WO2021147613A1 - 一种全双工通信方法及装置 - Google Patents

一种全双工通信方法及装置 Download PDF

Info

Publication number
WO2021147613A1
WO2021147613A1 PCT/CN2020/139673 CN2020139673W WO2021147613A1 WO 2021147613 A1 WO2021147613 A1 WO 2021147613A1 CN 2020139673 W CN2020139673 W CN 2020139673W WO 2021147613 A1 WO2021147613 A1 WO 2021147613A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmitting
receiving
antenna array
oam
transmit
Prior art date
Application number
PCT/CN2020/139673
Other languages
English (en)
French (fr)
Inventor
张倬钒
胡亮
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20916182.7A priority Critical patent/EP4087061A4/en
Publication of WO2021147613A1 publication Critical patent/WO2021147613A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a full-duplex communication method and device.
  • Orbital Angular Momentum is an inherent property of electromagnetic waves, which corresponds to the spiral phase wavefront of the beam in space.
  • the electromagnetic waves carrying different OAM states are orthogonal to each other during coaxial transmission in space. Therefore, the traditional orbital angular momentum electromagnetic wave communication theory believes that modulating different information to electromagnetic waves in different OAM states for multiplexing can increase the channel of the wireless communication system. capacity.
  • traditional OAM electromagnetic wave communication is difficult to use in actual communication systems due to problems such as beam divergence, energy holes in the beam center, and performance degradation caused by eccentric and off-axis.
  • Generating OAM beams through an antenna array is a relatively convenient way to generate OAM beams. Therefore, how to reasonably design the antenna array and its feeding network to use the orthogonality of the OAM beam to realize the self-interference cancellation in the propagation domain is a problem that needs to be solved in full-duplex communication.
  • the embodiments of the present application provide a full-duplex communication method and device, which are used to realize self-interference cancellation in a full-duplex communication process.
  • an embodiment of the present application provides a full-duplex communication method, including transmitting beams of different orbital angular momentum OAM states through a transmitting antenna array, the transmitting antenna array being a uniform ring array UCA; receiving through a receiving antenna array For receiving beams in different OAM states, the receiving antenna array is UCA, and the antenna array includes the transmitting antenna array and the receiving antenna array, wherein the antenna array satisfies a preset condition, and the preset condition includes: The number of transmitting antennas of the transmitting antenna array is equal to the number of receiving antennas of the receiving antenna array, and the OAM state of the transmitting beam is not equal to the inverse number of the OAM state of the receiving beam; the transmitting antenna array is fed through a feed network And synthesize the signal of the receiving antenna array.
  • the feeding network feeds the transmitting UCA
  • the transmitting UCA can emit transmitting beams in different OAM states
  • the feeding network synthesizes the signals of the receiving UCA
  • the receiving UCA can receive receiving beams in different OAM states.
  • the transmitting UCA and the receiving UCA are placed concentrically and coaxially.
  • the radius of the transmitting UCA and the radius of the receiving UCA may be the same or different. Exemplarily, if the radius of the transmitting UCA is the same as the radius of the receiving UCA, the transmitting UCA and the receiving UCA may share an antenna array, or the transmitting UCA and the receiving UCA may use independent antenna arrays .
  • the feeding network may include a transmitting feeding network and a receiving feeding network.
  • the transmitting feeding network and the receiving feeding network may share one feeding network, or the transmitting feeding network and the receiving feeding network may use independent feeding networks.
  • the transmitting and feeding network feeds the transmitting UCA, and the receiving and feeding network synthesizes the signal of the receiving UCA.
  • the transmitting UCA may generate multiple continuous transmitting beams in the OAM state.
  • the number of antennas in the transceiver antenna array is equal, the full-duplex communication device transmits transmit beams in different OAM states through UCA, and receives receive beams in different OAM states through receiving UCA, and the transmit beam
  • the OAM state is not equal to the inverse number of the OAM state of the receiving beam.
  • self-interference cancellation is realized and full-duplex communication is realized.
  • the preset condition further includes: the absolute value of the OAM state of the transmit beam is less than half of the number of the transmit antenna; the absolute value of the OAM state of the receive beam is less than the receive antenna Half of the number.
  • This implementation can further ensure that the transmitting UCA can generate an OAM beam and realize self-interference elimination.
  • the OAM state of each transmit beam satisfies the following conditions: Where p represents the p-th transmit beam, Indicates the OAM state of the p-th transmit beam, P indicates the number of transmit beams, p is a positive integer less than or equal to P, and P is a positive integer.
  • the OAM state combination to be transmitted is selected according to the number of elements transmitting UCA, and the OAM state of each transmit beam is determined based on the selected OAM state combination to ensure the realization of self-interference cancellation and beamforming.
  • the OAM state of each receiving beam satisfies the following conditions: Where q represents the qth receiving beam, It represents the OAM state of the qth receiving beam, Q represents the number of receiving beams, q is a positive integer less than or equal to Q, and Q is a positive integer.
  • the received OAM state combination is selected according to the number of elements receiving UCA, and the OAM state of each receiving beam is determined based on the selected OAM state combination to ensure that self-interference cancellation is achieved.
  • the phase of each transmitting antenna in the transmitting antenna array may be adjusted through the feed network, wherein each transmitting antenna The phase of the nth transmitting antenna in the transmission beam is determined according to the OAM state L TX of the transmitting beam and the number of transmitting antennas N of the transmitting antenna array, where n is a positive integer less than or equal to N, and N is a positive integer.
  • the phase of the nth transmitting antenna among the N transmitting antennas satisfies the following conditions: in Indicates the phase of the n-th transmitting antenna when the input port of the p-th transmitting beam is excited.
  • multiple beam ports can also be excited at the same time, thereby generating multiple continuous transmitting beams in the OAM state in space, and realizing beamforming at the transmitting end.
  • the phase of the transmitting antenna is equal to the superposition of the phase when a single port is excited.
  • the phase of each receiving antenna in the receiving antenna array may be adjusted through the feed network, wherein each receiving antenna The phase of the m-th receiving antenna is determined according to the OAM state L RX of the receiving beam and the number of receiving antennas M of the receiving antenna array, where m is a positive integer less than or equal to M, and M is a positive integer.
  • the phase of the m-th receiving antenna among the M receiving antennas satisfies the following conditions: in Indicates the phase of the m-th receiving antenna when the q-th receiving beam output port is excited.
  • the signal when a specific beam is received in space, the signal is output from the corresponding beam port to achieve beamforming at the receiving end.
  • the signals are output from multiple beam ports at the same time.
  • all elements of the transmission matrix between the transmit beam input port of the feeder network and the receive beam output port of the feeder network are zero.
  • H RX,TX ⁇ TX H c ⁇ RX T
  • H RX,TX is the P transmit beams
  • the transmission matrix between the input port and the Q receiving beam output ports ⁇ TX is the transmission matrix of the transmitting and feeding network
  • ⁇ RX is the transmission matrix of the receiving and feeding network
  • H c is the transmitting UCA
  • the coupling matrix between the receiving UCA is the following formula:
  • the coupling matrix H c between the transmitting UCA and the receiving UCA satisfies the following formula: ⁇ TX(n), RX(m) are the coupling coefficients from the nth transmitting antenna to the mth receiving antenna.
  • the coupling matrix H c between the transmitting UCA and the receiving UCA satisfies the following formula:
  • the method further includes: simultaneously generating multiple transmit beams in continuous OAM states through the transmit antenna array, wherein the beam width of the beam formed by superimposing the multiple transmit beams in space is the same as that of the excited beam.
  • the number of transmitted beams is inversely proportional.
  • multiple consecutive transmit beams in the OAM state are excited at the same time.
  • the energy of the beams superimposed in space gradually concentrates in a specific direction in the circumferential direction, thereby avoiding The problem of energy holes in the main lobe direction of a single OAM beam.
  • the method further includes: adjusting the initial phase of the transmitting beam and/or the receiving beam through a phase shifter, and the feeding network is located between the phase shifter and the transmitting antenna Between the arrays, and the feed network is located between the phase shifter and the receiving antenna array.
  • the phase shifter and the feed network may be directly connected or indirectly connected. If the phase shifter and the feed network are indirectly connected, the power amplifier PA and/or the low noise amplifier LNA may be located between the phase shifter and the feed network.
  • the far-field electric field of the transmit beams in the P OAM states is based on the radius of the transmit UCA, the OAM state of the transmit beam, and the transmit beam sum The initial phase of the OAM state of the receiving beam is determined.
  • a certain point in the spherical coordinate system of the P transmit beams The far-field electric field satisfies the following formula: in Is the far-field electric field of the beam formed by the superposition of the P transmitting beams in space, ⁇ 0 is the vacuum permeability, ⁇ is the angular frequency, k is the wave number, j e is the current density of the electric dipole, and d is the electric
  • the length of the dipole a is the radius of the transmitting UCA
  • J l is the Bessel function of order l
  • c is the speed of light in vacuum.
  • the method further includes: adjusting the ⁇ ml degree of the main lobe of the transmit beam through the feeding network, and/or adjusting the degree of the main lobe of the transmit beam degree.
  • the ⁇ ml degree represents the ⁇ degree of the main lobe (ml) of the transmitting beam
  • the degree represents the main lobe of the transmit beam degree
  • the transmitting and feeding network can realize the adjustment of the ⁇ ml degree of the main lobe of the transmitting beam by using OAM beams of different modalities.
  • the phase shifter can change the initial phase of the transmit beam Realize the main lobe of the transmit beam Adjustment of degrees.
  • phase shifter corresponding to the p-th transmit beam Depends on the beginning And OAM modal
  • the method further includes: adjusting the number of main lobes of the transmit beam through the feeding network.
  • the transmitting and feeding network can adjust the number of main lobes of the transmitting beam by adjusting the interval of the OAM state in the L TX.
  • the interval of OAM states in L TX is equal to the number of main lobes of the transmit beam.
  • beamforming of different shapes can be achieved by adjusting the number of main lobes of the transmit beam.
  • an embodiment of the present application provides a full-duplex communication device, including a phase shifter, a feeder network, and an antenna array, the feeder network is located between the phase shifter and the antenna array, so
  • the antenna array includes a transmitting antenna array and a receiving antenna array; the antenna array is UCA, and the UCA is used to transmit transmit beams in different OAM states and receive receive beams in different OAM states, and the full-duplex communication device meets the requirements
  • the preset conditions include: the number of transmitting antennas of the transmitting antenna array is equal to the number of receiving antennas of the receiving antenna array; the OAM state of the transmitting beam is not equal to the inverse number of the OAM state of the receiving beam .
  • the preset condition further includes: the absolute value of the OAM state of the transmit beam is less than half of the number of the transmit antenna; the absolute value of the OAM state of the receive beam is less than the receive antenna Half of the number.
  • the transmitting UCA and the receiving UCA are placed concentrically and coaxially.
  • the radius of the transmitting UCA is the same as or different from the radius of the receiving UCA.
  • the transmitting antenna array and the receiving antenna array share the antenna array, or the transmitting antenna array and the receiving antenna
  • the array is an independent antenna array.
  • the transmitting antenna array and the receiving antenna array share an antenna array
  • the device further includes: a circulator, the circulator being located between the feeding network and the antenna array.
  • the feeding network includes a transmitting feeding network and a receiving feeding network, the transmitting feeding network and the receiving feeding network share the same feeding network, or the transmitting feeding network An independent feeder network is used with the receiving feeder network.
  • the transmitting feeder network and the receiving feeder network share the same feeder network
  • the device further includes: a power divider, where the power divider is located between the feeder network and the receiving feeder network. Between the antenna arrays.
  • the device further includes one or more of the following: a baseband module, a digital cancellation module, a digital-to-analog conversion module DAC, an analog-to-digital conversion module ADC, a local oscillator, and a mixer; among them,
  • the baseband module is connected to the digital cancellation module, the DAC and the ADC are located between the baseband module and the mixer, and the LO is connected to the mixer.
  • the device further includes: a power amplifier PA and/or a low noise amplifier LNA; the PA and/or the LNA are located between the mixer and the phase shifter; Or the PA and/or the LNA are located between the phase shifter and the feed network.
  • a power amplifier PA and/or a low noise amplifier LNA the PA and/or the LNA are located between the mixer and the phase shifter; Or the PA and/or the LNA are located between the phase shifter and the feed network.
  • the transmitting and feeding network is determined according to the OAM state of the beam to be transmitted and the number of elements of the transmitting antenna array; and/or the receiving and feeding network is determined according to the OAM state of the beam to be received and the receiving antenna The number of array elements is determined.
  • the transmitting and feeding network satisfies the following conditions: Where ⁇ TX is the transmission matrix of the transmitting and feeding network, and L TX is the OAM state of the P transmit beams corresponding to the P transmit beam input ports, Is the circumferential position of the array element transmitting UCA, ⁇ TX is an arbitrary value, N is the number of the transmitting antennas, and N is a positive integer.
  • the receiving feeder network meets the following conditions: Where ⁇ RX is the transmission matrix of the receiving and feeding network, and L RX is the OAM state of the Q to-be-received beams corresponding to the Q receiving beam output ports, Is the circumferential position of the element receiving UCA, ⁇ RX is any value, M is the number of the receiving antennas, and M is a positive integer.
  • the OAM state of each transmit beam satisfies the following conditions: Where p represents the p-th transmit beam, Represents the OAM state of the p-th transmit beam, P represents the number of transmit beams, p is a positive integer less than or equal to P, and P is a positive integer; and/or the phase of the n-th transmit antenna in each transmit antenna is based on The OAM state L TX of the transmit beam and the number N of transmit antennas of the transmit antenna array are determined, where n is a positive integer less than or equal to N, and N is a positive integer.
  • the OAM state of each receiving beam satisfies the following conditions: Where q represents the qth receiving beam, Represents the OAM state of the qth transmit beam, Q represents the number of receive beams, q is a positive integer less than or equal to Q, and Q is a positive integer; and/or the phase of the mth receive antenna in each receive antenna is based on The OAM state L RX of the receiving beam and the number M of receiving antennas of the receiving antenna array are determined, m is a positive integer less than or equal to M, and M is a positive integer.
  • all elements of the transmission matrix between the transmit beam input port of the feeder network and the receive beam output port of the feeder network are zero.
  • the transmitting UCA is specifically used to simultaneously generate multiple transmitting beams with continuous OAM states, wherein the beam width of the beam formed by superimposing the multiple transmitting beams in space is the same as the excited transmitting beam The number is inversely proportional.
  • the phase shifter is used to adjust the initial phase of the transmitting beam and/or the receiving beam.
  • the far-field electric field of the transmission beams in the P OAM states is based on the radius of the transmission UCA, the OAM state of the transmission beam, and the transmission beam The initial phase of the OAM state is determined.
  • the transmitting and feeding network is specifically used to adjust the degree of ⁇ ml of the main lobe of the transmit beam, and/or adjust the degree of the main lobe of the transmit beam degree.
  • the transmitting and feeding network is specifically used to adjust the number of main lobes of the transmitting beam.
  • embodiments of the present application provide a full-duplex communication device, which can implement the foregoing first aspect and any possible implementation method of the first aspect.
  • These functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more functional modules corresponding to the above-mentioned functions.
  • a full-duplex communication device in a fourth aspect, includes a transceiver, a processor, and optionally a memory, where the memory is used to store computer programs or instructions, and the processors are used to store computer programs or instructions, respectively. It is coupled with the memory and the transceiver, and when the processor executes the computer program or instruction, the full-duplex communication device is caused to execute the foregoing first aspect and the method in any possible implementation of the first aspect.
  • a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute the first aspect and any of the possible aspects of the first aspect. Method in implementation.
  • the present application provides a chip system including a processor and a memory, the processor and the memory are electrically coupled; the memory is used to store computer program instructions; the processor , Used to execute part or all of the computer program instructions in the memory, and when the part or all of the computer program instructions are executed, used to implement the functions in the first aspect and any possible implementation method of the first aspect .
  • the chip system further includes a transceiver, and the transceiver is configured to send a signal processed by the processor or receive a signal input to the processor.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a computer-readable storage medium stores a computer program, and when the computer program is run, it implements the above-mentioned first aspect and any possible implementation method of the first aspect .
  • FIG. 1 is a schematic diagram of the architecture of a communication system in an embodiment of the application
  • Figure 2 is a schematic diagram of the antenna structure with a cross symmetric structure
  • Figure 3 is a schematic diagram of the far-field energy distribution of the cross-symmetric structure
  • Fig. 4 is a schematic diagram of the antenna structure with a three-dimensional structure
  • Figure 5 is a schematic diagram of the far-field energy distribution of the three-dimensional structure
  • FIG. 6 is a schematic flowchart of a full-duplex communication method in an embodiment of this application.
  • FIG. 7 is a schematic diagram of far-field energy distribution in an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a full-duplex communication device in an embodiment of the application.
  • Fig. 9 is a schematic diagram of a feeder network in an embodiment of the application.
  • FIG. 10 is a schematic diagram of sending and receiving UCA in an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a full-duplex communication device in an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of a full-duplex communication device in an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of a full-duplex communication device in an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of a full-duplex communication device in an embodiment of the application.
  • 15 is a schematic structural diagram of a full-duplex communication device in an embodiment of the application.
  • 16 is a schematic structural diagram of a full-duplex communication device in an embodiment of the application.
  • FIG. 17 is a schematic structural diagram of a full-duplex communication device in an embodiment of the application.
  • FIG. 18 is a schematic structural diagram of a full-duplex communication device in an embodiment of the application.
  • FIG. 19 is a schematic structural diagram of a full-duplex communication device in an embodiment of the application.
  • the word "exemplary” is used to mean serving as an example, illustration, or illustration. Any embodiment or design solution described as an "example” in this application should not be construed as being more preferable or advantageous than other embodiments or design solutions. Rather, the term example is used to present the concept in a concrete way.
  • Full-duplex communication also known as two-way simultaneous communication
  • devices using full-duplex communication can send and receive information at the same time, that is, they can send data while receiving data.
  • phase shifter is used to adjust the phase of the electromagnetic wave (or beam).
  • the initial value of the phase is also called the initial phase.
  • Feeder network including transmitting feeder network and receiving feeder network.
  • the feeding network is used to generate a radio frequency signal with a specific phase and amplitude to feed the transmitting antenna array.
  • Antenna array Two or more single antennas working at the same frequency are fed and arranged in space according to certain requirements to form an antenna array, also called an antenna array.
  • the antenna radiating elements that make up the antenna array are called array elements.
  • the antenna array includes a transmitting antenna array and a receiving antenna array.
  • the structure of the antenna array includes uniform circular array (Uniform Circular Array, UCA), uniform linear array (Uniform Linear Array, ULA) and so on.
  • UCA Uniform Circular Array
  • ULA Uniform Linear Array
  • the structure of the antenna array is mainly UCA, wherein a transmitting antenna array with a UCA structure is also called a transmitting UCA, and a receiving antenna array with a UCA structure is also called a receiving UCA.
  • Beam which means the shape formed in space by the electromagnetic wave emitted by the antenna, just like the beam of a flashlight has a certain range.
  • the signal emitted by the antenna is not 360° radiation, but a signal wave emitted concentratedly in a certain azimuth.
  • beams include transmitting beams and receiving beams. The direction with the strongest beam energy is called the main lobe direction of the beam. Generally, if the beam has multiple directions with equal energy and maximum energy, the beam has multiple main lobes.
  • OAM state also called OAM mode
  • OAM state is one of the inherent properties of electromagnetic waves.
  • the OAM state can be any integer, such as -1, 1, 2, 3, etc., or the OAM state can be a one-dimensional array of integers.
  • the number of OAM states included in the one-dimensional array is not limited, such as [-2, -1, 1, 2], etc., or the number of OAM states can be unlimited. It is understandable that in practical applications, it can be an OAM state that includes the transmit beam and the OAM state of the receive beam in one combination, or it can be an OAM state that includes the transmit beam in one combination, and the OAM state that includes the receive beam in another combination. .
  • the OAM state is an integer.
  • the OAM states of the beams may be the same or different.
  • the different OAM states of the beams are mainly used as an example for description.
  • the beams of different OAM states are also called OAM beams of different modes.
  • the "and/or” in this application describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone. This situation.
  • the character "/" generally indicates that the associated objects are in an "or” relationship.
  • the multiple involved in this application refers to two or more.
  • the full-duplex communication method and device provided in the embodiments of this application can be applied to various communication systems.
  • the mobile communication system may be a fourth-generation (4th Generation, 4G) communication system (for example, long-term evolution). evolution, LTE system), worldwide interoperability for microwave access (WiMAX) communication system, fifth generation (5th Generation, 5G) communication system (for example, new radio (NR) system), and Future mobile communication systems, such as 6G systems, etc.
  • 4G fourth-generation
  • evolution long-term evolution
  • evolution long-term evolution, LTE system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR new radio
  • Future mobile communication systems such as 6G systems, etc.
  • the full-duplex communication method and device provided in the embodiments of the present application can be applied to a satellite communication system, and the satellite communication system can be integrated with the above-mentioned communication system.
  • the communication system architecture shown in FIG. 1 is taken as an example to describe the application scenarios used in the present application.
  • the communication system 100 includes a network device 101 and a terminal device 102.
  • the full-duplex communication apparatus provided in the embodiment of the present application may be applied to the network device 101 or the terminal device 102. It can also be considered that the full-duplex communication apparatus may be the network device 101 or the terminal device 102.
  • the application of the full-duplex communication device to the network device 101 is mainly used as an example for description. It is understandable that FIG. 1 only shows a possible communication system architecture to which the embodiments of the present application can be applied. In other possible scenarios, the communication system architecture may also include other devices.
  • the network device 101 is a device with a wireless transceiver function or a chip that can be installed in the device.
  • the device includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), the access point (AP), wireless relay node, wireless backhaul node, transmission and reception point, TRP or transmission in the wireless fidelity (WIFI) system point, TP), etc.
  • it can also be 5G, such as NR, gNB in the system, or transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system,
  • it may also be a network node that constitutes a gNB or a transmission point
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless link Channel control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, or the CU can be divided into network equipment in the core network CN, which is not limited here.
  • Terminal equipment can also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment, user Agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( The wireless terminal in transportation safety, the wireless terminal in the smart city, the wireless terminal in the smart home, and so on.
  • terminal devices with wireless transceiver functions and chips that can be installed in the aforementioned terminal devices are collectively referred to as terminal devices.
  • the full-duplex communication device and method provided in the embodiments of the present application can be applied to a multi-antenna full-duplex communication scenario.
  • the application scenario of multiple antennas may include, for example, a multi-input multiple-output (multi-input multi-output, MIMO) technology, or a massive-input multiple-output massive-MIMO technology.
  • Time Division Duplexing (TDD) systems and Frequency Division Duplexing (FDD) systems are used in the TDD system.
  • TDD Time Division Duplexing
  • FDD Frequency Division Duplexing
  • the uplink signal and the downlink signal are transmitted in different time slots.
  • the uplink signal and the downlink signal are transmitted on different frequency bands.
  • TDD and FDD are half-duplex systems. If they transmit and receive signals at the same frequency at the same time, the transmitted signal from the transmitter will leak to the receiver, which may interfere with the normal reception of the communication system. Therefore, in a half-duplex system, the same frequency is used at the same time. It is impossible to transmit uplink and downlink signals.
  • full-duplex technology has gradually become a potential technical means that can double the spectrum efficiency.
  • the core of the full-duplex technology is the elimination of self-interference signals, which can be eliminated through passive elimination in the propagation domain, active elimination in the analog domain, and active elimination in the digital domain.
  • One of the more convenient ways to eliminate self-interference signals is to design the placement of the antenna array and passively superimpose and eliminate them in the propagation domain to achieve high isolation between the transceiver ports of the device.
  • OAM is an inherent property of electromagnetic waves, which corresponds to the spiral phase wavefront of the beam in space. Electromagnetic waves carrying different OAM states are orthogonal to each other when coaxially propagating in space. Therefore, the traditional orbital angular momentum electromagnetic wave theory believes that modulating different information to electromagnetic waves in different OAM states for multiplexing can increase the channel capacity of wireless communication systems. . However, there is an energy hole in the beam center of all non-zero OAM electromagnetic waves, and the area of the hole increases with the increase of the propagation distance, which means that the receiving end requires an antenna or antenna array with a very large aperture to be perfect. Demodulate the OAM beam.
  • the multiplexing and demultiplexing of OAM electromagnetic waves have very stringent conditions for the alignment of the antennas at the transmitting end and the receiving end, and a slight eccentricity or off-axis will cause a sharp drop in performance.
  • network equipment such as base stations
  • terminal equipment it is difficult for network equipment (such as base stations) and terminal equipment to use antenna arrays with large apertures, and the link between network equipment and terminal equipment is extremely difficult to maintain coaxial transmission due to the mobility of the terminal, so OAM beams are used
  • the orthogonality of the method of realizing multiplexing between network equipment and terminal equipment is difficult to use in actual communication systems.
