다.
따라서 제1 안테나 어레이 면(1502)은 2개의 사용자들, 이동 단말 MS1 및 MS2 각각으로부터 동시에 전송 신호 s1(t)을 전송하고, 수신 신호 r2(t)를 수신하도록 사용될 수 있다. 빔 포밍은 전송 가중치 wt0 내지 wt(M-1)를 이용하여 전송 빔 TxB1에 적용되고, 또한, 수신 가중치 wr0 내지 wr(N-1)를 이용하여 수신 빔 RxB1에 적용된다. 수신 영역 RX로부터 분할되는 전송 영역 TX를 가지는 것에 의해, 전송 및 수신 안테나들 간에 간섭은, 제1 안테나 어레이 면(1502)의 좌측 및 우측 각각 상에서 상호간에 공간적으로 분리되는 전송 및 수신 안테나 요소들에 기인하여 최소화된다. 하지만, 본 발명이 이에 제한되는 것은 아니며, 전송 및 수신 안테나 요소들 및 대응하는 전송 영역 TX 및 수신 영역 RX는 다른 적합한 방식으로 정렬되거나, 또는, 배치될 수 있다. 예를 들면, 전송 영역 TX는 제1 안테나 어레이 면(1502)의 상부에 배치될 수 있는 반면, 수신 영역 RX가 제1 안테나 어레이 면(1502)의 하부에 배치될 수 있다.
도 16은 본 발명의 실시예에 따른 안테나 요소들의 정렬을 도시한다.
도 16을 참조하면, 전송 안테나 요소들 TX 및 수신 안테나 요소들 RX는 수신 안테나 요소들 RX에서 전송 신호들을 취소하기 위해 미리 결정된 배열로 배치된다. 전송 안테나 요소들 TX 및 수신 안테나 요소들 RX 양자 모두 중 각 안테나 요소는 이격 거리 d 만큼 이격시키기 위하여, 배치된다. 다른 말로, 도 16에 도시된 바와 같이, 2개의 전송 안테나 요소들 TX1 및 TX2가 이격 거리 d 만큼 상호간에 인접하여 배치된다. 그리고 2개의 수신 안테나 요소들 RX1 및 RX2는 이격 거리 d 만큼 서로 인접하여 배치된다. 또한, 전송 안테나 요소들 TX는 이격 거리 d 만큼 수신 안테나 요소들 RX에 인접하여 배치된다. 전송 신호들이 수신 안테나 요소들 RX에서 취소되게 하기 위하여, 이격 거리 d는 전송 신호의 파장의 절반이다. 다른 말로, 이격 거리 d는 λ/2이며, 여기서, λ는 전송 신호의 파장이다.
이격 거리 d를 전송 신호 파장의 절반으로 하는 것에 의해, 전송 안테나 요소들 TX 신호들로부터 전송되는 전송 신호는 수신 안테나 요소들 RX에 다른 위상으로 도착한다. 좀 더 상세하게는, λ/2의 이격 거리 d로 2개의 전송 요소들 TX을 이격시킴으로써, 2개의 전송 요소들 TX의 각각으로부터 하나인, 각각의 전송된 전송 신호들은, 수신 안테나 요소들 RX 중 하나에 도착하면, 다른 위상이 될 것이다. 왜냐하면, 각각의 전송된 전송 신호들 간의 위상 차이는 수신 안테나 요소들 RX 중 하나에서 180 도이고, 전송된 전송 신호들은 상호간에 상쇄될 것이다. 이에 의해, 수신 안테나 요소들 RX에 수신된 신호들의 간섭을 제거한다.
도 17은 본 발명의 다른 실시예에 따른 안테나 요소들의 배열을 도시한다.
도 17을 참조하면, 수신 안테나 요소 RX1은 제1 전송 안테나 요소 TX1 및 제2 전송 안테나 요소 TX2 사이에 배치된다. 수신 안테나 요소 RX1, 전송 안테나 요소들 TX1 및 TX2 각각은 λ/2의 이격 거리에서 상호간에 이격되어 배치된다. 여기서, λ는 전송 안테나 요소들 TX1 및 TX2로부터 전송되는 전송 신호의 파장이다. 수신 안테나 요소 RX에서 수신되는 수신 신호에 대한 전송 안테나 요소들 TX1 및 TX2로부터 전송되는 전송 신호로부터 간섭을 완화하기 위하여, 180 도 위상 시프트(즉, 안테나 가중치)가 도 17에 도시된 바와 같이, 전송 안테나 요소 TX2에 적용된다. 따라서, 전송 신호들이 전송 안테나 요소들 TX1 및 TX2로부터 각각 전송될 때, 그들은 상호간에 180 도 다른 위상이며, 따라서, 그들이 수신 안테나 요소 RX에 있을 때, 상호간에 상쇄될 것이다. 하지만, 본 발명이 이에 한정되는 것은 아니며, 전송 안테나 신호들이 수신 안테나 요소에서 상쇄되도록 하기 위하여, 어떤 적합한 위상 시프트가 어떠한 적합한 전송 안테나 요소들에도 적용될 수 있다.
도 18은 본 발명의 실시예에 따른 무선 통신 시스템에서 기지국을 도시하는 블록도이다.
도 18을 참조하면, 기지국(1800)은 셀룰러 대역 송수신기(1802), 밀리미터파 대역 송수신기(1804), 고정 회선 통신 송수신기(1806), 제어기(1808) 및 메모리(1810)를 포함한다. 기지국(1800)은 어떤 수의 추가 구성 요소들도 포함할 수 있다. 하지만, 기지국(1800)의 추가 구성 요소들의 설명은 간략화를 위하여 생략된다. 기지국(1800)은 도 3 및 도 4를 참조로 하여 설명되는 단말기로 사용될 수 있다.
셀룰러 대역 송수신기(1802)는 셀룰러 대역에서 동작하는 안테나 시스템, 수신기, 송신기를 포함한다. 안테나 시스템은 공중(air)으로 전송 신호들 전송하고, 공중으로부터 신호들을 수신하기 위하여 사용된다. 수신기는 안테나 시스템을 통해 수신된 셀룰러 대역에서의 신호를 기저대역(baseband) 신호로 변환하고, 기저대역 신호를 복조한다. 예를 들면, 수신기는 RF(Radio Frequency) 프로세싱 블록, 복조 블록, 채널 디코딩 블록 등을 포함할 수 있다. RF 프로세싱 블록은 안테나 시스템을 통해 수신된 셀룰러 대역에서 신호를 기저대역 신호로 변환한다. 복조 블록은 RF 프로세싱 블록 등으로부터 수신된 신호로부터 각 서브캐리어 상에 위치한 데이터를 추출하기 위한 패스트 푸리에 변환(FFT, Fast Fourier Transform) 연산기를 포함할 수 있다. 채널 디코딩 블록은 복조기, 디인터리버, 채널 디코더 등을 포함할 수 있다. 송신기는 기저대역 신호를 셀룰러 대역의 신호로 변환하고, 셀룰러 대역에서의 신호를 안테나 시스템을 통해 전송한다. 예를 들면, 송신기는 채널 인코딩 블록, 변조 블록 및 RF 프로세싱 블록을 포함할 수 있다. 채널 인코딩 블록은 채널 인코더, 인터리버, 변조기 등을 포함할 수 있다. 변조 블록은 복수의 직교하는 서브캐리어들 등에서 전송된 데이터를 위치시키기 위한 역 패스트 푸리에 변환(IFFT, Inverse Fast Fourier Transform) 연산기를 포함할 수 있다. OFDM 시스템에서, 변조 블록은 IFFT 연산기를 포함할 수 있다. CDMA(Code Division Multiple Access)에서, IFFT 연산기는 코드 확산 변조기 등으로 대체될 수 있다. RF 프로세싱 블록은 변조 블록으로부터 수신된 기저대역 신호를 셀룰러 대역에서의 신호로 변환하고, 안테나 시스템을 통해 셀룰러 대역에서의 신호를 출력한다.
밀리미터파 대역 송수신기(1804)는 밀리미터파 대역에서 동작하는 안테나 시스템, 수신기, 송신기를 포함한다. 안테나 시스템은 공중으로 신호를 전송하고, 공중으로부터 신호를 수신하기 위해 사용된다. 안테나 시스템은 전송 안테나들을 가지는 전송 안테나 어레이 및 수신 안테나들을 가지는 수신 안테나 어레이를 가질 수 있다. 여기서, 안테나 시스템은 보다 앞서 설명된 것과 같은 밀리미터파 대역에서 통신을 위한 하나 이상의 방향성 빔들을 형성할 수 있다. 수신기는 안테나 시스템을 통해 수신되는 밀리미터파 대역에서의 신호를 기저대역 신호로 변환하고, 기저대역 신호를 복조한다. 예를 들면, 수신기는 RF 프로세싱 블록, 복조 블록, 채널 디코딩 블록, 등을 포함할 수 있다. RF 프로세싱 블록은 안테나 시스템을 통해 수신된 밀리미터파 대역에서 신호를 기저대역 신호로 변환한다. 복조 블록은 RF 프로세싱 블록 등으로부터 수신된 신호로부터 각 서브캐리어 상에 위치한 데이터를 추출하기 위한 패스트 푸리에 변환(FFT, Fast Fourier Transform) 연산기를 포함할 수 있다. 채널 디코딩 블록은 복조기, 디인터리버, 채널 디코더 등을 포함할 수 있다. 송신기는 기저대역 신호를 밀리미터파 대역의 신호로 변환하고, 밀리미터파 대역의 신호를 안테나 시스템을 통해 전송한다. 예를 들면, 송신기는 채널 인코딩 블록, 변조 블록 및 RF 프로세싱 블록을 포함할 수 있다. 채널 인코딩 블록은 채널 인코더, 인터리버, 변조기 등을 포함할 수 있다. 변조 블록은 복수의 직교하는 서브캐리어들 등에서 전송된 데이터를 위치시키기 위한 역 패스트 푸리에 변환(IFFT, Inverse Fast Fourier Transform) 연산기를 포함할 수 있다. OFDM 시스템에서, 변조 블록은 IFFT 연산기를 포함할 수 있다. CDMA(Code Division Multiple Access)에서, IFFT 연산기는 코드 확산 변조기 등으로 대체될 수 있다. RF 프로세싱 블록은 변조 블록으로부터 수신된 기저대역 신호를 밀리미터파 대역의 신호로 변환하고, 안테나 시스템을 통해 밀리미터파 대역의 신호를 출력한다.