  • the transmitting array and the receiving array can generally share the array, or it is not difficult to realize the concentric coaxial transmitting array and the receiving array. Therefore, if the OAM of the transmitting beam and the receiving beam is If the state meets certain conditions, the orthogonality between OAM modes can be used to eliminate self-interference, thereby realizing full-duplex communication. Therefore, how to reasonably design the antenna array and its feed network to use the orthogonality of the OAM beam to realize the elimination of self-interference in the propagation domain and avoid the beam center energy hole caused by the OAM beam is a problem that needs to be solved in full-duplex communication. problem.
  • Figure 2 shows an antenna array with a cross symmetric structure, which is used in a communication system to eliminate self-interference.
  • the x-axis direction is the transmitting antenna array
  • the y-axis direction is the receiving antenna array.
  • the transmitting antenna array and the receiving antenna array are both ULA and placed in a cross-symmetrical structure; the phase difference between the two axially symmetrical antennas is ⁇ , two axisymmetric antennas are shown in Figure 2 as Tx1 and Tx ⁇ 1, Tx2 and Tx ⁇ 2, Rx1 and Rx ⁇ 1, etc.
  • the above method doubles the number of antennas, which wastes the diversity gain of the antenna; there are many energy holes in the main lobe direction of the far field, as shown in the black area in Figure 3, the vertical of the transmitting antenna, etc. There is no energy distribution on the split line and the hyperbola with a symmetrical transmitting antenna pair as the focus, and energy holes appear; ULA can only achieve beamforming in one direction, so when applied to a communication system, it cannot meet the actual requirements. Communication needs.
  • Fig. 4 shows an antenna array with a three-dimensional structure, which is used in a communication system to eliminate self-interference.
  • the plane formed by the x-axis and the y-axis is the plane where the transmitting antenna array is located, and the z-axis direction is the receiving antenna array, and the following conditions are met: the transmitting antenna array is UCA; the receiving antenna array is ULA.
  • the receiving antenna ULA is placed on the central axis of the transmitting UCA.
  • the phase of each element on the transmitting UCA satisfies certain conditions to achieve zero beam center energy.
  • the three-dimensional antenna array shown in the above method wastes space; the structure of the transmitting antenna array and the receiving antenna array are inconsistent, which will cause the main lobe directions of the transmitting beam and the receiving beam to be inconsistent, thereby affecting the performance of the communication system; the transmitting antenna array cannot be Beam scanning is not conducive to signal reception; the far-field energy distribution of the three-dimensional antenna array is shown in Figure 5.
  • the energy hole in the beam center can be used to eliminate self-interference, but this beam shape It is not conducive to reception on the terminal device side.
  • the terminal device located in the beam center area that is, the area where there is an energy hole) cannot receive energy.
  • this application proposes a full-duplex communication Method to eliminate self-interference signal in full-duplex communication.
  • the transmitting beams of different OAM states are transmitted through the transmitting UCA
  • the receiving beams of different OAM states are received through the receiving UCA
  • the transmitting UCA is fed through the feeding network and the signal received by the UCA is synthesized and received
  • the transmitting antenna array is transmitted.
  • the number of antennas is equal to the number of receiving antennas of the receiving antenna array
  • the OAM state of the transmitting beam is not equal to the inverse number of the OAM state of the receiving beam, so that the characteristics of the OAM state are used to realize self-interference cancellation.
  • the full-duplex communication method provided in the embodiments of the present application can be applied to the communication system shown in FIG. 1 above.
  • the specific process of the full-duplex communication method will be described in detail below with reference to FIG. 6. As shown in Figure 6, the process includes:
  • S601 Transmit transmit beams in different OAM states through the transmit antenna array.
  • the transmitting antenna array is UCA
  • the transmitting antenna array having the structure of UCA is also referred to as transmitting UCA.
  • the full-duplex communication device transmits the transmit beams in different OAM states through the transmit UCA.
  • the full-duplex communication device may also generate transmission beams in different OAM states through the transmission UCA.
  • the transmitting UCA is circular, and the spacing between each antenna element in the transmitting UCA is equal.
  • the transmitting antenna array can be understood as being located in the transmitting radio frequency link.
  • the full-duplex communication device is a network device, multiple OAM beams of different modalities that can be simultaneously transmitted in free space in this S601, the terminal device does not need to receive the entire OAM beam completely, nor does it need to consider the OAM beam.
  • the terminal device can process the received signal in the same way as the ordinary beam.
  • the full-duplex communication device sends a control instruction or control signal to the feeding network to control the feeding network to feed the transmitting antenna array, and to stimulate the The transmitting antenna array generates and transmits the transmitting beams in different OAM states.
  • the feeding network may include a transmitting feeding network and a receiving feeding network.
  • the transmitting and feeding network is located in the transmitting radio frequency link, and the receiving and feeding network is located in the receiving radio frequency link.
  • the transmitting feeding network and the receiving feeding network may share one feeding network, or the transmitting feeding network and the receiving feeding network may use independent feeding networks.
  • the transmitting antenna array and the feeding network may be located in a transmitting radio frequency link, and the full-duplex communication device sends control instructions or control signals to the transmitting radio frequency link where the transmitting antenna array is located. , Controlling the feeding network in the transmitting radio frequency link to feed the transmitting antenna array, and stimulating the transmitting antenna array to generate and transmit the transmitting beams in different OAM states.
  • the full-duplex communication device transmits a radio frequency signal with a specific phase to the element of the transmit antenna array, and controls the transmit antenna array to generate and transmit the transmit beams in different OAM states.
  • the full-duplex communication device includes the transmit antenna array and the feeder network, and the feeder network in the full-duplex communication device transmits radio frequency signals to all The transmitting antenna array performs power feeding, and the transmitting antenna array is excited to generate and transmit the transmitting beams in different OAM states.
  • the transmitting antenna array and the feeding network may both be located in the transmitting radio frequency link.
  • the feeding network in the full-duplex communication device includes a transmitting feeding network and a receiving feeding network, and the transmitting feeding network is connected to the transmitting antenna array.
  • the specific implementation manner refer to the following embodiments of the full-duplex communication device.
  • the transmit antenna array can be used to generate and transmit one or more transmit beams. Generally, the transmit antenna array generates and transmits multiple transmit beams.
  • the OAM state of each transmit beam is different, and the transmit beams in different OAM states may also be referred to as OAM transmit beams in different modes.
  • the absolute value of the OAM state of (any) transmitting beam is less than half of the number of transmitting antennas, which can further ensure that the transmitting UCA can generate an OAM state beam and realize self-interference elimination.
  • the OAM state can be selected from the set of OAM states first, and then the transmitting beam of the OAM state is generated.
  • the OAM state of each transmit beam satisfies the following conditions: Where p represents the p-th transmit beam, Indicates the OAM state of the p-th transmit beam, P indicates the number of transmit beams, p is a positive integer less than or equal to P, and P is a positive integer. That is to say, the OAM state of the general transmit beam is selected from the L TX set.
  • P can also be understood as P transmit radio frequency links, that is, there are P transmit radio frequency links where the transmit antenna array is located, or P can also be understood as P transmit beam input ports, where the P transmit beam input ports are located at the feeder
  • the feeder network can stimulate the transmission UCA to generate and transmit P transmission beams through the P transmission beam input ports.
  • the transmitting UCA may include a ring array, that is, the transmitting UCA is located on a ring array, or the transmitting UCA may also include multiple concentric and coaxial ring arrays, that is, the transmitting UCA may be located at different locations. On the circular array.
  • the above-mentioned prior art may have problems such as energy hole in the beam center and inability of beamforming, which further causes the above-mentioned prior art to be unable to be better applied to the communication system.
  • the full-duplex communication method proposed in this application can not only realize self-interference cancellation, but also solve the problem of energy holes, and support three-dimensional beamforming and beam scanning at the same time.
  • the OAM state of the transmitting beam is 0, and the field strength at the center of the zero-state single-mode OAM beam is non-zero. Due to the nature of the Bessel function, as shown in (b)(c)(d) in Figure 7, the field strength at the center of any non-zero single-mode OAM beam is 0, where (b) in Figure 7
  • the OAM state of the transmitting beam is 1, the OAM state of the transmitting beam in (c) in FIG. 7 is 2, and the OAM state of the transmitting beam in (d) in FIG. 7 is 3. Due to the divergence of the OAM beam, the area of the energy hole in the center of the beam increases with the increase of the propagation distance. Since the terminal device is located in the central area covered by the beam, the terminal device will not receive any energy.
  • the solution can be solved by simultaneously exciting multiple modes to realize OAM beamforming.
  • the full-duplex communication device may generate a plurality of continuous transmit beams in the OAM state through the transmit antenna array, wherein the beam width formed by superimposing the plurality of transmit beams in space and the excited beam
  • the number of transmitted beams is inversely proportional. In this way, multiple consecutive transmit beams in the OAM state are excited at the same time.
  • the energy of the beams superimposed in the space gradually concentrates in a specific direction in the circumferential direction, that is, the transmit beam
  • the energy distribution of each phase is changed from the uniform distribution of the phases when single-mode excitation to converge to a specific direction, thereby avoiding the energy hole in the center of the beam.
  • the OAM state of the transmitting beam in (e) in Figure 7 is 1, and the OAM state of the transmitting beam in (f) in Figure 7 is 1, 2, the OAM states of the transmitting beam in (g) in FIG. 7 are 1, 2, and 3, and the OAM states of the transmitting beam in (h) in FIG. 7 are 1, 2, 3, 4.
  • the transmission beams in the P OAM states are at a certain point in the spherical coordinate system
  • the far-field electric field of is determined according to the radius of the transmitting UCA, the OAM state of the transmitting beam, and the initial phase of the OAM state of the transmitting beam and the receiving beam.
  • the transmit beams of the P OAM states may be the superposition of the far-field electric fields of multiple single-mode OAM beams, and the far-field electric fields of the excited single-mode OAM beams satisfy the following conditions:
  • the full-duplex communication device may also adjust the phase of each transmit antenna in the transmit antenna array.
  • the phase of the nth transmit antenna in each transmit antenna is determined according to the OAM state L TX of the transmit beam and the number of transmit antennas N of the transmit antenna array, where n is a positive integer less than or equal to N, and N Is a positive integer.
  • the phase of the nth transmitting antenna among the N transmitting antennas satisfies the following conditions: in Indicates the phase of the n-th transmitting antenna when the input port of the p-th transmitting beam is excited.
  • the full-duplex communication device may also adjust the initial phase of the transmit beam through a phase shifter, that is, adjust the main lobe of the transmit beam.
  • the feeding network is located between the phase shifter and the transmitting antenna array.
  • the phase shifter and the feed network may be directly connected or indirectly connected. If the phase shifter and the feed network are indirectly connected, an amplifier may be located between the phase shifter and the feed network, and the amplifier includes a power amplifier (PA) and/or Low Noise Amplifier (Low Noise Amplifier, LNA).
  • PA power amplifier
  • LNA Low Noise Amplifier
  • the OAM states of the transmit beam as described in (m) in FIG. 7 include 1, 2, 3, and 4, and the initial phase is 0.
  • the OAM states of the transmit beam as described in (n) in FIG. 7 include 1, 2 , 3 and 4, the initial phase is
  • the OAM states of the transmit beam as described in (o) in Figure 7 include 1, 2, 3, and 4, and the initial phase is
  • the OAM states of the transmitting beam as described in (p) in Fig. 7 include 1, 2, 3, and 4, and the initial phase is
  • the full-duplex communication device may also adjust the ⁇ ml degree of the main lobe of the transmit beam through the feeding network.
  • beam scanning in the ⁇ direction can be achieved by using OAM beams of different modes.
  • the higher the order of the OAM mode the larger the ⁇ ml angle of the beam main lobe, as shown in (i)(j)(k) in Figure 7.
  • the OAM states of the transmit beam excited in (i) in Fig. 7 include 1, 2, 3, and 4, and the OAM states of the transmit beam excited in (j) in Fig. 7 include 2, 3 , 4 and 5, the OAM states of the transmit beam excited in (k) in Figure 7 include 3, 4, 5 and 6, and the OAM states of the transmit beam excited in (1) in Figure 7 include 4, 5, 6 And 7.
  • the full-duplex communication device may also adjust the number of main lobes of the transmit beam through the feeder network.
  • the number of main lobes of the transmit beam can be achieved by changing the interval of the OAM state, and the number of main lobes of the beam is the interval of the OAM state, as shown in (q)(r)(s)(t) in Figure 7 .
  • the OAM states of the transmit beam excited in (q) in Fig. 7 include 1, 2, 3, and 4, the interval of the OAM states is 1, and the OAM state of the transmit beam excited in (r) in Fig. 7 includes 1, 3, 5 and 7, the OAM state interval is 2, the OAM states of the transmit beam excited in (s) in Fig. 7 include 1, 4, 7 and 10, the OAM state interval is 3, and the (t in Fig. 7)
  • the OAM states of the transmit beam excited in) include 1, 5, 9, and 13, and the interval of the OAM states is 4.
  • S602 Receive receiving beams in different OAM states through the receiving antenna array.
  • the array includes the transmitting antenna array and the receiving antenna array, the antenna array satisfies a preset condition, and the preset condition includes: the number of transmitting antennas of the transmitting antenna array and the number of receiving antennas of the receiving antenna array are equal , The OAM state of the transmitting beam is not equal to the inverse number of the OAM state of the receiving beam.
  • the receiving antenna array is UCA
  • the receiving antenna array having the structure of UCA is also referred to as receiving UCA.
  • the full-duplex communication device receives the receiving beams in different OAM states through the receiving UCA.
  • the receiving UCA is circular, and the spacing between each antenna element in the receiving UCA is equal.
  • the receiving antenna array can be understood as being located in the receiving radio frequency link.
  • the radius of the transmitting UCA and the receiving UCA may be the same, or the radius of the transmitting UCA and the receiving UCA may be different.
  • the transmitting UCA and the receiving UCA may share an antenna array, or the transmitting UCA and the receiving antenna array UCA may use independent antennas Array.
  • the full-duplex communication device synthesizes the radio frequency signals received by the receiving antenna array into radio frequencies that characterize beams in different OAM states. Signal to control the receiving antenna array to receive the receiving beams in different OAM states.
  • the full-duplex communication device sends a control instruction or control signal to the feeding network, and controls the feeding network to synthesize the radio frequency signals received by the elements of the receiving antenna array into a characterization
  • the radio frequency signals of beams in different OAM states control the receiving beams in a specific OAM state in the receiving space of the receiving antenna array.
  • the receiving antenna array and the feeding network may be located in a receiving radio frequency link, and the full-duplex communication device sends control instructions or control signals to the receiving radio frequency link where the receiving antenna array is located. , Controlling the feeding network in the receiving radio frequency link to synthesize the radio frequency signals received by the elements of the receiving antenna array into radio frequency signals representing beams in different OAM states, and controlling the receiving space of the receiving antenna array The receiving beam in the specific OMA state.
  • the full-duplex communication device includes the receiving antenna array and the feeding network, and the feeding network in the full-duplex communication device is based on the OAM state that needs to be received.
  • the beam combines the radio frequency signals received by the elements of the receiving antenna array, and controls the receiving antenna array to only receive the receiving beam in a specific OAM state in space.
  • the receiving antenna array and the feeding network may both be located in the receiving radio frequency link.
  • the feeding network in the full-duplex communication device includes a transmitting feeding network and a receiving feeding network, and the receiving feeding network is connected to the receiving antenna array.
  • the specific implementation manner refer to the following embodiments of the full-duplex communication device.
  • the receiving antenna array may be used to receive one or more receiving beams. Generally, the receiving antenna array receives multiple receiving beams.
  • the OAM state of each receiving beam is different, and the receiving beams of different OAM states may also be referred to as OAM receiving beams of different modes.
  • the absolute value of the OAM state of the (any) receiving beam is less than half of the number of receiving antennas, which can further ensure that the receiving UCA can receive beams in a specific OAM state and realize self-interference cancellation.
  • the OAM state of each receiving beam satisfies the following conditions: Where q represents the qth receiving beam, It represents the OAM state of the qth receiving beam, Q represents the number of receiving beams, q is a positive integer less than or equal to Q, and Q is a positive integer. That is to say, the OAM state of the general receiving beam is selected from the L RX set.
  • Q can also be understood as Q receiving radio frequency links, that is, there are Q receiving radio frequency links where the receiving antenna array is located, or Q can also be understood as Q receiving beam output ports, where the Q receiving beam output ports are located at the feeder
  • the feeding network can synthesize and receive Q signals of UCA through Q receiving beam output ports.
  • the receiving UCA may include a ring array, that is, the receiving UCA is located on a ring array, or the receiving UCA may also include a plurality of concentric coaxial ring arrays, that is, the receiving UCA may be located at different locations. On the circular array.
  • the transmitting UCA and the receiving UCA are concentric and coaxial, in a spherical coordinate system It can be perfectly aligned or staggered by a certain angle In this way, electromagnetic waves carrying different OAM states are orthogonal to each other when coaxially transmitted in space.
  • the receiving UCA and the transmitting UCA are coaxially coaxial, self-interference can be eliminated by selecting the OAM states of the receiving beam and the transmitting beam. Specifically, all elements of the transmission matrix between the transmit beam input port of the feeder network and the receive beam output port of the feeder network are zero.
  • H RX,TX ⁇ TX H c ⁇ RX T
  • H RX,TX is the P transmit beams
  • the transmission matrix between the input port and the Q receiving beam output ports ⁇ TX is the transmission matrix of the transmitting and feeding network
  • ⁇ RX is the transmission matrix of the receiving and feeding network
  • H c is the transmitting UCA
  • the coupling matrix between the receiving UCA is the following formula:
  • the coupling matrix H c between the transmitting UCA and the receiving UCA satisfies the following formula: ⁇ TX(n), RX(m) are the coupling coefficients from the nth transmitting antenna to the mth receiving antenna.
  • the coupling matrix H c between the transmitting UCA and the receiving UCA satisfies the following formula:
  • the full-duplex communication device may also adjust the phase of each receiving antenna in the receiving antenna array.
  • the phase of the m-th receiving antenna in each receiving antenna is determined according to the OAM state L RX of the receiving beam and the receiving antenna number M of the receiving antenna array, where m is a positive integer less than or equal to M, and M is Positive integer.
  • the phase of the m-th receiving antenna among the M receiving antennas satisfies the following conditions: in Indicates the phase of the m-th receiving antenna when the q-th receiving beam output port is excited.
  • the full-duplex communication device may also adjust the initial phase of the receiving beam through a phase shifter, and the feeding network is located between the phase shifter and the receiving antenna array.
  • S603 Feed the transmitting antenna array through a feeding network and synthesize the signal of the receiving antenna array.
  • the full-duplex communication device may also synthesize the signals of the receiving antenna array through the feeding network.
  • the feeding network synthesizes the radio frequency signals received by the elements of the antenna receiving array into different characteristics. Radio frequency signal of the beam in the OAM state.
  • the full-duplex communication device can process the receiving beams in the OAM state received by the receiving antenna array to realize communication between the full-duplex communication device and other devices.
  • the specific implementation process refer to the following embodiments of the full-duplex communication device.
  • the antenna array in order to eliminate self-interference, is UCA, and the UCA is used to transmit OAM state transmit beams and receive OAM state receive beams.
  • the preset conditions that the antenna array needs to meet include: The number of transmitting antennas of the transmitting antenna array is equal to the number of receiving antennas of the receiving antenna array; the OAM state of the transmitting beam is not equal to the inverse number of the OAM state of the receiving beam.
  • the number of antennas in the transceiver antenna array is equal, the full-duplex communication device transmits transmit beams in different OAM states through UCA, and receives receive beams in different OAM states through receiving UCA, and the transmit beam
  • the OAM state is not equal to the inverse number of the OAM state of the receiving beam, and the orthogonality of the OAM state is used to realize self-interference cancellation.
  • the present application can also realize beamforming by generating multiple consecutive transmit beams in the OAM state at the same time. Solve the problem of energy holes in the center of the OAM beam.
  • the full-duplex communication device includes a phase shifter 801, a feed network 802 and an antenna array 803, and the feed network 802 is located between the phase shifter 801 and the antenna array 803,
  • the antenna array 803 includes a transmitting antenna array and a receiving antenna array.
  • the antenna array is UCA, and the UCA is used to transmit transmit beams in different OAM states and receive receive beams in different OAM states;
  • the antenna array satisfies a preset condition, and the preset condition includes: the number of transmitting antennas of the transmitting antenna array is equal to the number of receiving antennas of the receiving antenna array; the OAM state of the transmitting beam is not equal to the receiving beam The opposite of the OAM state.
  • the full-duplex communication device includes P transmitting radio frequency links and Q receiving radio frequency links.
  • Each radio frequency link includes an independent phase shifter.
  • the P transmit radio frequency links include P phase shifters 801
  • the Q receive radio frequency links include Q phase shifters 801.
  • the phase shifter 801 is used to adjust the initial phase of the transmitting beam and/or the receiving beam
  • the energy of the beam can be controlled to be concentrated to a specific The direction, such as the area where the terminal device is located, further realizes beamforming.
  • the phase shifter 801 is used to adjust the initial phase of the OAM state of the transmitting beam and/or adjust the initial phase of the OAM state of the receiving beam.
  • the initial phase of the OAM state of the transmitting beam and the OAM state of the receiving beam are the same, that is, the phase shifter 801 is used to adjust the initial phase common to all OAM states.
  • the phase shifter is located between an amplifier (such as a PA) and the transmitting and feeding network, or the amplifier is located between the phase shifter and the transmitting and feeding network.
  • the phase shifter is located between an amplifier (such as an LNA) and the receiving feed network, or the amplifier is located between the phase shifter and the receiving feed network.
  • the feeding network 802 may include a transmitting feeding network and a receiving feeding network.
  • the transmitting feeding network and the receiving feeding network may share one feeding network, or the transmitting feeding network and the receiving feeding network may use independent feeding networks.
  • the transmitting and feeding network is used for feeding the transmitting UCA, and stimulating the transmitting UCA to generate and transmit the transmitting beams in different OAM states.
  • the receiving and feeding network is used for synthesizing signals received by the receiving UCA, and controlling the receiving UCA to receive the receiving beam in a specific OAM state.
  • the full-duplex communication device may further include: one or more power dividers,
  • the splitter is located between the feed network and the antenna array.
  • the power divider is used to divide one input signal into multiple output signals, which is easier to eliminate self-interference.
  • the power divider includes an equal power divider and/or an unequal power divider.
  • the equal division power divider is used to divide one input signal into multiple output signals with equal power.
  • the unequal division power divider is used to distribute the power of one input signal in proportion. For example, the unequal division power divider divides one input signal into the first signal and the second signal according to the proportion.
  • the powers of the first signal and the second signal are not equal, which also helps to improve the energy utilization rate of the input signal. It can be understood that, in an actual communication system, the functions implemented by the power splitter can also be implemented by a power splitter module such as a directional coupler or a balun.
  • the transmitting and feeding network includes P transmitting beam input ports and N transmitting antenna output ports, and the transmitting and feeding network is also referred to as a P*N transmitting and feeding network.
  • the receiving and feeding network includes Q receiving beam output ports and M receiving antenna input ports, and the receiving and feeding network is also referred to as a Q*M receiving and feeding network.
  • the specific implementation forms of the transmitting feeder network and the receiving feeder network include but are not limited to one or more of the following: Butler matrix, or Rotman lens, etc.
  • Butler matrix or Rotman lens, etc.
  • Figure 9 a schematic diagram of implementing a P*N transmitting and feeding network through a Butler matrix is shown in Figure 9.
  • the transmitting antenna array is a transmitting UCA, and the transmitting UCA is used to generate and transmit transmitting beams in different OAM states.
  • the receiving antenna array is a receiving UCA, and the receiving UCA is used to receive receiving beams in different OAM states.
  • the transmitting UCA includes N transmitting antennas, that is, including N transmitting antenna array elements.
  • the receiving UCA includes M receiving antennas, that is, includes M receiving antenna array elements.
  • the OAM state of each transmit beam satisfies the following conditions: Where p represents the p-th transmit beam, Indicates the OAM state of the p-th transmit beam, P indicates the number of transmit beams, p is a positive integer less than or equal to P, and P is a positive integer. That is to say, the OAM state of the general transmit beam is selected from the L TX set.
  • P can also be understood as P transmit radio frequency links, that is, there are P transmit radio frequency links where the transmit antenna array is located, or P can also be understood as P transmit beam input ports, where the P transmit beam input ports are located at the feeder
  • the feeder network can stimulate the transmission UCA to generate and transmit P transmission beams through the P transmission beam input ports.
  • the OAM state of each receiving beam satisfies the following conditions: Where q represents the q-th receive beam output port, It represents the OAM state of the qth receiving beam, Q represents the number of receiving beams, q is a positive integer less than or equal to Q, and Q is a positive integer. That is to say, the OAM state of the general receiving beam is selected from the L RX set.
  • Q can also be understood as Q receiving radio frequency links, that is, there are Q receiving radio frequency links where the receiving antenna array is located, or Q can also be understood as Q receiving beam output ports, where the Q receiving beam output ports are located at the feeder
  • the feeding network can synthesize and receive Q signals of UCA through Q receiving beam output ports.
  • the transmitting and feeding network and the transmitting antenna array are located in the transmitting radio frequency link, and the receiving and feeding network and the receiving antenna array are located in the receiving radio frequency link.
  • the preset condition may also include: the absolute value of the OAM state of the transmit beam is less than half of the number of the transmit antennas; the absolute value of the OAM state of the receive beam is less than half of the number of the receive antennas, which can further guarantee Transmitting UCA can generate beams in the OAM state to achieve self-interference cancellation.
  • the radius of the transmitting UCA and the receiving UCA may be the same, or the radius of the transmitting UCA and the receiving UCA may be different. If the radius of the transmitting UCA is the same as the radius of the receiving UCA, the transmitting antenna array and the receiving antenna array share an antenna array, or the transmitting antenna array and the receiving antenna array are independent antenna arrays. If the radius of the transmitting UCA and the receiving UCA are different, the transmitting antenna array and the receiving antenna array are independent antenna arrays.