고정 회선 통신 송수신기(1806) 시설들은 다른 기지국들, 패킷 데이터 서버/게이트웨이(Packet Data Server/Gateway), 및 밀리미터파 접속 포인트와 같은, 무선 통신 시스템 내에서 다른 네트워크 엔티티들과 함께 고정 회선으로 통신한다.
제어기(1808)는 기지국(1800)의 전체 동작들을 제어한다. 기지국(1800)의 동작들은 기지국에 의해 수행되는 것과 같이, 앞서 명시적으로 또는 내재적으로 설명된 동작들 어떤 것이라도 포함한다. 추가로, 제어기(1808)는 전송을 위한 데이터를 생성하고, 수신을 위한 데이터를 처리한다.
메모리(1810)는 기지국(1800)에 의한 동작들을 위해 제어기(1808)에 의해 사용되는 프로그램들 및 기지국에 의해 수신되거나, 전송되거나, 보유되거나, 또는, 사용되는 것으로 이 문헌에서 논의된 정보 및/또는 알고리즘들 중 어떤 것이라도 포함하는 다양한 데이터를 저장한다.
도 19는 본 발명의 실시예에 따른 무선 통신 시스템에서 이동 단말을 도시하는 블록도이다.
도 19를 참조하면, 이동 단말(1900)은 셀룰러 대역 송수신기(1902), 밀리미터파 대역 송수신기(1904), 제어기(1906) 및 메모리(1908)를 포함한다. 이동 단말(1900)은 어떤 수의 추가 구성 요소들로 포함할 수 있다. 하지만, 이동 단말(1900)의 추가 구성 요소들의 설명은 간략화를 위해 생략된다. 이동 단말(1900)은 도 4를 참조로 설명된 바와 같은 무선 단말기로 사용될 수도 있다.
셀룰러 대역 송수신기(1902)는 셀룰러 대역에서 동작하는 안테나 시스템, 수신기, 및 송신기를 포함한다. 안테나 시스템은 공중(air)으로 전송 신호들 전송하고, 공중으로부터 신호들을 수신하기 위하여 사용된다. 수신기는 안테나 시스템을 통해 수신된 셀룰러 대역의 신호를 기저대역(baseband) 신호로 변환하고, 기저대역 신호를 복조한다. 예를 들면, 수신기는 RF(Radio Frequency) 프로세싱 블록, 복조 블록, 채널 디코딩 블록 등을 포함할 수 있다. RF 프로세싱 블록은 안테나 시스템을 통해 수신된 셀룰러 대역의 신호를 기저대역 신호로 변환한다. 복조 블록은 RF 프로세싱 블록 등으로부터 수신된 신호로부터 각 서브캐리어 상에 위치한 데이터를 추출하기 위한 패스트 푸리에 변환(FFT, Fast Fourier Transform) 연산기를 포함할 수 있다. 채널 디코딩 블록은 복조기, 디인터리버, 채널 디코더 등을 포함할 수 있다. 송신기는 기저대역 신호를 셀룰러 대역의 신호로 변환하고, 셀룰러 대역의 신호를 안테나 시스템을 통해 전송한다. 예를 들면, 송신기는 채널 인코딩 블록, 변조 블록 및 RF 프로세싱 블록을 포함할 수 있다. 채널 인코딩 블록은 채널 인코더, 인터리버, 변조기 등을 포함할 수 있다. 변조 블록은 복수의 직교하는 서브캐리어들 등에서 전송된 데이터를 위치시키기 위한 역 패스트 푸리에 변환(IFFT, Inverse Fast Fourier Transform) 연산기를 포함할 수 있다. OFDM 시스템에서, 변조 블록은 IFFT 연산기를 포함할 수 있다. CDMA(Code Division Multiple Access)에서, IFFT 연산기는 코드 확산 변조기 등으로 대체될 수 있다. RF 프로세싱 블록은 변조 블록으로부터 수신된 기저대역 신호를 셀룰러 대역에서의 신호로 변환하고, 안테나 시스템을 통해 셀룰러 대역에서의 신호를 출력한다.
밀리미터파 대역 송수신기(1904)는 밀리미터파 대역에서 동작하는 안테나 시스템, 수신기, 송신기를 포함한다. 안테나 시스템은 공중으로 신호를 전송하고, 공중으로부터 신호를 수신하기 위해 사용된다. 여기서, 안테나 시스템은 보다 앞서 설명된 것과 같은 밀리미터파 대역에서 통신을 위해 하나 이상의 방향성 빔들을 형성할 수 있다. 수신기는 안테나 시스템을 통해 수신되는 밀리미터파 대역에서의 신호를 기저대역 신호로 변환하고, 기저대역 신호를 복조한다. 예를 들면, 수신기는 RF 프로세싱 블록, 복조 블록, 채널 디코딩 블록, 등을 포함할 수 있다. RF 프로세싱 블록은 안테나 시스템을 통해 수신된 밀리미터파 대역에서 신호를 기저대역 신호로 변환한다. 복조 블록은 RF 프로세싱 블록 등으로부터 수신된 신호로부터 각 서브캐리어 상에 위치한 데이터를 추출하기 위한 패스트 푸리에 변환(FFT, Fast Fourier Transform) 연산기를 포함할 수 있다. 채널 디코딩 블록은 복조기, 디인터리버, 채널 디코더 등을 포함할 수 있다. 송신기는 기저대역 신호를 밀리미터파 대역의 신호로 변환하고, 밀리미터파 대역에서의 신호를 안테나 시스템을 통해 전송한다. 예를 들면, 송신기는 채널 인코딩 블록, 변조 블록 및 RF 프로세싱 블록을 포함할 수 있다. 채널 인코딩 블록은 채널 인코더, 인터리버, 변조기 등을 포함할 수 있다. 변조 블록은 복수의 직교하는 서브캐리어들 등에서 전송된 데이터를 위치시키기 위한 역 패스트 푸리에 변환(IFFT, Inverse Fast Fourier Transform) 연산기를 포함할 수 있다. OFDM 시스템에서, 변조 블록은 IFFT 연산기를 포함할 수 있다. CDMA(Code Division Multiple Access)에서, IFFT 연산기는 코드 확산 변조기 등으로 대체될 수 있다. RF 프로세싱 블록은 변조 블록으로부터 수신된 기저대역 신호를 밀리미터파 대역에서의 신호로 변환하고, 안테나 시스템을 통해 밀리미터파 대역에서의 신호를 출력한다.
제어기(1906)는 이동 단말(1900)의 전체 동작들을 제어한다. 이동 단말(1900)의 동작들은 이동 단말에 의해 수행되는 것처럼 앞서 명시적으로 또는 내재적으로 설명된 동작들 어떤 것이라도 포함한다. 추가로, 제어기(1906)는 전송을 위한 데이터를 생성하고, 수신을 위한 데이터를 처리한다.
메모리(1908)는 이동 단말(1900)의 동작들을 위해 제어기(1908)에 의해 사용되는 프로그램들 및 이동 단말에 의해 수신되거나, 전송되거나, 보유되거나, 또는, 사용되는 것으로 이 문헌에서 논의된 정보 및/또는 알고리즘들 중 어떤 것이라도 포함하는 다양한 데이터를 저장한다.
본 발명의 실시예들이 기지국 및 이동 단말을 이용하여 설명되었지만, 본 발명이 이에 한정되는 것은 아니다. 본 발명의 측면들이, 이 기술분야에서 통상의 지식을 가진자들에 의해, 기지국들 상이의 릴레이 통신, 이동 단말들 사이의 직접 통신 및 협력 통신의 다양한 구현과 같은, 진보된 시스템 토폴로지들 및 장치들을 이용하는 다른 이동 단말 및/또는 무선 통신 기술에 적용될 수 있다.
몇몇 실시예를 참조로 본 발명이 도시되고 설명되었지만, 첨부된 특허청구범위 및 그들과 동동의 것들에 의해 정의되는 본 발명의 사상 및 범위를 벗어남이 없이 형식 및 세부사항들에 있어서 다양한 변경들이 이루어질 수 있음을 이 기술분야에서 통상의 지식을 가진자라면 이해할 수 있을 것이다.
1800: 기지국     1802: 셀룰러 대역 송수신기
1804: 밀리미터파 대역 송수신기  1806: 고정 회선 통신 송수신기
1808: 제어기     1810: 메모리
1900: 이동 단말    1902: 셀룰러 대역 송수신기
1904: 밀리미터파 대역 송수신기  1906: 제어기
1908: 메모리