  • the device further includes: one or more circulators, and the circulators are located in the feed network and the Between antenna arrays.
  • the circulator is a unidirectional 3-port device, and the circulator is used for antenna multiplexing.
  • the characteristic parameters of each circulator are the same, and/or the physical result and size of each circulator are the same.
  • the isolation of the transmitting and receiving antenna is improved, and in combination with the full-duplex communication method provided by the embodiment of the present application, a better self-interference cancellation effect can be achieved.
  • the antenna types of the transmitting antenna and the receiving antenna include, but are not limited to, one or more of the following: patch antenna, monopole antenna, dipole antenna, or tripole antenna, etc.
  • the UCA is circular, and the spacing between each antenna element in the UCA is equal. Specifically, the spacing between each antenna element in the transmitting UCA is equal, and the spacing between each antenna element in the receiving UCA is equal.
  • the rotation angle of the element of the transmitting antenna array relative to the first element of the transmitting antenna array is determined according to the number of the element of the transmitting antenna array and the number of the element of the transmitting antenna array, the The rotation angle of the element of the transmitting antenna array relative to the first element in the transmitting antenna array can be used to identify the circumferential position distribution of the element, and the number of the element of the transmitting antenna array can be used for Identify the array element as the number of the array element relative to the first array element.
  • the rotation angle of the element of the transmitting antenna array relative to the first element of the transmitting antenna array satisfies the following conditions: ⁇ TX is an arbitrary value, which means that the first element is relative to the circumferential direction Position offset, Represents the interval between the elements of the transmitting antenna array, [0, 1, L N-1] represents the set of numbers of the elements in the transmitting antenna array, the number of the first element is 0, and the number of the second element is 0.
  • the number of each array element is 1, the number of the Nth array element is N-1, N is the number of transmitting antennas of the transmitting antenna array, and N is a positive integer.
  • the first array element of the transmitting antenna array may be a preset first array element, or may be a randomly selected first array element, etc.
  • the rotation angle of the element of the receiving antenna array relative to the first element of the receiving antenna array is determined according to the number of the element of the receiving antenna array and the number of the element of the receiving antenna array, the The rotation angle of the element of the receiving antenna array relative to the first element in the receiving antenna array can be used to identify the circumferential position distribution of the element, and the number of the element of the receiving antenna array can be used for Identify the array element as the number of the array element relative to the first array element.
  • ⁇ RX is an arbitrary value, which means that the first element is relative to the circumferential direction Position offset, Represents the interval between the elements of the receiving antenna array, [0,1,L M-1] represents the set of the number of the element in the receiving antenna array, the number of the first element is 0, the second The number of each array element is 1, the number of the M-th array element is M-1, M is the number of receiving antennas of the receiving antenna array, and M is a positive integer.
  • the first array element of the receiving antenna array may be a preset first array element, or may be a randomly selected first array element, etc.
  • the coupling coefficient from the receiving n-th transmitting antenna to the m-th receiving antenna is ⁇ TX(n), RX(m) .
  • the coupling matrix H c between the transmitting UCA and the receiving UCA satisfies the following conditions:
  • the N transmitting antennas are respectively connected to the N antenna ports of the transmitting and feeding network.
  • the transmitting and feeding network may adjust the phase of each transmitting antenna of the N transmitting antennas of the transmitting UCA.
  • the phase of the nth transmit antenna in each transmit antenna is determined according to the OAM state L TX of the transmit beam and the number of transmit antennas N of the transmit antenna array, where n is a positive integer less than or equal to N, and N is positive Integer.
  • the phase of the nth transmitting antenna among the N transmitting antennas satisfies the following conditions: in Indicates the phase of the n-th transmitting antenna when the input port of the p-th transmitting beam is excited.
  • the radius of transmitting UCA (TX) and receiving UCA (RX) in (a) of FIG. 10 are the same, and the radius of transmitting UCA (TX) and receiving UCA (RX) in (b) of FIG. 10 are different.
  • the M receiving antennas are respectively connected to the M antenna ports of the receiving feed network.
  • the receiving and feeding network may adjust the phase of each receiving antenna of the M receiving antennas of the receiving UCA.
  • the phase of the m-th receiving antenna in each receiving antenna is determined according to the OAM state L RX of the receiving beam and the receiving antenna number M of the receiving antenna array, where m is a positive integer less than or equal to M, and M is positive Integer.
  • the phase of the m-th receiving antenna among the M receiving antennas satisfies the following conditions: in Indicates the phase of the m-th receiving antenna when the q-th receiving beam output port is excited.
  • the transmitting and feeding network is determined according to the phase of each transmitting antenna corresponding to the OAM state of each transmitting beam.
  • the P*N transmitting and feeding network satisfies the following conditions: Where ⁇ TX is the transmission matrix of the transmitting and feeding network, and L TX is the OAM state of the P transmit beams corresponding to the P transmit beam input ports, Is the circumferential position of the array element transmitting UCA, ⁇ TX is an arbitrary value, N is the number of the transmitting antennas, and N is a positive integer.
  • the receiving and feeding network is determined according to the phase of each receiving antenna corresponding to the OAM state of each receiving beam.
  • the Q*M receiving and feeding network satisfies the following conditions: Where ⁇ RX is the transmission matrix of the receiving and feeding network, and L RX is the OAM state of the Q to-be-received beams corresponding to the Q receiving beam output ports, Is the circumferential position of the element receiving UCA, ⁇ RX is any value, M is the number of the receiving antennas, and M is a positive integer.
  • the coupling matrix H c between the transmitting UCA and the receiving array satisfies the following formula: That is, the coupling matrix can be expressed in the form of a circulant matrix.
  • the transmission coefficient H RX,TX (q,p) from the p-th transmit beam port to the q-th receive beam port is as follows:
  • the full-duplex communication device can also solve the problem of energy holes.
  • the full-duplex communication device can realize three-dimensional beamforming and beam scanning by changing the initial phase and mode combination of the beam, thereby solving the energy problem. Empty question.
  • the transmitting UCA is used to simultaneously generate multiple transmitting beams in a continuous OAM state, wherein the beam width of the beam formed by superimposing the multiple transmitting beams in space is inversely proportional to the number of excited transmitting beams.
  • the transmitting UCA can be implemented by adjusting the rotation angle of the main lobe directions of the multiple transmitting beams relative to the first position. The first position is when the value of the phase shifter is 0, the preset main lobe of the beam Reference location.
  • the value of the phase shifter According to the initial phase of the beam And OAM mode l is determined.
  • the value of the phase shifter satisfies The following conditions:
  • the far-field electric fields of the OAM states of the P transmit beams are based on the radius of the transmit UCA, the OAM state of the transmit beam, and the transmit beam sum The initial phase of the OAM state of the receiving beam is determined.
  • the far-field electric field of the OAM states of the P transmission beams can be represented by a superposition of multiple single-mode OAM beams.
  • the far-field electric field of the single-mode OAM beam satisfies the following conditions in the spherical coordinate system:
  • the transmitting and feeding network may also adjust the degree of ⁇ ml of the main lobe of the transmit beam, and/or adjust the degree of the main lobe of the transmit beam.
  • Degree can realize beam scanning in the ⁇ direction and/or Directional beam scanning.
  • the transmitting and feeding network can realize the adjustment of the ⁇ degree of the main lobe of the transmitting beam by using OAM beams of different modalities.
  • the phase shifter can change the initial phase of the transmitted beam Realize the main lobe of the transmit beam Adjustment of degrees.
  • the transmitting and feeding network can also adjust the number of main lobes of the transmitting beam.
  • the transmitting and feeding network can adjust the number of main lobes of the transmitting beam by adjusting the interval of the OAM state in the L TX.
  • the interval of OAM states in L TX is equal to the adjustment of the number of main lobes of the transmit beam.
  • the transmitting and receiving feeder networks use independent feeder networks, and the radius of the transmitting UCA and the receiving UCA are the same, but the transmitting UCA and the receiving UCA use independent antenna arrays .
  • the full-duplex communication device executes the following method procedures:
  • Step 1 Select the OAM state combination of the transmitting beam And the OAM state combination of the receiving beam
  • the OAM state of the transmitting beam is not equal to the inverse number of the OAM state of the receiving beam, that is, any p ⁇ [1,P], q ⁇ [1,Q], satisfying
  • Step 3 The transmitting UCA and the receiving UCA are placed on the same circle, and the circumferential distribution of the elements in the transmitting UCA satisfies The circumferential distribution of the elements in the receiving UCA satisfies
  • the values of ⁇ TX and ⁇ RX are not limited.
  • Step 4 The N antenna ports of the transmitting and feeding network are sequentially connected to the N transmitting antennas of the transmitting UCA; the M antenna ports of the receiving and feeding network are sequentially connected to the M receiving antennas of the receiving UCA.
  • Step 5 select the transmit beam that excites all or part of the OAM state, and select the receive beam of all or part of the OAM state, and perform beam scanning through a phase shifter.
  • the value of the phase shifter corresponding to the p-th transmit beam port satisfies
  • the value of the phase shifter corresponding to the qth receiving beam port satisfies
  • the transmitting and receiving feeder networks use independent feeder networks
  • the radius of the transmitting UCA and the receiving UCA are not the same
  • the transmitting UCA and the receiving UCA use independent antenna arrays.
  • the full-duplex communication device executes the following method procedures:
  • Steps 1 and 2 refer to the steps 1 and 2 in the first embodiment.
  • Step 3 the transmitter and the receiver UCA UCA were placed on two concentric circles of radius r TX and the r RX, r TX and the values r RX is not limited, but r TX ⁇ r RX, transmitting UCA
  • the circumferential distribution of the middle element satisfies
  • the circumferential distribution of the elements in the receiving UCA satisfies
  • the values of ⁇ TX and ⁇ RX are not limited.
  • Step 4 The N antenna ports of the transmitting and feeding network are sequentially connected to the N transmitting antennas of the transmitting UCA; the M antenna ports of the receiving and feeding network are sequentially connected to the M receiving antennas of the receiving UCA.
  • step 5 refer to step 5 in the first embodiment.
  • the transmitting and receiving feeder networks use independent feeder networks, the radius of the transmitting UCA and the receiving UCA are the same, and the transmitting UCA and the receiving UCA share an antenna array.
  • the full-duplex communication device executes the following method procedures:
  • Steps 1 and 2 refer to the steps 1 and 2 in the first embodiment.
  • Step 3 The antenna array is placed on the same circle, and the circumferential position on the UCA partially meets The value of ⁇ is not limited.
  • Step 4 The nth antenna port of the transmitting and feeding network is connected to port 1 of the nth circulator, and the nth antenna port of the receiving and feeding network is connected to port 2 of the nth circulator. Port 3 of the n circulators is connected to the nth antenna of the UCA.
  • step 5 refer to step 5 in the first embodiment.
  • the fourth embodiment as shown in FIG. 14, the transmitting and receiving feeding network share the same feeding network, the radius of the transmitting UCA and the receiving UCA are the same, and the transmitting UCA and the receiving UCA use independent antenna arrays.
  • the full-duplex communication device executes the following method procedures:
  • Step 1 is shown in step 1 in the first embodiment.
  • Step 2 Design the corresponding P+Q input port and N output port feeder network according to L TX and L RX.
  • the phase of the n transmitting antenna For the transmitting radio frequency link, when the p input port is excited, the phase of the n transmitting antenna
  • the phase of the n-th receiving antenna satisfies
  • Step 3 is shown in step 3 in the first embodiment.
  • Step 4 The nth antenna port of the feed network is connected to port 1 of the nth power divider, and port 2 and port 3 of the nth power divider are respectively connected to the nth transmitting antenna and the nth transmitting antenna on the UCA The receiving antenna is connected.
  • step 5 refer to step 5 in the first embodiment.
  • the transmitting and receiving feeding network devices share the same feeding network, and the radius of the transmitting UCA and the receiving UCA are not the same, and the transmitting UCA and the receiving UCA use independent antenna arrays.
  • the full-duplex communication device executes the following method procedures:
  • Step 1 is shown in step 1 in the first embodiment.
  • Step 2 is shown in step 2 in the fourth embodiment.
  • Step 3 is shown in step 3 in the second embodiment.
  • Step 4 is shown in step 4 in the fourth embodiment.
  • step 5 refer to step 5 in the first embodiment.
  • the sixth embodiment as shown in FIG. 16, the transmitting feeder network and the receiving feeder network share the same feeder network, the transmitting UCA is the radius of the receiving UCA, and the transmitting UCA and the receiving UCA share an antenna array.
  • the full-duplex communication device executes the following method procedures:
  • Step 1 is shown in step 1 in the first embodiment.
  • Step 2 is shown in step 2 in the fourth embodiment.
  • Step 3 is shown in step 3 in the third embodiment.
  • Step 4 The N antenna ports of the feed network are sequentially connected to the N antennas of the UCA.
  • step 5 refer to step 5 in the first embodiment.
  • the transmitting radio frequency link and the receiving radio frequency link may also pass through some other physical devices or functional modules.
  • the embodiment of the present application takes the full-duplex device as a network device or is applied to a network device as an example to provide a more comprehensive introduction to the device structure.
  • the added physical devices or functional modules can be added on the basis of any of the full-duplex communication device architectures shown in Figs. 8-16.
  • the following uses the device architecture shown in Fig. 8 as an example, for a more comprehensive device structure Give a detailed introduction.
  • the full-duplex communication device may further include the following physical devices or functional modules, or in other words, the full-duplex communication device may also be connected to the following physical devices or functional modules.
  • Base-Band Unit BBU
  • Digital Elimination Module Digital-to-Analog Converter
  • ADC Analog-to-Digital Converter
  • LO Local Oscillator
  • the baseband module is connected to the digital cancellation module
  • the DAC and the ADC are located between the baseband module and the mixer, and the LO and the Mixing connection.
  • the full-duplex communication device may further include: PA and/or LNA; the PA and/or LNA are located between the mixer and the phase shifter; or the PA and/or the phase shifter
  • the LNA is located between the phase shifter and the feed network.
  • the PA and/or the LNA shown in FIG. 17 are located between the mixer and the phase shifter.
  • the structure and work flow of the full-duplex communication device shown in FIG. 19 are briefly described below.
  • the full-duplex communication device includes a baseband module, a digital cancellation module, DAC, ADC, LO, mixer, PA, LNA, phase shifter, transmitting (Transmitter, Tx) feeder network, and receiving (Reciver, Rx) feeder. Electric network and antenna array.
  • the output terminal of the baseband module is connected to the digital cancellation module, the output terminal of the baseband module is connected to the mixer through the DAC, and the output terminal of the local oscillator is connected to the
  • the mixer is connected, the mixer is connected to the PA, the output terminal of the PA is connected to the phase shifter, and the output terminal of the phase shifter is connected to the beam port of the transmitting and feeding network,
  • the antenna port of the transmitting and feeding network is connected to the transmitting antenna in the antenna array.
  • the receiving antenna in the antenna array is connected to the antenna port of the receiving feeder network, the beam port of the receiving feeder network is connected to the phase shifter, and the phase shifter is connected to the antenna port of the receiving feeder network.
  • the LNA is connected, the output terminal of the LNA is connected to the mixer, the output terminal of the local oscillator is connected to the mixer, and the mixer is connected to the input of the baseband module through an analog ADC, The output of the digital cancellation module is connected to the input of the baseband module.
  • the baseband module is used for baseband transmission and processing of received digital signals.
  • the ADC is used to convert an analog signal into a digital signal.
  • the DAC is used to convert a digital signal into an analog signal.
  • the digital cancellation module is used for the calculation of the self-interference cancellation algorithm in the digital domain.
  • the local oscillator is used to generate a fixed frequency signal.
  • the mixer is used for up-converting the transmitted baseband signal into a radio frequency signal, and down-converting the received radio frequency signal into a baseband signal.
  • the PA is used to increase the power of transmitting radio frequency signals.
  • the LNA is used to amplify the received radio frequency signal.
  • the phase shifter is used to change the phase of the radio frequency signal.
  • the transmitting and feeding network is used to generate a transmitting radio frequency signal of a specific amplitude and phase.
  • the receiving and feeding network is used to superimpose the received radio frequency signals received on different antenna ports.
  • the transmitting antenna is used to radiate radio frequency signals into free space.
  • the receiving antenna is used to detect radio frequency signals in free space.
  • the transmitted digital signal output by the baseband module becomes a baseband transmitted analog signal through the DAC.
  • the baseband transmitting analog signal is converted into a transmitting radio frequency signal after being up-converted by the mixer.
  • the signal amplitude is enhanced after the transmitted radio frequency signal passes through the PA.
  • a radio frequency signal with the same amplitude but with a specific phase distribution is generated at different antenna ports.
  • the radio frequency signals with different phases are radiated into the free space through different transmitting antennas and superimposed in the free space to generate OAM beams of a specific mode.
  • multiple transmitting RF links transmit signals simultaneously
  • multiple modal OAM beams are transmitted in free space at the same time, converging energy to the area where the far-field terminal equipment is located.
  • the receiving antenna will simultaneously receive the transmission signal of the full-duplex communication device itself and the signal transmitted by the far-field terminal device.
  • Different receiving antennas receive the transmission signal of the full-duplex communication device itself because it has a specific phase distribution, and the sum of the signals after being superimposed by the receiving and feeding network is zero, and will not be output from the beam port to realize self-interference cancellation.
  • the terminal equipment transmits a common beam, and the radio frequency signal received by the receiving antenna is superimposed by the receiving feed network and then output from each beam port.
  • the radio frequency signal output by the beam port of the receiving and feeding network is changed into a baseband receiving analog signal after the phase shifter changes the phase, the LNA enhanced signal amplitude and the mixer is down-converted.
  • the baseband received analog signal becomes a baseband received digital signal after passing through the ADC.
  • the baseband transmitted digital signal evaluates residual interference through a digital cancellation module, and is superimposed with the baseband received digital signal to further reduce self-interference.
  • the baseband received digital signal after self-interference cancellation in the digital domain is input to the baseband module for baseband processing.
  • the full-duplex communication device does not conflict with the algorithms of analog self-interference cancellation and digital self-interference cancellation, and the analog cancellation module and digital cancellation module can be integrated into the full-duplex communication device.
  • the communication device further eliminates self-interference signals.
  • the embodiments of this application can be combined with the existing MIMO technology when implementing multi-antenna self-interference cancellation, eliminating self-interference signals without increasing system complexity, increasing the isolation between the receiving and transmitting beam ports, and realizing full duplex Communication.
  • the embodiment of the present application can avoid the problem of energy holes existing in the center direction of the array antenna beam during the beamforming process, and realize three-dimensional beamforming and beam scanning by concentrating beam energy to a specific direction.
  • the embodiments of this application can be used not only for full-duplex communication under various frequency bands (such as Sub-6G, high frequency, THz, etc.) of wireless communication, but also for full-duplex communication under optical fiber communication, visible light communication, etc. Communication.
  • various frequency bands such as Sub-6G, high frequency, THz, etc.
  • full-duplex communication device shown in FIG. 17 and the full-duplex communication device shown in FIG. 8 are only different in schematic form, and the essence or design idea of the two is the same. Therefore, the design of the implementation of the full-duplex communication device shown in FIG. 11 to FIG. 16 can be applied to the full-duplex communication device shown in FIG. 17.
  • a full-duplex communication device 1800 is provided.
  • the full-duplex communication device 1800 can execute each step in the method in FIG. 10, and in order to avoid repetition, it will not be described in detail here.
  • the full-duplex communication device 1800 includes: a transceiver module 1810, optionally, a processing module 1820, a storage module 1830; the processing module 1820 can be connected to the storage module 1830 and the transceiver module 1810, and the storage module 1830 can also be connected to the transceiver module 1830.
  • Module 1810 is connected:
  • the storage module 1830 is used to store computer programs
  • the processing module 1820 is configured to transmit transmit beams in different OAM states through a transmit antenna array, where the transmit antenna array is UCA; and receive receive beams in different OAM states through a receive antenna array, where the receive antenna array is UCA ,
  • the antenna array includes the transmitting antenna array and the receiving antenna array, wherein the antenna array satisfies a preset condition, and the preset condition includes: the number of transmitting antennas of the transmitting antenna array and the size of the receiving antenna array The number of receiving antennas is equal, and the OAM state of the transmitting beam is not equal to the inverse number of the OAM state of the receiving beam; the transmitting antenna array is fed through a feeding network and the signals received by the receiving antenna array are combined.
  • the absolute value of the OAM state of the transmit beam is less than half of the number of the transmit antennas; the absolute value of the OAM state of the receive beam is less than half of the number of the receive antennas.
  • the OAM state of each transmit beam satisfies the following conditions: Where p represents the p-th transmit beam, Indicates the OAM state of the p-th transmit beam, P indicates the number of transmit beams, p is a positive integer less than or equal to P, and P is a positive integer.
  • the OAM state of each receiving beam satisfies the following conditions: Where q represents the qth receiving beam, It represents the OAM state of the qth receiving beam, Q represents the number of receiving beams, q is a positive integer less than or equal to Q, and Q is a positive integer.
  • the processing module 1820 is further configured to adjust the phase of each transmit antenna in the transmit antenna array, wherein the phase of the nth transmit antenna in each transmit antenna is based on the transmit beam
  • the OAM state and the number N of transmitting antennas of the transmitting antenna array are determined, where n is a positive integer less than or equal to N, and N is a positive integer.
  • the processing module 1820 is further configured to adjust the phase of each receiving antenna in the receiving antenna array, wherein the phase of the m-th receiving antenna in each receiving antenna is based on the receiving beam
  • the OAM state and the number M of receiving antennas of the receiving antenna array are determined, m is a positive integer less than or equal to M, and M is a positive integer.
  • all elements of the transmission matrix between the transmit beam input port of the feeder network and the receive beam output port of the feeder network are zero.
  • the processing module 1820 is specifically configured to simultaneously generate multiple transmit beams in continuous OAM states through a transmit antenna array, wherein the beam width of the beam formed by superimposing the multiple transmit beams in space is equal to that of the excited beam.
  • the number of transmitted beams is inversely proportional.
  • the processing module 1820 is further configured to adjust the initial phase of the transmitting beam and/or the receiving beam through a phase shifter, and the feeding network is located between the phase shifter and the transmitting beam. Between the antenna arrays, and the feed network is located between the phase shifter and the receiving antenna array.
  • the far-field electric field of the transmission beams in the P OAM states is based on the radius of the transmission UCA, the OAM state of the transmission beam, and the transmission beam and the reception beam The initial phase of the OAM state is determined.
  • the processing module 1820 is further configured to adjust the ⁇ degree of the main lobe of the transmit beam through the feeding network, and/or adjust the degree of the main lobe of the transmit beam. degree.
  • the processing module 1820 is further configured to adjust the number of main lobes of the transmit beam through the feeding network.
  • FIG. 19 is a schematic block diagram of a full-duplex communication device 1900 according to an embodiment of the present application. It should be understood that the full-duplex communication device 1900 can execute each step in the method of FIG. 8. In order to avoid repetition, it will not be described in detail here.
  • the full-duplex communication device 1900 includes: a processor 1901 and a memory 1903, and the processor 1901 and the memory 1903 are electrically coupled;
  • the memory 1903 is used to store computer program instructions
  • the processor 1901 is configured to execute part or all of the computer program instructions in the memory, and when the part or all of the computer program instructions are executed, the device implements the method in the above-mentioned embodiment.
  • a transceiver 1902 which is used to communicate with other devices; for example, a transmitting antenna array is used to generate a transmitting beam in an OAM state.
  • the full-duplex communication device 1900 shown in FIG. 19 may be a chip or a circuit.
  • a chip or circuit can be installed in a network device.
  • the aforementioned transceiver 1902 may also be a communication interface.
  • the transceiver includes a receiver and a transmitter.
  • the full-duplex communication device 1900 may also include a bus system.
  • the processor 1901, the memory 1903, and the transceiver 1902 are connected by a bus system.
  • the processor 1901 is used to execute instructions stored in the memory 1903 to control the transceiver to receive and send signals, and complete the full-duplex communication method of this application. step.
  • the memory 1903 may be integrated in the processor 1901, or may be provided separately from the processor 1901.
  • the function of the transceiver 1902 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 1901 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • the processor may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • CPU central processing unit
  • NP network processor
  • the processor may further include a hardware chip or other general-purpose processors.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (generic array logic, GAL) and other programmable logic devices , Discrete gates or transistor logic devices, discrete hardware components, etc. or any combination thereof.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the embodiment of the present application provides a computer storage medium storing a computer program, and the computer program includes a method for executing the above-mentioned full-duplex communication.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the full-duplex communication method provided above.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be Other division methods, for example, multiple units or components can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual communication connections may be indirect couplings or communication connections through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units in the device embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the processor in the embodiment of the present application may be a central processing unit (CPU), or may be other general-purpose processors, digital signal processors (digital signal processors, DSP), and application specific integrated circuits. (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the methods in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a CD-ROM, a DVD; and it may also be a semiconductor medium, such as a solid state disk (SSD), and random Access memory (random access memory, RAM), read-only memory (read-only memory, ROM), registers, etc.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例涉及一种全双工通信方法及装置,用于在全双工通信过程实现自干扰消除并避免波束中心的能量空洞问题,该全双工通信方法包括:通过发射天线阵列发射不同轨道角动量OAM态的发射波束,所述发射天线阵列为均匀环形阵列UCA;通过接收天线阵列接收不同OAM态的接收波束,所述接收天线阵列为UCA,所述发射天线阵列的发射天线数目与所述接收天线阵列的接收天线数目相等,所述发射波束的OAM态不等于所述接收波束的OAM态的相反数;通过馈电网络给所述发射天线阵馈电和合成所述接收天线阵列的信号。