Claims (40)

  1. 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기에 있어서,
    공간적으로 빔포밍된 전송 빔을 형성하기 위한 복수의 전송 안테나들을 가지는 전송 안테나 어레이; 및
    공간적으로 빔포밍된 수신 빔을 형성하기 위한 복수의 수신 안테나들을 가지는 수신 안테나 어레이;를 포함하며,
    상기 복수의 전송 안테나들 및 상기 복수의 수신 안테나들은 상기 전송 빔 및 수신 빔 각각의 통신 신호를 위해 동일한 시간에서 동일한 주파수를 사용하고,
    상기 빔포밍된 전송 빔 및 상기 빔포밍된 수신 빔은 공간적으로 오버랩되지 않는 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  2. 제1항에 있어서,
    전송 빔포밍 가중치들은 상기 공간적으로 빔포밍된 전송 빔을 형성하기 위해 상기 전송 안테나들에 각각 적용되며,
    수신 빔포밍 가중치들은 상기 공간적으로 빔포밍된 수신 빔을 형성하기 위해 상기 수신 안테나들에 각각 적용되는 것을 특징으로 하는
    전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  3. 제2항에 있어서,
    상기 전송 빔포밍 가중치들은 모두 상호간에 동일하지 않으며,
    상기 수신 빔포밍 가중치들은 모두 상호간에 동일하지 않는 것을 특징으로 하는
    전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  4. 제2항에 있어서,
    상기 전송 빔포밍 가중치들은 상기 전송 빔의 통신 신호의 위상을 조절하며,
    상기 수신 빔포밍 가중치들은 상기 수신 빔의 통신 신호의 위상을 조절하는 것을 특징으로 하는
    전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  5. 제2항에 있어서,
    상기 전송 빔포밍 가중치들 및 상기 수신 빔포밍 가중치들은
    상기 빔포밍된 전송 빔 및 상기 빔포밍된 수신 빔이 실질적으로 공간적으로 오버랩되지 않도록 조절되는 것을 특징으로 하는
    전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  6. 제5항에 있어서,
    상향링크 채널 정보는
    상기 전송 빔의 통신 신호를 수신하는 무선 단말기로부터 수신되는 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  7. 제2항에 있어서,
    상기 전송 빔포밍 가중치들 및 상기 수신 빔포밍 가중치들은
    상기 빔포밍된 전송 빔 및 상기 빔포밍된 수신 빔이 상호간에 실질적으로 간섭하지 않도록 조절되는 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  8. 제2항에 있어서,
    상기 전송 빔포밍 가중치들은 상향링크 채널 정보에 따라 연산되며,
    상기 수신 빔포밍 가중치들은 하향링크 채널 정보에 따라 연산되는 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  9. 제2항에 있어서,
    상기 전송 빔포밍 가중치들 및 상기 수신 빔포밍 가중치들은
    동일한 시간에 연산되는 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  10. 제2항에 있어서,
    상기 전송 빔포밍 가중치들 및 상기 수신 빔포밍 가중치들은 다른 시간에서 연산되는 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  11. 제1항에 있어서,
    상기 복수의 전송 안테나들 및 상기 복수의 수신 안테나들은 각각 L × N 매트릭스들에 정렬되고,
    상기 L은 제1 방향으로 정렬되는 안테나들의 수이며,
    상기 N은 상기 제1 방향과 수직인 제2 방향으로 정렬되는 안테나들의 수인 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  12. 제11항에 있어서,
    상기 복수의 전송 안테나들 중 각각의 것들 사이의 거리는 거의 통신 신호의 파장의 절반이고,
    상기 복수의 수신 안테나들 중 각각의 것들 사이의 거리는 거의 통신 신호의 파장의 절반인 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  13. 제12항에 있어서,
    상기 전송 안테나들 및 상기 수신 안테나들 중 인접한 것들 사이의 거리는
    거의 상기 통신 신호의 파장의 절반인 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  14. 제1항에 있어서,
    상기 전송 안테나 어레이 및 상기 수신 안테나 어레이는
    다른 방향들로 대면하는 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  15. 제1항에 있어서,
    상기 전송 안테나 어레이 및 상기 수신 안테나 어레이는
    동일한 방향으로 대면하는 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  16. 제15항에 있어서,
    상기 전송 안테나들 및 상기 수신 안테나들은
    상기 전송 안테나 어레이 및 상기 수신 안테나 어레이 양자 모두를 포함하는 안테나 어레이 상에 섞이는 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  17. 제15항에 있어서,
    상기 전송 안테나들은 전송 영역에서 형성되며,
    상기 수신 안테나들은 수신 영역에서 형성되고,
    상기 전송 영역 및 상기 수신 영역은 상기 전송 안테나 어레이 및 상기 수신 안테나 어레이 모두를 포함하는 안테나 상에 배치되는 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  18. 제17항에 있어서,
    상기 전송 영역 및 상기 수신 영역은
    상기 안테나 어레이 상에 상호간에 인접되는 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  19. 제1항에 있어서,
    상기 무선 단말기는
    공간적으로 빔포밍된 전송 빔을 형성하기 위해 선택된 수의 복수의 전송 안테나들을 사용하는 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  20. 제1항에 있어서,
    상기 무선 단말기는
    공간적으로 빔포밍된 수신 빔을 형성하기 위해 선택된 수의 복수의 수신 안테나들을 사용하는 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  21. 제1항에 있어서,
    상기 무선 단말기는 동일한 주파수를 이용하여 동일한 시간에 하나 이상의 전송 빔을 전송하고,
    상기 하나 이상의 전송 빔 각각은 상호간에 공간적으로 분리되며,
    상기 하나 이상의 전송 빔은 공간적으로 분리된 하나 이상의 전송 빔을 형성하기 위해 복수의 전송 안테나들 중 각각의 것들을 이용하는 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  22. 제1항에 있어서,
    상기 무선 단말기는
    동일한 시간에서 동일한 주파수를 이용하여 다른 무선 단말기와 전-이중 통신하는 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  23. 제1항에 있어서,
    상기 무선 단말기는
    기지국(BS, Base Station)을 포함하는 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  24. 제1항에 있어서,
    상기 무선 단말기는
    이동 단말(MS, Mobile Station)을 포함하는 것을 특징으로 하는 전-이중 밀리미터파 통신 시스템을 위한 무선 단말기.
  25. 밀리미터파를 이용하는 공간 분할 이중화(SDD, Spatial Division Duple) 이동 통신 시스템에 있어서,
    공간적으로 빔포밍된 제1 전송 빔을 전송하기 위한 복수의 제1 전송 안테나들을 가지는 제1 전송 안테나 어레이와,
    공간적으로 빔포밍된 제1 수신 빔을 형성하기 위한 복수의 제1 수신 안테나들을 가지는 제1 수신 안테나 어레이를 포함하는
    제1 무선 단말기; 및
    제1 무선 단말기의 수신 빔을 향해 지향된 공간적으로 빔포밍된 제2 전송 빔을 전송하기 위한 복수의 제2 전송 안테나들을 가지는 제2 전송 안테나와,
    제1 무선 단말기의 전송 빔을 향해 지향되는 공간적으로 빔포밍된 제2 수신 빔을 형성하기 위한 복수의 제2 수신 안테나들을 가지는 제2 수신 안테나 어레이를 포함하는
    제2 무선 단말기;을 포함하는 것을 특징으로 하는 공간 분할 이중화 이동 통신 시스템.
  26. 제25항에 있어서,
    상기 제1 및 제2 전송 안테나들 및 상기 제1 및 제2 수신 안테나들은
    상기 제1 및 제2 전송 빔들 각각 및 상기 제1 및 제2 수신 빔들 각각을 위해 동일한 주파수 및 동일한 시간을 사용하는 것을 특징으로 하는 공간 분할 이중화 이동 통신 시스템.
  27. 제25항에 있어서,
    상기 제1 및 제2 전송 빔들 및 상기 제1 및 제2 수신 빔들은 오버랩되지 않는 것을 특징으로 하는 공간 분할 이중화 이동 통신 시스템.
  28. 제25항에 있어서,
    상기 제1 무선 단말기 및 상기 제2 무선 단말기는
    전-이중 통신을 이용하여 상호간에 통신하는 것을 특징으로 하는 공간 분할 이중화 이동 통신 시스템.
  29. 제25항에 있어서,
    제1 무선 단말기 및 제2 무선 단말기 중 하나는
    상기 제1 및 제2 전송 빔들 중 각각의 것들 및 상기 제1 및 제2 수신 빔들 중 각각의 것들을 통해 동일한 시간에서 동일한 주파수를 이용하여 다른 무선 단말기와 통신하는 것을 특징으로 하는 공간 분할 이중화 이동 통신 시스템.
  30. 제26항에 있어서,
    상기 제1 및 제2 무선 단말기들 각각은
    제2 및 제1 무선 단말기들 각각과 통신하기 위해 빔포밍을 이용하는 전송 안테나 어레이 및 수신 안테나 어레이를 가지는 것을 특징으로 하는 공간 분할 이중화 이동 통신 시스템.
  31. 제26항에 있어서,
    상기 제1 및 제2 무선 단말기들은
    전-이중(full-duplex) 통신 스킴 및 반 이중(half-duplex) 통신 스킴 중 하나를 이용하여 제2 및 제1 무선 단말기들과 각각 통신하는 것을 특징으로 하는 공간 분할 이중화 이동 통신 시스템.
  32. 제25항에 있어서,
    상기 제1 및 제2 전송 안테나들 및 상기 제1 및 제2 수신 안테나들은 각각 L × N 매트릭스들에 정렬되고,
    상기 L은 제1 방향으로 정렬되는 안테나들의 수이며,
    상기 N은 상기 제1 방향과 수직인 제2 방향으로 정렬되는 안테나들의 수인 것을 특징으로 하는 공간 분할 이중화 이동 통신 시스템.
  33. 제32항에 있어서,
    상기 전송 안테나들 각각의 사이의 거리는 거의 통신 신호의 파장의 절반이며,
    상기 수신 안테나들 각각의 사이의 거리는 거의 통신 신호의 파장의 절반인 것을 특징으로 하는 공간 분할 이중화 이동 통신 시스템.
  34. 제25항에 있어서,
    상기 제1 무선 단말기 및 상기 제2 무선 단말기는
    상기 제1 및 제2 전송 빔들 각각을 형성하기 위해 선택된 수의 복수의 제1 및 제2 전송 안테나들 각각을 이용하는 것을 특징으로 하는 공간 분할 이중화 이동 통신 시스템.
  35. 제25항에 있어서,
    상기 제1 무선 단말기 및 상기 제2 무선 단말기 각각은
    상기 공간적으로 빔포밍된 제1 및 제2 전송 빔들 각각을 형성하기 위해
    선택된 수의 복수의 제1 및 제2 수신 안테나들 각각을 이용하는 것을 특징으로 하는 공간 분할 이중화 이동 통신 시스템.
  36. 제25항에 있어서,
    상기 제1 무선 단말기 및 상기 제2 무선 단말기는 동일한 시간에서 동일한 주파수를 이용하여 동시에 하나 이상의 제1 및 제2 전송 빔들 각각을 전송하고,
    상기 하나 이상의 제1 및 제2 전송 빔들 각각은 상호간에 공간적으로 분리되며,
    상기 하나 이상의 제1 및 제2 전송 빔들 각각은 공간적으로 분리된 제1 및 제2 전송 빔들을 형성하기 위해 상기 제1 및 제2 전송 안테나들 각각을 사용하는 것을 특징으로 하는 공간 분할 이중화 이동 통신 시스템.
  37. 제25항에 있어서,
    상기 제1 및 제2 무선 단말기들은
    동일한 시간에서 동일한 주파수를 이용하여
    제2 및 제1 무선 단말기들과 전-이중 통신하는 것을 특징으로 하는 공간 분할 이중화 이동 통신 시스템.
  38. 밀리미터파를 이용하는 공간 분할 이중화(SDD, Spatial Division Duplex) 이동 통신을 위한 방법에 있어서,
    전송 안테나 어레이의 복수의 전송 안테나들 중 선택된 것들을 이용하여 제1 전송 빔을 형성하는 단계;
    미리 결정된 시간에 미리 결정된 주파수에 따라 상기 제1 전송 빔을 통해 제1 무선 단말기로 제1 신호를 전송하는 단계;
    수신 안테나 어레이의 복수의 수신 안테나들 중 선택된 것들을 이용하여 제1 수신 빔을 형성하는 단계; 및
    미리 결정된 시간에서 미리 결정된 주파수에 따라 상기 제1 수신 빔을 통해 제2 무선 단말기로부터 제2 신호를 수신하는 단계;를 포함하며, 
    상기 제1 전송 빔 및 상기 제1 수신 빔 각각은 공간적으로 빔포밍되며,
    상기 공간적으로 빔포밍된 전송 빔 및 상기 공간적으로 빔포밍된 수신 빔은 공간적으로 오버랩되지 않는 것을 특징으로 하는 공간 분할 이중화 이동 통신을 위한 방법.
  39. 제38항에 있어서,
    상기 전송 안테나 어레이의 상기 복수의 전송 안테나들 중 선택된 것들을 이용하는 제2 전송 빔을 형성하는 단계;
    미리 결정된 시간에서 미리 결정된 주파수에 따라 상기 제2 전송 빔을 통해 상기 제1 무선 단말기로 제3 신호를 전송하는 단계;
    상기 수신 안테나 어레이의 상기 복수의 수신 안테나들 중 선택된 것들을 이용하는 제2 수신 빔을 형성하는 단계; 및
    상기 미리 결정된 시간에 상기 미리 결정된 주파수에 따라 상기 제2 수신 빔을 통해 상기 제2 무선 단말기로부터 제4 신호를 수신하는 단계;를 더 포함하며, 
    상기 제2 전송 빔 및 상기 제2 수신 빔 각각은 공간적으로 빔포밍되며,
    상기 공간적으로 빔포밍된 제2 전송 빔 및 공간적으로 빔포밍된 제2 수신 빔은 공간적으로 오버랩되지 않는 것을 특징으로 하는 공간 분할 이중화 이동 통신을 위한 방법.
  40. 제38항에 있어서,
    상기 전송된 제1 신호, 상기 수신된 제2 신호, 상기 전송된 제3 신호 및 상기 수신된 제4 신호는
    전-이중 스킴에 따라 각각 전송되고 수신되는 것을 특징으로 하는 공간 분할 이중화 이동 통신을 위한 방법.