Description

一种全双工通信方法及装置
相关申请的交叉引用
本申请要求在2020年01月23日提交中国专利局、申请号为202010076790.7、申请名称为“一种全双工通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种全双工通信方法及装置。
背景技术
随着可用的频谱资源越来越少而各类应用对于无线传输速率的需求越来越高,全双工技术逐渐成为了能够使频谱效率翻倍的潜在技术手段。其中,通过设计天线阵列的摆放方式在传播域进行被动叠加消除是实现收发端口之间高隔离度比较方便的一种方法,从而能够实现全双工技术中的自干扰信号消除。
轨道角动量(Orbital Angular Momentum,OAM)是电磁波的一种固有属性,对应于波束在空间中的螺旋形相位波前。携带不同OAM态的电磁波在空间中同轴传输时相互正交,因此传统的轨道角动量电磁波通信理论认为将不同的信息调制到不同OAM态的电磁波上用于复用可以增加无线通信系统的信道容量。然而,传统的OAM电磁波通信由于波束发散、波束中心的能量空洞以及偏心偏轴导致性能恶化等问题很难用于实际的通信系统中。
通过天线阵列产生OAM波束是OAM波束的一种较为便捷的产生方法。因此,如何合理地设计天线阵列及其馈电网络以利用OAM波束的正交性实现传播域的自干扰消除是全双工通信中需要解决的问题。
发明内容
本申请实施例提供一种全双工通信方法及装置,用于在全双工通信过程中实现自干扰消除。
第一方面,本申请实施例提供了一种全双工通信方法,包括通过发射天线阵列发射不同轨道角动量OAM态的发射波束,所述发射天线阵列为均匀环形阵列UCA;通过接收天线阵列接收不同OAM态的接收波束,所述接收天线阵列为UCA,天线阵列包括所述发射天线阵列和所述接收天线阵列,其中,所述天线阵列满足预设条件,所述预设条件包括:所述发射天线阵列的发射天线数目与所述接收天线阵列的接收天线数目相等,所述发射波束的OAM态不等于所述接收波束的OAM态的相反数;通过馈电网络给所述发射天线阵列馈电和合成所述接收天线阵列的信号。
具体的,馈电网络给发射UCA馈电,发射UCA可以发射不同OAM态的发射波束,馈电网络合成接收UCA的信号,接收UCA可以接收不同OAM态的接收波束。所述发射UCA和所述接收UCA同心同轴放置。所述发射UCA的半径与所述接收UCA的半径可以 相同或者可以不同。示例性的,若所述发射UCA的半径与所述接收UCA的半径相同,所述发射UCA和所述接收UCA可以共用天线阵列,或者所述发射UCA和所述接收UCA可以使用独立的天线阵列。
所述馈电网络可以包括发射馈电网络和接收馈电网络。所述发射馈电网络和所述接收馈电网络可以共用一个馈电网络,或者所述发射馈电网络和所述接收馈电网络可以使用独立的馈电网络。示例性的,所述发射馈电网络给发射UCA馈电,所述接收馈电网络合成接收UCA的信号。
可选的,所述发射UCA可以产生OAM态连续的多个发射波束。
通过本申请实施例提供的方法,收发天线阵列的天线数目相等,所述全双工通信装置通过发射UCA发射不同OAM态的发射波束,通过接收UCA接收不同OAM态的接收波束,且发射波束的OAM态不等于接收波束的OAM态的相反数,通过OAM态的正交性,从而实现自干扰消除,实现全双工通信。另外,本申请实施例中还可以通过同时产生OAM态连续的多个发射波束,将能量汇聚到特定的方向,实现波束赋形。
在一种可能的实现中,所述预设条件还包括:所述发射波束的OAM态的绝对值小于所述发射天线数目的一半;所述接收波束的OAM态的绝对值小于所述接收天线数目的一半。
该实现可以进一步保证发射UCA能够产生OAM态的波束,实现自干扰消除。
在一种可能的实现中,每个所述发射波束的OAM态满足以下条件:
Figure PCTCN2020139673-appb-000001
Figure PCTCN2020139673-appb-000002
其中p表示第p个发射波束,
Figure PCTCN2020139673-appb-000003
表示第p个发射波束的OAM态,P表示发射波束的数量,p为小于或等于P的正整数,P为正整数。
在该实现中,根据发射UCA的阵元数目选定发射的OAM态组合,基于选定的OAM态组合,确定每个发射波束的OAM态,以保证实现自干扰消除及波束赋形。
在一种可能的实现中,所述每个接收波束的OAM态满足以下条件:
Figure PCTCN2020139673-appb-000004
Figure PCTCN2020139673-appb-000005
其中q表示第q个接收波束,
Figure PCTCN2020139673-appb-000006
表示第q个接收波束的OAM态,Q表示接收波束的数量,q为小于或等于Q的正整数,Q为正整数。
在该实现中,根据接收UCA的阵元数目选定接收的OAM态组合,基于选定的OAM态组合,确定每个接收波束的OAM态,以保证实现自干扰消除。
在一种可能的实现中,所述通过发射天线阵列发射不同OAM态的发射波束之前,还可以通过馈电网络调整所述发射天线阵列中每个发射天线的相位,其中所述每个发射天线中第n个发射天线的相位根据所述发射波束的OAM态L TX和所述发射天线阵列的发射天线数目N确定,n为小于或等于N的正整数,N为正整数。
示例性的,所述N个发射天线中第n个发射天线的相位满足以下条件:
Figure PCTCN2020139673-appb-000007
其中
Figure PCTCN2020139673-appb-000008
表示第p个发射波束输入端口被激励时,第n个发射天线的相位。
在该实现中,还可以同时激励多个波束端口,从而在空间中产生OAM态连续的多个发射波束,实现发射端波束赋形。
在该实现中,当多个波束端口被同时激励时,发射天线的相位等于单个端口被激励时的相位的叠加。
在一种可能的实现中,所述通过接收天线阵列接收不同OAM态的接收波束之前,还可以通过馈电网络调整所述接收天线阵列中每个接收天线的相位,其中所述每个接收天线中第m个接收天线的相位根据所述接收波束的OAM态L RX和所述接收天线阵列的接收天线数目M确定,m为小于或等于M的正整数,M为正整数。
示例性的,所述M个接收天线中第m个接收天线的相位满足以下条件:
Figure PCTCN2020139673-appb-000009
其中
Figure PCTCN2020139673-appb-000010
表示第q个接收波束输出端口被激励时,第m个接收天线的相位。
在该实现中,当在空间中接收到特定的波束时,信号从对应的波束端口输出,实现接收端波束赋形。当同时接收到多个特定的波束时,信号同时从多个波束端口输出。
在一种可能的实现中,所述馈电网络的发射波束输入端口和所述馈电网络的接收波束输出端口之间的传输矩阵的所有元素均为0。
所述P个发射波束输入端口和所述Q个接收波束输出端口之间的传输矩阵满足以下公式:H RX,TX=Φ TXH cΦ RX T,H RX,TX为所述P个发射波束输入端口和所述Q个接收波束输出端口之间的传输矩阵,Φ TX为所述发射馈电网络的传输矩阵,Φ RX为所述接收馈电网络的传输矩阵,H c为所述发射UCA和所述接收UCA之间的耦合矩阵。
所述发射UCA和所述接收UCA之间的耦合矩阵H c满足以下公式:
Figure PCTCN2020139673-appb-000011
β TX(n),RX(m)为第n个发射天线到第m个接收天线的耦合系数。当所述发射UCA的发射天线数目M等于所述接收UCA的接收天线数目N时,所述发射UCA和所述接收UCA之间的耦合矩阵H c满足以下公式:
Figure PCTCN2020139673-appb-000012
在一种可能的实现中,所述方法还包括:通过发射天线阵列同时产生OAM态连续的多个发射波束,其中所述多个发射波束在空间中叠加形成的波束的波束宽度与被激励的发射波束的数目成反比。
在该实现中,同时激励OAM态连续的多个发射波束,随着不同模态的OAM波束数量的增加,空间中叠加形成的波束的能量在周向逐渐集中到一个特定的方向上,从而避免单个OAM波束的主瓣方向上的能量空洞的问题。
在一种可能的实现中,所述方法还包括:通过移相器调整所述发射波束和/或所述接收波束的初相,所述馈电网络位于所述移相器和所述发射天线阵列之间,且所述馈电网络位于所述移相器和所述接收天线阵列之间。
所述移相器和所述馈电网络之间可以直接连接或间接连接。若所述移相器和所述馈电网络之间间接连接,功率放大器PA和/或低噪声放大器LNA可以位于所述移相器和所述馈电网络之间。
在一种可能的实现中,若同时产生P个OAM态的发射波束,所述P个OAM态的发射波束的远场电场根据所述发射UCA的半径,发射波束的OAM态,及发射波束和接收波束的OAM态的初相确定。
示例性的,所述P个发射波束的在球坐标系中某点
Figure PCTCN2020139673-appb-000013
的远场电场满足以下公式:
Figure PCTCN2020139673-appb-000014
其中
Figure PCTCN2020139673-appb-000015
为所述P个发射波束在空间中叠加形成的波束的远场电场,μ 0为真空磁导率,ω为角频率,k为波数,j e为电偶极子的电流密度,d为电偶极子的长度,a为所述发射UCA的半径,J l为l阶的贝塞尔函数,
Figure PCTCN2020139673-appb-000016
为L TX中的元素,
Figure PCTCN2020139673-appb-000017
为发射波束及接收波束的OAM态的初相,k满足k=ω/c,c为真空中光速。
在一种可能的实现中,所述方法还包括:通过所述馈电网络调整发射波束主瓣的θ ml度数,和/或调整发射波束主瓣的
Figure PCTCN2020139673-appb-000018
度数。
在该实现中,θ ml度数表示发射波束主瓣(main lobe,ml)的θ度数,
Figure PCTCN2020139673-appb-000019
度数表示发射波束主瓣的
Figure PCTCN2020139673-appb-000020
度数。
所述发射馈电网络可以通过使用不同模态的OAM波束实现发射波束主瓣的θ ml度数的调整。移相器可以通过改变发射波束的初相
Figure PCTCN2020139673-appb-000021
实现发射波束主瓣的
Figure PCTCN2020139673-appb-000022
度数的调整。
所述第p个发射波束对应的移相器的值
Figure PCTCN2020139673-appb-000023
取决于初相
Figure PCTCN2020139673-appb-000024
和OAM模态
Figure PCTCN2020139673-appb-000025
Figure PCTCN2020139673-appb-000026
在该实现中,通过调整发射波束主瓣的方向,可以实现不同方向上的波束赋形和波束扫描。
在一种可能的实现中,所述方法还包括:通过所述馈电网络调整发射波束的主瓣个数。
所述发射馈电网络可以通过调整L TX中OAM态的间隔实现发射波束的主瓣个数的调整。一般的,L TX中OAM态的间隔等于发射波束的主瓣个数。
在该实现中,通过调整发射波束的主瓣个数可以实现不同形状的波束赋形。
第二方面,本申请实施例提供了一种全双工通信装置,包括移相器,馈电网络和天线阵列,所述馈电网络位于所述移相器和所述天线阵列之间,所述天线阵列包括发射天线阵列和接收天线阵列;所述天线阵列为UCA,所述UCA用于发射不同OAM态的发射波束和接收不同OAM态的接收波束,且所述全双工通信装置满足预设条件,所述预设条件包 括:所述发射天线阵列的发射天线数目与所述接收天线阵列的接收天线数目相等;所述发射波束的OAM态不等于所述接收波束的OAM态的相反数。
在一种可能的实现中,所述预设条件还包括:所述发射波束的OAM态的绝对值小于所述发射天线数目的一半;所述接收波束的OAM态的绝对值小于所述接收天线数目的一半。
在一种可能的实现中,所述发射UCA和所述接收UCA同心同轴放置。
在一种可能的实现中,所述发射UCA的半径与所述接收UCA的半径相同或不同。
在一种可能的实现中,若所述发射UCA的半径与所述接收UCA的半径相同,所述发射天线阵列与所述接收天线阵列共用天线阵列,或者所述发射天线阵列与所述接收天线阵列为独立的天线阵列。
在一种可能的实现中,所述发射天线阵列与所述接收天线阵列共用天线阵列,所述装置还包括:环形器,所述环形器位于所述馈电网络和所述天线阵列之间。
在一种可能的实现中,所述馈电网络包括发射馈电网络和接收馈电网络,所述发射馈电网络和所述接收馈电网络共用同一馈电网络,或者所述发射馈电网络和所述接收馈电网络使用独立的馈电网络。
在一种可能的实现中,所述发射馈电网络和所述接收馈电网络共用同一馈电网络,所述装置还包括:功分器,所述功分器位于所述馈电网络和所述天线阵列之间。
在一种可能的实现中,所述装置还包括以下一项或多项:基带模块,数字消除模块,数字模拟转换模块DAC,模拟数字转换模块ADC,本振LO,和混频器;其中,所述基带模块与所述数字消除模块连接,所述DAC和所述ADC位于所述基带模块和所述混频器之间,所述LO与所述混频连接。
在一种可能的实现中,所述装置还包括:功率放大器PA,和/或低噪声放大器LNA;所述PA和/或所述LNA位于所述混频器和所述移相器之间;或者所述PA和/或所述LNA位于所述移相器和所述馈电网络之间。
在一种可能的实现中,所述发射天线阵列的阵元相对于发射天线阵列的第一个阵元的旋转角度根据所述发射天线阵列的阵元数目和所述发射天线阵列的阵元的编号确定;和/或所述接收天线阵列的阵元相对于接收天线阵列的第一个阵元的旋转角度根据所述接收天线阵列的阵元数目和所述接收天线阵列的阵元的编号确定。
在一种可能的实现中,所述发射馈电网络根据待发射波束的OAM态和发射天线阵列的阵元数目确定;和/或所述接收馈电网络根据待接收波束的OAM态和接收天线阵列的阵元数目确定。
示例性的,发射馈电网络满足以下条件:
Figure PCTCN2020139673-appb-000027
其中Φ TX为所述发射馈电网络的传输矩阵,L TX为与P个发射波束输入端口对应的P个发射波束的OAM态,
Figure PCTCN2020139673-appb-000028
为发射UCA的阵元的周向位置,Δφ TX为任意值,N为所述发射天线数目,N为正整数。
接收馈电网络满足以下条件:
Figure PCTCN2020139673-appb-000029
其中Φ RX为所述接收馈电网络的传输矩阵,L RX为与Q个接收波束输出端口对应的Q个待接收波束的OAM态,
Figure PCTCN2020139673-appb-000030
为接收UCA的阵元的周向位置,Δφ RX为任意值,M为所述接收天线数目,M为正整数。
在一种可能的实现中,所述每个发射波束的OAM态满足以下条件:
Figure PCTCN2020139673-appb-000031
Figure PCTCN2020139673-appb-000032
其中p表示第p个发射波束,
Figure PCTCN2020139673-appb-000033
表示第p个发射波束的OAM态,P表示发射波束的数量,p为小于或等于P的正整数,P为正整数;和/或所述每个发射天线中第n个发射天线的相位根据所述发射波束的OAM态L TX和所述发射天线阵列的发射天线数目N确定,n为小于或等于N的正整数,N为正整数。
在一种可能的实现中,所述每个接收波束的OAM态满足以下条件:
Figure PCTCN2020139673-appb-000034
Figure PCTCN2020139673-appb-000035
其中q表示第q个接收波束,
Figure PCTCN2020139673-appb-000036
表示第q个发射波束的OAM态,Q表示接收波束的数量,q为小于或等于Q的正整数,Q为正整数;和/或所述每个接收天线中第m个接收天线的相位根据所述接收波束的OAM态L RX和所述接收天线阵列的接收天线数目M确定,m为小于或等于M的正整数,M为正整数。
在一种可能的实现中,所述馈电网络的发射波束输入端口和所述馈电网络的接收波束输出端口之间的传输矩阵的所有元素均为0。
在一种可能的实现中,所述发射UCA,具体用于同时产生OAM态连续的多个发射波束,其中所述多个发射波束在空间中叠加形成的波束的波束宽度与被激励的发射波束的数目成反比。
在一种可能的实现中,所述移相器用于调整发射波束和/或接收波束的初相。
在一种可能的实现中,若同时产生P个OAM态的发射波束,所述P个OAM态的发射波束的远场电场根据所述发射UCA的半径,发射波束的OAM态,及发射波束的OAM态的初相确定。
在一种可能的实现中,所述发射馈电网络,具体用于调整发射波束主瓣的θ ml度数,和/或调整发射波束主瓣的
Figure PCTCN2020139673-appb-000037
度数。
在一种可能的实现中,所述发射馈电网络,具体用于调整发射波束的主瓣个数。
第三方面,本申请实施例提供了一种全双工通信装置,所述全双工通信装置可以实现上述第一方面及第一方面任一可能的实现中的方法。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的功能模块。
第四方面,提供了一种全双工通信装置,该全双工通信装置包括收发器以及处理器,可选的,还包括存储器,其中,该存储器用于存储计算机程序或指令,处理器分别与存储器、收发器耦合,当处理器执行所述计算机程序或指令时,使全双工通信装置执行上述第一方面及第一方面任一可能的实现中的方法。
第五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面及第一方面任一可能的实现中的方法。
第六方面,本申请提供了一种芯片系统,该芯片系统包括处理器和存储器,所述处理器、所述存储器之间电偶合;所述存储器,用于存储计算机程序指令;所述处理器,用于执行所述存储器中的部分或者全部计算机程序指令,当所述部分或者全部计算机程序指令被执行时,用于实现上述第一方面及第一方面任一可能的实现的方法中的功能。
在一种可能的设计中,所述芯片系统还包括收发器,所述收发器,用于发送所述处理器处理后的信号,或者接收信号输入给所述处理器。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述第一方面及第一方面任一可能的实现中的方法。
附图说明
图1为本申请实施例中通信系统架构示意图;
图2为十字对称结构的天线结构示意图;
图3为十字对称结构的远场能量分布示意图;
图4为三维结构的天线结构示意图;
图5为三维结构的远场能量分布示意图;
图6为本申请实施例中全双工通信方法流程示意图;
图7为本申请实施例中远场能量分布示意图;
图8为本申请实施例中全双工通信装置的结构示意图;
图9为本申请实施例中馈电网络示意图;
图10为本申请实施例中收发UCA示意图;
图11为本申请实施例中全双工通信装置的结构示意图;
图12为本申请实施例中全双工通信装置的结构示意图;
图13为本申请实施例中全双工通信装置的结构示意图;
图14为本申请实施例中全双工通信装置的结构示意图;
图15为本申请实施例中全双工通信装置的结构示意图;
图16为本申请实施例中全双工通信装置的结构示意图;
图17为本申请实施例中全双工通信装置的结构示意图;
图18为本申请实施例中全双工通信装置的结构示意图;
图19为本申请实施例中全双工通信装置的结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)全双工(full-duplex)通信,也称为双向同时通信,采用全双工通信方式的设备可以同时发送和接收信息,即可以在接收数据的同时发送数据。
2)移相器,用于对电磁波(或波束)的相位进行调整。在本申请实施例中相位的初始值(或者说初始相位)也称为初相。
3)馈电网络,包括发射馈电网络和接收馈电网络。馈电网络用于产生特定相位和幅度的射频信号对发射天线阵列进行馈电。
4)天线阵列,将工作在同一频率的两个或两个以上的单个天线,按照一定的要求进行馈电和空间排列构成天线阵列,也叫天线阵。构成天线阵的天线辐射单元称为阵元。天线阵列包括发射天线阵列和接收天线阵列。
天线阵列的结构包括均匀环形阵(Uniform Circular Array,UCA)、均匀直线阵(Uniform Linear Array,ULA)等。在本申请实施例中,天线阵列的结构主要为UCA,其中结构为UCA的发射天线阵列也称为发射UCA,结构为UCA的接收天线阵列也称为接收UCA。
5)波束,表示由天线发射出来的电磁波在空间中形成的形状,就像手电筒的光束有一定的范围。或者天线发射的信号非360°的辐射,而是在一定的方位集中发射的信号波。一般的,波束包括发射波束和接收波束。波束能量最强的方向称为波束的主瓣方向。一般的,如果波束有多个能量相等且最大的方向,则波束有多个主瓣。
6)OAM态,也称OAM模态,是电磁波的固有属性之一。OAM态可以为任意整数,如-1,1,2,3等,或者OAM态可以为整数构成的一维数组,一维数组中包括的OAM态的个数不做限定,如[-2,-1,1,2]等有限数量个,或者OAM态的数量可以无上限。可以理解的是,实际应用时,可以是一个组合内包括发射波束的OAM态和接收波束的OAM态,或者可以是一个组合内包括发射波束的OAM态,另一个组合内包括接收波束的OAM态。一般的,OAM态为整数。
波束的OAM态可以相同或不同,在本申请实施例中,主要以波束的OAM态不同为例进行说明。不同OAM态的波束也称为不同模态的OAM波束。
本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中所涉及的多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例提供的全双工通信方法和装置能够应用到各种通信系统中,例如:所述移动通信系统可以为第四代(4th Generation,4G)通信系统(例如,长期演进(long term evolution,LTE)系统),全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th Generation,5G)通信系统(例如,新无线(new radio,NR)系统),及未来的移动通信系统,如6G系统等。以及,本申请实施例提供的全双工通信方法及装置可以应用于卫星通信系统其中,所述卫星通信系统可以与上述通信系统相融合。
为了便于理解本申请实施例,以图1所示的通信系统架构为例对本申请使用的应用场景进行说明。参阅图1所示,通信系统100包括网络设备101和终端设备102。本申请实施例提供的全双工通信装置可以应用到网络设备101,或者应用到终端设备102。也可以认为,全双工通信装置可以是网络设备101,或者是终端设备102。在本申请实施例中主要以全双工通信装置应用到网络设备101为例进行说明。可以理解的是,图1仅示出了本申请实施例可以应用的一种可能的通信系统架构,在其他可能的场景中,所述通信系统架构中也可以包括其他设备。
网络设备101为具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等,还可以为卫星通信系统中的卫星。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以 将CU划分为核心网CN中的网络设备,在此不做限制。
终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
本申请实施例提供的全双工通信装置和方法可以应用到多天线的全双工通信场景中。多天线的应用场景例如可以包括:多入多出(multi-input multi-output,MIMO)技术,或者,大规模多入多出massive-MIMO技术。
通信系统(如4G系统、5G系统)大多使用时分双工(Time Division Duplexing,TDD)系统和频分双工(Frequency Division Duplexing,FDD)系统。TDD系统中上行信号和下行信号在不同的时隙上传输。FDD系统中上行信号和下行信号在不同的频段上传输。TDD和FDD作为半双工系统,如果同时同频发射和接收信号,发射端的发送信号会泄露到接收端,可能出现干扰通信系统正常接收信号的问题,故在半双工系统中,同时同频传输上行信号和下行信号是不可实现的。随着可用的频谱资源越来越少而各类应用对于无线传输速率的需求越来越高,全双工技术逐渐成为了能够使频谱效率翻倍的潜在技术手段。全双工技术的核心是自干扰信号消除,通过传播域的被动消除、模拟域的主动消除和数字域的主动消除等方式可以实现自干扰信号消除。其中一种比较方便的实现自干扰信号消除的方法是,通过设计天线阵列的摆放方式,在传播域进行被动叠加消除以实现设备收发端口间的高隔离度。
OAM是电磁波的一种固有属性,对应于波束在空间中的螺旋形相位波前。携带不同OAM态的电磁波在空间中同轴传播时相互正交,因此传统的轨道角动量电磁波理论认为将不同的信息调制到不同OAM态的电磁波上用于复用可以增加无线通信系统的信道容量。但是,所有非零态的OAM电磁波的波束中心都存在一个能量空洞,且空洞的面积随着传播距离的增加而增大,这就意味着接收端需要一个口径极大的天线或天线阵列才能完美地解调OAM波束。此外,OAM电磁波的复用与解复用对于发送端和接收端的天线对准有十分严苛的条件,稍微的偏心或偏轴就会造成性能的急剧下降。显然地,网络设备(如基站)和终端设备都很难使用极大口径的天线阵列,且网络设备和终端设备之间的链路由于终端的移动性极难保持同轴传输,故利用OAM波束的正交性在网络设备和终端设备间实现复用的方法很难用于实际通信系统中。另一方面,对于网络设备或终端设备的某一侧,发射阵列和接收阵列一般可共用阵列,或实现同心同轴的发射阵列和接收阵列并不困难,因此,如果发射波束和接收波束的OAM态满足一定的条件,可以用OAM模态间的正交性实现自干扰消除,从而实现全双工通信。因此,如何合理地设计天线阵列及其馈电网络以利用OAM波束的正交性实现传播域的自干扰消除并避免OAM波束带来的波束中心能量空洞等问题是全双工通信中需要解决的问题。
如图2示出了一种十字对称结构的天线阵列,该天线阵列用于通信系统中,以实现自干扰消除。其中x轴方向为发射天线阵列,y轴方向为接收天线阵列,满足以下条件:发射天线阵列和接收天线阵列均为ULA,并呈十字对称结构放置;轴对称的两个天线间的相位差为π,轴对称的两个天线如图2中的Tx1与Tx`1,Tx2与Tx`2,Rx1与Rx`1等。
但是以上方法相比于普通的天线阵列,天线数目增加了一倍,浪费了天线的分集增益;远场主瓣方向上有很多能量空洞,如图3中黑色区域所示,发射天线的垂直等分线和以对称的发射天线对为焦点的双曲线上都没有能量分布,出现能量空洞;ULA只能实现一个方向的波束赋形,所以在应用到通信系统中时,不能很好的满足实际的通信需求。
如图4示出了三维结构的天线阵列,该天线阵列用于通信系统中,以实现自干扰消除。其中x轴和y轴所构成的平面为发射天线阵列所在平面,z轴方向为接收天线阵列,满足以下条件:发射天线阵列为UCA;接收天线阵列为ULA。接收天线ULA置于发射UCA的中心轴线上。发射UCA上各阵元的相位满足一定条件以实现波束中心能量为零。
但是以上方法所示的三维结构的天线阵列浪费空间;发射天线阵列和接收天线阵列的结构不一致,会导致发射波束和接收波束的主瓣方向不一致,从而影响通信系统的性能;发射天线阵列无法进行波束扫描,不利于进行信号的接收;三维结构的天线阵列的远场能量分布如图5所示,存在波束中心的能量空洞,利用波束中心的能量空洞可以实现自干扰消除,但是这样的波束形状不利于终端设备侧的接收,例如位于波束中心区域(即存在能量空洞的区域)的终端设备接收不到能量。
以上示出的几种天线阵列在消除自干扰信号时会带来波束中心能量空洞、无法波束赋性、浪费能量、结构复杂等问题,因此全双工通信中如何在消除自干扰的同时支持多天线、支持三维波束赋型、波束中心没有能量空洞、结构简单等现有通信系统的优势是需要解决的问题。
鉴于此,为了在全双工通信中支持多天线、支持三维波束赋型、波束中心没有能量空洞、结构简单等现有通信系统的优势并实现自干扰消除,本申请提出一种全双工通信方法来消除全双工通信中的自干扰信号。
在该方法中,通过发射UCA发射不同OAM态的发射波束,通过接收UCA接收不同OAM态的接收波束,通过馈电网络给发射UCA馈电和合成接收UCA收到的信号,发射天线阵列的发射天线数目和接收天线阵列的接收天线数目相等,发射波束的OAM态不等于接收波束的OAM态的相反数,从而利用OAM态的特性实现自干扰消除。
本申请实施例提供的全双工通信方法可以应用于上述图1所示的通信系统中。下面参考图6,详细说明全双工通信方法的具体过程。如图6所示,该过程包括:
S601:通过发射天线阵列发射不同OAM态的发射波束。
其中,所述发射天线阵列为UCA,结构为UCA的所述发射天线阵列也称为发射UCA。具体的,所述全双工通信装置通过所述发射UCA发射不同OAM态的所述发射波束。所述全双工通信装置还可以通过所述发射UCA产生不同OAM态的发射波束。所述发射UCA为圆形,且所述发射UCA中每个天线阵元之间的间距相等。所述发射天线阵列可以理解为位于发射射频链路中。
若全双工通信装置为网络设备,在该S601中能够在自由空间内同时传输的多个不同模态的OAM波束,终端设备不需要完整接收整个OAM波束,也不需要考虑OAM波束。 终端设备可以按照处理普通波束的方式,对接收到的信号进行处理。
在该S601中,一种可能的实现方式中,所述全双工通信装置向馈电网络发送控制指令或控制信号,控制所述馈电网络对所述发射天线阵列进行馈电,激励所述发射天线阵列产生和发射不同OAM态的所述发射波束。
所述馈电网络可以包括发射馈电网络和接收馈电网络。所述发射馈电网络位于所述发射射频链路中,所述接收馈电网络位于所述接收射频链路中。所述发射馈电网络和所述接收馈电网络可以共用一个馈电网络,或者所述发射馈电网络和所述接收馈电网络可以使用独立的馈电网络。
在该实现方式中,所述发射天线阵列和所述馈电网络可以位于发射射频链路中,所述全双工通信装置向所述发射天线阵列所在的发射射频链路发送控制指令或控制信号,控制所述发射射频链路中的所述馈电网络对所述发射天线阵列进行馈电,激励所述发射天线阵列产生和发射不同OAM态的所述发射波束。
另一种可能的实现方式中,所述全双工通信装置向所述发射天线阵列的阵元发送具有特定相位的射频信号,控制所述发射天线阵列产生和发射不同OAM态的所述发射波束。
又一种可能的实现方式中,所述全双工通信装置包括所述发射天线阵列和所述馈电网络,所述全双工通信装置中的所述馈电网络根据发射射频信号,对所述发射天线阵列进行馈电,激励所述发射天线阵列产生和发射不同OAM态的所述发射波束。所述发射天线阵列和所述馈电网络可以均位于所述发射射频链路中。
在该实现方式中,所述全双工通信装置中的所述馈电网络包括发射馈电网络和接收馈电网络,所述发射馈电网络与所述发射天线阵列连接。具体的该实现方式可以参见下述全双工通信装置的实施例。
所述发射天线阵列可以用于产生和发射一个或多个发射波束。一般的,所述发射天线阵列产生和发射多个发射波束。每个所述发射波束的OAM态不同,不同OAM态的所述发射波束也可以称为不同模态的OAM发射波束。另外,(任一)发射波束的OAM态的绝对值小于发射天线数目的一半,可以进一步保证发射UCA能够产生OAM态的波束,实现自干扰消除。
发射UCA产生OAM态的波束时,可以先在OAM态的集合中选取OAM态,然后产生该OAM态的发射波束。
示例性的,每个所述发射波束的OAM态满足以下条件:
Figure PCTCN2020139673-appb-000038
其中p表示第p个发射波束,
Figure PCTCN2020139673-appb-000039
表示第p个发射波束的OAM态,P表示发射波束的数量,p为小于或等于P的正整数,P为正整数。也就是说一般发射波束的OAM态在L TX集合中选取。P还可以理解为P个发射射频链路,即发射天线阵列所在的发射射频链路有P个,或者P也可以理解为P个发射波束输入端口,所述P个发射波束输入端口位于馈电网络上,所述馈电网络可以通过P个发射波束输入端口,激励发射UCA产生和发射P个发射波束。
可选的,所述发射UCA可以包括一个环形阵列,即所述发射UCA位于一个环形阵列上,或者所述发射UCA也可以包括同心同轴的多个环形阵列,即所述发射UCA可以位于不同的环形阵列上。
另外,上述现有技术会出现波束中心能量空洞、无法波束赋性等问题的问题,进一步 导致上述现有技术无法更好地应用到通信系统中。而本申请提出的全双工通信方法不仅可以实现自干扰消除,还能够解决能量空洞的问题,同时支持三维的波束赋性和波束扫描。
如上述现有技术所示,如图7中的(a)所示,发射波束的OAM态为0,对于零态单模OAM波束中心的场强非0。而由于贝塞尔函数的性质,如图7中的(b)(c)(d)所示,任何非零态单模OAM波束中心的场强都为0,其中图7中的(b)中发射波束的OAM态为1,图7中的(c)中发射波束的OAM态为2,图7中的(d)中发射波束的OAM态为3。由于OAM波束具有发散性,波束中心的能量空洞的面积会随着传播距离的增大而增加,由于终端设备位于波束覆盖的中心区域,则该终端设备将接收不到任何能量。本申请实施例中可以通过同时激励多个模态实现OAM波束赋形来解决。
具体的,在S601中,所述全双工通信装置可以通过所述发射天线阵列产生OAM态连续的多个发射波束,其中所述多个发射波束在空间中叠加形成的波束宽度与被激励的发射波束的数目成反比。这样,同时激励OAM态连续的多个发射波束,随着不同模态的OAM波束数量的增加,空间中叠加的波束的能量在周向逐渐集中到一个特定的方向上,也就是说,发射波束的能量分布由单模激励时的各相均匀分布变为汇聚到一个特定的方向,从而可以避免波束中心的能量空洞。如图7中的(e)(f)(g)(h)所示,图7中的(e)中发射波束的OAM态为1,图7中的(f)中发射波束的OAM态为1,2,图7中的(g)中发射波束的OAM态为1,2,3,图7中的(h)中发射波束的OAM态为1,2,3,4。
若同时产生P个OAM态的发射波束,所述P个OAM态的发射波束在球坐标系中某点
Figure PCTCN2020139673-appb-000040
的远场电场根据所述发射UCA的半径,发射波束的OAM态,及发射波束和接收波束的OAM态的初相确定。示例性的,所述P个OAM态的发射波束的远场电场满足以下条件:
Figure PCTCN2020139673-appb-000041
其中
Figure PCTCN2020139673-appb-000042
为所述P个发射波束在空间中叠加形成的波束的远场电场,μ 0为真空磁导率,ω为角频率,k为波数,j e为电偶极子的电流密度,d为电偶极子的长度,a为所述发射UCA的半径,J l为l阶的贝塞尔函数,
Figure PCTCN2020139673-appb-000043
为L TX中的元素,
Figure PCTCN2020139673-appb-000044
为发射波束及接收波束的OAM态的初相,k满足k=ω/c,c为真空中光速。
所述P个OAM态的发射波束可以为多个单模态OAM波束的远场电场的叠加,激励的单模态OAM波束的远场电场满足以下条件:
Figure PCTCN2020139673-appb-000045
在S601之前,所述全双工通信装置还可以调整所述发射天线阵列中每个发射天线的 相位。其中,所述每个发射天线中第n个发射天线的相位根据所述发射波束的OAM态L TX和所述发射天线阵列的发射天线数目N确定,n为小于或等于N的正整数,N为正整数。示例性的,所述N个发射天线中第n个发射天线的相位满足以下条件:
Figure PCTCN2020139673-appb-000046
其中
Figure PCTCN2020139673-appb-000047
表示第p个发射波束输入端口被激励时,第n个发射天线的相位。
可选的,在波束赋形的过程中,所述全双工通信装置还可以通过移相器调整所述发射波束的初相,即调整发射波束主瓣的
Figure PCTCN2020139673-appb-000048
度数,所述馈电网络位于所述移相器和所述发射天线阵列之间。所述移相器和所述馈电网络之间可以直接连接或间接连接。若所述移相器和所述馈电网络之间为间接连接,放大器可以位于所述移相器和所述馈电网络之间,所述放大器包括功率放大器(Power Amplifier,PA)和/或低噪声放大器(Low Noise Amplifier,LNA)。例如,在发射射频链路中,所述PA位于所述移相器和所述馈电网络之间,在接收射频链路中,所述LNA位于所述移相器和所述馈电网络之间。如图7中的(m)中所述发射波束的OAM态包括1,2,3和4,初相为0,如图7中的(n)中所述发射波束的OAM态包括1,2,3和4,初相为
Figure PCTCN2020139673-appb-000049
如图7中的(o)中所述发射波束的OAM态包括1,2,3和4,初相为
Figure PCTCN2020139673-appb-000050
如图7中的(p)中所述发射波束的OAM态包括1,2,3和4,初相为
Figure PCTCN2020139673-appb-000051
可选的,在波束赋形的过程中,所述全双工通信装置还可以通过所述馈电网络调整发射波束主瓣的θ ml度数。例如,θ方向的波束扫描可以通过使用不同模态的OAM波束实现,OAM模态的阶数越高,波束主瓣的θ ml角越大,如图7中的(i)(j)(k)(l)所示,图7中的(i)中激励的发射波束的OAM态包括1,2,3和4,图7中的(j)中激励的发射波束的OAM态包括2,3,4和5,图7中的(k)中激励的发射波束的OAM态包括3,4,5和6,图7中的(l)中激励的发射波束的OAM态包括4,5,6和7。
可选的,在波束赋形的过程中,所述全双工通信装置还可以通过所述馈电网络调整发射波束的主瓣个数。例如所述发射波束的主瓣个数可以通过改变OAM态的间隔实现,波束的主瓣个数为OAM态的间隔,如图7中的(q)(r)(s)(t)所示,图7中的(q)中激励的发射波束的OAM态包括1,2,3和4,OAM态的间隔为1,图7中的(r)中激励的发射波束的OAM态包括1,3,5和7,OAM态的间隔为2,图7中的(s)中激励的发射波束的OAM态包括1,4,7和10,OAM态的间隔为3,图7中的(t)中激励的发射波束的OAM态包括1,5,9和13,OAM态的间隔为4。
S602:通过接收天线阵列接收不同OAM态的接收波束。
其中,所述阵列包括所述发射天线阵列和所述接收天线阵列,所述天线阵列满足预设条件,所述预设条件包括:发射天线阵列的发射天线数目和接收天线阵列的接收天线数目相等,发射波束的OAM态不等于接收波束的OAM态的相反数。
其中,所述接收天线阵列为UCA,结构为UCA的所述接收天线阵列也称为接收UCA。具体的,所述全双工通信装置通过所述接收UCA接收不同OAM态的所述接收波束。所述接收UCA为圆形,且所述接收UCA中每个天线阵元之间的间距相等。所述接收天线阵列 可以理解为位于接收射频链路中。所述发射UCA和所述接收UCA的半径可以相同,或者所述发射UCA和所述接收UCA的半径可以不同。可选的,若所述发射UCA和所述接收UCA的半径相同,所述发射UCA和所述接收UCA可以共用一个天线阵列,或者所述发射UCA和所述接收天线阵列UCA可以使用独立的天线阵列。
与所述发射天线阵列相似的,在该S602中,一种可能的实现方式中,所述全双工通信装置将所述接收天线阵列收到的射频信号合成为表征不同OAM态的波束的射频信号,控制所述接收天线阵列接收不同OAM态的所述接收波束。
另一种可能的实现方式中,所述全双工通信装置向馈电网络发送控制指令或控制信号,控制所述馈电网络将所述接收天线阵列的阵元收到的射频信号合成为表征不同OAM态的波束的射频信号,控制所述接收天线阵列接收空间中的特定OAM态的所述接收波束。
在该实现方式中,所述接收天线阵列和所述馈电网络可以位于接收射频链路中,所述全双工通信装置向所述接收天线阵列所在的接收射频链路发送控制指令或控制信号,控制所述接收射频链路中的所述馈电网络将所述接收天线阵列的阵元收到的射频信号合成为表征不同OAM态的波束的射频信号,控制所述接收天线阵列接收空间中的特定OMA态的所述接收波束。
又一种可能的实现方式中,所述全双工通信装置包括所述接收天线阵列和所述馈电网络,所述全双工通信装置中的所述馈电网络根据所需接收的OAM态波束,对所述接收天线阵列的阵元收到的射频信号进行合成,控制所述接收天线阵列只接收空间中的特定OAM态的所述接收波束。所述接收天线阵列和所述馈电网络可以均位于所述接收射频链路中。
在该实现方式中,所述全双工通信装置中的所述馈电网络包括发射馈电网络和接收馈电网络,所述接收馈电网络与所述接收天线阵列连接。具体的该实现方式可以参见下述全双工通信装置的实施例。
所述接收天线阵列可以用于接收一个或多个接收波束。一般的,所述接收天线阵列接收多个接收波束。每个所述接收波束的OAM态不同,不同OAM态的所述接收波束也可以称为不同模态的OAM接收波束。另外,(任一)接收波束的OAM态的绝对值小于接收天线数目的一半,可以进一步保证接收UCA能够接收特定OAM态的波束,实现自干扰消除。
示例性的,所述每个接收波束的OAM态满足以下条件:
Figure PCTCN2020139673-appb-000052
其中q表示第q个接收波束,
Figure PCTCN2020139673-appb-000053
表示第q个接收波束的OAM态,Q表示接收波束的数量,q为小于或等于Q的正整数,Q为正整数。也就是说一般接收波束的OAM态在L RX集合中选取。Q还可以理解为Q个接收射频链路,即接收天线阵列所在的接收射频链路有Q个,或者Q也可以理解为Q个接收波束输出端口,所述Q个接收波束输出端口位于馈电网络上,所述馈电网络可以通过Q个接收波束输出端口,合成接收UCA的Q个信号。
可选的,所述接收UCA可以包括一个环形阵列,即所述接收UCA位于一个环形阵列上,或者所述接收UCA也可以包括同心同轴的多个环形阵列,即所述接收UCA可以位于不同的环形阵列上。
所述发射UCA和所述接收UCA同心同轴,在球坐标系中
Figure PCTCN2020139673-appb-000054
可以是完全对齐的,也可以是错开一定的角度
Figure PCTCN2020139673-appb-000055
这样,携带不同OAM态的电磁波在空间中同轴传输时相互正交, 当接收UCA和发射UCA同心同轴时,可以通过选取接收波束和发射波束的OAM态实现自干扰消除。具体而言,所述馈电网络的发射波束输入端口和所述馈电网络的接收波束输出端口之间的传输矩阵的所有元素均为0。
所述P个发射波束输入端口和所述Q个接收波束输出端口之间的传输矩阵满足以下公式:H RX,TX=Φ TXH cΦ RX T,H RX,TX为所述P个发射波束输入端口和所述Q个接收波束输出端口之间的传输矩阵,Φ TX为所述发射馈电网络的传输矩阵,Φ RX为所述接收馈电网络的传输矩阵,H c为所述发射UCA和所述接收UCA之间的耦合矩阵。
所述发射UCA和所述接收UCA之间的耦合矩阵H c满足以下公式:
Figure PCTCN2020139673-appb-000056
β TX(n),RX(m)为第n个发射天线到第m个接收天线的耦合系数。当所述发射UCA的发射天线数目M等于所述接收UCA的接收天线数目N时,所述耦合矩阵H c满足旋转对称性,即对任意1≤k<N,有β TX(n),RX(m)=β TX((n+k)modN),RX((m+k)modM)。所述发射UCA和所述接收UCA之间的耦合矩阵H c满足以下公式:
Figure PCTCN2020139673-appb-000057
在S602之前,所述全双工通信装置还可以调整所述接收天线阵列中每个接收天线的相位。其中所述每个接收天线中第m个接收天线的相位根据所述接收波束的OAM态L RX和所述接收天线阵列的接收天线数目M确定,m为小于或等于M的正整数,M为正整数。示例性的,所述M个接收天线中第m个接收天线的相位满足以下条件:
Figure PCTCN2020139673-appb-000058
其中
Figure PCTCN2020139673-appb-000059
表示第q个接收波束输出端口被激励时,第m个接收天线的相位。
可选的,所述全双工通信装置还可以通过移相器调整所述接收波束的初相,所述馈电网络位于所述移相器和所述接收天线阵列之间。
S603:通过馈电网络给所述发射天线阵列馈电和合成所述接收天线阵列的信号。
所述全双工通信装置还可以通过所述馈电网络合成所述接收天线阵列的信号,具体的,所述馈电网络将所述天线接收阵列的阵元收到的射频信号合成为表征不同OAM态的波束的射频信号。
所述全双工通信装置可以对所述接收天线阵列接收的OAM态的接收波束进行处理,实现所述全双工通信装置与其他设备的通信。具体实现过程可以参见下述全双工通信装置的实施例。
综上,在本申请实施例中,为了消除自干扰,天线阵列为UCA,所述UCA用于发射OAM态的发射波束和接收OAM态接收波束,天线阵列需要满足的预设条件包括:所述发射天线阵列的发射天线数目与所述接收天线阵列的接收天线数目相等;所述发射波束的OAM态不等于所述接收波束的OAM态的相反数。
通过本申请实施例提供的方法,收发天线阵列的天线数目相等,所述全双工通信装置通过发射UCA发射不同OAM态的发射波束,通过接收UCA接收不同OAM态的接收波束,且发射波束的OAM态不等于接收波束的OAM态的相反数,利用OAM态的正交性,从而实现自干扰消除,另外,本申请通过同时产生OAM态连续的多个发射波束,还可以实现波束赋形,解决OAM波束中心有能量空洞的问题。
基于上述对全双工通信方法的原理的描述,下面对本申请实施例提供的一种可能的全双工通信装置进行详细的描述。如图8所示,所述全双工通信装置包括移相器801,馈电网络802和天线阵列803,所述馈电网络802位于所述移相器801和所述天线阵列803之间,所述天线阵列803包括发射天线阵列和接收天线阵列。为了实现自干扰消除,所述天线阵列为UCA,所述UCA用于发射不同OAM态的发射波束和接收不同OAM态的接收波束;
所述天线阵列满足预设条件,所述预设条件包括:所述发射天线阵列的发射天线数目与所述接收天线阵列的接收天线数目相等;所述发射波束的OAM态不等于所述接收波束的OAM态的相反数。
示例性的,所述全双工通信装置中包括P个发射射频链路和Q个接收射频链路。每个射频链路上都包括一个独立的移相器,如所述P个发射射频链路中包括P个移相器801,所述Q个接收射频链路中包括Q个移相器801。
所述移相器801用于调整发射波束和/或接收波束的初相
Figure PCTCN2020139673-appb-000060
可以控制波束的能量集中到特定的
Figure PCTCN2020139673-appb-000061
方向,如终端设备所在的区域,进一步实现波束赋形。示例性的,所述移相器801用于调整发射波束的OAM态的初相和/或调整接收波束的OAM态的初相。可选的,所述发射波束的OAM态和所述接收波束的OAM态的初相相同,即所述移相器801用于调整所有OAM态共同的初相。可选的,对于发射射频链路,所述移相器位于放大器(如PA)和发射馈电网络之间,或者所述放大器位于所述移相器和所述发射馈电网络之间。对于接收射频链路,所述移相器位于放大器(如LNA)和接收馈电网络之间,或者所述放大器位于所述移相器和所述接收馈电网络之间。
所述馈电网络802可以包括发射馈电网络和接收馈电网络。所述发射馈电网络和所述接收馈电网络可以共用一个馈电网络,或者所述发射馈电网络和所述接收馈电网络可以使用独立的馈电网络。所述发射馈电网络用于对所述发射UCA进行馈电,激励所述发射UCA产生和发射不同OAM态的所述发射波束。所述接收馈电网络用于对所述接收UCA收到的信号进行合成,控制所述接收UCA接收特定OAM态的所述接收波束。
一种可能的实现方式中,若所述发射馈电网络和所述接收馈电网络共用同一馈电网络,所述全双工通信装置还可以包括:一个或多个功分器,所述功分器位于所述馈电网络和所 述天线阵列之间。所述功分器用于将一路输入信号分为多路输出信号,更易于起到消除自干扰的作用。可选的,所述功分器包括等分功分器和/或不等分功分器。所述等分功分器用于将一路输入信号分为多路功率相等的输出信号。所述不等分功分器用于将一路输入信号按照比例进行功率分配,如所述不等分功分器将一路输入信号按照比例进行功率分配,分为第一信号和第二信号,所述第一信号和所述第二信号的功率不相等,这样,还有助于提高输入信号能量的利用率。可以理解的是,在实际通信系统中,所述功分器所实现的功能也可以通过定向耦合器或巴伦等功分模块来实现。
示例性的,所述发射馈电网络包括P个发射波束输入端口和N个发射天线输出端口,所述发射馈电网络也称为P*N发射馈电网络。所述接收馈电网络包括Q个接收波束输出端口和M个接收天线输入端口,所述接收馈电网络也称为Q*M接收馈电网络。
发射馈电网络和接收馈电网络的具体实现形式包括但不限于以下一种或多种:Butler矩阵、或Rotman透镜等。例如通过Butler矩阵实现P*N发射馈电网络的示意图如图9所示。
所述发射天线阵列为发射UCA,所述发射UCA用于产生和发射不同OAM态的发射波束。所述接收天线阵列为接收UCA,所述接收UCA用于接收不同OAM态的接收波束。示例性的,所述发射UCA包括N个发射天线,即包括N个发射天线阵元。所述接收UCA包括M个接收天线,即包括M个接收天线阵元。
示例性的,所述每个发射波束的OAM态满足以下条件:
Figure PCTCN2020139673-appb-000062
其中p表示第p个发射波束,
Figure PCTCN2020139673-appb-000063
表示第p个发射波束的OAM态,P表示发射波束的数量,p为小于或等于P的正整数,P为正整数。也就是说一般发射波束的OAM态在L TX集合中选取。P还可以理解为P个发射射频链路,即发射天线阵列所在的发射射频链路有P个,或者P也可以理解为P个发射波束输入端口,所述P个发射波束输入端口位于馈电网络上,所述馈电网络可以通过P个发射波束输入端口,激励发射UCA产生和发射P个发射波束。
示例性的,所述每个接收波束的OAM态满足以下条件:
Figure PCTCN2020139673-appb-000064
其中q表示第q个接收波束输出端口,
Figure PCTCN2020139673-appb-000065
表示第q个接收波束的OAM态,Q表示接收波束的数量,q为小于或等于Q的正整数,Q为正整数。也就是说一般接收波束的OAM态在L RX集合中选取。Q还可以理解为Q个接收射频链路,即接收天线阵列所在的接收射频链路有Q个,或者Q也可以理解为Q个接收波束输出端口,所述Q个接收波束输出端口位于馈电网络上,所述馈电网络可以通过Q个接收波束输出端口,合成接收UCA的Q个信号。
所述发射馈电网络和所述发射天线阵列位于所述发射射频链路中,所述接收馈电网络和所述接收天线阵列位于所述接收射频链路中。
所述预设条件还可以包括:所述发射波束的OAM态的绝对值小于所述发射天线数目的一半;所述接收波束的OAM态的绝对值小于所述接收天线数目的一半,可以进一步保证发射UCA能够产生OAM态的波束,实现自干扰消除。
可选的,所述发射UCA与所述接收UCA的半径可以相同,或者所述发射UCA与所 述接收UCA的半径可以不同。若所述发射UCA的半径与所述接收UCA的半径相同,所述发射天线阵列与所述接收天线阵列共用天线阵列,或者所述发射天线阵列与所述接收天线阵列为独立的天线阵列。若所述发射UCA与所述接收UCA的半径不同,所述发射天线阵列与所述接收天线阵列为独立的天线阵列。
一种可能的实现方式中,若所述发射天线阵列与所述接收天线阵列共用天线阵列,所述装置还包括:一个或多个环形器,所述环形器位于所述馈电网络和所述天线阵列之间。所述环形器是一种单向导通的3端口器件,所述环形器用于天线的收发复用。可选的,若所述环形器为多个,每个环形器的特性参数相同,和/或每个环形器的物理结果及尺寸相同。并且通过一定的天线设计,提高收发天线的隔离度,结合本申请实施例提供的全双工通信方法,可以取得更好的自干扰消除效果。
发射天线和接收天线的天线类型包括但不限于以下一种或多种:贴片天线、单极子天线、偶极子天线或三极子天线等。
所述UCA为圆形,所述UCA中每个天线阵元之间的间距相等。具体的,所述发射UCA中每个天线阵元之间的间距相等,所述接收UCA中每个天线阵元之间的间距相等。
所述发射天线阵列的阵元相对于所述发射天线阵列的第一个阵元的旋转角度根据所述发射天线阵列的阵元的数目和所述发射天线阵列的阵元的编号确定,所述发射天线阵列的阵元相对于所述发射天线阵列中的第一个阵元的旋转角度可以用于标识所述阵元的周向位置分布,所述发射天线阵列的阵元的编号可以用于标识所述阵元为相对于所述第一个阵元的第几个阵元。示例性的,所述发射天线阵列的阵元相对于所述发射天线阵列的第一个阵元的旋转角度满足以下条件:
Figure PCTCN2020139673-appb-000066
Δφ TX为任意值,表示第一个阵元相对于周向上
Figure PCTCN2020139673-appb-000067
位置的偏移,
Figure PCTCN2020139673-appb-000068
表示所述发射天线阵列的阵元之间的间隔,[0,1,L N-1]表示所述发射天线阵列中阵元的编号的集合,第一个阵元的编号为0,第二个阵元的编号为1,第N个阵元的编号为N-1,N为所述发射天线阵列的发射天线数目,N为正整数。可选的,所述发射天线阵列的第一个阵元可以为预设的第一个阵元,或者可以为随机选取的第一个阵元等。