KR1020127027689A 2010-04-06 2011-04-05 밀리미터파 통신 시스템에서 공간 분할 이중화를 위한 장치 및 방법 KR101841552B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US32123510P 2010-04-06 2010-04-06
US61/321,235 2010-04-06
US13/078,902 2011-04-01
US13/078,902 US9806789B2 (en) 2010-04-06 2011-04-01 Apparatus and method for spatial division duplex (SDD) for millimeter wave communication system
PCT/KR2011/002364 WO2011126266A2 (en) 2010-04-06 2011-04-05 Apparatus and method for spatial division duplex(sdd) for millimeter wave communication system

Publications (2)

Publication Number Publication Date
KR20130094177A true KR20130094177A (ko) 2013-08-23
KR101841552B1 KR101841552B1 (ko) 2018-05-04

Family

ID=44709586

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127027689A KR101841552B1 (ko) 2010-04-06 2011-04-05 밀리미터파 통신 시스템에서 공간 분할 이중화를 위한 장치 및 방법

Country Status (9)

Country Link
US (1) US9806789B2 (ko)
EP (1) EP2556601B1 (ko)
JP (1) JP6042323B2 (ko)
KR (1) KR101841552B1 (ko)
CN (1) CN102884731B (ko)
AU (1) AU2011239121B2 (ko)
CA (1) CA2795725C (ko)
RU (1) RU2567370C2 (ko)
WO (1) WO2011126266A2 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9237376B2 (en) 2013-11-08 2016-01-12 Korea Advanced Institute Of Science And Technology Wireless communication system for giga bit data rate and low power consumption
US9894658B2 (en) 2015-01-22 2018-02-13 Korea Advanced Institute Of Science And Technology Joint pattern beam sectorization method and apparatuses performing the same
KR20190095955A (ko) * 2017-01-06 2019-08-16 스카이워크스 솔루션즈, 인코포레이티드 고조파의 빔형성
WO2019164363A1 (ko) * 2018-02-25 2019-08-29 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
KR20190122442A (ko) * 2018-04-20 2019-10-30 한국전자통신연구원 전이중 송수신 장치 및 이를 이용하는 릴레이
KR102165835B1 (ko) 2019-12-27 2020-10-14 국방과학연구소 밀리미터파 통신 파티클 필터 기반 빔 추적 방법 및 그 방법을 구현하는 기지국