所述接收天线阵列的阵元相对于所述接收天线阵列的第一个阵元的旋转角度根据所述接收天线阵列的阵元的数目和所述接收天线阵列的阵元的编号确定,所述接收天线阵列的阵元相对于所述接收天线阵列中的第一个阵元的旋转角度可以用于标识所述阵元的周向位置分布,所述接收天线阵列的阵元的编号可以用于标识所述阵元为相对于所述第一个阵元的第几个阵元。示例性的,
Figure PCTCN2020139673-appb-000069
Δφ RX为任意值,表示第一个阵元相对于周向上
Figure PCTCN2020139673-appb-000070
位置的偏移,
Figure PCTCN2020139673-appb-000071
表示所述接收天线阵列的阵元之间的间隔, [0,1,L M-1]表示所述接收天线阵列中阵元的编号的集合,第一个阵元的编号为0,第二个阵元的编号为1,第M个阵元的编号为M-1,M为所述接收天线阵列的接收天线数目,M为正整数。可选的,所述接收天线阵列的第一个阵元可以为预设的第一个阵元,或者可以为随机选取的第一个阵元等。
可选的,如图10中的(a)和10中的(b)所示,接收第n个发射天线到第m个接收天线的耦合系数为β TX(n),RX(m)。所述发射UCA和所述接收UCA之间的耦合矩阵H c满足以下条件:
Figure PCTCN2020139673-appb-000072
可选的,所述N个发射天线分别与所述发射馈电网络的N个天线端口连接。所述发射馈电网络可以调整所述发射UCA的所述N个发射天线中每个发射天线的相位。所述每个发射天线中第n个发射天线的相位根据所述发射波束的OAM态L TX和所述发射天线阵列的发射天线数目N确定,n为小于或等于N的正整数,N为正整数。示例性的,所述N个发射天线中第n个发射天线的相位满足以下条件:
Figure PCTCN2020139673-appb-000073
其中
Figure PCTCN2020139673-appb-000074
表示第p个发射波束输入端口被激励时,第n个发射天线的相位。
其中,图10中的(a)中发射UCA(TX)和接收UCA(RX)的半径相同,图10中的(b)中发射UCA(TX)和接收UCA(RX)的半径不同。
可选的,所述M个接收天线分别与所述接收馈电网络的M个天线端口连接。所述接收馈电网络可以调整所述接收UCA的所述M个接收天线中每个接收天线的相位。所述每个接收天线中第m个接收天线的相位根据所述接收波束的OAM态L RX和所述接收天线阵列的接收天线数目M确定,m为小于或等于M的正整数,M为正整数。示例性的,所述M个接收天线中第m个接收天线的相位满足以下条件:
Figure PCTCN2020139673-appb-000075
其中
Figure PCTCN2020139673-appb-000076
表示第q个接收波束输出端口被激励时,第m个接收天线的相位。
所述发射馈电网络根据每个发射波束的OAM态对应的每个发射天线的相位确定。示例性的,所述P*N发射馈电网络满足以下条件:
Figure PCTCN2020139673-appb-000077
其中Φ TX为所述发射馈电网络的传输 矩阵,L TX为与P个发射波束输入端口对应的P个发射波束的OAM态,
Figure PCTCN2020139673-appb-000078
为发射UCA的阵元的周向位置,Δφ TX为任意值,N为所述发射天线数目,N为正整数。
所述接收馈电网络根据每个接收波束的OAM态对应的每个接收天线的相位确定。示例性的,所述Q*M接收馈电网络满足以下条件:
Figure PCTCN2020139673-appb-000079
其中Φ RX为所述接收馈电网络的传输矩阵,L RX为与Q个接收波束输出端口对应的Q个待接收波束的OAM态,
Figure PCTCN2020139673-appb-000080
为接收UCA的阵元的周向位置,Δφ RX为任意值,M为所述接收天线数目,M为正整数。
所述馈电网络的发射波束输入端口和所述馈电网络的接收波束输出端口之间的传输矩阵的所有元素均为0,可以实现自干扰消除。所述发射波束输入端口和所述接收波束输出端口之间的传输矩阵H RX,TX=Φ TXH cΦ RX T=L TXφ TXH cφ RX TL RX T。以所述全双工通信装置中的天线阵列满足预设条件为例,进行理论推导,所述预设条件包括N=M(即所述发射天线数目与所述接收天线数目相等)
Figure PCTCN2020139673-appb-000081
(即所述发射波束的OAM态不等于所述接收波束的OAM态的相反数),
Figure PCTCN2020139673-appb-000082
(即所述发射波束的OAM态的绝对值小于所述发射天线数目的一半),
Figure PCTCN2020139673-appb-000083
(即所述接收波束的OAM态的绝对值小于所述接收天线数目的一半)。理论推导的结果如下所示:
当N=M时,所述发射UCA和所述接收UCA之间的耦合矩阵H c满足旋转对称性,即对任意1≤k<N,有β TX(n),RX(m)=β TX((n+k)modN),RX((m+k)modM)。所述发射UCA和所述接收阵列之间的耦合矩阵H c满足以下公式:
Figure PCTCN2020139673-appb-000084
即所述 耦合矩阵可以表示为循环矩阵的形式。
那么,第p个发射波束端口到第q个接收波束端口的传输系数H RX,TX(q,p)如下:
Figure PCTCN2020139673-appb-000085
可见,在满足所述预设条件时,所述馈电网络的发射波束输入端口和所述馈电网络的接收波束输出端口之间的传输矩阵H RX,TX的所有元素均为0,从而实现自干扰消除。在不满足所述预设条件时,所述发射波束输入端口和所述接收波束输出端口之间的传输矩阵H RX,TX有元素为非0值,无法实现自干扰消除。
另外可选的,所述全双工通信装置还可以解决能量空洞的问题,所述全双工通信装置通过改变波束的初相和模态组合可以实现三维波束赋形和波束扫描,进而解决能量空洞的问题。所述发射UCA,用于同时产生OAM态连续的多个发射波束,其中所述多个发射波束在空间中叠加形成的波束的波束宽度与被激励的发射波束的数目成反比。示例性的,所述发射UCA可以调整所述多个发射波束的主瓣方向相对于第一位置的旋转角度实现,第一位置为移相器的值为0时,预设的波束主瓣的参考位置。这样,同时激励OAM态连续的多个发射波束,随着不同模态的OAM波束数量的增加,发射波束的能量分布由单模激励时的各相均匀分布变为汇聚到一个特定的方向,从而可以避免波束中心方向上的能量空洞。
其中,所述移相器的值
Figure PCTCN2020139673-appb-000086
根据波束的初相
Figure PCTCN2020139673-appb-000087
和OAM模态l确定。示例性的,移相器的值满足
Figure PCTCN2020139673-appb-000088
以下条件:
Figure PCTCN2020139673-appb-000089
在波束赋形的过程中,若同时产生P个发射波束的OAM态,所述P个发射波束的OAM态的远场电场根据所述发射UCA的半径,发射波束的OAM态,及发射波束和接收波束的OAM态的初相确定。示例性的,所述P个发射波束的OAM态的远场电场满足以下条件:
Figure PCTCN2020139673-appb-000090
其中
Figure PCTCN2020139673-appb-000091
为所述P个发射波束在空间中叠加形成的波束的远场电场,μ 0为真空磁导率,ω为角频率,k为波数,j e为电偶极子的电流密度,d为电偶极子的长度,a为所述发射UCA的半径,J l为l阶的贝塞尔函数,
Figure PCTCN2020139673-appb-000092
为L TX中的元素,
Figure PCTCN2020139673-appb-000093
为发射波束及接收波束的OAM态的初相,k满足k=ω/c,c为真空中光速。即所述P个发送波束的OAM态的远场电场可以通过多个单模OAM波束的叠加形式来表示。示例性的,单模OAM波束的远场电场在球坐标系满足以下条件:
Figure PCTCN2020139673-appb-000094
可选的,所述发射馈电网络还可以调整发射波束主瓣的θ ml度数,和/或调整发射波束主瓣的
Figure PCTCN2020139673-appb-000095
度数,可以实现θ方向的波束扫描和/或
Figure PCTCN2020139673-appb-000096
方向的波束扫描。所述发射馈电网络可以通过使用不同模态的OAM波束实现发射波束主瓣的θ度数的调整。所述移相器可以通过改变发射波束的初相
Figure PCTCN2020139673-appb-000097
实现发射波束主瓣的
Figure PCTCN2020139673-appb-000098
度数的调整。
可选的,所述发射馈电网络还可以调整发射波束的主瓣个数。所述发射馈电网络可以通过调整L TX中OAM态的间隔实现发射波束的主瓣个数的调整。一般的,L TX中OAM态的间隔等于发射波束的主瓣个数的调整。
基于上述全双工通信装置架构,以下提供几种可能的实施例,以实现自干扰消除的效果,并解决波束中心的能量空洞的问题。
实施例一,如图11所示,发射馈电网络和接收馈电网络使用独立的馈电网络,发射UCA和接收UCA的半径一致,但所述发射UCA和所述接收UCA使用独立的天线阵列。所述全双工通信装置执行下述方法流程:
步骤1,选定发射波束的OAM态组合
Figure PCTCN2020139673-appb-000099
和接收波束的OAM态组合
Figure PCTCN2020139673-appb-000100
发射波束的OAM态不等于接收波束的OAM态的相反数,即任意p∈[1,P],q∈[1,Q],满足
Figure PCTCN2020139673-appb-000101
步骤2,根据L TX设计对应的P入N出发射馈电网络,根据L RX设计对应的Q入M出接收馈电网络,N=M。对于发射射频链路,当第p个发射波束输入端口被激励时,第n个 发射天线的相位满足
Figure PCTCN2020139673-appb-000102
对于接收射频链路,当第q个接收波束输出端口被激励时,第m个接收天线的相位满足
Figure PCTCN2020139673-appb-000103
步骤3,发射UCA和接收UCA置于同一圆周上,发射UCA中阵元的周向分布满足
Figure PCTCN2020139673-appb-000104
接收UCA中阵元的周向分布满足
Figure PCTCN2020139673-appb-000105
Δφ TX和Δφ RX的取值不做限定。
步骤4,发射馈电网络的N个天线端口依次和发射UCA的N个发射天线连接;接收馈电网络的M个天线端口依次和接收UCA的M个接收天线连接。
步骤5,根据所需要的波形,选择激励全部或部分OAM态的发射波束,及选择接收全部或部分OAM态的接收波束,通过移相器进行波束扫描。当波束主瓣的周向角为
Figure PCTCN2020139673-appb-000106
时,第p个发射波束端口对应的移相器的值满足
Figure PCTCN2020139673-appb-000107
第q个接收波束端口对应的移相器的值满足
Figure PCTCN2020139673-appb-000108
实施例二,如图12所示,发射馈电网络和接收馈电网络使用独立的馈电网络,发射UCA和接收UCA的半径不一致,所述发射UCA和所述接收UCA使用独立的天线阵列。所述全双工通信装置执行下述方法流程:
步骤1和2参见实施例一中的步骤1和2所示。
步骤3,所述发射UCA和所述接收UCA分别置于两个半径为r TX和r RX的同心圆上,r TX和r RX的取值不做限定,但r TX≠r RX,发射UCA中阵元的周向分布满足
Figure PCTCN2020139673-appb-000109
接收UCA中阵元的周向分布满足
Figure PCTCN2020139673-appb-000110
Δφ TX和Δφ RX的取值不做限定。
步骤4,发射馈电网络的N个天线端口依次和发射UCA的N个发射天线连接;接收馈电网络的M个天线端口依次和接收UCA的M个接收天线连接。
步骤5参见实施例一中的步骤5所示。
实施例三,如图13所示,发射馈电网络和接收馈电网络使用独立的馈电网络,发射UCA和接收UCA的半径一致,所述发射UCA和所述接收UCA共用天线阵列。所述全双工通信装置执行下述方法流程:
步骤1和步骤2参见实施例一中的步骤1和2所示。
步骤3,天线阵列置于同一圆周上,UCA上的周向位置部分满足
Figure PCTCN2020139673-appb-000111
Δφ的取值不做限定。
步骤4,所述发射馈电网络的第n个天线端口与第n个环形器的端口1相连,所述接收馈电网络的第n个天线端口与第n个环形器的端口2相连,第n个环形器的端口3与UCA的第n个天线相连。
步骤5参见实施例一中的步骤5所示。
实施例四,如图14所示,发射馈电网络和接收馈电网络共用同一馈电网络,发射UCA和接收UCA的半径一致,所述发射UCA和接收UCA使用独立的天线阵列。所述全双工通信装置执行下述方法流程:
步骤1参见实施例一中的步骤1所示。
步骤2,根据L TX和L RX设计对应的P+Q个输入端口和N个输出端口的馈电网络。对于发射射频链路,当第p个输入端口被激励时,第n个发射天线的相位
Figure PCTCN2020139673-appb-000112
对于接收射频链路,当第q个接收波束输出端口被激励时,第n个接收天线的相位满足
Figure PCTCN2020139673-appb-000113
步骤3参见实施例一中的步骤3所示。
步骤4,馈电网络的第n个天线端口与第n个功分器的端口1相连,第n个功分器的端口2和端口3分别和UCA上的第n个发射天线和第n个接收天线相连。
步骤5参见实施例一中的步骤5所示。
实施例五,如图15所示,发射馈电网络和接收馈电网络设备共用同一馈电网络,发射UCA和接收UCA的半径不一致,所述发射UCA和接收UCA使用独立的天线阵列。所述全双工通信装置执行下述方法流程:
步骤1参见实施例一中的步骤1所示。
步骤2参见实施例四中的步骤2所示。
步骤3参见实施例二中的步骤3所示。
步骤4参加实施例四中的步骤4所示。
步骤5参见实施例一中的步骤5所示。
实施例六,如图16所示,发射馈电网络和接收馈电网络共用同一馈电网络,发射UCA接收UCA的半径,所述发射UCA和所述接收UCA共用天线阵列。所述全双工通信装置执行下述方法流程:
步骤1参见实施例一中的步骤1所示。
步骤2参见实施例四中的步骤2所示。
步骤3参见实施例三中的步骤3所示。
步骤4,馈电网络的N个天线端口依次和UCA的N个天线连接。
步骤5参见实施例一中的步骤5所示。
实际应用中,发射射频链路和接收射频链路还可以经过其它一些物理器件或功能模块。为了使得方案更加便于理解,本申请实施例以全双工装置为网络设备或应用于网络设备为例,提供一种更加全面的装置结构介绍。
增加的物理器件或功能模块可以在上述图8-图16中的任一全双工通信装置架构的基础上增加,以下以图8所示的装置架构为基础为例,对更加全面的装置结构进行详细介绍。
如图17所示,所述全双工通信装置还可以包括以下几种物理器件或功能模块,或者说所述全双工通信装置还可以连接以下几种物理器件或功能模块。基带模块(Base-Band Unit,BBU),数字消除模块,数字模拟转换模块(Digital-to-Analog Converter,DAC),模拟数字转换模块(Analog-to-Digital Converter,ADC),本振(Local Oscillator,LO),或混频器;其中,所述基带模块与所述数字消除模块连接,所述DAC和所述ADC位于所述基带模块和所述混频器之间,所述LO与所述混频连接。
所述全双工通信装置还可以包括:PA,和/或LNA;所述PA和/或所述LNA位于所述混频器和所述移相器之间;或者所述PA和/或所述LNA位于所述移相器和所述馈电网络之间。图17中所示的所述PA和/或所述LNA位于所述混频器和所述移相器之间。下面对图19所示的全双工通信装置的结构和工作流程进行简单描述。
所述全双工通信装置包括基带模块,数字消除模块,DAC,ADC,LO,混频器,PA,LNA,移相器,发射(Transmitter,Tx)馈电网络,接收(Reciver,Rx)馈电网络以及天线阵列。
发射射频链路中,所述基带模块的输出端与所述数字消除模块相连,所述基带模块的输出端通过所述DAC与所述混频器相连,所述本振的输出端与所述混频器相连,所述混频器与所述PA相连,所述PA的输出端与所述移相器相连,所述移相器的输出端与所述发射馈电网络的波束端口相连,所述发射馈电网络的天线端口与所述天线阵列中的发射天线相连。接收射频链路中,所述天线阵列中的接收天线与所述接收馈电网络的天线端口相连,所述接收馈电网络的波束端口与所述移相器相连,所述移相器与所述LNA相连,所述LNA的输出端与所述混频器相连,所述本振的输出端与所述混频器相连,所述混频器通过模ADC与所述基带模块的输入相连,所述数字消除模块的输出与所述基带模块的输入端相连。
所述基带模块用于基带发射和处理接收到的数字信号。所述ADC用于将模拟信号转换为数字信号。所述DAC用于将数字信号转换为模拟信号。所述数字消除模块用于数字域自干扰消除算法的运算。所述本振用于产生固定频率的信号。所述混频器用于将发射的基带信号上变频为射频信号,以及将接收到射频信号下变频为基带信号。所述PA用于增大发射射频信号的功率。所述LNA用于放大接收到的射频信号。所述移相器用于改变射频信号的相位。所述发射馈电网络用于产生特定幅度和相位的发射射频信号。所述接收馈电网络用于叠加不同天线端口上接收到的接收射频信号。所述发射天线用于将射频信号辐射到自由空间。所述接收天线用于探测自由空间内的射频信号。
示例性的,在全双工通信过程中,所述基带模块输出的发射数字信号经过所述DAC变为基带发射模拟信号。所述基带发射模拟信号经过所述混频器上变频后变为发射射频信号。所述发射射频信号通过PA后信号幅度增强。增强后的发射射频信号经过所述移相器和所述发射馈电网络后在不同的天线端口产生幅度相同但具有特定相位分布的射频信号。具有不同相位的射频信号经过不同的发射天线辐射到自由空间并在自由空间内叠加,产生特定模态的OAM波束。多个发射射频链路同时发射信号时多个模态的OAM波束同时在自由空间内传输,将能量汇聚到远场终端设备所在的区域。接收天线会同时收到所述全双工通信装置本身的发射信号和远场终端设备发射的信号。不同的接收天线接收到所述全双工通信装置本身的发射信号由于具有特定的相位分布,经过所述接收馈电网络叠加后信号总和为零,不会从波束端口输出,实现自干扰消除。而终端设备发射的是普通波束,所述接收天线接收到的射频信号经过所述接收馈电网络叠加后从各波束端口输出。所述接收馈 电网络的波束端口输出的射频信号经过所述移相器改变相位、所述LNA增强信号幅度和所述混频器下变频后变为基带接收模拟信号。所述基带接收模拟信号经过ADC后变为基带接收数字信号。所述基带发射数字信号通过数字消除模块评估残余干扰,并和所述基带接收数字信号叠加进一步降低自干扰。经过数字域自干扰消除的基带接收数字信号输入到所述基带模块进行基带处理。
可见,所述全双工通信装置在实现自干扰消除的过程中,与模拟消除自干扰和数字消除自干扰的算法不冲突,所述模拟消除模块和数字消除模块可以集成到所述全双工通信装置中进一步消除自干扰信号。
本申请实施例在实现多天线自干扰消除时可以和现有的MIMO技术相结合,在不增加系统复杂度的情况下消除自干扰信号,增大收发波束端口间的隔离度,实现全双工通信。
本申请实施例在波束赋形过程中可以避免阵列天线波束中心方向存在的能量空洞的问题,通过将波束能量集中到特定的方向,实现三维波束赋形和波束扫描。
另外,本申请实施例不仅可以用于无线通信的各种频段(如Sub-6G,高频,THz等)下的全双工通信,也可以应用在光纤通信,可见光通信等下的全双工通信。
需要说明的是,图17所示的全双工通信装置与图8所示的全双工通信装置只是在示意形式上不同,两者的本质或者设计思路是一样的。因此,图11~图16对全双工通信装置的实现方式的设计可以应用到图17所示的全双工通信装置。
可以理解的是,在不产生冲突的情况下,本申请中涉及的各实施例之间可以结合使用,也可以单独使用。
基于上述对全双工通信方法的原理的描述,下面对本申请实施例提供的另一种可能的全双工通信装置进行详细的描述。如图18所示,提供了一种全双工通信装置1800。所述全双工通信装置1800能够执行图10方法中的各个步骤,为了避免重复,此处不再详述。全双工通信装置1800包括:收发模块1810,可选的,还包括处理模块1820,存储模块1830;处理模块1820可以分别与存储模块1830和收发模块1810相连,所述存储模块1830也可以与收发模块1810相连:
所述存储模块1830,用于存储计算机程序;
示例的,所述处理模块1820,用于通过发射天线阵列发射不同OAM态的发射波束,所述发射天线阵列为UCA;通过接收天线阵列接收不同OAM态的接收波束,所述接收天线阵列为UCA,天线阵列包括所述发射天线阵列和所述接收天线阵列,其中,所述天线阵列满足预设条件,所述预设条件包括:所述发射天线阵列的发射天线数目与所述接收天线阵列的接收天线数目相等,所述发射波束的OAM态不等于所述接收波束的OAM态的相反数;通过馈电网络给所述发射天线阵列馈电和将所述接收天线阵列收到的信号合成。
在一个实现方式中,所述发射波束的OAM态的绝对值小于所述发射天线数目的一半;所述接收波束的OAM态的绝对值小于所述接收天线数目的一半。
在一个实现方式中,每个所述发射波束的OAM态满足以下条件:
Figure PCTCN2020139673-appb-000114
其中p表示第p个发射波束,
Figure PCTCN2020139673-appb-000115
表示第p个发射波束的OAM态,P表示发射波束的数量,p为小于或等于P的正整数,P为正整数。
在一个实现方式中,所述每个接收波束的OAM态满足以下条件:
Figure PCTCN2020139673-appb-000116
其中q表示第q个接收波束,
Figure PCTCN2020139673-appb-000117
表示第q个接收波束的OAM态,Q表示接收波束的数量,q为小于或等于Q的正整数,Q为正整数。
在一个实现方式中,所述处理模块1820,还用于调整所述发射天线阵列中每个发射天线的相位,其中所述每个发射天线中第n个发射天线的相位根据所述发射波束的OAM态和所述发射天线阵列的发射天线数目N确定,n为小于或等于N的正整数,N为正整数。
在一个实现方式中,所述处理模块1820,还用于调整所述接收天线阵列中每个接收天线的相位,其中所述每个接收天线中第m个接收天线的相位根据所述接收波束的OAM态和所述接收天线阵列的接收天线数目M确定,m为小于或等于M的正整数,M为正整数。
在一个实现方式中,所述馈电网络的发射波束输入端口和所述馈电网络的接收波束输出端口之间的传输矩阵的所有元素均为0。
在一个实现方式中,所述处理模块1820,具体用于通过发射天线阵列同时产生OAM态连续的多个发射波束,其中所述多个发射波束在空间中叠加形成的波束的波束宽度与被激励的发射波束的数目成反比。
在一个实现方式中,所述处理模块1820,还用于通过移相器调整所述发射波束和/或所述接收波束的初相,所述馈电网络位于所述移相器和所述发射天线阵列之间,且所述馈电网络位于所述移相器和所述接收天线阵列之间。
在一个实现方式中,若同时产生P个OAM态的发射波束,所述P个OAM态的发射波束的远场电场根据所述发射UCA的半径,发射波束的OAM态,及发射波束和接收波束的OAM态的初相确定。
在一个实现方式中,所述处理模块1820,还用于通过所述馈电网络调整发射波束主瓣的θ度数,和/或调整发射波束主瓣的
Figure PCTCN2020139673-appb-000118
度数。
在一个实现方式中,所述处理模块1820,还用于通过所述馈电网络调整发射波束的主瓣个数。
图19是本申请实施例的全双工通信装置1900的示意性框图。应理解,所述全双工通信装置1900能够执行图8的方法中的各个步骤,为了避免重复,此处不再详述。全双工通信装置1900包括:处理器1901和存储器1903,所述处理器1901和所述存储器1903之间电偶合;
所述存储器1903,用于存储计算机程序指令;
所述处理器1901,用于执行所述存储器中的部分或者全部计算机程序指令,当所述部分或者全部计算机程序指令被执行时,所述装置实现上述所示的实施例中的方法。
可选的,还包括:收发器1902,用于和其他设备进行通信;例如通过发射天线阵列产生OAM态的发射波束等。
应理解,图19所示的全双工通信装置1900可以是芯片或电路。例如可设置在网络设备内的芯片或电路。上述收发器1902也可以是通信接口。收发器包括接收器和发送器。进一步地,该全双工通信装置1900还可以包括总线系统。
其中,处理器1901、存储器1903、收发器1902通过总线系统相连,处理器1901用于执行该存储器1903存储的指令,以控制收发器接收信号和发送信号,完成本申请全双工通信方法中的步骤。所述存储器1903可以集成在所述处理器1901中,也可以与所述处 理器1901分开设置。
作为一种实现方式,收发器1902的功能可以考虑通过收发电路或者收发专用芯片实现。处理器1901可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)及其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等或其任意组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例提供了一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述全双工通信方法。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述提供的全双工通信方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本申请装置实施例中的各单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,CD-ROM,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD),随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)和寄存器等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包括有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选 实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (32)

  1. 一种全双工通信方法,其特征在于,所述方法包括:
    通过发射天线阵列发射不同轨道角动量OAM态的发射波束,所述发射天线阵列为均匀环形阵列UCA;
    通过接收天线阵列接收不同OAM态的接收波束,所述接收天线阵列为UCA,天线阵列包括所述发射天线阵列和所述接收天线阵列,其中,
    所述天线阵列满足预设条件,所述预设条件包括:所述发射天线阵列的发射天线数目与所述接收天线阵列的接收天线数目相等,所述发射波束的OAM态不等于所述接收波束的OAM态的相反数;
    通过馈电网络给所述发射天线阵列馈电和合成所述接收天线阵列的信号。
  2. 如权利要求1所述的方法,其特征在于,所述预设条件还包括:所述发射波束的OAM态的绝对值小于所述发射天线数目的一半;
    所述接收波束的OAM态的绝对值小于所述接收天线数目的一半。
  3. 如权利要求1或2所述的方法,其特征在于,每个所述发射波束的OAM态满足以下条件:
    Figure PCTCN2020139673-appb-100001
    其中p表示第p个发射波束,
    Figure PCTCN2020139673-appb-100002
    表示第p个发射波束的OAM态,P表示发射波束的数量,p为小于或等于P的正整数,P为正整数。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述每个接收波束的OAM态满足以下条件:
    Figure PCTCN2020139673-appb-100003
    其中q表示第q个接收波束,
    Figure PCTCN2020139673-appb-100004
    表示第q个接收波束的OAM态,Q表示接收波束的数量,q为小于或等于Q的正整数,Q为正整数。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述通过发射天线阵列发射不同OAM态的发射波束之前,还包括:
    调整所述发射天线阵列中每个发射天线的相位,其中所述发射天线阵列中第n个发射天线的相位根据所述发射波束的OAM态和所述发射天线阵列的发射天线数目N确定,n为小于或等于N的正整数,N为正整数。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述通过接收天线阵列接收不同OAM态的接收波束之前,还包括:
    调整所述接收天线阵列中每个接收天线的相位,其中所述接收天线阵列中第m个接收天线的相位根据所述接收波束的OAM态和所述接收天线阵列的接收天线数目M确定,m为小于或等于M的正整数,M为正整数。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述馈电网络的发射波束输入端口和所述馈电网络的接收波束输出端口之间的传输矩阵的所有元素均为0。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    通过发射天线阵列同时产生OAM态连续的多个发射波束,其中所述多个发射波束在空间中叠加形成的波束的波束宽度与被激励的发射波束的数目成反比。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    通过移相器调整所述发射波束和/或所述接收波束的初相,所述馈电网络位于所述移相器和所述发射天线阵列之间,且所述馈电网络位于所述移相器和所述接收天线阵列之间。
  10. 如权利要求1-9任一项所述的方法,其特征在于,若同时产生P个OAM态的发射波束,所述P个OAM态的发射波束的远场电场根据所述发射UCA的半径,发射波束的OAM态,及发射波束和接收波束的OAM态的初相确定。
  11. 如权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    通过所述馈电网络调整发射波束主瓣的θ度数,和/或调整发射波束主瓣的
    Figure PCTCN2020139673-appb-100005
    度数。
  12. 如权利要求1-11任一项所述的方法,其特征在于,所述方法还包括:
    通过所述馈电网络调整发射波束的主瓣个数。
  13. 一种全双工通信装置,其特征在于,包括移相器,馈电网络和天线阵列,所述馈电网络位于所述移相器和所述天线阵列之间,所述天线阵列包括发射天线阵列和接收天线阵列;
    所述天线阵列为均匀环形阵列UCA,所述UCA用于发射不同轨道角动量OAM态的发射波束和接收不同OAM态的接收波束;
    所述天线阵列满足预设条件,所述预设条件包括:所述发射天线阵列的发射天线数目与所述接收天线阵列的接收天线数目相等;所述发射波束的OAM态不等于所述接收波束的OAM态的相反数。
  14. 如权利要求13所述的装置,其特征在于,所述预设条件还包括:
    所述发射波束的OAM态的绝对值小于所述发射天线数目的一半;
    所述接收波束的OAM态的绝对值小于所述接收天线数目的一半。
  15. 如权利要求13或14所述的装置,其特征在于,发射UCA和接收UCA同心同轴放置,所述发射UCA的半径与所述接收UCA的半径相同或不同。
  16. 如权利要求15所述的装置,其特征在于,若所述发射UCA的半径与所述接收UCA的半径相同,所述发射天线阵列与所述接收天线阵列共用天线阵列,或者所述发射天线阵列与所述接收天线阵列为独立的天线阵列。
  17. 如权利要求16所述的装置,其特征在于,所述发射天线阵列与所述接收天线阵列共用天线阵列,所述装置还包括:环形器,所述环形器位于所述馈电网络和所述天线阵列之间。
  18. 如权利要求13-17任一项所述的装置,其特征在于,所述馈电网络包括发射馈电网络和接收馈电网络,所述发射馈电网络和所述接收馈电网络共用同一馈电网络,或者所述发射馈电网络和所述接收馈电网络使用独立的馈电网络。
  19. 如权利要求18所述的装置,其特征在于,所述发射馈电网络和所述接收馈电网络共用同一馈电网络,所述装置还包括:功分器,所述功分器位于所述馈电网络和所述天线阵列之间。
  20. 如权利要求13-19任一项所述的装置,其特征在于,所述装置还包括以下一项或多项:基带模块,数字消除模块,数字模拟转换模块DAC,模拟数字转换模块ADC,本振LO,和混频器;
    其中,所述基带模块与所述数字消除模块连接,所述DAC和所述ADC位于所述基带模块和所述混频器之间,所述LO与所述混频连接。
  21. 如权利要求20所述的装置,其特征在于,所述装置还包括:功率放大器PA,和/ 或低噪声放大器LNA;
    所述PA和/或所述LNA位于所述混频器和所述移相器之间;或者
    所述PA和/或所述LNA位于所述移相器和所述馈电网络之间。
  22. 如权利要求13-21任一项所述的装置,其特征在于,所述发射天线阵列的阵元相对于发射天线阵列的第一个阵元的旋转角度根据所述发射天线阵列的阵元数目和所述发射天线阵列的阵元的编号确定;
    和/或
    所述接收天线阵列的阵元相对于接收天线阵列的第一个阵元的旋转角度根据所述接收天线阵列的阵元数目和所述接收天线阵列的阵元的编号确定。
  23. 如权利要求18-22任一项所述的装置,其特征在于,所述发射馈电网络根据待发射波束的OAM态和发射天线阵列的阵元数目确定;和/或
    所述接收馈电网络根据待接收波束的OAM态和接收天线阵列的阵元数目确定。
  24. 如权利要求23所述的装置,其特征在于,所述每个发射波束的OAM态满足以下条件:
    Figure PCTCN2020139673-appb-100006
    其中p表示第p个发射波束,
    Figure PCTCN2020139673-appb-100007
    表示第p个发射波束的OAM态,P表示发射波束的数量,p为小于或等于P的正整数,P为正整数;和/或
    所述每个发射天线中第n个发射天线的相位根据所述发射波束的OAM态L TX和所述发射天线阵列的发射天线数目N确定,n为小于或等于N的正整数,N为正整数。
  25. 如权利要求23所述的装置,其特征在于,所述每个接收波束的OAM态满足以下条件:
    Figure PCTCN2020139673-appb-100008
    其中q表示第q个接收波束,
    Figure PCTCN2020139673-appb-100009
    表示第q个发射波束的OAM态,Q表示接收波束的数量,q为小于或等于Q的正整数,Q为正整数;和/或
    所述每个接收天线中第m个接收天线的相位根据所述接收波束的OAM态L RX和所述接收天线阵列的接收天线数目M确定,m为小于或等于M的正整数,M为正整数。
  26. 如权利要求13-25任一项所述的装置,其特征在于,所述馈电网络的发射波束输入端口和所述馈电网络的接收波束输出端口之间的传输矩阵的所有元素均为0。
  27. 如权利要求13-26任一项所述的装置,其特征在于,所述发射UCA,具体用于同时产生OAM态连续的多个发射波束,其中所述多个发射波束在空间中叠加形成的波束的波束宽度与被激励的发射波束的数目成反比。
  28. 如权利要求13-27任一项所述的装置,其特征在于,所述移相器用于调整发射波束和/或接收波束的初相。
  29. 如权利要求13-28任一项所述的装置,其特征在于,若同时产生P个OAM态的发射波束,所述P个OAM态的发射波束的远场电场根据所述发射UCA的半径,发射波束的OAM态,及发射波束和接收波束的OAM态的初相确定。
  30. 如权利要求18-29任一项所述的装置,其特征在于,所述发射馈电网络,具体用于调整发射波束主瓣的θ度数,和/或调整发射波束主瓣的
    Figure PCTCN2020139673-appb-100010
    度数。
  31. 如权利要求18-30任一项所述的装置,其特征在于,所述发射馈电网络,具体用 于调整发射波束的主瓣个数。
  32. 一种计算机可读存储介质,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1-12任一项所述的方法被执行。
PCT/CN2020/139673 2020-01-23 2020-12-25 一种全双工通信方法及装置 WO2021147613A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20916182.7A EP4087061A4 (en) 2020-01-23 2020-12-25 FULL DUPLEX COMMUNICATIONS METHOD AND APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010076790.7 2020-01-23
CN202010076790.7A CN113162747B (zh) 2020-01-23 2020-01-23 一种全双工通信方法及装置