Families Citing this family (250)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8660057B2 (en) 2010-08-26 2014-02-25 Golba, Llc Method and system for distributed communication
GB2494717A (en) * 2011-09-13 2013-03-20 Bae Systems Plc Portable wireless network
CN103096517B (zh) * 2011-10-28 2018-04-20 深圳光启高等理工研究院 无线回传基站装置
US9019849B2 (en) * 2011-11-07 2015-04-28 Telefonaktiebolaget L M Ericsson (Publ) Dynamic space division duplex (SDD) wireless communications with multiple antennas using self-interference cancellation
WO2013082734A1 (en) * 2011-12-07 2013-06-13 Telefonaktiebolaget L M Ericsson (Publ) A method and a central base station for interference management in a cellular network
US9537546B2 (en) 2011-12-08 2017-01-03 Intel Corporation Implementing MIMO in mmWave wireless communication systems
KR101981060B1 (ko) * 2011-12-16 2019-05-24 삼성전자주식회사 무선 통신 시스템에서 신호 송신장치 및 방법
US9077415B2 (en) * 2011-12-19 2015-07-07 Samsung Electronics Co., Ltd. Apparatus and method for reference symbol transmission in an OFDM system
CN103209415B (zh) * 2012-01-16 2017-08-04 华为技术有限公司 全双工干扰处理方法和装置
WO2013154584A1 (en) * 2012-04-13 2013-10-17 Intel Corporation Millimeter-wave transceiver with coarse and fine beamforming with interference suppression and method
KR20130124004A (ko) * 2012-05-04 2013-11-13 삼성전자주식회사 밀리미터 전파 통신 시스템에서 전송기법에 따른 자원할당 방법 및 장치
US9444140B2 (en) 2012-05-23 2016-09-13 Intel Corporation Multi-element antenna beam forming configurations for millimeter wave systems
US9661612B2 (en) * 2012-06-29 2017-05-23 Samsung Electronics Co., Ltd. Methods and apparatus for uplink control channel multiplexing in beamformed cellular systems
ES2665895T3 (es) * 2012-07-02 2018-04-30 Intel Corporation Transmisión y recepción simultáneas
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US20150326070A1 (en) 2014-05-07 2015-11-12 Energous Corporation Methods and Systems for Maximum Power Point Transfer in Receivers
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US9787103B1 (en) * 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US9124125B2 (en) 2013-05-10 2015-09-01 Energous Corporation Wireless power transmission with selective range
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US20150042265A1 (en) * 2013-05-10 2015-02-12 DvineWave Inc. Wireless powering of electronic devices
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US9252628B2 (en) 2013-05-10 2016-02-02 Energous Corporation Laptop computer as a transmitter for wireless charging
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9882430B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US9438045B1 (en) 2013-05-10 2016-09-06 Energous Corporation Methods and systems for maximum power point transfer in receivers
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US9143000B2 (en) 2012-07-06 2015-09-22 Energous Corporation Portable wireless charging pad
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US20140008993A1 (en) 2012-07-06 2014-01-09 DvineWave Inc. Methodology for pocket-forming
US9368020B1 (en) 2013-05-10 2016-06-14 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
RU2514928C2 (ru) * 2012-07-17 2014-05-10 ООО "Градиент МРТ" Прецизионный усилитель аналоговых сигналов большой мощности с высоким кпд
US20140052884A1 (en) * 2012-08-14 2014-02-20 Zyxel Communications, Inc. Mobile device case with wireless high definition transmitter
CN103595520B (zh) * 2012-08-16 2017-08-04 华为技术有限公司 通讯装置及其空分双工方法
JP6098114B2 (ja) * 2012-10-26 2017-03-22 アイコム株式会社 中継装置および通信システム
KR102043023B1 (ko) * 2012-11-09 2019-11-12 삼성전자주식회사 이동 통신 시스템에서 다중-접속 신호 생성/복원 방법 및 장치
CN103929213B (zh) 2013-01-10 2016-10-05 华为技术有限公司 通信模式转换方法以及装置
CN104938007B (zh) 2013-02-05 2019-08-23 华为技术有限公司 载波的指示方法、用户设备及基站
CN104052529B (zh) * 2013-03-14 2018-07-17 上海诺基亚贝尔股份有限公司 一种天线阵列以及一种用于全双工通信的通信方法
WO2014153233A1 (en) * 2013-03-14 2014-09-25 Google Inc. Systems and methods for wireless backhaul transport
CN103199906B (zh) * 2013-03-14 2016-03-23 东南大学 毫米波高速通信系统波束扇区侦听的空间复用方法
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US9537357B2 (en) 2013-05-10 2017-01-03 Energous Corporation Wireless sound charging methods and systems for game controllers, based on pocket-forming
US9538382B2 (en) 2013-05-10 2017-01-03 Energous Corporation System and method for smart registration of wireless power receivers in a wireless power network
US9843763B2 (en) 2013-05-10 2017-12-12 Energous Corporation TV system with wireless power transmitter
US9419443B2 (en) 2013-05-10 2016-08-16 Energous Corporation Transducer sound arrangement for pocket-forming
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
WO2015034311A1 (ko) * 2013-09-05 2015-03-12 엘지전자 주식회사 다중 안테나 지원 무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치
WO2015069309A1 (en) * 2013-11-07 2015-05-14 Laird Technologies, Inc. Omnidirectional broadband antennas
RU2628952C1 (ru) * 2013-11-25 2017-08-23 Хуавэй Текнолоджиз Ко., Лтд. Система и способ связи, и устройство
US9648504B2 (en) * 2013-12-10 2017-05-09 Qualcomm Incorporated Using subarrays of a beamformer for transmissions in a forward link
CN104753658B (zh) * 2013-12-27 2018-12-11 中国移动通信集团公司 一种同时同频全双工系统中的数据传输方法和装置
CN105917732B (zh) 2014-01-29 2020-11-06 华为技术有限公司 基带处理单元、射频拉远单元及通信方法
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
EP3550923B1 (en) 2014-03-25 2020-07-08 Telefonaktiebolaget LM Ericsson (publ) Enhanced prach preamble format
BR112016020990B1 (pt) * 2014-03-25 2023-02-07 Telefonaktiebolaget Lm Ericsson (Publ) Receptor de preâmbulo, método para receber um sinal de rádio e detectar uma sequência de preâmbulo, e, mídia de armazenamento legível por máquina
US9781612B2 (en) * 2014-03-31 2017-10-03 Intel IP Corporation Correlation-based self-interference suppression
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US10004050B2 (en) * 2014-05-22 2018-06-19 Qualcomm Incorporated Method and apparatus for synchronizing and propagating state information in wireless downlink/uplink
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
JP2017527150A (ja) * 2014-06-17 2017-09-14 華為技術有限公司Huawei Technologies Co.,Ltd. 通信方法および通信装置
US9451536B2 (en) 2014-06-18 2016-09-20 Qualcomm Incorporated UE initiated discovery in assisted millimeter wavelength wireless access networks
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10116143B1 (en) * 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9491776B2 (en) * 2014-07-23 2016-11-08 Intel Corporation Systems and methods for scheduling communication between wireless devices to reduce interference associated with full duplex communication in multi-cell networks
WO2016024326A1 (ja) * 2014-08-12 2016-02-18 電気興業株式会社 移動通信システムの基地局アンテナ装置
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US9887907B2 (en) 2014-09-18 2018-02-06 Qualcomm Incorporated Base station initiated control mechanism for supporting supplemental link
JP6474898B2 (ja) 2014-11-26 2019-02-27 華為技術有限公司Huawei Technologies Co.,Ltd. ワイヤレス通信方法、デバイス、およびシステム
US9967886B2 (en) 2014-12-03 2018-05-08 Industrial Technology Research Institute Hierarchical beamforming method and base station and user equipment using the same
JP6301245B2 (ja) * 2014-12-16 2018-03-28 日本電信電話株式会社 基地局装置
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
CN105991170B (zh) * 2015-02-06 2019-09-17 电信科学技术研究院 一种信号发射方法及装置
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
EP3059877B1 (en) 2015-02-17 2021-01-27 Industrial Technology Research Institute Beamforming method of millimeter wave communication and base station and user equipment using the same
AU2015384676B2 (en) * 2015-02-27 2019-02-07 Sony Corporation Information processing device
JP6468034B2 (ja) 2015-04-01 2019-02-13 富士通株式会社 基地局、無線通信システム、および基地局の処理方法
CN105025160B (zh) * 2015-06-09 2018-09-07 惠州Tcl移动通信有限公司 一种毫米波频段d2d手机及其通信方法
US9736699B1 (en) * 2015-07-28 2017-08-15 Sanjay K. Rao Wireless Communication Streams for Devices, Vehicles and Drones
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
CN106888460A (zh) * 2015-12-16 2017-06-23 焦秉立 一种消除全双工上行信道干扰的布网方案
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10135286B2 (en) 2015-12-24 2018-11-20 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture offset from a patch antenna
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10008886B2 (en) 2015-12-29 2018-06-26 Energous Corporation Modular antennas with heat sinks in wireless power transmission systems
EP3400750A4 (en) * 2016-01-08 2019-08-21 Astrome Technologies Private Limited SYSTEM AND METHOD FOR LAND AND SATELLITE BIDIRECTIONAL COMMUNICATIONS USING MILLIMETER WAVES
US11160102B2 (en) 2016-03-25 2021-10-26 Apple Inc. Full duplex support in fifth generation (5G) systems
CN109156022B (zh) 2016-06-22 2022-08-09 英特尔公司 用于全双工调度的通信设备和方法
US10784946B2 (en) * 2016-07-01 2020-09-22 Apple Inc. Communication device and method for selecting a beam direction
CN109792618B (zh) 2016-09-22 2022-07-29 瑞典爱立信有限公司 具有定时未对准的有效上行链路测量信号接收和传输窗口分配
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
CN106656217A (zh) * 2016-12-02 2017-05-10 华南理工大学 一种多射频单元基站系统的全双工传输方法
KR102185600B1 (ko) 2016-12-12 2020-12-03 에너저스 코포레이션 전달되는 무선 전력을 최대화하기 위한 근접장 충전 패드의 안테나 존들을 선택적으로 활성화시키는 방법
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
CN110383941B (zh) * 2017-02-27 2023-03-28 艾尔文科学股份有限公司 通过障碍物的毫米波通信
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
CN107453825B (zh) * 2017-07-26 2021-01-08 维沃移动通信有限公司 一种通信控制的方法、移动终端及计算机可读存储介质
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
KR102410799B1 (ko) 2017-11-28 2022-06-21 삼성전자주식회사 밀리미터 웨이브 신호를 송/수신하기 위한 통신 장치 및 그 통신 장치를 포함하는 전자 장치
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
CN110247688B (zh) * 2018-03-08 2022-12-13 华为技术有限公司 全双工通信的方法和装置
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
KR102595684B1 (ko) * 2018-05-11 2023-10-31 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 공간 다양성과 관련된 지점 대 다중 지점 공유 액세스(access) 전이중(全二重) 무선 이중화 방식
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
KR102511292B1 (ko) * 2018-07-11 2023-03-17 삼성전자주식회사 전자 장치의 객체 인증 장치 및 방법
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
WO2020160015A1 (en) 2019-01-28 2020-08-06 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
KR20210123329A (ko) 2019-02-06 2021-10-13 에너저스 코포레이션 안테나 어레이에 있어서의 개별 안테나들에 이용하기 위해 최적 위상을 추정하는 시스템 및 방법
CN110430554B (zh) * 2019-06-28 2023-11-07 维沃移动通信有限公司 业务传输方法及终端设备
RU2717551C1 (ru) * 2019-09-17 2020-03-24 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ радиосвязи с пространственным разделением каналов
WO2021055898A1 (en) 2019-09-20 2021-03-25 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
EP4032169A4 (en) 2019-09-20 2023-12-06 Energous Corporation CLASSIFICATION AND DETECTION OF FOREIGN OBJECTS USING POWER AMPLIFIER CONTROLLER INTEGRATED CIRCUIT IN WIRELESS POWER TRANSMISSION SYSTEMS
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
CN115104234A (zh) 2019-09-20 2022-09-23 艾诺格思公司 使用多个整流器保护无线电力接收器以及使用多个整流器建立带内通信的系统和方法
US11288856B2 (en) * 2019-11-05 2022-03-29 Intelligent Fusion Technology, Inc. Method and system for wave propagation prediction
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11895652B2 (en) * 2020-12-04 2024-02-06 Qualcomm Incorporated Beam adjustment/cancellation rules for non-compatible UL/DL beams
US20230017004A1 (en) * 2021-07-09 2023-01-19 Qualcomm Incorporated Antenna panel pair reporting and configuration for full-duplex communication
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith
CN114447626B (zh) * 2022-01-12 2023-01-20 荣耀终端有限公司 毫米波模组电路及终端设备

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4559605A (en) * 1983-09-16 1985-12-17 The Boeing Company Method and apparatus for random array beamforming
US5513176A (en) 1990-12-07 1996-04-30 Qualcomm Incorporated Dual distributed antenna system
US5515378A (en) * 1991-12-12 1996-05-07 Arraycomm, Inc. Spatial division multiple access wireless communication systems
GB2303764A (en) * 1995-07-28 1997-02-26 Int Mobile Satellite Org Communication with a mobile station in an unknown spot beam
US6359923B1 (en) * 1997-12-18 2002-03-19 At&T Wireless Services, Inc. Highly bandwidth efficient communications
JPH11251959A (ja) * 1998-03-05 1999-09-17 Fujitsu Ltd 干渉キャンセラ装置及び無線通信装置
DE69835623T2 (de) * 1998-11-04 2007-08-16 Nokia Corp. Verfahren und einrichtung für richtfunkkommunikation
US6882847B2 (en) * 2000-06-15 2005-04-19 Telefonaktiebolaget Lm Ericsson (Publ) Fractional reuse through channel allocation tiering
US6850502B1 (en) * 2000-10-30 2005-02-01 Radiant Networks, Plc Join process method for admitting a node to a wireless mesh network
JP2003037541A (ja) 2001-07-23 2003-02-07 Nec Corp 無線装置及び無線通信システム
JP2003110354A (ja) 2001-09-27 2003-04-11 Furukawa Electric Co Ltd:The 中継局およびこれに用いられる送信アンテナ並びに受信アンテナ
KR100896682B1 (ko) 2002-04-09 2009-05-14 삼성전자주식회사 송/수신 다중 안테나를 포함하는 이동 통신 장치 및 방법
US7362799B1 (en) * 2002-06-27 2008-04-22 Arraycomm Llc Method and apparatus for communication signal resolution
US20040071115A1 (en) * 2002-10-11 2004-04-15 Mark Earnshaw Intelligent uplink SCDMA scheduling incorporating polarization and/or spatial information to determine SCDMA code set assignment
US7151951B2 (en) 2002-12-23 2006-12-19 Telefonktiebolaget Lm Ericsson (Publ) Using beamforming and closed loop transmit diversity in a multi-beam antenna system
US6784831B1 (en) * 2003-05-05 2004-08-31 Tia Mobile, Inc. Method and apparatus for GPS signal receiving that employs a frequency-division-multiplexed phased array communication mechanism
WO2005089125A2 (en) 2004-03-05 2005-09-29 Interdigital Technology Corporation Full duplex communication system using disjoint spectral blocks
KR100865469B1 (ko) 2005-03-08 2008-10-27 삼성전자주식회사 공간 분할 다중 접속 방식을 지원하는 직교주파수 다중 분할 방식 시스템에서 채널 추정 장치 및 방법
US8213484B2 (en) 2005-06-16 2012-07-03 Qualcomm Incorporated Wireless communication network with extended coverage range
US20070041457A1 (en) * 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
JP4504293B2 (ja) 2005-09-29 2010-07-14 株式会社東芝 複数アンテナを備えた無線通信装置および無線通信システム、無線通信方法
WO2007037714A1 (en) * 2005-09-30 2007-04-05 Intel Corporation Systems and techniques for space-time coded cochannel interference cancellation
US7602837B2 (en) * 2005-10-20 2009-10-13 Freescale Semiconductor, Inc. Beamforming for non-collaborative, space division multiple access systems
US7720030B2 (en) * 2006-02-28 2010-05-18 Intel Corporation Techniques for explicit feedback delay measurement
US7564910B2 (en) * 2006-04-17 2009-07-21 Zoran Kostic Method and system for communications with reduced complexity receivers
CN101106807B (zh) 2006-07-12 2012-04-11 株式会社Ntt都科摩 一种基于中继器的蜂窝网络以及空分双工通信方法
US7450673B2 (en) 2006-08-10 2008-11-11 Cisco Technology, Inc. System and method for improving the robustness of spatial division multiple access via nulling
US8325701B2 (en) 2006-09-01 2012-12-04 Mitsubishi Electric Corporation Radio communication system and radio communication method
US8073486B2 (en) * 2006-09-27 2011-12-06 Apple Inc. Methods for opportunistic multi-user beamforming in collaborative MIMO-SDMA
US20080100510A1 (en) * 2006-10-27 2008-05-01 Bonthron Andrew J Method and apparatus for microwave and millimeter-wave imaging
JP4484894B2 (ja) 2006-12-25 2010-06-16 修 中田 緊急医療システム
EP1971043A1 (en) * 2007-03-16 2008-09-17 Sony Deutschland GmbH Transmitting device and method for transmitting signals in a wireless communication system, receiving device and method for receiving signals in a wireless communication system
WO2009013527A1 (en) * 2007-07-20 2009-01-29 Astrium Limited System for simplification of reconfigurable beam-forming network processing within a phased array antenna for a telecommunications satellite
US7916081B2 (en) 2007-12-19 2011-03-29 Qualcomm Incorporated Beamforming in MIMO systems
US8626080B2 (en) 2008-03-11 2014-01-07 Intel Corporation Bidirectional iterative beam forming
EP2263332A2 (en) * 2008-03-12 2010-12-22 Hypres Inc. Digital radio-frequency tranceiver system and method
US8467345B2 (en) 2008-08-20 2013-06-18 Qualcomm Incorporated Methods and apparatus for scheduling wireless transmissions
US8274937B2 (en) * 2008-08-26 2012-09-25 Samsung Electronics Co., Ltd. Method and apparatus for beamforming in OFDM wireless system
JP2010060356A (ja) 2008-09-02 2010-03-18 Toto Ltd 電波センサ
US8861446B2 (en) * 2010-02-03 2014-10-14 Qualcomm Incorporated Methods and apparatuses for channel selection