Publications (1)

Publication Number Publication Date
WO2021147613A1 true WO2021147613A1 (zh) 2021-07-29

Family

ID=76881972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139673 WO2021147613A1 (zh) 2020-01-23 2020-12-25 一种全双工通信方法及装置

Country Status (3)

Country Link
EP (1) EP4087061A4 (zh)
CN (1) CN113162747B (zh)
WO (1) WO2021147613A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113747389A (zh) * 2021-09-03 2021-12-03 成都中科微信息技术研究院有限公司 基于分布式oam模态复用的大容量上行数据传输方法
WO2023070485A1 (en) * 2021-10-29 2023-05-04 Qualcomm Incorporated Orbital angular momentum communication with variable antenna number
WO2023159465A1 (en) * 2022-02-25 2023-08-31 Qualcomm Incorporated Rotated antenna arrays for wireless communications
WO2023183809A3 (en) * 2022-03-21 2023-10-26 Cohere Technologies, Inc. Channel calibration in high density antenna systems
WO2024064575A1 (en) * 2022-09-23 2024-03-28 Qualcomm Incorporated Misalignment correction of orbital angular momentum (oam) beams

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115100363B (zh) * 2022-08-24 2022-11-25 中国科学院地理科学与资源研究所 基于探地雷达的地下异常体三维建模方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106099391A (zh) * 2016-06-01 2016-11-09 电子科技大学 一种同时同频全双工通信中信息的收发方法
CN108282208A (zh) * 2017-12-15 2018-07-13 西安电子科技大学 Oam通信系统中均匀圆形相控天线阵列的波束校准方法
WO2019059406A1 (ja) * 2017-09-25 2019-03-28 日本電信電話株式会社 Oam多重通信システムおよびモード間干渉除去方法
CN109728448A (zh) * 2018-12-06 2019-05-07 中国科学院上海微系统与信息技术研究所 用于轨道角动量远距离通信的圆环阵列结构及其激励方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104885302B (zh) * 2012-12-26 2017-11-17 华为技术有限公司 用于生成电磁波束的方法和装置
US9413448B2 (en) * 2014-08-08 2016-08-09 Nxgen Partners Ip, Llc Systems and methods for focusing beams with mode division multiplexing
WO2016036270A1 (en) * 2014-09-04 2016-03-10 Huawei Technologies Co., Ltd. Transceiver arrangement and method for transmitting and receiving electromagnetic signals in a mimo system
CN105991170B (zh) * 2015-02-06 2019-09-17 电信科学技术研究院 一种信号发射方法及装置
CN108322267B (zh) * 2017-01-17 2020-10-16 北京邮电大学 测量射频信号双重叠加轨道角动量的方法及系统
US10439287B2 (en) * 2017-12-21 2019-10-08 Nxgen Partners Ip, Llc Full duplex using OAM
CN110445742B (zh) * 2019-07-08 2020-07-24 清华大学 轴向汇聚接收的轨道角动量电磁波复用通信系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106099391A (zh) * 2016-06-01 2016-11-09 电子科技大学 一种同时同频全双工通信中信息的收发方法
WO2019059406A1 (ja) * 2017-09-25 2019-03-28 日本電信電話株式会社 Oam多重通信システムおよびモード間干渉除去方法
CN108282208A (zh) * 2017-12-15 2018-07-13 西安电子科技大学 Oam通信系统中均匀圆形相控天线阵列的波束校准方法
CN109728448A (zh) * 2018-12-06 2019-05-07 中国科学院上海微系统与信息技术研究所 用于轨道角动量远距离通信的圆环阵列结构及其激励方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DOU HAIPENG;ZHANG WENMEI: "A Dual-Band Microstrip Antenna Generating Vortex Electromagnetic Waves", JOURNAL OF TEST AND MEASUREMENT TECHNOLOGY, vol. 32, no. 1, 28 February 2018 (2018-02-28), pages 45 - 49, XP055831611, ISSN: 1671-17449, DOI: 10.3969/j.issn.1671-7449.2018.01.009 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113747389A (zh) * 2021-09-03 2021-12-03 成都中科微信息技术研究院有限公司 基于分布式oam模态复用的大容量上行数据传输方法
CN113747389B (zh) * 2021-09-03 2024-04-30 成都中科微信息技术研究院有限公司 基于分布式oam模态复用的大容量上行数据传输方法
WO2023070485A1 (en) * 2021-10-29 2023-05-04 Qualcomm Incorporated Orbital angular momentum communication with variable antenna number
WO2023159465A1 (en) * 2022-02-25 2023-08-31 Qualcomm Incorporated Rotated antenna arrays for wireless communications
WO2023183809A3 (en) * 2022-03-21 2023-10-26 Cohere Technologies, Inc. Channel calibration in high density antenna systems
WO2024064575A1 (en) * 2022-09-23 2024-03-28 Qualcomm Incorporated Misalignment correction of orbital angular momentum (oam) beams

Also Published As

Publication number Publication date
EP4087061A4 (en) 2023-06-14
CN113162747B (zh) 2023-03-03
CN113162747A (zh) 2021-07-23
EP4087061A1 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
WO2021147613A1 (zh) 一种全双工通信方法及装置
US10171149B2 (en) Apparatus, system and method of wireless backhaul and access communication via a common antenna array
US10804985B2 (en) Electronic device and communication method
EP3266119B1 (en) Beam forming using an antenna arrangement
CN216597997U (zh) 基站
US9326273B2 (en) Apparatus, system and method of wireless backhaul communication between wireless communication nodes
US9520914B2 (en) Full-duplex wireless communication system using polarization
WO2019201063A1 (zh) 一种天线系统、馈电网络重构方法及装置
WO2018177142A1 (zh) 一种天线系统、信号处理系统以及信号处理方法
US20170033848A1 (en) Apparatus, system and method of wireless communication via polarized antennas
WO2022143292A1 (zh) 一种天线子阵列、天线阵列、极化重构的方法及装置
WO2019077813A1 (ja) アンテナ装置
EP3698477B1 (en) Full-duplex transceiver apparatus
Jeyakumar et al. Large antenna array with hybrid beamforming system for 5G outdoor mobile broadband communication deployments
US20150003548A1 (en) Vertical Beam Design for UE-Specific Beamforming by Matching to a CB
WO2022206520A1 (zh) 一种信号转发方法和装置
Pan et al. Downlink multi-user algorithms for millimeter-wave wideband linear arrays on PD-NOMA-based squint steering beams
TWI751655B (zh) 毫米波基地台天線系統
WO2017152862A1 (zh) 一种天线系统和通信设备
CN106992802B (zh) 用于用户终端的信号收发装置、用户终端和信号传输方法
Ma et al. Massive MIMO system level performance results of a dense antenna array
WO2022198518A1 (zh) 配置发射功率的方法和终端设备
Mezghani et al. The information and wave-theoretic limits of analog beamforming
WO2023115285A1 (zh) 一种天线副瓣的抑制方法及天线阵列
WO2022257792A1 (zh) 全双工通信装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916182

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020916182

Country of ref document: EP

Effective date: 20220802

NENP Non-entry into the national phase

Ref country code: DE