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9237376B2 (en) 2013-11-08 2016-01-12 Korea Advanced Institute Of Science And Technology Wireless communication system for giga bit data rate and low power consumption
US9894658B2 (en) 2015-01-22 2018-02-13 Korea Advanced Institute Of Science And Technology Joint pattern beam sectorization method and apparatuses performing the same
KR20190095955A (ko) * 2017-01-06 2019-08-16 스카이워크스 솔루션즈, 인코포레이티드 고조파의 빔형성
WO2019164363A1 (ko) * 2018-02-25 2019-08-29 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
US11856433B2 (en) 2018-02-25 2023-12-26 Lg Electronics Inc. Method for transmitting/receiving signal in wireless communication system, and device therefor
KR20190122442A (ko) * 2018-04-20 2019-10-30 한국전자통신연구원 전이중 송수신 장치 및 이를 이용하는 릴레이
KR102165835B1 (ko) 2019-12-27 2020-10-14 국방과학연구소 밀리미터파 통신 파티클 필터 기반 빔 추적 방법 및 그 방법을 구현하는 기지국

Also Published As

Publication number Publication date
AU2011239121A1 (en) 2012-11-01
RU2567370C2 (ru) 2015-11-10
WO2011126266A2 (en) 2011-10-13
AU2011239121B2 (en) 2015-07-23
CN102884731A (zh) 2013-01-16
CA2795725A1 (en) 2011-10-13
KR101841552B1 (ko) 2018-05-04
CA2795725C (en) 2018-11-06
JP2013526135A (ja) 2013-06-20
US20110243040A1 (en) 2011-10-06
CN102884731B (zh) 2017-05-10
RU2012146984A (ru) 2014-05-20
EP2556601A4 (en) 2016-11-30
EP2556601A2 (en) 2013-02-13
WO2011126266A3 (en) 2012-03-08
US9806789B2 (en) 2017-10-31
JP6042323B2 (ja) 2016-12-14
EP2556601B1 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
KR101841552B1 (ko) 밀리미터파 통신 시스템에서 공간 분할 이중화를 위한 장치 및 방법
EP3308476B1 (en) Apparatus and method for performing beamforming by using antenna array in wireless communication system
CN107078769B (zh) 用于使用多个频率的波束选择的系统和方法
He et al. A survey of millimeter-wave communication: Physical-layer technology specifications and enabling transmission technologies
KR102497453B1 (ko) 무선 통신 시스템에서 하이브리드 프리코딩을 위한 장치 및 방법
US10038480B2 (en) Power control method and device for forming multiple beams in wireless communication system
US20160315680A1 (en) Beamforming apparatus, method and computer program for a transceiver
EP3413477A1 (en) Wireless communication device
Xue et al. Multiuser millimeter wave communications with nonorthogonal beams
KR102188747B1 (ko) 하이브리드 빔포밍을 이용한 무선 통신 방법 및 장치
KR102508858B1 (ko) 송신 다이버시티를 위한 방법 및 장치
TW201538022A (zh) 用於基地台收發器及行動收發器之裝置、方法及電腦程式
US11522581B2 (en) Switching between intra-band multiple input multiple output and inter-band carrier aggregation
Muramatsu et al. Multi-beam massive MIMO with beam-selection using only amplitude information in uplink channel
KR102278012B1 (ko) 무선 통신 시스템에서 간섭 정렬을 위한 장치 및 방법
Mahmood et al. Sub-array selection in full-duplex massive MIMO for enhanced self-interference suppression
WO2017167532A1 (en) Beamforming device for forming different beams for control and data signal
Blandino et al. Multi-user frequency-selective hybrid MIMO demonstrated using 60 GHz RF modules
Kataoka et al. Analog decoding method for simplified short-range MIMO transmission
Chopra et al. Capacity analysis of hybrid MIMO using sparse signal processing in mmW 5G heterogeneous wireless networks
KR20170021475A (ko) 개루프 다중 입출력 기술을 이용해 신호를 송수신하는 방법 및 장치
Erricolo et al. Massive MIMO: review and a case for the 12 GHz band
Gheorghe et al. Massive MIMO technology for 5G adaptive networks
KR102646770B1 (ko) 가상 등간격 원형 어레이기반의 OAM-mMIMO 시스템을 사용한 비직교 다중접속 방법
US20220376754A1 (en) Method and apparatus for antenna port switching in near field los mimo

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant